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Abstract

Over the last years, particle filters have been applied with great success to
a variety of state estimation problems. We present a statistical approach to
increasing the efficiency of particle filters by adapting the size of sample
sets on-the-fly. The key idea of the KLD-sampling method is to bound the
approximation error introduced by the sample-based representation of the
particle filter. The name KLD-sampling is due to the fact that we measure
the approximation error by the Kullback-Leibler distance. Our adaptation
approach chooses a small number of samples if the density is focused on
a small part of the state space, and it chooses a large number of samples
if the state uncertainty is high. Both the implementation and computation
overhead of this approach are small. Extensive experiments using mobile
robot localization as a test application show that our approach yields drastic
improvements over particle filters with fixed sample set sizes and over a
previously introduced adaptation technique.

1 Introduction

Estimating the state of a dynamic system based on noisy sensor measurements is extremely
important in areas as different as speech recognition, target tracking, mobile robot navigation,
and computer vision. Over the last years, particle filters have been applied with great success
to a variety of state estimation problems (see [3] for a recent overview). Particle filters
estimate the posterior probability density over the state space of a dynamic system [4, 11].
The key idea of this technique is to represent probability densities by sets of samples. It is
due to this representation, that particle filters combine efficiency with the ability to represent
a wide range of probability densities. The efficiency of particle filters lies in the way they
place computational resources. By sampling in proportion to likelihood, particle filters focus
the computational resources on regions with high likelihood, where things really matter.

So far, however, an important source for increasing the efficiency of particle filters has only
rarely been studied: Adapting the number of samples over time. While variable sample
sizes have been discussed in the context of genetic algorithms [10] and interacting particle
filters [2], most existing approaches to particle filters use a fixed number of samples during
the whole state estimation process. This can be highly inefficient, since the complexity of the
probability densities can vary drastically over time. An adaptive approach for particle filters
has been applied by [8] and [5]. This approach adjusts the number of samples based on the
likelihood of observations, which has some important shortcomings, as we will show.



In this paper we introduce a novel approach to adapting the number of samples over time.
Our technique determines the number of samples based on statistical bounds on the sample-
based approximation quality. Extensive experiments using a mobile robot indicate that our
approach yields significant improvements over particle filters with fixed sample set sizes and
over a previously introduced adaptation technique. The remainder of this paper is organized
as follows: In the next section we will outline the basics of particle filters and their appli-
cation to mobile robot localization. In Section 3, we will introduce our novel technique to
adaptive particle filters. Experimental results are presented in Section 4 before we conclude
in Section 5.

2 Particle filters for Bayesian filtering and robot localization

Particle filters address the problem of estimating the state = of a dynamical system from
sensor measurements. The goal of particle filters is to estimate a posterior probability density
over the state space conditioned on the data collected so far. The data typically consists of
an alternating sequence of time indexed observations z; and control measurements u;, which
describe the dynamics of the system. Let the belief Bel(z;) denote the posterior at time
t. Under the Markov assumption, the posterior can be computed efficiently by recursively
updating the belief whenever new information is received. Particle filters represent this belief
by a set S; of n weighted samples distributed according to Bel(z;):

Sp = (@, w?) |i=1,...,n}

Here each m§’> is a sample (or state), and the wi’) are non-negative numerical factors called
importance weights, which sum up to one. The basic form of the particle filter updates
the belief according to the following sampling procedure, often referred to as sequential
importance sampling with re-sampling (SISR, see also [4, 3]):

Re-sampling: Draw with replacement a random sample :z;g’_)l from the sample set S;_;

according to the (discrete) distribution defined through the importance weights wﬁ)l. This
sample can be seen as an instance of the belief Bel(x;_1).

Sampling: Use xi’_)l and the control information u;_; to sample xﬁj) from the distribution

p(zy | z¢—1,us—1), Which describes the dynamics of the system. mgj) now represents the
density given by the product p(x; | z¢ 1,us1)Bel(z;—1). This density is the proposal
distribution used in the next step.

Importance sampling: Weight the sample mﬁj) by the importance weight p(z; | xﬁj)), the
likelihood of the sample xﬁj) given the measurement z;.

Each iteration of these three steps generates a sample drawn from the posterior belief
Bel(x;). After n iterations, the importance weights of the samples are normalized so that
they sum up to 1. It can be shown that this procedure in fact approximates the posterior
density, using a sample-based representation [4, 2, 3].

Particlefi Itersfor mobilerobot localization

We use the problem of mobile robot localization to illustrate and test our approach to adaptive
particle filters. Robot localization is the problem of estimating a robot’s pose relative to a
map of its environment. This problem has been recognized as one of the most fundamental
problems in mobile robotics [1]. The mobile robot localization problem comes in different
flavors. The simplest localization problem is position tracking. Here the initial robot pose
is known, and localization seeks to correct small, incremental errors in a robot’s odometry.
More challenging is the global localization problem, where a robot is not told its initial pose,
but instead has to determine it from scratch.
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Fig. 1. a) Pioneer robot used throughout the experiments. b)-d) Map of an offi ce environment along
with a series of sample sets representing the robot’s belief during global |ocalization using sonar sensors
(samples are projected into 2D). The size of the environment is 54m x 18m. b) After moving 5m, the
robot is till highly uncertain about its position and the samples are spread trough major parts of the
free-space. ¢) Even as the robot reaches the upper left corner of the map, its belief is still concentrated
around four possible locations. d) Finally, after moving approximately 55m, the ambiguity is resolved
and the robot knows where it is. All computation can be carried out in real-time on alow-end PC.

In the context of robot localization, the state x; of the system is the robot’s position, which is
typically represented in a two-dimensional Cartesian space and the robot’s heading direction.
The state transition probability p(z; | z:—1,u:—1) describes how the position of the robot
changes using information u. collected by the robot’s wheel encoders. The perceptual model
p(y: | =) describes the likelihood of making the observation y; given that the robot is at
location z;. In most applications, measurements consist of range measurements or camera
images (see [6] for details). Figure 1 illustrates particle filters for mobile robot localization.
Shown there is a map of a hallway environment along with a sequence of sample sets during
global localization. In this example, all sample sets contain 100,000 samples. While such
a high number of samples might be needed to accurately represent the belief during early
stages of localization (cf. 1(a)), it is obvious that only a small fraction of this number suffices
to track the position of the robot once it knows where it is (cf. 1(c)). Unfortunately, it is not
straightforward how the number of samples can be adapted on-the-fly, and this problem has
only rarely been addressed so far.

3 Adaptive particle filters with variable sample set sizes

The localization example in the previous section illustrates that the efficiency of particle
filters can be greatly increased by changing the number of samples over time. Before we
introduce our approach to adaptive particle filters, let us first discuss an existing technique.

3.1 Likelihood-based adaptation

We call this approach likelihood-based adaptation since it determines the number of sam-
ples such that the sum of non-normalized likelihoods (importance weights) exceeds a pre-
specified threshold. This approach has been applied to dynamic Bayesian networks [8] and
mobile robot localization [5]. The intuition behind this approach can be illustrated in the
robot localization context: If the sample set is well in tune with the sensor reading, each indi-
vidual importance weight is large and the sample set remains small. This is typically the case
during position tracking (cf. 1(c)). If, however, the sensor reading carries a lot of surprise,
as is the case when the robot is globally uncertain or when it lost track of its position, the




individual sample weights are small and the sample set becomes large.

The likelihood-based adaptation directly relates to the property that the variance of the im-
portance sampler is a function of the mismatch between the proposal distribution and the
distribution that is being approximated. Unfortunately, this mismatch is not always an accu-
rate indicator for the necessary number of samples. Consider, for example, the ambiguous
belief state consisting of four distinctive sample clusters shown in Fig. 1(b). Due to the sym-
metry of the environment, the average likelihood of a sensor measurement observed in this
situation is approximately the same as if the robot knew its position unambiguously (cf. 1(c)).
Likelihood-based adaptation would therefore use the same number of samples in both situ-
ations. Nevertheless, it is obvious that an accurate approximation of the belief shown in
Fig. 1(b) requires a multiple of the samples needed to represent the belief in Fig. 1(c).

3.2 KLD-sampling

The key idea of our approach is to bound the error introduced by the sample-based repre-
sentation of the particle filter. To derive this bound, we assume that the true posterior is
given by a discrete, piecewise constant distribution such as a discrete density tree or a multi-
dimensional histogram [8, 9]. For such a representation we can determine the number of
samples so that the distance between the maximum likelihood estimate (MLE) based on the
samples and the true posterior does not exceed a pre-specified threshold . We denote the
resulting approach the KLD-sampling algorithm since the distance between the MLE and the
true distribution is measured by the Kullback-Leibler distance. In what follows, we will first
derive the equation for determining the number of samples needed to approximate a discrete
probability distribution (see also [12, 7]). Then we will show how to modify the basic particle
filter algorithm so that it realizes our adaptation approach.

To see, suppose that n samples are drawn from a discrete distribution with & different bins.
Let the vector X = (X4, ..., X}x) denote the number of samples drawn from each bin. X
is distributed according to a multinomial distribution, i.e. X =~ Multinomialy(n, p), where
p = p1...px specifies the probability of each bin. The maximum likelihood estimate of p is

givenby p = n~1X. Furthermore, the likelihood ratio statistic \,, for testing pis

k . k .
log A, = ZXJ log (Iﬁ) = nz;ﬁj log (Iﬁ) . 1)
=1 Pj =1 Pi
J= J=
When p is the true distribution, the likelihood ratio converges to a chi-square distribution:

2log A\, —a X 4 as n — 0o 2

Please note that the sum in the rightmost term of (1) specifies the K-L distance K (p,p)
between the MLE and the true distribution. Now we can determine the probability that this
distance is smaller than e, given that n samples are drawn from the true distribution:

Py(K(p:p) <€) = Pp(2nK(p,p) < 2ne) = P(xj_1 < 2ne) ®)

The second step in (3) follows by replacing nK (p, p) with the likelihood ratio statistic, and
by the convergence result in (2). The quantiles of the chi-square distribution are given by

P(X?cﬂ < X%—l,l—é) =1-4. 4)
Now if we choose n such that 2ne is equal to X%fl,lﬂs, we can combine (3) and (4) to get
Py(K(pp) <€) = 1-6. (5)
This derivation can be summarized as follows: If we choose the number of samples n as

1

n= 2_€X?c71,1767 (6)



then we can guarantee that with probability 1 — &, the K-L distance between the MLE and
the true distribution is less than . In order to determine n according to (6), we need to
compute the quantiles of the chi-square distribution. A good approximation is given by the
Wilson-Hilferty transformation [7], which yields

3
1, L k-1 2 [ 2
= 5 Xk-11-5 = “of {1 9k —1) + g(k_l)zl—é} 5 ()

where z;_s is the upper 1 — ¢ quantile of the standard normal N (0, 1) distribution.

This concludes the derivation of the sample size needed to approximate a discrete distribution
with an upper bound ¢ on the K-L distance. From (7) we see that the required number
of samples is proportional to the inverse of the £ bound, and to the first order linear in the
number & of bins with support. Here we assume that a bin of the multinomial distribution has
support if its probability is above a certain threshold. This way the number & will decrease
with the certainty of the state estimation *.

It remains to be shown how to apply this result to particle filters. The problem is that we do
not know the true posterior distribution (the estimation of this posterior is the main goal of the
particle filter). Fortunately, (7) shows that we do not need the complete discrete distribution
but that it suffices to determine the number & of bins with support. However, we do not know
this quantity before we actually generate the distribution. Our approach is to estimate k£ by
counting the number of bins with support during sampling. To be more specific, we estimate
k for the proposal distribution p(x¢ | ¢—1,us—1)Bel(z:—1) resulting from the first two steps
of the particle filter update. The determination of k can be done efficiently by checking for
each generated sample whether it falls into an empty bin or not. Sampling is stopped as
soon as the number of samples exceeds the threshold specified in (7). An update step of the
resulting KLD-sampling particle filter is given in Table 1.

The implementation of this modified particle filter is straightforward. The only difference to
the original algorithm is that we have to keep track of the number & of supported bins. The
bins can be implemented either as a fixed, multi-dimensional grid, or more efficiently as tree
structures [8, 9]. Please note that the sampling process is guaranteed to terminate, since for a
given bin size A, the maximum number & of bins is limited.

4 Experimental results

We evaluated our approach using data collected with one of our robots (see Figure 1). The
data consists of a sequence of sonar scans and odometry measurements annotated with time-
stamps to allow systematic real-time evaluations. In all experiments we compared our KLD-
sampling approach to the likelihood-based approach discussed in Section 3.1, and to particle
filters with fixed sample set sizes. Throughout the experiments we used different parameters
for the three approaches. For the fixed approach we varied the number of samples, for the
likelihood-based approach we varied the threshold used to determine the number of samples,
and for our approach we varied ¢, the bound on the K-L distance. In all experiments, we
used a value of 0.99 for § and a fixed bin size A of 50cm x 50cm x 10deg. We limited the
maximum number of samples for all approaches to 100,000.

1This need for athreshold to determine k (and to make k vary over time) is not particularly elegant.
However, it results in an effi cient implementation that does not even depend on the value of the thresh-
old itself (see next paragraph). We also implemented a version of the algorithm using the complexity
of the state space to determine the number of samples. Complexity is measured by 27, where H isthe
entropy of the distribution. This approach does not depend on thresholding at all, but it does not have a
guarantee of approximation bounds and does not yield signifi cantly different results.



Inputs: S; 1 = {<x§’21,w§’21) |i=1,...,n} representing belief Bel(z; 1),

control measurement u;_1, observation z;, bounds e and 4, bin size A
S;:=0,n=0,k=0,a=0 /* Initialize */
do [* Generate samples ... */
Sample an index j(n) from the discrete distribution given by the weights in S;_;

sample 2™ from p(z; | 24—y, ue—1) using 2™ and u,_,

wi™ = p(z | 2™); /[* Compute importance weight */
a:=a+ w§"> * Update normalization factor */
Sy =S U {(xﬁ”), w§”>)} /* Insert sample into sample set */
if (a:é”) falls into empty bin b) then  /* Update number of bins with support */
k=k+1
b := non-empty
n:=n+1 /* Update number of generated samples */
while (n < X3 _11_5) /* ... until K-L bound is reached */
fori:=1,...,n do /* Normalize importance weights */
w? = w? Ja
return S

Table 1: KLD-sampling algorithm.

Approximation of the true posterior

In the first set of experiments we evaluated how accurately the different methods approximate
the true posterior density. Since the ground truth for these posteriors is not available, we
compared the sample sets generated by the different approaches with reference sample sets.
These reference sets were generated using a particle filter with a fixed number of 200,000
samples (far more than actually needed for position estimation). After each iteration, we
computed the K-L distance between the sample sets and the corresponding reference sets,
using histograms for both sets. Note that in these experiments the time-stamps were ignored
and the algorithms was given as much time as needed to process the data. Fig. 2(a) plots
the average K-L distance along with 95% confidence intervals against the average number
of samples for the different algorithms (for clarity, we omitted the large error bars for K-
L distances above 1.0). Each data point represents the average of 16 global localization
runs with different start positions of the robot (each run itself consists of approximately 150
sample set comparisons at the different points in time). As expected, the more samples are
used, the better the approximation. The curves also illustrate the superior performance of our
approach: While the fixed approach requires about 50,000 samples before it converges to a K-
L distance below 0.25, our approach converges to the same level using only 3,000 samples on
average. This is also an improvement by a factor of 12 compared to the approximately 36,000
samples needed by the likelihood-based approach. In essence, these experiments indicate that
our approach, even though based on several approximations, is able to accurately track the
true posterior using significantly smaller sample sets on avarage than the other approaches.

Real-time performance

Due to the computational overhead for determining the number of samples, it is not clear
that our approach yields better results under real-time conditions. To test the performance
of our approach under realistic conditions, we performed multiple global localization ex-
periments under real-time considerations using the timestamps in the data sets. Again, the
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Fig. 2. The z-axis represents the average sample set size for different parameters of the three ap-
proaches. @) The y-axis plots the K-L distance between the reference densities and the sample sets
generated by the different approaches (real-time constraints were not considered in this experiment).
b) The y-axis represents the average localization error measured by the distance between estimated
positions and reference positions. The U-shape in b) is due to the fact that under real-time conditions,
an increasing number of samplesresultsin higher update times and therefore loss of sensor data.

different average numbers of samples for KLD-sampling were obtained by varying the e-
bound. The minimum and maximum numbers of samples correspond to e-bounds of 0.4 and
0.015, respectively. As a natural measure of the performance of the different algorithms, we
determined the distance between the estimated robot position and the corresponding refer-
ence position after each iteration. > The results are shown in Fig. 2(b). The U-shape of all
three graphs nicely illustrates the trade-off involved in choosing the number of samples under
real-time constraints: Choosing not enough samples results in a poor approximation of the
underlying posterior and the robot frequently fails to localize itself. On the other hand, if we
choose too many samples, each update of the algorithm can take several seconds and valuable
sensor data has to be discarded, which results in less accurate position estimates. Fig. 2(b)
also shows that even under real-time conditions, our KLD-sampling approach yields drastic
improvements over both fixed sampling and likelihood-based sampling. The smallest aver-
age localization error is 44cm in contrast to an average error of 79cm and 114cm for the
likelihood-based and the fixed approach, respectively. This result is due to the fact that our
approach is able to determine the best mix between more samples during early stages of
localization and less samples during position tracking. Due to the smaller sample sets, our
approach also needs significantly less processing power than any of the other approaches.

5 Conclusions and Future Research

We presented a statistical approach to adapting the sample set size of particle filters on-
the-fly. The key idea of the KLD-sampling approach is to bound the error introduced by
the sample-based belief representation of the particle filter. At each iteration, our approach
generates samples until their number is large enough to guarantee that the K-L distance be-
tween the maximum likelihood estimate and the underlying posterior does not exceed a pre-
specified bound. Thereby, our approach chooses a small number of samples if the density is
focused on a small subspace of the state space, and chooses a large number of samples if the
samples have to cover a major part of the state space.

Both the implementational and computational overhead of this approach are small. Exten-
sive experiments using mobile robot localization as a test application show that our approach
yields drastic improvements over particle filters with fixed sample sets and over a previ-
ously introduced adaptation approach [8, 5]. In our experiments, KLD-sampling yields bet-

2Position estimates are extracted using histograming and local averaging, and the reference positions
were determined by evaluating the robot’s highly accurate laser range-fi nder information.



ter approximations using only 6% of the samples required by the fixed approach, and using
less than 9% of the samples required by the likelihood adaptation approach. So far, KLD-
sampling has been tested using robot localization only. We conjecture, however, that many
other applications of particle filters can benefit from this method.

KLD-sampling opens several directions for future research. In our current implementation
we use a discrete distribution with a fixed bin size to determine the number of samples. We as-
sume that the performance of the filter can be further improved by changing the discretization
over time, using coarse discretizations when the uncertainty is high, and fine discretizations
when the uncertainty is low. Our approach can also be extended to the case where in certain
parts of the state space, highly accurate estimates are needed, while in other parts a rather
crude approximation is sufficient. This problem can be addressed by locally adapting the dis-
cretization to the desired approximation quality using multi-resolution tree structures [8, 9]
in combination with stratified sampling. As a result, more samples are used in “important”
parts of the state space, while less samples are used in other parts. Another area of future
research is the thorough investigation of particle filters under real-time conditions. In many
applications the rate of incoming sensor data is higher than the update rate of the particle
filter. This introduces a trade-off between the number of samples and the amount of sensor
data that can be processed (cf. 2(b)). In our future work, we intend to address this problem
using techniques similar to the ones introduced in this work.
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