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Abstract

In this paper lower and upper bounds for the number of support vectors are derived
for support vector machines (SVMs) based on the ε-insensitive loss function. It
turns out that these bounds are asymptotically tight under mild assumptions on the
data generating distribution. Finally, we briefly discuss a trade-off in ε between
sparsity and accuracy if the SVM is used to estimate the conditional median.

1 Introduction

Given a reproducing kernel Hilbert space (RKHS) of a kernel k : X × X → R and training set
D := ((x1, y1), . . . , (xn, yn)) ∈ (X × R)n, the ε-insensitive SVM proposed by Vapnik and his
co-workers [10, 11] for regression tasks finds the unique minimizer fD,λ ∈ H of the regularized
empirical risk

λ‖f‖2H +
1
n

n∑
i=1

Lε(yi, f(xi)) , (1)

where Lε denotes the ε-insensitive loss defined by Lε(y, t) := max{0, |y − t| − ε} for all y, t ∈ R
and some fixed ε ≥ 0. It is well known, see e.g. [2, Proposition 6.21], that the solution is of the form

fD,λ =
n∑
i=1

β∗i k(xi, · ) , (2)

where the coefficients β∗i are a solution of the optimization problem

maximize
n∑
i=1

yiβi − ε
n∑
i=1

|βi| −
1
2

n∑
i,j=1

βiβjk(xi, xj) (3)

subject to −C ≤ βi ≤ C for all i = 1, . . . , n. (4)

Here we set C := 1/(2λn). Note that the equality constraint
∑n
i=1 βi = 0 needed in [2, Proposition

6.21] is superfluous since we do not include an offset term b in the primal problem (1). In the
following, we write SV (fD,λ) := {i : β∗i 6= 0} for the set of indices that belong to the support
vectors of fD,λ. Furthermore, we write # for the counting measure, and hence #SV (fD,λ) denotes
the number of support vectors of fD,λ.

It is obvious from (2) that #SV (fD,λ) has a crucial influence on the time needed to compute
fD,λ(x). Due to this fact, the ε-insensitive loss was originally motivated by the goal to achieve
sparse decision functions, i.e., decision functions fD,λ with #SV (fD,λ) < n. Although empiri-
cally it is well-known that the ε-insensitive SVM achieves this sparsity, there is, so far, no theo-
retical explanation in the sense of [5]. The goal of this work is to provide such an explanation by
establishing asymptotically tight lower and upper bounds for the number of support vectors. Based
on these bounds we then investigate the trade-off between sparsity and estimation accuracy of the
ε-insensitive SVM.



2 Main results

Before we can formulate our main results we need to introduce some more notations. To this end,
let P be a probability measure on X ×R, where X is some measurable space. Given a measurable
f : X → R, we then define the Lε-risk of f byRLε,P(f) := E(x,y)∼PLε(y, f(x)). Moreover, recall
that P can be split into the marginal distribution PX on X and the regular conditional probability
P( · |x). Given a RKHS H of a bounded kernel k, [1] then showed that

fP,λ := arg inf
f∈H

λ‖f‖2H +RLε,P(f)

exists and is uniquely determined whenever RLε,P(0) < ∞. Let us write δ(x,y) for the Dirac
measure at some (x, y) ∈ X ×R. By considering the empirical measure D := 1

n

∑n
i=1 δ(xi,yi) of a

training set D := ((x1, y1), . . . , (xn, yn)) ∈ (X ×R)n, we then see that the corresponding fD,λ is
the solution of (1). Finally, we need to introduce the sets

Aδlow(f) :=
{

(x, y) ∈ X ×R : |f(x)− y| > ε+ δ
}

Aδup(f) :=
{

(x, y) ∈ X ×R : |f(x)− y| ≥ ε− δ
}
,

where f : X → R is an arbitrary function and δ ∈ R. Moreover, we use the short formsAlow(f) :=
A0

low(f) and Aup(f) := A0
up(f). Now we can formulate our first main result.

Theorem 2.1 Let P be a probability measure on X ×R and H be a separable RKHS with bounded
measurable kernel satisfying ‖k‖∞ ≤ 1. Then, for all n ≥ 1, ρ > 0, δ > 0, and λ > 0 satisfying
δλ ≤ 4, we have

Pn
(
D ∈ (X ×R)n :

#SV (fD,λ)
n

> P
(
Aδlow(fP,λ)

)
− ρ
)
≥ 1− 3e−

δ2λ2n
16 − e−2ρ2n

and

Pn
(
D ∈ (X ×R)n :

#SV (fD,λ)
n

< P
(
Aδup(fP,λ)

)
+ ρ
)
≥ 1− 3e−

δ2λ2n
16 − e−2ρ2n .

Before we present our second main result, we briefly illustrate Theorem 2.1 for the case where we
fix the regularization parameter λ and let n→∞.

Corollary 2.2 Let P be a probability measure onX×R andH be a separable RKHS with bounded
measurable kernel satisfying ‖k‖∞ ≤ 1. Then, for all ρ > 0 and λ > 0, we have

lim
n→∞

Pn
(
D ∈ (X ×R)n : P

(
Alow(fP,λ)

)
− ρ ≤ #SV (fD,λ)

n
≤ P

(
Aup(fP,λ)

)
+ ρ
)

= 1 .

Note that the above corollary exactly describes the asymptotic behavior of the fraction of support
vectors modulo the probability of the set

Aup(fP,λ)\Alow(fP,λ) =
{

(x, fP,λ(x)− ε) : x ∈ X
}
∪
{

(x, fP,λ(x) + ε) : x ∈ X
}
.

In particular, if the conditional distributions P( · |x), x ∈ X , have no discrete components, then the
above corollary gives an exact description.

Of course, in almost no situation it is realistic to assume that λ stays fixed if the sample size n grows.
Instead, it is well-known, see [1], that the regularization parameter should vanish in order to achieve
consistency. To investigate this case, we need to introduce some additional notations from [6] that
are related to the Lε-risk. Let us begin by denoting the Bayes Lε-risk by R∗Lε,P := infRLε,P(f),
where P is a distribution and the infimum is taken over all measurable functions f : X → R. In
addition, given a distribution Q on R, [6] and [7, Chapter 3] defined the inner Lε-risks by

CLε,Q(t) :=
∫
R

Lε(y, t) dQ(y) , t ∈ R,

and the minimal inner Lε-risks were denoted by C∗Lε,Q := inft∈R CLε,Q(t). Obviously, we have

RLε,P(f) =
∫
X

CLε,P( · |x)
(
f(x)

)
dPX(x) , (5)



and [6, Lemma 2.5], see also [7, Lemma 3.4], further established the intuitive formula R∗Lε,P =∫
X
C∗Lε,P( · |x) dPX(x). Moreover, we need the sets of conditional minimizers

M∗(x) :=
{
t ∈ R : CLε,P( · |x)(t) = C∗Lε,P( · |x)

}
.

The following lemma collects some useful properties of these sets.

Lemma 2.3 Let P be a probability measure on X × R with R∗Lε,P < ∞. ThenM∗(x) is a non-
empty and compact interval for PX -almost all x ∈ X .

Given a function f : X → R, Lemma 2.3 shows that for PX -almost all x ∈ X there exists a unique
t∗(x) ∈M∗(x) such that∣∣t∗(x)− f(x)

∣∣ ≤ ∣∣t− f(x)
∣∣ for all t ∈M∗(x) . (6)

In other words, t∗(x) is the element inM∗(x) that has the smallest distance to f(x). In the follow-
ing, we sometimes write t∗λ(x) := t∗(x) if f = fP,λ and we wish to emphasize the dependence of
t∗(x) on λ. With the help of these elements, we finally introduce the sets

M δ
low(f) :=

{
(x, y) ∈ X ×R : |t∗(x)− y| > ε+ δ

}
M δ

up(f) :=
{

(x, y) ∈ X ×R : |t∗(x)− y| ≥ ε− δ
}
,

where δ ∈ R. Moreover, we again use the short forms Mlow(f) := M0
low(f) and Mup(f) :=

M0
up(f). Now we can formulate our second main result.

Theorem 2.4 Let P be a probability measure on X ×R and H be a separable RKHS with bounded
measurable kernel satisfying ‖k‖∞ ≤ 1. Assume that RLε,P(0) < ∞ and that H is dense in
L1(PX). Then, for all ρ > 0, there exist a δρ > 0 and a λρ > 0 such that for all λ ∈ (0, λρ] and all
n ≥ 1 we have

Pn
(
D ∈ (X×R)n : P

(
Mlow(fP,λ)

)
−ρ ≤ #SV (fD,λ)

n
≤ P

(
Mup(fP,λ)

)
+ρ
)
≥ 1−8e−δ

2
ρλ

2n.

If we choose a sequence of regularization parameters λn such that λn → 0 and λ2
nn→∞, then the

resulting SVM is Lε-risk consistent under the assumptions of Theorem 2.4, see [1]. For this case,
the following obvious corollary of Theorem 2.4 establishes lower and upper bounds on the number
of support vectors.

Corollary 2.5 Let P be a probability measure onX×R andH be a separable RKHS with bounded
measurable kernel satisfying ‖k‖∞ ≤ 1. Assume that RLε,P(0) < ∞ and that H is dense in
L1(PX). Furthermore, let (λn) ∈ (0,∞) be a sequence with λn → 0 and λ2

nn→∞. Then, for all
ρ > 0, the probability Pn of D ∈ (X ×R)n satisfying

lim inf
m→∞

P
(
Mlow(fP,λm)

)
− ρ ≤ #SV (fD,λn)

n
≤ lim sup

m→∞
P
(
Mup(fP,λm)

)
+ ρ

converges to 1 for n→∞.

In general, the probabilities of the sets Mlow(fP,λ) and Mup(fP,λ) are hard to control since, e.g.,
for fixed x ∈ X and λ → 0 it seems difficult to show that fP,λ(x) is not “flipping” from the left
hand side ofM∗(x) to the right hand side. Indeed, for generalM∗(x), such flipping would give
different values t∗λ(x) ∈ M∗(x) for λ → 0, and hence would result in significantly different sets
Mlow(fP,λ) andMup(fP,λ). As a consequence, it seems hard to show that, for probability measures
P whose conditional distributions P( · |x), x ∈ X , have no discrete components, we always have

lim inf
λ→0

P
(
Mlow(fP,λ)

)
= lim sup

λ→0
P
(
Mup(fP,λ)

)
. (7)

However, there are situations in which this equality can easily be established. For example, assume
that the setsM∗(x) are PX -almost surely singletons. In this case, t∗λ(x) is in fact independent of λ,
and hence so areMlow(fP,λ) andMup(fP,λ). Namely, in this case these sets contain the pairs (x, y)



for which y is not contained in the closed or open ε-tube aroundM∗(x), respectively. Consequently,
(7) holds provided that the conditional distributions P( · |x), x ∈ X , have no discrete components,
and hence Corollary 2.5 gives a tight bound on the number of support vectors. Moreover, if in
this case we additionally assume ε = 0, i.e., we consider the absolute loss, then we easily find
P(Mlow(fP,λ)) = P(Mup(fP,λ)) = 1, and hence Corollary 2.5 shows that the corresponding SVM
does not tend to produce sparse decision functions. Finally, recall that for this specific loss function,
M∗(x) equals the median of P( · |x), and hence M∗(x) is a singleton whenever the median of
P( · |x) is unique.

Let us now illustrate Corollary 2.5 for ε > 0. To this end, we assume in the following that the
conditional distributions P( · |x) are symmetric, i.e., for PX -almost all x ∈ X there exists a con-
ditional center c(x) ∈ R such that P(c(x) + A|x) = P(c(x) − A|x) for all measurable A ⊂ R.
Note that by considering A := [0,∞) it is easy to see that c(x) is a median of P( · |x). Further-
more, the assumption RLε,P(0) < ∞ imposed in the results above ensures that the conditional
mean f∗P(x) := E(Y |x) of P( · |x) exists PX -almost surely, and from this it is easy to conclude that
c(x) = f∗P(x) for PX -almost all x ∈ X . Moreover, from [8, Proposition 3.2 and Lemma 3.3] we
immediately obtain the following lemma.

Lemma 2.6 Let P be a probability measure on X × R such that RLε,P(0) < ∞. Assume that the
conditional distributions P( · |x), x ∈ X , are symmetric and that for PX -almost all x ∈ X there
exists a δ(x) > 0 such that for all δ ∈ (0, δ(x)] we have

P
(
f∗P(x) + [−δ, δ]

∣∣x) > 0 , (8)

P
(
f∗P(x) + [ε− δ, ε+ δ]

∣∣x) > 0 . (9)

Then, for PX -almost all x ∈ X , we haveM∗(x) = {f∗P(x)} and f∗P(x) equals PX -almost surely
the unique median of P( · |x).

Obviously, condition (8) means that the conditional distributions have some mass around their me-
dian f∗P, whereas (9) means that the conditional distributions have some mass around f∗P± ε. More-
over, [8] showed that under the assumptions of Lemma 2.6, the corresponding ε-insensitive SVM can
be used to estimate the conditional median. Let us now illustrate how the value of ε influences both
the accuracy of this estimate and the sparsity. To this end, let us assume for the sake of simplicity
that the conditional distributions P( · |x) have continuous Lebesgue densities p( · |x) : R→ [0,∞).
By the symmetry of the conditional distributions it is then easy to see that these densities are sym-
metric around f∗P(x). Now, it follows from the continuity of the densities, that (8) is satisfied if
p(f∗P(x)|x) > 0, whereas (9) is satisfied if p(f∗P(x) + ε|x) > 0. Let us first consider the case where
the conditional distributions are equal modulo translations. In other words, we assume that there
exists a continuous Lebesgue density q : R → [0,∞) which is symmetric around 0 such that for
PX -almost all x ∈ X we have

q(y) = p(f∗P(x) + y|x) , y ∈ R.
Note that this assumption is essentially identical to a classical “signal plus noise” assumption. In
the following we further assume that q is unimodal, i.e., q has its only local and global maximum
at 0. From this we easily see that (8) is satisfied, and (9) is satisfied if q(ε) > 0. By Lemma
2.6 and the discussion around (7) we then conclude that under the assumptions of Corollary 2.5
the fraction of support vectors asymptotically approaches 2Q([ε,∞)), where Q is the probability
measure defined by q. This confirms the intuition that larger values of ε lead to sparser decision
functions. In particular, if Q([ε,∞)) = 0, the corresponding SVM produces super sparse decision
functions, i.e., decision functions whose number of support vectors does not grow linearly in the
sample size. However, not surprisingly, there is a price to be paid for this sparsity. Indeed, [8,
Lemma 3.3] indicates that the size of q(ε) has a direct influence on the ability of fD,λ to estimate
the conditional median f∗P. Let us describe this in a little more detail. To this end, we first find by
[8, Lemma 3.3] and the convexity of t 7→ CLε,Q(t) that

CLε,Q(t)− C∗Lε,Q ≥ q(ε) ·
{
t2/2 if t ∈ [0, ε]
tε− ε2/2 if t ≥ ε.

By a literal repetition of the proof of [8, Theorem 2.5] we then find the self-calibration inequality

‖f − f∗P‖L1(PX) ≤
√

2/q(ε)
√
RLε,P(f)−R∗Lε,P , (10)



which holds for all f : X → R with RLε,P(f) − R∗Lε,P ≤ ε2/2. Now, if we are in the situation
of Corollary 2.5, then we know that RLε,P(fD,λn) → R∗Lε,P in probability for n → ∞, and thus
(10) shows that fD,λn approximates the conditional median f∗P with respect to the L1(PX)-norm.
However, the guarantee for this approximation becomes worse the smaller q(ε) becomes, i.e., the
larger ε is. In other words, the sparsity of the decision functions may be paid by less accurate
estimates of the conditional median. On the other hand, our results also show that moderate values
for ε can lead to both reasonable estimates of the conditional median and relatively sparse decision
functions. In this regard we further note that one can also use [8, Lemma 3.3] to establish self-
calibration inequalities that measure the distance of f to f∗P only up to ε. In this case, however, it
is obvious that such self-calibration inequalities are worse the larger ε is, and hence the informal
conclusions above remain unchanged.

Finally, we like to mention that, if the conditional distributions are not equal modulo transla-
tions, then the situation may become more involved. In particular, if we are in a situation with
p(f∗P(x)|x) > 0 and p(f∗P(x) + ε|x) > 0 but infx p(f∗P(x)|x) = infx p(f∗P(x) + ε|x) = 0, self-
calibration inequalities of the form (10) are in general impossible, and weaker self-calibration in-
equalities require additional assumptions on P. We refer to [8] where the case ε = 0 is considered.

3 Proofs

Setting C := 1
2λn and introducing slack variables, we can restate the optimization problem (1) as

minimize
1
2
‖f‖2H + C

n∑
i=1

(ξi + ξ̃i) (11)

subject to f(xi)− yi ≤ ε+ ξi,

yi − f(xi) ≤ ε+ ξ̃i,

ξi, ξ̃i ≥ 0 for all i = 1, . . . , n.

In the following we denote the (unique) solution of (11) by (f∗, ξ∗, ξ̃∗), where we note that we have
f∗ = fD,λ. It is well-known, see e.g. [2, p. 117], that the dual optimization problem of (11) is

maximize
n∑
i=1

yi(α̃i − αi)− ε
n∑
i=1

(α̃i + αi)−
1
2

n∑
i,j=1

(α̃i − αi)(α̃j − αj)k(xi, xj) (12)

subject to 0 ≤ αi, α̃i ≤ C for all i = 1, . . . , n,

where k is the kernel of the RKHS H . Furthermore, if (α∗1, α̃
∗
1, . . . , α

∗
n, α̃

∗
n) denotes a solution of

(12), then we can recover the primal solution (f∗, ξ∗, ξ̃∗) by

f∗ =
n∑
i=1

(α̃∗i − α∗i )k(xi, · ) , (13)

ξ∗i = max{0, f∗(xi)− yi − ε} , (14)

ξ̃∗i = max{0, yi − f∗(xi)− ε} , (15)

for all i = 1, . . . , n. Moreover, the Karush-Kuhn-Tucker conditions of (12) are

α∗i (f
∗(xi)− yi − ε− ξ∗i ) = 0 , (16)

α̃∗i (yi − f∗(xi)− ε− ξ̃∗i ) = 0 , (17)
(α∗i − C)ξ∗i = 0 , (18)

(α̃∗i − C)ξ̃∗i = 0 , (19)

ξ∗i ξ̃
∗
i = 0 , (20)

α∗i α̃
∗
i = 0 , (21)

where i = 1, . . . , n. Finally, note that by setting βi := α̃i − αi the problem (12) can be simplified
to (3), and consequently, a solution β∗ of (3) is of the form β∗ = α̃∗ − α∗. The following simple
lemma provides lower and upper bounds for the set of support vectors.



Lemma 3.1 Using the above notations we have{
i : |fD,λ(xi)− yi| > ε

}
⊂
{
i : β∗i 6= 0

}
⊂
{
i : |fD,λ(xi)− yi| ≥ ε

}
.

Proof: Let us first prove the inclusion on the left hand side. To this end, we begin by fixing an index
i with fD,λ(xi) − yi > ε. By fD,λ = f∗ and (14), we then find ξ∗i > 0, and hence (18) implies
α∗i = C. From (21) we conclude α̃∗i = 0 and hence we have β∗i = α̃∗i − α∗i = −C 6= 0. The case
yi − fD,λ(xi) > ε can be shown analogously, and hence we obtain the first inclusion. In order to
show the second inclusion we fix an index i with β∗i 6= 0. By β∗i = α̃∗i − α∗i and (21) we then have
either α∗i 6= 0 or α̃∗i 6= 0. Let us first consider the case α∗i 6= 0 and α̃∗i = 0. The KKT condition (16)
together with fD,λ = f∗ implies fD,λ(xi)−yi− ε = ξ∗i and since ξ∗i ≥ 0 we get fD,λ(xi)−yi ≥ ε.
The second case α̃∗i = 0 can be shown analogously.

We further need the following Hilbert space version of Hoeffding’s inequality from [12, Chapter 3],
see also [7, Chapter 6.2] for a slightly sharper inequality.

Theorem 3.2 Let (Ω,A,P) be a probability space and H be a separable Hilbert space. Moreover,
let η1, . . . , ηn : Ω → H be independent random variables satisfying EPηi = 0 and ‖ηi‖∞ ≤ 1 for
all i = 1, . . . , n. Then, for all τ ≥ 1 and all n ≥ τ , we have

P
(∥∥∥ 1

n

n∑
i=1

ηi

∥∥∥
H
< 4
√
τ

n

)
≥ 1− 3e−τ .

Finally, we need the following theorem, see [7, Corollary 5.10], which was essentially shown by
[13, 5, 3] .

Theorem 3.3 Let P be a probability measure on X ×R and H be a separable RKHS with bounded
measurable kernel satisfying ‖k‖∞ ≤ 1. We write Φ : X → H for the canonical feature map of H ,
i.e., Φ(x) := k( · , x), x ∈ X . Then for all λ > 0 there exists a function h : X ×R→ [−1, 1] such
that for all n ≥ 1 and all D ∈ (X ×R)n we have

‖fD,λ − fP,λ‖H ≤ λ−1‖EDhΦ− EPhΦ‖H ,
where ED denotes the empirical average with respect to D.

Proof of of Theorem 2.1: In order to show the first estimate we fix a δ > 0 and a λ > 0 such that
δλ ≤ 4. Let τ := λ2δ2n/16 which implies n ≥ τ . Combining Theorems 3.2 and 3.3 we then obtain

1− 3e−τ ≤ Pn
(
D ∈ (X ×R)n : ‖EDhΦ− EPhΦ‖H ≤ 4

√
τ/n

)
≤ Pn

(
D ∈ (X ×R)n : ‖fD,λ − fP,λ‖H ≤ δ

)
. (22)

Let us now assume that we have a training set D ∈ (X×R)n such that ‖fP,λ−fD,λ‖H ≤ δ. Given
a pair (x, y) ∈ Aδlow(fP,λ), we then have

ε+ δ < |fP,λ(x)− y| ≤ |fD,λ(x)− y|+ |fP,λ(x)− fD,λ(x)| ≤ |fD,λ(x)− y|+ δ

by the triangle inequality and ‖k‖∞ ≤ 1 which implies ‖ · ‖∞ ≤ ‖ · ‖H . In other words, we have
Aδlow(fP,λ) ⊂ Alow(fD,λ). Consequently, Lemma 3.1 yields

#SV (fD,λ) ≥ #
{
i : |fD,λ(xi)− yi| > ε

}
≥ #

{
i : |fP,λ(xi)− yi| > ε+ δ

}
=

n∑
i=1

1Aδlow(fP,λ)(xi, yi) .

Combining this estimate with (22) we then obtain

Pn
(
D ∈ (X ×R)n :

#SV (fD,λ)
n

≥ 1
n

n∑
i=1

1Aδlow(fP,λ)(xi, yi)
)
≥ 1− 3e−

δ2λ2n
16 .

Moreover, Hoeffding’s inequality, see, e.g. [4, Theorem 8.1], shows

Pn
(
D ∈ (X ×R)n :

1
n

n∑
i=1

1Aδlow(fP,λ)(xi, yi) > P
(
Aδlow(fP,λ)

)
− ρ
)
≥ 1− e−2ρ2n



for all ρ > 0 and n ≥ 1. From these estimates and a union bound we conclude the first inequality.
In order to show the second estimate we first observe that for training sets D ∈ (X × R)n with
‖fP,λ − fD,λ‖H ≤ δ we have Aup(fD,λ) ⊂ Aδup(fP,λ). Lemma 3.1 then shows

#SV (fD,λ) ≤
n∑
i=1

1Aδup(fP,λ)(xi, yi) ,

and hence (22) yields

Pn
(
D ∈ (X ×R)n :

#SV (fD,λ)
n

≤ 1
n

n∑
i=1

1Aδup(fP,λ)(xi, yi)
)
≥ 1− 3e−

δ2λ2n
16 .

Using Hoeffding’s inequality analogously to the proof of the first estimate we then obtain the second
estimate.

Proof of of Corollary 2.2: We first observe that we have Aδlow(fP,λ) ⊂ Aδ
′

low(fP,λ) for 0 ≤ δ′ ≤ δ.
Let us show ⋃

δ>0

Aδlow(fP,λ) = Alow(fP,λ) . (23)

Obviously, the inclusion “⊂” directly follows from the above monotonicity. Conversely, for (x, y) ∈
Alow(fP,λ) we have |f(x) − y| > ε and hence |f(x) − y| > ε + δ for some δ > 0, i.e., we have
shown (x, y) ∈ Aδlow(fP,λ). From (23) we now conclude

lim
δ↘0

P
(
Aδlow(fP,λ)

)
= P

(
Alow(fP,λ)

)
. (24)

In addition, we have Aδ
′

up(fP,λ) ⊂ Aδup(fP,λ) for 0 ≤ δ′ ≤ δ, and it is easy to check that⋂
δ>0

Aδup(fP,λ) = Aup(fP,λ) . (25)

Indeed, if (x, y) ∈ Aδup(fP,λ) for all δ > 0 we have |f(x) − y| ≥ ε − δ for all δ > 0, from which
we conclude |f(x)−y| ≥ ε, i.e. (x, y) ∈ Aup(fP,λ). Conversely, the inclusion “⊃” directly follows
from the above monotonicity of the sets Aup. From (25) we then conclude

lim
δ↘0

P
(
Aδup(fP,λ)

)
= P

(
Aup(fP,λ)

)
. (26)

Let us now fix a decreasing sequence (δn) ⊂ (0, 1) with δn → 0 and δ2nn → ∞. Combining (24)
and (26) with the estimates of Theorem 2.1, we then obtain the assertion.

Proof of Lemma 2.3: Since the loss function Lε is Lipschitz continuous and convex in t, it is easy
to verify that t 7→ CLε,P( · |x)(t) is Lipschitz continuous and convex for PX -almost all x ∈ X , and
hence M∗(x) is a closed interval. In order to prove the remaining assertions it suffices to show
that limt→±∞ CLε,P( · |x)(t) = ∞ for PX -almost all x ∈ X . To this end, we first observe that
R∗Lε,P < ∞ implies C∗Lε,P( · |x) < ∞ for PX -almost all x ∈ X . Let us fix such an x, a B > 0,
and a sequence (tn) ⊂ R with tn → −∞. By the shape of Lε, there then exists an r0 > 0 such
that Lε(y, t) ≥ 2B for all y, t ∈ R with |y − t| ≥ r0. Furthermore, there exists an M > 0 with
P([−M,M ] |x) ≥ 1/2, and since tn → −∞ there further exists an n0 ≥ 1 such that tn ≤ −M−r0
for all n ≥ n0. For y ∈ [−M,M ] we thus have y − tn ≥ r0, and hence we finally find

CLε,P( · |x)(tn) ≥
∫

[−M,M ]

Lε(y, tn) dP(y|x) ≥ B

for all n ≥ n0. The case tn →∞ can be shown analogously.

For the proof of Theorem 2.4 we need the following two intermediate results.

Theorem 3.4 Let P be a probability measure on X ×R and H be a separable RKHS with bounded
measurable kernel satisfying ‖k‖∞ ≤ 1. Assume that RLε,P(0) < ∞ and that H is dense in
L1(PX). Then, for all δ > 0 and ρ > 0, there exists a λ0 > 0 such that for all λ ∈ (0, λ0] we have

PX
({
x ∈ X : |fP,λ(x)− t| > δ for all t ∈M∗(x)

})
< ρ .



Proof: Since H is dense in L1(PX) we have inff∈H RLε,P(f) = R∗Lε,P by [9, Theorem 3], and
hence limλ→0RLε,P(fP,λ) = R∗Lε,P. Now we obtain the assertion from [6, Theorem 3.16].

Lemma 3.5 Let P be a probability measure on X ×R and H be a separable RKHS with bounded
measurable kernel satisfying ‖k‖∞ ≤ 1. Assume that RLε,P(0) < ∞ and that H is dense in
L1(PX). Then, for all δ > 0 and ρ > 0, there exists a λ0 > 0 such that for all λ ∈ (0, λ0] we have

P
(
M2δ

low(fP,λ)
)
≤ P

(
Aδlow(fP,λ)

)
+ ρ and P

(
M2δ

up(fP,λ)
)
≥ P

(
Aδup(fP,λ)

)
− ρ .

Proof: We write t∗λ(x) for the real number defined by (6) for f(x) := fP,λ(x). Then we have

M2δ
low(fP,λ) ⊂

(
M2δ

low(fP,λ) ∩
{

(x, y) ∈ X ×R : |fP,λ(x)− t∗λ(x)| ≤ δ
})

∪
{

(x, y) ∈ X ×R : |fP,λ(x)− t(x)| > δ for all t(x) ∈M∗(x)
}
.

Moreover, given an (x, y) ∈M2δ
low(fP,λ) ∩ {(x, y) ∈ X ×R : |fP,λ(x)− t∗λ(x)| ≤ δ}, we find

ε+ 2δ < |t∗λ(x)− y| ≤ |fP,λ(x)− t∗λ(x)|+ |fP,λ(x)− y| ≤ δ + |fP,λ(x)− y| ,
i.e., we have (x, y) ∈ Aδlow(fP,λ). Estimating the probability of the remaining set by Theorem 3.4
then yields the first assertion. In order to prove the second estimate we first observe that

Aδup(fP,λ) ⊂
(
Aδup(fP,λ) ∩

{
(x, y) ∈ X ×R : |fP,λ(x)− t∗λ(x)| ≤ δ

})
∪
{

(x, y) ∈ X ×R : |fP,λ(x)− t(x)| > δ for all t(x) ∈M∗(x)
}
.

For (x, y) ∈ Aδup(fP,λ) ∩ {(x, y) ∈ X ×R : |fP,λ(x)− t∗λ(x)| ≤ δ} we further have
ε− δ ≤ |fP,λ(x)− y| ≤ |fP,λ(x)− t∗λ(x)|+ |t∗λ(x)− y| ≤ δ + |t∗λ(x)− y| ,

i.e., we have (x, y) ∈M2δ
up(fP,λ). Again, the assertion now follows from Theorem 3.4 .

Proof of Theorem 2.4: Analogously to the proofs of (24) and (26), we find
lim
δ↘0

P
(
M δ

low(fP,λ)
)

= P
(
Mlow(fP,λ)

)
and lim

δ↘0
P
(
Mδ

up(fP,λ)
)

= P
(
Mup(fP,λ)

)
Combining these equations with Theorem 2.1 and Lemma 3.5, we then obtain the assertion.
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