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Abstract

Embeddings of random variables in reproducing kernel Hilbert spaces (RKHSS)
may be used to conduct statistical inference based on higher order moments. For
sufficiently rich (characteristic) RKHSs, each probability distribution has a unique
embedding, allowing all statistical properties of the distribution to be taken into
consideration. Necessary and sufficient conditions for an RKHS to be character-
istic exist forR™. In the present work, conditions are established for an RKHS
to be characteristic on groups and semigroups. lllustrative examples are provided,
including characteristic kernels on periodic domains, rotation matricesR@and

1 Introduction

Recent studies have shown that mapping random variables into a suitable reproducing kernel Hilbert
space (RKHS) gives a powerful and straightforward method of dealing with higher-order statistics
of the variables. For sufficiently rich RKHSs, it becomes possible to test whether two samples
are from the same distribution, using the difference in their RKHS mappings [8]; as well as testing
independence and conditional independence [6, 9]. Itis also useful to optimize over kernel mappings
on distributions, for instance to find the most predictive subspace in regression [5], or for ICA [1].

Key to the above work is the notion ofcharacteristic kernel, as introduced in [5, 6]: it gives an
RKHS for which probabilities have unique images (i.e., the mapping is injective). Such RKHSs
are sufficiently rich in the sense required above. Universal kernels on compact metric spaces [16]
are characteristic [8], as are Gaussian and Laplace kern@&$ ¢8]. Recently, it has been shown

[14] that a continuous shift-invariaiit-valued positive definite kernel dR™ is characteristic if and

only if the support of its Fourier transform is the entR&. This completely determines the set of
characteristic ones in the convex cone of continuous shift-invariant positive definite kerri&ls on

One of the chief advantages of kernel methods is that they allow us to deal straightforwardly with
complex domains, through use of a kernel function to determine the similarity between objects in
these domains [13]. A question that naturally arises is whether characteristic kernels can be defined
on spaces besiddg™. Several such domains constitute topological groups/semigroups, and our
focus is on kernels defined by their algebraic structure. Broadly speaking, our approach is based on
extensions of Fourier analysis to groups and semigroups, where we apply appropriate extensions of
Bochner’s theorem to obtain the required conditions on the kernel.

The most immediate generalization of the results in [14] is to locally compact Abelian groups, of
which (R™, +) is one example. Thus, in Section 2 we provide review of characteristic kernels on
(R™, 4) from this viewpoint. In Section 3 we derive necessary and sufficient conditions for kernels



on locally compact Abelian groups to be characteristic. @&siR"™, +), such groups includ@, 1]™

with periodic boundary conditions [13, Section 4.4.4]. We next address non-Abelian compact groups
in Section 4, for which we obtain a sufficient condition for a characteristic kernel. We illustrate with
the example ofSO(3), which describes rotations iR?, and is used in fields such as geophysics
[10] and robotics [15]. Finally, in Section 5, we consider the Abelian semig(®ip +), where

Ry = [0, 00). This semigroup has many practical applications, including expressions of nonnegative
measures or frequency onpoints [3]. Note that in all cases, we provide specific examples of
characteristic kernels to illustrate the properties required.

2 Preliminaries: Characteristic kernels and shift-invariant kernels

Let X be a random variable taking values on a measurable $pad®, andH be a RKHS defined
by a measurable kernél on Q2 such thatE[\/k(X, X)] < co. Themean elementx of X is
defined by the element i such thatmx, f)3, = E[f(X)] (Vf € H) (See [6, 7]). By plugging
f = k(-,y) in the definition, the explicit functional form af.x is given bymx (y) = E[k(y, X)].
A bounded measurable kerriebn (2 is calledcharacteristicif

{P : probability on(Q, B)} — H, P— mp = Ex.p[k(-, X)] 1)
is injective ([5, 6]). Therefore, by definition, a characteristic kernel uniquely determines a probabil-
ity by its mean element. This property is important in making inference on properties of distribu-
tions. It guarantees, for example, tHetAM D = |mx — my ||% is a (strict) distance on the space
of probabilities orf2 [8]. The following result provides the necessary and sufficient condition for a
kernel to be characteristic and shows its associated RKHS to be a rich function class.
Lemma 1 ([7] Prop. 5). Let (2, B) be a measurable spack,be a bounded measurable positive

definite kernel o2, andH be the associated RKHS. Théris characteristic if and only if{ + R
(direct sum of the two RKHS's) is denselif( P) for every probabilityP on (€2, B).

The above lemma and Theorem 3 of [6] imply that characteristic kernels give a criterion of (condi-
tional) independence through (conditional) covariance on RKHS, which enables statistical tests of
independence with kernels [6]. This explains also the practical importance of characteristic kernels.

The following result shows that the characteristic property is invariant under some conformal map-
pings introduced in [17] and provides a construction to generate new characteristic kernels.

Lemma 2. Let ) be a topological space with Borel-field, ¥ be a measurable positive definite
kernel ont2 such thatf,, k(-, y)du(y) = 0 meang. = 0 for afinite Borel measurg, andf : Q — C
be a bounded continuous function such tfiét) > 0 for all z € Q andk(z, z)| f(z)|? is bounded.
Then, the kernel(z,y) = f(x)k(z,y)f(y) is characteristic.

Proof. Let P andQ be Borel probabilities such thgtk(-,z)dP(x) = [ k(-,z)dQ(x). We have
k(- 2)f(z)d(P — Q)(z) = 0, which meansfP = fQ. We haveP = @ by the positivity and
continuity of f. O

We will focus on spaces with algebraic structure for bettescdption of characteristic kernels.
Let G be a group. A functions : G — C is calledpositive definitef k(x,y) = ¢(y~'z) is
a positive definite kernel. We call this type of positive definite kersbigt-invariant, because
k(zz, zy) = ¢((2y) " tzx) = ¢(y~'z) = k(z,y) foranyz € G.

There are many examples of shift-invariant positive definite kernels on the additivegfo@aus-
sian RBF kernek(z, y) = exp(—|lz—y||*/c?) and Laplacian kernél(z,y) = exp(—3 Y7, |zi—
y;|) are famous ones. In the caselsf, the following Bochner’s theorem is well-known;
Theorem 3(Bochner). Let¢ : R™ — C be a continuous functiony is positive definite if and only
if there is a unique finite non-negative Borel meashiren R™ such that

)= [ eV " UdA(w). )
R"L

Bochner’s theorem completely characterizes the set of continuous shift-invariant positive definite
kernels orR™ by the Fourier transform. It also implies that the continuous positive definite functions

form a convex cone with the extreme points given by the Fourier ke{lae‘lslmTW | w e R"}.



It is interesting to determine the class of continuous shifériant “characteristic” kernels aR™.

[14] gives a complete solution: if supp(A) B! theng(x — y) is characteristic. In addition, if

a continuous positive definite function of the form in Eqg. (2) is real-valued and characteristic, then
supp(A) =R". The basic idea is the following: since the mean elenigsiip(y — X)] is equal to

the convolutiony = P, the Fourier transform rewrites the definition of characteristic property as

(P-QA=0 = P=0,
where™ denotes the Fourier transform, and we tfs@’ = AP. Hence, it is natural to expect that
if A is everywhere positive, thei? — Q) must be zero, which mead3 = Q.

We will extend these results to more general algebraic objects, such as groups and semigroups, on
which Fourier analysis and Bochner’s theorem can be extended.

3 Characteristic kernels on locally compact Abelian groups

It is known that most of the results on Fourier analysisR6rare extended to any locally compact
Abelian (LCA) group, which is an Abelian (i.eommutative) topological group with the topology
Hausdorff and locally compact. The basic terminologies are provided in the supplementary material
for readers who are not familiar to them. The group operation is denoted by “+” in Abelian cases.

Hereafter, for a LCA groug, we consider only the probability measures included in the set of finite
regular measures/ (G) (see Supplements) to discuss characteristic property. This slightly restricts
the class of measures, but removes only pathological ones.

3.1 Fourier analysis on LCA Group

We briefly summarize necessary results to show our main theorems. For the details, see [12, 11].

For a LCA groupG, there exists a non-negative regular measuren G such thatm(E + z) =
m(E) for everyxz € G and every Borel seE in G. This measure is callddaar measure. We use
dz to denote the Haar measure®@f With the Haar measure, the integral is shift-invariant, that is,

/f:z:erd:l:_/f (Vy € G).
The space oL?(G, dx) is simply denoted by.? (G

A function~ : G — C is called acharacterof G if ’y(a:+y) = v(z)v(y) and|y(z)| = 1. The set of
all continuous characters 6f forms an Abelian group with the operatiom v2)(x) = 1 (x)y2(z).
By convention, the group operation is denoted by addition “+”, instead of multiplicaten;y; +

v2)(x) = v1(x)y2(z). This group is called thdual groupof GG, and denoted bﬁ.

For anyz € G, the functionz on G given byi(y) = vy(z) (v € 6’) defines a character é. It is
known thatG is a LCA group if the weakest topology is introduced so tha& continuous for each
x € G. We can therefore consider the duak@fdenoted byG", and the group homomorphism
G — G:, T I
The Pontryagin duality guarantees that this homomorphism is an isomorphism, and homeomor-

phism, thusG" can be identified withG. In view of the duality, it is customary to writer, ) :=
v(x). We have(—z,v) = (x, —y) = v(z)~! = (x,7v), wherez is the complex conjugate of

Let f € LY(G) andp € M(G), the Fourier transform of andy are respectively defined by
fo) = [(Faf@ie. i) = [ (o). (6. ®

Letf € L>®(G),g € Ll(G) andu, v € M(G). The convolutions are defined respectively by
(gf) (= / fla=y)g(y)dy, (p=f)(x / fle=y)du(y), (pxv)(E) = /GXE(ery)du(w)dV(y)-

!For a finite regular measure, there is the largest opeti seth 1.(U') = 0. The complement df is called
the supportof 1, and denoted by supp{. See the supplementary material for the detail.



g = f is uniformly continuous ol. For anyf, g € L'(G) andu,v € M(G), we have the formula
Frg=Ffa, w«f=nf  Exv=qn @)
The following facts are basic ([12], Section 1.3).

Proposition 4. For i € M(G), the Fourier transforn)i is bounded and uniformly continuous.
Theorem 5(Uniqueness theorem)f u € M (G) satisfiesi = 0, theny = 0.

It is known that the dual group of the LCA gro@” is {eﬁ“% | w € R™}, which can be
identified withR™. The above definition and properties of Fourier transform for LCA groups are
extension of the ordinary Fourier transform ®¥%. Bochner’s theorem can be also extended.

Theorem 6(Bochner’s theoreme.g., [12] Section 1.4.3)A continuous functiog on G is positive
definite if and only if there is a unique non-negative meaduee M (G) such that

o(x) = /a@,fy)dA(v) (r€G). 5)

3.2 Shift-invariant characteristic kernels on LCA group

Based on Bochner’s theorem, a sufficient condition of the characteristic property is obtained.
Theorem 7. Let ¢ beAa continuous positive definite function on a LCA gréugiven by Eq. (5)
with A. If supp(A) =G, then the positive definite kerrielz, y) = ¢(x — y) is characteristic.

Proof. It suffices to prove that if. € M(G) satisfiesu * ¢ = 0 theny = 0. We have [, (u *
¢)(z)du(xz) = 0. On the other hand, by using Fubini’s theorem,

Jo (o) (@ = Jo Jod(z — = Ja fG f(; =y, 7)dA(y)du(y)du(z)
= Ja Ja(z,v fG —Y, d,u = [&1a(y)PdA(y).

Sincep is continuous and supp) = G, we haveir = 0, which meang: = 0 by Theorem 5. O

In real-valued cases, the condition sufip&= G is almost necessary.

Theorem 8. Let ¢ be aR-valued continuous positive definite function on a LCA gréugiven
by Eqg. (5) withA. The kernelp)(x — y) is characteristic if and only if (i) € G is not open and
supp(A) = G, or (i) 0 € G is open andsupp(A) D G- {0}. The case (i) occurs if7 is compact.
Proof. It suffices to prove the only if part. Assumi€z,y) = ¢(x — y) is characteristic. It is
obvious that is characteristic if and only if so &(x, y) + 1. Thus, we can assunfec supp(A).
Supposesupp(A) # G. Since¢ is real-valued A(—FE) = A(FE) for every Borel setE. Thus
U := @\supp( ) is a non-empty open set, withU = U, and0 ¢ U by assumptlon Letgo € U
andr: G x G — G, (71,72) — 1 — 72. Take an open neighborhodd of 0 in G with compact
closure such thal’ ¢ 7= (U — 40). Then,(W + (=W) +40) U (W + (=W) — ) C U.

Let g = xw * x_w, where yg denotes the indicator function of a sét ¢ is contin-
uous, andsupp(g) C cl(W + (—=W)). Also, g is positive definite, since_, .c;cig(z; —
xj) = Z” Ci@ngW(ifi — Ty — y)x—wy)dy = Zm CiCj foW T — Y)X— w(y - wg)dy =
Jo (Cicixw (i — ) (X, ¢jxw(z; —y))dy > 0. By Bochner's theorem and Pontryagin duality,
there is a non-negative measuyre M(G) such that

= Jo(@,v)du(x) (v € G).

It follows that g(w—~yo)+g(7+vo ) = Jo A (@, v —v0) + (@,7+7) Mu(z) = [(z,7)d((v0 +
o)) ().

Sincesupp(g) C (W + (=W)), the left hand side is non-zero only (" + (—W) + o) U (W +
(=W) — 7o) C U, which does not contaif. Thus, by settingy = 0, we have

(o +70))(G) = 0. (6)




The measuréy, + 7o) is real-valued, and non-zero since the funcgom — o) + g(v + 7o) is
not constant zero. Let = |(vo + 70)1|(G), and define the non-negative measures

p = [(vo +30)ul/m,  p2 = {l(vo +70)ul — (o +F0)u}/m.
Both of u; andyu, are probability measures énfrom Eqg. (6), angi; # 2. From Fubini’'s theorem,
m x (1 — p2) * 9) (@) = [d(x —y)((y) +To(y))du(y)
= Ja@:7) Jo {y:7 = 0) + (.7 + 70) Ydu(y)dA(Y) = [a(z,){g(y —70) + (v + 70) }dA(Y)

Since the integrand is zero #upp(A), we have(u; — pe) * ¢ = 0, which derives contradiction.
The last assertion is obvious, sinGds discrete if and only if7 is compact [12, Sec. 1.7.3]. O

Theorems 7 and 8 are generalization of the results in [14JmFFbeorem 8, we can see that the
characteristic property is stable under the product for shift-invariant kernels.

Corollary 9. Let¢;(xz — y) and ¢o(xz — y) be R-valued continuous shift-invariant characteristic
kernels on a LCA grougyr. If (i) G is non-compact, or (iif5 is compact an@~ # 0 for any nonzero

ved. Then(¢1¢2)(z — y) is characteristic.

Proof. We show the proof only for (i). LeA;, A, be the non-negative measures to giveand¢o,
respectively, in Eq. (5). By Theorem81pp(A;) = supp(Az2) = G. This meansupp(A; * Ag) =
G. The proof is completed because = A, gives a positive definite functiog, ¢-. O

Example 1. (R", +): As already shown in [6, 14], the Gaussian RBF ketnel(— 515 ||z — y||?)
and Laplacian kernedxp(—3 3., |#; — y;|) are characteristic oR™. An example of a positive
definite kernel that imot characteristic ofR™ is sinc(x — y) = sin(—y)

T—y

Example 2. ([0,27),+): The addition is made modultr. The dual group i§eY =% | n € Z},
which is isomorphic t&Z. The Fourier transform is equal to the ordinary Fourier expansion. The
following are examples of characteristic kernels given by the expression

() = fo:_ocane\/jlm, ap >0, a, >0(n#0), > jan < 0.

(1) ao = 7%/3,a, = 2/n® (n # 0) = k(@) = (1~ (&~ Ymod 20)*
(2) ag =1/2,a, = 1/(1 +n?) (n #0) = ko(z,y) = cosh(m — (& — ¥)mod 2 )-
(3) ap=0, ap=a"/n (n#0), (lof <1) = ks(z,y)=—log(l —2acos(z —y) + a?).
4) an=a", (0<a<1) = ki(z,y)=1/(1 —2acos(z —y)+a?) (Poisson kernel)
Examples ohon-characteristic kernels ¢@, 27) includecos(z — y), Féjer, and Dirichlet kernel.

4 Characteristic kernels on compact groups

We discuss non-Abelian cases in this section. Non-Abelian groups include various matrix groups,
such asSO(3) = {A € M(3 x 3;R) | ATA = I5,detA = 1}, which represents rotations &’

SO(3) is used in practice as the data space of rotational data, which popularly appear in many fields
such as geophysics [10] and robotics [15]. Providing useful positive definite kernels on this class is
important in those applications areas. First, we give a brief summary of known results on the Fourier
analysis on locally compact and compact groups. See [11, 4] for the detalils.

4.1 Unitary representation and Fourier analysis

Let G be a locally compact group, which may not be Abelianuritary representatio”’, H) of

G is a group homomorphisii into the groupU (H') of unitary operators on some nonzero Hilbert
spaceH, thatis, amagf’ : G — U(H) that satisfied (xy) = T(2)T(y) andT (z~*) = T'(z) ! =
T'(z)*, and for whiche — T'(x)u is continuous fronGG to H for anyu € H.

For a unitary representatidff’, H) on a locally compact grou¢¥, a subspac® in H is calledG-
invariant if T'(x)V C V for everyxz € G. A unitary representatiofil’, H) is irreducibleif there are



no closedG-invariant subspace exceffi} and H. Unitary representationd, H,) and (7%, Ho)
are said to bequivalentf there is a unitary isomorphism : H; — H, such thafl; = A~ 'T, A.
The following facts are basic (e.g., [4], Section 3,1, 5.1).

Theorem 10. (i) If G is a compact group, every irreducible unitary representati@hH ) of G is
finite dimensional, that is{ is finite dimensional. (ii) Iz is an Abelian group, every irreducible
unitary representation aofr is one dimensional. They are the continuous characte¢s. of

It is possible to extend the Fourier analysis on locally compact non-Abelian groups. Unlike Abelian
cases, the Fourier transform by the characters are not possible, but we need to consider unitary
representations and operator-valued Fourier transform. Since extending the results of the LCA case
to the general cases causes very complicated topology, we focus on compact groups. Also, for
simplicity, we assume that is second countablég., there are countable open basistan

We defineG to be the set of equivalent classes of irreducible unitary representations of a compact
groupG. The equivalence class of a unitary representatibnfr) is denoted byT], and the

dimensionality ofH 1 by d. We fix a representativé for every[T] € G for all.

It is known that on a compact grodpthere is a Haar measune, which is a left and right invariant
non-negative finite measure. We normalize it so thé&t/) = 1 and denote it bylz.

Let (T, Hr) be a unitary representation. Fpre L!(G) andp € M(G), the Fourier transform of
andy are defined by the “operator-valued” functions@n

T) = /G J@)T (@ )da = /G f(@)T (@) dz, A(T) = /G T(aVYdu(z) = /G T(a)*du(z),

respectively. These are operators M. This is a natural extension of the Fourier transform on
LCA groups, wherg= is the characters serving as the Fourier kernel in view of Theorem 10.

We can define the “inverse Fourier transform”. L&t ([T] € @) be an operator oflr. The series
Z[T]eGdTTr[ATT( )] (7)

is said to beabsolutely convergerilt 3 s dr Tr[|Az|] < oo, where|A| = VAT A. Itis obvious
that if the above series is absolutely convergent, the convergence is unifatmlors known that
if G is second countablé; is at most countable, thus the sum is taken over the countable set.

Bochner’s theorem can be extended to compact groups as follows [11, Section 34.10].
Theorem 11. A continuous functio on a compact groujg: is positive definite if and only if the
Fourier transform¢(T') is positive semidefinite, gives an absolutely convergent series Eq. (7), and

6(2) = X gyeadr TS T (). ©)

The proof of “if” part is easy; in facty"; jcicjo(a; i) = 3, jeicy Y. T]eGdTTr[gb(T)T(:c;lxi)]

= G g T T () ()T (7)) = Yy dr Te((S e T () H(T) (305 () ] > 0.
4.2 Shift-invariant characteristic kernels on compact groups

We have the following sufficient condition of characteristic property for compact groups.
Iheorem 12. Let ¢ be a positive definite function of the form Eq. (8) on a compact gr@upf
#(T) is strictly positive definite for everyf’] € G\{1}, the kernelp(y~'z) is characteristic.

Proof. Let P,Q € M(G) be probabilites onG. Define o = P — @, and
suppose [, ¢(y~'x)du(y) = 0. If we take the integral overz with the mea-
sure u, Fubini's theorem showsd = [, [ > mdrTy| [O(T)T(y~ 2)]du(y)du(z) =
Sy fo Jo T (@)B(T)T () dp(w)dpa(y) = i dr Telf (T)cb(T)ﬁ( )*]. Sinced > 0 and
¢(T) is strictly positive,zi(T) = 0 for every[T] € G, that is, Jo T(x)*du(z) = O. If we fix an
orthonormal basis off and expres?( ) by the matrix eIementﬂj( x), we have

JoTij ( =0 (V[T ]EG,z,jzl,...,dT).



The Peter-Weyl Theorem (e.g., [4, Section 5.2]) shows (Rt T;;(z) | [T] € G,i,j =
.,dr} is a complete orthonormal basis bf (G), which meang: = 0. O

It is interesting to ask whether Theorem 8 can be extendednpact groups. The same proof does

not apply, however, because application of Bochner's theorem to a positive definite funcéibis on
not possible by the lack of duality.

Example of SO(3). It is known thatSO(3) consists of T}, H,) (n = 0, 1,2, ...), wheredy, =
2n + 1. We omit the explicit form off;,, while it is known (e.g., [4], Section 5.4), but use the
characterdefined byy,, () = Tr[T,(z)]. Itis also known that,, is given by

sin((2n + 1)0)

FYTL(A): sin@ (n:071727"')7

wheree®V=1 (0 < 9 < ) are the eigenvalues of, i.e., cosf§ = 3Tr[A]. Since plugging
$(Tn) = anlq,, in Eq. (8) derives.,y, for each term, we see that a sequefieg};>, such that
ap > 0,a, >0(n>1),and> 7 a,(2n + 1)? < o defines a characteristic positive definite
kernel onSO(3) by

sin((2n + 1)6)

A,B) =3 (2n+1
k( 1) ) Zn:O( n+ )a’n Sin9

1
(cosf = §Tr[B_1A], 0<0<m).

Some examples are listed belowiéa parameter such that| < 1).

1 sin((2n 4+ 1)0)  7w0(w — 0)
Doan=——: ki (A, B) = TR~
(1) a (2n+ 1)4 i SmGZ (2n +1)3 8sin 6
a?ntl 2. o2 sin((2n + 1)0) 1 2a:8in 0
2) ap = k2(A, B) = = tan( ——-
@) an = 557y 2(4, B) 2o 20+ 1)sind 2simg n(l—a2)

5 Characteristic kernels on the semigroupR’}

In this section, we consider kernels on an Abelian semigi@up-). In this case, a kernel based
on the semigroup structure is definedbyt, y) = ¢(x + y). For an Abelian semigroufs, +), a
semicharacter is defined by a map S — C such thap(z + y) = p(z)p(y).

While extensions of Bochner’s theorem are known for semigroups [2], the topology on the set of
semicharacters are not as obvious as LCA groups, and the straightforward extension of the results
in Section 3 is difficult. We focus only on the Abelian semigrqi{y; , +), whereR, = [0, c0).

This semigroup has many practical applications of data analysis including expressions of nonneg-
ative measures or frequency anpoints [3]. ForR?, it is easy to see the bounded continuous

semicharacters are given By["_, e | \; > 0 (i = 1,...,n)} [2, Section 4.4].
ForR’, Laplace transform replaces Fourier transform to give Bochner’s theorem.

Theorem 13([2], Section 4.4).Let¢ be a bounded continuous functionl&fy. ¢ is positive definite
if and only if there exists a unique non-negative meaguee M (R} ) such that

¢(z) = / CemXimUTdA(t) (Vo €RY). ©9)

Based on the above theorem, we have the following sufficient condition of characteristic property.

Theorem 14. Let ¢ be a positive definite function given by Eq. (9).sibpA = R, then the
positive definite kernél(z, y) = ¢(x + y) is characteristic.

Proof. Let P and@ be probabilities oR", andy = P — . Define the Laplace transform by

Lu(t) fRne Lisitimidy (). It is easy to se&y is bounded and continuous @i . Suppose
oz + y)du( ) = 0forall z € R"}. In exactly the same way as the proof of Theorem 7, we have
LP = LQ. By the uniqueness part of Theorem 13, we conclBde Q. O



We show some examples of characteristic kernel$Rih, +). Leta = (a;)i_, andb = (b;);;
(a; > 0,b; > 0) be non-negative measures @ipoints.

(1) A=l tv e (A>0): k1(a,b) = [T (a; +b; + \) L.
(2) A=t"3/2eF/E0 (55 0) ka(a,b) = e P 2izi Vaithi,

Since the proof of Theorem 14 shovwsp(x + y)du(y) = 0 meansu = 0 for € M(R’}.), Lemma

2 shows
ka(a,b) = exp{—B(3i_1 v/ (@i +b:)/2 — (L vai + X021V bi) /2) }
is also characteristic. The exponent has the gL ) — OO with p(c) = 37| /e, which

compares the value df of the merged measufe + b)/2 and the average df(a) andh(b). This
type of kernel on non-negative measures is discussed in [3] in connection with semigroup structure.

6 Conclusions

We have discussed conditions that kernels defined by the algebraic structure of groups and semi-
groups are characteristic. For locally compact Abelian groups, the continuous shift-in&riant
valued characteristic kernels are completely determined by the Fourier inverse of positive measures
with support equal to the entire dual group. For compact (non-Abelian) groups, we show a sufficient
condition of continuous shift-invariant characteristic kernels in terms of the operator-valued Fourier
transform. We show a condition for the semigrdip. In the advanced theory of harmonic analysis,
Bochner’s theorem and Fourier analysis can be extended to more general algebraic structure to some
extent. It is interesting to consider generalization of the results in this paper to such general classes.

In practical applications of machine learning, we are given a finite sample from a distribution, rather

than the distribution itself. In this setting, it becomes important to choose the best possible kernel
for inference on this sample. While the characteristic property gives a necessary requirement for
RKHS embeddings of distributions to be distinguishable, it does not address optimal kernel choice
at finite sample sizes. Theoretical approaches to this problem are the basis for future work.
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