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Abstract

In this paper we introduce a new sparseness inducing prior which does not involve any (hy-
per)parameters that need to be adjusted or estimated. Although other applications are possi-
ble, we focus here on supervised learning problems: regression and classification. Experi-
ments with several publicly available benchmark data sets show that the proposed approach
yields state-of-the-art performance. In particular, our method outperforms support vector
machines and performs competitively with the best alternative techniques, both in terms
of error rates and sparseness, although it involves no tuning or adjusting of sparseness-
controlling hyper-parameters.

1 Introduction

The goal of supervised learning is to infer a functional relation y = f(x), based on a
set of (maybe noisy) training examples D = {(x1,%1), ..., (Xn,¥n)}. Usually, the inputs
are vectors, x; = [@;1,...,%i, 4] € IR When y is continuous (typically y € IR), we
are in the context of regression, whereas in classification y is of categorical nature (e.g.,
y € {—1,1}). Usually, the structure of f(-) is assumed fixed and the objective is to estimate
a vector of parameters 3 defining it; accordingly we write y = f(x, 3).

To achieve good generalization (i.e. to perform well on yet unseen data) it is necessary
to control the complexity of the learned function (see [1] - [4], and the many references
therein). In Bayesian approaches, complexity is controlled by placing a prior on the func-
tion to be learned, i.e., on 3. This should not be confused with a generative (informative)
Bayesian approach, since it involves no explicit modelling of the joint probability p(x, y).
A common choice is a zero-mean Gaussian prior, which appears under different names,
like ridge regression [5], or weight decay, in the neural learning literature [6]. Gaussian
priors are also used in non-parametric contexts, like the Gaussian processes (GP) approach
[2], [7], [8], [9], which has roots in earlier spline models [10] and regularized radial basis
functions [11]. Very good performance has been reported for methods based on Gaussian
priors [8], [9]. Their main disadvantage is that they do not control the structural complexity
of the resulting functions. That is, if one of the components of 3 (say, a weight in a neu-
ral network) happens to be irrelevant, a Gaussian prior will not set it exactly to zero, thus
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pruning that parameter, but to some small value.

Sparse estimates (i.e., in which irrelevant parameters are set exactly to zero) are desirable
because (in addition to other learning-theoretic reasons [4]) they correspond to a structural
simplification of the estimated function. Using Laplacian priors (equivalently, I, -penalized
regularization) is known to promote sparseness [12] - [15]. Support vector machines (SVM)
take a non-Bayesian approach to the goal of sparseness [2], [4]. Interestingly, however, it
can be shown that the SVM and [ -penalized regression are closely related [13].

Both in approaches based on Laplacian priors and in SVMs, there are hyper-parameters
which control the degree of sparseness of the obtained estimates. These are commonly
adjusted using cross-validation methods which do not optimally utilize the available data,
and are time consuming. We propose an alternative approach which involves no hyper-
parameters. The key steps of our proposal are: (i) a hierarchical Bayes interpretation
of the Laplacian prior as a normal/independent distribution (as used in robust regression
[16]); (ii) a Jeffreys’ non-informative second-level hyper-prior (in the same spirit as [17])
which expresses scale-invariance and, more importantly, is parameter-free [18]; (iii) a sim-
ple expectation-maximization (EM) algorithm which yields a maximum a posteriori (MAP)
estimate of 3 (and of the observation noise variance, in the case of regression).

Our method is related to the automatic relevance determination (ARD) concept [7], [19],
which underlies the recently proposed relevance vector machine (RVM) [20], [21]. The
RVM exhibits state-of-the-art performance, beating SVMs both in terms of accuracy and
sparseness [20], [21]. However, we do not resort to a type-11 maximum likelihood approxi-
mation [18] (as in ARD and RVM); rather, our modelling assumptions lead to a marginal a
posteriori probability function on 8 whose mode is located by a very simple EM algorithm.
Like the RVM, but unlike the SVM, our classifier produces probabilistic outputs.

Experimental evaluation of the proposed method, both with synthetic and real data, shows
that it performs competitively with (often better than) GP-based methods, RVM, and SVM.

2 Regression

We consider functions of the type f(x, 8) = 87 h(x), i.e., that are linear with respect to 8
(whose dimensionality we will denote by k). This includes: (i) classical linear regression,
h(x) = [1,21,...,z4)T; (ii) nonlinear regression via a set of k basis functions, h(x) =
[¢1(x), --., ¢ (x)]T; (iii) kernel regression, h(x) = [1, K(x,x1), .., K(x,x,)]T, where
K(x,y) is some (symmetric) kernel function [2] (as in SVM and RVM regression), not
necessarily verifying Mercer’s condition.

We follow the standard assumption that y; = f(x;,8) + w;, for i = 1,...,n, where
[wi, ..., w,] is a set of independent zero-mean Gaussian variables with variance o2. With
Y = [y1, -, yn] 7, the likelihood function is then p(y|3) = N (y|HBA, o1), where H is the
(n x k) design matrix which depends on the x;s and on the adopted function representation,
and NV (v|u, C) denotes a Gaussian density of mean p and covariance C, evaluated at v.

With a zero-mean Gaussian prior with covariance A, p(8|A) = N (8]0, A), the posterior
p(Bly) is still Gaussian with mean and mode at

B=(c’A"" + H'H)"'H"Yy.
When A is proportional to identity, say A = 21, this is called ridge regression [5].

With a Laplacian prior for 3, p(8|a) = [, p(Bi|e), with p(8;|a) = § exp{—a|3;|}, the
posterior p(B|y) is not Gaussian. The maximum a posteriori (MAP) estimate is given by

B = argmin{||[HB — y||3 + 20|81}, o))



where [|v||2 is the Euclidean (I) norm, and ||v|ly = >_, |v;| is the Iy norm. In linear
regression this is called the LASSO (least absolute shrinkage and selection operator) [14].
The main effect of the I, penalty is that some of the components of B may be exactly zero.
If H is an orthogonal matrix, (1) can be solved separately for each 3;, leading to the soft
threshold estimation rule, widely used in wavelet-based signal/image denoising [22].

Let us consider an alternative model: let each §; have a zero-mean Gaussian prior
p(BilTi) = N(B:|0,7:), with its own variance ; (like in ARD and RVM). Now, rather
than adopting a type-Il1 maximum likelihood criterion (as in ARD and RVM), let us con-
sider hyper-priors for the 7;s and integrate them out. Assuming exponential hyper-priors
p(:|Y) = (v/2) exp{—~y 7 /2} (for 7; > 0, because these are variances) we obtain

p(Bil) Z/oz?(ﬂdTi)P(Tih) dr; = ? exp{—v/7 |Bil}.
0

This shows that the Laplacian prior is equivalent to a 2-level hierachical-Bayes model:
zero-mean Gaussian priors with independent exponentially distributed variances. This de-
composition has been exploited in robust least absolute deviation (LAD) regression [16].

The hierarchical decomposition of the Laplacian prior allows using the EM algorithm
to implement the LASSO criterion in (1) by simply regarding 7 = [ry,...,7%] as hid-
den/missing data. In fact, the complete log-posterior (with a flat prior for o2, and where
Y (7) = diag(r; ..., 71)),

_ 2
log (8, °ly, ) o« —n logo? — LB _ 5T (r)g, @

is easy to maximize with respect to 8 and 2. The E-step reduces to the computation
of the conditional expectation of Y'(7), given current (at iteration ¢) estimates o2 ;) and

Byy)- This leads to Vi) = E[Y(7)| y,0% (1), By] = viag(|By,)| 7 s [Br, | 1) The
M-step is then defined by the two following update equations:

— 1 ~
02(t+1) = EHY - Hﬂ(t)”% 3)

and -

B(t+1) = (0?44+1) V() + HTH)AHTY- (4)
This EM algorithm is not the most efficient way to solve (1); see, e.g., the methods proposed
in [23], [14]. Our main goal is to open the way to the adoption of different hyper-priors.

One question remains: how to adjust -y, which controls the degree of sparseness of the es-
timates? Our proposal is to remove v from the model, by replacing the exponential hyper-
prior by a non-informative Jeffreys hyper-prior: p(r;) Ti_l. This prior expresses igno-
rance with respect to scale (see [17], [18]) and, most importantly, it is parameter-free. Of
course this is no longer equivalent to a Laplacian prior on 3, but to some other prior. As will
be shown experimentally, this prior strongly induces sparseness and yields state-of-the-art
performance. Computationally, this choice leads to a minor modification of the EM algo-

rithm described above: matrix V 4 is now given by V ;) = diag(|,§1,(t) =2, ..., |§k,(t) |72).

Since several of the E,-s may go to zero, it is not convenient to deal with V ;). However, we
can re-write the M-step as

Bisn= U (@411 + Uy H'HU ;) U H y,

where Uy = diag(|317(t) [y ey |Bk,(t) ), thus avoiding the inversion of the elements of B(t).
Moreover, it is not necessary to invert the matrix, but simply to solve the corresponding
linear system, whose dimension is only the number of non-zero elements in U ;.



3 Regression experiments

Our first example illustrates the use of the proposed method for variable selection in stan-
dard linear regression. Consider a sequence of 20 true 3s, having from 1 to 20 non-zero
components (out of 20): from [3,0,0, ...,0] to [3, 3, ..., 3]. For each 3, we obtain 100 ran-
dom (50 x 20) design matrices, following the procedure in [14], and for each of these, we
obtain data points with unit noise variance. Fig. 1 (a) shows the mean number of estimated
non-zero components, as a function of the true number. Our method exhibits a very good
ability to find the correct number of nonzero components in 3, in an adaptive manner.

(a) (b)
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Figure 1: (a) Mean number of nonzero components in B versus the number of nonzero
components in 3 (the dotted line is the identity). (b) Kernel regression. Dotted line: true
function y = sin(z)/z. Dots: 50 noisy observations (c = 0.1). Solid line: the estimated
function. Circles: data points corresponding to the non-zero parameters.

We now consider two of the experimental setups of [14]: 8, = [3,1.5,0,0,2,0,0, 0], with
o =3,and 8, = [5,0,0,0,0,0,0,0], with o = 2. In both cases, n = 20, and the design
matrices are generated as in [14]. In table 3, we compare the relative modelling error
(ME = E[||HB — Hp||?]) improvement (with respect to the least squares solution) of our
method and of several methods studied in [14]. Our method performs comparably with the
best method for each case, although it involves no tuning or adjustment of parameters, and
is computationally faster.

Table 1: Relative (%) improvement in modeling error of several mehods.

Method Ba By
Proposed method | 28% | 74%
LASSO (CV) 13% | 69%
LASSO (GCV) | 30% | 65%
Subset selection | 13% | 77%

We now study the performance of our method in kernel regression, using Gaussian kernels,
i.e., K(x,x;) = exp{—||x—x;||?/(2h?) }. We begin by considering the synthetic example
studied in [20] and [21], where the true function is y = sin(z)/z (see Fig. 1 (b)). To
compare our results to the RVM and the variational RVM (VRVM), we ran the algorithm
on 25 generations of the noisy data. The results are summarized in Table 2 (which also
includes the SVM results from [20]). Finally, we have also applied our method to the well-
known Boston housing data-set (20 random partitions of the full data-set into 481 training
samples and 25 test samples); Table 2 shows the results, again versus SVM, RVM, and
VRVM regression (as reported in [20]). In these tests, our method performs better than



RVM, VRVM, and SVM regression, although it doesn’t require any tuning.

Table 2: Mean root squared errors and mean number of kernels for the “sin(z) /2 function

and the Boston housing examples.
“sin(x)/z” function

Boston housing

Method MSE | No. kernels Method MSE | No. kernels
New method | 0.0455 7.0 New method | 9.98 45.2
SVM 0.0519 28.0 SVM 10.29 235.2
RVM 0.0494 6.9 RVM 10.17 41.1
VRVM 0.0494 7.4 VRVM 10.36 40.9

4 Classification

In classification the formulation is somewhat more complicated, with the standard ap-
proach being generalized linear models [24]. For a two-class problem (y € {-1,1}),
the probability that an observation x belongs to, say class 1, is given by a nonlinear func-
tion ¢ : R — [0, 1] (called the link), P(y = 1|x) = ¢(87h(x)), where h(x) can have
one of the forms referred in the first paragraph of Section 2 (linear, nonlinear, kernel).

Although the most common choice for 4 is the logistic function, 1)(z) = (1+exp(—z2))~1,
in this paper, we adopt the probit model ¢(z) = ®(z), where

B(z) = /_ " N(@0,1) da, 5)

the standard Gaussian cumulative distribution function (cdf). The probit model has a simple
interpretation in terms of hidden variables [25], which we will exploit. Consider a hidden
variable z = B7h(x) 4+ w, where p(w) = N (w|0,1). Then, if the classification rule is
y=1ifz>0,andy = —1if 2 < 0, we obtain the probit model:

P(y = 1|x) = P(8"h(x) + w > 0) = ®(8"h(x)).

Given training data D = {(x1,41), ..., (Xn,¥n)}, consider the corresponding vector of
hidden/missing variables z = [z1, ..., z,]T. If we had z, we would have a simple linear
regression likelihood p(z|3) = N (z|Hf3, I). This fact suggests using the EM algorithm to
estimate 3, by treating z as missing data.

To promote sparseness, we will adopt the same hierarchical prior on 8 that we have used
for regression: p(B;|7;) = N'(8;|0,7;) and p(7;) o 1/7; (the Jeffreys prior). The complete
log posterior (with the hidden vectors 7 and z) is

logp(Bly,T,2) « —f"H'HB — 28 H 2z — 87 Y ()8, ()
which is similar to (2), except for the noise variance which is not needed here, and for
the fact that now z is missing. The expected value of Y (7) is similar to the regression
case; accordingly we define the same diagonal matrix Uy = diag(|51,s)|, -+ |Bk,)])- In

addition, we also need E[z|,B(t),y] (notice that the complete log-posterior is linear with
respect to z), which can be expressed in closed form, for each z;, as

~T
B(T;)h(xi) n N(ﬂmhgi)lml) ity —1
3 1—&(—B, h(x;
si0) = BlzilB,y] = N(BT( hr?:)) | 0(x1 ))) -
Brohx) - —— =it g = -1

‘I’(—B(j;)h(xz'))



These expressions are easily derived after noticing that z; is (conditionally) Gaussian with

~T
mean ﬁ(t)h(xi), but left-truncated at zero if y; = 1, and right-truncated at zero if y; = —1.
With sy = [s1,31), -+ sn,(t)]T, the M-step is similar to the regression case,

IB(t-i-l): U(t)(I + U(t)HTHU(t))_lU(t)HTS(t),

with s playing the role of observed data.

5 Classification experiments

In all the experiments we use kernel classifiers, with Gaussian kernels, i.e., K(x,x;) =
exp{—||x — x;||?/(2 h?)}, where h is a parameter that controls the kernel width.

Our first experiment is mainly illustrative and uses Ripley’s synthetic data’; the optimal
error rate for this problems is 8% [3]. Table 3 shows the average test set error (on 1000 test
samples) and the final number of kernels, for 20 classifiers learned from 20 random sub-
sets of size 100 from the original 250 training samples. For comparison, we also include
results (from [20]) for RVM, variational RVM (VRVM), and SVM classifiers. On this data
set, our method performs competitively with RVM and VRVM and much better than SVM
(specially in terms of sparseness). To allow the comparisons, we chose A = 0.5, as in [20].

Table 3 also reports the numbers of errors achieved by the proposed method and by several
state-of-the-art techniques on three well-known benchmark problems: the Pima Indians
diabetes?, the Leptograpsus crabs?, and the Wisconsin breast cancer 3 (WBC). For the
WBC, we report average results over 30 random partitions (300/269 training/testing, as in
[26]). All the inputs are normalized to zero mean and unit variance, and the kernel width
was set to h = 4, for the Pima and crabs problems, and to » = 12 for the WBC. On the
Pima and crabs data sets, our algorithm outperforms all the other techniques. On the WBC
data set, our method performs nearly as well as the best available alternative. The running
time of our learning algorithm (in MATLAB, on a PI11-800MHz) is less than 1 second
for crabs, and about 2 seconds for the Pima and WBC problems. Finally, notice that the
classifiers obtained with our algorithm are much sparser than the SVM classifiers.

Table 3: Numbers of test set errors for the four data sets studied (see text for details). The
numbers in square brackets in the “method” column indicate the bibliographic reference
from which the results are quoted. The numbers in parentheses indicate the (mean) number
of kernels used by the classifiers (when available).

I Method | Ripley’s | Pima | Crabs | WBC ||
Proposed method 94 (4.8) 61 (6) 0(B) |85()
SVM [20] 106 (38) | 64 (110) | N/A N/A
RVM [20] 93 (4) 65 (4) N/A N/A
VRVM [20] 92 (4) 65 (4) N/A N/A
SVM [26] N/A 64 4 9
Neural network [9] N/A 75 3 N/A
Logistic regression [9] N/A 66 4 N/A
Linear discriminant [26] N/A 67 3 19
Gaussian process [9], [26] N/A 68, 67 3 8

Available (divided into training/test sets) at: ht t p: / / www. st at s. ox. ac. uk/ pub/ PRNN/
2Availableat ht t p: / / www. st at s. ox. ac. uk/ pub/ PRNN
3Available at: http://www.ics.uci.edw/ mlearn/ML Summary.html



6 Concluding remarks

We have introduced a new sparseness inducing prior related to the Laplacian prior. Its main
feature is the absence of any hyper-parameters to be adjusted or estimated. Experiments
with several publicly available benchmark data sets, both for regression and classification,
have shown state-of-the-art performance. In particular, our approach outperforms support
vector machines and Gaussian process classifiers both in terms of error rate and sparseness,
although it involves no tuning or adjusting of sparseness-controlling hyper-parameters.

Future research includes testing on large-scale problems, like handwritten digit classifica-
tion. One of the weak points of our approach, when used with kernel-based methods, is the
need to solve a linear system in the M-step (of dimension equal to the number of training
points) whose computational requirements make it impractical to use with very large train-
ing data sets. This issue is of current interest to researchers in kernel-based methods (e.g.,
[27]), and we also intend to focus on it.
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