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Abstract
We consider the problem of obtaining the approximate maximuma posteriories-
timate of a discrete random field characterized by pairwise potentials that form a
truncated convex model. For this problem, we propose an improved st-MINCUT
basedmove makingalgorithm. Unlike previous move making approaches, which
either provide a loose bound or no bound on the quality of the solution (in terms
of the corresponding Gibbs energy), our algorithm achieves the same guaran-
tees as the standard linear programming (LP) relaxation. Compared to previ-
ous approaches based on theLP relaxation, e.g. interior-point algorithms or tree-
reweighted message passing (TRW), our method is faster as it uses only the effi-
cient st-MINCUT algorithm in its design. Furthermore, it directly provides us with
a primal solution (unlikeTRW and other related methods which solve the dual
of the LP). We demonstrate the effectiveness of the proposed approach on both
synthetic and standard real data problems.
Our analysis also opens up an interesting question regarding the relationship be-
tween move making algorithms (such asα-expansion and the algorithms pre-
sented in this paper) and the randomized rounding schemes used with convex re-
laxations. We believe that further explorations in this direction would help design
efficient algorithms for more complex relaxations.

1 Introduction
Discrete random fields are a powerful tool for formulating several problems in Computer Vision
such as stereo reconstruction, segmentation, image stitching and image denoising [22]. Given data
D (e.g. an image or a video), random fields model the probability of a set of random variablesv,
i.e. either the joint distribution ofv andD as in the case of Markov random fields (MRF) [2] or the
conditional distribution ofv given D as in the case of conditional random fields (CRF) [18]. The
word ‘discrete’ refers to the fact that each of the random variablesva ∈ v = {v0, · · · , vn−1} can
take one label from a discrete setl = {l0, · · · , lh−1}. Throughout this paper, we will assume aMRF
framework while noting that our results are equally applicable for anCRF.

An MRF defines a neighbourhood relationship (denoted byE) over the random variables such that
(a, b) ∈ E if, and only if, va andvb are neighbouring random variables. Given anMRF, a labelling
refers to a functionf such thatf : {0, · · · , n− 1} −→ {0, · · · , h− 1}. In other words, the function
f assigns to each random variableva ∈ v, a labellf(a) ∈ l. The probability of the labelling is
given by the following Gibbs distribution:Pr(f,D|θ) = exp(−Q(f,D; θ))/Z(θ), whereθ is the
parameter of theMRF andZ(θ) is the normalization constant (i.e. the partition function). Assuming
a pairwiseMRF, the Gibbs energy is given by:

Q(f,D; θ) =
∑

va∈v

θ1
a;f(a) +

∑

(a,b)∈E

θ2
ab;f(a)f(b), (1)

whereθ1
a;f(a) andθ2

ab;f(a)f(b) are the unary and pairwise potentials respectively. The superscripts
‘1’ and ‘2’ indicate that the unary potential depends on the labelling of one random variable at a
time, while the pairwise potential depends on the labelling of two neighbouring random variables.

Clearly, the labellingf which maximizes the posteriorPr(f,D|θ) can be obtained by minimizing
the Gibbs energy. The problem of obtaining such a labellingf is known as maximuma posteriori
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(MAP) estimation. In this paper, we consider the problem ofMAP estimation of random fields where
the pairwise potentials are defined bytruncated convex models[4]. Formally speaking, the pairwise
potentials are of the form

θ2
ab;f(a)f(b) = wab min{d(f(a) − f(b)), M} (2)

wherewab ≥ 0 for all (a, b) ∈ E , d(·) is a convex function andM > 0 is the truncation factor.
Recall that, by the definition of Ishikawa [9], a functiond(·) defined at discrete points (specifically
over integers) is convex if, and only if,d(x+1)−2d(x)+d(x−1) ≥ 0, for all x ∈ Z. It is assumed
thatd(x) = d(−x). Otherwise, it can be replaced by(d(x)+d(−x))/2 without changing the Gibbs
energy of any of the possible labellings of the random field [23]. Examples of pairwise potentials of
this form include the truncated linear metric and the truncated quadratic semi-metric, i.e.

θ2
ab;f(a)f(b) = wab min{|f(a) − f(b)|, M}, θ2

ab;f(a)f(b) = wab min{(f(a) − f(b))2, M}. (3)

Before proceeding further, we would like to note here that the method presented in this paper can be
trivially extended totruncated submodular models(a generalization of truncated convex models).
However, we will restrict our discussion to truncated convex models for two reasons: (i) it makes
the analysis of our approach easier; and (ii) truncated convex pairwise potentials are commonly
used in several problems such as stereo reconstruction, image denoising and inpainting [22]. Note
that in the absence of a truncation factor (i.e. when we only have convex pairwise potentials) the
exactMAP estimation can be obtained efficiently using the methods of Ishikawa [9] or Veksler [23].
However, minimizing the Gibbs energy in the presence of a truncation factor is well-known to be
NP-hard. Given their widespread use, it is not surprising that several approximateMAP estimation
algorithms have been proposed in the literature for the truncated convex model. Below, we review
such algorithms.

1.1 Related Work
Given a random field with truncated convex pairwise potentials, Felzenszwalb and Huttenlocher [6]
improved the efficiency of the popular max-product belief propagation (BP) algorithm [19] to obtain
the MAP estimate.BP provides the exactMAP estimate when the neighbourhood structureE of the
MRF defines a tree (i.e. it contains no loops). However, for a generalMRF, BP provides no bounds on
the quality of the approximateMAP labelling obtained. In fact, it is not even guaranteed to converge.

The results of [6] can be used directly to speed-up the tree-reweighted message passing algorithm
(TRW) [24] and its sequential variantTRW-S [10]. Both TRW and TRW-S attempt to optimize the
Lagrangian dual of the standard linear programming (LP) relaxation of theMAP estimation prob-
lem [5, 15, 21, 24]. UnlikeBP and TRW, TRW-S is guaranteed to converge. However, it is well-
known thatTRW-S and other related algorithms [7, 13, 25] suffer from the following problems: (i)
they are slower than algorithms based on efficient graph-cuts [22]; and (ii) they only provide a dual
solution [10]. The primal solution (i.e. the labellingf ) is often obtained from the dual solution in an
unprincipled manner1. Furthermore, it was also observed that, unlike graph-cuts based approaches,
TRW-S does not work well when the random field models long range interactions (i.e. when the
neighbourhood relationshipE is highly connected) [11]. However, due to the lack of experimental
results, it is not clear whether this observation applies to the methods described in [7, 13, 25].

Another way of solving theLP relaxation is to resort to interior point algorithms [3]. Although
interior point algorithms are much slower in practice thanTRW-S, they have the advantage of pro-
viding the primal (possibly fractional) solution of theLP relaxation. Chekuriet al. [5] showed that
when using certain randomized rounding schemes on the primal solution (to get the final labelling
f ), the following guarantees hold true: (i) for Potts model (i.e.d(f(a) − f(b)) = |f(a) − f(b)|
and M = 1), we obtain a multiplicative bound2 of 2; (ii) for the truncated linear metric (i.e.

1We note here that the recently proposed algorithm in [20] directly provides the primal solution. However,
it is much slower than the methods which solve the dual.

2Let f be the labelling obtained by an algorithmA (e.g. in this case theLP relaxation followed by the
rounding scheme) for a class ofMAP estimation problems (e.g. in this case when the pairwise potentials form a
Potts model). Letf∗ be the optimal labelling. The algorithmA is said to achieve a multiplicative bound ofσ,
if for every instance in the class ofMAP estimation problems the following holds true:

E

„

Q(f,D; θ)

Q(f∗,D; θ)

«

≤ σ,

whereE(·) denotes the expectation of its argument under the rounding scheme.
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Initialization
- Initialize the labelling to some functionf1. For example,f1(a) = 0 for all va ∈ v.
Iteration
- Choose an intervalIm = [im + 1, jm] where(jm − im) = L such thatd(L) ≥ M .
- Move from current labellingfm to a new labellingfm+1 such that

fm+1(a) = fm(a) or fm+1(a) ∈ Im,∀va ∈ v.
The new labelling is obtained by solving the st-MINCUT problem on a graph described in§ 2.1.

Termination
- Stop when there is no further decrease in the Gibbs energy forany intervalIm.

Table 1: Our Algorithm. As is typical with move making methods, our approach iteratively goes
from one labelling to the next by solving an st-MINCUT problem. It converges when there remain no
moves which reduce the Gibbs energy further.

d(f(a) − f(b)) = |f(a) − f(b)| and a generalM > 0), we obtain a multiplicative bound of
2 +

√
2; and (iii) for the truncated quadratic semi-metric (i.e.d(f(a)− f(b)) = (f(a)− f(b))2 and

a generalM > 0), we obtain a multiplicative bound ofO(
√

M).

The algorithms most related to our approach are the so-called move making methods which rely on
solving a series of graph-cut (specifically st-MINCUT) problems. Move making algorithms start with
an initial labellingf0 and iteratively minimize the Gibbs energy by moving to a better labelling. At
each iteration, (a subset of) random variables have the option of either retaining their old label or
taking a new label from a subset of the labelsl. For example, in theαβ-swap algorithm [4] the
variables currently labelledlα or lβ can either retain their labels or swap them (i.e. some variables
labelledlα can be relabelled aslβ and vice versa). The recently proposed range move algorithm [23]
modifies this approach such that any variable currently labelledli wherei ∈ [α, β] can be assigned
any labellj wherej ∈ [α, β]. Note that the new labellj can be different from the old labelli, i.e.
i 6= j. Both these algorithms (i.e.αβ-swap and range move) do not provide any guarantees on the
quality of the solution.

In contrast, theα-expansion algorithm [4] (where each variable can either retain its label or get
assigned the labellα at an iteration) provides a multiplicative bound of2 for the Potts model and
2M for the truncated linear metric. Gupta and Tardos [8] generalized theα-expansion algorithm for
the truncated linear metric and obtained a multiplicative bound of4. Komodakis and Tziritas [14]
designed a primal-dual algorithm which provides a bound of2M for the truncated quadratic semi-
metric. Note that these bounds are inferior to the bounds obtained by theLP relaxation. However,
all the above move making algorithms use only a single st-MINCUT at each iteration and are hence,
much faster than interior point algorithms,TRW, TRW-S andBP.

1.2 Our Results
We further extend the approach of Gupta and Tardos [8] in two ways (section 2). The first extension
allows us to handle any truncated convex model (and not just truncated linear). The second extension
allows us to consider a potentially larger subset of labels at each iteration compared to [8]. As will
be seen in the subsequent analysis (§2.2), these two extensions allow us to solve theMAP estimation
problem efficiently using st-MINCUT whilst obtaining the same guarantees as theLP relaxation [5].
Furthermore, our approach does not suffer from the problems ofTRW-S mentioned above. In order
to demonstrate its practical use, we provide a favourable comparison of our method with several
state of the artMAP estimation algorithms (section 3).

2 Description of the Algorithm
Table 1 describes the main steps of our approach. Note that unlike the methods described in [4, 23]
we will not be able to obtain the optimal move at each iteration. In other words, if in themth iteration
we move from labelfm to fm+1 then it is possible that there exists another labellingf ′

m+1 such
thatf ′

m+1(a) = fm(a) or f ′
m+1(a) ∈ Im for all va ∈ v andQ(f ′

m+1,D; θ) < Q(fm+1,D; θ).
However, our analysis in the next section shows that we are still able to reduce the Gibbs energy
sufficiently at each iteration so as to obtain the guarantees of theLP relaxation.

We now turn our attention to designing a method of moving from labellingfm to fm+1. Our ap-
proach relies on constructing a graph such that every st-cut on the graph corresponds to a labelling
f ′ of the random variables which satisfies:f ′(a) = fm(a) or f ′(a) ∈ Im, for all va ∈ v. The
new labellingfm+1 is obtained in two steps: (i) we obtain a labellingf ′ which corresponds to the
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st-MINCUT on our graph; and (ii) we choose the new labellingfm+1 as

fm+1 =

{

f ′ if Q(f ′,D; θ) ≤ Q(fm,D; θ),
fm otherwise. (4)

Below, we provide the details of the graph construction.

2.1 Graph Construction
At each iteration of our algorithm, we are given an intervalIm = [im +1, jm] of L labels (i.e.(jm−
im) = L) whered(L) ≥ M . We also have the current labellingfm for all the random variables.
We construct a directed weighted graph (with non-negative weights)Gm = {Vm, Em, cm(·, ·)} such
that for eachva ∈ v, we define vertices{aim+1, aim+2, · · · , ajm

} ∈ Vm. In addition, as is the case
with every st-MINCUT problem, there are two additional vertices called terminals which we denote
by s (the source) andt (the sink). The edgese ∈ Em with capacity (i.e. weight)cm(e) are of two
types: (i) those that represent the unary potentials of a labelling corresponding to an st-cut in the
graph and; (ii) those that represent the pairwise potentials of the labelling.

Figure 1: Part of the graphGm containing the terminals and the vertices corresponding to the
variableva. The edges which represent the unary potential of the new labelling are also shown.

Representing Unary Potentials For all random variablesva ∈ v, we define the following
edges which belong to the setEm: (i) For all k ∈ [im + 1, jm), edges(ak, ak+1) have ca-
pacity cm(ak, ak+1) = θ1

a;k; (ii) For all k ∈ [im + 1, jm), edges(ak+1, ak) have capacity
cm(ak+1, ak) = ∞; (iii) Edges (ajm

, t) have capacitycm(ajm
, t) = θ1

a;jm
; (iv) Edges(t, ajm

)

have capacitycm(t, ajm
) = ∞; (v) Edges(s, aim+1) have capacitycm(s, aim+1) = θ1

a;fm(a) if
fm(a) /∈ Im and∞ otherwise; and (vi) Edges(aim+1, s) have capacitycm(aim+1, s) = ∞.

Fig. 1 shows the above edges together with their capacities for one random variableva. Note that
there are two types of edges in the above set: (i) with finite capacity; and (ii) with infinite capacity.
Any st-cut with finite cost3 contains only one of the finite capacity edges for each random variable
va. This is because if an st-cut included more than one finite capacity edge, then by construction it
must include at least one infinite capacity edge thereby making its cost infinite [9, 23]. We interpret
a finite cost st-cut as a relabelling of the random variables as follows:

f ′(a) =

{

k if st-cut includes edge(ak, ak+1) wherek ∈ [im + 1, jm),
jm if st-cut includes edge(ajm

, t),
fm(a) if st-cut includes edge(s, aim+1).

(5)

Note that the sum of the unary potentials for the labellingf ′ is exactly equal to the cost of the st-cut
over the edges defined above. However, the Gibbs energy of the labelling also includes the sum of
the pairwise potentials (as shown in equation (1)). Unlike the unary potentials we will not be able
to model the sum of pairwise potentials exactly. However, we will be able to obtain its upper bound
using the cost of the st-cut over the following edges.

Representing Pairwise Potentials For all neighbouring random variablesva andvb, i.e. (a, b) ∈
E , we define edges(ak, bk′) ∈ Em where either one or both ofk andk′ belong to the set(im +1, jm]
(i.e. at least one of them is different fromim + 1). The capacity of these edges is given by

cm(ak, bk′) =
wab

2
(d(k − k′ + 1) − 2d(k − k′) + d(k − k′ − 1)) . (6)

The above capacity is non-negative due to the fact thatwab ≥ 0 andd(·) is convex. Furthermore,
we also add the following edges:

cm(ak, ak+1) = wab

2 (d(L − k + im) + d(k − im)) , ∀(a, b) ∈ E , k ∈ [im + 1, jm)

cm(bk′ , bk′+1) = wab

2 (d(L − k′ + im) + d(k′ − im)) , ∀(a, b) ∈ E , k′ ∈ [im + 1, jm)

cm(ajm
, t) = cm(bjm

, t) = wab

2 d(L), ∀(a, b) ∈ E . (7)

3Recall that the cost of an st-cut is the sum of the capacities of the edges whose starting point lies in the set
of vertices containing the sources and whose ending point lies in the set of vertices containing the sinkt.
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(a)

(b)

(c)

(d)

Figure 2: (a) Edges that are used to represent the pairwise potentials of two neighbouring random
variablesva and vb are shown. Undirected edges indicate that there are opposing edges in both
directions with equal capacity (as given by equation 6). Directed dashed edges, with capacities
shown in equation (7), are added to ensure that the graph models the convex pairwise potentials
correctly. (b) An additional edge is added whenfm(a) ∈ Im andfm(b) /∈ Im. The termκab =
wabd(L). (c) A similar additional edge is added whenfm(a) /∈ Im and fm(b) ∈ Im. (d) Five
edges, with capacities as shown in equation (8), are added whenfm(a) /∈ Im and fm(b) /∈ Im.
Undirected edges indicate the presence of opposing edges with equal capacity.

Note that in [23] the graph obtained by the edges in equations (6) and (7) was used to find the exact
MAP estimate for convex pairwise potentials. A proof that the above edges exactly model convex
pairwise potentials up to an additive constantκab = wabd(L) can be found in [17]. However, we
are concerned with theNP-hard case where the pairwise potentials are truncated. In order to model
this case, we incorporate some additional edges to the above set. These additional edges are best
described by considering the following three cases for all(a, b) ∈ E .

• If fm(a) ∈ Im andfm(b) ∈ Im then we do not add any more edges in the graph (see Fig. 2(a)).

• If fm(a) ∈ Im andfm(b) /∈ Im then we add an edge(aim+1, bim+1) with capacitywabM+κab/2,
whereκab = wabd(L) is a constant for a given pair of neighbouring random variables(a, b) ∈ E
(see Fig. 2(b)). Similarly, iffm(a) /∈ Im andfm(b) ∈ Im then we add an edge(bim+1, aim+1) with
capacitywabM + κab/2 (see Fig. 2(c)).

• If fm(a) /∈ Im andfm(b) /∈ Im, we introduce a new vertexpab. Using this vertexpab, five edges
are defined with the following capacities (see Fig. 2(d)):

cm(aim+1, pab) = cm(pab, aim+1) = cm(bim+1, pab) = cm(pab, bim+1) = wabM + κab/2,

cm(s, pab) = θ2
ab;fm(a),fm(b) + κab. (8)

This completes our graph construction. Given the graphGm we solve the st-MINCUT problem which
provides us with a labellingf ′ as described in equation (5). The new labellingfm+1 is obtained
using equation (4). Note that our graph construction is similar to that of Gupta and Tardos [8] with
two notable exceptions: (i) we can handle any general truncated convex model and not just truncated
linear as in the case of [8]. This is achieved in part by using the graph construction of [23]; and (ii)
we have the freedom to choose the value ofL, while [8] fixed this value toM . A logical choice
would be to use that value ofL which minimizes the worst case multiplicative bound for a particular
class of problems. The following properties provide such a value ofL for both the truncated linear
and the truncated quadratic models. Our worst case multiplicative bounds are exactly those achieved
by theLP relaxation (see [5]).
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2.2 Properties of the Algorithm
For the above graph construction, the following properties hold true:

• The cost of the st-MINCUT provides an upper bound on the Gibbs energy of the labellingf ′ and
hence, on the Gibbs energy offm+1 (see section 2.2 of [17]).

• For the truncated linear metric, our algorithm obtains a multiplicative bound of2 +
√

2 using
L =

√
2M (see section 3, Theorem 1, of [17]). Note that this bound is better than those obtained by

α-expansion [4] (i.e.2M ) and its generalization [8] (i.e.4).

• For the truncated quadratic semi-metric, our algorithm obtains a multiplicative bound ofO(
√

M)

usingL =
√

M (see section 3, Theorem 2, of [17]). Note that bothα-expansion and the approach
of Gupta and Tardos provide no bounds for the above case. The primal-dual method of [14] obtains
a bound of2M which is clearly inferior to our guarantees.

3 Experiments
We tested our approach using both synthetic and standard real data. Below, we describe the experi-
mental setup and the results obtained in detail.

3.1 Synthetic Data
Experimental Setup We used100 random fields for both the truncated linear and truncated
quadratic models. The variablesv and neighbourhood relationshipE of the random fields described
a 4-connected grid graph of size50 × 50. Note that 4-connected grid graphs are widely used to
model several problems in Computer Vision [22]. Each variable was allowed to take one of20 pos-
sible labels, i.e.l = {l0, l1, · · · , l19}. The parameters of the random field were generated randomly.
Specifically, the unary potentialsθ1

a;i were sampled uniformly from the interval[0, 10] while the
weightswab, which determine the pairwise potentials, were sampled uniformly from[0, 5]. The
parameterM was also chosen randomly while taking care thatd(5) ≤ M ≤ d(10).

Results Fig. 3 shows the results obtained by our approach and five other state of the art algorithms:
αβ-swap,α-expansion,BP, TRW-S and the range move algorithm of [23]. We used publicly available
code for all previously proposed approaches with the exception of the range move algorithm4. As can
be seen from the figure, the most accurate approach is the method proposed in this paper, followed
closely by the range move algorithm. Recall that, unlike range move, our algorithm is guaranteed to
provide the same worst case multiplicative bounds as theLP relaxation. As expected, both the range
move algorithm and our method are slower thanαβ-swap andα-expansion (since each iteration
computes an st-MINCUT on a larger graph). However, they are faster thanTRW-S, which attempts to
minimize theLP relaxation, andBP. We note here that our implementation does not use any clever
tricks to speed up the max-flow algorithm (such as those described in [1]) which can potentially
decrease the running time by orders of magnitude.

3.2 Real Data - Stereo Reconstruction
Given twoepipolar rectifiedimagesD1 andD2 of the same scene, the problem of stereo reconstruc-
tion is to obtain a correspondence between the pixels of the images. This problem can be modelled
using a random field whose variables correspond to pixels of one image (sayD1) and take labels
from a set ofdisparitiesl = {0, 1, · · · , h− 1}. A disparity valuei for a random variablea denoting
pixel (x, y) in D1 indicates that its corresponding pixel lies in(x + i, y) in the second image.

For the above random field formulation, the unary potentials were defined as in [22] and were trun-
cated at 15. As is typically the case, we chose the neighbourhood relationshipE to define a 4-
neighbourhood grid graph. The number of disparitiesh was set to20. We experimented using the
following truncated convex potentials:

θ2
ab;ij = 50 min{|i − j|, 10}, θ2

ab;ij = 50 min{(i − j)2, 100}. (9)

The above form of pairwise potentials encourage neighbouring pixels to take similar disparity values
which corresponds to our expectations of finding smooth surfaces in natural images. Truncation of
pairwise potentials is essential to avoid oversmoothing, as observed in [4, 23]. Note that using
spatially varying weightswab provides better results. However, the main aim of this experiment is
to demonstrate the accuracy and speed of our approach and not to design the best possible Gibbs

4When usingα-expansion with the truncated quadratic semi-metric, all edges with negative capacities in
the graph construction were removed, similar to the experiments in [22].
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(a) (b)

Figure 3:Results of the synthetic experiment.(a) Truncated linear metric.(b) Truncated quadratic
semi-metric. The x-axis shows the time taken in seconds. The y-axis shows the average Gibbs energy
obtained over all 100 random fields using the six algorithms. The lower blue curve is the value of
the dual obtained byTRW-S. In both the cases, our method and the range move algorithm provide
the most accurate solution and are faster thanTRW-S andBP.

energy. Table 2 provides the value of the Gibbs energy and the total time taken by all the approaches
for a standard stereo pair (Teddy). As in the case of the synthetic experiments, the range move
algorithm and our method provide the most accurate solutions while taking less time thanTRW-S and
BP. Additional experiments on other stereo pairs with similar observations about the performances
of the various algorithms can be found in [17]. However, we would again like to emphasize that
unlike our method the range move algorithm provides no theoretical guarantees about the quality of
the solution.

Algorithm Energy-1 Time-1(s) Energy-2 Time-2(s)
αβ-swap 3678200 18.48 3707268 20.25

α-expansion 3677950 11.73 3687874 8.79
TRW-S 3677578 131.65 3679563 332.94

BP 3789486 272.06 5180705 331.36
Range Move 3686844 97.23 3679552 141.78

Our Approach 3613003 120.14 3679552 191.20

Table 2:The energy obtained and the time taken by the algorithms used in the stereo reconstruction
experiment with the Teddy image pair. Columns 2 and 3 : truncated linear metric. Columns 4 and
5: truncated quadratic semi-metric.

4 Discussion
We have presented an st-MINCUT based algorithm for obtaining the approximateMAP estimate of
discrete random fields with truncated convex pairwise potentials. Our method improves the mul-
tiplicative bound for the truncated linear metric compared to [4, 8] and provides the best known
bound for the truncated quadratic semi-metric. Due to the use of only the st-MINCUT problem in
its design, it is faster than previous approaches based on theLP relaxation. In fact, its speed can
be further improved by a large factor using clever techniques such as those described in [12] (for
convex unary potentials) and/or [1] (for general unary potentials). Furthermore, it overcomes the
well-known deficiencies ofTRW and its variants. Experiments on synthetic and real data problems
demonstrate its effectiveness compared to several state of the art algorithms.

The analysis in§2.2 shows that, for the truncated linear and truncated quadratic models, the bound
achieved by our move making algorithm over intervals of any lengthL is equal to that of rounding
the LP relaxation’s optimal solution using the same intervals [5]. This equivalence also extends to
the Potts model (in which caseα-expansion provides the same bound as theLP relaxation). A natural
question would be to ask about the relationship between move making algorithms and the rounding
schemes used in convex relaxations. Note that despite recent efforts [14] which analyze certain move
making algorithms in the context of primal-dual approaches for theLP relaxation, not many results
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are known about their connection with randomized rounding schemes. Although the discussion in
§2.2 cannot be trivially generalized to all random fields, it offers a first step towards answering this
question. We believe that further exploration in this direction would help improve the understanding
of the nature of theMAP estimation problem, e.g. how to derandomize approaches based on convex
relaxations. Furthermore, it would also help design efficient move making algorithms for more
complex relaxations such as those described in [16].
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