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Abstract

Deep clustering integrates embedding and clustering together to obtain the opti-
mal nonlinear embedding space, which is more effective in real-world scenarios
compared with conventional clustering methods. However, the robustness of the
clustering network is prone to being attenuated especially when it encounters an
adversarial attack. A small perturbation in the embedding space will lead to di-
verse clustering results since the labels are absent. In this paper, we propose a
robust deep clustering method based on adversarial learning. Specifically, we first
attempt to define adversarial samples in the embedding space for the clustering
network. Meanwhile, we devise an adversarial attack strategy to explore samples
that easily fool the clustering layers but do not impact the performance of the
deep embedding. We then provide a simple yet efficient defense algorithm to
improve the robustness of the clustering network. Experimental results on two pop-
ular datasets show that the proposed adversarial learning method can significantly
enhance the robustness and further improve the overall clustering performance.
Particularly, the proposed method is generally applicable to multiple existing
clustering frameworks to boost their robustness. The source code is available at
https://github.com/xdxuyang/ALRDC.

1 Introduction

As an important tool in unsupervised learning [38], clustering has been widely utilized in image
segmentation [8], image categorization [10], and data mining and analysis. The goal of clustering
is to find a partition to keep similar samples in the same cluster while dissimilar ones in different
clusters. Recently, a large family of clustering algorithms such as K-means clustering [12] and
Gaussian mixture models [1] have been studied intensively. K-means clustering assigns each sample
to the cluster with the closest center iteratively based on similarity measurements and updates the
center of each cluster. However, the estimated similarity measures for high-dimensional samples may
not be accurate, resulting in degraded clustering performances. In practice, many high-dimensional
samples may exhibit a dense grouping property in a low-dimensional representation space. Hence,
clustering methods, such as spectral clustering [26] and subspace clustering [7], have been developed
to capture various cluster structures.

A majority of spectral clustering approaches [36] depend on a linear subspace assumption to construct
affinity matrices, but data does not naturally obey linear models in many cases. Their distance metrics
are only exploited to describe local relationships in the data space, and have a limitation to represent
latent dependencies among all samples. Moreover, these shallow clustering methods mainly rely on
low-level image features such as raw pixels, SIFT [23], or HOG [6]. On the contrary, deep clustering,
which integrates embedding and clustering as a single procedure to obtain the optimal embedding
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(a) (b) (c) (d)
Figure 1: Visualization of the discriminative capability of embedding spaces. (a) The distribution of
the embedded features on MNIST-test and their clustering results (ACC=0.849); (b) the distribution
of the embedded features with a small perturbation on MNIST-test and their clustering results
(ACC=0.772); (c) and (d) are the reconstructed samples generated by the embedded features and
their perturbed versions.

(or representation) space for clustering, can be more effective than traditional methods. The main
reason is due to the powerful ability of deep methods in effectively modeling the distributions of input
samples [21] and capturing the nonlinear properties [35, 30], which is more suitable for real-world
clustering scenarios [20].

Deep autoencoder network [29] has promoted the performance of deep clustering due to its inherent
property to capture high-dimensional probability distributions of input samples without label informa-
tion. The encoder embeds the samples into a latent lower-dimensional space, and adopts an explicit
approximation of maximum likelihood to estimate the distribution diversity between the embedded
features and the raw samples. The embedded features are utilized to produce the final clustering re-
sults. They can also reconstruct the raw samples by the decoder network, which is leveraged to ensure
that the embedded features preserve the information of the raw samples [28]. More recently, Deep
Embedding Clustering [32] has been proposed to train an end-to-end clustering network, which learns
a mapping from the data space to a lower-dimensional embedding space. In order to benefit from
end-to-end optimization and also eliminate the necessity of layer-wise pre-training, joint learning
frameworks [9, 34], which propose to minimize unified clustering and reconstruction loss functions,
train all the network layers simultaneously. While deep learning algorithms have been extremely
successful at a variety of learning tasks, it has been shown that deep neural networks can be easily
fooled by adversarially generated samples [24]. An adversarial sample is generally indistinguishable
from its original sample by a human observer and is misclassified by neural networks. Since then,
there have been a lot of researches undertaken to make supervised models resilient to adversarial
samples, and to expose vulnerabilities in existing deep learning algorithms [3].

Such a kind of vulnerabilities also exist in unsupervised deep clustering networks. The majority
of existing deep clustering methods endeavor to minimize the reconstruction loss, and their goal
is to make the target embedding space more discriminative since the embedding space directly
determines the clustering quality. However, the embedded features are extremely susceptible to
a small perturbation and lead to disparate clustering results. For example, we jointly optimize an
autoencoder network and clustering layers with KL divergence as an end-to-end clustering network.
Figure 1 gives the performance by comparing different embedded features on MNIST-test, where
Figures 1(a) and 1(b) plot the distributions of the embedded features and their perturbed versions,
respectively, using t-SNE visualization [19]. Different colors indicate their corresponding clusters.
Moreover, the reconstructed samples with different clustering results from the embedded features and
their perturbed versions are displayed in Figures 1(c) and 1(d), respectively. The results show that a
small perturbation will cause the clustering results quite different, and the reconstruction loss used by
the autoencoder network cannot sufficiently perceive the adversarial perturbation.

In this paper, we first introduce an adversarial learning algorithm to improve the network robustness
in deep clustering. We attempt to define an adversarial sample of the embedding space, which easily
fools the clustering layers but does not impact the performance of the deep embedding. Meanwhile,
we present a powerful adversarial attack algorithm to learn a small perturbation from the embedding
space against the clustering network. In this way, those unstable samples that are very likely to
yield diverse clustering results are explored explicitly. Moreover, we provide a simple yet efficient
defense algorithm to optimize the clustering network, which can alleviate the differences caused by
the perturbation. Experimental results on two popular benchmark datasets show that the proposed
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adversarial learning algorithm can significantly enhance the robustness and further improve the
overall performance of the clustering network. Our proposed method can be integrated into multiple
classic unsupervised clustering frameworks to enhance their robustness.

Contributions. The highlights of this paper are three-fold: 1) We first attempt to optimize the
clustering network using an adversarial learning mechanism, and define an adversarial sample for the
embedding space of deep clustering. 2) We present a powerful adversarial attack strategy against
the clustering network to explore unstable samples, and propose a corresponding defense algorithm
which improves the overall clustering performance while boosts the robustness of the network. 3) The
experimental results on two popular datasets show that the proposed adversarial learning algorithm can
optimize the feature distribution to alleviate the effect caused by a perturbation, therefore enhancing
the robustness of various existing clustering frameworks.

2 Background and Preliminaries

Notations. Let X = {x1, ...,xn} be input samples, and Z = {z1, ..., zn} be their embedded features,
respectively. zi ∈ Rd is learned by the embedding network E, and on the other hand it is utilized
to reconstruct the raw sample xi. We use a clustering function F : z → y ∈ RK to predict the
cluster label, where K is the total number of clusters, and then let Y = {y1, ...,yn} retain the final
clustering results.

Our adversarial learning algorithm is model-agnostic and can therefore be applied to any deep
clustering model that follows the x � z→ y structure. Hence, we adopt the following clustering
network, which is a basic model of an existing method [37], as a testbed to show how our proposed
adversarial learning algorithm can attack the network and improve its robustness. The ultimate
clustering network combines embedding and clustering as a whole to produce the optimal nonlinear
embedding. Two modules are merged into one unified framework and jointly optimized by relative-
entropy (equivalent to KL divergence) minimization, and the loss function can be defined as:

min
Θ
LC = KL(p(x, z,y)||q(x, z,y)). (1)

In order to solve the above problem, we introduce the following generative model:

y ∼ Cat(π),

z ∼ N (µz(y), σ2
z(y)),

x ∼ Gaussian(µx(z)),

(2)

with the joint probabilities factorized as p(z,y|x) = p(y|z)p(z|x), q(x|z,y) = q(x|z), and
q(z,y) = q(z|y)q(y). The loss of the clustering network becomes:

min
Θ
LC = Ex∼pdata(x)

[
− log q(x|z) +

∑
y

p(y|z) log
p(z|x)

q(z|y)
+KL(p(y|z)||q(y))

]
, z ∼ p(z|x),

(3)
where the first term is the reconstruction loss. In a deep clustering scenario, y can be interpreted
as representing some discrete clusters in the data, and z then represents a mixture of Gaussians,
encoding both the inter- and intra-cluster variations. In this way, the raw samples are encoded to an
embedding space, and the mixture probabilities p(y|z) are determined by an output Softmax operator
of the clustering layers. Finally, the decoder is a single network that maps from the embedding z to
its reconstructed sample x̃. The last term is the categorical regularizer. q(y) is a fixed uniform prior
with component weights specified by π. Intuitively, this loss encourages the model to reconstruct
the raw samples and perform clustering where possible. Due to the space limit, please refer to our
supplementary material for the detailed formulations.

By exploiting the diversity in input samples X, the model can learn to utilize different components
for different structures inherent in the data. Then, we can directly infer the cluster labels through the
clustering layers. In specific, si ∈ {1, ...,K} is the inferred cluster label of input sample xi:

si = argmax yi. (4)
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Figure 2: The illustration of the entire architecture of our proposed method.

3 Methodology

We leverage the deep clustering network introduced in Section 2 as a testbed to show the process of
the proposed adversarial learning algorithm. The overall flowchart is illustrated in Figure 2, where
red lines represent the adversarial attack strategy and blue lines stand for the defense strategy. For a
pre-trained deep clustering network (with parameters Θ) that consists of an embedding subnetwork
and clustering layers, we intend to generate a small perturbation δ via an attacking network (with
parameters Φ) for the embedded feature z, such that an adversarial sample in the embedding space can
be defined as ẑ = z + δ. In this way, feeding ẑ into the target clustering network, the reconstructed
sample x̂ and its clustering label ŷ can be yielded as follows,

ŷ ∼ p(y|ẑ), x̂ ∼ q(x|ẑ). (5)

The purpose of adversarial attack is to make the perturbed features similar to the clean features and
the reconstructed samples have fewer differences, but make the corresponding clustering results quite
different. The loss of the adversarial attack learning can be defined as:

min
Φ
LA =‖ x̃− x̂ ‖2F +β‖δ‖p + γ

n∑
i=1

y>i ŷi, (6)

where the first term is utilized to reconstruct samples with the perturbed features, the second term
ensures that the learned perturbation will not destroy the basic performance of the clustering network,
and the last term is to maximize the differences in clustering results. β and γ are trade-off hyper-
parameters. To solve the above problem, we fix the network parameters Θ and optimize Φ. In this
way, a small perturbation is learned to fool the clustering layers but not impact the performance of the
deep embedding. This is because the cluster structure of some samples is not clear in the embedding
space. By virtue of the adversarial attack strategy, the unclear samples which are very likely to cause
diverse clustering results are explored explicitly.

After learning the perturbation, we hope to use the learned perturbation in defense of the clustering
network. The generated samples with the perturbed features are basically the same as those generated
by the clean features, while the subsequent clustering results are quite different. However, the ideal
situation is that the generated samples as well as the clustering results by the perturbed features
should be completely consistent with those by the clean features. Hence, we combine the clustering
results and the reconstructed samples to obtain new feature maps, and adopt a discriminator (with
parameters Ψ) to identify the mutual information between (x,y) and z. The generated samples and
their corresponding cluster labels are combined via feature reshaping:

min
Ψ
L = Ex∼pdata(x) [− log σ(T ((x,y), z))− log(1− σ(T ((xt,yt), z)))] , (7)

where ((x,y), z) together forms a positive data pair, and then we randomly select (xt,yt) from the
disturbed batch to construct a negative data pair with respect to z. Notation T denotes the mapping
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Algorithm 1 Adversarial Learning for Robust Deep Clustering
Input: Unlabeled samples X, cluster number K, hyper-parameters λ, β, and γ;
Initialization: Pre-train the clustering network by minimizing Eq. (3);
Output: Y;

1: for iter = 1, . . . ,MaxIter do
2: while not converged do
3: Fixing Ψ and Θ, update the network parameters Φ by minimizing Eq. (6);
4: end while
5: while not converged do
6: Fixing Φ, update the network parameters Ψ and Θ by minimizing Eq. (8);
7: end while
8: end for

function of the discriminator which is often used to discriminate the mutual information of inputs [13],
and σ represents the activation function of the discriminator. In doing so, the correlation between
z and (x,y) will be enhanced. Moreover, contrastive learning [4] is utilized to force the results
generated by the clean features and their perturbed versions to be similar. Specifically, we employ the
discriminator to optimize the correlation between ẑ and (x̃,y), and the negative data pair (x̃t,yt)
is randomly selected from the disturbed batch. Similarly, the correlation between z and (x̂, ŷ) is
constructed. The loss of the defense strategy can be defined as:

min
Ψ,Θ

LD = Ex∼pdata(x)[− log σ(T ((x̂, ŷ), z))− log(1− σ(T ((x̂t, ŷt), z)))]

+Ex∼pdata(x)[− log σ(T ((x̃,y), ẑ))− log(1− σ(T ((x̃t,yt), ẑ)))] + λLC .
(8)

We fix the network parameters Φ and optimize Ψ,Θ to improve the network robustness. LC is the
objective function of the original deep clustering method, which is included to ensure the basic
performance of the clustering network. Particularly, the clustering network introduced in Section 2 is
one of such models leveraged to introduce an adversarial learning algorithm and afterwards verify
its effectiveness encountering an attack algorithm. LC changes as the clustering model changes. To
be precise, our defense algorithm is to integrate a set of perturbation-based contrastive constraints
into the original clustering network, which can force the embedded features away from the decision
boundaries of the clusters to eliminate the different results caused by the learned perturbation. As
such, the robustness and overall performance of the clustering network will both be improved. Finally,
our proposed adversarial learning algorithm for robust deep clustering is sketched in Algorithm 1.

4 Related Works

Deep Clustering. A number of related methods aim to learn a discriminative embedding space
using generative models. Nalisnick et al. [22] adopted a latent mixture of Gaussians based on
VAE [16] and proposed a Bayesian non-parametric prior aiming to capture the class structure in an
unsupervised manner. Similarly, Joo et al. [15] presented a Dirichlet posterior in the embedding
space to avoid some of the previously observed component-collapsing phenomena. Lastly, Variational
Deep Embedding (VaDE) [14] is proposed to combine VAE and GMM together for deep clustering.
Moreover, several works have shown that random noise can be utilized to make the embedded features
more robust [37, 9] towards clear cluster structure. The perturbations generated by random noises
are irregular and chaotic, and it is thus very hard to explore the samples that are susceptible to
perturbations, causing a performance gap which is to be bridged by this work. Our proposed method
can utilize a small perturbation to explicitly explore unstable samples in the embedding space.

Adversarial Learning. An adversarial setting [27] in clustering is firstly introduced to make mis-
clustering using fringe clusters, where adversaries could place adversarial samples very close to
the decision boundary of the original data cluster. Biggio et al. [2] considered adversarial attack to
clustering, where they described the obfuscation and poisoning attack settings, and then provided
results on single-linkage hierarchical clustering. Recently, Crussell and Kegelmeyer [5] proposed
a poisoning attack specific to DBSCAN clustering. As can be seen, a few works have discussed
adversarial learning on deep clustering, and the stability and robustness are also very crucial to deep
clustering networks. This paper not only defines an adversarial attack to the embedding space for
deep clustering but also presents a defense strategy to improve the network robustness.
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5 Experiments

In this section, we evaluate the effectiveness of the proposed adversarial learning method on two
benchmark datasets in terms of: 1) whether our attack method learns a meaningful perturbation
from the embedding space, 2) whether the proposed defense strategy can improve the robustness of
the clustering network, and 3) the applicability of the proposed method to other classic clustering
frameworks.

5.1 Datasets

To show that our method operates well on various datasets, we choose MNIST and Fashion-MNIST
as benchmarks. Considering that clustering tasks are fully unsupervised, we concatenate the training
and testing samples when applicable. MNIST [18]: containing a total of 70,000 handwritten digits
with 60,000 training and 10,000 testing samples, each being a 28×28 monochrome image. Fashion-
MNIST [31]: having the same number of images with the same image size as MNIST, but fairly more
complicated. Instead of digits, Fashion-MNIST consists of various types of fashion products.

5.2 Clustering Metrics

To evaluate the clustering performance, we adopt three standard evaluation metrics: Accuracy (ACC),
Normalized Mutual Information (NMI) [33], and Distortion (D).

The best mapping between cluster assignments and true labels is computed using the Hungarian
algorithm to measure accuracy [17]. For completeness, we define ACC by:

ACC = max
m

∑n
i=1 1{li = m(ci)}

n
, (9)

where li and ci are the ground-truth label and predicted cluster label of data point xi, respectively.

NMI calculates the normalized measure of similarity between two labels of the same data:

NMI =
I(l; c)

max{H(l), H(c)}
, (10)

where I(l, c) denotes the mutual information between true label l and predicted cluster c, and H
represents their entropy. Results of NMI do not change by permutations of clusters (classes), and
they are normalized to [0, 1] with 0 implying no correlation and 1 exhibiting perfect correlation.

The distortion D between the embedded features and their perturbed versions is measured by D =
1
nd

∑n
i=1

|zi−ẑi|
|zi| , where d is the dimension of embedded features.

5.3 Implementation Details

In our experiments, we set λ = 1. The hyper-parameters β and γ are determined by different
networks and datasets. We aim to select the hyper-parameters that can achieve a certain difference in
the result (the 3rd term of Eq. (6)) by a moderate perturbation (not too much). The roles of β and γ
are mutually exclusive, so we typically fix β and tune γ. The experiments show that the difference
in the result will increase abruptly as γ gradually increases, and that the critical value γ is an ideal
hyper-parameter. For MNIST, the channel numbers and kernel sizes of the autoencoder network are
the same as those in [37], and we employ one convolutional layer and three following residual blocks
in the encoder for Fashion-MNIST. The clustering layers consist of four fully-connected layers, and
ReLU is employed as nonlinear activation. The perturbed clustering results are marked by (*) on top,
and the model after the defense strategy is marked by (+) on top.

5.4 Baselines

We first verify the robustness and stability of the basic clustering network mentioned in Section 2
(ConvAE in the experiments). In addition, we integrate some classic modules of unsupervised learning
with the basic clustering network to verify the applicability of the proposed adversarial algorithm,
such as mutual information estimation (MIE) [13] and graph module (Graph) [25]. The specific
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Table 1: Clustering performances (%) of different methods after adversarial attack learning on two
datasets in ACC, NMI, and D.

Dataset Method Matrix 64 128 256 512

MNIST

ConvAE
ACC 85.7 77.5∗ 84.9 77.2∗ 85.8 77.5∗ 84.4 75.3∗
NMI 80.4 75.5∗ 79.7 76.6∗ 81.9 77.9∗ 79.9 72.1∗

D 1.06 0.73 0.64 0.51

MIE
ACC 90.2 81.7∗ 91.3 83.6∗ 92.9 82.1∗ 91.8 82.6∗
NMI 85.4 78.0∗ 85.8 80.2∗ 86.3 80.9∗ 84.7 78.9∗

D 1.14 0.65 0.56 0.47

Graph
ACC 95.3 88.2∗ 96.2 88.5∗ 95.3 88.2∗ 96.1 89.9∗
NMI 94.5 84.3∗ 94.7 85.2∗ 95.1 85.7∗ 94.5 84.4∗

D 1.02 1.03 1.04 1.24

Fashion-MNIST

ConvAE
ACC 60.6 56.0∗ 61.3 57.1∗ 61.7 56.3∗ 60.9 54.9∗
NMI 63.1 58.8∗ 64.1 59.7∗ 63.1 57.9∗ 63.5 58.8∗

D 1.91 1.25 1.18 1.28

MIE
ACC 65.4 58.5∗ 64.2 57.1∗ 64.9 57.7∗ 64.9 57.5∗
NMI 64.9 62.6∗ 63.8 61.2∗ 64.2 61.7∗ 63.9 61.6∗

D 1.30 1.15 1.10 1.05

Graph
ACC 67.2 64.3∗ 66.9 63.4∗ 66.7 63.8∗ 66.8 64.0∗
NMI 66.5 63.8∗ 66.4 63.3∗ 66.5 63.6∗ 66.6 63.8∗

D 1.95 1.93 1.84 1.72

Table 2: Clustering performances (%) of different methods after the adversarial defense strategy on
two datasets in ACC and NMI.

Dataset Method Matrix 64 128 256 512

MNIST

ConvAE+ ACC 86.8 87.1∗ 87.2 87.0∗ 86.8 87.1∗ 86.4 86.7∗
NMI 82.8 82.7∗ 83.1 82.6∗ 82.5 82.9∗ 80.3 80.8∗

MIE+ ACC 93.9 94.0∗ 94.2 94.3∗ 94.5 94.2∗ 94.0 94.1∗
NMI 85.6 85.9∗ 86.1 87.2∗ 85.7 84.9∗ 86.1 84.2∗

Graph+ ACC 98.2 98.5∗ 98.1 97.7 ∗ 98.3 97.5∗ 97.5 97.9∗
NMI 94.8 94.5∗ 94.2 93.8∗ 94.7 94.1∗ 94.2 93.7∗

Fashion-MNIST

ConvAE+ ACC 61.8 62.3∗ 63.1 62.5∗ 62.8 63.7∗ 63.1 62.9∗
NMI 63.4 64.5∗ 64.9 63.7∗ 64.1 63.9∗ 64.8 62.9∗

MIE+ ACC 66.3 66.4∗ 66.8 66.7∗ 66.6 66.4∗ 67.2 67.2∗
NMI 65.8 65.8∗ 66.0 66.0∗ 65.8 65.8∗ 65.6 65.6∗

Graph+ ACC 67.8 67.2∗ 67.4 67.5∗ 67.1 67.2∗ 67.5 67.8∗
NMI 67.4 67.2∗ 66.7 67.1∗ 66.9 67.3∗ 66.5 66.1∗

objective functions are introduced in the supplementary material. We construct the original weight
matrix W with probabilistic K-nearest neighbors on each dataset, and the number of neighbors is set
to 3. Finally, we integrate the proposed adversarial learning strategy with some typical clustering
frameworks, including variational deep embedding (VaDE) [14], deep spectral clustering using dual
autoencoder network (DANDSC) [37], and improved deep embedding clustering (IDEC) [11], to
further verify the performance of adversarial learning.

5.5 Results and Discussion

Firstly, we verify the performance of the proposed attack learning algorithm on different clustering
networks. The results are shown in Table 1, where the first column represents the clustering perfor-
mance of the clean features, the second column represents the clustering performance of using the
perturbed features, and D represents the intensity of perturbation. The results show that the methods
based on mutual information estimation are susceptible to perturbations because the distribution of
the embedded features is more discrete. The graph module can effectively improve the clustering
performance, but it is still easily affected by perturbations. The results imply that the robustness of
the clustering network is independent of the clustering performance. In addition, the perturbation
intensity decreases with the increasing of feature dimension, which indicates that the stability of the
network is weakened with more complex feature structure.

In addition, we attempt to adopt the defense strategy to improve the network robustness using the
generated perturbation. The results after defense optimization are shown in Table 2, where the first
column represents the clustering performance of clean features and the second column represents
the clustering performance of perturbed features. The results demonstrate that the proposed defense
strategy can effectively mitigate the perturbation impact and even improve the overall clustering
performance. The main reason for this phenomenon is that the clustering network will force the
embedding space to have a clearer cluster structure during the defense process. Figure 3 is the feature
distribution of the embedding space using t-SNE visualization [19] on MNIST-test data points, where
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(a) MIE (b) MIE+ (c) Graph (d) Graph+

Figure 3: Visualization of the discriminative capability of the embedding spaces on MNIST-test.

(a) ConvAE (b) ConvAE (c) MIE (d) MIE
Figure 4: The clustering results of different clustering methods on MNIST during the attack strategy.

(a) ConvAE+ (b) MIE+ (c) ConvAE+ (d) MIE+

Figure 5: The clustering results of different clustering methods on MNIST during the defense strategy.

Table 3: Clustering performances (%) of different methods after the re-attack strategy on two datasets
in ACC, NMI, and D.

Method Matrix MNIST Fashion-MNIST
64 128 256 512 64 128 256 512

ConvAE+
ACC 80.2∗ 81.2∗ 82.0∗ 81.2∗ 58.9∗ 57.8∗ 58.3∗ 59.2 ∗
NMI 75.4∗ 75.7∗ 75.2∗ 74.3∗ 60.3∗ 59.7∗ 60.7∗ 61.4 ∗

D 1.52 1.25 1.71 1.87 2.15 2.57 3.01 2.88

MIE+
ACC 84.5∗ 85.3∗ 85.8∗ 84.9∗ 60.3∗ 61.2∗ 60.8∗ 61.5∗
NMI 80.1 ∗ 81.2 ∗ 82.1∗ 81.7∗ 60.5∗ 61.7∗ 60.4∗ 61.9∗

D 1.66 1.44 1.65 1.67 2.57 2.13 2.45 2.35

Graph+
ACC 92.1 ∗ 93.2∗ 93.7 ∗ 92.8 ∗ 65.4∗ 64.9∗ 65.5∗ 65.4∗
NMI 86.7 ∗ 87.4 ∗ 88.2 ∗ 87.5 ∗ 60.6∗ 60.3∗ 61.6∗ 61.9∗

D 1.85 1.77 1.79 1.74 3.15 2.87 2.95 2.62

Table 4: Clustering performances (%) of different methods on two datasets in ACC and NMI.

Dataset IDEC IDEC+ VaDE VaDE+ DANDSC DANDSC+

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

MNIST 87.4 82.3 95.2 94.1 94.3 88.2 96.7 91.3 97.5 93.2 98.1 94.0
77.5∗ 75.8∗ 95.2∗ 95.4∗ 88.7∗ 83.2∗ 96.9∗ 90.8∗ 94.3∗ 88.5∗ 97.5∗ 93.2∗

Fashion-MNIST 58.3 55.7 60.3 60.1 61.3 55.1 62.3 62.1 67.4 65.7 68.7 68.1
59.8∗ 56.2∗ 61.7∗ 61.8∗ 62.4∗ 56.5∗ 62.9∗ 63.2∗ 66.7∗ 60.8∗ 67.1∗ 67.5∗

Figures 3(a) and 3(c) are the distributions of the features from the original network with MIE and
graph module, respectively, and Figures 3(b) and 3(d) are the feature distributions after the defense
strategy. The results demonstrate that the features have clearer cluster structure for clustering after
defense training, which can also be justified by the increased clustering accuracy.

We set β = 1. Figures 4(a) and 4(c) represent the change of clustering accuracies on adversarial
samples with different γ. Figures 4(b) and 4(d) show the corresponding distortions on the MNIST
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dataset, which indicate that the clustering accuracy will rapidly decay as the distortion increases
gradually. We also investigate the parameter sensitivity in the proposed defense strategy. Figures 5(a)
and 5(b) display the changes of clustering accuracies on perturbed features with various λ values for
ConvAE+ and MIE+, respectively. They both indicate that our defense strategy is insensitive to the
parameter λ in the range of [0.1,1].

To further prove the effectiveness of the adversarial samples, we adopt the learned perturbation (P)
and random noise (RN) as the adversarial samples in the defense strategy, and verify the performance
with clean features (CF) and perturbed features (PF), respectively, on the MNIST dataset. The results
shown in Figures 5(c) and 5(d) demonstrate that the network quickly adapts to the perturbation
and then iterates gradually to achieve better results. In particular, the perturbation information
based on the adversarial attack algorithm is more helpful to improve the robustness and overall
clustering performance compared against random noise, which is mainly due to the fact that the
learned perturbation can explicitly explore unstable samples in the embedding space.

Moreover, we adopt the same parameters to re-attack the optimized network, and the results are shown
in Table 3. The results indicate that the differences caused by the perturbations are significantly
reduced, and the required perturbation intensity is also increased. The results confirm that the
proposed algorithm can improve the robustness of the clustering network. Finally, we verify the
flexibility of our proposed algorithm by combining the proposed adversarial learning method with
some classic deep clustering frameworks. The results shown in Table 4 demonstrate that the proposed
algorithm can be applied to different clustering frameworks and improve their robustness. Due to the
space limit, please refer to the supplementary material for more experimental results and analyses.

6 Conclusion

In this paper, we first attempted to incorporate adversarial learning into deep clustering networks
to enhance the clustering robustness. To achieve this goal, we defined an adversarial sample in the
embedding space for deep clustering, and then proposed a powerful adversarial attack algorithm to
learn a small perturbation which can fool the clustering layers but not impact the deep embedding.
As such, unstable samples can be explored explicitly in the embedding space. In addition, we
provided a simple yet efficient defense algorithm to promote clearer cluster structure and improve
the robustness of the clustering network. Moreover, we integrated the adversarial learning algorithm
with different clustering modules and multiple existing clustering frameworks, and the experimental
results demonstrate that our adversarial method can improve their robustness effectively. Particularly,
the proposed defense algorithm can further boost the overall performance of deep clustering networks
in most cases.
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Broader Impact

As an important tool for unsupervised learning, deep clustering can be applied to big data analytics
and statistics. However, the robustness and stability of a certain clustering network are prone to
being attenuated since the labels are absent. The adversarial learning perspective, which can precisely
attack network weaknesses, has played a significant role in malware detection and computer security.
The proposed method in this work adopts adversarial learning to detect unstable samples and improve
the robustness of deep clustering networks. The method can further improve the effectiveness of
clustering algorithms in practical applications and reduce the dependence of deep learning on massive
labeled data. Moreover, deep clustering networks are more sensitive to perturbations. The attack
and defense strategies for clustering networks can improve network security and prevent malicious
distorted information. However, uncontrolled applications in big data analytics and statistics may
cause problems concerning users’ information security and personal privacy.
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