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Lars Büsing, Robert Legenstein
Institute for Theoretical Computer Science

Graz University of Technology
A-8010 Graz, Austria

{lars,legi}@igi.tugraz.at

Abstract

Randomly connected recurrent neural circuits have proven to be very powerful
models for online computations when a trained memoryless readout function is
appended. SuchReservoir Computing (RC) systems are commonly used in two
flavors: with analog or binary (spiking) neurons in the recurrent circuits. Previous
work showed a fundamental difference between these two incarnations of the RC
idea. The performance of a RC system built from binary neurons seems to depend
strongly on the network connectivity structure. In networks of analog neurons
such dependency has not been observed. In this article we investigate this appar-
ent dichotomy in terms of the in-degree of the circuit nodes. Our analyses based
amongst others on the Lyapunov exponent reveal that the phase transition between
ordered and chaotic network behavior of binary circuits qualitatively differs from
the one in analog circuits. This explains the observed decreased computational
performance of binary circuits of high node in-degree. Furthermore, a novel
mean-field predictor for computational performance is introduced and shown to
accurately predict the numerically obtained results.

1 Introduction

In 2001, Jaeger [1] and Maass [2] independently introduced the idea of using a fixed, randomly
connected recurrent neural network of simple units as a set of basis filters (operating at the edge-of-
stability where the system has fading memory). A memoryless readout is then trained on these basis
filters in order to approximate a given time-invariant target operator with fading memory [2]. Jaeger
used analog sigmoidal neurons as network units and named the model Echo State Network (ESN).
Maass termed the idea Liquid State Machine (LSM) and most of the related literature focuses on net-
works of spiking neurons or threshold units. Both ESNs and LSMs are special implementations of a
concept now generally termed Reservoir Computing (RC) which subsumes the idea of using general
dynamical systems (e.g. a network of interacting optical amplifiers [3]) – the so-called reservoirs
– in conjunction with trained memoryless readout functions as computational devices. These RC
systems have already been used in a broad range of applications (often outperforming other state-of-
the-art methods) such as chaotic time-series prediction [4], single digit speech recognition [5], and
robot control [6].

Although ESNs and LSMs are based on very similar ideas (and in applications it seems possible to
switch between both approaches without loss of performance [7]) an apparent dichotomy exists in
the influence of the reservoir’s topological structure on its computational performance. The perfor-
mance of an ESN using analog, rate-based neurons, is e.g. largely independent of the sparsity of the
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network [8] or the exact network topology such as small-worldor scale-free connectivity graphs1.
For LSMs, which consist of spiking or binary units, the opposite effect has been observed. For the
latter systems, the influence of introducing e.g. small-world or biologically measured lamina-specific
cortical interconnection statistics [9] clearly leads to an increase in performance. In the results of
[10] it can be observed (although not specifically stated there) that for networks of threshold units
with a simple connectivity topology of fixed in-degree per neuron, an increase in performance can
be found for decreasing in-degree. None of these effects can be reproduced using ESNs.

In order to systematically study this fundamental difference between binary (spiking) LSMs and
analog ESNs, we close the gap between them by introducing in Sec. 2 a class of models termed
quantized ESNs. The reservoir of a quantized ESN is defined as a network of discrete units, where
the number of admissible states of a single unit is controlled by a parameter called quantization
level. LSMs and ESNs can be interpreted as the two limiting cases of quantized ESNs for low and
high quantization level respectively. We numerically study the influence of the network topology in
terms of the in-degree of the network units on the computational performance of quantized ESNs for
different quantization levels. This generalizes and systemizes previous results obtained for binary
LSMs and analog ESNs.

In Sec. 3 the empirical results are analyzed by studying the Lyapunov exponent of quantized ESNs,
which exhibits a clear relation to the computational performance [11]. It is shown that for ESNs
with low quantization level, the chaos-order phase transition is significantly more gradual when the
networks are sparsely connected. It is exactly in this transition regime that the computational power
of a Reservoir Computing system is found to be optimal [11]. This effect disappears for ESNs with
high quantization level. A clear explanation of the influence of the in-degree on the computational
performance can be found by investigating the rank measure presented in [11]. This measure charac-
terizes the computational capabilities of a network as a trade-off between the so-called kernel quality
and the generalization ability. We show that for highly connected reservoirs with a low quantization
level the region of an efficient trade-off implying high performance is narrow. For sparser networks
this region is shown to broaden. Consistently for high quantization levels the region is found to be
independent of the interconnection degree.

In Sec. 4 we present a novel mean-field predictor for computational power which is able to reproduce
the influence of the topology on the quantized ESN model. It is related to the predictor introduced
in [10], but it can be calculated for all quantization levels, and can be determined with a signifi-
cantly reduced computation time. The novel theoretical measure matches the experimental and rank
measure findings closely.

2 Online Computations with Quantized ESNs

We consider networks ofN neurons with the state variablex(t) = (x1(t), . . . , xN (t)) ∈ [−1,+1]N

in discrete timet ∈ Z. All units have an in-degree ofK, i.e. every uniti receives input fromK
other randomly chosen units with independently identically distributed (iid.) weights drawn from a
normal distributionN (0, σ2) with zero mean and standard deviation (STD)σ. The network state is
updated according to:

xi(t+ 1) = (ψm ◦ g)





N
∑

j=1

wijxj(t) + u(t)



 ,

whereg = tanh is the usual hyperbolic tangent nonlinearity andu denotes the input common to all
units. At every time stept, the inputu(t) is drawn uniformly from{−1, 1}. The functionψm(·) is
called quantization function formbits as it maps from(−1, 1) to its discrete rangeSm of cardinality
2m:

ψm : (−1, 1) → Sm, ψm(x) :=
2⌊2m−1(x+ 1)⌋ + 1

2m
− 1.

Here⌊x⌋ denotes the integer part ofx. Due toψm the variablesxi(t) are discrete (“quantized”) and
assume values inSm = {(2k+1)/2m−1|k = 0, . . . , 2m−1} ⊂ (−1, 1). The network defined above

1Shown by results of unpublished experiments which have also been reported by the lab of Jaeger through
personal communication.
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Figure 1: The performancepexp(C,PAR5) for three different quantization levelsm = 1, 3, 6 is
plotted as a function of the network in-degreeK and the weight STDσ. The networks size is
N = 150, the results have been averaged over 10 circuitsC, initial conditions and randomly drawn
input time series of length104 time steps. The dashed line represents the numerically determined
critical line.

was utilized for online computations on the input streamu(·). We consider in this article tasks where
the binary target output at timet depends solely on then input bitsu(t−τ−1), . . . , u(t−τ−n) for
a given delay parameterτ ≥ 0, i.e., it is given byfT (u(t− τ − 1), . . . , u(t− τ − n)) for a function
fT ∈ {f |f : {−1, 1}n → {−1, 1}}. In order to approximate the target output, a linear classifier of
the formsign(

∑N

i=1 αixi(t)+b) is applied to the instantaneous network statex(t). The coefficients
αi and the biasb were trained via a one-shot pseudo-inverse regression method [1]. The RC system
consisting of the network and the linear classifier is called a quantized ESN of quantization levelm
in the remainder of this paper.

We assessed the computational capabilities of a given network based on the numerically determined
performance on an example task, which was chosen to be theτ -delayed parity function ofn bits
PARn,τ , i.e. the desired output at timet is PARn,τ (u, t) =

∏n

i=1 u(t− τ − i) for a delayτ ≥ 0 and
n ≥ 1. A separate readout classifier is trained for each combination ofn andτ , all using the same
reservoir. We definepexp quantifying the performance of a given circuitC on thePARn task as:

pexp(C,PARn) :=

∞
∑

τ=0

κ(C,PARn,τ ), (1)

whereκ(C,PARn,τ ) denotes the performance of circuitC on thePARn,τ task measured in terms
of Cohen’s kappa coefficient2. The performance results forPARn can be considered representative
for the general computational capabilities of a circuitC as qualitatively very similar results were
obtained for theANDn task ofn bits and random Boolean functions ofn bit (results not shown).

In Fig. 1 the performancepexp(C,PAR5) is shown averaged over 10 circuitsC for three different
quantization levelsm = 1, 3, 6. pexp(C,PAR5) is plotted as a function of the network in-degree
K and the logarithm3 of the weight STDσ. Qualitatively very similar results were obtained for
different network graphs with e.g. Poisson or scale-free distributed in-degree with averageK (results
not shown). A numerical approximation of the critical line, i.e. the order-chaos phase transition,
is also shown (dashed line), which was determined by the root of an estimation of the Lyapunov
coefficient4. The critical line predicts the zone of optimal performance well form = 1, but is less
accurate for ESNs withm = 3, 6. One can see that for ESNs with low quantization levels (m = 1, 3),
networks with a small in-degreeK reach a significantly better peak performance than those with

2κ is defined as(c− cl)/(1− cl) wherec is the fraction of correct trials andcl is the chance level. The sum
in eq. (1) was truncated atτ = 8, as the performance was negligible for higher delaysτ > 8 for the network
sizeN = 150.

3All logarithms are taken to the basis 10, i.e.log = log
10

if not stated otherwise.
4The Lyapunov coefficientλ was determined in the following way. After 20 initial simulation steps the

smallest admissible (form) state differenceδ0(m) = 21−m was introduced in a single network unit and the
resulting state differenceδ after one time step was measured averaged over105 trials with randomly generated
networks, initial states and input streams. The initial states of all neurons were iid. uniformly overSm. λ was
then determined byλ = ln(δ/δ0(m)).
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Figure 2: Phase transitions in binary networks (m = 1) differ from phase transition in high resolu-
tion networks (m = 6). An empirical estimateλ of the Lyapunov exponent is plotted as a function
of the STD of weightsσ for in-degreesK = 3 (solid),K = 12 (dashed), andK = 24 (gray line). In
order to facilitate comparison, the plot for eachK is centered aroundlog(σ0) whereσ0 is the STD
of weights for whichλ is zero (i.e.,σ0 is the estimated criticalσ value for thatK). The transition
sharpens with increasingK for binary reservoirs(A), whereas it is virtually independent ofK for
high resolution reservoirs(B).

high in-degree. The effect disappears for a high quantization level (m= 6). This phenomenon is
consistent with the observation that network connectivity structure is in general an important issue
if the reservoir is composed of binary or spiking neurons but less important if analog neurons are
employed. Note that form = 3, 6 we see a bifurcation in the zones of optimal performance which
is not observed for the limiting cases of ESNs and LSMs.

3 Phase Transitions in Binary and High Resolution Networks

Where does the difference between binary and high resolution reservoirs shown in Fig. 1 originate
from? It was often hypothesized that high computational power in recurrent networks is located in
a parameter regime near the critical line, i.e., near the phase transition between ordered and chaotic
behavior (see, e.g., [12] for a review; compare also the performance with the critical line in Fig.
1). Starting from this hypothesis, we investigated whether the network dynamics of binary networks
near this transition differs qualitatively from the one of high resolution networks. We estimated the
network properties by empirically measuring the Lyapunov exponentλ with the same procedure as
in the estimation of the critical line in Fig. 1 (see text above). However, we did not only determine
the critical line (i.e., the parameter values where the estimated Lyapunov exponent crosses zero), but
also considered its values nearby. For a given in-degreeK, λ can then be plotted as a function of
the STD of weightsσ (centered at the critical valueσ0 of the STD for thatK). This was done for
binary (Fig. 2A) and high resolution networks (Fig. 2B) and forK = 3, 12, and24. Interestingly,
the dependence ofλ on the STDσ near the critical line is qualitatively quite different between the
two types of networks. For binary networks the transition becomes much sharper with increasing
K which is not the case for high resolution networks. How can this sharp transition explain the
reduced computational performance of binary ESNs with high in-degreeK? The tasks considered
in this article require some limited amount of memory which has to be provided by the reservoir.
Hence, the network dynamics has to be located in a regime where memory about recent inputs is
available and past input bits do not interfere with that memory. Intuitively, an effect of the sharper
phase transition could be stated in the following way. For lowσ (i.e., in the ordered regime), the
memory needed for the task is not provided by the reservoir. As we increaseσ, the memory capacity
increases, but older memories interfere with recent ones, making it hard or even impossible to extract
the relevant information. This intuition is confirmed by an analysis which was introduced in [11] and
which we applied to our setup. We estimated two measures of the reservoir, the so called “kernel-
quality” and the “generalization rank”, both being the rank of a matrix consisting of certain state
vectors of the reservoir. To evaluate the kernel-quality of the reservoir, we randomly drewN = 150
input streamsu1(·), . . . , uN (·) and computed the rank of theN × N matrix whose columns were
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Figure 3: Kernel-quality and generalization rank of quantized ESNs of sizeN = 150. Upper plots
are for binary reservoirs (m = 1bit), lower plots for high resolution reservoirs (m = 6 bit). A) The
difference between the kernel-quality and the generalization rank as a function of the log STD of
weights and the in-degreeK. B) The kernel-quality (solid), the generalization rank (dashed) and
the difference between both (gray line) forK = 3 as a function oflog(σ). C) Same as panel B,
but for an in-degree ofK = 24. In comparison to panel B, the transition of both measures is much
steeper.D,E,F) Same as panels A, B, and C respectively, but for a high resolution reservoir. All
plotted values are means over 100 independent runs with randomly drawn networks, initial states,
and input streams.

the circuit states resulting from these input streams.5 Intuitively, this rank measures how well the
reservoir represents different input streams. The general ization rank is related to the ability of the
reservoir-readout system to generalize from the training data to test data. The generalization rank is
evaluated as follows. We randomly drewN input streams̃u1(·), . . . , ũN (·) such that the last three
input bits in all these input streams were identical.6 The generalization rank is then given by the
rank of theN × N matrix whose columns are the circuit states resulting from these input streams.
Intuitively, the generalization rank with this input distribution measures how strongly the reservoir
state at timet is sensitive to inputs older than three time steps. The rank measures calculated here
will thus have predictive power for computations which require memory of the last three time steps
(see [11] for a theoretical justification of the measures). In general, a high kernel-quality and a
low generalization rank (corresponding to a high ability of the network to generalize) are desirable.
Fig. 3A and D show the difference between the two measures as a function oflog(σ) and the in-
degreeK for binary networks and high resolution networks respectively. The plots show that the
peak value of this difference is decreasing withK in binary networks, whereas it is independent
of K in high resolution reservoirs, reproducing the observations in the plots for the computational
performance. A closer look for the binary circuit atK = 3 andK = 24 is given in Figs. 3B and
3C. When comparing these plots, one sees that the transition of both measures is much steeper for
K = 24 than forK = 3 which leads to a smaller difference between the measures. We interpret this
finding in the following way. ForK = 24, the reservoir increases its separation power very fast as
log(σ) increases. However the separation of past input differences increases likewise and thus early
input differences cannot be distinguished from late ones. This reduces the computational power of
binary ESN with largeK on such tasks. In comparison, the corresponding plots for high resolution
reservoirs (Figs. 3E and 3F) show that the transition shifts to lower weight STDsσ for largerK,
but apart from this fact the transitions are virtually identical for low and highK values. Comparing

5The initial states of all neurons were iid. uniformly overSm. The rank of the matrix was estimated by
singular value decomposition on the network states after 15 time steps of simulation.

6First, we drew each of the last three bitsũ(13), . . . , ũ(15) independently from a uniform distribution over
{−1, 1}. For each input stream̃ui(1), . . . , ũi(15) we drewũi(1), . . . , ũi(12) independently from a uniform
distribution over{−1, 1} and set̃ui(t) = ũ(t) for t = 13, . . . , 15.
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Figure 4: Mean-field predictorp∞ for computational power for different quantization levelsm as a
function of the STDσ of the weights and in-degreeK. A) m = 1. B) m = 3. C) m = 6. Compare
this result to the numerically determined performancepexp plotted in Fig. 1.

Fig. 3D with Fig. 1C, one sees that the rank measure does not accurately predict the whole region
of good performance for high resolution reservoirs. It also does not predict the observed bifurcation
in the zones of optimal performance, a phenomenon that is reproduced by the mean-field predictor
introduced in the following section.

4 Mean-Field Predictor for Computational Performance

The question why and to what degree certain non-autonomous dynamical systems are useful de-
vices for online computations has been addressed theoretically amongst others in [10]. There, the
computational performance of networks of randomly connected threshold gates was linked to their
separation property (for a formal definition see [2]): It was shown that only networks which exhibit
sufficiently different network states for different instances of the input stream, i.e. networks that
separate the input, can compute complex functions of the input stream. Furthermore, the authors in-
troduced an accurate predictor for the computational capabilities for the considered type of networks
based on the separation capability which was quantified via a simple mean-field approximation of
the Hamming distance between different network states.

Here we aim at extending this approach to a larger class of networks, the class of quantized ESNs
introduced above. However a severe problem arises when directly applying the mean-field theory
developed in [10] to quantized ESNs with a quantization levelm > 1: Calculation of the important
quantities becomes computationally infeasible as the state space of a network grows exponentially
with m. Therefore we introduce a modified mean-field predictor which can be efficiently computed
and which still has all desirable properties of the one introduced in [10].

Suppose the target output of the network at timet is a function fT ∈ F =
{f |f : {−1, 1}n → {−1, 1}} of the n bits u(t − τ − 1), . . . , u(t − τ − n) of the input stream
u(·) with delay τ as described in Sec. 2. In order to exhibit good performance on an arbitrary
fT ∈ F , pairs of inputs that differ in at least one of then bits have to be mapped by the network
to different states at timet. Only then, the linear classifier is able to assign the inputs to differ-
ent function values. In order to quantify this so-called separation property of a given network, we
introduce the normalized distanced(k): It measures the average distance between two networks
statesx1(t) = (x1

1(t), . . . , x
1
N (t)) andx

2(t) = (x2
1(t), . . . , x

2
N (t)) arising from applying to the

same network two input streamsu1(·) andu2(·) which only differ in the single bit at timet− k, i.e.
u2(t− k) = −u1(t− k). Formally we define7:

d(k) =
1

N

〈∥

∥

x
1(t) − x

2(t)
∥

∥

1

〉

.

The average〈.〉 is taken over all inputsu1(·), u2(·) from the ensemble defined above, all initial
conditions of the network and all circuitsC. However, a good separation of then bits, i.e.d(k) ≫
0, τ < k ≤ n + τ , is a necessary but not a sufficient condition for the ability of the network
to calculate the target function. Beyond this, it is desired that the network “forgets” all (for the

7For vectorsx = (x1, x2, . . .) ∈ R
N we use the Manhattan norm‖x‖

1
:=

P

N

i=1
|xi|
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Figure 5: Contributionsd(2) (dotted) andd(∞) (solid gray) to the mean-field predictorp∞ (dashed
line) for different quantization levelsm ∈ {1, 6} and different in-degreesK ∈ {3, 24} as a function
of STDσ of the weights. The plots show slices of the 2d plots Fig. 4AandC for constantK. A) For
m = 1 it can be seen that the region inlog(σ)-space with highd(2) and lowd(∞) is significantly
larger forK = 3 than forK = 24. B) Form = 6 this region is roughly independent of K except a
shift.

target function) irrelevant bitsu(t − k), k > n + τ of the input sufficiently fast, i.e.d(k) ≈ 0
for k > n+ τ . We use the limitd(∞) = limk→∞ d(k) to quantify this irrelevant separation which
signifies sensitivity to initial conditions (making the reservoir not time invariant). Hence, we propose
the quantityp∞ as a heuristic predictor for computational power:

p∞ = max {d(2) − d(∞), 0} .

As the first contribution top∞ we chosed(2) as it reflects the ability of a network to perform a
combination of two mechanisms: In order to exhibit a high value ford(2) the network has to separate
the inputs at the time stept− 2 and to sustain the resulting state distance via its recurrent dynamics
in the next time stept− 1. We therefore considerd(2) to be a measure for input separation on short
time-scales relevant for the target function.p∞ is calculated using a mean-field model similar to the
one presented in [10] which itself is rooted in the annealed approximation (AA) introduced in [13].
In the AA one assumes that the circuit connectivity and the corresponding weights are drawn iid.
at every time step. Although being a drastic simplification, the AA has been shown to yield good
results in the large system size limitN → ∞. The main advantage ofp∞ over the the predictor
defined in [10] (the NM-separation) is that the calculation ofp∞ only involves taking the average
over one input stream (as theu2(·) is a function ofu1(·)) compared to taking the average over two
independent inputs needed for the NM-separation, resulting in a significantly reduced computation
time.

In Fig. 4 the predictorp∞ is plotted as a function of the STDσ of the weight distribution and the
in-degreeK for three different values of the quantization levelm ∈ {1, 3, 6}. When comparing
these results with the actual network performancepexp(PAR) on thePAR-task plotted in Fig. 1 one
can see thatp∞ serves as a reliable predictor forpexp of a network for sufficiently smallm. For
larger values ofm the predictorp∞ starts to deviate from the true performance. The dominant effect
of the quantization levelm on the performance discussed in Sec. 2 is well reproduced byp∞: For
m = 1 the in-degreeK has a considerable impact, i.e. for largeK maximum performance drops
significantly. Form > 2 however, for larger values ofK there also exists a region in the parameter
space exhibiting maximum performance.

The interplay between the two contributionsd(2) andd(∞) of p∞ delivers insight into the depen-
dence ofpexp on the network parameters. A high value ofd(2) corresponds to a good separation
of inputs on short time scales relevant for the target task, a property that is found predominantly in
networks that are not strongly input driven. A small value ofd(∞) guarantees that inputs on which
the target function assumes the same value are mapped to nearby network states and thus a linear
readout is able to assign them to the same class irrespectively of their irrelevant remote history. For
m = 1, as can be seen in Fig. 5 the region inlog(σ) space where both conditions for good perfor-
mance are present decreases for growingK. In contrast, form > 2 a reverse effect is observed: for
increasingK the parameter range forσ fulfilling the two opposing conditions for good performance
grows moderately resulting in a large region of highp∞ for high in-degreeK. This observation is
in close analogy to the behavior of the rank measure discussed in Sec. 3. Also note thatp∞ predicts
the novel bifurcation effect also observed in Fig. 1.
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5 Discussion

By interpolating between the ESN and LSM approaches to RC, this work provides new insights into
the question of what properties of a dynamical system lead to improved computational performance:
Performance is optimal at the order-chaos phase transition, and the broader this transition regime,
the better will the performance of the system be. We have confirmed this hypothesis by several
analyses, including a new theoretical mean-field predictor that can be computed very efficiently.The
importance of a gradual order-chaos phase transition could explain why ESNs are more often used
for applications than LSMs. Although they can have very similar performance on a given task
[7], it is significantly harder to create a LSM which operates at the edge-of-chaos: the excitation
and inhibition in the network need to be finely balanced because there tends to be a very abrupt
transition from an ordered to a epileptic state. For ESNs however, there is a broad parameter range
in which they perform well. It should be noted that the effect of quantization cannot just be emulated
by additive or multiplicative iid. or correlated Gaussian noise on the output of analog neurons. The
noise degrades performance homogeneously and the differences in the influence of the in-degree
observed for varying quantization levels cannot be reproduced. The finding that binary reservoirs
have superior performance for low in-degree stands in stark contrast to the fact that cortical neurons
have very high in-degrees of over104. This raises the interesting question which properties and
mechanisms of cortical circuits not accounted for in this article contribute to their computational
power. In view of the results presented in this article, such mechanisms should tend to soften the
phase transition between order and chaos.
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[10] N. Bertschinger and T. Natschläger. Real-time computation at the edge of chaos in recurrent neural
networks.Neural Computation, 16(7):1413–1436, 2004.

[11] R. Legenstein and W. Maass. Edge of chaos and prediction of computational performance for neural
microcircuit models.Neural Networks, pages 323–334, 2007.

[12] R. Legenstein and W. Maass. What makes a dynamical system computationally powerful? In S. Haykin,
J. C. Principe, T.J. Sejnowski, and J.G. McWhirter, editors,New Directions in Statistical Signal Process-
ing: From Systems to Brain, pages 127–154. MIT Press, 2007.

[13] B. Derrida and Pomeau Y. Random networks of automata: A simple annealed approximation.Europhysics
Letters, 1(2):45–49, 1986.

8


