
Are Hopfield Networks Faster Than
Conventional Computers?

Ian Parberry* and Hung-Li Tsengt
Department of Computer Sciences

University of North Texas
P.O. Box 13886

Denton, TX 76203-6886

Abstract

It is shown that conventional computers can be exponentiallx faster
than planar Hopfield networks: although there are planar Hopfield
networks that take exponential time to converge, a stable state of an
arbitrary planar Hopfield network can be found by a conventional
computer in polynomial time. The theory of 'P.cS-completeness
gives strong evidence that such a separation is unlikely for nonpla­
nar Hopfield networks, and it is demonstrated that this is also the
case for several restricted classes of nonplanar Hopfield networks,
including those who interconnection graphs are the class of bipar­
tite graphs, graphs of degree 3, the dual of the knight's graph, the
8-neighbor mesh, the hypercube , the butterfly, the cube-connected
cycles, and the shuffle-exchange graph.

1 Introduction

Are Hopfield networks faster than conventional computers? This apparently
straightforward question is complicated by the fact that conventional computers
are universal computational devices, that is, they are capable of simulating any
discrete computational device including Hopfield networks. Thus , a conventional
computer could in a sense cheat by imitating the fastest Hopfield network possible.

* Email: ianGcs. unt .edu. URL: http://hercule .csci. unt. edu/ian.
t Email: ht sengGponder. csci. unt . edu.

240 I. Parberry and H. Tseng

But the question remains, is it faster for a computer to imitate a Hopfield network ,
or to use other computational methods? Although the answer is likely to be differ­
ent for different benchmark problems, and even for different computer architectures ,
we can make our results meaningful in the long term by measuring scalability, that
is, how the running time of Hopfield networks and conventional computers increases
with the size of any benchmark problem to be solved.

Stated more technically, we are interested in the computational complexity of the
stable state problem for Hopfield networks , which is defined succinctly as follows :
given a Hopfield network, determine a stable configuration. As previously stated,
this stable configuration can be determined by imitation, or by other means. The
following results are known about the scalability of Hopfield network imitation. Any
imitative algorithm for the stable state problem must take exponential time on some
Hopfield networks, since there exist Hopfield networks that require exponential time
to converge (Haken and Luby [4] , Goles and Martinez [2]) . It is unlikely that even
non-imitative algorithms can solve the stable state problem in polynomial time ,
since the latter is PeS-complete (Papadimitriou , Schaffer, and Yannakakis [9]).
However , the stable state problem is more difficult for some classes of Hopfield
networks than others. Hopfield networks will converge in polynomial time if their
weights are bounded in magnitude by a polynomial of the number of nodes (for
an expository proof see Parberry [11 , Corollary 8.3.4]) . In contrast , the stable
state problem for Hopfield networks whose interconnection graph is bipartite is
peS-complete (this can be proved easily by adapting techniques from Bruck and
Goodman [1]) which is strong evidence that it too requires superpolynomial time
to solve even with a nonimitative algorithm.

We show in this paper that although there exist planar Hopfield networks that t ake
exponential time to converge in the worst case , the stable state problem for planar
Hopfield networks can be solved in polynomial time by a non-imitative algorithm.
This demonstrates that imitating planar Hopfield networks is exponentially slower
than using non-imitative algorithmic techniques. In contrast , we discover that the
stable state problem remains peS-complete for many simple classes of nonplanar
Hopfield network , including bipartite networks , networks of degree 3, and some
networks that are popular in neurocomputing and parallel computing.

The main part of this manuscript is divided into four sections. Section 2 contains
some background definitions and references. Section 3 contains our results about
planar Hopfield networks. Section 4 describes our peS-completeness results , based
on a pivotal lemma about a nonstandard type of graph embedding.

2 Background

This section contains some background which are included for completeness but
may be skipped on a first reading. It is divided into two subsections , the first on
Hopfield networks, and the second on PeS-completeness.

2.1 Hopfield Networks

4- Hopfield network [6] is a discrete neural network model with symmetric connec­
tions . Each processor in the network computes a hard binary weighted threshold

Are Hopfield Networks Faster than Conventional Computers? 241

function. Only one processor is permitted to change state at any given time. That
processor becomes active if its excitation level exceeds its threshold, and inactive
otherwise. A Hopfield network is said to be in a stable state if the states of all of
its processors are consistent with their respective excitation levels. It is well-known
that all Hopfield networks converge to a stable state. The proof defines a measure
called energy, and demonstrates that energy is positive but decreases with every
computation step. Essentially then, a Hopfield network finds a local minimum in
some energy landscape.

2.2 P .cS-completeness

While the theory of NP-completeness measures the complexity of global optimiza­
tion, the theory of p.cS-completeness developed by Johnson, Papadimitriou, and
Yannakakis [7] measures the complexity of local optimization. It is similar to the
theory of NP-completeness in that it identifies a set of difficult problems known
collectively as p.cS-complete problems. These are difficult in the sense that if a
fast algorithm can be developed for any P .cS-complete problem, then it can be
used to give fast algorithms for a substantial number of other local optimization
problems including many important problems for which no fast algorithms are cur­
rently known. Recently, Papadimitriou, Schaffer, and Yannakakis [9] proved that
the problem of finding stable states in Hopfield networks is P .cS-complete.

3 Planar Hopfield Networks

A planar Hopfield network is one whose interconnection graph is planar, that is, can
be drawn on the Euclidean plane without crossing edges. Haken and Luby [4] de­
scribe a planar Hopfield network that provably takes exponential time to converge,
and hence any imitative algorithm for the stable state problem must take exponen­
tial time on some Hopfield network. Yet there exists a nonimitative algorithm for
the stable state problem that runs in polynomial time on all Hopfield networks:

Theorem 3.1 The stable state problem for Hopfield networks with planar intercon­
nection pattern can be solved in polynomial time.

PROOF: (Sketch.) The prooffollows from the fact that the maximal cut in a planar
graph can be found in polynomial time (see , for example, Hadlock [3]), combined
with results of Papadimitriou, Schaffer, and Yannakakis [9]. 0

4 P .cS-completeness Results

Our P .cS-completeness results are a straightforward consequence of a new result
that characterizes the difficulty of the stable state problem of an arbitrary class
of Hopfield networks based on a graph-theoretic property of their interconnection
patterns. Let G = (V, E) and H = (V', E') be graphs. An embedding of G into H

is a function f: V -+ 2 Vi such that the following properties hold. (1) For all v E V,
the subgraph of H induced by f(v) is connected. (2) For all (u, v) E E, there exists
a path (which we will denote f(u , v)) in H from a member of f(u) to a member
of f(v). (3) Each vertex w E H is used at most once, either as a member of f(v)

242 I. Parberry and H. Tseng

for some v E V, or as an internal vertex in a path feu, v) for some u, v E V. The
graph G is called the guest graph, and H is called the host graph. Our definition
of embedding is different from the standard notion of embedding (see, for example,
Hong, Mehlhorn, and Rosenberg [5]) in that we allow the image of a single guest
vertex to be a set of host vertices, and we insist in properties (2) and (3) that the
images of guest edges be distinct paths. The latter property is crucial to our results,
and forms the major difficulty in the proofs.

Let 5, T be sets of graphs. 5 is said to be polynomial-time embeddable into T,
written 5 ::;e T, if there exists polynomials Pl(n),P2(n) and a function f with the
following properties: (1) f can be computed in time PI(n), and (2) for every G E 5
with n vertices, there exists H E T with at most p2(n) vertices such that G can
be embedded into H by f. A set 5 of graphs is said to be pliable if the set of all
graphs is polynomial-time embeddable into 5.

Lemma 4.1 If 5 is pliable, then the problem of finding a stable state in Hopfield
networks with interconnection graphs in 5 is 'P £S-complete.

PROOF: (Sketch.) Let 5 be a set of graphs with the property that the set of all
graphs is polynomial-time embeddable into 5 . By the results of Papadimitriou,
Schaffer, and Yannakakis [9], it is enough to show that the max-cut problem for
graphs in 5 is 'P £S-complete.

Let G be an arbitrary labeled graph. Suppose G is embedded into H E 5 under the
polynomial-time embedding. For each edge e in G of cost c, select one edge from
the path connecting the vertices in f(e) and assign it cost c. We call this special
edge f' (e). Assign all other edges in the path cost -00. For all v E V, assign the
edges linking the vertices in f(v) a cost of -00. Assign all other edges of H a cost
of zero.

It can be shown that every cut in G induces a cut of the same cost in H, as follows.
Suppose G ~ E is a cut in G, that is, a set of edges that if removed from G,
disconnects it into two components containing vertices VI and V2 respectively. Then,
removing vertices f'(G) and all zero-cost edges from H will disconnect it into two
components containing vertices f(VI) and f(V2) respectively. Furthermore, each
cut of positive cost in H induces a cut of the same cost in G, since a positive cost
cut in H cannot contain any edges of cost -00, and hence must consist only of f'(e)
for some edges e E E. Therefore, every max-cost cut in H induces in polynomial
time a max-cost cut in G. 0

We can now present our 'P £S-completeness results. A graph has degree 3 if all
vertices are connected to at most 3 other vertices each.

Theorem 4.2 The problem of finding stable states in Hopfield networks of degree
3 is 'P £S-complete.

PROOF: (Sketch.) By Lemma 4.1, it suffices to prove that the set of degree-3
graphs is pliable. Suppose G = (V, E) is an arbitrary graph. Replace each degree-k
vertex x E V by a path consisting of k vertices, and attach each edge incident with
v by a new edge incident with one of the vertices in the path. Figure 1 shows an
example of this embedding. 0

Are Hopfield Networks Faster than Conventional Computers? 243

Figure 1: A guest graph of degree 5 (left), and the corresponding host of degree 3
(right). Shading indicates the high-degree nodes that were embedded into paths.
All other nodes were embedded into single nodes.

Figure 2: An 8-neighbor mesh with 25 vertices (left), and the 8 X 8 knight's graph
superimposed on an 8 x 8 board (right).

The 8-neighbor mesh is the degree-8 graph G = (V, E) defined as follows: V =
{1,2, ... ,m} x {1,2, ... ,n}, and vertex (u,v) is connected to vertices (u,v± 1),
(u ± 1, v), (u ± 1, v ± 1). Figure 2 shows an 8-neighbor mesh with 25 vertices.

Theorem 4.3 The problem of finding stable states in H opfield networks on the
8-neighbor mesh is peS-complete.

PROOF: (Sketch.) By Lemma 4.1, it suffices to prove that the 8-neighbor mesh is
pliable. An arbitrary graph can be embedded on an 8-neighbor mesh by mapping
each node to a set of consecutive nodes in the bottom row of the grid, and mapping
edges to disjoint rectilinear paths which use the diagonal edges of the grid for
crossovers. 0

The knight's graph for an n X n chessboard is the graph G = (V, E) where V =
{(i, j) 11 ~ i, j ~ n}, and E = {((i, j), (k, i» I {Ii - kl, Ij - il} = {I, 2}}. That is,
there is a vertex for every square of the board and an edge between two vertices
exactly when there is a knight's move from one to the other. For example, Figure 2
shows the knight's graph for the 8 x 8 chessboard. Takefuji and Lee [15] (see also
Parberry [12]) use the dual of the knight's graph for a Hopfield-style network to
solve the knight's tour problem. That is, they have a vertex Ve for each edge e of
the knight's graph, and an edge between two vertices Vd and Ve when d and e share
a common vertex in the knight's graph.

244 I. Parberry and H. Tseng

Theorem 4.4 The problem of finding stable states in H opfield networks on the dual
of the knight's graph is pes -complete.

PROOF: (Sketch.) By Lemma4.1, it suffices to prove that the dual of the knight 's
graph is pliable. It can be shown that the knight 's graph is pliable using the
technique of Theorem 4.3. It can also he proved that if a set S of graphs is pliable ,
then the set consisting of the duals of graphs in S is also pliable. 0

The hypercube is the graph with 2d nodes for some d, labelled with the binary
representations of the d-bit natural numbers , in which two nodes are connected by
an edge iff their labels differ in exactly one bit. The hypercube is an important
graph for parallel computation (see , for example, Leighton [8], and Parberry [lOD .

Theorem 4.5 The problem of finding stable states in Hopfield networks on the
hypercube is peS-complete.

PROOF : (Sketch.) By Lemma 4.1, it suffices to prove that the hypercube is pliable.
Since the "~e" relation is transitive, it further suffices by Theorem 4.2 to show that
the set of degree-3 graphs is polynomial-time embeddable into the hypercube. To
embed a degree-3 graph G into the hypercube , first break it into a degree-1 graph
G1 and a degree-2 graph G2 . Since G2 consists of cycles, paths, and disconnected
vertices, it can easily be embedded into a hypercube (since a hypercube is rich
in cycles). G1 can be viewed as a permutation of vertices in G and can hence be
realized using a hypercube implementation of Waksman 's permutation network [16] .
o

We conclude by stating PeS-completeness results for three more graphs that are
important in the parallel computing literature the butterfly (see, for example,
Leighton [8]) , the cube-connected cycles (Preparata and Vuillemin [13D , and the
shuffle-exchange (Stone [14]). The proofs use Lemma 4.1 and Theorem 4.5 , and are
omitted for conciseness.

Theorem 4.6 The problem of finding stable states in Hopfield networks on the
butterfly, the cube-connected cycles, and the shuffle-exchange is peS-complete.

Conclusion

Are Hopfield networks faster than conventional computers? The answer seems to be
that it depends on the interconnection graph of the Hopfield network. Conventional
nonimitative algorithms can be exponentially faster than planar Hopfield networks.
The theory of peS-completeness shows us that such an exponential separation
result is unlikely not only for nonplanar graphs, but even for simple nonplanar
graphs such as bipartite graphs , graphs of degree 3, the dual of the knight's graph,
the 8-neighbor mesh , the hypercube , the butterfly, the cube-connected cycles, and
the shuffle-exchange graph.

Acknowledgements

The research described in this paper was supported by the National Science Foun­
dation under grant number CCR- 9302917, and by the Air Force Office of Scientific

Are Hopfield Networks Faster than Conventional Computers? 245

Research, Air Force Systems Command, USAF, under grant number F49620-93-1-
0100.

References

[1] J. Bruck and J. W. Goodman. A generalized convergence theorem for neural
networks. IEEE Transactions on Information Theory, 34(5):1089-1092, 1988.

[2] E. Goles and S. Martinez. Exponential transient classes of symmetric neural
networks for synchronous and sequential updating. Complex Systems, 3:589-
597, 1989.

[3] F. Hadlock. Finding a maximum cut of a planar graph in polynomial time.
SIAM Journal on Computing, 4(3) :221-225, 1975.

[4] A. Haken and M. Luby. Steepest descent can take exponential time for sym­
metric conenction networks. Complex Systems, 2:191-196,1988.

[5] J.-W. Hong, K. Mehlhorn, and A.L. Rosenberg. Cost tradeoffs in graph em­
beddings. Journal of the ACM, 30:709-728,1983.

[6] J. J . Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proc. National Academy of Sciences, 79:2554-2558 ,
April 1982.

[7] D. S. Johnson , C. H. Papadimitriou, and M. Yannakakis. How easy is local
search? In 26th Annual Symposium on Foundations of Computer Science,
pages 39-42. IEEE Computer Society Press , 1985.

[8] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays
. Trees· Hypercubes. Morgan Kaufmann, 1992.

[9] C. H. Papadimitrioll, A. A. Schaffer, and M. Yannakakis. On the complexity
of local search. In Proceedings of the Twenty Second Annual ACM Symposium
on Theory of Computing, pages 439-445. ACM Press, 1990.

[10] I. Parberry. Parallel Complexity Theory. Research Notes in Theoretical Com­
puter Science. Pitman Publishing, London , 1987.

[11] I. Parberry. Circuit Complexity and Neural Networks. MIT Press , 1994.

[12] I. Patberry. Scalability of a neural network for the knight's tour problem.
Neurocomputing, 12 :19-34, 1996.

[13] F. P. Preparata and J. Vuillemin. The cube-connected cycles: A versatile
network for parallel computation. Communications of the ACM, 24(5):300-
309 , 1981.

[14] H. S. Stone. Parallel processing with the perfect shuffle . IEEE Transactions
on Computers, C-20(2):153-161, 1971.

[15] Y. Takefuji and K. C. Lee. Neural network computing for knight's tour prob­
lems. Neurocomputing, 4(5):249-254 , 1992.

[16] A. Waksman. A permutation network . Journal of the ACM, 15(1):159-163,
January 1968.

