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Abstract

In this work, we introduce an information-theoretic based correction term
to the likelihood ratio classification method for multiple classes. Under
certain conditions, the term is sufficient for optimally correcting the dif-
ference between the true and estimated likelihood ratio, and we analyze
this in the Gaussian case. We find that the new correction term signif-
icantly improves the classification results when tested on medium vo-
cabulary speech recognition tasks. Moreover, the addition of this term
makes the class comparisons analogous to an intransitive game and we
therefore use several tournament-like strategies to deal with this issue.
We find that further small improvements are obtained by using an appro-
priate tournament. Lastly, we find that intransitivity appears to be a good
measure of classification confidence.

1 Introduction

An important aspect of decision theory is multi-way pattern classification whereby one
must determine the class ��� for a given data vector � that minimizes the overall risk:

� ��� argmin�
	 � �
��� ���
� ����� � ��� �����
where ��� � � � ��� is the loss in choosing � � when the true class is � . This decision rule is
provably optimal for the given loss function [3]. For the 0/1-loss functions, it is optimal to
simply use the posterior probability to determine the optimal class

� ��� argmax� � � ��� ���
This procedure may equivalently be specified using a tournament style game-playing strat-
egy. In this case, there is an implicit class ordering

� ��������� �"!#!$!#����%&� , and a class-pair ( ' and(
) scoring function for an unknown sample � :)+*-, � ��� � � *., � ���0/21 *.,

such that � *-, �43#576 � � �8� '9��:;� � �8� ( � is the log-likelihood ratio and 1 *., �43$5�6 � � '<�=:>� � ( � is
the log prior odds. The strategy proceeds by evaluating

)8�<?<�
@
which if positive is followed

by
) � ? �
A

and otherwise by
) �
A�� @

. This continues until a “winner” is found. Of course, the
order of the classes does not matter, as the same winner is found for all permutations. In



any event, this style of classification can be seen as a transitive game [5] between players
who correspond to the individual classes.

In this work we extend the likelihood-ratio based classification with a term, based on the
Kullback-Leibler divergence [2], that expresses the inherent posterior confusability be-
tween the underlying likelihoods being compared for a given pair of players. We find that
by including this term, the results of a classification system significantly improve, without
changing or increasing the quantity of the estimated free model parameters. We also show
how, under certain assumptions, the term can be seen as an optimal correction between the
estimated model likelihood ratio and the true likelihood ratio, and gain further intuition by
examining the case when the likelihoods � � �8� '9� are Gaussians. Furthermore, we observe
that the new strategy leads to an intransitive game [5], and we investigate several strate-
gies for playing such games. This results in further (but small) improvements. Finally, we
consider the instance of intransitivity as a confidence measure, and investigate an iterative
approach to further improve the correction term.

Section 2 first motivates and defines our approach, and shows the conditions under which it
is optimal. Section 2.1 then reports experimental results which show significant improve-
ments where the likelihoods are hidden Markov models trained on speech data. Section 3
then recasts the procedure as intransitive games, and evaluates a variety of game playing
strategies yielding further (small) error reductions. Section 3.1 attempts to better under-
stand our results via empirical analysis, and evaluates additional classification strategies.
Section 4 explores an iterative strategy for improving our technique, and finally Section 5
concludes and discusses future work.

2 Extended Likelihood-Ratio-based Classification

The Kullback-Leibler (KL) divergence[2], an asymmetric measure of the distance between
two probability densities, is defined as follows:

� � ����� � �����83$5�6 � �
	 �
� ��	 �

where � and � are probability densities over the same sample space. The KL-divergence is
also called the average (under � ) information for discrimination in favor of � over � . For our
purposes, we are interested in KL-divergence between class-conditional likelihoods � � �8� '9�
where ' is the class number:

� � '�� ( � �

 3$5�6 � � �8� '<�� � �8� ( � � � �8� '<���7�

One intuitive way of viewing
� � '�� ( � is as follows: if

� � '�� ( � is small, then samples of
class ' are more likely to be erroneously classified as class

(
than when

� � '�� ( � is large.
Comparing

� � '�� ( � and
� � ( �>'<� should tell us which of ' and

(
is more likely to have its

samples mis-classified by the other model. Therefore, the difference
� � '�� ( ��� � � ( ��'9� ,

when positive, indicates that samples of class
(

are more likely to be mis-classified as
class ' than samples of class ' are to be mis-classified as class

(
(and vice-versa when

the difference is negative). In other words, ' “steals” from
(

more than
(

steals from '
when the difference is positive, thereby suggesting that class

(
should receive aid in this

case. This difference can be viewed as a form of posterior (i.e., based on the data) “bias”
indicating which class should receive favor over the other.1 We can adjust � *., (the log-
likelihood ratio) with this posterior bias, to obtain a new function comparing classes ' and(

as follows: ) *-, � � *-, / 1 *-, � � *., !
1Note that this is not the normal notion of statistical bias as in ��� where � is an estimate of

model parameters.



where � *-,��� �� � � � '�� ( ��� � � ( �>'<� �
The likelihood ratio is adjusted in favor of

(
when

� *-,
is positive, and in favor of ' when� *.,

is negative. We then use
) *-,

, and when it is positive, choose class ' .
The above intuition does not explain why such a correction factor should be used, since
using � *-, along with 1 *-,

is already optimal. In practice, however, we do not have access
to the true likelihood ratios but instead to an approximation that has been estimated from
training data. Let the variable � *., � ��� �
3$5�6 � � �8� '<�=:>� � � � ( � be the true log-likelihood ratio,
and

�� *., � ��� � 3#576 �� � �8� '9��: �� � �8� ( � be the model-based log ratio. Furthermore, let�� � '�� ( � �� 
 3$5�6 �� � �8� '<��� � �8� ( � � � �8� '<���7�
be the modified KL-divergence between the class conditional models, measured modulo

the true distribution � � � � '<� , and let
�� *.,��� �� � �� � '�� ( ��� �� � ( �>'<��� . Finally, let 1 *.,

(resp.�1 *.,
) be the true (resp. estimated) log prior odds. Our (usable) scoring function becomes:)+*., � ��� � �� *-, � � �0/ �1 *-, � �� *-, ! (1)

which has an intuitive explanation similar to the above.

There are certain conditions under which the above approach is theoretically justifiable. Let
us assume for now a two-class problem where ' and

(
are the two classes, so � � '9�;/ � � ( � � �

.
A sufficient condition for the estimated quantities above to yield optimal performance is
for � /
1 � �� / �1 for all � .2 Since this is not the case in practice, an ' ( -dependent
constant term 	 may be added correcting for any differences as best as possible. This
yields � / 1 � �� / �1 /
	 . We can define an 	 -dependent cost function� � 	 � � 
 � � ��� � � /21 � �� � �1���	 � � ���
which, when minimized, yields 	 � � � ��
���� � / 1 � � ��
���� �� � �1 stating that the optimal 	
under this cost function is just the mean of the difference of the remaining terms. Note that
� ��
���� � � � � '<� � � '�� ( � � � � ( � � � ( ��'<� and � ��
���� �� � � � '<� �� � '�� ( � � � � ( � �� � ( ��'9� . Several
additional assumptions lead to Equation 1. First, let us assume that the prior probabilities
are equal (so � � '<� ��� ! � ) and that the estimated and true priors are negligibly different (i.e.,1�� �1�� � ). Secondly, if we assume that � ��
���� � ��� , this implies that

� � '<��:;� � ( � � � � ( �>'<�=: � � '�� ( �
which means that

� � ( �>'<� � � � '�� ( � under equal priors. While KL-divergence is not sym-
metric in general, we can see that if this holds (or is approximately true for a given problem)
then the remaining correction is � � ��

exactly yielding
�� *-,

in Equation 1.

To gain further insight, we can examine the case when the likelihoods are Gaussian uni-
variate distributions, with means � * ��� , and variances � �* ��� �, . In this case,

� *., � ���� � �*� �, � � �,� �* / � � * ��� , � �! �� �, �
�� �*#"�$ (2)

It is easy to see that for � �* � � �, the value of
� *-,

is zero for any � * ��� , . By computing the

derivative %'&)(+*%', @( we can show that
� *-,

is monotonically increasing with � �* . Hence,
� *.,

is

positive iff � �*.- � �, and therefore it penalizes the distribution (class) with higher variance.
2Note that we have dropped the / argument for notational simplicity.



VOCAB SIZE WER � *-, WER
)+*-,

75 2.33584 1.91561
150 3.31072 2.89833
300 5.22513 4.51365
600 7.39268 6.18517

Table 1: Word error rates (WER) for likelihood ratio � *., and augmented likelihood ratio)+*-,
based classification for various numbers of classes (VOCAB SIZE).

Similar relations hold for multivariate Gaussians with means � * � � , and variances
� * � � , .� � *-, ����� � � * ��� �, � � , ��� �* � / � � * � � , � � � ��� �, � ��� �* � � � * � � , � (3)

The above is zero when the two covariance matrices are equal. This implies that for Gaus-
sians with equal covariance matrices,

� � ( �$� '<� � � � '��$� ( � and our correction term is optimal.
This is the same as the condition for Fisher’s linear discriminant analysis (LDA). Moreover,
in the case

� * � 	 � , with 	
	 � , we have that
� *-,�� � for 	 � �

and
� *-, 	 � for 	
	 �

which again implies that
� *.,

penalizes the class that has larger covariance.

2.1 Results

We tried this method (assuming that 1 *-, � �1 *., � � ) on a medium vocabulary speech
recognition task. In our case the likelihood functions � � � � '<� are hidden Markov model
(HMM) scores3. The task we chose is NYNEX PHONEBOOK[4], an isolated word speech
corpus. Details of the experimental setup, training/test sets, and model topologies, are
described in [1]4.

In general, there are a number of ways to compute
� *-,

. These include 1) analytically, using
estimated model parameters (possible, for example, with Gaussian densities), 2) computing
the KL-divergences on training data using a law-of-large-numbers-like average of likeli-
hood ratios and using training-data estimated model parameters, 3) doing the same as 2 but
using test data where hypothesized answers come from a first pass � *., -based classification,
and 4) Monte-Carlo methods where again the same procedure as 2 is used, but the data is
sampled from the training-data estimated distributions. For HMMs, method 1 above is not
possible. Also, the data set we used (PHONEBOOK) uses different classes for the train-
ing and test sets. In other words, the training and test vocabularies are different. During
training, phone models are constructed that are pieced together for the test vocabularies.
Therefore, method 2 above is also not possible for this data.

Either method 3 or 4 can be used in our case, and we used method 3 in all our experiments.
Of course, using the true test labels in method 3 would be the ideal measure of the degree
of confusion between models, but these are of course not available (see Figure 2, however,
showing the results of a cheating experiment). Therefore, we use the hypothesized labels
from a first stage to compute

�� *-,
.

The procedure thus is as follows: 1) obtain � � � � '<� using maximum likelihood EM training,
2) classify the test set using only

�� *-, and record the error rate, 3) using the hypothesized
class labels (answers with errors) to step 2, compute

�� *.,
, 4) re-classify the test set using

the score
) *-, � �� *-, � �� *.,

and record the new error rate.
) *-,

is used if either one of
� � '��#� ( �

3Using 4 state per phone, 12 Gaussian mixtures per state HMMs, totaling 200k free model pa-
rameters for the system.

4Note, however, that error results here are reported on the development set, i.e., PHONEBOOK
lists � a,b,c,d ��� o,y �



VOCAB � *-, RAND1 RAND500 RAND1000 WORLD CUP
75 2.33584 1.87198 1.82047 1.91467 2.12777

150 3.31072 2.88505 2.71881 2.72809 2.79516
300 5.22513 4.41428 4.34608 4.28930 3.81583
600 7.39268 6.15828 6.13085 5.91440 5.93883

Table 2: The WER under different tournament strategies

or
� � ( �$� '<� is below a threshold (i.e., when a likely confusion exists), otherwise

�� *-, is used
for classification.

Table 1 shows the result of this experiment. The first column shows the vocabulary size
of the system (identical to the number of classes)5. The second column shows the word
error rate (WER) using just � *-, , and the third column shows WER using

) *.,
. As can be

seen, the WER decreases significantly with this approach. Note also that no additional free
parameters are used to obtain these improvements.

3 Playing Games

We may view either � *-, or
) *.,

as providing a score of class ' over
(

— when positive,
class ' wins, and when negative, class

(
wins. In general, the classification procedure

may be viewed as a tournament-style game, where for a given sample � , different classes
correspond to different players. Players pair together and play each other, and the winner
goes on to play another match with a different player. The strategy leading to table 1
required a particular class presentation order — in that case the order was just the numeric
ordering of the arbitrarily assigned integer classes (corresponding to words in this case).

Of course when � *-, alone is used, the order of the comparisons do not matter, leading to
a transitive game [5] (the order of player pairings do not change the final winner). The
quantity

) *-,
, however, is not guaranteed to be transitive, and when used in a tournament

it results in what is called an intransitive game[5]. This means, for example, that � might
win over � who might win over � who then might win over � . Games may be depicted
as directed graphs, where an edge between two players point towards the winner. In an
intransitive game, the graph contains directed cycles. There has been very little research on
intransitive game strategies — there are in fact a number of philosophical issues relating
to if such games are valid or truly exist. Nevertheless, we derived a number of tourna-
ment strategies for playing such intransitive games and evaluated their performance in the
following.

Broadly, there are two tournament types that we considered. Given a particular ordering of
the classes

� � � ��� � �"!#!$!$�=� % � , we define a sequential tournament when � � plays � � , the winner
plays ��� , the winner plays ��� and so on. We also define a tree-based tournament when � �
plays ��� , � � plays � � , and so on. The tree-based tournament is then applied recursively on
the resulting � : � winners until a final winner is found.

Based on the above, we investigated several intransitive game playing strategies. For
RAND1, we just choose a single random tournament order in a sequential tournament. For
RAND500, we run 500 sequential tournaments, each one with a different random order.
The ultimate winner is taken to be the player who wins the most tournaments. The third
strategy plays 1000 rather than 500 tournaments. The final strategy is inspired by world-
cup soccer tournaments: given a randomly generated permutation, the class sequence is

5The 75-word case is an average result of 8 experiments, the 150-word case is an average of 4
cases, and the 300-word case is an average of 2 cases. There are 7291 separate test samples in the
600-word case, and on average about 911 samples per 75-word test case.



vocabulary
���

var max
���

var max
75 1.0047 0.0071 2.7662 1.0285 0.0759 3.8230

150 1.0061 0.0126 3.6539 1.0118 0.0263 3.8724
300 1.0241 0.0551 4.0918 1.0170 0.0380 3.9072
600 1.0319 0.0770 5.0460 1.0533 0.1482 5.5796

Table 3: The statistics of winners. Columns 2-4: 500 random tournaments, Columns 5-7:
1000 random tournaments.

separated into 8 groups. We pick the winner of each group using a sequential tournament
(the “regionals”). Then a tree-based tournament is used on the group winners.

Table 1 compares these different strategies. As can be seen, the results get slightly better
(particularly with a larger number of classes) as the number of tournaments increases. Fi-
nally, the single word cup strategy does surprisingly well for the larger class sizes. Note that
the improvements are statistically significant over the baseline (0.002 using a difference of
proportions significance test) and the improvements are more dramatic for increasing vo-
cabulary size. Furthermore, the it appears that the larger vocabulary sizes benefit more
from the larger number (1000 rather than 500) of random tournaments.
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Figure 1: 75-word vocabulary case. Left: probability of error given that there exists a cycle
of at least the given length (a cycle length of one means no cycle found). Right:probability
of error given that at least the given number of cycles exist.

3.1 Empirical Analysis

In order to better understand our results, this section analyzes the 500 and 1000 random
tournament strategies described above. Each set of random tournaments produces a set
of winners which may be described by a histogram. The entropy

�
of that histogram

describes its spread, and the number of typical winners is approximately
���

. This is of
course relative to each sample � so we may look at the average ( ��� ����� ), variance, and
maximum of this number (the minimum is 1.0 in every case). This is given in Table 3 for
the 500 and 1000 cases.

The table indicates that there is typically only one winner since � ��� is approximately 1
and the variances are small. This shows further that the winner is typically not in a cycle, as
the existence of a directed cycle in the tournament graph would probably lead to different
winners for each random tournament. The relationship between properties of cycles and
WER is explored below.

When the tournament is intransitive (and therefore the graph possess a cycle), our second
analyses shows that the probability of error tends to increase. This is shown in Figure 1
showing that the error probability increases both as the detected cycle length and the num-



vocabulary � *., skip WER #cycles(%) break WER #cycles(%)
75 2.33584 1.90237 13.89 1.90223 9.34

150 3.31072 2.76814 19.6625 2.67814 16.83
300 5.22513 4.46296 22.38 4.46296 21.34
600 7.39268 6.50117 31.96 6.50117 31.53

Table 4: WER results using two strategies (skip and break) that utilize information about
cycles in the tournament graphs, compared to baseline � *., . The

�����
and

� ���
columns show

the number of cycles detected relative to the number of samples in each case.

ber of detected cycles increases. 6 This property suggests that the existence of intransitivity
could be used as a confidence measure, or could be used to try to reduce errors.

As an attempt at the latter, we evaluated two very simple heuristics that try to eliminate
cycles as detected during classification. In the first method (skip), we run a sequential
tournament (using a random class ordering) until either a clear winner is found (a transitive
game), or a cycle is detected. If a cycle is detected, we select two players not in the
cycle, effectively jumping out of the cycle, and continue playing until the end of the class
ordering. If winner cannot be determined (because there are too few players remaining), we
backoff and use � *-, to select the winner. In a second method (break), if a cycle is detected,
we eliminate the class having the smallest likelihood from that cycle, and then continue
playing as before. Neither method detects all the cycles in the graph (their number can be
exponentially large).

As can be seen, the WER results still provide significant improvements over the baseline,
but are no better than earlier results. Because the tournament strategy is coupled with cycle
detection, the cycles detected are different in each case (the second method detecting fewer
cycles presumably because the eliminated class is in multiple cycles). In any case, it is
apparent that further work is needed to investigate the relationship between the existence
and properties of cycles and methods to utilize this information.

4 Iterative Determination of KL-divergence

In all of our experiments so far, KL-divergence is calculated according to the initial hy-
pothesized answers. We would expect that using the true answers to determine the KL-
divergence would improve our results further. The top horizontal lines in Figure 2 shows
the original baseline results, and the bottom lines show the results using the true answers (a
cheating experiment) to determine the KL-divergence. As can be seen, the improvement is
significant thereby confirming that using

� *-,
can significantly improve classification per-

formance. Note also that the relative improvement stays about constant with increasing
vocabulary size.

This further indicates that an iterative strategy for determining KL-divergence might fur-
ther improve our results. In this case,

�� *-, is used to determine the answers to compute the

first set of KL-divergences used in
) 
 � �*-,

. This is then used to compute a new set of an-

swers which then is used to compute a new scores
) 
 � �*-,

and so on. The remaining plots in
Figure 2 show the results of this strategy for the 500 and 1000 random trials case (i.e., the
answers used to compute the KL-divergences in each case are obtained from the previous
set of random tournaments using the histogram peak procedure described earlier). Rather
surprisingly, the results show that iterating in this fashion does not influence the results in

6Note that this shows a lower bound on the number of cycles detected. This is saying that if we
find, for example, four or more cycles then the chance of error is high.
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Figure 2: Baseline using likelihood ratio (top lines), cheating results using correct answers
for KL-divergence (bottom lines), and the iterative determination of KL-distance using
hypothesized answers from previous iteration (middle lines).

any appreciable way — the WERs seem to decrease only slightly from their initial drop. It
is the case, however, that as the number of random tournaments increases, the results be-
come closer to the ideal as the vocabulary size increases. We are currently studying further
such iterative procedures for recomputing the KL-divergences.

5 Discussion and Conclusion

We have introduced a correction term to the likelihood ratio classification method that is
justified by the difference between the estimated and true class conditional probabilities� � �8� '<�>� �� � � � '<� . The correction term

� *-,
is an estimate of the classification bias that would

optimally compensate for these differences. The presence of
� *-,

makes the class com-
parisons intransitive and we introduce several tournament-like strategies to compensate.
While the introduction of

� *.,
consistently improves the classification results, further im-

provements are obtained by the selection of the comparison strategy. Further details and
results of our methods will appear in forthcoming publications and technical reports.
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