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Abstract 

Increasing attention has been paid to reinforcement learning algo­
rithms in recent years, partly due to successes in the theoretical 
analysis of their behavior in Markov environments. If the Markov 
assumption is removed, however, neither generally the algorithms 
nor the analyses continue to be usable. We propose and analyze 
a new learning algorithm to solve a certain class of non-Markov 
decision problems. Our algorithm applies to problems in which 
the environment is Markov, but the learner has restricted access 
to state information. The algorithm involves a Monte-Carlo pol­
icy evaluation combined with a policy improvement method that is 
similar to that of Markov decision problems and is guaranteed to 
converge to a local maximum. The algorithm operates in the space 
of stochastic policies, a space which can yield a policy that per­
forms considerably better than any deterministic policy. Although 
the space of stochastic policies is continuous-even for a discrete 
action space-our algorithm is computationally tractable. 
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1 INTRODUCTION 

Reinforcement learning provides a sound framework for credit assignment in un­
known stochastic dynamic environments. For Markov environments a variety of 
different reinforcement learning algorithms have been devised to predict and control 
the environment (e.g., the TD(A) algorithm of Sutton, 1988, and the Q-Iearning 
algorithm of Watkins, 1989). Ties to the theory of dynamic programming (DP) and 
the theory of stochastic approximation have been exploited, providing tools that 
have allowed these algorithms to be analyzed theoretically (Dayan, 1992; Tsitsiklis, 
1994; Jaakkola, Jordan, & Singh, 1994; Watkins & Dayan, 1992). 

Although current reinforcement learning algorithms are based on the assumption 
that the learning problem can be cast as Markov decision problem (MDP), many 
practical problems resist being treated as an MDP. Unfortunately, if the Markov 
assumption is removed examples can be found where current algorithms cease to 
perform well (Singh, Jaakkola, & Jordan, 1994). Moreover, the theoretical analyses 
rely heavily on the Markov assumption. 

The non-Markov nature of the environment can arise in many ways. The most direct 
extension of MDP's is to deprive the learner of perfect information about the state 
of the environment. Much as in the case of Hidden Markov Models (HMM's), the 
underlying environment is assumed to be Markov, but the data do not appear to be 
Markovian to the learner. This extension not only allows for a tractable theoretical 
analysis, but is also appealing for practical purposes. The decision problems we 
consider here are of this type. 

The analog of the HMM for control problems is the partially observable Markov 
decision process (POMDP; see e.g., Monahan, 1982). Unlike HMM's, however, 
there is no known computationally tractable procedure for POMDP's. The problem 
is that once the state estimates have been obtained, DP must be performed in 
the continuous space of probabilities of state occupancies, and this DP process is 
computationally infeasible except for small state spaces. In this paper we describe 
an alternative approach for POMDP's that avoids the state estimation problem and 
works directly in the space of (stochastic) control policies. (See Singh, et al., 1994, 
for additional material on stochastic policies.) 

2 PARTIAL OBSERVABILITY 

A Markov decision problem can be generalized to a POMDP by restricting the state 
information available to the learner. Accordingly, we define the learning problem as 
follows. There is an underlying MDP with states S = {SI, S2, ... , SN} and transition 
probability pO " the probability of jumping from state S to state s' when action a is 

II! 

taken in state s. For every state and every action a (random) reward is provided to 
the learner. In the POMDP setting, the learner is not allowed to observe the state 
directly but only via messages containing information about the state. At each time 
step t an observable message mt is drawn from a finite set of messages according to 
an unknown probability distribution P(mlst) 1. We assume that the learner does 

1 For simplicity we assume that this distribution depends only on the current state. The 
analyses go through also with distributions dependent on the past states and actions 
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not possess any prior information about the underlying MDP beyond the number 
of messages and actions. The goal for the learner is to come up with a policy-a 
mapping from messages to actions-that gives the highest expected reward. 

As discussed in Singh et al. (1994), stochastic policies can yield considerably higher 
expected rewards than deterministic policies in the case of POMDP's. To make this 
statement precise requires an appropriate technical definition of "expected reward," 
because in general it is impossible to find a policy, stochastic or not, that maximizes 
the expected reward for each observable message separately. We take the time­
average reward as a measure of performance, that is, the total accrued reward per 
number of steps taken (Bertsekas, 1987; Schwartz, 1993). This approach requires the 
assumption that every state of the underlying controllable Markov chain is reachable. 

In this paper we focus on a direct approach to solving the learning problem. Direct 
approaches are to be compared to indirect approaches, in which the learner first 
identifies the parameters of the underlying MDP, and then utilizes DP to obtain the 
policy. As we noted earlier, indirect approaches lead to computationally intractable 
algorithms. Our approach can be viewed as providing a generalization of the direct 
approach to MDP's to the case of POMDP's. 

3 A MONTE-CARLO POLICY EVALUATION 

Advantages of Monte-Carlo methods for policy evaluation in MDP's have been re­
viewed recently (Barto and Duff, 1994). Here we present a method for calculating 
the value of a stochastic policy that has the flavor of a Monte-Carlo algorithm. To 
motivate such an approach let us first consider a simple case where the average re­
ward is known and generalize the well-defined MDP value function to the POMDP 
setting. In the Markov case the value function can be written as (cf. Bertsekas, 
1987): 

N 

V(s) = lim ~ E{R(st, Ut) - Risl = s} 
N-oo~ 

t=l 

(1) 

where St and at refer to the state and the action taken at the tth step respectively. 
This form generalizes easily to the level of messages by taking an additional expec­
tation: 

V(m) = E {V(s)ls -+ m} (2) 

where s -+ m refers to all the instances where m is observed in sand E{·ls -+ m} 
is a Monte-Carlo expectation. This generalization yields a POMDP value function 
given by 

V(m) = I: P(slm)V(s) (3) 
,Em 

in which P(slm) define the limit occupancy probabilities over the underlying states 
for each message m. As is seen in the next section value functions of this type can be 
used to refine the currently followed control policy to yield a higher average reward. 

Let us now consider how the generalized value functions can be computed based 
on the observations. We propose a recursive Monte-Carlo algorithm to effectively 
compute the averages involved in the definition of the value function. In the simple 
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case when the average payoff is known this algorithm is given by 

Xt(m) Xt(m) 
f3t(m) (1 - Kt(m) htf3t-l(m) + Kt(m) (4) 

Xt(m) 
lIt(m) (1- Kt(m))lIt-l(m) + f3t(m)[R(st, at) - R] (5) 

where Xt(m) is the indicator function for message m, Kt(m) is the number of times 
m has occurred, and 'Yt is a discount factor converging to one in the limit. This 
algorithm can be viewed as recursive averaging of (discounted) sample sequences of 
different lengths each of which has been started at a different occurrence of message 
m . This can be seen by unfolding the recursion, yielding an explicit expression for 
lit (m). To this end, let tk denote the time step corresponding to the ph occurrence 
of message m and for clarity let Rt = R(st, Ut) - R for every t. Using these the 
recursion yields: 

1 
lIt(m) = Kt(m) [ Rtl + rl,l R t1 +1 + ... + r1,t-tl Rt 

(6) 

where we have for simplicity used rk ,T to indicate the discounting at the Tth step 
in the kth sequence. Comparing the above expression to equation 1 indicates that 
the discount factor has to converge to one in the limit since the averages in V(s) or 
V(m) involve no discounting. 

To address the question of convergence of this algorithm let us first assume a constant 
discounting (that is, 'Yt = 'Y < 1). In this case, the algorithm produces at best an 
approximation to the value function. For large K(m) the convergence rate by which 
this approximate solution is found can be characterized in terms of the bias and 
variance. This gives Bias{V(m)} Q( (1 - r)-l / K(m) and Var{V(m)} Q( (1 -
r)-2 / K(m) where r = Ehtk-tk-l} is the expected effective discounting between 
observations. Now, in order to find the correct value function we need an appropriate 
way of letting 'Yt - 1 in the limit. However, not all such schedules lead to convergent 
algorithms; setting 'Yt = 1 for all t , for example, would not. By making use of the 
above bounds a feasible schedule guaranteeing a vanishing bias and variance can be 
found . For instance, since 'Y > 7 we can choose 'Yk(m) = 1 - K(m)I/4. Much faster 
schedules are possible to obtain by estimating r. 

Let us now revise the algorithm to take into account the fact that the learner in fact 
has no prior knowledge of the average reward. In this case the true average reward 
appearing in the above algorithm needs to be replaced with an incrementally updated 
estimate Rt- l . To improve the effect this changing estimate has on the values we 
transform the value function whenever the estimate is updated. This transformation 
is given by 

Xt(m) 
(1 - Kt(m) )Ct-1(m) + f3t(m) 

- lIt(m) - Ct(m)(Rt - Rt-l) 

(7) 

(8) 

and, as a result, the new values are as if they had been computed using the current 
estimate of the average reward. 
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To carry these results to the control setting and assign a figure of merit to stochastic 
policies we need a quantity related to the actions for each observed message. As 
in the case of MDP's, this is readily achieved by replacing m in the algorithm 
just described by (m, a). In terms of equation 6, for example, this means that the 
sequences started from m are classified according to the actions taken when m is 
observed. The above analysis goes through when m is replaced by (m, a), yielding 
"Q-values" on the level of messages: 

(9) 

In the next section we show how these values can be used to search efficiently for a 
better policy. 

4 POLICY IMPROVEMENT THEOREM 

Here we present a policy improvement theorem that enables the learner to search 
efficiently for a better policy in the continuous policy space using the "Q-values" 
Q(m, a) described in the previous section. The theorem allows the policy refinement 
to be done in a way that is similar to policy improvement in a MDP setting. 

Theorem 1 Let the current stochastic policy 1I"(alm) lead to Q-values Q1r(m, a) on 
the level of messages. For any policy 11"1 (aim) define 

J1r 1 (m) = L: 11"1 (alm)[Q1r(m, a) - V 1r (m)] 
a 

The change in the average reward resulting from changing the current policy accord­
ing to 1I"(alm) -+ (1- {)1I"(alm) + {1I"1(alm) is given by 

~R1r = {L: p1r(m)J1r1 (m) + O({2) 
m 

where p1r (m) are the occupancy probabilities for messages associated with the current 
policy. 

The proof is given in Appendix. In terms of policy improvement the theorem can 
be interpreted as follows . Choose the policy 1I"1(alm) such that 

1 
J1r (m) = max[Q1r(m, a) - V 1r (m)] (10) 

a 

If now J1r 1 (m) > 0 for some m then we can change the current policy towards 
11"1 and expect an increase in the average reward as shown by the theorem. The 
{ factor suggests local changes in the policy space and the policy can be refined 
until m~l J1r\ m) = 0 for all m which constitutes a local maximum for this policy 
improvement method. Note that the new direction 1I"1(alm) in the policy space can 
be chosen separately for each m. 

5 THE ALGORITHM 

Based on the theoretical analysis presented above we can construct an algorithm that 
performs well in a POMDP setting. The algorithm is composed of two parts: First, 
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Q(m, a) values-analogous to the Q-values in MDP-are calculated via a Monte­
Carlo approach. This is followed by a policy improvement step which is achieved by 
increasing the probability of taking the best action as defined by Q(m,a). The new 
policy is guaranteed to yield a higher average reward (see Theorem 1) as long as for 
somem 

max[Q(m, a) - V(m)] > 0 
a 

(11) 

This condition being false constitutes a local maximum for the algorithm. Examples 
illustrating that this indeed is a local maximum can be found fairly easily. 

In practice, it is not feasible to wait for the Monte-Carlo policy evaluation to converge 
but to try to improve the policy before the convergence. The policy can be refined 
concurrently with the Monte-Carlo method according to 

1I"(almn) -+ 1I"(almn) + €[Qn(mn, a) - Vn(mn)] (12) 
with normalization. Other asynchronous or synchronous on-online updating schemes 
can also be used. Note that if Qn(m, a) = Q(m, a) then this change would be 
statistically equivalent to that of the batch version with the concomitant guarantees 
of giving a higher average reward. 

6 CONCLUSIONS 

In this paper we have proposed and theoretically analyzed an algorithm that solves 
a reinforcement learning problem in a POMDP setting, where the learner has re­
stricted access to the state of the environment. As the underlying MDP is not 
known the problem appears to the learner to have a non-Markov nature. The aver­
age reward was chosen as the figure of merit for the learning problem and stochastic 
policies were used to provide higher average rewards than can be achieved with de­
terministic policies. This extension from MDP's to POMDP's greatly increases the 
domain of potential applications of reinforcement learning methods. 

The simplicity of the algorithm stems partly from a Monte-Carlo approach to obtain­
ing action-dependent values for each message. These new "Q-values" were shown to 
give rise to a simple policy improvement result that enables the learner to gradually 
improve the policy in the continuous space of probabilistic policies. 

The batch version of the algorithm was shown to converge to a local maximum. We 
also proposed an on-line version of the algorithm in which the policy is changed 
concurrently with the calculation of the "Q-values." The policy improvement of the 
on-line version resembles that of learning automata. 

APPENDIX 

Let us denote the policy after the change by 11"!. Assume first that we have access 
to Q1I"(s, a), the Q-values for the underlying MDP, and to p1l"< (slm), the occupancy 
probabilities after the policy refinement. Define 

J(m, 11"!, 11"!, 11") = L 1I"!(alm) L p1l"< (slm)[Q1I"(s, a) - V1I"(s)] (13) 

where we have used the notation that the policies on the left hand side correspond 
to the policies on the right respectively. To show how the average reward depends 
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on this quantity we need to make use of the following facts. The Q-values for the 
underlying MDP satisfy (Bellman's equation) 

Q1r(s, a) = R(s, a) - R1r + L:P~3' V1r (s') (14) 

" In addition, 2:0 7r(alm)Q1r(s, a) = V1r (s), implying that J(m, 7r!, 7r!, 7r f ) = 0 (see eq. 
13). These facts allow us to write 

J(m, 7r f , 7r f , 7r) - J(m, 7r f , 7r f , 7r f ) 

L: 7r f (alm) L: p 1r«slm)[Q1r(s, a) - V1r (s) - Q1r< (s, a) + V1r< (s)] 

(15) 
3 

By weighting this result for each class by p 1r< (m) and summing over the messages 
the probability weightings for the last two terms become equal and the terms cancel. 
This procedure gives us 

R1r< - R1r = L:P1r«m)J(m, 7r f ,7r f , 7r) (16) 
m 

This result does not allow the learner to assess the effect of the policy refinement 
on the average reward since the JO term contains information not available to the 
learner. However, making use of the fact that the policy has been changed only 
slightly this problem can be avoided. 

As 7r! is a policy satisfying maxmo l7r f (alm) -7r(alm)1 ::; (, it can then be shown that 
there exists a constant C such that the maximum change in P(slm), pes), P(m) is 
bounded by Cf. Using these bounds and indicating the difference between 7r! and 
7r dependent quantities by ~ we get 

L:[7r(alm) + ~7r(alm)] L)P1r(slm) + ~p1r(slm)][Q1r(s, a) - V1r (s)] 
o 

o 3 

o 3 

where the second equality follows from 2:0 7r(alm)[Q1r(s, a) - V1r(s)] = 0 and the 
third from the bounds stated earlier. 

The equation characterizing the change in the average reward due to the policy 
change (eq. 16) can be now rewritten as follows: 

R1r< - R1r = L: p 1r< (m)J(m, 7r f , 7r, 7r) + 0«(2) 
m 
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m a 

where the bounds (see above) have been used for Vir' (m) - p1r(m). This completes 
the proof. 0 
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