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Abstract

Meta-materials are an important emerging class of engineered materials in which
complex macroscopic behaviour–whether electromagnetic, thermal, or mechanical–
arises from modular substructure. Simulation and optimization of these materials
are computationally challenging, as rich substructures necessitate high-fidelity
finite element meshes to solve the governing PDEs. To address this, we lever-
age parametric modular structure to learn component-level surrogates, enabling
cheaper high-fidelity simulation. We use a neural network to model the stored
potential energy in a component given boundary conditions. This yields a struc-
tured prediction task: macroscopic behavior is determined by the minimizer of the
system’s total potential energy, which can be approximated by composing these
surrogate models. Composable energy surrogates thus permit simulation in the
reduced basis of component boundaries. Costly ground-truth simulation of the full
structure is avoided, as training data are generated by performing finite element
analysis of individual components. Using dataset aggregation to choose training
data allows us to learn energy surrogates which produce accurate macroscopic
behavior when composed, accelerating simulation of parametric meta-materials.

1 Introduction
Many physical, biological, and mathematical systems can be modeled by partial differential equations
(PDEs). Analytic solutions are rarely available for PDEs of practical importance; thus, computational
methods to approximate PDE solutions are critical for many problems in science and engineering.
Finite element analysis (FEA) is one of the most widely used techniques for solving PDEs on spatial
domains; the continuous problem is discretized and replaced by basis functions on a mesh.

The accuracy of FEA and related methods requires a sufficiently fine discrete approximation, i.e., finite
element mesh. Complicated domains can require fine meshes that make it prohibitively expensive
to solve the PDE. This problem is compounded for parameter identification or design optimization,
where the PDE must be repeatedly solved in the inner loop of a bi-level optimization problem.

An important domain where this challenge is particularly relevant is in modeling mechanical meta-
materials. Meta-materials are solids in which microstructure leads to rich spaces of macroscopic
behavior, which can achieve electromagnetic and/or mechanical properties that are impossible with
homogenous materials and traditional design approaches (Poddubny et al., 2013; Cai and Shalaev,
2010; Bertoldi et al., 2017). We focus on the cellular mechanical meta-materials proposed by
Overvelde and Bertoldi (2014), which promise new high-performance materials for soft robotics
and other domains (see Sec 3). Simulation of these meta-materials is challenging due to the need to
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accurately capture microstructure and small-scale nonlinear elastic behavior. Finite element methods
have limited ability to scale to these problems, and automated meta-material design demands accurate,
efficient approximate solutions to the associated PDE.

We develop a framework which exploits spatially local structure in large-scale optimization problems—
here the minimization of energy as a function of meta-material displacements. Only a small subset of
material displacements are of interest, so we “collapse out” the remainder using a learned surrogate.
Given a component with substructure defined by local parameters, the surrogate produces an accurate
proxy energy in terms of the displacement of the component boundary. A single surrogate can be
trained then used to predict energy in a larger solid by summing energies of sub-components. This
allows solving the PDE in a reduced basis of component boundaries by minimizing this sum.

Other methods exist for reducing the solution cost of large PDEs. One such is the boundary element
method (Aliabadi, 2002), which as with our method "collapses out" the internal degrees of freedom
in a PDE leaving a problem in terms of the solution on the boundary. Unlike our method, this is
performed analytically and is typically only valid for linear PDEs. Our method might be seen as
a learned boundary element method for a particular parametric class of nonlinear PDEs. Another
related line of work is homogenization. Whether micro-scale effects are modeled with fine-resolution
FEM (Schröder, 2014) or a neural network (Xue et al., 2020), homogenized models require a PDE
formed of homogenous representative volume elements (RVEs), and are accurate only as the ratio
between the size of the RVE and the size of the macro-scale problem tends to zero.

Some approaches amortize PDE solving more directly, using neural networks to map from PDE
parameters to solutions (Zhu et al., 2019; Nie et al., 2020) or constructing reduced bases via solving
eigenvalue problems or interpolating between snapshots (Berkooz et al., 1993; Chatterjee, 2000).
These approaches typically require solving full systems to produce training data. Our framework
uses the modular decomposition of energy to train surrogate models on data generated by querying
the finite element "expert" on the energy in small components, avoiding performing FEA on large
systems which are expensive to solve.

2 Learning to optimize in collapsed bases

Solving PDEs like those that govern meta-material behavior involves finding a solution u which
minimizes an energy E(u) subject to constraints. For mechanical meta-materials, E(u) is the stored
elastic potential energy in the material. We propose a framework for amortizing high-dimensional
optimization problems where the objective has special conditional independence structure, such as
that found in solving these PDEs. Consider the general problem of solving

u∗ = arg minE(u) . (1)

u may be a vector in Rd or may belong to a richer space of functions. Often we are interested in
a subset of the vector u∗, or the values the function u∗ takes on a small subdomain. To reflect this,
view the solution space as the Cartesian product of a space of primary interest and a “nuisance” space.
Denote the solutions as concatenations u = [x, y] where y is the object of interest, and x is the object
whose value is not of interest to an application. x is roughly similar to auxiliary variables that appear
in probabilistic models, but are marginalized away or discarded from the simulation. We use this
decomposition to frame Eq. 1 as a bi-level optimization problem:

y∗ = arg min
y

min
x
E(x, y) . (2)

Consider the collapsed objective, Ẽ(y) = minxE(x, y). If Ẽ(y) can be queried without represent-
ing x, we may perform collapsed optimization in the reduced basis of y, avoiding optimization in the
larger basis of u (Eq. 1), or performing bi-level optimization (Eq. 2). However, Ẽ is not usually
available in closed form. We consider approximating Ẽ(y) via supervised learning. In general, this
would require solving Ẽ = minxE(x, y) for each example y we wish to include in our training set.
This is the procedure used by many surrogate-based optimization techniques (Queipo et al., 2005;
Forrester and Keane, 2009; Shahriari et al., 2015). The high cost of gathering each training example
makes this prohibitive when x is high dimensional (and minimization is difficult) or when y is high
dimensional (and supervised learning requires many examples). Compositional structure in E may
assist us with approximating Ẽ. Many objectives may be represented as a sum:

E(x, y) =
∑
i

Ei(xi, y) . (3)
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Given this decomposition, xi and xj are conditionally independent given y; i.e., if we constrain xi
and y to take some values and perform minimization, the resulting xj or Ej(xj , y) do not vary with
the value chosen for xi. This follows from the partial derivative structure ∂Ei

∂xj
= 0 for i 6= j.

We propose to learn a collapsed objective Ẽ, which exploits conditional independence structure by
representing Ẽ(y) =

∑
i Ẽi(y). This representation as a sum allows us to use minxi

Ei(xi, y) as
targets for supervision, which may be found more cheaply than performing a full minimization. The
learned approximations to Ẽi may be composed to form an energy function with larger domain.

The language we use to describe this decomposition is chosen to reflect the conceptual similarity of
our framework to collapsed variational inference (Teh et al., 2007) and collapsed Gibbs sampling
(Geman and Geman, 1984; Liu, 1994), in which conditional independence allows optimization or
sampling to proceed in a collapsed space where nuisance random variables are marginalized out of
the relevant densities. We exploit similar structure to these techniques, albeit in a deterministic setting.
Other approaches to accelerating Eq. 2 which do not exploit (3) or directly model Ẽ(y) include
amortizing the inner optimization by predicting x∗(y) = arg minxE(x, y) (Kingma and Welling,
2013; Brock et al., 2017), or truncation of the inner loop, either deterministic (Wu et al., 2018; Shaban
et al., 2018) or randomized to reduce bias (Tallec and Ollivier, 2017; Beatson and Adams, 2019).

The optimization procedure we accelerate is the simulation of mechanical materials, where the
objective corresponds to a physically meaningful energy, and the conditional independence structure
arises from spatial decomposition of the domain and spatial locality of the energy density. We believe
this spatial decomposition of domain and energy could be generalized to learn collapsed energies for
solving many other PDEs in reduced bases. This collapsed-basis approach may also be applicable to
other bi-level optimization problems where the objective decomposes as a sum of local terms.

3 Mechanical meta-materials

Meta-materials are engineered materials with microstructure which results in macroscopic behav-
ior not found in nature. The most popularly known are electromagnetic meta-materials such as
negative refraction index solids and “invisibility cloaks” which conceal an object through en-
gineered distortion of electromagnetic fields (Poddubny et al., 2013; Cai and Shalaev, 2010).
However, they also hold great promise in other domains: mechanical meta-materials use sub-
structure to achieve unusual macroscopic behavior such as negative Poisson’s ratio and nonlin-
ear elastic responses; pores and lattices undergo reversible collapse under large deformation, en-
abling the engineering of complex physical affordances in soft robotics (Bertoldi et al., 2017).

Figure 1: Cellular meta-materials. Top: at
rest. Bottom: under compression, exhibiting
periodic instability varying with pore shape.
The left two structures exhibit negative Pois-
son’s ratio, which does not occur in nature.

Meta-materials hold promise for modern engineering de-
sign but are challenging to simulate as the microstruc-
ture necessitates a very fine finite element mesh, and as
the nonlinear response makes them difficult to approxi-
mate with a macroscopic material model. Most work on
meta-materials has relied on engineers and scientists to
hand-design materials, rather than numerically optimizing
substructure to maximize some objective (Ion et al., 2016).

We focus on building surrogate models for the two-
dimensional cellular solids investigated in Overvelde and
Bertoldi (2014). These meta-materials consist of square
“cells” of elastomer, each of which has a pore in its center.
The pore shapes are defined by parameters α and β which characterize the pore shape in polar
coordinates: r(θ) = r0[1 + α cos(4θ) + β cos(8θ)]. The parameter r0 is chosen such that the pore
covers half the cell’s volume: r0 = L0/

√
π(2+α2+β2. Constraints are placed on α and β to enforce a

minimum material thicknesses and ensure that minθ r(θ) > 0 as in Overvelde and Bertoldi (2014).

These pore shapes give rise to complicated nonlinear elastic behavior, including negative Poisson’s
ratio and double energy wells (i.e., stored elastic energy which does not increase monotonically
with strain). Realizations of this class of materials are shown under axial strain in Figure 1. The
continuum mechanics behavior of these elastomer meta-materials can be captured by a neo-Hookean
energy model (Ogden, 1997). Let X ∈ Rd, where d ≤ 3 in physical problems, be a point in the
resting undeformed material reference configuration, and u(X) be the displacement of this point
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from reference configuration. The stored energy in a neo-Hookean solid is E =
∫

Ω
W (u)dX , where

W (u) is a scalar energy density over Ω, defined for bulk and shear moduli µ and κ as:

W =
µ

2

(
(detF )−2/dtr(FFT )− d

)
+
κ

2
(detF − 1)2 (4)

where F is the deformation gradient, F (X) = ∂u(X)
∂X + I . Pores influence the structure of these

equations by changing the material domain Ω. These solids can be simulated by solving:

Div S = 0 X ∈ Ω (5)

G(u) = 0 X ∈ ∂Ω (6)

where S = ∂W
∂F is known as the first Piola-Kirchoff stress, and where Eq. 6 defines a boundary

condition. E.g. G(u) = u− ub is a Dirichlet boundary condition; in our case, an externally imposed
displacement. G(u) = ∂W

∂u − fb corresponds to an external force exerting a pressure on the boundary.

To simulate these meta-materials, Eq. 5 is typically solved via finite element analysis. Solving with
large meta-material structures is computationally challenging due to fine mesh needed to capture pore
geometry and due to the nonlinear response induced by buckling under large displacements.

Solving the PDE in Eq. 5 corresponds to finding the u which minimizes the stored energy in the
material subject to boundary conditions. That is, Eqs. 5 and 6 may be equivalently be expressed in an
energy minimization form:

u = arg min

∫
X∈Ω

W (u)dX subject to G(u) = 0 ∈ ∂Ω (7)

We use this form to learn surrogates which solve the PDE in a reduced basis of cell boundaries.

4 Composable energy surrogates

Figure 2: Meta-material do-
main Ω, partitioned into Ω1

to Ω16. Black lines show B.
Blue points are control points
of splines used to represent ũ.

We apply the idea of learning collapsed objectives to the problem of
simulating two-dimensional cellular mechanical meta-material behav-
ior. The material response is determined by the displacement field u
which minimizes the energy

∫
Ω
WdX , subject to boundary conditions.

We divide Ω into regular square subregions Ωi, which we choose to
be cells with 2 × 2 arrays of pores, and denote the intersection of
the subregion boundaries with B = ∂Ω1 ∪ ∂Ω2∪ . . . We let ui be the
restriction of u to Ωi. We take the quantity of interest to be uB, the
restriction of u to B, and the nuisance variables to be the restriction
of u to Ω\ B. The partitioning of Ω is shown in Figure 2.

The total energy decomposes as a sum over regions:

E(u) =

∫
X∈Ω

W (u)dX =
∑
i

∫
X∈Ωi

W (ui)dX :=
∑
i

E(ui)

Let ũi be the restriction of u to ∂Ωi. Note ∂Ωi = B ∩ Ωi. Let the collapsed component energy be:

Ẽi(ũi) := min
ui

E(ui) subject to ui(X) = ũi(X) X ∈ ∂Ωi .

This quantity is the lowest energy achievable by displacements of the interior of the cell Ωi, given
the boundary conditions specified by ũi on ∂Ωi. Ẽi(ũi) depends on the shape of the region Ωi,
i.e., on the geometry of the pores. Rather than each possible pore shape having a unique collapsed
energy function, we introduce the pore shape parameter ξ = (α, β) as an argument, replacing Ẽi(ũi)
with Ẽ(ũi, ξi). The macroscopic behavior of the material is fully determined by this single collapsed
energy function Ẽ(ũi, ξi). Given the true collapsed energy functions, we could accurately simulate
material behavior in the reduced basis of the boundaries between each component Ωi.1

We learn to approximate this collapsed energy function from data. This function may be duplicated
and composed to simulate the material in the reduced basis B, an approach we term composable
energy surrogates (CESs). A single CES is trained to approximate the function Ẽ by fitting to

1So long as forces and constraints are only applied on B.
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supervised data (ũi, ξi, Ẽ(ũi, ξi)), where ξi and ũi may be drawn from any distribution corresponding
to anticipated pore shapes and displacements, and the targets Ẽ(ũi, ξi) are generated by solving the
PDE in a small region Ωi with geometry defined by ξi and with ũi imposed as a boundary condition.
This CES may be used to approximate the energy in multiple spatial locations: it may be "composed"
to approximate the total energy of larger cellular meta-materials.

To efficiently solve for a reduced-basis displacement uB on B, we minimize the composed sur-
rogate energy, Ê(uB) =

∑
i Ê(ũi, ξi), where Ê(ũi, ξi) is the model’s prediction of Ẽ(ũi, ξi), the

collapsed energy of one component. Training CES which produce accurate reduced-basis solu-
tions may be thought of as a highly-structured imitation learning problem. A sufficient condi-
tion for finding the correct minimum is for the "action" taken by the surrogate—the derivative
of the energy approximation ∇uBÊ—to match the "action" taken by an expert—the total deriva-
tive, ∇uB minu/∈B E(u)—along the optimization trajectory. If so, the surrogate will follow the
trajectory of a valid, if non-standard, bilevel gradient-based procedure for minimizing the energy,
corresponding to (2). Given an imperfect surrogate, the error in the final solution will depend on the
error in approximating∇uB minu/∈B E(u) with∇uBÊ along the trajectory. This observation informs
our model, training, and data collection procedures, described in the following sections.

5 Model architecture

Our CESs take the form of a neural architecture, designed to respect known properties of the true
potential energy and to maximize usefulness as surrogate energy to be minimized via a gradient-based
procedure. The effects of these design choices are quantified via an ablation study in the appendix.

Reduced-basis parameterization. We use one cubic spline for each horizontal and vertical dis-
placement function along each face of the square, with evenly spaced control points and “not-a-knot”
boundary conditions. Our vector representation of ũ is u ∈ R2n, formed from the horizontal and
the vertical displacement values at each of the n control points. Splines on adjacent faces share a
control point at the corner. Using N control points to parameterize the function along each face
requires n = 4 ∗ (N − 1) control points to parameterize a 1d function around a single cell. For all
experiments we use N = 10 control points along each edge, resulting in u ∈ R72.

Model structure and loss. Our model structure and losses are shown below. In the energy model Ê,
fφ is a neural network with parameters φ andR removes rigid-body rotation and translation. Our loss
function is L = L0 + L1 + L2 , which is a weighted sum of losses on the 0th, 1st and 2nd energy
derivatives. ∇u and∇2

u are the gradient and Hessian of the surrogate energy Ê or the ground-truth
energy Ẽ with respect to u, and v is sampled independently for each training example in a batch.

Ê(u, ξ) = ||R(u)||22︸ ︷︷ ︸
Linear elastic component

exp{fφ
(
R(u), ξ

)
}︸ ︷︷ ︸

Stiffness

, L0 =

∥∥∥∥fφ(R(u), ξ
)
− log

Ẽ(ũ)

||R(u)||22

∥∥∥∥2

2︸ ︷︷ ︸
Log-stiffness loss

,

L1 = 1− 〈∇uÊ,∇uẼ〉
||∇uÊ||||∇uẼ||︸ ︷︷ ︸

Cosine distance between gradients

, L2 = 1− 〈∇2
uÊv,∇2

uẼv〉
||∇2

uÊv||||∇2
uẼv||︸ ︷︷ ︸

Cosine distance between
Hessian-vector products

v ∼ N (0, I2n)︸ ︷︷ ︸
Projection vector for Hessian

.

Invariance to rigid body transforms. The true elastic energy is invariant to rigid body transforms
of a solid. This invariance may be hard to learn exactly from data. We use a moduleR which applies
Procrustes analysis, i.e. finds and applies the rigid body transform which minimizes the Euclidean
distance to a reference (we use the rest configuration). This is differentiable and closed-form.

Encoding a linear elastic bias. The energy is approximated well by a linear elastic model when
at rest: Ẽi(ũi) ≈ R(ui)

TAiR(ui) for a stiffness matrix Ai depending on ξi. We scale our net’s
outputs by ||R(ui)||22 so that it needs only capture a “scalar stiffness” E/||R(ui)||22 accounting for the
geometry of Ai given ξi and for deviation from the linear elastic model.

Parameterizing the log-stiffness. The energy of a component Ẽi(u0,i) is nonnegative, and the ratio
of energy to a linear elastic approximation varies over many orders of magnitude. We parameterize
the log of the scalar stiffness with our neural network fφ rather than the stiffness.
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Log-stiffness loss. We wish to find neural network parameters φ which lead to accurate energy
predictions for many different orders of magnitude of energy and displacement. Minimizing the `2
loss between predicted and true energies penalizes errors in predicting large energies more than
proportional errors predicting small energies. Instead, we take the `2 loss between the predicted
log-stiffness fφ(R(u), ξ) and the effective ground-truth log-stiffness, log Ẽ(ũ)/||R(u)||22.

Sobolev training with gradients and Hessian-vector products. "Sobolev training" on derivatives
of a target function can aid generalization (Czarnecki et al., 2017). Accuracy of CES’ derivatives
is crucial, so we Sobolev train on energy gradients and Hessians. We obtain ground-truth gradients
cheaply via the adjoint method (Lions, 1971). Given a solution ui to the PDE in Ωi with boundary
conditions ũi, the gradient ∇ũi

Ẽi(ũi) requires solving a linear system with the same cost as one
Newton step of solving the PDE (Mitusch et al., 2019). The spline is a linear mapM from ui to ũi
in the finite element basis, so ∇ui

Ẽi(ũi) =MT∇ũi
Ẽi(ũi). The surrogate gradient,∇ui

Êφ(ui, ξi),
is computed with one backward pass. Given solution and gradient, we compute ∇2

uẼ with one
linear solve per entry of u. As u ∈ R72 and many more than 72 Newton steps are usually needed
to solve the PDE, this does not dominate the cost of data collection. Computing the full Hessian
of the surrogate energy, ∇2

ui
Êφ(ui, ξi), would require 2n backward passes. Instead we train on

Hessian-vector products, which require only one additional backward pass.

Cosine distance loss for Sobolev training. Energy gradient and Hessian values vary over many
orders of magnitude, with higher energies leading to larger derivatives. We wish our model to be
accurate across a range of operating conditions. Rather than placing an `2 loss on the gradient and
Hessian-vector products as in Czarnecki et al. (2017), we minimize the cosine distance between
ground truth and approximate gradients and Hessians, which is naturally bounded in [0, 1].

6 Data and training

Data collection has two phases. First, we collect training and validation datasets using Hamiltonian
Monte Carlo (Duane et al., 1987) to preferentially sample displacements which correspond to lower
energy modes. Next, we perform dataset aggregation (Ross et al., 2011) to augment the dataset so
that the surrogate will be accurate on states encountered when deployed. We provide details of the
hardware and the software packages used in the appendix.

Solving the PDE. To collect training data, we use the reduced-basis displacement ũ corresponding
to a vector of spline coefficients u as the boundary condition around a domain Ω representing a
2×2-pore subdomain, and solve the PDE using a load-stepped relaxed Newton’s method (Sheng et al.,
2002). The relaxed Newton’s method takes the iteration ~u← ~u− λ(∂

2E
∂~u2 )−1 ∂E

∂~u . Here, 0 < λ < 1
is the relaxation parameter (analogous to a step size), and ~u is the vector of coefficients defining u
in the FEA basis. Newton’s method requires an initial guess which is sufficiently close to the true
solution (Kythe et al., 2004). Smaller relaxation parameters yield a greater radius of convergence but
necessitate more steps to solve the PDE.

The radius of convergence can also be aided by load-stepping: solving the PDE for a sequence of
boundary conditions, annealing from an initial boundary condition for which we have a good initial
guess (e.g., the rest configuration) to a final boundary condition ũ, using the solution to the previous
problem as an initial guess for Newton’s method for the next problem. We find that combining load
stepping with a relaxed Newton’s method is more efficient than using either alone. Except where
specified, we linearly anneal from rest to ũ over 10 load steps and use a relaxation parameter λ = 0.1.

Initial dataset collection. We wish to train on varied displacement boundary conditions. As
solution procedures minimize energy, lower energy modes will be encountered in the solve. We
choose a distribution with density the product of a Boltzmann density exp{Ẽ}/Z and a Gaussian
density N (x̄(u); µ̄,Σ), where x̄(u) ∈ R2×2 is a macroscopic strain tensor2 corresponding to u, µ̄ is
a target strain drawn from an i.i.d. Gaussian with standard deviation 0.15, and Σ is set to (µ̄ ◦ µ̄)−1.

Given a solution to the PDE, the log-density and its displacement may be cheaply computed (the
latter via the adjoint method). Making use of these gradients, we sample data points with Hamiltonian
Monte Carlo (HMC). After sampling a data point, we compute the corresponding Hessian and save
the tuple (u, ξ, Ẽ,∇uẼ,∇2

uẼ) as a data point.

2See the appendix for approximating x̄ from u.
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We initialize each HMC data collector by sampling a macroscopic displacement target and a random
pore shape. We do not use load-stepping, instead using the solution for the u used in the previous
iteration of HMC’s leapfrog integration as an initial guess for solving the PDE. We randomize
HMC hyperparameters for each collector to attempt to minimize the impact of specific settings: see
the appendix for exact ranges. We sample 55000 training examples and 5000 validation examples
altogether. We visualize displacements drawn from this distribution in the appendix.

Data aggregation. Surrogate deployment defies standard i.i.d. assumptions in supervised learning.
The deployed surrogate encounters states determined by the energy it defines and by boundary
conditions on the composed body. Given a dataset such as that we sampled with HMC, the distribution
over states encountered by the surrogate in deployment may be very different to the distribution of
states in this dataset.

This problem—that training an agent to predict expert actions can lead to trajectories dissimilar to
those on which it was trained—is a central concern in the imitation learning literature. A number of
solutions exist (Schroecker and Isbell, 2017). One is dataset aggregation, or DAGGER (Ross et al.,
2011), which reduces imitation learning or structured prediction to online learning.

In DAGGER, a policy is deployed and trajectories are collected. The expert is queried on the states
in these trajectories. The state-action pairs are appended to the dataset, and the policy is retrained
on this dataset. This process of deployment, querying, appending data, and retraining, is iterated.
The distribution of states encountered in deployment and the distribution of states in the dataset
converge. Under appropriate assumptions, the instantaneous regret of the learned policy vanishes
with the number of iterations, i.e., the learned policy matches the expert policy on its own trajectories.

Ross et al. (2011) present DAGGER as a method for discrete action spaces. We have a continuous
action space: the gradient of the energy in a cell. We do not investigate generalizing DAGGER’s regret
guarantees to continuous action spaces, but the intuition holds that we wish our model to “imitate”
the finite element “expert” on the optimization trajectories the model produces.

We initialize our training data with HMC as described earlier. We then apply DAGGER by iterating:
(i) training the surrogate; (ii) composing surrogates and finding displacements which minimize the
composed energy; (iii) sampling displacements along the surrogate’s solution path, querying the
ground-truth energy and energy derivatives using FEA, and adding these new data points to the
dataset. We visualize displacements generated by DAGGER in the appendix.

7 Software and hardware

We implement the finite element models in dolfin (Logg and Wells, 2010; Logg et al., 2012b), a
Python front end to FEniCS (Alnæs et al., 2015; Logg et al., 2012a). To differentiate through finite
element solutions, we use the package dolfin-adjoint (Mitusch et al., 2019). We implement
surrogate models in PyTorch (Paszke et al., 2019).

We use Ray (Moritz et al., 2018) to run distributed workloads on Amazon EC2. The initial dataset is
collected using 80 M4.xlarge CPU spot workers. While training the surrogate, we use a GPU P3.large
driver node to train the model, and 80 M4.xlarge CPU spot worker nodes performing DAGGER
in parallel. These workers receive updated surrogate model parameters, compose and deploy the
surrogate, sample displacements along the solution path, query the finite element model for energy
and derivatives, and return data to the driver node. Initial dataset collection and model training with
DAGGER each take about one day in wall-clock time.

8 Empirical evaluation

We demonstrate the ability of Composable Energy Surrogates (CES) to efficiently produce accurate
solutions. We consider the systems constructed in Overvelde and Bertoldi (2014): structures with
an 8 × 8 array of pores, corresponding to a 4 × 4 assembly of our surrogates, each representing a
2× 2-pore component. We sample pore shapes from a uniform distribution over valid shapes defined
in Overvelde and Bertoldi (2014). For DAGGER, we sample vertical axial strain magnitudes from
U(0., 0.3), and apply compression with probability 0.8 (as compressive displacements involve more
interesting pore collapse) or tension with probability 0.2.

7



We compare our composed surrogates to finite element analysis with different-fidelity meshes under
axial compression and tension with a macroscopic displacement of 0.125L0, where L0 is the original
length of the solid. See the appendix for details of the finite element meshes. We use seven pore
shapes: ξ = (0, 0), corresponding to circular pores, and six ξ sampled from a uniform distribution
over pore parameters defined as valid in Overvelde and Bertoldi (2014).

Figure 3: Error in solution and in estimated energy vs solution wall clock time for the composed energy
surrogate and for finite element models with varying mesh sizes. Top: axial compression. Bottom: axial tension.

We use PyTorch’s L-BFGS routine to minimize the composed surrogate energy, with step size
0.25 and default criteria for checking convergence. We attempt to solve each finite element
model with FEniCS’ Newton method with [1, 2, 5, 10, 20] load steps and relaxation parameters
[0.9, 0.7, 0.4, 0.1, 0.05], and record time taken for the fastest convergent solve. Under compression
these solids exhibit nonlinear behavior, and only more conservative solves converge. Under tension
they behave closer to a linear elastic model, and Newton’s method converges quickly. Measurements
are taken on an AWS M4.xlarge EC2 CPU instance. Using a GPU could provide further acceleration.

Figure 4: Meta-materials under com-
pression (top) and tension (bottom),
with solution found via CES shown in
red at spline control points.

We measure error in the solution and in the macroscopic energy.
The former is ||û− u∗||22, where û and u∗ are the approximation
and ground-truth evaluated at spline control points. The latter
is the relative error |Ê(û)−E∗(u∗)|/E∗(u∗), where Ê(û) is the ap-
proximated energy of the approximate solution, and E∗(u∗) is
the ground-truth energy of the ground-truth solution. As the
energy function determines behavior, accuracy of energy is a
potential indicator of ability to generalize to larger structures.
The highest-fidelity finite element model is taken as ground truth,
and thus has an error of zero on both metrics. Multiple minimiz-
ers exist as energy is preserved under rigid body transforms, so
before comparing a solution û to the ground-truth u∗ we check
each vertical and horizontal flip and use the flip which minimizes
the solution error.

Figure 3 shows our evaluation. Composed energy surrogates are more efficient than high-fidelity
FEA simulations yet more accurate than low-fidelity simulations. CES produces solutions with
equivalent `2 error to FEA solutions which use an order of magnitude more variables or computation
time, and with an order of magnitude less `2 error than FEM solutions requiring the same computation.
This gap increases to several orders of magnitude when we consider percentage error in the predicted
strain energy. We visualize the ground-truth and the CES approximation in Figure 4. See the appendix
for visualization of FEM and CES solutions for the remaining structures.
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9 Limitations and opportunities

Use of DAGGER. We use DAGGER to help CES match the ground-truth on the states encountered
during the solution trajectory. This requires one to specify in advance the conditions under which the
surrogate will be deployed. Investigating CES’ ability to generalize to novel deployment conditions–
and designing surrogates which can do so effectively–is an important direction for future work.

Error estimation, refinement, and guarantees. Finite element methods permit a straightforward
way to estimate the error (compare to the solution in a more-refined basis) and control it (via
refinement). CES currently lacks these properties.

Finite element baseline. There is an immense body of work on finite element methods and iterative
solvers. We provide a representative baseline, but our work should not be taken as a comparison with
the “state-of-the-art”. We show that composable machine-learned energy surrogates enjoy advantages
over a reasonable baseline, and hold promise for scalable amortization of solving modular PDEs.

Hyperparameters. Both our method and the finite element baseline rely on a multitude of hyperpa-
rameters: the size of the spline reduced basis; the size and learning rate of the neural network; the
size and degree of the finite element approximation; and the specific variant of Newton’s method to
solve the finite element model. We do not attempt a formal, exhaustive search over these parameters.

Known structure. We leave much fruit on the vine in terms of engineering structure known from
the into our surrogate. For example, one could also use a more expressive normalizer than ||u||22, e.g.
the energy predicted by a coarse-grained linear elastic model, or exploit spatially local correlation,
e.g. by using a 1-d convolutional network around the boundary of the cell.

10 Conclusion

We present a framework for collapsing optimization problems with local bilevel structure by learning
composable energy surrogates. This framework is applied to amortizing the solution of PDEs
corresponding to mechanical meta-material behavior. Learned composable energy surrogates are
more efficient than high-fidelity FEA yet more accurate than low-fidelity FEA, occupying a new point
on the Pareto frontier. We believe that these surrogates could accelerate metamaterial design, as well
as design and identification of other systems described by PDEs with parametric modular structure.
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13 Broader impacts

Our work accelerates the simulation of mechanical meta-materials, and could lead to methods for
accelerated simulation of other PDEs. More efficient materials design could have impact on a
wide variety of downstream applications, such as soft robotics, structural engineering, biomedical
engineering, and many more. Due to the incredibly wide variety of applications which might make
use of advances in material design–every physical man-made object makes use of this science–it is
difficult to precisely assess impact. However, we believe that meta-material driven advances in soft
robotics and structural/biomedical engineering are likely to have a range of positive effects.
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