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Abstract

Generative Adversarial Networks (GANs) excel at creating realistic images with
complex models for which maximum likelihood is infeasible. However, the con-
vergence of GAN training has still not been proved. We propose a two time-scale
update rule (TTUR) for training GANs with stochastic gradient descent on ar-
bitrary GAN loss functions. TTUR has an individual learning rate for both the
discriminator and the generator. Using the theory of stochastic approximation, we
prove that the TTUR converges under mild assumptions to a stationary local Nash
equilibrium. The convergence carries over to the popular Adam optimization, for
which we prove that it follows the dynamics of a heavy ball with friction and thus
prefers flat minima in the objective landscape. For the evaluation of the perfor-
mance of GANs at image generation, we introduce the ‘Fréchet Inception Distance”
(FID) which captures the similarity of generated images to real ones better than
the Inception Score. In experiments, TTUR improves learning for DCGANs and
Improved Wasserstein GANs (WGAN-GP) outperforming conventional GAN train-
ing on CelebA, CIFAR-10, SVHN, LSUN Bedrooms, and the One Billion Word
Benchmark.

1 Introduction

Generative adversarial networks (GANs) [16] have achieved outstanding results in generating realistic
images [42, 31, 25, 1, 4] and producing text [21]. GANs can learn complex generative models for
which maximum likelihood or a variational approximations are infeasible. Instead of the likelihood,
a discriminator network serves as objective for the generative model, that is, the generator. GAN
learning is a game between the generator, which constructs synthetic data from random variables,
and the discriminator, which separates synthetic data from real world data. The generator’s goal is
to construct data in such a way that the discriminator cannot tell them apart from real world data.
Thus, the discriminator tries to minimize the synthetic-real discrimination error while the generator
tries to maximize this error. Since training GANs is a game and its solution is a Nash equilibrium,
gradient descent may fail to converge [44, 16, 18]. Only local Nash equilibria are found, because
gradient descent is a local optimization method. If there exists a local neighborhood around a point
in parameter space where neither the generator nor the discriminator can unilaterally decrease their
respective losses, then we call this point a local Nash equilibrium.

To characterize the convergence properties of training general GANs is still an open challenge [17, 18].
For special GAN variants, convergence can be proved under certain assumptions [34, 20, 46]. A
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Fig. 2. Convergence of deterministic algorithm under different step sizes.
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Fig. 3. Convergence under noisy feedback (the unbiased case).

sizes, the convergence to a neighborhood is the best we can
hope; whereas by using diminishing step sizes, convergence
with probability one to the optimal points is made possible.

3) Stability of The Stochastic Algorithm: The Biased Case:
Recall that when the gradient estimation error is biased, we
cannot hope to obtain almost sure convergence to the optimal
solutions. Instead, we have shown that provided that the biased
error is asymptotically uniformly bounded, the iterates return
to a “contraction region” infinitely often. In this example, we
assume that αs(n) = β(i,j)(n) and are uniformly bounded by a
specified positive value. We also assume that ζs(n) ∼ N (0, 1)
and ξ(i,j)(n) ∼ N (0, 1), for all s and (i, j).

We plot the iterates (using the relative distance to the
optimal points) in Fig. 4, which is further “zoomed in” in
Fig. 5. It can be observed from Fig. 4 that when the upper-
bounds on the {αs, β(i,j)} are small, the iterates return to
a neighborhood of the optimal solution. However, when the
estimation errors are large, the recurrent behavior of the
iterates may not occur, and the iterates may diverge. This
corroborates the theoretical analysis. We can further observe
from Fig. 5 that the smaller the upper-bound is, the smaller the
“contraction region” Aη becomes, indicating that the iterates
converge “closer” to the optimal points.
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Fig. 4. Convergence under noisy feedback (the biased case).
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Fig. 5. “Zoomed-in” convergence behavior of the iterates in Figure 4.

V. STOCHASTIC STABILITY OF TWO TIME-SCALE
ALGORITHM UNDER NOISY FEEDBACK

In the previous sections, we have applied the dual decom-
position method to Problem (1) and devised the primal-dual
algorithm, which is a single time-scale algorithm. As noted
in Section I, there are many other decomposition methods.
In particular, the primal decomposition method is a useful
machinery for problem with coupled variables [31]; and when
some of the variables are fixed, the rest of the problem
may decouple into several subproblems. This naturally yields
multiple time-scale algorithms. It is also of great interest to
examine the stability of the multiple time-scale algorithms in
the presence of noisy feedback, and compare with the single
time-scale algorithms, in terms of complexity and robustness.

To get a more concrete sense of the two time-scale al-
gorithms based on primal decomposition, we consider the
following NUM problem:

Ξ2 : maximize
{ms≤xs≤Ms, p}

∑
s Us (xs)

subject to
∑

s:l∈L(s) xs ≤ cl, ∀l
cl = hl(p), ∀l
p ∈ H,

(39)

where the link capacities {cl} are functions of specific MAC
parameters p (for instance, p can be transmission probabilities
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Figure 1: Left: Original vs. TTUR GAN training on CelebA. Right: Figure from Zhang 2007 [50]
which shows the distance of the parameter from the optimum for a one time-scale update of a 4
node network flow problem. When the upper bounds on the errors (α, β) are small, the iterates
oscillate and repeatedly return to a neighborhood of the optimal solution (cf. Supplement Section 2.3).
However, when the upper bounds on the errors are large, the iterates typically diverge.

prerequisit for many convergence proofs is local stability [30] which was shown for GANs by
Nagarajan and Kolter [39] for a min-max GAN setting. However, Nagarajan and Kolter require for
their proof either rather strong and unrealistic assumptions or a restriction to a linear discriminator.
Recent convergence proofs for GANs hold for expectations over training samples or for the number
of examples going to infinity [32, 38, 35, 2], thus do not consider mini-batch learning which leads to
a stochastic gradient [47, 23, 36, 33].

Recently actor-critic learning has been analyzed using stochastic approximation. Prasad et al. [41]
showed that a two time-scale update rule ensures that training reaches a stationary local Nash
equilibrium if the critic learns faster than the actor. Convergence was proved via an ordinary
differential equation (ODE), whose stable limit points coincide with stationary local Nash equilibria.
We follow the same approach. We adopt this approach for GANs and prove that also GANs
converge to a local Nash equilibrium when trained by a two time-scale update rule (TTUR), i.e.,
when discriminator and generator have separate learning rates. This also leads to better results in
experiments. The main premise is that the discriminator converges to a local minimum when the
generator is fixed. If the generator changes slowly enough, then the discriminator still converges,
since the generator perturbations are small. Besides ensuring convergence, the performance may
also improve since the discriminator must first learn new patterns before they are transferred to the
generator. In contrast, a generator which is overly fast, drives the discriminator steadily into new
regions without capturing its gathered information. In recent GAN implementations, the discriminator
often learned faster than the generator. A new objective slowed down the generator to prevent it from
overtraining on the current discriminator [44]. The Wasserstein GAN algorithm uses more update
steps for the discriminator than for the generator [1]. We compare TTUR and standard GAN training.
Fig. 1 shows at the left panel a stochastic gradient example on CelebA for original GAN training
(orig), which often leads to oscillations, and the TTUR. On the right panel an example of a 4 node
network flow problem of Zhang et al. [50] is shown. The distance between the actual parameter and
its optimum for an one time-scale update rule is shown across iterates. When the upper bounds on the
errors are small, the iterates return to a neighborhood of the optimal solution, while for large errors
the iterates may diverge (see also Supplement Section 2.3). Our novel contributions in this paper are:
(i) the two time-scale update rule for GANs, (ii) the proof that GANs trained with TTUR converge to
a stationary local Nash equilibrium, (iii) the description of Adam as heavy ball with friction and the
resulting second order differential equation, (iv) the convergence of GANs trained with TTUR and
Adam to a stationary local Nash equilibrium, (v) the “Fréchet Inception Distance” (FID) to evaluate
GANs, which is more consistent than the Inception Score.

Two Time-Scale Update Rule for GANs

We consider a discriminator D(.;w) with parameter vectorw and a generator G(.;θ) with parameter
vector θ. Learning is based on a stochastic gradient g̃(θ,w) of the discriminator’s loss function LD
and a stochastic gradient h̃(θ,w) of the generator’s loss function LG. The loss functions LD and
LG can be the original as introduced in Goodfellow et al. [16], its improved versions [18], or recently
proposed losses for GANs like the Wasserstein GAN [1]. Our setting is not restricted to min-max
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GANs, but is also valid for all other, more general GANs for which the discriminator’s loss function
LD is not necessarily related to the generator’s loss function LG. The gradients g̃

(
θ,w

)
and h̃

(
θ,w

)

are stochastic, since they use mini-batches of m real world samples x(i), 1 6 i 6 m and m synthetic
samples z(i), 1 6 i 6 m which are randomly chosen. If the true gradients are g(θ,w) = ∇wLD and
h(θ,w) = ∇θLG, then we can define g̃(θ,w) = g(θ,w)+M (w) and h̃(θ,w) = h(θ,w)+M (θ)

with random variables M (w) and M (θ). Thus, the gradients g̃
(
θ,w

)
and h̃

(
θ,w

)
are stochastic

approximations to the true gradients. Consequently, we analyze convergence of GANs by two
time-scale stochastic approximations algorithms. For a two time-scale update rule (TTUR), we use
the learning rates b(n) and a(n) for the discriminator and the generator update, respectively:

wn+1 = wn + b(n)
(
g
(
θn,wn

)
+M (w)

n

)
, θn+1 = θn + a(n)

(
h
(
θn,wn

)
+M (θ)

n

)
. (1)

For more details on the following convergence proof and its assumptions see Supplement Section 2.1.
To prove convergence of GANs learned by TTUR, we make the following assumptions (The actual
assumption is ended by J, the following text are just comments and explanations):

(A1) The gradients h and g are Lipschitz. J Consequently, networks with Lipschitz smooth
activation functions like ELUs (α = 1) [11] fulfill the assumption but not ReLU networks.

(A2)
∑
n a(n) =∞,

∑
n a

2(n) <∞,
∑
n b(n) =∞,

∑
n b

2(n) <∞, a(n) = o(b(n))J

(A3) The stochastic gradient errors {M (θ)
n } and {M (w)

n } are martingale difference sequences
w.r.t. the increasing σ-field Fn = σ(θl,wl,M

(θ)
l ,M

(w)
l , l 6 n), n > 0 with

E
[
‖M (θ)

n ‖2 | F (θ)
n

]
6 B1 and E

[
‖M (w)

n ‖2 | F (w)
n

]
6 B2, where B1 and B2 are positive

deterministic constants.J The original Assumption (A3) from Borkar 1997 follows from
Lemma 2 in [5] (see also [43]). The assumption is fulfilled in the Robbins-Monro setting,
where mini-batches are randomly sampled and the gradients are bounded.

(A4) For each θ, the ODE ẇ(t) = g
(
θ,w(t)

)
has a local asymptotically stable attractor

λ(θ) within a domain of attraction Gθ such that λ is Lipschitz. The ODE θ̇(t) =
h
(
θ(t),λ(θ(t))

)
has a local asymptotically stable attractor θ∗ within a domain of

attraction.J The discriminator must converge to a minimum for fixed generator param-
eters and the generator, in turn, must converge to a minimum for this fixed discriminator
minimum. Borkar 1997 required unique global asymptotically stable equilibria [7]. The
assumption of global attractors was relaxed to local attractors via Assumption (A6) and
Theorem 2.7 in Karmakar & Bhatnagar [26]. See for more details Assumption (A6) in
Supplement Section 2.1.3. Here, the GAN objectives may serve as Lyapunov functions.
These assumptions of locally stable ODEs can be ensured by an additional weight decay term
in the loss function which increases the eigenvalues of the Hessian. Therefore, problems
with a region-wise constant discriminator that has zero second order derivatives are avoided.
For further discussion see Supplement Section 2.1.1 (C3).

(A5) supn ‖θn‖ < ∞ and supn ‖wn‖ < ∞.J Typically ensured by the objective or a weight
decay term.

The next theorem has been proved in the seminal paper of Borkar 1997 [7].
Theorem 1 (Borkar). If the assumptions are satisfied, then the updates Eq. (1) converge to
(θ∗,λ(θ∗)) a.s.

The solution (θ∗,λ(θ∗)) is a stationary local Nash equilibrium [41], since θ∗ as well as λ(θ∗) are
local asymptotically stable attractors with g

(
θ∗,λ(θ∗)

)
= 0 and h

(
θ∗,λ(θ∗)

)
= 0. An alternative

approach to the proof of convergence using the Poisson equation for ensuring a solution to the fast
update rule can be found in the Supplement Section 2.1.2. This approach assumes a linear update
function in the fast update rule which, however, can be a linear approximation to a nonlinear gradient
[28, 29]. For the rate of convergence see Supplement Section 2.2, where Section 2.2.1 focuses on
linear and Section 2.2.2 on non-linear updates. For equal time-scales it can only be proven that the
updates revisit an environment of the solution infinitely often, which, however, can be very large
[50, 12]. For more details on the analysis of equal time-scales see Supplement Section 2.3. The main
idea of the proof of Borkar [7] is to use (T, δ) perturbed ODEs according to Hirsch 1989 [22] (see
also Appendix Section C of Bhatnagar, Prasad, & Prashanth 2013 [6]). The proof relies on the fact
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that there eventually is a time point when the perturbation of the slow update rule is small enough
(given by δ) to allow the fast update rule to converge. For experiments with TTUR, we aim at finding
learning rates such that the slow update is small enough to allow the fast to converge. Typically,
the slow update is the generator and the fast update the discriminator. We have to adjust the two
learning rates such that the generator does not affect discriminator learning in a undesired way and
perturb it too much. However, even a larger learning rate for the generator than for the discriminator
may ensure that the discriminator has low perturbations. Learning rates cannot be translated directly
into perturbation since the perturbation of the discriminator by the generator is different from the
perturbation of the generator by the discriminator.

2 Adam Follows an HBF ODE and Ensures TTUR Convergence

In our experiments, we aim at using Adam stochastic approximation to avoid mode collapsing. GANs
suffer from “mode collapsing” where large masses of probability are mapped onto a few modes
that cover only small regions. While these regions represent meaningful samples, the variety of the
real world data is lost and only few prototype samples are
generated. Different methods have been proposed to avoid
mode collapsing [9, 37]. We obviate mode collapsing by
using Adam stochastic approximation [27]. Adam can be
described as Heavy Ball with Friction (HBF) (see below),
since it averages over past gradients. This averaging cor-
responds to a velocity that makes the generator resistant
to getting pushed into small regions. Adam as an HBF
method typically overshoots small local minima that cor-
respond to mode collapse and can find flat minima which
generalize well [24]. Fig. 2 depicts the dynamics of HBF,
where the ball settles at a flat minimum. Next, we analyze
whether GANs trained with TTUR converge when using
Adam. For more details see Supplement Section 3.

  

Figure 2: Heavy Ball with Friction, where the
ball with mass overshoots the local minimum
θ+ and settles at the flat minimum θ∗.

We recapitulate the Adam update rule at step n, with learning rate a, exponential averaging factors β1
for the first and β2 for the second moment of the gradient∇f(θn−1):

gn ←− ∇f(θn−1) (2)
mn ←− (β1/(1− βn1 ))mn−1 + ((1− β1)/(1− βn1 )) gn
vn ←− (β2/(1− βn2 )) vn−1 + ((1− β2)/(1− βn2 )) gn � gn
θn ←− θn−1 − amn/(

√
vn + ε) ,

where following operations are meant componentwise: the product �, the square root √., and the
division / in the last line. Instead of learning rate a, we introduce the damping coefficient a(n) with
a(n) = an−τ for τ ∈ (0, 1]. Adam has parameters β1 for averaging the gradient and β2 parametrized
by a positive α for averaging the squared gradient. These parameters can be considered as defining a
memory for Adam. To characterize β1 and β2 in the following, we define the exponential memory
r(n) = r and the polynomial memory r(n) = r/

∑n
l=1 a(l) for some positive constant r. The next

theorem describes Adam by a differential equation, which in turn allows to apply the idea of (T, δ)
perturbed ODEs to TTUR. Consequently, learning GANs with TTUR and Adam converges.
Theorem 2. If Adam is used with β1 = 1− a(n+ 1)r(n), β2 = 1− αa(n+ 1)r(n) and with ∇f
as the full gradient of the lower bounded, continuously differentiable objective f , then for stationary
second moments of the gradient, Adam follows the differential equation for Heavy Ball with Friction
(HBF):

θ̈t + a(t) θ̇t + ∇f(θt) = 0 . (3)
Adam converges for gradients∇f that are L-Lipschitz.

Proof. Gadat et al. derived a discrete and stochastic version of Polyak’s Heavy Ball method [40], the
Heavy Ball with Friction (HBF) [15]:

θn+1 = θn − a(n+ 1)mn , (4)

mn+1 =
(
1 − a(n+ 1) r(n)

)
mn + a(n+ 1) r(n)

(
∇f(θn) + Mn+1

)
.
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These update rules are the first moment update rules of Adam [27]. The HBF can be formulated as the
differential equation Eq. (3) [15]. Gadat et al. showed that the update rules Eq. (4) converge for loss
functions f with at most quadratic grow and stated that convergence can be proofed for ∇f that are
L-Lipschitz [15]. Convergence has been proved for continuously differentiable f that is quasiconvex
(Theorem 3 in Goudou & Munier [19]). Convergence has been proved for ∇f that is L-Lipschitz
and bounded from below (Theorem 3.1 in Attouch et al. [3]). Adam normalizes the averagemn by
the second moments vn of of the gradient gn: vn = E [gn � gn]. mn is componentwise divided by
the square root of the components of vn. We assume that the second moments of gn are stationary,
i.e., v = E [gn � gn]. In this case the normalization can be considered as additional noise since the
normalization factor randomly deviates from its mean. In the HBF interpretation the normalization
by
√
v corresponds to introducing gravitation. We obtain

vn =
1− β2
1− βn2

n∑

l=1

βn−l2 gl � gl , ∆vn = vn − v =
1− β2
1− βn2

n∑

l=1

βn−l2 (gl � gl − v) . (5)

For a stationary second moment v and β2 = 1−αa(n+ 1)r(n), we have ∆vn ∝ a(n+ 1)r(n). We
use a componentwise linear approximation to Adam’s second moment normalization 1/

√
v + ∆vn ≈

1/
√
v − (1/(2v � √v)) � ∆vn + O(∆2vn), where all operations are meant componentwise. If

we set M (v)
n+1 = −(mn � ∆vn)/(2v � √va(n + 1)r(n)), then mn/

√
vn ≈ mn/

√
v + a(n +

1)r(n)M
(v)
n+1 and E

[
M

(v)
n+1

]
= 0, since E [gl � gl − v] = 0. For a stationary second moment v,

the random variable {M (v)
n } is a martingale difference sequence with a bounded second moment.

Therefore {M (v)
n+1} can be subsumed into {Mn+1} in update rules Eq. (4). The factor 1/

√
v can

be componentwise incorporated into the gradient g which corresponds to rescaling the parameters
without changing the minimum.

According to Attouch et al. [3] the energy, that is, a Lyapunov function, isE(t) = 1/2|θ̇(t)|2+f(θ(t))

and Ė(t) = −a |θ̇(t)|2 < 0. Since Adam can be expressed as differential equation and has a
Lyapunov function, the idea of (T, δ) perturbed ODEs [7, 22, 8] carries over to Adam. Therefore
the convergence of Adam with TTUR can be proved via two time-scale stochastic approximation
analysis like in Borkar [7] for stationary second moments of the gradient.

In the supplement we further discuss the convergence of two time-scale stochastic approximation
algorithms with additive noise, linear update functions depending on Markov chains, nonlinear update
functions, and updates depending on controlled Markov processes. Futhermore, the supplement
presents work on the rate of convergence for both linear and nonlinear update rules using similar
techniques as the local stability analysis of Nagarajan and Kolter [39]. Finally, we elaborate more on
equal time-scale updates, which are investigated for saddle point problems and actor-critic learning.

3 Experiments

Performance Measure. Before presenting the experiments, we introduce a quality measure for
models learned by GANs. The objective of generative learning is that the model produces data which
matches the observed data. Therefore, each distance between the probability of observing real world
data pw(.) and the probability of generating model data p(.) can serve as performance measure for
generative models. However, defining appropriate performance measures for generative models
is difficult [45]. The best known measure is the likelihood, which can be estimated by annealed
importance sampling [49]. However, the likelihood heavily depends on the noise assumptions for
the real data and can be dominated by single samples [45]. Other approaches like density estimates
have drawbacks, too [45]. A well-performing approach to measure the performance of GANs is the
“Inception Score” which correlates with human judgment [44]. Generated samples are fed into an
inception model that was trained on ImageNet. Images with meaningful objects are supposed to
have low label (output) entropy, that is, they belong to few object classes. On the other hand, the
entropy across images should be high, that is, the variance over the images should be large. Drawback
of the Inception Score is that the statistics of real world samples are not used and compared to the
statistics of synthetic samples. Next, we improve the Inception Score. The equality p(.) = pw(.)
holds except for a non-measurable set if and only if

∫
p(.)f(x)dx =

∫
pw(.)f(x)dx for a basis

f(.) spanning the function space in which p(.) and pw(.) live. These equalities of expectations
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Figure 3: FID is evaluated for upper left: Gaussian noise, upper middle: Gaussian blur, upper
right: implanted black rectangles, lower left: swirled images, lower middle: salt and pepper noise,
and lower right: CelebA dataset contaminated by ImageNet images. The disturbance level rises
from zero and increases to the highest level. The FID captures the disturbance level very well by
monotonically increasing.

are used to describe distributions by moments or cumulants, where f(x) are polynomials of the
data x. We generalize these polynomials by replacing x by the coding layer of an inception model
in order to obtain vision-relevant features. For practical reasons we only consider the first two
polynomials, that is, the first two moments: mean and covariance. The Gaussian is the maximum
entropy distribution for given mean and covariance, therefore we assume the coding units to follow a
multidimensional Gaussian. The difference of two Gaussians (synthetic and real-world images) is
measured by the Fréchet distance [14] also known as Wasserstein-2 distance [48]. We call the Fréchet
distance d(., .) between the Gaussian with mean (m,C) obtained from p(.) and the Gaussian with
mean (mw,Cw) obtained from pw(.) the “Fréchet Inception Distance” (FID), which is given by
[13]: d2((m,C), (mw,Cw)) = ‖m−mw‖22 + Tr

(
C +Cw − 2

(
CCw

)1/2)
. Next we show that

the FID is consistent with increasing disturbances and human judgment. Fig. 3 evaluates the FID for
Gaussian noise, Gaussian blur, implanted black rectangles, swirled images, salt and pepper noise, and
CelebA dataset contaminated by ImageNet images. The FID captures the disturbance level very well.
In the experiments we used the FID to evaluate the performance of GANs. For more details and a
comparison between FID and Inception Score see Supplement Section 1, where we show that FID is
more consistent with the noise level than the Inception Score.

Model Selection and Evaluation. We compare the two time-scale update rule (TTUR) for GANs
with the original GAN training to see whether TTUR improves the convergence speed and per-
formance of GANs. We have selected Adam stochastic optimization to reduce the risk of mode
collapsing. The advantage of Adam has been confirmed by MNIST experiments, where Adam indeed
considerably reduced the cases for which we observed mode collapsing. Although TTUR ensures
that the discriminator converges during learning, practicable learning rates must be found for each
experiment. We face a trade-off since the learning rates should be small enough (e.g. for the generator)
to ensure convergence but at the same time should be large enough to allow fast learning. For each of
the experiments, the learning rates have been optimized to be large while still ensuring stable training
which is indicated by a decreasing FID or Jensen-Shannon-divergence (JSD). We further fixed the
time point for stopping training to the update step when the FID or Jensen-Shannon-divergence of
the best models was no longer decreasing. For some models, we observed that the FID diverges
or starts to increase at a certain time point. An example of this behaviour is shown in Fig. 5. The
performance of generative models is evaluated via the Fréchet Inception Distance (FID) introduced
above. For the One Billion Word experiment, the normalized JSD served as performance measure.
For computing the FID, we propagated all images from the training dataset through the pretrained
Inception-v3 model following the computation of the Inception Score [44], however, we use the last
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pooling layer as coding layer. For this coding layer, we calculated the meanmw and the covariance
matrix Cw. Thus, we approximate the first and second central moment of the function given by
the Inception coding layer under the real world distribution. To approximate these moments for the
model distribution, we generate 50,000 images, propagate them through the Inception-v3 model, and
then compute the meanm and the covariance matrix C. For computational efficiency, we evaluate
the FID every 1,000 DCGAN mini-batch updates, every 5,000 WGAN-GP outer iterations for the
image experiments, and every 100 outer iterations for the WGAN-GP language model. For the one
time-scale updates a WGAN-GP outer iteration for the image model consists of five discriminator
mini-batches and ten discriminator mini-batches for the language model, where we follow the original
implementation. For TTUR however, the discriminator is updated only once per iteration. We repeat
the training for each single time-scale (orig) and TTUR learning rate eight times for the image
datasets and ten times for the language benchmark. Additionally to the mean FID training progress
we show the minimum and maximum FID over all runs at each evaluation time-step. For more details,
implementations and further results see Supplement Section 4 and 6.

Simple Toy Data. We first want to demonstrate the difference between a single time-scale update
rule and TTUR on a simple toy min/max problem where a saddle point should be found. The
objective f(x, y) = (1 + x2)(100 − y2) in Fig. 4 (left) has a saddle point at (x, y) = (0, 0) and
fulfills assumption A4. The norm ‖(x, y)‖ measures the distance of the parameter vector (x, y) to
the saddle point. We update (x, y) by gradient descent in x and gradient ascent in y using additive
Gaussian noise in order to simulate a stochastic update. The updates should converge to the saddle
point (x, y) = (0, 0) with objective value f(0, 0) = 100 and the norm 0. In Fig. 4 (right), the first
two rows show one time-scale update rules. The large learning rate in the first row diverges and has
large fluctuations. The smaller learning rate in the second row converges but slower than the TTUR in
the third row which has slow x-updates. TTUR with slow y-updates in the fourth row also converges
but slower.
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Figure 4: Left: Plot of the objective with a saddle point at (0, 0). Right: Training progress with
equal learning rates of 0.01 (first row) and 0.001 (second row)) for x and y, TTUR with a learning
rate of 0.0001 for x vs. 0.01 for y (third row) and a larger learning rate of 0.01 for x vs. 0.0001 for y
(fourth row). The columns show the function values (left), norms (middle), and (x, y) (right). TTUR
(third row) clearly converges faster than with equal time-scale updates and directly moves to the
saddle point as shown by the norm and in the (x, y)-plot.

DCGAN on Image Data. We test TTUR for the deep convolutional GAN (DCGAN) [42] at the
CelebA, CIFAR-10, SVHN and LSUN Bedrooms dataset. Fig. 5 shows the FID during learning
with the original learning method (orig) and with TTUR. The original training method is faster at
the beginning, but TTUR eventually achieves better performance. DCGAN trained TTUR reaches
constantly a lower FID than the original method and for CelebA and LSUN Bedrooms all one
time-scale runs diverge. For DCGAN the learning rate of the generator is larger then that of the
discriminator, which, however, does not contradict the TTUR theory (see the Supplement Section 5).
In Table 1 we report the best FID with TTUR and one time-scale training for optimized number of
updates and learning rates. TTUR constantly outperforms standard training and is more stable.

WGAN-GP on Image Data. We used the WGAN-GP image model [21] to test TTUR with the
CIFAR-10 and LSUN Bedrooms datasets. In contrast to the original code where the discriminator is
trained five times for each generator update, TTUR updates the discriminator only once, therefore
we align the training progress with wall-clock time. The learning rate for the original training was
optimized to be large but leads to stable learning. TTUR can use a higher learning rate for the
discriminator since TTUR stabilizes learning. Fig. 6 shows the FID during learning with the original
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Figure 5: Mean FID (solid line) surrounded by a shaded area bounded by the maximum and the
minimum over 8 runs for DCGAN on CelebA, CIFAR-10, SVHN, and LSUN Bedrooms. TTUR
learning rates are given for the discriminator b and generator a as: “TTUR b a”. Top Left: CelebA.
Top Right: CIFAR-10, starting at mini-batch update 10k for better visualisation. Bottom Left:
SVHN. Bottom Right: LSUN Bedrooms. Training with TTUR (red) is more stable, has much lower
variance, and leads to a better FID.
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Figure 6: Mean FID (solid line) surrounded by a shaded area bounded by the maximum and the
minimum over 8 runs for WGAN-GP on CelebA, CIFAR-10, SVHN, and LSUN Bedrooms. TTUR
learning rates are given for the discriminator b and generator a as: “TTUR b a”. Left: CIFAR-10,
starting at minute 20. Right: LSUN Bedrooms. Training with TTUR (red) has much lower variance
and leads to a better FID.

learning method and with TTUR. Table 1 shows the best FID with TTUR and one time-scale training
for optimized number of iterations and learning rates. Again TTUR reaches lower FIDs than one
time-scale training.

WGAN-GP on Language Data. Finally the One Billion Word Benchmark [10] serves to evaluate
TTUR on WGAN-GP. The character-level generative language model is a 1D convolutional neural
network (CNN) which maps a latent vector to a sequence of one-hot character vectors of dimension
32 given by the maximum of a softmax output. The discriminator is also a 1D CNN applied to
sequences of one-hot vectors of 32 characters. Since the FID criterium only works for images, we
measured the performance by the Jensen-Shannon-divergence (JSD) between the model and the
real world distribution as has been done previously [21]. In contrast to the original code where the
critic is trained ten times for each generator update, TTUR updates the discriminator only once,
therefore we align the training progress with wall-clock time. The learning rate for the original
training was optimized to be large but leads to stable learning. TTUR can use a higher learning rate
for the discriminator since TTUR stabilizes learning. We report for the 4 and 6-gram word evaluation
the normalized mean JSD for ten runs for original training and TTUR training in Fig. 7. In Table 1
we report the best JSD at an optimal time-step where TTUR outperforms the standard training for
both measures. The improvement of TTUR on the 6-gram statistics over original training shows that
TTUR enables to learn to generate more subtle pseudo-words which better resembles real words.
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Figure 7: Performance of WGAN-GP models trained with the original (orig) and our TTUR method
on the One Billion Word benchmark. The performance is measured by the normalized Jensen-
Shannon-divergence based on 4-gram (left) and 6-gram (right) statistics averaged (solid line) and
surrounded by a shaded area bounded by the maximum and the minimum over 10 runs, aligned to
wall-clock time and starting at minute 150. TTUR learning (red) clearly outperforms the original one
time-scale learning.

Table 1: The performance of DCGAN and WGAN-GP trained with the original one time-scale
update rule and with TTUR on CelebA, CIFAR-10, SVHN, LSUN Bedrooms and the One Billion
Word Benchmark. During training we compare the performance with respect to the FID and JSD for
optimized number of updates. TTUR exhibits consistently a better FID and a better JSD.

DCGAN Image
dataset method b, a updates FID method b = a updates FID
CelebA TTUR 1e-5, 5e-4 225k 12.5 orig 5e-4 70k 21.4
CIFAR-10 TTUR 1e-4, 5e-4 75k 36.9 orig 1e-4 100k 37.7
SVHN TTUR 1e-5, 1e-4 165k 12.5 orig 5e-5 185k 21.4
LSUN TTUR 1e-5, 1e-4 340k 57.5 orig 5e-5 70k 70.4
WGAN-GP Image
dataset method b, a time(m) FID method b = a time(m) FID
CIFAR-10 TTUR 3e-4, 1e-4 700 24.8 orig 1e-4 800 29.3
LSUN TTUR 3e-4, 1e-4 1900 9.5 orig 1e-4 2010 20.5
WGAN-GP Language
n-gram method b, a time(m) JSD method b = a time(m) JSD
4-gram TTUR 3e-4, 1e-4 1150 0.35 orig 1e-4 1040 0.38
6-gram TTUR 3e-4, 1e-4 1120 0.74 orig 1e-4 1070 0.77

4 Conclusion

For learning GANs, we have introduced the two time-scale update rule (TTUR), which we have
proved to converge to a stationary local Nash equilibrium. Then we described Adam stochastic
optimization as a heavy ball with friction (HBF) dynamics, which shows that Adam converges and
that Adam tends to find flat minima while avoiding small local minima. A second order differential
equation describes the learning dynamics of Adam as an HBF system. Via this differential equation,
the convergence of GANs trained with TTUR to a stationary local Nash equilibrium can be extended
to Adam. Finally, to evaluate GANs, we introduced the ‘Fréchet Inception Distance” (FID) which
captures the similarity of generated images to real ones better than the Inception Score. In experiments
we have compared GANs trained with TTUR to conventional GAN training with a one time-scale
update rule on CelebA, CIFAR-10, SVHN, LSUN Bedrooms, and the One Billion Word Benchmark.
TTUR outperforms conventional GAN training consistently in all experiments.
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