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Abstract 

We introduce the Concave-Convex procedure (CCCP) which con­
structs discrete time iterative dynamical systems which are guar­
anteed to monotonically decrease global optimization/energy func­
tions. It can be applied to (almost) any optimization problem and 
many existing algorithms can be interpreted in terms of CCCP. In 
particular, we prove relationships to some applications of Legendre 
transform techniques. We then illustrate CCCP by applications to 
Potts models , linear assignment, EM algorithms, and Generalized 
Iterative Scaling (GIS). CCCP can be used both as a new way to 
understand existing optimization algorithms and as a procedure for 
generating new algorithms. 

1 Introduction 

There is a lot of interest in designing discrete time dynamical systems for inference 
and learning (see, for example, [10], [3], [7], [13]). 

This paper describes a simple geometrical Concave-Convex procedure (CCCP) for 
constructing discrete time dynamical systems which can be guaranteed to decrease 
almost any global optimization/energy function (see technical conditions in sec­
tion (2)). 

We prove that there is a relationship between CCCP and optimization techniques 
based on introducing auxiliary variables using Legendre transforms. We distinguish 
between Legendre min-max and Legendre minimization. In the former, see [6], the 
introduction of auxiliary variables converts the problem to a min-max problem 
where the goal is to find a saddle point. By contrast, in Legendre minimization, see 
[8], the problem remains a minimization one (and so it becomes easier to analyze 



convergence). CCCP relates to Legendre minimization only and gives a geometrical 
perspective which complements the algebraic manipulations presented in [8]. 

CCCP can be used both as a new way to understand existing optimization algo­
rithms and as a procedure for generating new algorithms. We illustrate this by 
giving examples from Potts models, EM, linear assignment, and Generalized It­
erative Scaling. Recently, CCCP has also been used to construct algorithms to 
minimize the Bethe/Kikuchi free energy [13]. 

We introduce CCCP in section (2) and relate it to Legendre transforms in sec­
tion (3). Then we give examples in section (4). 

2 The Concave-Convex Procedure (CCCP) 

The key results of CCCP are summarized by Theorems 1,2, and 3. 

Theorem 1 shows that any function , subject to weak conditions, can be expressed 
as the sum of a convex and concave part (this decomposition is not unique). This 
implies that CCCP can be applied to (almost) any optimization problem. 

Theorem 1. Let E(x) be an energy function with bounded Hessian [J2 E(x)/8x8x. 
Then we can always decompose it into the sum of a convex function and a concave 
function. 

Proof. Select any convex function F(x) with positive definite Hessian with eigen­
values bounded below by f > o. Then there exists a positive constant A such that 
the Hessian of E(x) + AF(x) is positive definite and hence E(x) + AF(x) is con­
vex. Hence we can express E(x) as the sum of a convex part, E(x) + AF(x) , and a 
concave part -AF(x). 

Figure 1: Decomposing a function into convex and concave parts. The original func­
tion (Left Panel) can be expressed as the sum of a convex function (Centre Panel) 
and a concave function (Right Panel). (Figure courtesy of James M. Coughlan). 

Our main result is given by Theorem 2 which defines the CCCP procedure and 
proves that it converges to a minimum or saddle point of the energy. 

Theorem 2. Consider an energy function E(x) (bounded below) of form E(x) = 
Evex (x) + E cave (x) where Evex (x), E cave (x) are convex and concave functions of x 
respectively. Then the discrete iterative CCCP algorithm ;zt f-7 ;zt+1 given by: 

- -t+l _ - -t \1Evex (x ) - -\1Ecave (x ), (1) 

is guaranteed to monotonically decrease the energy E(x) as a function of time and 
hence to converge to a minimum or saddle point of E(x). 



Proof. The convexity and concavity of Evex (.) and Ecave (.) means that Evex (X2) 2: 
Evex (xd + (X2 -xd· ~ Evex (xd and Ecave (X4) :S Ecave (X3) + (X4 -X3)· ~ Ecave (X3 ), 
for all X1 ,X2,X3,X4. Now set Xl = xt+l,X2 = xt,X3 = xt,X4 = xt+1. Using the 
algorithm definition (i.e. ~Evex (xt+1) = -~Ecave (xt)) we find that Evex (xt+ 1) + 
Ecave (xt+1) :S Evex (xt) + Ecave (xt), which proves the claim. 

We can get a graphical illustration of this algorithm by the reformulation shown in 
figure (2) (suggested by James M. Coughlan). Think of decomposing the energy 
function E(x) into E1(x) - E2(x) where both E1(x) and E2(x) are convex. (This 
is equivalent to decomposing E(x) into a a convex term E1(x) plus a concave term 
-E2(X)) . The algorithm proceeds by matching points on the two terms which have 
the same tangents. For an input Xo we calculate the gradient ~ E2 (xo) and find the 
point Xl such that ~ E1 (xd = ~ E2 (xo). We next determine the point X2 such that 
~E1(X2) = ~E2 (X1)' and repeat. 
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Figure 2: A CCCP algorithm illustrated for Convex minus Convex. We want to 
minimize the function in the Left Panel. We decompose it (Right Panel) into 
a convex part (top curve) minus a convex term (bottom curve). The algorithm 
iterates by matching points on the two curves which have the same tangent vectors, 
see text for more details. The algorithm rapidly converges to the solution at x = 5.0. 

We can extend Theorem 2 to allow for linear constraints on the variables X, for 
example Li et Xi = aM where the {en, {aM} are constants. This follows directly 
because properties such as convexity and concavity are preserved when linear con­
straints are imposed. We can change to new coordinates defined on the hyperplane 
defined by the linear constraints. Then we apply Theorem 1 in this coordinate 
system. 

Observe that Theorem 2 defines the update as an implicit function of xt+1. In many 
cases, as we will show, it is possible to solve for xt+1 directly. In other cases we may 
need an algorithm, or inner loop, to determine xt+1 from ~Evex (xt+1). In these 
cases we will need the following theorem where we re-express CCCP in terms of 
minimizing a time sequence of convex update energy functions Et+1 (xt+1) to obtain 
the updates xt+1 (i .e. at the tth iteration of CCCP we need to minimize the energy 
Et+1 (xt+1 )). We include linear constraints in Theorem 3. 

Theorem 3. Let E(x) = Evex (x) + E cave (x) where X is required to satisfy the linear 
constraints Li et Xi = aM, where the {et}, { aM} are constants. Then the update rule 
for xt+1 can be formulated as minimizing a time sequence of convex update energy 



functions Et+1 (;rt+1): 

where the lagrange parameters P'J1} impose linear comnstraints. 

Proof. Direct calculation. 

(2) 

The convexity of EH1 (;rt+1) implies that there is a unique minimum corresponding 
to ;rt+1. This means that if an inner loop is needed to calculate ;rt+1 then we can 
use standard techniques such as conjugate gradient descent (or even CCCP). 

3 Legendre Transformations 

The Legendre transform can be used to reformulate optimization problems by in­
troducing auxiliary variables [6]. The idea is that some of the formulations may 
be more effective (and computationally cheaper) than others. We will concentrate 
on Legendre minimization, see [7] and [8], instead of Legendre min-max emphasized 
in [6]. An advantage of Legendre minimization is that mathematical convergence 
proofs can be given. (For example, [8] proved convergence results for the algorithm 
implemented in [7].) 

In Theorem 4 we show that Legendre minimization algorithms are equivalent to 
CCCP. The CCCP viewpoint emphasizes the geometry of the approach and com­
plements the algebraic manipulations given in [8]. (Moreover, our results of the 
previous section show the generality of CCCP while, by contrast, the Legendre 
transform methods have been applied only on a case by case basis). 

Definition 1. Let F(x) be a convex function. For each value y let F*(ff) = 
minx{F(x) +y·x.}. Then F*(Y) is concave and is the Legendre transform of F(x). 
Moreover, F (x) = maxy{ F* (y) - y. x} . 

Property 1. F(.) and F*(.) are related by a:; (fJ) = {~~}- 1(_Y), -~~(x) = 

{a{y* } -1 (x). (By { a{y* } -1 (x) we mean the value y such that a{y* (y) = x.) 

Theorem 4. Let E1 (x) = f(x) + g(x) and E 2(x, Y) = f(x) + x· Y + h(i/), where 
f(.), h(.) are convex functions and g(.) is concave. Then applying CCCP to E1 (x) is 
equivalent to minimizing E2 (x, Y) with respect to x and y alternatively (for suitable 
choices of g(.) and h(.). 

Proof. We can write E1(X) = f(x) +miny{g*(Y) +x·y} where g*(.) is the Legendre 
transform of g( .) (identify g(.) with F*( .) and g*(.) with F(.) in definition 1). Thus 
minimizing E1 (x) with respect to x is equivalent to minimizing E1 (x, Y) = f(x) + 
x . y + g* (Y) with respect to x and y. (Alternatively, we can set g* (Y) = h(Y) 
in the expression for E2(x,i/) and obtain a cost function E2(x) = f(x) + g(x).) 
Alternatively minimization over x and y gives: (i) of/ax = y to determine Xt+1 in 
terms of Yt, and (ii) ag* / ay = x to determine Yt in terms of Xt which, by Property 
1 of the Legendre transform is equivalent to setting y = -ag / ax. Combining these 
two stages gives CCCP: 

af (_) ag (_) 
ax Xt+1 = - ax Xt . 



4 Examples of CCCP 

We now illustrate CCCP by giving four examples: (i) discrete time dynamical 
systems for the mean field Potts model, (ii) an EM algorithm for the elastic net, 
(iii) a discrete (Sinkhorn) algorithm for solving the linear assignment problem, and 
(iv) the Generalized Iterative Scaling (GIS) algorithm for parameter estimation. 

Example 1. Discrete Time Dynamical Systems for the Mean Field Potts 
Model. These attempt to minimize discrete energy functions of form E[V] = 
2:i,j,a,b Tij ab Via V)b + 2:ia Bia Vi a, where the {Via} take discrete values {a, I} with 
linear constraints 2:i Via = 1, Va. 

Discussion. Mean field algorithms minimize a continuous effective energy E ett [S; T] 
to obtain a minimum of the discrete energy E[V] in the limit as T f-7 a. The 
{Sial are continuous variables in the range [0 ,1] and correspond to (approximate) 
estimates of the mean states of the {Via}. As described in [12}, to ensure that the 
minima of E[V] and E ett [S; T] all coincide (as T f-7 0) it is sufficient that Tijab 
be negative definite. Moreover, this can be attained by adding a term -K 2:ia Vi! 
to E[V] (for sufficiently large K) without altering the structure of the minima of 
E[V] . Hence, without loss of generality we can consider 2:i ,j,a,b Tijab Via V)b to be a 
concave function . 

We impose the linear constraints by adding a Lagrange multiplier term 
2:a Pa {2: i Via - I} to the energy where the {Pa} are the Lagrange multipliers. The 
effective energy becomes: 

i,j,a ,b ia ia a 

We can then incorporate the Lagrange multiplier term into the convex part. 
This gives: Evex [S] = T2: ia SialogSia + 2:aPa{2:iSia -I} and Ecave[S] = 

2: i jab TijabSiaSjb + 2:ia BiaS ia · Taking derivatives yields: &g Evex [S] = 

TI~~Sia + Pa and &t E cave [S] = 2 2: j,b TijabSjb + Bia· Applying eeep by setting 

&:s::~ (StH) = - &:5;:e (st) gives T{l + log Sia (t + I)} + Pa = -2 2:j ,b TijabSjb(t)­
Bia· We solve for the Lagrange multipliers {Pal by imposing the constraints 
2:i Sia(t + 1) = 1, Va. This gives a discrete update rule: 

(-1/T){2 2:. b TijabSjb(t)+Oia} e J, 

Sia (t + 1) = 2: ' . 2:c e( -1/T){2 j,b TijcbSjb(tl+Oi c } 
(4) 

Algorithms of this type were derived in [lO}, [3} using different design principles. 

Our second example relates to the ubiquitous EM algorithm. In general EM and 
CCCP give different algorithms but in some cases they are identical. The EM algo­
rithm seeks to estimate a variable f* = argmaxt log 2:{I} P(f, l), where {f}, {l} are 
variables that depend on the specific problem formulation. It was shown in [4] that 
this is equivalent to minimizing the following effective energy with respect to the 
variables f and P(l): E ett [! , P(l)] = - ~ 2:1 P(l) log P(f, l) + ~ 2:{I} P(l) log P(l). 
To apply CCCP to an effective energy like this we need either: (a) to decompose 
E ett [!, P(l)] into convex and concave functions of f, P(l), or (b) to eliminate either 



variable and obtain a convex concave decomposition in the remaining variable (d. 
Theorem 4). We illustrate (b) for the elastic net [2]. (See Yuille and Rangarajan, 
in preparation, for an illustration of (a)). 

Example 2. The elastic net attempts to solve the Travelling Salesman Problem 
(TSP) by finding the shortest tour through a set of cities at positions {Xi }' The 
elastic net is represented by a set of nodes at positions {Ya} with variables {Sial 
that determine the correspondence between the cities and the nodes of the net. Let 
E el I [S, 171 be the effective energy for the elastic net, then the {y} variables can be 
eliminated and the resulting Es[S] can be minimized using GGGP. (Note that the 
standard elastic net only enforces the second set of linear constraints). 

Discussion. The elastic net energy function can be expressed as [11]: 

ia a,b i,a 

where we impose the conditions L:a Sia = 1, V i and L:i Sia = 1, V a. 

The EM algorithm can be applied to estimate the {Ya}. Alternatively we can solve 
for the {Ya} variables to obtain Yb = L:i a PabSiaXi where {Pab } = {Jab + 2')'Aab} -1. 

We substitute this back into E ell [S, 171 to get a new energy Es[S] given by: 

(6) 
i ,j,a,b i,a 

Once again this is a sum of a concave and a convex part (the first term is concave 
because of the minus sign and the fact that {Pba } and Xi . Xj are both positive semi­
definite.) We can now apply GGGP and obtain the standard EM algorithm for this 
problem. (See Yuille and Rangarajan, in preparation, for more details). 

Our final example is a discrete iterative algorithm to solve the linear assignment 
problem. This algorithm was reported by Kosowsky and Yuille in [5] where it was 
also shown to correspond to the well-known Sinkhorn algorithm [9]. We now show 
that both Kosowsky and Yuille's linear assignment algorithm, and hence Sinkhorn's 
algorithm are examples of CCCP (after a change of variables). 

Example 3. The linear assignment problem seeks to find the permutation matrix 
{TIia} which minimizes the energy E[m = L:ia TIia A ia , where {Aia} is a set of 
assignment values. As shown in [5} this is equivalent to minimizing the (convex) 
Ep[P] energy given by Ep[P] = L:aPa + ~ L:i log L:a e-,B(Aia+Pa) , where the so­

lution is given by TI;a = e-,B(Aia+Pa) / L:b e-,B(Aib+Pb) rounded off to the nearest 
integer (for sufficiently large fJ). The iterative algorithm to minimize Ep[P] (which 
can be re-expressed as Sinkhorn's algorithm, see [5}) is of form: 

(7) 

and can be re-expressed as GGGP. 

Discussion. By performing the change of coordinates fJPa = - log r a V a (for r a > 



0, Va) we can re-express the Ep[P] energy as: 

(8) 

Observe that the first term of Er[r] is convex and the second term is concave (this 
can be verified by calculating the Hessian). Applying CCCP gives the update rule: 

1 e-,BAia 
rt+l = 2:= 2::: e-,BAibrt' 

a i b b 

(9) 

which corresponds to equation (7). 

Example 4. The Generalized Iterative Scaling (GIS) Algorithm [ll for estimating 
parameters in parallel. 

Discussion. The GIS algorithm is designed to estimate the parameter X of a distri­
bution P(x : X) = eX.¢(x) IZ[X] so that 2:::x P(x; X)¢(x) = h, where h are observa­
tion data (with components indexed by j.t). It is assumed that ¢fJ,(x) ::::: 0, V j.t,x, 
hfJ, ::::: 0, V j.t, and 2:::fJ, ¢fJ, (x) = 1, V x and 2:::fJ, hfJ, = 1. (All estimation problems of 
this type can be transformed into this form [lj). 

Darroch and Ratcliff [ll prove that the following GIS algorithm is guaranteed to 
converge to value X* that minimizes the (convex) cost function E(X) = log Z[X]-X.h 
and hence satisfies 2:::x P(x; X*)¢(x) = h. The GIS algorithms is given by: 

Xt+! = Xt - log ht + log h, (10) 

where ht = 2:::x P(x; Xt )¢(x) {evaluate log h componentwise: (log h)fJ, = log hf),') 

To show that GIS can be reformulated as CCCP, we introduce a new variable 
iJ = eX (componentwise). We reformulate the problem in terms of minimizing 
the cost function E,B [iJ] = log Z[log(iJ)] - h . (log iJ). A straightforward calcula­
tion shows that -h . (log iJ) is a convex function of iJ with first derivative being 
-hi iJ (where the division is componentwise). The first derivative of log Z[log(iJ)] is 
(II iJ) 2:::x ¢(x)P(x: log ,8) (evaluated componentwise). To show that log Z[log(iJ)] is 
concave requires computing its Hessian and applying the Cauchy-Schwarz inequality 
using the fact that 2:::fJ, ¢fJ,(x) = 1, V x and that ¢fJ,(x) ::::: 0, V j.t,x. We can there-

fore apply CCCP to E,B [iJ] which yields l/iJH1 = l/iJt x Ilh x ht (componentwise) , 
which is GIS (by taking logs and using log ,8 = X). 

5 Conclusion 

CCCP is a general principle which can be used to construct discrete time iterative 
dynamical systems for almost any energy minimization problem. It gives a geomet­
ric perspective on Legendre minimization (though not on Legendre min-max). 

We have illustrated that several existing discrete time iterative algorithms can be re­
interpreted in terms of CCCP (see Yuille and Rangarajan, in preparation, for other 



examples). Therefore CCCP gives a novel way ofthinking about and classifying ex­
isting algorithms. Moreover, CCCP can also be used to construct novel algorithms. 
See, for example, recent work [13] where CCCP was used to construct a double loop 
algorithm to minimize the Bethe/Kikuchi free energy (which are generalizations of 
the mean field free energy). 

There are interesting connections between our results and those known to mathe­
maticians. After this work was completed we found that a result similar to Theorem 
2 had appeared in an unpublished technical report by D. Geman. There also are 
similarities to the work of Hoang Tuy who has shown that any arbitrary closed 
set is the projection of a difference of two convex sets in a space with one more 
dimension. (See http://www.mai.liu.se/Opt/MPS/News/tuy.html). 
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