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Abstract

Interactive partially observable Markov decision processes (I-POMDPs) provide a
principled framework for planning and acting in a partially observable, stochastic
and multi-agent environment. It extends POMDPs to multi-agent settings by
including models of other agents in the state space and forming a hierarchical
belief structure. In order to predict other agents’ actions using I-POMDPs, we
propose an approach that effectively uses Bayesian inference and sequential Monte
Carlo sampling to learn others’ intentional models which ascribe to them beliefs,
preferences and rationality in action selection. Empirical results show that our
algorithm accurately learns models of the other agent and has superior performance
than methods that use subintentional models. Our approach serves as a generalized
Bayesian learning algorithm that learns other agents’ beliefs, strategy levels, and
transition, observation and reward functions. It also effectively mitigates the belief
space complexity due to the nested belief hierarchy.

1 Introduction

Partially observable Markov decision processes (POMDPs) [[11] is a general decision-theoretic
framework for planning under uncertainty in a partially observable, stochastic environment. An
autonomous agent acts rationally in such settings by constantly maintaining beliefs of the physical
state and sequentially choosing the optimal actions that maximize the expected value of future rewards.
Thus, solutions of POMDPs map an agent’s beliefs to actions. Although POMDPs can be used in
multi-agent settings, it usually treats the impacts of other agents’ actions as noise and embeds them
into the state transition function. Examples of such POMDPs are Utile Suffix Memory [14], infinite
generalized policy representation [13]], and infinite POMDPs [3]]. Therefore, an agent’s beliefs about
other agents are not part of the solutions of POMDPs.

Interactive POMDPs (I-POMDPs) [7] generalize POMDPs to multi-agent settings by replacing
POMDP belief spaces with interactive belief systems. Specifically, an -POMDP augments the plain
beliefs about the physical states in POMDP by including models of other agents. The models of
other agents included in the new augmented belief space consist of two types: intentional models and
subintentional models. An intentional model ascribes beliefs, preferences, and rationality to other
agents [7]], while a simpler subintentional model, such as finite state controllers [15], does not. The
augmentation of intentional models forms a hierarchical belief structure that represents an agent’s
belief about the physical state, belief about the other agents and their beliefs about others’ beliefs,
and so on. Solutions of -POMDPs map an agent’s belief about the environment and other agents’
models to actions. It has been shown [7] that the added sophistication of modeling others as rational
agents results in a higher value function compared to one obtained from treating others as noise,
which implies the modeling superiority of I-POMDPs over other approaches.
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However, the interactive belief augmentation of [-POMDPs results in a drastic increase of the belief
space complexity, because the agent models grow exponentially as the belief nesting level increases.
Therefore, the complexity of the belief representation is proportional to belief dimensions, which
is known as the curse of dimensionality. Moreover, due to the fact that exact solutions to POMDPs
are PSPACE-complete and undecidable for finite and infinite time horizon respectively[16], the time
complexity of more generalized [-POMDPs is at least PSPACE-complete and undecidable for finite
and infinite horizon, since an [-POMDP may contain multiple POMDPs or [-POMDPs of other agents.
Due to these complexities, a solution which accounts for an agent’s belief over an entire intentional
model has not been implemented up to date. There are partial solutions that depend on what is known
about other agents’ beliefs about the physical states [2], but they do not include the state of an agent’s
knowledge about others’ reward, transition, and observation functions. Indirect approach such as
subintentional finite state controllers [[15] do not include any of these elements either. To unleash the
full modeling power of intentional models and mitigate the aforementioned complexities, a robust
approximation algorithm is needed. The purpose of this algorithm is to compute the nested interactive
belief over elements of the intentional models and predict other agents’ actions. It is crucial to the
trade-off between solution quality and computational complexity.

To address these issues, we propose an approach that uses Bayesian inference and customized
sequential Monte Carlo sampling [4]] to obtain approximate solutions to [-POMDPs. We assume that
the modeling agent maintains beliefs over intentional models of other agents and make sequential
Bayesian updates using observations from the environment. While in multi-agent settings, others
agents’ models other than their beliefs are usually assumed to be known, in our assumption the
modeling agent does not know any information about others’ beliefs, strategy levels, and transition,
observation, and reward functions. It only relies on learning indirectly from observations about the
environment, which is influenced by others agents’ actions. Since this Bayesian inference task is
analytically intractable due to the requirement of computing high dimensional integrations, we have
devised a customized sequential Monte Carlo method, extending the interactive particle filter (I-PF)
[2] to the entire intentional model space. The main idea of this method is to descend the nested
belief hierarchy, parametrize other agents’ model functions, and sample all model parameters at each
nesting level according to observations.

Our approach successfully recovers other agents’ models over the intentional model space which
contains their beliefs, strategy levels, and transition, observation and reward functions. It extends
I-POMDP’s belief update to larger model space, and therefore it serves as a generalized Bayesian
learning method for multi-agent systems in which other agents’ beliefs, transition, observation and
reward functions are unknown. By approximating Bayesian inference using a customized sequential
Monte Carlo sampling method, we significantly mitigate the belief space complexity of [-POMDPs.

2 The Model

2.1 I-POMDP framework

I-POMDPs [7] generalize POMDPs [11]] to multi-agent settings by including models of other agents
in the belief state space. The resulting hierarchical belief structure represents an agent’s belief about
the physical state, belief about the other agents and their beliefs about others’ beliefs, and can be
nested infinitely in this recursive manner. Here we focus on the computable counterparts of infinitely
nested [-POMDPs: finitely nested [-POMDPs. For simplicity of presentation, we consider two
interacting agents ¢ and j. This formalism generalizes to more number of agents in a straightforward
manner.

A finitely nested interactive POMDP of agent ¢ , -POMDP; ,, is defined as:
I-POMDP;; = (IS;;, A,Q;, T;, Oy, R;) (D

where 1.5; is a set of interactive states, defined as 1.5;; = S x M;;_1,1 > 1, S'is the set of physical
states, M ;_1 is the set of possible models of agent j, and [ is the strategy (nesting) level. The set of
models, M ;_1, can be divided into two classes, the intentional models, M} ;_1, and subintentional
models, SMJ ThUS, Mj,l—l = IMj,l—l @] SM]

The intentional models, I M;;_1, ascribe beliefs, preferences, and rationality in action selection to
other agents, thus they are analogous to types, 0;, used in Bayesian games [[10]. The intentional
models, ©;;_1, of agent j at level [ — 1 is defined as 6,;_1 = (b;;—1, A, Q;,T;,0;,R;,0C;),



where b; ;1 is agent j’s belief nested to the level (I — 1) bji—1 € A(ISJI 1), and OC} is j’s

optimality criterion. It can be rewritten as 6 ;1 = (b; -1, 6 i), where 9 includes all elements of the
intentional model other than the belief and is called the agent j’s frame

The subintentional models, SM;, constitute the remaining models in M ;_;. Examples of subinten-
tional models are finite state controllers [[15], no-information models [8] and fictitious play models

[3].
The I.5;,; can be defined in an inductive manner:
IS;0 =15, Q0 = {(bj0,0;) : bj0 € A(IS;0)}  Mjo=0;0USM;
IS;1 =8 x Mjy, ©j1 = {(bj.1,0;) : b1 € A(IS;1)} M1 =0;1UM;
...... 2)
ISZ"[ =S5 x Mj’lfh Gj’l = {<bj’l,éj> : bj’l S A(ISjyl)} Mj’l = ®j,l U Mj’171
All remaining components in an I-POMDP are similar to those in a POMDP. A = A; x A; is the set
of joint actions of all agents. ; is the set of agent i’s possible observations. T; : S x A x S — [0,1]

is the transition function. O; : S x A x Q; — [0, 1] is the observation function. R; : IS; x A - R
is the reward function.

2.2 Interactive belief update

Given the definitions above, the interactive belief update can be performed as follows, by considering
others’ actions and anticipated observations:

b (is") = Pr(ist|p!7t, al™t, of)

’Ll”L”L

N Z bzl ist—1 ZPT t— 1\0][ 1) ( til,st)Oi(St,atil,Og) (3)

jst—1

x Y 0;(s'a" o ><bt Ll ol b )

Compared with POMDP, the interactive belief update in [-POMDP takes two additional elements
into account. First, the probability of other’s actions given his models needs to be computed since
the state now depends on both agents’ actions (the second summation). Second, the modeling agent
needs to update his beliefs based on the anticipation of what observations the other agent might get
and how it updates (the third summation).

Similarly to POMDPs, the value associated with a belief state in [-POMDPs can be updated using
value iteration:

V(0i0) = max { 3 bulis) BR(is,a) +7 Y Ploilas bi)V (B, (bia, ai,0:).0)) |
is€lS 0;€9;
o)

where ER;(is,a;) = ), Ri(is, ai,a;) Pr(a;|0,-1).

Then the optimal action, a}, for an infinite horizon criterion with discounting, is part of the set of
optimal actions, O PT(6;), for the belief state:

OPT(0;,) = argmax{ Z bi(is)ER;(is,a;) + v Z 01|a,~,bN)V((SEgi(bi,l,ai,oi),éz))}
ai€A; is€lS 0,€Q;
(&)

3 Sampling Algorithms

The Markov Chain Monte Carlo (MCMC) method [6] is widely used to approximate probability
distributions that are difficult to compute directly. Sequential versions of Monte Carlo methods, such
as as particle filters [[1l], work on sequential inference tasks, especially sequential decision making
under Markov assumption. At each time step, a particle filter draws samples (or particles) from a



proposal distribution, commonly the conditional distribution p(a¢|x:—1) of the current state x; given
the previous x;_1, then uses the observation function p(y;|x;) to compute importance weights for all
particles and resample them according to the weights.

The Interactive Particle Filter (I-PF) was devised as a filtering algorithm for interactive belief update
in [-POMDP, which generalizes the classic particle filter algorithm to multi-agent settings [2]]. It uses
the state transition function as the proposal distribution, which is usually used in a specific particle
filter algorithm called bootstrap filter [9]. However, due to the enormous belief space, the I-PF

implementation assumes that the other agent’s frame éj is known to the modeling agent, therefore it
simplifies the belief update from .S x ©;_; to a significantly smaller space S x {b;;—1}, where j
represents the other agent and ©;;_; is j’s model space.

Our interactive belief update described in Algorithm 1 and 2, however, generalizes [-POMDP’s
belief update to larger intentional model space which contains other agents’ beliefs, and transition,
observation and reward functions. In the remaining part of this section, we will firstly give a brief
introduction of our algorithms and discuss the motivations of each sampling step. Then we will show
the major differences between our algorithm and the I-PF, since this generalization is nontrivial. A
concrete example of the algorithm is given in Figure[I]in the next section as well.

Algorithm 1: Interactive Belief Update

bz L= InteractweBeherpdate(bk l , ak 0‘,;, >0

1 Foris!""~ < smt=1 ghi—1 ¢ by

2 sample a' ' ~ P(a_ k|9("k)lt 11)

3 sample s(") ~ Ty (st|s™ )=t cay talnh

4 for o' , € Q_y:

5 ifl =1:

6 b(n) L= LevelOBeherpdate(é)(”) ot 1,at__k,1, o' ,)
. (n) [ n) t

7 =< st Y o >

8

9

else
b(”k)lt 1= InteractlveBellerpdate(b( kel l,at kl, o', 1—1)
( )t ()t 4(n),
10 0 =<0 >
11 (") =<3 (n),t 9(771]6’171 >
12 (”) O(”)( |5(n),t’ai];—1 at—kl)
13 EU,E”) = wt( x Og(o]s™:t al=t a7 1)
14 bf::;np =< zs,(cn) w™ >
15 normalize all w ( ) so that Zn 1 wt(") =1

16 resample {zs(”)’ } from bt"mp accordlng to normalized {wt(")}

17 resampleQ(n)t NN(atkz 1|‘9 kz )

18 return bi,z = zsﬁcn) =< st :9(7”13,’111 >

The Algorithm 1 requires inputs of the modeling agent’s prior belief, 5’,;_11, which is represented

as a set of n samples isé")’t_l, along with the action, a’;;l, the observation, 0};, and the belief

nesting level, [ > 0. Here k represents either agent 7 or j, and —k represents the other agent, j or
i, correspondingly. We assume that the modeled agent’s action set A_j, observation set {)_;, and
optimality criteria OCY; are known to all agents. We want to learn the other agent’s initial belief about
the physical state, b2 «» the transition function, 7", the observation function, O_j, and the reward
function, R_;..

The initial belief samples, zs,(C m)t=1 , are generated from the prior nested belief in the similar way

as described in the I-PF literature [2] except that TETL), O(_"k) and R(_nk) are sampled from their

prior distributions as well. Notice that 7", 0""), and R"™) are all part of the frame, namely

é(_"k) =< A_,Q g, Ty,?, O(_"k), R(_nk), OC}, >, as appeared in line 7 and 11 in Algorithm 1.



With initial belief samples, the Algorithm 1 starts from propagating each sample forward in time
and computing their weights (line 1-15), then it resamples according to the weights and similarity
between models (line 16-18). Intuitively, the samples associated with actual observations perceived

by agent k£ will gradually carry larger weights and be resampled more often, therefore they will

approximately represent the exact bellef Specifically, for each of zs( n)¢=1

, the algorithm samples
the other agent’s optimal actions a'~, k given its model from P(A_j |97 L ’til) (line 2), which equals

if a_; € OPT or 0 otherwise. Then it samples the physical state s("):* using the state
-1 i1
) A

o7
transition function T}, (S*|S (™)t =1 (line 3). Then for each possible observation, if the
current nesting level [ is 1, it calls the O- level belief update, described in Algorithm 2, to update other
agents’ beliefs over physical state b’ , k0 (line 5 to 7); or it recursively calls itself at a lower level [ — 1

(line 8 to 11), if [ is greater than 1. The sample weights w( ") are computed according to observation
likelihoods of modeling and modeled agents (line 12, 13). Lastly, the algorithm normalizes the
weights (line 15), resamples the intermediate particles(line 16) and resamples another time from
similar neighboring models using a Gaussian distribution to avoid divergence (line 17).

Algorithm 2: Level-0 Belief Update

b}, , =LevelOBeliefUpdate(6} ', aj, ", of,)
1 getT} and Oy, from 92’01

2 Pla)) = 1/]A|

3 forstes:

4 sum=0

5 for s~ 1:

6 for at_fkl € A_ k

7 P(8t|st— )+ Tk( t‘St 1 t 1 ai—kI)P(at kl)
8 sum—|— = P(s t|st Lai~ )b?ol( st 1)

9 fora'l € A_ ;,C

10 (0k|s ay ")+ = Og(ot|st,al ' a5 P(a'))

11 bj.o = sum x P(0k|8 ai™t)

12 normalize and return b},

The O-level belief update, described in Algorithm 2, takes agent model, 9;1)1, action, a?l, and

observation, o}, as input arguments and returns the belief about the physical state, bi:,0~ The
other agent’s actions are treated as noise (line 2), and transition and observation functions are
passed in within the first input argument 92 01 For each possible action a'~', it computes the
actual state transition (line 7) and observation function (line 10) by rnargrnahzrng over others’
actions, and returns the normalized belief b}, ,. Notice that the transition and observation functions,
Ti(stst=1 al~t a'5l) and O (0f |st, at™ ", ') contained in 6} ' , depend on particular model
parameters of the actual agent on the Oth level

Our interactive belief update algorithm differs in three major ways from the I-PF. First, in order
to update the belief over this intentional model space of other agents, their initial belief, transition
function, observation function and reward function in their frames are all unknown and become

samples. For instance, the set of n samples of other agents’ intentional models 9(7",3 ;:11 =<

b(nk) f 11 JA_ g, Qg Ty,?, Oinlg, R(j‘k), OC} >. The observation function of the modeled agents,

O(_nk)( i |s(")’t, af;% at:kl) in line 12 of Algorithm 1, is now randomized consequently. Second, the

transition and observation functions of the level-0 agent, in line 7 and 10 of Algorithm 2, are passed
in as input arguments which correspond to each model sample. Lastly, we add another resampling
step in line 17 of Algorithm to avoid divergence, by resampling the model samples from a Gaussian
distribution with the mean of current sample value. This additional resampling step is nontrivial,
since empirically the samples diverge quickly due to the enormously enlarged sample space.



4 Experiments

We evaluate our algorithm on the multi-agent tiger problem [[7] and UAV reconnaissance problem [2].
The multi-agent tiger game is a generalization of the classic single agent tiger game [[11]. It contains
additional observations caused by others’ actions, and the transition and reward functions involve
others’ actions as well. The UAV reconnaissance problem contains a 3x3 grid in which the agent
(UAV) tries to capture the moving target [2]].

4.1 Parameterization

The initial step of solving an I-POMDP in our approach is to parameterize other agents’ models in
terms of an I-POMDP or POMDP, depending on the modeling agent’s strategy level. Then, the model
parameters can be sampled and updated using the interactive belief update algorithm for solving the
planning task.

Here we give an example of parameterization using the tiger problem. The UAV problem has a
similar process accordingly. For the simplicity of presentation, assume there are two agent ¢ and
7 in the game and the strategy level is 1 (but we experiment with higher strategy levels in later
sections), then for the two-agent tiger problem: 1.5, 1 = S x 6; ¢, where S = {tiger on the left (TL),
tiger on the right (TR)} and 0; 0 =< b;(s), 4;,9Q;,7;,0;,R;,0C; >}; A = A; x A; are joint
actions of listen (L), open left door (OL) and open right door(OR); €2;: {growl from left (GL) or right
(GR)} x {creak from left (CL), right (CR) or silence (S)}; T; = T : S x A; x A; x S — [0, 1];
OZ‘SSXAZ‘XAJ‘XQi—>[O71];RiIISXAiXAj—>R.

As mentioned before we assume that A; and §2; are known, and OC} is infinite horizon with
discounting. We want to recover the possible initial belief b? about the physical state, the transition,
T}, the observation, O; and the reward, R;. Thus the main idea of our experiment is to do Bayesian
parametric learning with the help of our sampling algorithm.

Table 1: Parameters for transition, observation and reward functions

S A | p(TL) p(TR) S A | p(GL) p(GR) i é }:

TL | L pT1 1—pr: TL | L Po1 1 —po1 TL T OL TRl

TR | L 1—pr1 | P TR | L 1—po1 | po1 TR TOR TRZ
OL | pr2 1 —pro * OL | po2 1—po2 TL TOR TRQ
OR | 1 —pr2 | P12 * OR | 1 —=po2 | po2 TR T OL ng

We see in Tablethat it is a large 8-dimensional space to learn from: bg-) X pr1 X P12 X Po1 X po2 X
TR1 X T'R2 X T'R3, Where {b;, pr1, pr2, o1, P02} € [0,1]° C Rand {rgi,rr2, 7R3} € [—00, +00]°.

Figure[I]illustrates the interactive belief update in the game described above, assuming the sample
size is 8. The subscripts denote the corresponding agents and each dot represents a particular belief
sample. The propagation step in implemented in lines 2 to 11 in Algorithm 1, the weighting step is in
lines 12 to 15, and the resampling step is in lines 16 and 17. The belief update for a particular level-0
model sample, 6; = (0.5, 0.67, 0.5, 0.85, 0.5, -1, -100, 10}, is solved using Algorithm 2.

4.2 Results

We firstly fix the modeled agent j to be a level-2 I-POMDP agent and experiment with different
modeling approaches for agent ¢ in order to compare the performance in terms of average reward. We
compare level-3, level-2, level-1 intentional -POMDP models with a subintentional model, in which
agent 7 is assumed to choose his action according to a fixed but unknown distribution and therefore is
called a frequency-based (fictitious play) model [3].

In Figure 2| we see that the intentional [-POMDP approaches has significantly higher reward as agent
i perceives more observations, and level-2 I-POMDP performs slightly better than level-1 while
level-3 has high variance but at least competes with level-2. The subintentional approach has certain
learning ability but is not sophisticated enough to model a rational (level-2 intentional I-POMDP)
agent, therefore its performance is worse than all -POMDP models.
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Figure 1: An illustration of interactive belief update algorithm using tiger problem for two-agent and
level-1 nesting.
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Figure 2: Performance comparison in terms of average reward per time step versus observation length.
The plot is averaged on 5 runs and uses 2000 and 1000 samples for tiger and UAV respectively. The
vertical bars stand for standard deviations.
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Figure 3: Learning quality, measured by KL-divergence, improves as the number of particles increases.
It measures the difference between the ground truth of the model parameters and the learned posterior
distributions. The vertical bars are the standard deviations.

In Figure [3|we show that the learning quality, in terms of the sum of independent KL-divergence of
each model parameter dimension, becomes better as the number of particles increases. It measures the



difference between the ground truth of the model parameters and the learned posterior distributions
by giving the relative entropy of the truth with respect to the posteriors.
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Figure 4: Agent 7 learns agent j’s most likely nesting level. Samples representing j’s models of
different nesting levels evolve as agent ¢ perceives more observations. Totally 1000 samples are used
and experiments start from equal number of level-1, level-0 and frequency-based samples.

Then we fix the modeling agent 7’s strategy level to be 2 and try to observe the changes of j’s samples
which represent different possible models or strategy levels. Specifically, we start from equal number
of samples that representing j as level-1 I-POMDP, level-0 POMDP, and frequency based agents, and
then gradually learn that the majority of samples converge or become close to the ground truth: j is a
level-1 I-POMDP.

Table 2: Running time for tiger and UAV problems using various number of samples

Belief Level N=500 N=1000 N=2000
1 1.96s 3.68s 35.2s
+0.43s +1.01s +2.82s
2 5m27.23s | 16m36.07s | 49m36.07s
+5.19s +10.84s (single run)
Tiger
Belief Level | N=100 N=500 N=1000
1 4.86s 12.31s 2m1.43s
+1.34ss | +1.39s +3.29s
2 2m43.1s | 9m53.7s | 36m19.5s
+3.98s +6.48s +18.63s
UAV

Lastly, we report the running time of our sampling algorithm in Table[2} The computing machine has
an Intel Core 15 2GHz, 8GB RAM, and runs macOS 10.13 and MATLAB R2017.

5 Conclusions and Future Work

We have described a novel approach to learn other agents’ intentional models by making the interactive
belief update using Bayesian inference and Monte Carlo sampling methods. We show the correctness
of our theoretical framework using the multi-agent tiger and UAV problems in which it accurately
learns others’ models over the entire intentional model space and can be generalized to problems
of larger scale in a straightforward manner. Therefore, it provides a generalized Bayesian learning
algorithm for multi-agent sequential decision making problems.

For future research opportunities, the applications presented in this paper can be extended to more
complex problems by leveraging emerging deep reinforcement learning (DRL) methods, which
already solves POMDPs in an neural analogy [12]]. DRL should also be capable of approximating
key functions in I-POMDPs, thus has the potential to serve as an efficient computational tool for
[I-POMDPs.
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