
Binarized Neural Networks

Itay Hubara1*
itayh@technion.ac.il

Matthieu Courbariaux2*
matthieu.courbariaux@gmail.com

Daniel Soudry3
daniel.soudry@gmail.com

Ran El-Yaniv1
rani@cs.technion.ac.il

Yoshua Bengio2,4
yoshua.umontreal@gmail.com

(1) Technion, Israel Institute of Technology. (2) Université de Montréal.
(3) Columbia University. (4) CIFAR Senior Fellow.
(*) Indicates equal contribution.

Abstract

We introduce a method to train Binarized Neural Networks (BNNs) - neural
networks with binary weights and activations at run-time. At train-time the binary
weights and activations are used for computing the parameter gradients. During the
forward pass, BNNs drastically reduce memory size and accesses, and replace most
arithmetic operations with bit-wise operations, which is expected to substantially
improve power-efficiency. To validate the effectiveness of BNNs, we conducted
two sets of experiments on the Torch7 and Theano frameworks. On both, BNNs
achieved nearly state-of-the-art results over the MNIST, CIFAR-10 and SVHN
datasets. We also report our preliminary results on the challenging ImageNet
dataset. Last but not least, we wrote a binary matrix multiplication GPU kernel
with which it is possible to run our MNIST BNN 7 times faster than with an
unoptimized GPU kernel, without suffering any loss in classification accuracy. The
code for training and running our BNNs is available on-line.

Introduction

Deep Neural Networks (DNNs) have substantially pushed Artificial Intelligence (AI) limits in a wide
range of tasks (LeCun et al., 2015). Today, DNNs are almost exclusively trained on one or many very
fast and power-hungry Graphic Processing Units (GPUs) (Coates et al., 2013). As a result, it is often
a challenge to run DNNs on target low-power devices, and substantial research efforts are invested in
speeding up DNNs at run-time on both general-purpose (Gong et al., 2014; Han et al., 2015b) and
specialized computer hardware (Chen et al., 2014; Esser et al., 2015).

This paper makes the following contributions:

• We introduce a method to train Binarized-Neural-Networks (BNNs), neural networks with binary
weights and activations, at run-time, and when computing the parameter gradients at train-time
(see Section 1).

• We conduct two sets of experiments, each implemented on a different framework, namely Torch7
and Theano, which show that it is possible to train BNNs on MNIST, CIFAR-10 and SVHN and
achieve near state-of-the-art results (see Section 2). Moreover, we report preliminary results on the
challenging ImageNet dataset

• We show that during the forward pass (both at run-time and train-time), BNNs drastically reduce
memory consumption (size and number of accesses), and replace most arithmetic operations with
bit-wise operations, which potentially lead to a substantial increase in power-efficiency (see Section

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

3). Moreover, a binarized CNN can lead to binary convolution kernel repetitions; we argue that
dedicated hardware could reduce the time complexity by 60% .

• Last but not least, we programed a binary matrix multiplication GPU kernel with which it is
possible to run our MNIST BNN 7 times faster than with an unoptimized GPU kernel, without
suffering any loss in classification accuracy (see Section 4).

The code for training and running our BNNs is available on-line (both Theano1 and Torch frame-
work2).

1 Binarized Neural Networks

In this section, we detail our binarization function, show how we use it to compute the parameter
gradients,and how we backpropagate through it.

Deterministic vs Stochastic Binarization When training a BNN, we constrain both the weights
and the activations to either +1 or −1. Those two values are very advantageous from a hardware
perspective, as we explain in Section 4. In order to transform the real-valued variables into those
two values, we use two different binarization functions, as in (Courbariaux et al., 2015). Our first
binarization function is deterministic:

xb = Sign(x) =

{
+1 if x ≥ 0,
−1 otherwise, (1)

where xb is the binarized variable (weight or activation) and x the real-valued variable. It is very
straightforward to implement and works quite well in practice. Our second binarization function is
stochastic:

xb =

{
+1 with probability p = σ(x),
−1 with probability 1− p, (2)

where σ is the “hard sigmoid” function:

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1

2
)). (3)

The stochastic binarization is more appealing than the sign function, but harder to implement as
it requires the hardware to generate random bits when quantizing. As a result, we mostly use the
deterministic binarization function (i.e., the sign function), with the exception of activations at
train-time in some of our experiments.

Gradient Computation and Accumulation Although our BNN training method uses binary
weights and activation to compute the parameter gradients, the real-valued gradients of the weights
are accumulated in real-valued variables, as per Algorithm 1. Real-valued weights are likely required
for Stochasic Gradient Descent (SGD) to work at all. SGD explores the space of parameters in small
and noisy steps, and that noise is averaged out by the stochastic gradient contributions accumulated
in each weight. Therefore, it is important to maintain sufficient resolution for these accumulators,
which at first glance suggests that high precision is absolutely required.

Moreover, adding noise to weights and activations when computing the parameter gradients provide
a form of regularization that can help to generalize better, as previously shown with variational
weight noise (Graves, 2011), Dropout (Srivastava et al., 2014) and DropConnect (Wan et al., 2013).
Our method of training BNNs can be seen as a variant of Dropout, in which instead of randomly
setting half of the activations to zero when computing the parameter gradients, we binarize both the
activations and the weights.

Propagating Gradients Through Discretization The derivative of the sign function is zero almost
everywhere, making it apparently incompatible with back-propagation, since the exact gradient of
the cost with respect to the quantities before the discretization (pre-activations or weights) would

1https://github.com/MatthieuCourbariaux/BinaryNet
2https://github.com/itayhubara/BinaryNet

2

https://github.com/MatthieuCourbariaux/BinaryNet
https://github.com/itayhubara/BinaryNet

be zero. Note that this remains true even if stochastic quantization is used. Bengio (2013) studied
the question of estimating or propagating gradients through stochastic discrete neurons. He found in
his experiments that the fastest training was obtained when using the “straight-through estimator,”
previously introduced in Hinton’s lectures (Hinton, 2012). We follow a similar approach but use the
version of the straight-through estimator that takes into account the saturation effect, and does use
deterministic rather than stochastic sampling of the bit. Consider the sign function quantization

q = Sign(r),

and assume that an estimator gq of the gradient ∂C∂q has been obtained (with the straight-through
estimator when needed).

Algorithm 1: Training a BNN. C is the cost function
for minibatch, λ the learning rate decay factor and L
the number of layers. ◦ indicates element-wise mul-
tiplication. The function Binarize() specifies how to
(stochastically or deterministically) binarize the activa-
tions and weights, and Clip() specifies how to clip the
weights. BatchNorm() specifies how to batch-normalize
the activations, using either batch normalization (Ioffe &
Szegedy, 2015) or its shift-based variant we describe in
Algorithm 3. BackBatchNorm() specifies how to back-
propagate through the normalization. Update() specifies
how to update the parameters when their gradients are
known, using either ADAM (Kingma & Ba, 2014) or
the shift-based AdaMax we describe in Algorithm 2.

Require: a minibatch of inputs and targets (a0, a
∗),

previous weights W , previous BatchNorm parame-
ters θ, weight initialization coefficients from (Glorot
& Bengio, 2010) γ, and previous learning rate η.

Ensure: updated weights W t+1, updated BatchNorm
parameters θt+1 and updated learning rate ηt+1.
{1. Computing the gradients:}
{1.1. Forward propagation:}
for k = 1 to L do
W b
k ← Binarize(Wk), sk ← abk−1W

b
k

ak ← BatchNorm(sk, θk)
if k < L then abk ← Binarize(ak)

{1.2. Backward propagation:}
{Please note that the gradients are not binary.}
Compute gaL = ∂C

∂aL
knowing aL and a∗

for k = L to 1 do
if k < L then gak ← gabk ◦ 1|ak|≤1
(gsk , gθk)← BackBatchNorm(gak , sk, θk)
gabk−1

← gskW
b
k , gW b

k
← g>ska

b
k−1

{2. Accumulating the gradients:}
for k = 1 to L do
θt+1
k ← Update(θk, η

t, gθk), η
t+1 ← ληt

W t+1
k ← Clip(Update(Wk, γkη

t, gW b
k
),−1, 1)

Algorithm 2: Shift based AdaMax learning
rule (Kingma & Ba, 2014). g2t indicates the
element-wise square gt◦gt and� stands for
both left and right bit-shift. Good default
settings are α = 2−10, 1− β1 = 2−3, 1−
β2 = 2−10. All operations on vectors are
element-wise. With βt1 and βt2 we denote
β1 and β2 to the power t.

Require: Previous parameters θt−1 and
their gradient gt, and learning rate α.

Ensure: Updated parameters θt.
{Biased 1st and 2nd moment estimates:}

mt ← β1 ·mt−1 + (1− β1) · gt
vt ← max(β2 · vt−1, |gt|)
{Updated parameters:}
θt ← θt−1− (α� (1−β1)) · m̂� v−1t)

Algorithm 3: Shift based Batch Normaliz-
ing Transform, applied to activation x over
a mini-batch. The approximate power-of-
2 is3AP2(x) = sign(x)2round(log2|x|), and
� stands for both left and right binary shift.

Require: Values of x over a mini-batch:
B = {x1...m}; parameters to learn: γ, β.

Ensure: {yi = BN(xi,γ, β)}
{1. Mini-batch mean:}
µB ← 1

m

∑m
i=1 xi

{2. Centered input: }
C(xi)← (xi − µB)
{3. Approximate variance:}
σ2
B← 1

m

∑m
i=1(C(xi)�AP2(C(xi)))

{4. Normalize:}
x̂i ← C(xi)�AP2((

√
σ2
B + ε)−1)

{5. Scale and shift:}
yi ← AP2(γ)� x̂i

Then, our straight-through estimator of ∂C∂r is simply
gr = gq1|r|≤1. (4)

Note that this preserves the gradient’s information and cancels the gradient when r is too large.
Not cancelling the gradient when r is too large significantly worsens the performance. The use of
this straight-through estimator is illustrated in Algorithm 1. The derivative 1|r|≤1 can also be seen
as propagating the gradient through hard tanh, which is the following piece-wise linear activation
function:

Htanh(x) = Clip(x,−1, 1). (5)

3

Algorithm 4: Running a BNN. L = layers.

Require: a vector of 8-bit inputs a0, the binary
weights W b, and the BatchNorm parameters θ.

Ensure: the MLP output aL.
{1. First layer:}
a1 ← 0
for n = 1 to 8 do
a1 ← a1+2n−1 ·XnorDotProduct(an0 ,W

b
1)

ab1 ← Sign(BatchNorm(a1, θ1))
{2. Remaining hidden layers:}
for k = 2 to L− 1 do
ak ← XnorDotProduct(abk−1,W

b
k)

abk ← Sign(BatchNorm(ak, θk))
{3. Output layer:}
aL ← XnorDotProduct(abL−1,W

b
L)

aL ← BatchNorm(aL, θL)

For hidden units, we use the sign function non-
linearity to obtain binary activations, and for
weights we combine two ingredients:

• Constrain each real-valued weight between -1
and 1, by projecting wr to -1 or 1 when the
weight update brings wr outside of [−1, 1],
i.e., clipping the weights during training, as
per Algorithm 1. The real-valued weights
would otherwise grow very large without any
impact on the binary weights.

• When using a weight wr, quantize it using
wb = Sign(wr).

This is consistent with the gradient canceling
when |wr| > 1, according to Eq. 4.

Shift-based Batch Normalization Batch
Normalization (BN) (Ioffe & Szegedy, 2015), accelerates the training and also seems to reduces
the overall impact of the weight scale. The normalization noise may also help to regularize the
model. However, at train-time, BN requires many multiplications (calculating the standard deviation
and dividing by it), namely, dividing by the running variance (the weighted mean of the training
set activation variance). Although the number of scaling calculations is the same as the number of
neurons, in the case of ConvNets this number is quite large. For example, in the CIFAR-10 dataset
(using our architecture), the first convolution layer, consisting of only 128 × 3 × 3 filter masks,
converts an image of size 3× 32× 32 to size 3× 128× 28× 28, which is two orders of magnitude
larger than the number of weights. To achieve the results that BN would obtain, we use a shift-based
batch normalization (SBN) technique. detailed in Algorithm 3. SBN approximates BN almost
without multiplications. In the experiment we conducted we did not observe accuracy loss when
using the shift based BN algorithm instead of the vanilla BN algorithm.

Shift based AdaMax The ADAM learning rule (Kingma & Ba, 2014) also seems to reduce the
impact of the weight scale. Since ADAM requires many multiplications, we suggest using instead the
shift-based AdaMax we detail in Algorithm 2. In the experiment we conducted we did not observe
accuracy loss when using the shift-based AdaMax algorithm instead of the vanilla ADAM algorithm.

First Layer In a BNN, only the binarized values of the weights and activations are used in all
calculations. As the output of one layer is the input of the next, all the layers inputs are binary,
with the exception of the first layer. However, we do not believe this to be a major issue. First, in
computer vision, the input representation typically has far fewer channels (e.g, red, green and blue)
than internal representations (e.g, 512). As a result, the first layer of a ConvNet is often the smallest
convolution layer, both in terms of parameters and computations (Szegedy et al., 2014). Second, it is
relatively easy to handle continuous-valued inputs as fixed point numbers, with m bits of precision.
For example, in the common case of 8-bit fixed point inputs:

s = x · wb ; s =

8∑
n=1

2n−1(xn · wb), (6)

where x is a vector of 1024 8-bit inputs, x81 is the most significant bit of the first input, wb is a vector
of 1024 1-bit weights, and s is the resulting weighted sum. This trick is used in Algorithm 4.

2 Benchmark Results

We conduct two sets of experiments, each based on a different framework, namely Torch7 and Theano.
Implementation details are reported in Appendix A and code for both frameworks is available online.
Results are reported in Table 1.

3Hardware implementation of AP2 is as simple as extracting the index of the most significant bit from the
number’s binary representation.

4

Table 1: Classification test error rates of DNNs trained on MNIST (fully connected architecture),
CIFAR-10 and SVHN (convnet). No unsupervised pre-training or data augmentation was used.

Data set MNIST SVHN CIFAR-10
Binarized activations+weights, during training and test

BNN (Torch7) 1.40% 2.53% 10.15%
BNN (Theano) 0.96% 2.80% 11.40%
Committee Machines’ Array (Baldassi et al., 2015) 1.35% - -

Binarized weights, during training and test
BinaryConnect (Courbariaux et al., 2015) 1.29± 0.08% 2.30% 9.90%

Binarized activations+weights, during test
EBP (Cheng et al., 2015) 2.2± 0.1% - -
Bitwise DNNs (Kim & Smaragdis, 2016) 1.33% - -

Ternary weights, binary activations, during test
(Hwang & Sung, 2014) 1.45% - -

No binarization (standard results)
No regularization 1.3± 0.2% 2.44% 10.94%
Gated pooling (Lee et al., 2015) - 1.69% 7.62%

Figure 1: Training curves for different methods on
CIFAR-10 dataset. The dotted lines represent the train-
ing costs (square hinge losses) and the continuous lines
the corresponding validation error rates. Although
BNNs are slower to train, they are nearly as accurate as
32-bit float DNNs.

Preliminary Results on ImageNet To
test the strength of our method, we applied
it to the challenging ImageNet classifica-
tion task. Considerable research has been
concerned with compressing ImageNet ar-
chitectures while preserving high accuracy
performance (e.g., Han et al. (2015a)). Pre-
vious approaches that have been tried in-
clude pruning near zero weights using ma-
trix factorization techniques, quantizing
the weights and applying Huffman codes
among others. To the best of the our knowl-
edge, so far there are no reports on success-
fully quantizing the network’s activations.
Moreover, a recent work Han et al. (2015a)
showed that accuracy significantly deterio-
rates when trying to quantize convolutional
layers’ weights below 4 bits (FC layers are
more robust to quantization and can operate
quite well with only 2 bits). In the present
work we attempted to tackle the difficult task of binarizing both weights and activations. Employing
the well known AlexNet and GoogleNet architectures, we applied our techniques and achieved
36.1% top-1 and 60.1% top-5 accuracies using AlexNet and 47.1% top-1 and 69.1% top-5 accuracies
using GoogleNet. While this performance leaves room for improvement (relative to full precision
nets), they are by far better than all previous attempts to compress ImageNet architectures using less
than 4 bits precision for the weights. Moreover, this advantage is achieved while also binarizing
neuron activations. Detailed descriptions of these results as well as full implementation details
of our experiments are reported in the supplementary material (Appendix B). In our latest work
(Hubara et al., 2016) we relaxed the binary constrains and allowed more than 1-bit per weight and
activations. The resulting QNNs achieve prediction accuracy comparable to their 32-bit counterparts.
For example, our quantized version of AlexNet with 1-bit weights and 2-bit activations achieves
51% top-1 accuracy and GoogleNet with 4-bits weighs and activation achived 66.6%. Moreover, we
quantize the parameter gradients to 6-bits as well which enables gradients computation using only
bit-wise operation. Full details can be found in (Hubara et al., 2016)

5

Table 2: Energy consumption of multiply-
accumulations in pico-joules (Horowitz, 2014)

Operation MUL ADD
8bit Integer 0.2pJ 0.03pJ
32bit Integer 3.1pJ 0.1pJ
16bit Floating Point 1.1pJ 0.4pJ
32tbit Floating Point 3.7pJ 0.9pJ

Table 3: Energy consumption of memory accesses
in pico-joules (Horowitz, 2014)

Memory size 64-bit memory access
8K 10pJ
32K 20pJ
1M 100pJ
DRAM 1.3-2.6nJ

3 High Power Efficiency during the Forward Pass

Computer hardware, be it general-purpose or specialized, is composed of memories, arithmetic
operators and control logic. During the forward pass (both at run-time and train-time), BNNs
drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise
operations, which might lead to a great increase in power-efficiency. Moreover, a binarized CNN can
lead to binary convolution kernel repetitions, and we argue that dedicated hardware could reduce the
time complexity by 60% .

Memory Size and Accesses Improving computing performance has always been and remains a
challenge. Over the last decade, power has been the main constraint on performance (Horowitz, 2014).
This is why much research effort has been devoted to reducing the energy consumption of neural
networks. Horowitz (2014) provides rough numbers for the energy consumed by the computation (the
given numbers are for 45nm technology), as summarized in Tables 2 and 3. Importantly, we can see
that memory accesses typically consume more energy than arithmetic operations, and memory access
cost augments with memory size. In comparison with 32-bit DNNs, BNNs require 32 times smaller
memory size and 32 times fewer memory accesses. This is expected to reduce energy consumption
drastically (i.e., more than 32 times).

XNOR-Count Applying a DNN mainly consists of convolutions and matrix multiplications. The
key arithmetic operation of deep learning is thus the multiply-accumulate operation. Artificial neurons
are basically multiply-accumulators computing weighted sums of their inputs. In BNNs, both the
activations and the weights are constrained to either −1 or +1. As a result, most of the 32-bit floating
point multiply-accumulations are replaced by 1-bit XNOR-count operations. This could have a big
impact on dedicated deep learning hardware. For instance, a 32-bit floating point multiplier costs
about 200 Xilinx FPGA slices (Govindu et al., 2004; Beauchamp et al., 2006), whereas a 1-bit XNOR
gate only costs a single slice.

Exploiting Filter Repetitions When using a ConvNet architecture with binary weights, the number
of unique filters is bounded by the filter size. For example, in our implementation we use filters of
size 3 × 3, so the maximum number of unique 2D filters is 29 = 512. Since we now have binary
filters, many 2D filters of size k × k repeat themselves. By using dedicated hardware/software, we
can apply only the unique 2D filters on each feature map and sum the results to receive each 3D
filter’s convolutional result. For example, in our ConvNet architecture trained on the CIFAR-10
benchmark, there are only 42% unique filters per layer on average. Hence we can reduce the number
of the XNOR-popcount operations by 3.

4 Seven Times Faster on GPU at Run-Time

It is possible to speed up GPU implementations of BNNs, by using a method sometimes called
SIMD (single instruction, multiple data) within a register (SWAR). The basic idea of SWAR is to
concatenate groups of 32 binary variables into 32-bit registers, and thus obtain a 32-times speed-up
on bitwise operations (e.g, XNOR). Using SWAR, it is possible to evaluate 32 connections with only
3 instructions:

a1+ = popcount(xnor(a32b0 , w32b
1)), (7)

where a1 is the resulting weighted sum, and a32b0 and w32b
1 are the concatenated inputs and weights.

Those 3 instructions (accumulation, popcount, xnor) take 1 + 4 + 1 = 6 clock cycles on recent

6

Nvidia GPUs (and if they were to become a fused instruction, it would only take a single clock cycle).
Consequently, we obtain a theoretical Nvidia GPU speed-up of factor of 32/6 ≈ 5.3. In practice, this
speed-up is quite easy to obtain as the memory bandwidth to computation ratio is also increased by 6
times.

Figure 2: The first three columns represent the
time it takes to perform a 8192× 8192× 8192 (bi-
nary) matrix multiplication on a GTX750 Nvidia
GPU, depending on which kernel is used. We
can see that our XNOR kernel is 23 times faster
than our baseline kernel and 3.4 times faster than
cuBLAS. The next three columns represent the
time it takes to run the MLP from Section 2 on the
full MNIST test set. As MNIST’s images are not
binary, the first layer’s computations are always
performed by the baseline kernel. The last three
columns show that the MLP accuracy does not
depend on which kernel is used.

In order to validate those theoretical results, we
programed two GPU kernels:

• The first kernel (baseline) is an unoptimized
matrix multiplication kernel.

• The second kernel (XNOR) is nearly identical
to the baseline kernel, except that it uses the
SWAR method, as in Equation (7).

The two GPU kernels return identical outputs
when their inputs are constrained to −1 or +1
(but not otherwise). The XNOR kernel is about
23 times faster than the baseline kernel and 3.4
times faster than cuBLAS, as shown in Figure 2.
Last but not least, the MLP from Section 2 runs
7 times faster with the XNOR kernel than with
the baseline kernel, without suffering any loss
in classification accuracy (see Figure 2).

5 Discussion and Related Work

Until recently, the use of extremely low-
precision networks (binary in the extreme case)
was believed to be highly destructive to the net-
work performance (Courbariaux et al., 2014).
Soudry et al. (2014) and Cheng et al. (2015)
proved the contrary by showing that good per-
formance could be achieved even if all neurons
and weights are binarized to±1 . This was done
using Expectation BackPropagation (EBP), a
variational Bayesian approach, which infers net-
works with binary weights and neurons by updating the posterior distributions over the weights.
These distributions are updated by differentiating their parameters (e.g., mean values) via the back
propagation (BP) algorithm. Esser et al. (2015) implemented a fully binary network at run time using
a very similar approach to EBP, showing significant improvement in energy efficiency. The drawback
of EBP is that the binarized parameters are only used during inference.

The probabilistic idea behind EBP was extended in the BinaryConnect algorithm of Courbariaux et al.
(2015). In BinaryConnect, the real-valued version of the weights is saved and used as a key reference
for the binarization process. The binarization noise is independent between different weights, either
by construction (by using stochastic quantization) or by assumption (a common simplification; see
Spang (1962). The noise would have little effect on the next neuron’s input because the input is
a summation over many weighted neurons. Thus, the real-valued version could be updated by the
back propagated error by simply ignoring the binarization noise in the update. Using this method,
Courbariaux et al. (2015) were the first to binarize weights in CNNs and achieved near state-of-the-art
performance on several datasets. They also argued that noisy weights provide a form of regularization,
which could help to improve generalization, as previously shown in (Wan et al., 2013). This method
binarized weights while still maintaining full precision neurons.

Lin et al. (2015) carried over the work of Courbariaux et al. (2015) to the back-propagation process
by quantizing the representations at each layer of the network, to convert some of the remaining
multiplications into bit-shifts by restricting the neurons values to be power-of-two integers. Lin et al.
(2015)’s work and ours seem to share similar characteristics . However, their approach continues to
use full precision weights during the test phase. Moreover, Lin et al. (2015) quantize the neurons
only during the back propagation process, and not during forward propagation.

7

Other research Baldassi et al. (2015) showed that full binary training and testing is possible in an
array of committee machines with randomized input, where only one weight layer is being adjusted.
Gong et al. (2014) aimed to compress a fully trained high precision network by using a quantization
or matrix factorization methods. These methods required training the network with full precision
weights and neurons, thus requiring numerous MAC operations the proposed BNN algorithm avoids.
Hwang & Sung (2014) focused on a fixed-point neural network design and achieved performance
almost identical to that of the floating-point architecture. Kim & Smaragdis (2016) retrained neural
networks with binary weights and activations.

So far, to the best of our knowledge, no work has succeeded in binarizing weights and neurons, at the
inference phase and the entire training phase of a deep network. This was achieved in the present
work. We relied on the idea that binarization can be done stochastically, or be approximated as
random noise. This was previously done for the weights by Courbariaux et al. (2015), but our BNNs
extend this to the activations. Note that the binary activations are especially important for ConvNets,
where there are typically many more neurons than free weights. This allows highly efficient operation
of the binarized DNN at run time, and at the forward-propagation phase during training. Moreover,
our training method has almost no multiplications, and therefore might be implemented efficiently
in dedicated hardware. However, we have to save the value of the full precision weights. This is a
remaining computational bottleneck during training, since it is an energy-consuming operation.

Conclusion

We have introduced BNNs, which binarize deep neural networks and can lead to dramatic improve-
ments in both power consumption and computation speed. During the forward pass (both at run-time
and train-time), BNNs drastically reduce memory size and accesses, and replace most arithmetic
operations with bit-wise operations. Our estimates indicate that power efficiency can be improved by
more than one order of magnitude (see Section 3). In terms of speed, we programed a binary matrix
multiplication GPU kernel that enabled running MLP over the MNIST datset 7 times faster (than
with an unoptimized GPU kernel) without suffering any accuracy degradation (see Section 4).

We have shown that BNNs can handle MNIST, CIFAR-10 and SVHN while achieving nearly state-
of-the-art accuracy performance. While our preliminary results for the challenging ImageNet are
not on par with the best results achievable with full precision networks, they significantly improve
all previous attempts to compress ImageNet-capable architectures (see Section 2 and supplementary
material - Appendix B). Moreover by relaxing the binary constrains and allowed more than 1-bit per
weight and activations we have been able to achieve prediction accuracy comparable to their 32-bit
counterparts. Full details can be found in our latest work (Hubara et al., 2016) A major open question
would be to further improve our results on ImageNet. A substantial progress in this direction might
lead to huge impact on DNN usability in low power instruments such as mobile phones.

Acknowledgments

We would like to express our appreciation to Elad Hoffer, for his technical assistance and constructive
comments. We thank our fellow MILA lab members who took the time to read the article and give us
some feedback. We thank the developers of Torch, Collobert et al. (2011) a Lua based environment,
and Theano (Bergstra et al., 2010; Bastien et al., 2012), a Python library which allowed us to easily
develop a fast and optimized code for GPU. We also thank the developers of Pylearn2 (Goodfellow
et al., 2013) and Lasagne (Dieleman et al., 2015), two Deep Learning libraries built on the top of
Theano. We thank Yuxin Wu for helping us compare our GPU kernels with cuBLAS. We are also
grateful for funding from NSERC, the Canada Research Chairs, Compute Canada, and CIFAR. We
are also grateful for funding from CIFAR, NSERC, IBM, Samsung. This research was also supported
by The Israel Science Foundation (grant No. 1890/14).

References
Baldassi, C., Ingrosso, A., Lucibello, C., Saglietti, L., and Zecchina, R. Subdominant Dense Clusters Allow for

Simple Learning and High Computational Performance in Neural Networks with Discrete Synapses. Physical
Review Letters, 115(12):1–5, 2015.

8

Bastien, F., Lamblin, P., Pascanu, R., et al. Theano: new features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

Beauchamp, M. J., Hauck, S., Underwood, K. D., and Hemmert, K. S. Embedded floating-point units in FPGAs.
In Proceedings of the 2006 ACM/SIGDA 14th international symposium on Field programmable gate arrays,
pp. 12–20. ACM, 2006.

Bengio, Y. Estimating or propagating gradients through stochastic neurons. Technical Report arXiv:1305.2982,
Universite de Montreal, 2013.

Bergstra, J., Breuleux, O., Bastien, F., et al. Theano: a CPU and GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference (SciPy), June 2010. Oral Presentation.

Chen, T., Du, Z., Sun, N., et al. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning. In Proceedings of the 19th international conference on Architectural support for programming
languages and operating systems, pp. 269–284. ACM, 2014.

Cheng, Z., Soudry, D., Mao, Z., and Lan, Z. Training binary multilayer neural networks for image classification
using expectation backpropgation. arXiv preprint arXiv:1503.03562, 2015.

Coates, A., Huval, B., Wang, T., et al. Deep learning with COTS HPC systems. In Proceedings of the 30th
international conference on machine learning, pp. 1337–1345, 2013.

Collobert, R., Kavukcuoglu, K., and Farabet, C. Torch7: A matlab-like environment for machine learning. In
BigLearn, NIPS Workshop, 2011.

Courbariaux, M., Bengio, Y., and David, J.-P. Training deep neural networks with low precision multiplications.
ArXiv e-prints, abs/1412.7024, December 2014.

Courbariaux, M., Bengio, Y., and David, J.-P. Binaryconnect: Training deep neural networks with binary weights
during propagations. ArXiv e-prints, abs/1511.00363, November 2015.

Dieleman, S., Schlüter, J., Raffel, C., et al. Lasagne: First release., August 2015.
Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V., and Modha, D. S. Backpropagation for energy-efficient

neuromorphic computing. In Advances in Neural Information Processing Systems, pp. 1117–1125, 2015.
Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In

AISTATS’2010, 2010.
Gong, Y., Liu, L., Yang, M., and Bourdev, L. Compressing deep convolutional networks using vector quantization.

arXiv preprint arXiv:1412.6115, 2014.
Goodfellow, I. J., Warde-Farley, D., Lamblin, P., et al. Pylearn2: a machine learning research library. arXiv

preprint arXiv:1308.4214, 2013.
Govindu, G., Zhuo, L., Choi, S., and Prasanna, V. Analysis of high-performance floating-point arithmetic on

FPGAs. In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International, pp. 149.
IEEE, 2004.

Graves, A. Practical variational inference for neural networks. In Advances in Neural Information Processing
Systems, pp. 2348–2356, 2011.

Han, S., Mao, H., and Dally, W. J. Deep compression: Compressing deep neural networks with pruning, trained
quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both weights and connections for efficient neural network. In
Advances in Neural Information Processing Systems, pp. 1135–1143, 2015b.

Hinton, G. Neural networks for machine learning. Coursera, video lectures, 2012.
Horowitz, M. Computing’s Energy Problem (and what we can do about it). IEEE Interational Solid State

Circuits Conference, pp. 10–14, 2014.
Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. Quantized neural networks: Training

neural networks with low precision weights and activations. arXiv preprint arXiv:1609.07061, 2016.
Hwang, K. and Sung, W. Fixed-point feedforward deep neural network design using weights+ 1, 0, and- 1. In

Signal Processing Systems (SiPS), 2014 IEEE Workshop on, pp. 1–6. IEEE, 2014.
Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. 2015.
Kim, M. and Smaragdis, P. Bitwise Neural Networks. ArXiv e-prints, January 2016.
Kingma, D. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Nature, 521(7553):436–444, 2015.
Lee, C.-Y., Gallagher, P. W., and Tu, Z. Generalizing pooling functions in convolutional neural networks: Mixed,

gated, and tree. arXiv preprint arXiv:1509.08985, 2015.
Lin, Z., Courbariaux, M., Memisevic, R., and Bengio, Y. Neural networks with few multiplications. ArXiv

e-prints, abs/1510.03009, October 2015.
Soudry, D., Hubara, I., and Meir, R. Expectation backpropagation: Parameter-free training of multilayer neural

networks with continuous or discrete weights. In NIPS’2014, 2014.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. Dropout: A simple way to

prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.
Szegedy, C., Liu, W., Jia, Y., et al. Going deeper with convolutions. Technical report, arXiv:1409.4842, 2014.
Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R. Regularization of neural networks using dropconnect.

In ICML’2013, 2013.

9

