
Function Approximat.ion with the
Sweeping Hinge Algorithm

Don R. Hush, Fernando Lozano
Dept. of Elec. and Compo Engg.

University of New Mexico
Albuquerque, NM 87131

Abstract

Bill Horne
MakeWaves, Inc.
832 Valley Road

Watchung, NJ 07060

We present a computationally efficient algorithm for function ap­
proximation with piecewise linear sigmoidal nodes. A one hidden
layer network is constructed one node at a time using the method of
fitting the residual. The task of fitting individual nodes is accom­
plished using a new algorithm that searchs for the best fit by solving
a sequence of Quadratic Programming problems. This approach of­
fers significant advantages over derivative-based search algorithms
(e.g. backpropagation and its extensions). Unique characteristics
of this algorithm include: finite step convergence, a simple stop­
ping criterion, a deterministic methodology for seeking "good" local
minima, good scaling properties and a robust numerical implemen­
tation.

1 Introduction

The learning algorithm developed in this paper is quite different from the tradi­
tional family of derivative-based descent methods used to train Multilayer Percep­
trons (MLPs) for function approximation. First, a constructive approach is used,
which builds the network one node at a time. Second, and more importantly, we
use piecewise linear sigmoidal nodes instead of the more popular (continuously dif­
ferentiable) logistic nodes. These two differences change the nature of the learning
problem entirely. It becomes a combinatorial problem in the sense that the number
of feasible solutions that must be considered in the search is finite. We show that
this number is exponential in the input dimension, and that the problem of find­
ing the global optimum admits no polynomial-time solution. We then proceed to
develop a heuristic algorithm that produces good approximations with reasonable
efficiency. This algorithm has a simple stopping criterion, and very few user spec­
ified parameters. In addition, it produces solutions that are comparable to (and
sometimes better than) those produced by local descent methods, and it does so

536 D. R. Hush, R Lozano and B. Horne

using a deterministic methodology, so that the results are independent of initial
conditions.

2 Background and Motivation

We wish to approximate an unknown continuous function f(x) over a compact set
with a one-hidden layer network described by

n

f~(x) = ao + L aiU(x, Wi) (1)
i=l

where n is the number of hidden layer nodes (basis functions), x E ~d is the input
vector, and {u(x, w)} are sigmoidal functions parameterized by a weight vector w.
A set of example data, S = {Xi, Yi}, with a total of N samples is available for
training and test.

The models in (1) have been shown to be universal approximators. More impor­
tantly, (Barron, 1993) has shown that for a special class of continuous functions,
r c, the generalization error satisfies

E[lIf - fn,NII2] ~ IIf - fnll 2 + E[lIfn - fn,NII2]

= 0 (*) + 0 (nd ~g N)

where 11·11 is the appropriate two-norm, f n is the the best n-node approximation to
f, and fn,N is the approximation that best fits the samples in S. In this equation
IIf - fnll 2 and E[lIfn - fn,NII2] correspond to the approximation and estimation error
respectively. Of particular interest is the O(l/n) bound on approximation error,
which for fixed basis functions is of the form O(1/n2/ d) (Barron, 1993). Barron's
result tells us that the (tunable) sigmoidal bases are able to avoid the curse of
dimensionality (for functions in rc). Further, it has been shown that the O(l/n)
bound can be achieved constructively (Jones, 1992), that is by designing the basis
functions (nodes) one at a time. The proof of this result is itself constructive,
and thus provides a framework for the development of an algorithm which can (in
principle) achieve this bound. One manifestation of this algorithm is shown in
Figure 1. We call this the iterative approximation algorithm (I1A) because it builds
the approximation by iterating on the residual (Le. the unexplained portion of the
function) at each step. This is the same algorithmic strategy used to form bases in
numerous other settings, e.g. Grahm-Schmidt, Conjugate Gradient, and Projection
Pursuit. The difficult part of the I1A algorithm is in the determination of the best
fitting basis function Un in step 2. This is the focus of the remainder of this paper.

3 Algorithmic Development

We begin by defining the hinging sigmoid (HS) node on which our algorithms are
based. An HS node performs the function

{

-T- > w+, w, X _ w+
- T- - T-Uh(X, w) = w, X, w_ ~ w, X ~ w+

- T- < w_, w, x _ w_
(2)

where w T = [WI w+ w_] and x is an augmented input vector with a 1 in the first
component. An example of the surface formed by an HS node on a two-dimensional
input is shown in Figure 2. It is comprised of three hyperplanes joined pairwise

Function Approximation with the Sweeping Hinge Algorithm

Initialization: fo(x) = 0
for n = 1 to nma:c do

1. Compute Residual: en(x) = f(x) - fn-l (x)
2. Fit Residual: un(x) = argminO"EE lIen(x) - u(x)11
3. Update Estimate: fn(x) = o:fn-l (x) + f3un(x)

where 0: and f3 are chosen to minimize IIf(x) - fn(x)1I
endloop

Figure 1: Iterative Approximation Algorithm (rIA).

Figure 2: A Sigmoid Hinge function in two dimensions .

537

continuously at two hinge locations. The upper and middle hyperplanes are joined
at "Hinge I" and the lower and middle hyperplanes are joined at "Hinge 2". These
hinges induce linear partitions on the input space that divide the space into three
regions, and the samples in 5 into three subsets,

5+ = {(Xi,Yi): Wr-Xi ~ w+}
5, = {(Xi,Yi): w_ ~ WTXi ~ w+}
5_ = {(Xi,Yi): WTXi ~ w_}

(3)

These subsets, and the corresponding regions of the input space, are referred to as
the PLUS, LINEAR and MINUS subsets/regions respectively. We refer to this type
of partition as a sigmoidal partition. A sigmoidal partition of 5 will be denoted
P = {5+, 5" 5_}, and the set of all such partitions will be denoted II = {Pd.
Input samples that fall on the boundary between two regions can be assigned to the
set on either side. These points are referred to as hinge samples and playa crucial
role in subsequent development. Note that once a weight vector w is specified, the
partition P is completely determined, but the reverse is not necessarily true. That
is, there are generally an infinite number of weight vectors that induce the same
partition.

We begin our quest for a learning algorithm with the development of an expression
for the empirical risk. The empirical risk (squared error over the sample set) is
defined

(4)

538 D. R Hush, F. Lozano and B. Horne

This expression can be expanded into three terms, one for each set in the partition,

Ep(w) = ~ :E(Yi - W_)2 + ~ :E(Yi - W+)2 + ~ 2)Yi - WTXi)2
~ ~ ~

After further expansion and rearrangement of terms we obtain

1
Ep(w) = 2wTRw - w T r + s;

where
R, = "L:s, XiX; r, = "L:s, XiYi

s; = ! "L:s Y; st = "L:s+ Yi Sy = "L:s_ Yi

(
R,

R= ~ r=un

(5)

(6)

(7)

(8)

and N+ , N, and N_ are the number of samples in S+ , S, and S_ respectively. The
subscript P is used to emphasize that this criterion is dependent on the partition (i.e.
P is required to form Rand r). In fact, the nature of the partition plays a critical
role in determining the properties of the solution. When R is positive definite (i.e.
full rank), P is referred to as a stable partition, and when R has reduced rank P is
referred to as an unstable partition. A stable partition requires that R, > O. For
purposes of algorithm development we will assume that R, > 0 when ISti > Nmin,
where Nmin is a suitably chosen value greater than or equal to d + 1. With this, a
necessary condition for a stable partition is that there be at least one sample in S+
and S_ and N, ~ Nmin. When seeking a minimizing solution for Ep(w) we restrict
ourselves to stable partitions because of the potential nonuniqueness associated with
solutions to unstable partitions.

Determining a weight vector that simultaneously minimizes E p (w) and preserves
the current partition can be posed as a constrained optimization problem. This
problem takes on the form

min !wTRw - w T r
2

subject to Aw ~ 0 (9)

where the inequality constraints are designed to maintain the current partition de­
fined by (3). This is a Quadratic Programming problem with inequality constraints,
and because R > 0 it has a unique global minimum. The general Quadratic Pro­
gramming problem is N P-hard and also hard to approximate (Bellare and Rogaway,
1993). However, the convex case which we restrict ourselves to here (i.e. R > 0)
admits a polynomial time solution. In this paper we use the active set algorithm
(Luenberger, 1984) to solve (9). With the proper implementation, this algorithm
runs in O(k(~ + Nd)) time, where k is typically on the order of d or less.

The solution to the quadratic programming problem in (9) is only as good as the
current partition allows. The more challenging aspect of minimizing Ep(w) is in
the search for a good partition. Unfortunately there is no ordering or arrangement
of partitions that is convex in Ep(w), so the search for the optimal partition will
be a computationally challenging problem. An exhaustive search is usually out of
the question because of the prohibitively large number of partitions, as given by the
following lemma.

Lemma 1: Let S contain a total of N samples in Rd that lie in general position.
Then the number of sigmoidal partitions defined in (3) is 8(Nd+l).

Function Approximation with the Sweeping Hinge Algorithm 539

Proof: A detailed proof is beyond the scope of this paper, but an intuitive proof
follows. It is well-known that the number of linear dichotomies of N points in d
dimensions is 8(Nd) (Edelsbrunner, 1987). Each sigmoidal partition is comprised
of two linear dichotomies, one formed by Hinge 1 and the other by Hinge 2, and
these dichotomies are constrained to be simple translations of one another. Thus,
to enumerate all sigmoidal partitions we allow one of the hinges, say Hinge 1, can
take on 8(Nd) different positions. For each of these the other hinge can occupy
only'" N unique positions. The total is therefore 8 (Nd+l).

The search algorithm developed here employs a Quadratic Programming (QP) al­
gorithm at each new partition to determine the optimal weight vector for that
partition (Le. the optimal orientation for the separating hyperplanes). Transitions
are made from one partition to the next by allowing hinge samples to flip from one
side of the hinge boundary to the next. The search is terminated when a minimum
value of Ep(w) is found (Le. it can no longer be reduced by flipping hinge samples).
Such an algorithm is shown in Figure 3. We call this the HingeDescent algorithm
because it allows the hinges to "walk across" the data in a manner that descends
the Ep(w) criterion. Note that provisions are made within the algorithm to avoid
unstable partitions. Note also that it is easy to modify this algorithm to descend
only one hinge at a time, simply by omitting one of the blocks of code that flips
samples across the corresponding hinge boundary.

{This routine is invoked with a stable feasible solution W = {w, R, r, A, S+, SI, S_ }.}
procedure HingeDescent (W)

{ Allow hinges to walk across the data until a minimizing partition is found. }
E_1wTRw-wTr - 2
do

Emin = E
{Flip Hinge 1 Samples.}
for each «Xi, Yi) on Hinge 1) do

if «Xi, Yi) E S+ and N+ > 1) then
Move (Xi,Yi) from S+ to S" and update R, r, and A

elseif «Xi, Yi) E S, and N, > N min) then
Move (Xi, Yi) from S, to S+, and update R, r, and A

endif
endloop
{Flip Hinge 2 Samples.}
for each «Xi, Yi) on Hinge 2) do

if «Xi,Yi) E S- and N_ > 1) then
Move (Xi,Yi) from S- to S" and update R, r, and A

elseif «Xi, Yi) E S, and N, > Nmin) then
Move (Xi,Yi) from S, to S-, and update R, r, and A

endif
endloop
{Compute optimal solution for new partition.}
W = QPSolve(W};
E= ~wTRw-wTr

while (E < Emin) j

return(W)j
end; {HingeDescent}

Figure 3: The HingeDescent Algorithm.

Lemma 2: When started at a stable partition, the HingeDescent algorithm will

540 D. R Hush, R Lozano and B. Horne

converge to a stable partition of Ep(w) in a finite number of steps.

Proof: First note that when R> 0, a QP solution can always be found in a finite
number of steps. The proof of this result is beyond the scope of this paper, but can
easily be found in the literature (Luenberger, 1984). Now, by design, HingeDescent
always moves from one stable partition to the next, maintaining the R > 0 property
at each step so that all QP solutions can be produced in a finite number of steps.
In addition, Ep(w) is reduced at each step (except the last one) so no partitions
are revisited, and since there are a finite number of partitions (see Lemma 1) this
algorithm must terminate in a finite number of steps. QED.

Assume that QPSol ve runs in O(k(cP + N d)) time as previously stated. Then the run
time of HingeDescent is given by O(Np((k+Nh)cP+kNd)), where Nh is the number
of samples flipped at each step and Np is the total number of partitions explored.
Typical values for k and Nh are on the order of d, simplifying this expression to
O(Np(d3 + NcP)). Np can vary widely, but is often substantially less than N.

HingeDescent seeks a local minimum over II, and may produce a poor solution,
depending on the starting partition. One way to remedy this is to start from
several different initial partitions, and then retain the best solution overall. We
take a different approach here, that always starts with the same initial condition,
visits several local minima along the way, and always ends up with the same final
solution each time.

The SweepingHinge algorithm works as follows. It starts by placing one of the
hinges, say Hinge 1, at the outer boundary of the data. It then sweeps this hinge
across the data, M samples at a time (e.g. M = 1), allowing the other hinge (Hinge
2) to descend to an optimal position at each step. The initial hinge locations are
determined as follows. A linear fit is formed to the entire data set and the hinges are
positioned at opposite ends of the data so that the PLUS and MINUS regions meet
the LINEAR region at the two data samples on either end. After the initial linear
fit, the hinges are allowed to descend to a local minimum using HingeDescent. Then
Hinge 1 is swept across the data M samples at a time. Mechanically this is achieved
by moving M additional samples from S, to S+ at each step. Hinge 2 is allowed
to descend to an optimal position at each of these steps using the Hinge2Descent
algorithm. This algorithm is identical to HingeDescent except that the code that
flips samples across Hinge 1 is omitted. The best overall solution from the sweep is
retained and "fine-tuned" with one final pass through the HingeDescent algorithm
to produce the final solution.

The run time of SweepingHinge is no worse than N j M times that of HingeDescent.
Given this, an upper bound on the (typical) run time for this algorithm (with
M = 1) is O(NNp(d3 + NcP)). Consequently, SweepingHinge scales reasonably
well in both Nand d, considering the nature of the problem it is designed to solve.

4 Empirical Results

The following experiment was adapted from (Breiman, 1993). The function lex) =
e- lIx ll 2 is sampled at 100d points {xd such that IIxll ~ 3 and IIxll is uniform on [0,3].
The dimension d is varied from 4 to 10 (in steps of 2) and models of size 1 to 20
nodes are trained using the I1AjSweepingHinge algorithm. The number of samples
traversed at each step of the sweep in SweepingHinge was set to M = 10. Nmin
was set equal to 3d throughout. A refitting pass was employed after each new node
was added in the I1A. The refitting algorithm used HingeDescent to "fine-tune"
each node each node before adding the next node. The average sum of squared

Function Approximation with the Sweeping Hinge Algorithm

3000

2500

2000

1500

1000

500

d=4
d=6
d=8

d=10
d=4
d=6
d=8

d=10

6 8 10 12 14 16 18 20
Number or Nodes

Figure 4: Upper (lower) curves are for training (test) data.

541

error, e-2 , was computed for both the training data and an independent set of test
data of size 200d. Plots of 1/e-2 versus the number of nodes are shown in Figure
4. The curves for the training data are clearly bounded below by a linear function
of n (as suggested by inverting the O(l/n) result of Barron's). More importantly
however, they show no significant dependence on the dimension d. The curves for
the test data show the effect of the estimation error as they start to "bend over"
around n = 10 nodes. Again however, they show no dependence on dimension.

Acknowledgements

This work was inspired by the theoretical results of (Barron, 1993) for Sigmoidal
networks as well as the "Hinging Hyperplanes" work of (Breiman, 1993) , and the
"Ramps" work of (Friedman and Breiman, 1994). This work was supported in part
by ONR grant number N00014-95-1-1315.

References

Barron, A.R. (1993) Universal approximation bounds for superpositions of a sig­
moidal function. IEEE Transactions on Information Theory 39(3):930-945.

Bellare, M. & Rogaway, P. (1993) The complexity of approximating a nonlinear
program. In P.M. Pardalos (ed.), Complexity in numerical optimization, pp. 16-32,
World Scientific Pub. Co.

Breiman, L. (1993) Hinging hyperplanes for regression, classification and function
approximation. IEEE Transactions on Information Theory 39(3):999-1013.

Breiman, L. & Friedman, J.H. (1994) Function approximation using RAMPS. Snow­
bird Workshop on Machines that Learn.

Edelsbrunner, H. (1987) In EATCS Monographs on Theoretical Computer Science
V. 10, Algorithms in Combinatorial Geometry. Springer-Verlag.

Jones, L.K. (1992) A simple lemma on greedy approximation in Hilbert space and
convergence rates for projection pursuit regression and neural network training.
The Annals of Statistics, 20:608-613.

Luenberger, D.G. (1984) Introduction to Linear and Nonlinear Programming.
Addison-Wesley.

