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Abstract

Embeddings of random variables in reproducing kernel Hilbert spaces (RKHSs)
may be used to conduct statistical inference based on higher order moments. For
sufficiently rich (characteristic) RKHSs, each probability distribution has a unique
embedding, allowing all statistical properties of the distribution to be taken into
consideration. Necessary and sufficient conditions for an RKHS to be character-
istic exist forRn. In the present work, conditions are established for an RKHS
to be characteristic on groups and semigroups. Illustrative examples are provided,
including characteristic kernels on periodic domains, rotation matrices, andRn

+.

1 Introduction

Recent studies have shown that mapping random variables into a suitable reproducing kernel Hilbert
space (RKHS) gives a powerful and straightforward method of dealing with higher-order statistics
of the variables. For sufficiently rich RKHSs, it becomes possible to test whether two samples
are from the same distribution, using the difference in their RKHS mappings [8]; as well as testing
independence and conditional independence [6, 9]. It is also useful to optimize over kernel mappings
on distributions, for instance to find the most predictive subspace in regression [5], or for ICA [1].

Key to the above work is the notion of acharacteristic kernel, as introduced in [5, 6]: it gives an
RKHS for which probabilities have unique images (i.e., the mapping is injective). Such RKHSs
are sufficiently rich in the sense required above. Universal kernels on compact metric spaces [16]
are characteristic [8], as are Gaussian and Laplace kernels onRn [6]. Recently, it has been shown
[14] that a continuous shift-invariantR-valued positive definite kernel onRn is characteristic if and
only if the support of its Fourier transform is the entireRn. This completely determines the set of
characteristic ones in the convex cone of continuous shift-invariant positive definite kernels onRn.

One of the chief advantages of kernel methods is that they allow us to deal straightforwardly with
complex domains, through use of a kernel function to determine the similarity between objects in
these domains [13]. A question that naturally arises is whether characteristic kernels can be defined
on spaces besidesRn. Several such domains constitute topological groups/semigroups, and our
focus is on kernels defined by their algebraic structure. Broadly speaking, our approach is based on
extensions of Fourier analysis to groups and semigroups, where we apply appropriate extensions of
Bochner’s theorem to obtain the required conditions on the kernel.

The most immediate generalization of the results in [14] is to locally compact Abelian groups, of
which (Rn,+) is one example. Thus, in Section 2 we provide review of characteristic kernels on
(Rn,+) from this viewpoint. In Section 3 we derive necessary and sufficient conditions for kernels
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on locally compact Abelian groups to be characteristic. Besides(Rn,+), such groups include[0, 1]n

with periodic boundary conditions [13, Section 4.4.4]. We next address non-Abelian compact groups
in Section 4, for which we obtain a sufficient condition for a characteristic kernel. We illustrate with
the example ofSO(3), which describes rotations inR3, and is used in fields such as geophysics
[10] and robotics [15]. Finally, in Section 5, we consider the Abelian semigroup(Rn

+,+), where
R+ = [0,∞). This semigroup has many practical applications, including expressions of nonnegative
measures or frequency onn points [3]. Note that in all cases, we provide specific examples of
characteristic kernels to illustrate the properties required.

2 Preliminaries: Characteristic kernels and shift-invariant kernels

Let X be a random variable taking values on a measurable space(Ω,B), andH be a RKHS defined
by a measurable kernelk on Ω such thatE[

√
k(X,X)] < ∞. The mean elementmX of X is

defined by the element inH such that〈mX , f〉H = E[f(X)] (∀f ∈ H) (See [6, 7]). By plugging
f = k(·, y) in the definition, the explicit functional form ofmX is given bymX(y) = E[k(y,X)].
A bounded measurable kernelk onΩ is calledcharacteristicif

{P : probability on(Ω,B)} → H, P 7→ mP = EX∼P [k(·, X)] (1)

is injective ([5, 6]). Therefore, by definition, a characteristic kernel uniquely determines a probabil-
ity by its mean element. This property is important in making inference on properties of distribu-
tions. It guarantees, for example, thatMMD = ‖mX − mY ‖H is a (strict) distance on the space
of probabilities onΩ [8]. The following result provides the necessary and sufficient condition for a
kernel to be characteristic and shows its associated RKHS to be a rich function class.
Lemma 1 ([7] Prop. 5). Let (Ω,B) be a measurable space,k be a bounded measurable positive
definite kernel onΩ, andH be the associated RKHS. Then,k is characteristic if and only ifH + R

(direct sum of the two RKHS’s) is dense inL2(P ) for every probabilityP on (Ω,B).

The above lemma and Theorem 3 of [6] imply that characteristic kernels give a criterion of (condi-
tional) independence through (conditional) covariance on RKHS, which enables statistical tests of
independence with kernels [6]. This explains also the practical importance of characteristic kernels.

The following result shows that the characteristic property is invariant under some conformal map-
pings introduced in [17] and provides a construction to generate new characteristic kernels.
Lemma 2. Let Ω be a topological space with Borelσ-field, k be a measurable positive definite
kernel onΩ such that

∫
Ω

k(·, y)dµ(y) = 0 meansµ = 0 for a finite Borel measureµ, andf : Ω → C

be a bounded continuous function such thatf(x) > 0 for all x ∈ Ω andk(x, x)|f(x)|2 is bounded.
Then, the kernel̃k(x, y) = f(x)k(x, y)f(y) is characteristic.

Proof. Let P andQ be Borel probabilities such that
∫

k̃(·, x)dP (x) =
∫

k̃(·, x)dQ(x). We have∫
k(·, x)f(x)d(P − Q)(x) = 0, which meansfP = fQ. We haveP = Q by the positivity and

continuity off .

We will focus on spaces with algebraic structure for better description of characteristic kernels.
Let G be a group. A functionφ : G → C is calledpositive definiteif k(x, y) = φ(y−1x) is
a positive definite kernel. We call this type of positive definite kernelsshift-invariant, because
k(zx, zy) = φ((zy)−1zx) = φ(y−1x) = k(x, y) for anyz ∈ G.

There are many examples of shift-invariant positive definite kernels on the additive groupRn: Gaus-
sian RBF kernelk(x, y) = exp(−‖x−y‖2/σ2) and Laplacian kernelk(x, y) = exp(−β

∑n
i=1 |xi−

yi|) are famous ones. In the case ofRn, the following Bochner’s theorem is well-known;
Theorem 3(Bochner). Letφ : Rn → C be a continuous function.φ is positive definite if and only
if there is a unique finite non-negative Borel measureΛ onRn such that

φ(x) =

∫

Rn

e
√
−1xT ωdΛ(ω). (2)

Bochner’s theorem completely characterizes the set of continuous shift-invariant positive definite
kernels onRn by the Fourier transform. It also implies that the continuous positive definite functions
form a convex cone with the extreme points given by the Fourier kernels{e

√
−1xT ω | ω ∈ Rn}.
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It is interesting to determine the class of continuous shift-invariant “characteristic” kernels onRn.
[14] gives a complete solution: if supp(Λ) =Rn,1 thenφ(x − y) is characteristic. In addition, if
a continuous positive definite function of the form in Eq. (2) is real-valued and characteristic, then
supp(Λ) =Rn. The basic idea is the following: since the mean elementEP [φ(y − X)] is equal to
the convolutionφ ∗ P , the Fourier transform rewrites the definition of characteristic property as

(P̂ − Q̂)Λ = 0 =⇒ P = Q,

wherê denotes the Fourier transform, and we usêφ ∗ P = ΛP̂ . Hence, it is natural to expect that
if Λ is everywhere positive, then(P̂ − Q̂) must be zero, which meansP = Q.

We will extend these results to more general algebraic objects, such as groups and semigroups, on
which Fourier analysis and Bochner’s theorem can be extended.

3 Characteristic kernels on locally compact Abelian groups

It is known that most of the results on Fourier analysis forRn are extended to any locally compact
Abelian (LCA) group, which is an Abelian (i.e.commutative) topological group with the topology
Hausdorff and locally compact. The basic terminologies are provided in the supplementary material
for readers who are not familiar to them. The group operation is denoted by “+” in Abelian cases.

Hereafter, for a LCA groupG, we consider only the probability measures included in the set of finite
regular measuresM(G) (see Supplements) to discuss characteristic property. This slightly restricts
the class of measures, but removes only pathological ones.

3.1 Fourier analysis on LCA Group

We briefly summarize necessary results to show our main theorems. For the details, see [12, 11].

For a LCA groupG, there exists a non-negative regular measurem on G such thatm(E + x) =
m(E) for everyx ∈ G and every Borel setE in G. This measure is calledHaar measure. We use
dx to denote the Haar measure ofG. With the Haar measure, the integral is shift-invariant, that is,∫

G

f(x + y)dx =

∫

G

f(x)dx (∀y ∈ G).

The space ofLp(G, dx) is simply denoted byLp(G).

A functionγ : G → C is called acharacterof G if γ(x+y) = γ(x)γ(y) and|γ(x)| = 1. The set of
all continuous characters ofG forms an Abelian group with the operation(γ1γ2)(x) = γ1(x)γ2(x).
By convention, the group operation is denoted by addition “+”, instead of multiplication;i.e.,(γ1 +

γ2)(x) = γ1(x)γ2(x). This group is called thedual groupof G, and denoted bŷG.

For anyx ∈ G, the functionx̂ on Ĝ given byx̂(γ) = γ(x) (γ ∈ Ĝ) defines a character of̂G. It is
known thatĜ is a LCA group if the weakest topology is introduced so thatx̂ is continuous for each
x ∈ G. We can therefore consider the dual ofĜ, denoted byGˆ̂, and the group homomorphism

G → Gˆ̂, x 7→ x̂.

The Pontryagin duality guarantees that this homomorphism is an isomorphism, and homeomor-
phism, thusGˆ̂can be identified withG. In view of the duality, it is customary to write(x, γ) :=

γ(x). We have(−x, γ) = (x,−γ) = γ(x)−1 = (x, γ), wherez is the complex conjugate ofz.

Let f ∈ L1(G) andµ ∈ M(G), the Fourier transform off andµ are respectively defined by

f̂(γ) =

∫

G

(−x, γ)f(x)dx, µ̂(γ) =

∫

G

(−x, γ)dµ(x), (γ ∈ Ĝ). (3)

Let f ∈ L∞(G), g ∈ L1(G), andµ, ν ∈ M(G). The convolutions are defined respectively by

(g∗f)(x) =

∫

G

f(x−y)g(y)dy, (µ∗f)(x) =

∫

G

f(x−y)dµ(y), (µ∗ν)(E) =

∫

G

χE(x+y)dµ(x)dν(y).

1For a finite regular measure, there is the largest open setU with µ(U) = 0. The complement ofU is called
thesupportof µ, and denoted by supp(µ). See the supplementary material for the detail.
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g ∗ f is uniformly continuous onG. For anyf, g ∈ L1(G) andµ, ν ∈ M(G), we have the formula

f̂ ∗ g = f̂ ĝ, µ̂ ∗ f = µ̂f̂ , µ̂ ∗ ν = µ̂ν̂. (4)

The following facts are basic ( [12], Section 1.3).

Proposition 4. For µ ∈ M(G), the Fourier transform̂µ is bounded and uniformly continuous.

Theorem 5(Uniqueness theorem).If µ ∈ M(G) satisfieŝµ = 0, thenµ = 0.

It is known that the dual group of the LCA groupRn is {e
√
−1ωT x | ω ∈ Rn}, which can be

identified withRn. The above definition and properties of Fourier transform for LCA groups are
extension of the ordinary Fourier transform forRn. Bochner’s theorem can be also extended.

Theorem 6(Bochner’s theorem.e.g., [12] Section 1.4.3).A continuous functionφ onG is positive
definite if and only if there is a unique non-negative measureΛ ∈ M(Ĝ) such that

φ(x) =

∫

Ĝ

(x, γ)dΛ(γ) (x ∈ G). (5)

3.2 Shift-invariant characteristic kernels on LCA group

Based on Bochner’s theorem, a sufficient condition of the characteristic property is obtained.

Theorem 7. Let φ be a continuous positive definite function on a LCA groupG given by Eq. (5)
with Λ. If supp(Λ) =Ĝ, then the positive definite kernelk(x, y) = φ(x − y) is characteristic.

Proof. It suffices to prove that ifµ ∈ M(G) satisfiesµ ∗ φ = 0 thenµ = 0. We have
∫

G
(µ ∗

φ)(x)dµ(x) = 0. On the other hand, by using Fubini’s theorem,
∫

G
(µ ∗ φ)(x)dµ(x) =

∫
G

∫
G

φ(x − y)dµ(y)dµ(x) =
∫

G

∫
G

∫
Ĝ

(x − y, γ)dΛ(γ)dµ(y)dµ(x)

=
∫

Ĝ

∫
G

(x, γ)dµ(x)
∫

G
(−y, γ)dµ(y)dΛ(γ) =

∫
Ĝ
|µ̂(γ)|2dΛ(γ).

Sinceµ̂ is continuous and supp(Λ) = Ĝ, we havêµ = 0, which meansµ = 0 by Theorem 5.

In real-valued cases, the condition supp(Λ) = Ĝ is almost necessary.

Theorem 8. Let φ be aR-valued continuous positive definite function on a LCA groupG given
by Eq. (5) withΛ. The kernelφ(x − y) is characteristic if and only if (i)0 ∈ Ĝ is not open and
supp(Λ) = Ĝ, or (ii) 0 ∈ Ĝ is open andsupp(Λ) ⊃ Ĝ− {0}. The case (ii) occurs ifG is compact.

Proof. It suffices to prove the only if part. Assumek(x, y) = φ(x − y) is characteristic. It is
obvious thatk is characteristic if and only if so isk(x, y) + 1. Thus, we can assume0 ∈ supp(Λ).
Supposesupp(Λ) 6= Ĝ. Sinceφ is real-valued,Λ(−E) = Λ(E) for every Borel setE. Thus
U := Ĝ\supp(Λ) is a non-empty open set, with−U = U , and0 /∈ U by assumption. Letγ0 ∈ U

andτ : Ĝ × Ĝ → Ĝ, (γ1, γ2) 7→ γ1 − γ2. Take an open neighborhoodW of 0 in Ĝ with compact
closure such thatW ⊂ τ−1(U − γ0). Then,(W + (−W ) + γ0) ∪ (W + (−W ) − γ0) ⊂ U .

Let g = χW ∗ χ−W , where χE denotes the indicator function of a setE. g is contin-
uous, andsupp(g) ⊂ cl(W + (−W )). Also, g is positive definite, since

∑
i,jcicjg(xi −

xj) =
∑

i,j cicj

∫
G

χW (xi − xj − y)χ−W (y)dy =
∑

i,j cicj

∫
G

χW (xi − y)χ−W (y − xj)dy =∫
G

(∑
iciχW (xi − y)

)(∑
j cjχW (xj − y)

)
dy ≥ 0. By Bochner’s theorem and Pontryagin duality,

there is a non-negative measureµ ∈ M(G) such that

g(γ) =
∫

G
(x, γ)dµ(x) (γ ∈ Ĝ).

It follows that g(γ − γ0) + g(γ + γ0) =
∫

G
{(x, γ − γ0) + (x, γ + γ0)}dµ(x) =

∫
G

(x, γ)d((γ0 +
γ0)µ)(x).

Sincesupp(g) ⊂ cl(W +(−W )), the left hand side is non-zero only in(W +(−W )+ γ0)∪ (W +
(−W ) − γ0) ⊂ U , which does not contain0. Thus, by settingγ = 0, we have

((γ0 + γ0)µ)(G) = 0. (6)
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The measure(γ0 + γ0)µ is real-valued, and non-zero since the functiong(γ − γ0) + g(γ + γ0) is
not constant zero. Letm = |(γ0 + γ0)µ|(G), and define the non-negative measures

µ1 = |(γ0 + γ0)µ|/m, µ2 = {|(γ0 + γ0)µ| − (γ0 + γ0)µ}/m.

Both ofµ1 andµ2 are probability measures onG from Eq. (6), andµ1 6= µ2. From Fubini’s theorem,

m × ((µ1 − µ2) ∗ φ)(x) =
∫

G
φ(x − y)(γ0(y) + γ0(y))dµ(y)

=
∫

Ĝ
(x, γ)

∫
G
{(y, γ − γ0) + (y, γ + γ0)}dµ(y)dΛ(γ) =

∫
Ĝ

(x, γ){g(γ − γ0) + g(γ + γ0)}dΛ(γ)

Since the integrand is zero insupp(Λ), we have(µ1 − µ2) ∗ φ = 0, which derives contradiction.
The last assertion is obvious, sinceĜ is discrete if and only ifG is compact [12, Sec. 1.7.3].

Theorems 7 and 8 are generalization of the results in [14]. From Theorem 8, we can see that the
characteristic property is stable under the product for shift-invariant kernels.

Corollary 9. Let φ1(x − y) andφ2(x − y) beR-valued continuous shift-invariant characteristic
kernels on a LCA groupG. If (i) G is non-compact, or (ii)G is compact and2γ 6= 0 for any nonzero
γ ∈ Ĝ. Then(φ1φ2)(x − y) is characteristic.

Proof. We show the proof only for (i). LetΛ1,Λ2 be the non-negative measures to giveφ1 andφ2,
respectively, in Eq. (5). By Theorem 8,supp(Λ1) = supp(Λ2) = Ĝ. This meanssupp(Λ1 ∗ Λ2) =

Ĝ. The proof is completed becauseΛ1 ∗ Λ2 gives a positive definite functionφ1φ2.

Example 1.(Rn,+): As already shown in [6, 14], the Gaussian RBF kernelexp(− 1
2σ2 ‖x− y‖2)

and Laplacian kernelexp(−β
∑n

i=1 |xi − yi|) are characteristic onRn. An example of a positive

definite kernel that isnotcharacteristic onRn is sinc(x − y) = sin(x−y)
x−y .

Example 2.([0, 2π),+): The addition is made modulo2π. The dual group is{e
√
−1nx | n ∈ Z},

which is isomorphic toZ. The Fourier transform is equal to the ordinary Fourier expansion. The
following are examples of characteristic kernels given by the expression

φ(x) =
∑∞

n=−∞ane
√
−1nx, a0 ≥ 0, an > 0 (n 6= 0),

∑∞
n=0an < ∞.

(1) a0 = π2/3, an = 2/n2 (n 6= 0) ⇒ k1(x, y) = (π − (x − y)mod 2π)2.

(2) a0 = 1/2, an = 1/(1 + n2) (n 6= 0) ⇒ k2(x, y) = cosh(π − (x − y)mod 2π).

(3) a0 = 0, an = αn/n (n 6= 0), (|α| < 1) ⇒ k3(x, y) = − log(1 − 2α cos(x − y) + α2).

(4) an = α|n|, (0 < α < 1) ⇒ k4(x, y) = 1/(1 − 2α cos(x − y) + α2) (Poisson kernel).

Examples ofnon-characteristic kernels on[0, 2π) includecos(x − y), Féjer, and Dirichlet kernel.

4 Characteristic kernels on compact groups

We discuss non-Abelian cases in this section. Non-Abelian groups include various matrix groups,
such asSO(3) = {A ∈ M(3 × 3; R) | AT A = I3,detA = 1}, which represents rotations inR3.
SO(3) is used in practice as the data space of rotational data, which popularly appear in many fields
such as geophysics [10] and robotics [15]. Providing useful positive definite kernels on this class is
important in those applications areas. First, we give a brief summary of known results on the Fourier
analysis on locally compact and compact groups. See [11, 4] for the details.

4.1 Unitary representation and Fourier analysis

Let G be a locally compact group, which may not be Abelian. Aunitary representation(T,H) of
G is a group homomorphismT into the groupU(H) of unitary operators on some nonzero Hilbert
spaceH, that is, a mapT : G → U(H) that satisfiesT (xy) = T (x)T (y) andT (x−1) = T (x)−1 =
T (x)∗, and for whichx 7→ T (x)u is continuous fromG to H for anyu ∈ H.

For a unitary representation(T,H) on a locally compact groupG, a subspaceV in H is calledG-
invariant ifT (x)V ⊂ V for everyx ∈ G. A unitary representation(T,H) is irreducible if there are
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no closedG-invariant subspace except{0} andH. Unitary representations(T1,H1) and(T2,H2)
are said to beequivalentif there is a unitary isomorphismA : H1 → H2 such thatT1 = A−1T2A.

The following facts are basic (e.g., [4], Section 3,1, 5.1).
Theorem 10. (i) If G is a compact group, every irreducible unitary representation(T,H) of G is
finite dimensional, that is,H is finite dimensional. (ii) IfG is an Abelian group, every irreducible
unitary representation ofG is one dimensional. They are the continuous characters ofG.

It is possible to extend the Fourier analysis on locally compact non-Abelian groups. Unlike Abelian
cases, the Fourier transform by the characters are not possible, but we need to consider unitary
representations and operator-valued Fourier transform. Since extending the results of the LCA case
to the general cases causes very complicated topology, we focus on compact groups. Also, for
simplicity, we assume thatG is second countable,i.e., there are countable open basis onG.

We defineĜ to be the set of equivalent classes of irreducible unitary representations of a compact
groupG. The equivalence class of a unitary representation(T,HT ) is denoted by[T ], and the
dimensionality ofHT by dT . We fix a representativeT for every[T ] ∈ Ĝ for all.

It is known that on a compact groupG there is a Haar measurem, which is a left and right invariant
non-negative finite measure. We normalize it so thatm(G) = 1 and denote it bydx.

Let (T,HT ) be a unitary representation. Forf ∈ L1(G) andµ ∈ M(G), the Fourier transform off
andµ are defined by the “operator-valued” functions onĜ,

f̂(T ) =

∫

G

f(x)T (x−1)dx =

∫

G

f(x)T (x)∗dx, µ̂(T ) =

∫

G

T (x−1)dµ(x) =

∫

G

T (x)∗dµ(x),

respectively. These are operators onHT . This is a natural extension of the Fourier transform on
LCA groups, wherêG is the characters serving as the Fourier kernel in view of Theorem 10.

We can define the “inverse Fourier transform”. LetAT ([T ] ∈ Ĝ) be an operator onHT . The series
∑

[T ]∈ĜdT Tr[AT T (x)] (7)

is said to beabsolutely convergentif
∑

[T ]∈Ĝ dT Tr[|AT |] < ∞, where|A| =
√

AT A. It is obvious
that if the above series is absolutely convergent, the convergence is uniform onG. It is known that
if G is second countable,̂G is at most countable, thus the sum is taken over the countable set.

Bochner’s theorem can be extended to compact groups as follows [11, Section 34.10].
Theorem 11. A continuous functionφ on a compact groupG is positive definite if and only if the
Fourier transformφ̂(T ) is positive semidefinite, gives an absolutely convergent series Eq. (7), and

φ(x) =
∑

[T ]∈ĜdT Tr[φ̂(T )T (x)]. (8)

The proof of “if” part is easy; in fact,
∑

i,jcicjφ(x−1
j xi) =

∑
i,jcicj

∑
[T ]∈ĜdT Tr[φ̂(T )T (x−1

j xi)]

=
∑

i,jcicj

∑
[T ]dT Tr[T (xi)φ̂(T )T (xj)

∗] =
∑

[T ]dT Tr[
(∑

iciT (xi)
)
φ̂(T )

(∑
jcjT (xj)

)∗
] ≥ 0.

4.2 Shift-invariant characteristic kernels on compact groups

We have the following sufficient condition of characteristic property for compact groups.
Theorem 12. Let φ be a positive definite function of the form Eq. (8) on a compact groupG. If
φ̂(T ) is strictly positive definite for every[T ] ∈ Ĝ\{1}, the kernelφ(y−1x) is characteristic.

Proof. Let P,Q ∈ M(G) be probabilities on G. Define µ = P − Q, and
suppose

∫
G

φ(y−1x)dµ(y) = 0. If we take the integral overx with the mea-

sure µ, Fubini’s theorem shows0 =
∫

G

∫
G

∑
[T ]dT Tr[φ̂(T )T (y−1x)]dµ(y)dµ(x) =

∑
[T ]dT

∫
G

∫
G

Tr[T (x)φ̂(T )T (y)∗]dµ(x)dµ(y) =
∑

[T ]dT Tr[µ̂(T )φ̂(T )µ̂(T )∗]. SincedT > 0 and

φ̂(T ) is strictly positive,µ̂(T ) = 0 for every[T ] ∈ Ĝ, that is,
∫

G
T (x)∗dµ(x) = O. If we fix an

orthonormal basis ofHT and expressT (x) by the matrix elementsTij(x), we have
∫

G
Tij(x)dµ(x) = 0 (∀[T ] ∈ Ĝ, i, j = 1, . . . , dT ).
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The Peter-Weyl Theorem (e.g., [4, Section 5.2]) shows that{
√

dT Tij(x) | [T ] ∈ Ĝ, i, j =
1, . . . , dT } is a complete orthonormal basis ofL2(G), which meansµ = 0.

It is interesting to ask whether Theorem 8 can be extended to compact groups. The same proof does
not apply, however, because application of Bochner’s theorem to a positive definite function onĜ is
not possible by the lack of duality.

Example of SO(3). It is known thatŜO(3) consists of(Tn,Hn) (n = 0, 1, 2, . . .), wheredTn
=

2n + 1. We omit the explicit form ofTn, while it is known (e.g., [4], Section 5.4), but use the
characterdefined byγn(x) = Tr[Tn(x)]. It is also known thatγn is given by

γn(A) =
sin((2n + 1)θ)

sin θ
(n = 0, 1, 2, . . .),

wheree±
√
−1θ (0 ≤ θ ≤ π) are the eigenvalues ofA, i.e., cos θ = 1

2Tr[A]. Since plugging

φ̂(Tn) = anIdTn
in Eq. (8) derivesanγn for each term, we see that a sequence{an}∞n=0 such that

a0 ≥ 0, an > 0 (n ≥ 1), and
∑∞

n=0 an(2n + 1)2 < ∞ defines a characteristic positive definite
kernel onSO(3) by

k(A,B) =
∑∞

n=0(2n + 1)an
sin((2n + 1)θ)

sin θ
(cos θ =

1

2
Tr[B−1A], 0 ≤ θ ≤ π).

Some examples are listed below (αis a parameter such that|α| < 1).

(1) an =
1

(2n + 1)4
: k1(A,B) =

1

sin θ

∞∑

n=0

sin((2n + 1)θ)

(2n + 1)3
=

πθ(π − θ)

8 sin θ
.

(2) an =
α2n+1

(2n + 1)2
: k2(A,B) =

∞∑

n=0

α2n+1 sin((2n + 1)θ)

(2n + 1) sin θ
=

1

2 sin θ
arctan

(2α sin θ

1 − α2

)
.

5 Characteristic kernels on the semigroupRn

+

In this section, we consider kernels on an Abelian semigroup(S,+). In this case, a kernel based
on the semigroup structure is defined byk(x, y) = φ(x + y). For an Abelian semigroup(S,+), a
semicharacter is defined by a mapρ : S → C such thatρ(x + y) = ρ(x)ρ(y).

While extensions of Bochner’s theorem are known for semigroups [2], the topology on the set of
semicharacters are not as obvious as LCA groups, and the straightforward extension of the results
in Section 3 is difficult. We focus only on the Abelian semigroup(Rn

+,+), whereR+ = [0,∞).
This semigroup has many practical applications of data analysis including expressions of nonneg-
ative measures or frequency onn points [3]. ForRn

+, it is easy to see the bounded continuous
semicharacters are given by{∏n

i=1 e−λix | λi ≥ 0 (i = 1, . . . , n)} [2, Section 4.4].

ForRn
+, Laplace transform replaces Fourier transform to give Bochner’s theorem.

Theorem 13([2], Section 4.4).Letφ be a bounded continuous function onRn
+. φ is positive definite

if and only if there exists a unique non-negative measureΛ ∈ M(Rn
+) such that

φ(x) =

∫

R
n

+

e−
∑

n

i=1
tixidΛ(t) (∀x ∈ Rn

+). (9)

Based on the above theorem, we have the following sufficient condition of characteristic property.

Theorem 14. Let φ be a positive definite function given by Eq. (9). IfsuppΛ = Rn
+, then the

positive definite kernelk(x, y) = φ(x + y) is characteristic.

Proof. Let P andQ be probabilities onRn
+, andµ = P − Q. Define the Laplace transform by

Lµ(t) =
∫

R
n

+

e−
∑

n

i=1
tixidµ(x). It is easy to seeLµ is bounded and continuous onRn

+. Suppose
∫

φ(x + y)dµ(y) = 0 for all x ∈ Rn
+. In exactly the same way as the proof of Theorem 7, we have

LP = LQ. By the uniqueness part of Theorem 13, we concludeP = Q.
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We show some examples of characteristic kernels on(Rn
+,+). Let a = (ai)

n
i=1 andb = (bi)

n
i=1

(ai ≥ 0, bi ≥ 0) be non-negative measures onn points.

(1) Λ =
∏n

i=1t
ν−1
i eλti (λ > 0) : k1(a, b) =

∏n
i=1(ai + bi + λ)−1.

(2) Λ = t−3/2e−β2/(4t) (β > 0) : k2(a, b) = e−β
∑

n

i=1

√
ai+bi .

Since the proof of Theorem 14 shows
∫

φ(x + y)dµ(y) = 0 meansµ = 0 for µ ∈ M(Rn
+), Lemma

2 shows
k̃2(a, b) = exp

{
−β

(∑n
i=1

√
(ai + bi)/2 − (

∑n
i=1

√
ai +

∑n
i=1

√
bi)/2

)}

is also characteristic. The exponent has the formh
(

a+b
2

)
− h(a)+h(b)

2 with h(c) =
∑n

i=1

√
ci, which

compares the value ofh of the merged measure(a + b)/2 and the average ofh(a) andh(b). This
type of kernel on non-negative measures is discussed in [3] in connection with semigroup structure.

6 Conclusions

We have discussed conditions that kernels defined by the algebraic structure of groups and semi-
groups are characteristic. For locally compact Abelian groups, the continuous shift-invariantR-
valued characteristic kernels are completely determined by the Fourier inverse of positive measures
with support equal to the entire dual group. For compact (non-Abelian) groups, we show a sufficient
condition of continuous shift-invariant characteristic kernels in terms of the operator-valued Fourier
transform. We show a condition for the semigroupRn

+. In the advanced theory of harmonic analysis,
Bochner’s theorem and Fourier analysis can be extended to more general algebraic structure to some
extent. It is interesting to consider generalization of the results in this paper to such general classes.

In practical applications of machine learning, we are given a finite sample from a distribution, rather
than the distribution itself. In this setting, it becomes important to choose the best possible kernel
for inference on this sample. While the characteristic property gives a necessary requirement for
RKHS embeddings of distributions to be distinguishable, it does not address optimal kernel choice
at finite sample sizes. Theoretical approaches to this problem are the basis for future work.
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[13] B. Scḧolkopf and A.J. Smola.Learning with Kernels. MIT Press. 2002.
[14] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B. Schölkopf. Injective Hilbert space

embeddings of probability measures. InProc. COLT 2008, to appear, 2008.
[15] O. Stavdahl, A. K. Bondhus, K. Y. Pettersen, and K. E. Malvig. Optimal statistical operators for 3-

dimensional rotational data: geometric interpretations and application to prosthesis kinematics.Robotica,
23(3):283–292, 2005.

[16] I. Steinwart. On the influence of the kernel on the consistency of support vector machines.JMLR, 2:67–
93, 2001.

[17] S. Wu and S-I. Amari. Conformal Transformation of Kernel Functions: A Data-Dependent Way to Im-
prove Support Vector Machine Classifiers.Neural Process. Lett., 15(1):59–67, 2002.

8


