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Abstract 

MELONET I is a multi-scale neural network system producing 
baroque-style melodic variations. Given a melody, the system in­
vents a four-part chorale harmonization and a variation of any 
chorale voice, after being trained on music pieces of composers like 
J. S. Bach and J . Pachelbel. Unlike earlier approaches to the learn­
ing of melodic structure, the system is able to learn and reproduce 
high-order structure like harmonic, motif and phrase structure in 
melodic sequences. This is achieved by using mutually interacting 
feedforward networks operating at different time scales, in combi­
nation with Kohonen networks to classify and recognize musical 
structure. The results are chorale partitas in the style of J. Pachel­
bel. Their quality has been judged by experts to be comparable to 
improvisations invented by an experienced human organist. 

1 INTRODUCTION 

The investigation of neural information structures in music is a rather new, excit­
ing research area bringing together different disciplines such as computer science, 
mathematics, musicology and cognitive science. One of its aims is to find out what 
determines the personal style of a composer. It has been shown that neural network 
models - better than other AI approaches - are able to learn and reproduce style­
dependent features from given examples, e.g., chorale harmonizations in the style 
of Johann Sebastian Bach (Hild et al., 1992) . However when dealing with melodic 
sequences, e.g., folk-song style melodies, all of these models have considerable dif­
ficulties to learn even simple structures. The reason is that they are unable to 
capture high-order structure such as harmonies , motifs and phrases simultaneously 
occurring at multiple time scales. To overcome this problem, Mozer (Mozer, 1994) 
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proposes context units that learn reduced descriptions of a sequence of individual 
notes. A similar approach in MELONET (Feulner et Hornel, 1994) uses delayed 
update units that do not fire each time their input changes but rather at discrete 
time intervals . Although these models perform well on artificial sequences , they 
produce melodies that suffer from a lack of global coherence. 

The art of melodic variation has a long tradition in Western music . Almost every 
great composer has written music pieces inventing variations of a given melody, e.g., 
Mozart's famous variations KV 265 on the melody "Ah! Vous dirai-je, Maman", 
also known as "Twinkle twinkle little star". At the beginning of this tradition there 
is the baroque type of chorale variations. These are organ or harpsichord variations 
of a chorale melody composed for use in the Protestant church. A prominent repre­
sentative of this kind of composition is J. Pachelbel (1653 - 1706) who wrote about 
50 chorale variations or partitas on various chorale melodies. 

2 TASK DESCRIPTION 

Given a chorale melody, the learning task is achieved in two steps: 

1. A chorale harmonization of the melody is invented. 

2. One of the voices of the resulting chorale is chosen and provided with 
melodic variations. 

Both subtasks are directly learned from music examples composed by J. Pachelbel 
and performed in an interactive composition process which results in a chorale 
variation of the given melody. The first task is performed by HARMONET, a 
neural network system which is able to harmonize melodies in the style of various 
composers like J. S. Bach. The second task is performed by the neural network 
system MELONET I, presented in the following . For simplicity we have considered 
melodic variations consisting of 4 sixteenth notes for each melody quarter note . 
This is the most common variation type used by baroque composers and presents a 
good starting point for even more complex variation types, since there are enough 
music examples for training and testing the networks, and because it allows the 
representation of higher-scale elements in a rather straightforward way. 

HARMONET is a system producing four-part chorales in various harmonization 
styles, given a one-part melody. It solves a musical real-world problem on a perfor­
mance level appropriate for musical practice. Its power is based on a coding scheme 
capturing musically relevant information. and on the integration of neural networks 
and symbolic algorithms in a hierarchical system, combining the advantages of both. 
The details are not discussed in this paper. See (Hild et aI., 1992) or (Hornel et 
Ragg, 1996a) for a detailed account . 

3 A MULTI-SCALE NEURAL NETWORK MODEL 

The learning goal is twofold. On the one hand, the results produced by the system 
should conform to musical rules. These are melodic and harmonic constraints such 
as the correct resolving of dissonances or the appropriate use of successive interval 
leaps. On the other hand, the system should be able to capture stilistic features 
from the learning examples, e.g., melodic shapes preferred by J. Pachelbel. The 
observation of musical rules and the aesthetic conformance to the learning set can 
be achieved by a multi-scale neural network model. The complexity of the learning 
task is reduced by decomposition in three subtasks (see Figure 1): 
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Figure 1: Structure of the system and process of composing a new melodic variation. 
A melody (previously harmonized by HARMONET) is passed to the supernet which 
predicts the current motif class MGT from a local window given by melody notes MT 
to MT+2 and preceding motif class MGT-I. A similar procedure is performed at a 
lower time scale by the su bnet which predicts the next motif note Nt based on M CT, 
current harmony HT and preceding motif note Nt-I. The result is then returned 
to the supernet through the motif classifier to be considered when computing the 
next motif class MCT +1 . 

1. A melody variation is considered at a higher time scale as a sequence of 
melodic groups, so-called motifs. Each quarter note of the given melody 
is varied by one motif. Before training the networks, motifs are classified 
according to their similarity. 

2. One neural network is used to learn the abstract sequence of motif classes. 
Motif classes are represented in a l-of-n coding form where n is a fixed 
number of classes. The question it solves is: What kind of motif 'fits' a 
melody note depending on melodic context and the motif that has occurred 
before? No concrete notes are fixed by this network. It works at a higher 
scale and will therefore be called stlpernet in the following. 

3. Another neural network learns the implementation of abstract motif classes 
into concrete notes depending on a given harmonic context. It produces 
a sequence of sixteenth notes - four notes per motif - that result in a 
melodic variation of the given melody. Because it works one scale below 
the supernet, it is called stlbnet. 

4. The subnet sometimes invents a sequence of notes that does not coincide 
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with the motif class determined by the supernet . This motif will be consid­
ered when computing the next motif class , however. and should therefore 
match the notes previously formed by the subnet. It is therefore reclassified 
by the motif classifier before the supernet determines the next motif class. 

The motivation of this separation into supernet and subnet arised from the following 
consideration : Having a neural network that learns sequences of sixteenth notes, it. 
would be easier for this network to predict notes given a contour of each motif. i .e. 
a sequence of interval directions to be produced for each quarter note. Consider 
a human organist who improvises a melodic variation of a given melody in real 
time. Because he has to take his decisions in a fraction of a second, he must at 
least have some rough idea in mind about what kind of melodic variation should 
be applied to the next melody note to obtain a meaningful continuation of the 
variation. Therefore, a neural network was introduced at a higher time scale , the 
training of which really improved the overall behavior of the system and not just 
shifted the learning problem to another time scale. 

4 MOTIF CLASSIFICATION AND RECOGNITION 

In order to realize learning at different time scales as described above , we need 
a recognition component to find a suitable classification of motifs . This can be 
achieved using unsupervised learning, e.g. , agglomerative hierarchical clustering or 
Kohonen's topological feature maps (Kohonen, 1990). The former has the disadvan­
tage however that an appropriate distance measure is needed which determines the 
similarity between small sequences of notes respectively intervals, whereas the latter 
allows to obtain appropriate motif classes through self-organization within a two­
dimensional surface. Figure 2 displays the motif representation and distribution of 
motif contours over a 10xlO Kohonen feature map. In MELONET I, the Kohonen 
algorithm is applied to all motifs contained in the training set. Afterwards a corre­
sponding motif classification tree is recursively built from the Kohonen map. While 
cutting this classification tree at lower levels we can get more and more classes. One 
important problem remains to find an appropriate number of classes for the given 
learning task. This will be discussed in section 6. 
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Figure 2: Motifrepresentation example (left) and motif contour distribution (right) 
over a 10xlO Kohonen feature map developed from one Pachelbel chorale variation 
(initial update area 6x6, initial adaptation height 0.95, decrease factor 0.995). Each 
cell corresponds to one unit in the KFM. One can see the arrangement of regions 
responding to motifs having different motif contours. 
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5 REPRESENTATION 

In general one can distinguish two groups of motifs: Melodic motifs prefer small in­
tervals, mainly seconds, harmonic motifs prefer leaps and harmonizing notes (chord 
notes) . Both motif groups heavily rely on harmonic information. In melodic mo­
tifs dissonances should be correctly resolved, in harmonic motifs notes must fit the 
given harmony. Small deviations may have a significant effect on the quality of 
musical results. Thus our idea was to integrate musical knowledge about interval 
and harmonic relationships into an appropriate interval representation. Each note 
is represented by its interval to the first motif note, the so-called reference note. 
This is an important element contributing to the success of MELONET I. A similar 
idea for Jazz improvisation was followed in (Baggi, 1992) . 

The interval coding shown in Table 1 considers several important relationships: 
neighboring intervals are realized by overlapping bits, octave invariance is repre­
sented using a special octave bit. The activation of the overlapping bit was reduced 
from 1 to 0.5 in order to allow a better distinction of the intervals. 3 bits are 
used to distinguish the direction of the interval , 7 bits represent interval size. Com­
plementary intervals such as ascending thirds and descending sixths have similar 
representations because they lead to the same note and can therefore be regarded as 
harmonically equivalent. A simple rhythmic element was then added using a tenuto 
bit (not shown -in Table 1) which is set when a note is tied to its predecessor. This 
final 3+1+7+1=12 bit coding gave the best results in our simulations. 

Table 1: Complementary Interval Coding 

direction octave interval size 
ninth \. 1 o 0 1 0 0 0 0 0 0.5 1 
octave \. 1 o 0 1 1 0 0 0 0 0 0.5 
seventh \. 1 o 0 0 0.5 1 0 0 0 0 0 
sixth \. 100 0 0 0.5 1 0 0 0 0 
fifth \. 100 0 0 0 0.5 1 0 0 0 
fourth \. 1 0 0 0 0 0 0 0.5 1 0 0 
third \. 1 o 0 0 0 0 0 0 0.5 1 0 
second \. 1 o 0 0 0 0 0 0 0 0.5 1 
pnme -+ 010 0 1 0 0 0 0 0 0.5 
second /' o 0 1 0 0.5 1 0 0 0 0 0 
third /' 0 0 1 0 0 0.5 1 0 0 0 0 
fourth /' 0 0 1 0 0 0 0.5 1 0 0 0 
fifth /' o 0 1 0 0 0 0 0.5 1 0 0 
sixth /' o 0 1 0 0 0 0 0 0 . 5 1 0 
seventh /' o 0 1 0 0 0 0 0 0 0.5 1 
octave /' 0 0 1 1 1 0 0 0 0 0 0.5 
ninth /' o 0 1 1 0.5 1 0 0 0 0 0 

Now we still need a representation for harmony. It can be encoded as a harmonic 
field which is a vector of chord notes of the diatonic scale. The tonic T in C major 
for example contains 3 chord notes - C, E and G - which correspond to the first, 
third and fifth degree of the C major scale (1010100). This representation may be 
further improved. We have already mentioned that each note is represented by the 
interval to the first motif note (reference note). We can now encode the harmonic 
field starting with the first motif note instead of the first degree of the scale . This is 
equivalent to rotating the bits of the harmonic field vector. An example is displayed 
in Figure 3. The harmony of the motif is the dominant D, the first motif note is 
B which corresponds to the seventh degree of the C major scale. Therefore the 
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harmonic field for D (0100101) is rotated by one position to the right resulting in 
(1010010). Starting with the first note B. the harmonic field indicates the intervals 
that lead to harmonizing notes B, D and G. In the right part of Figure 3 one can 
see a correspondance between bits activated in the harmonic field and bits set to 1 
in the three interval codings. This kind of representation helps the neural network 
to directly establish a relationship between intervals and given harmony. 

third up o 0 1 0 0 0.5 1 0 0 0 0 , J J 3d I sixth up o 0 1 0 0 0 0 0 0.5 1 0 
pnme 010 0 1 0 0 0 0 0 0.5 

D harmonic field 1 0 1 0 0 1 0 

Figure 3: Example illustrating the relationship between interval coding and rotat.ed 
harmonic field. Each note is represented by its interval to the first note. 

6 PERFORMANCE 

We carried out several simulations to evaluate the performance of the system. Many 
improvements could be found however by just listening to the improvisations pro­
duced by the neural organist. One important problem was to find an appropriate 
number of classes for the given learning task . The following table lists the classifica­
tion rate on the learning and validation set of the supernet and the subnet using 5, 
12 and 20 motif classes. The learning set was automatically built from 12 Pachelbel 
chorale variations corresponding to 2220 patterns for the subnet and 555 for the 
supernet. The validation set includes 6 Pachelbel variations corresponding to 1396 
patterns for the subnet and 349 for the supernet. Supernet and subnet were then 
trained independently with the RPROP learning algorithm. 

s'Upernet s'Ubnet 
5 classes 12 classes 20 classes 5 classes 12 classes 20 classes 

learning set 91.17% 86.85% 87.57% 86.31% 93.92% 95 .68% 
validation set 49.85% 40.69% 37.54% 79.15% 83.38% 86.96% 

The classification rate of both networks strongly depends on the number of classes, 
esp. on the validation set of the supernet. The smaller the number of classes, 
the better is the classification of the supernet because there are less alternatives 
to choose from. We can also notice an opposite development of the classification 
behavior for the subnet. The bigger the number of classes. the easier the subnet will 
be able to determine concrete motif notes for a given motif class. One can imagine 
that the optimal number of classes lies somewhere in the middle. Another idea is 
to form a committee of networks each of which is trained with different number of 
classes. 

We have also tested MELONET I on melodies that do not belong to the baroque 
era. Figure 4 shows a harmonization and variation of the melody "Twinkle twinkle 
little star" used by Mozart in his famous piano variations. It was produced by a 
network committee formed by 3*2=6 networks trained with 5, 12 and 20 classes. 

7 CONCLUSION 

We have presented a neural network system inventing baroque-style variations on 
given melodies whose qualities are similar to those of an experienced human organ-
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Figure 4: Melodic variation on "Twinkle twinkle little star" 

ist. The complex musical task could be learned introducing a multi-scale network 
model with two neural networks cooperating at different time scales , together with 
an unsupervised learning mechanism able to classify and recognize relevant musical 
structure. 

We are about to test this multi-scale approach on learning examples of other epochs, 
e.g., on compositions of classical composers like Haydn and Mozart or on Jazz 
improvisations. First results confirm that the system is able to reproduce style­
specific elements of other kinds of melodic variation as well. Another interesting 
question is whether the global coherence of the musical results may be further 
improved adding another network working at a higher level of abstraction, e.g., at. 
a phrase level. In summary, we believe that this approach presents an important 
step towards the learning of complete melodies. 
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