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Abstract 

It is shown that conventional computers can be exponentiallx faster 
than planar Hopfield networks: although there are planar Hopfield 
networks that take exponential time to converge, a stable state of an 
arbitrary planar Hopfield network can be found by a conventional 
computer in polynomial time. The theory of 'P.cS-completeness 
gives strong evidence that such a separation is unlikely for nonpla­
nar Hopfield networks, and it is demonstrated that this is also the 
case for several restricted classes of nonplanar Hopfield networks, 
including those who interconnection graphs are the class of bipar­
tite graphs, graphs of degree 3, the dual of the knight's graph, the 
8-neighbor mesh, the hypercube , the butterfly, the cube-connected 
cycles, and the shuffle-exchange graph. 

1 Introduction 

Are Hopfield networks faster than conventional computers? This apparently 
straightforward question is complicated by the fact that conventional computers 
are universal computational devices, that is, they are capable of simulating any 
discrete computational device including Hopfield networks. Thus , a conventional 
computer could in a sense cheat by imitating the fastest Hopfield network possible. 
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But the question remains, is it faster for a computer to imitate a Hopfield network , 
or to use other computational methods? Although the answer is likely to be differ­
ent for different benchmark problems, and even for different computer architectures , 
we can make our results meaningful in the long term by measuring scalability, that 
is, how the running time of Hopfield networks and conventional computers increases 
with the size of any benchmark problem to be solved. 

Stated more technically, we are interested in the computational complexity of the 
stable state problem for Hopfield networks , which is defined succinctly as follows : 
given a Hopfield network, determine a stable configuration. As previously stated, 
this stable configuration can be determined by imitation, or by other means. The 
following results are known about the scalability of Hopfield network imitation. Any 
imitative algorithm for the stable state problem must take exponential time on some 
Hopfield networks, since there exist Hopfield networks that require exponential time 
to converge (Haken and Luby [4] , Goles and Martinez [2]) . It is unlikely that even 
non-imitative algorithms can solve the stable state problem in polynomial time , 
since the latter is PeS-complete (Papadimitriou , Schaffer, and Yannakakis [9]). 
However , the stable state problem is more difficult for some classes of Hopfield 
networks than others. Hopfield networks will converge in polynomial time if their 
weights are bounded in magnitude by a polynomial of the number of nodes (for 
an expository proof see Parberry [11 , Corollary 8.3.4]) . In contrast , the stable 
state problem for Hopfield networks whose interconnection graph is bipartite is 
peS-complete (this can be proved easily by adapting techniques from Bruck and 
Goodman [1]) which is strong evidence that it too requires superpolynomial time 
to solve even with a nonimitative algorithm. 

We show in this paper that although there exist planar Hopfield networks that t ake 
exponential time to converge in the worst case , the stable state problem for planar 
Hopfield networks can be solved in polynomial time by a non-imitative algorithm. 
This demonstrates that imitating planar Hopfield networks is exponentially slower 
than using non-imitative algorithmic techniques. In contrast , we discover that the 
stable state problem remains peS-complete for many simple classes of nonplanar 
Hopfield network , including bipartite networks , networks of degree 3, and some 
networks that are popular in neurocomputing and parallel computing. 

The main part of this manuscript is divided into four sections. Section 2 contains 
some background definitions and references. Section 3 contains our results about 
planar Hopfield networks. Section 4 describes our peS-completeness results , based 
on a pivotal lemma about a nonstandard type of graph embedding. 

2 Background 

This section contains some background which are included for completeness but 
may be skipped on a first reading. It is divided into two subsections , the first on 
Hopfield networks, and the second on PeS-completeness. 

2.1 Hopfield Networks 

4- Hopfield network [6] is a discrete neural network model with symmetric connec­
tions . Each processor in the network computes a hard binary weighted threshold 
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function. Only one processor is permitted to change state at any given time. That 
processor becomes active if its excitation level exceeds its threshold, and inactive 
otherwise. A Hopfield network is said to be in a stable state if the states of all of 
its processors are consistent with their respective excitation levels. It is well-known 
that all Hopfield networks converge to a stable state. The proof defines a measure 
called energy, and demonstrates that energy is positive but decreases with every 
computation step. Essentially then, a Hopfield network finds a local minimum in 
some energy landscape. 

2.2 P .cS-completeness 

While the theory of NP-completeness measures the complexity of global optimiza­
tion, the theory of p.cS-completeness developed by Johnson, Papadimitriou, and 
Yannakakis [7] measures the complexity of local optimization. It is similar to the 
theory of NP-completeness in that it identifies a set of difficult problems known 
collectively as p.cS-complete problems. These are difficult in the sense that if a 
fast algorithm can be developed for any P .cS-complete problem, then it can be 
used to give fast algorithms for a substantial number of other local optimization 
problems including many important problems for which no fast algorithms are cur­
rently known. Recently, Papadimitriou, Schaffer, and Yannakakis [9] proved that 
the problem of finding stable states in Hopfield networks is P .cS-complete. 

3 Planar Hopfield Networks 

A planar Hopfield network is one whose interconnection graph is planar, that is, can 
be drawn on the Euclidean plane without crossing edges. Haken and Luby [4] de­
scribe a planar Hopfield network that provably takes exponential time to converge, 
and hence any imitative algorithm for the stable state problem must take exponen­
tial time on some Hopfield network. Yet there exists a nonimitative algorithm for 
the stable state problem that runs in polynomial time on all Hopfield networks: 

Theorem 3.1 The stable state problem for Hopfield networks with planar intercon­
nection pattern can be solved in polynomial time. 

PROOF: (Sketch.) The prooffollows from the fact that the maximal cut in a planar 
graph can be found in polynomial time (see , for example, Hadlock [3]), combined 
with results of Papadimitriou, Schaffer, and Yannakakis [9]. 0 

4 P .cS-completeness Results 

Our P .cS-completeness results are a straightforward consequence of a new result 
that characterizes the difficulty of the stable state problem of an arbitrary class 
of Hopfield networks based on a graph-theoretic property of their interconnection 
patterns. Let G = (V, E) and H = (V', E') be graphs. An embedding of G into H 

is a function f: V -+ 2 Vi such that the following properties hold. (1) For all v E V, 
the subgraph of H induced by f(v) is connected. (2) For all (u, v) E E, there exists 
a path (which we will denote f(u , v)) in H from a member of f(u) to a member 
of f(v). (3) Each vertex w E H is used at most once, either as a member of f(v) 
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for some v E V, or as an internal vertex in a path feu, v) for some u, v E V. The 
graph G is called the guest graph, and H is called the host graph. Our definition 
of embedding is different from the standard notion of embedding (see, for example, 
Hong, Mehlhorn, and Rosenberg [5]) in that we allow the image of a single guest 
vertex to be a set of host vertices, and we insist in properties (2) and (3) that the 
images of guest edges be distinct paths. The latter property is crucial to our results, 
and forms the major difficulty in the proofs. 

Let 5, T be sets of graphs. 5 is said to be polynomial-time embeddable into T, 
written 5 ::;e T, if there exists polynomials Pl(n),P2(n) and a function f with the 
following properties: (1) f can be computed in time PI(n), and (2) for every G E 5 
with n vertices, there exists H E T with at most p2(n) vertices such that G can 
be embedded into H by f. A set 5 of graphs is said to be pliable if the set of all 
graphs is polynomial-time embeddable into 5. 

Lemma 4.1 If 5 is pliable, then the problem of finding a stable state in Hopfield 
networks with interconnection graphs in 5 is 'P £S-complete. 

PROOF: (Sketch.) Let 5 be a set of graphs with the property that the set of all 
graphs is polynomial-time embeddable into 5 . By the results of Papadimitriou, 
Schaffer, and Yannakakis [9], it is enough to show that the max-cut problem for 
graphs in 5 is 'P £S-complete. 

Let G be an arbitrary labeled graph. Suppose G is embedded into H E 5 under the 
polynomial-time embedding. For each edge e in G of cost c, select one edge from 
the path connecting the vertices in f( e) and assign it cost c. We call this special 
edge f' ( e ). Assign all other edges in the path cost -00. For all v E V, assign the 
edges linking the vertices in f(v) a cost of -00. Assign all other edges of H a cost 
of zero. 

It can be shown that every cut in G induces a cut of the same cost in H, as follows. 
Suppose G ~ E is a cut in G, that is, a set of edges that if removed from G, 
disconnects it into two components containing vertices VI and V2 respectively. Then, 
removing vertices f'(G) and all zero-cost edges from H will disconnect it into two 
components containing vertices f(VI ) and f(V2 ) respectively. Furthermore, each 
cut of positive cost in H induces a cut of the same cost in G, since a positive cost 
cut in H cannot contain any edges of cost -00, and hence must consist only of f'(e) 
for some edges e E E. Therefore, every max-cost cut in H induces in polynomial 
time a max-cost cut in G. 0 

We can now present our 'P £S-completeness results. A graph has degree 3 if all 
vertices are connected to at most 3 other vertices each. 

Theorem 4.2 The problem of finding stable states in Hopfield networks of degree 
3 is 'P £S-complete. 

PROOF: (Sketch.) By Lemma 4.1, it suffices to prove that the set of degree-3 
graphs is pliable. Suppose G = (V, E) is an arbitrary graph. Replace each degree-k 
vertex x E V by a path consisting of k vertices, and attach each edge incident with 
v by a new edge incident with one of the vertices in the path. Figure 1 shows an 
example of this embedding. 0 
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Figure 1: A guest graph of degree 5 (left), and the corresponding host of degree 3 
(right). Shading indicates the high-degree nodes that were embedded into paths. 
All other nodes were embedded into single nodes. 

Figure 2: An 8-neighbor mesh with 25 vertices (left), and the 8 X 8 knight's graph 
superimposed on an 8 x 8 board (right). 

The 8-neighbor mesh is the degree-8 graph G = (V, E) defined as follows: V = 
{1,2, ... ,m} x {1,2, ... ,n}, and vertex (u,v) is connected to vertices (u,v± 1), 
(u ± 1, v), (u ± 1, v ± 1). Figure 2 shows an 8-neighbor mesh with 25 vertices. 

Theorem 4.3 The problem of finding stable states in H opfield networks on the 
8-neighbor mesh is peS-complete. 

PROOF: (Sketch.) By Lemma 4.1, it suffices to prove that the 8-neighbor mesh is 
pliable. An arbitrary graph can be embedded on an 8-neighbor mesh by mapping 
each node to a set of consecutive nodes in the bottom row of the grid, and mapping 
edges to disjoint rectilinear paths which use the diagonal edges of the grid for 
crossovers. 0 

The knight's graph for an n X n chessboard is the graph G = (V, E) where V = 
{(i, j) 11 ~ i, j ~ n}, and E = {((i, j), (k, i» I {Ii - kl, Ij - il} = {I, 2}}. That is, 
there is a vertex for every square of the board and an edge between two vertices 
exactly when there is a knight's move from one to the other. For example, Figure 2 
shows the knight's graph for the 8 x 8 chessboard. Takefuji and Lee [15] (see also 
Parberry [12]) use the dual of the knight's graph for a Hopfield-style network to 
solve the knight's tour problem. That is, they have a vertex Ve for each edge e of 
the knight's graph, and an edge between two vertices Vd and Ve when d and e share 
a common vertex in the knight's graph. 
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Theorem 4.4 The problem of finding stable states in H opfield networks on the dual 
of the knight's graph is pes -complete. 

PROOF: (Sketch.) By Lemma4.1, it suffices to prove that the dual of the knight 's 
graph is pliable. It can be shown that the knight 's graph is pliable using the 
technique of Theorem 4.3. It can also he proved that if a set S of graphs is pliable , 
then the set consisting of the duals of graphs in S is also pliable. 0 

The hypercube is the graph with 2d nodes for some d, labelled with the binary 
representations of the d-bit natural numbers , in which two nodes are connected by 
an edge iff their labels differ in exactly one bit. The hypercube is an important 
graph for parallel computation (see , for example, Leighton [8], and Parberry [lOD . 

Theorem 4.5 The problem of finding stable states in Hopfield networks on the 
hypercube is peS-complete. 

PROOF : (Sketch.) By Lemma 4.1, it suffices to prove that the hypercube is pliable. 
Since the "~e" relation is transitive, it further suffices by Theorem 4.2 to show that 
the set of degree-3 graphs is polynomial-time embeddable into the hypercube. To 
embed a degree-3 graph G into the hypercube , first break it into a degree-1 graph 
G1 and a degree-2 graph G2 . Since G2 consists of cycles, paths, and disconnected 
vertices, it can easily be embedded into a hypercube (since a hypercube is rich 
in cycles). G1 can be viewed as a permutation of vertices in G and can hence be 
realized using a hypercube implementation of Waksman 's permutation network [16] . 
o 

We conclude by stating PeS-completeness results for three more graphs that are 
important in the parallel computing literature the butterfly (see, for example, 
Leighton [8]) , the cube-connected cycles (Preparata and Vuillemin [13D , and the 
shuffle-exchange (Stone [14]). The proofs use Lemma 4.1 and Theorem 4.5 , and are 
omitted for conciseness. 

Theorem 4.6 The problem of finding stable states in Hopfield networks on the 
butterfly, the cube-connected cycles, and the shuffle-exchange is peS-complete. 

Conclusion 

Are Hopfield networks faster than conventional computers? The answer seems to be 
that it depends on the interconnection graph of the Hopfield network. Conventional 
nonimitative algorithms can be exponentially faster than planar Hopfield networks. 
The theory of peS-completeness shows us that such an exponential separation 
result is unlikely not only for nonplanar graphs, but even for simple nonplanar 
graphs such as bipartite graphs , graphs of degree 3, the dual of the knight's graph, 
the 8-neighbor mesh , the hypercube , the butterfly, the cube-connected cycles, and 
the shuffle-exchange graph. 
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