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Abstract 

Matching feature point sets lies at the core of many approaches to 
object recognition. We present a framework for non-rigid match­
ing that begins with a skeleton module, affine point matching, 
and then integrates multiple features to improve correspondence 
and develops an object representation based on spatial regions to 
model local transformations. The algorithm for feature matching 
iteratively updates the transformation parameters and the corre­
spondence solution, each in turn. The affine mapping is solved in 
closed form, which permits its use for data of any dimension. The 
correspondence is set via a method for two-way constraint satisfac­
tion, called softassign, which has recently emerged from the neural 
network/statistical physics realm. The complexity of the non-rigid 
matching algorithm with multiple features is the same as that of 
the affine point matching algorithm. Results for synthetic and real 
world data are provided for point sets in 2D and 3D, and for 2D 
data with multiple types of features and parts. 

1 Introduction 

A basic problem of object recognition is that of matching- how to associate sensory 
data with the representation of a known object. This entails finding a transforma­
tion that maps the features of the object model onto the image, while establishing a 
correspondence between the spatial features. However, a tractable class of transfor­
mation, e.g., affine, may not be sufficient if the object is non-rigid or has relatively 
independent parts. If there is noise or occlusion, spatial information alone may 
not be adequate to determine the correct correspondence. In our previous work in 
spatial point matching [1], the 2D affine transformation was decomposed into its 
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physical component elements, which does not generalize easily to 3D, and so, only 
a rigid 3D transformation was considered. 

We present a framework for non-rigid matching that begins with solving the basic 
affine point matching problem. The algorithm iteratively updates the affine pa­
rameters and correspondence in turn, each as a function of the other. The affine 
transformation is solved in closed form, which lends tremendous flexibility- the 
formulation can be used in 2D or 3D. The correspondence is solved by using a 
softassign [1] procedure, in which the two-way assignment constraints are solved 
without penalty functions. The accuracy of the correspondence is improved by the 
integration of multiple features. A method for non-rigid parameter estimation is 
developed, based on the assumption of a well-articulated model with distinct re­
gions, each of which may move in an affine fashion, or can be approximated as 
such. Umeyama [3] has done work on parameterized parts using an exponential 
time tree search technique, and Wakahara [4] on local affine transforms, but neither 
integrates multiple features nor explicitly considers the non-rigid matching case, 
while expressing a one-to-one correspondence between points. 

2 Affine Point Matching 

The affine point matching problem is formulated as an optimization problem for 
determining the correspondence and affine transformation between feature points. 
Given two sets of data points Xj E Rn-l, n = 3,4 .. . , i = 1, ... , J, the image, 
and Yk E Rn-l, n = 3,4, ... , k = 1, ... , K, the model, find the correspondence and 
associated affine transformation that best maps a subset of the image points onto a 
subset of the model point set. These point sets are expressed in homogeneous coor-
dinates, Xj = (l,Xj), Yk = (1, Yk). {aij} = A E Rnxn is the affine transformation 
matrix. Note that{alj = 0 Vi} because of the homogeneous coordinates. Define the 
match variable Mjk where Mjk E [0,1]. For a given match matrix {Mjd, transfor­
mation A and I, an identity matrix of dimension n, Lj,k MjkllXj - (A + I)Yk112 
expresses the similarity between the point sets. The term -a Lj,k Mjk, with pa­
rameter a > 0 is appended to this to encourage matches (else Mjk = 0 V i, k 
minimizes the function). To limit the range of transformations, the terms of the 
affine matrix are regularized via a term Atr(AT A) in the objective function, with 
parameter A, where tr(.) denotes the trace of the matrix. Physically, Xj may fully 
match to one Yk, partially match to several, or may not match to any point. A sim­
ilar constraint holds for Yk. These are expressed as the constraints in the following 
optimization problem: 

(1) 

s.t. LMjk::S 1, Vk, LMjk::S 1, Vi and Mjk ~ 0 
j k 

To begin, slack variables Mj,K+l and MJ+l,k are introduced so that the in­
equality constraints can be transformed into equality constraints: Lf~t Mjk = 
1, Vk and Lf:/ Mjk = 1, Vi. Mj,K+l = 1 indicates that Xj does not match to 
any point in Yk. An equivalent unconstrained optimization problem to (2) is de­
rived by relaxing the constraints via Lagrange parameters Ilj, l/k, and introducing 
an x log x barrier function, indexed by a parameter {3. A similar technique was used 
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[2] to solve the assignment problem. The energy function used is: 

J K+1 

min max LMjkllXj - (A+ J)Yk112 + Atr(AT A) - a LMjk + LJLj(L Mjk -1) 
A,M ~,v . . . 

),k ),k ) k=l 

K J+1 1 J+1 K+1 

+ LlIk(LMjk -1) + (j L L Mjk(1ogMjk -1) 
k j=l j=l k=l 

This is to be minimized with respect to the match variables and affine parameters 
while satisfying the constraints via Lagrange parameters. Using the recently devel­
oped soft assign technique, we satisfy the constraints explicitly. When A is fixed, 
we have an assignment problem. Following the development in [1], the assignment 
constraints are satisfied using soft assign , a technique for satisfying two-way (as­
signment) constraints without a penalty term that is analogous to softmax which 
enforces a one-way constraint. First, the match variables are initialized: 

(2) 

This is followed by repeated row-column normalization of the match variables until 
a stopping criterion is reached: 

M)"k = Mjk Mjk 
'""' then M j k = '""' M L--j' Mj'k L--k' jk' 

(3) 

When the correspondence between the two point sets is fixed, A can be solved in 
closed form, by holding M fixed in the objective function, and differentiating and 
solving for A: 

A = A*(M) = (L Mjk(Xj Y[ - YkY{»(L MjkYkY[ + AI)-l (4) 
j,k j,k 

The algorithm is summarized as: 

1. INITIALIZE: Variables: A = 0, M = 0 
Parameters: .Binitial, .Bupdate, .Bfinal T = Inner loop iterations, A 

2. ITERATE: Do T times for a fixed value of .B 
Softassign: Re-initialize M*(A) and then (Eq. 2) until ilM small 
A*(M) updated (Eq. 4) 

3. UPDATE: While.B < .Bfinal, .B ~.B * .Bupdate, Return to 2. 

The complexity of the algorithm is O(J K). Starting with small .Binitial permits 
many partial correspondences in the initial solution for M. As.B increases the 
correspondence becomes more refined. For large .Bfinal, M approaches a permutation 
matrix (adjusting appropriately for the slack variables). 

3 Nonrigid Feature Matching: Affine Quilts 

Recognition of an object requires many different types of information working in 
concert. Spatial information alone may not be sufficient for representation, espe­
cially in the presence of noise. Additionally the affine transformation is limited in 
its inability to handle local variation in an object, due to the object's non-rigidity 
or to the relatively independent movement of its parts, e.g., in human movement. 

The optimization problem (2) easily generalizes to integrate multiple invariant fea­
tures. A representation with multiple features has a spatial component indicating 
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the location of a feature element. At that location, there may be invariant geomet­
ric characteristics, e.g., this point belongs on a curve, or non-geometric invariant 
features such as color, and texture. Let Xjr be the value of feature r associated 
with point Xj. The location of point Xj is the null feature. There are R features 
associated with each point Xj and Yk. Note that the match variable remains the 
same. The new objective function is identical to the original objective function, 
(2), appended by the term "£j,k ,r MjkWr(Xjr - Ykr)2. The (Xjr - Ykr)2 quan­
tity captures the similarity between invariant types of features, with Wr a weight­
ing factor for feature r. Non-invariant features are not considered. In this way, 
the point matching algorithm is modified only in the re-initialization of M(A): 
Mjk = exp(-,8(IIXj - (I + A)Yk112 + "£rWr(Xjr - y kr )2 - a)) The rest of the 
algorithm remains unchanged. 

Decomposition of spatial transformations motivates classification of the B individual 
regions of an object and use of a "quilt" of local affine transformations. In the 
multiple affine scenario, membership to a region is known on the well-articulated 
model, but not on the image set . It is assumed that all points that are members 
of one region undergo the same affine transformation. The model changes by the 
addition of one subscript to the affine matrix, Ab(k) where b(k) is an operator that 
indicates which transformation operates on point k. In the algorithm, during the 
A(M) update, instead of a single update, B updates are done. Denote K(b) = 
{klb(k) = b}, i.e., all the points that are within region b. Then in the affine update, 
Ab = Ab(M) = (L: j, kEK(b) Mjk(Xj Y{ - YkY{))("£j, kEK(b) MjkYkY{ + AbI)-l 
However, the theoretical complexity does not change, since the B updates still only 
require summing over the points. 

4 Experimental Results: Hand Drawn and Synthetic 

The speed for matching point sets of 50 points each is around 20 seconds on an SGI 
workstation with a R4400 processor. This is true for points in 2D, 3D and with 
extra features . This can be improved with a tradeoff in accuracy by adopting a 
looser schedule for the parameter ,8 or by changing the stopping criterion. 

In the hand drawn examples, the contours of the images are drawn, discretized and 
then expressed as a set of points in the plane. In Figure (1), the contours of the 
boy's face were drawn in two different positions, and a subset of the points were 
extracted to make up the point sets. In each set this was approximately 250 points. 
Note that even with the change in mood in the two pictures, the corresponding 
parts of the face are found. However, in Figure (2) spatial information alone is 

Figure 1: Correspondence with simple point features 

insufficient. Although the rotation ofthe head is not a true affine transformation, it 
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is a weak perspective projection for which the approximation is valid. Each photo 
is outlined, generating approximately 225 points in each face. A point on a contour 

Figure 2: Correspondence with multiple features 

has associated with it a feature marker indicating the incident textures. For a 
human face, we use a binary 4-vector, with a 1 in position r if feature r is present. 
Specifically, we have used a vector with elements [skin, hair, lip, eye]. For example, 
a point on the line marking the mouth segment the lip from the skin has a feature 
vector [1,0,1,0]. Perceptual organization of the face motivates this type of feature 
marking scheme. The correspondence is depicted in Figure (2) for a small subset of 
matches. 

Next, we demonstrate how the multiple affine works in recovering the correct corre­
spondence and transformation. The points associated with the standing figure have 
a marker indicating its part membership. There are six parts in this figure: head, 
torso, each arm and each leg. The correspondence is shown in Figure (3). 

For synthetic data, all 2D and 3D single part experiments used this protocol: The 
model set was generated uniformly on a unit square. A random affine matrix 
is generated, whose parameters, aij are chosen uniformly on a certain interval, 
which is used to generate the image set. Then, Pd image points are deleted, and 
Gaussian noise, N(O, u) is added. Finally, spurious points, Ps are added. For 
the multiple feature scenario, the elements of the feature vector are randomly 
mislabelled with probability, Pr , to represent distortion. For these experiments, 
50 model points were generated, and aij are uniform on an interval of length 
1.5. u E {0.01, 0.02, ... , 0.08}. Point deletions and spurious additions range from 
0% to 50% of the image points. The random feature noise associated with non­
spatial features has a probability of Pr = 0.05. The error measure we use is 
ea = C Li,j laij -a.ij I where c = # par:meters interva~ length· aij and a.ij are the correct 
parameter and the computed value, respectively. The constant term c normalizes 
the measure so that the error equals 1 in the case that the aij and aij are chosen at 
random on this interval. The factor 3 in the numerator of this formula follows since 
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Figure 3: Articulated Matching: Figure with six parts 

Elx - yl = ~, when x and yare chosen randomly on the unit interval, and we want 
to normalize the error. The parameters used in all experiments were: ,Binitial = .091, 
,Bfmal = 100, ,Bupdate = 1.075, and T = 4. 

The model has four regions, 24 parameters. Points corresponding to part 1 were 
centered at (.5, .5), and generated randomly with a diameter of 1.0. For the image 
set, an affine transformation was applied with a translation diameter of .5, i.e., for 
a21, an, and the remaining four parameters have a diameter of 1. Points corre­
sponding to regions 2, 3, and 4 were centered at (-.5, .5), (-.5, -.5), (.5, -.5) with 
model points and transformations generated in a similar fashion. 120 points were 
generated for the model point set, divided equally among the four parts. Image 
points were deleted with equal probability from each region. Spurious point were 
not explicitly added, since the overlapping of parts provides implicit spurious points. 

Results for the 2D and 3D (simple point) experiments are in Figure (4). Each data 
point represents 500 runs for a different randomly generated affine transformation. 
In all experiments, note that the error for small amounts of noise is approximately 
equal to that when there is no noise. We performed similar experiments for point 
sets that are 3-dimensional (12 parameters), but without any feature information. 
For the experiments with features, shown in Figure (5) we used R = 4 features, and 
Wr = 0.2, Vr. Each data point represents 500 runs.As expected, the inclusion of 
feature information reduces the error, especially for large u. Additionally, Figure 
(5) details synthetic results for experiments with multiple affines (2D). Each data 
point represents 70 runs. 

5 Conclusion 

We have developed an affine point matching module, robust in the presence of noise 
and able to accommodate data of any dimension. The module forms the basis for 
a non-rigid feature matching scheme in which multiple types of features interact to 
establish correspondence. Modeling an object in terms of its spatial regions and 
then using multiple affines to capture local transformations results in a tractable 
method for non-rigid matching. This non-rigid matching framework arising out of 
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Figure 4: Synthetic Experiments: 2D and 3D 
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neural computation is widely applicable in object recognition. 
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