
Automatic online tuning for fast Gaussian summation

Vlad I. Morariu1∗, Balaji V. Srinivasan1, Vikas C. Raykar2, Ramani Duraiswami1, and Larry S. Davis1

1University of Maryland, College Park, MD 20742
2Siemens Medical Solutions Inc., USA, 912 Monroe Blvd, King of Prussia, PA 19406

morariu@umd.edu, balajiv@umiacs.umd.edu, vikas.raykar@siemens.com,

ramani@umiacs.umd.edu, lsd@cs.umd.edu

Abstract

Many machine learning algorithms require the summation of Gaussian kernel
functions, an expensive operation if implemented straightforwardly. Several meth-
ods have been proposed to reduce the computational complexity of evaluating such
sums, including tree and analysis based methods. These achieve varying speedups
depending on the bandwidth, dimension, and prescribed error, making the choice
between methods difficult for machine learning tasks. We provide an algorithm
that combines tree methods with the Improved Fast Gauss Transform (IFGT). As
originally proposed the IFGT suffers from two problems: (1) the Taylor series
expansion does not perform well for very low bandwidths, and (2) parameter se-
lection is not trivial and can drastically affect performance and ease of use. We
address the first problem by employing a tree data structure, resulting in four eval-
uation methods whose performance varies based on the distribution of sources and
targets and input parameters such as desired accuracy and bandwidth. To solve the
second problem, we present an online tuning approach that results in a black box
method that automatically chooses the evaluation method and its parameters to
yield the best performance for the input data, desired accuracy, and bandwidth.
In addition, the new IFGT parameter selection approach allows for tighter error
bounds. Our approach chooses the fastest method at negligible additional cost,
and has superior performance in comparisons with previous approaches.

1 Introduction

Gaussian summations occur in many machine learning algorithms, including kernel density esti-
mation [1], Gaussian process regression [2], fast particle smoothing [3], and kernel based machine
learning techniques that need to solve a linear system with a similarity matrix [4]. In such algorithms,

the sum g(yj) =
∑N

i=1 qie
−||xi−yj ||

2/h2

must be computed for j = 1, . . . ,M , where {x1, . . . , xN}
and {y1, . . . , yM} are d-dimensional source and target (or reference and query) points, respectively;
qi is the weight associated with xi; and h is the bandwidth. Straightforward computation of the
above sum is computationally intensive, taking O(MN) time.

To reduce the computational complexity, Greengard and Strain proposed the Fast Gauss Transform
(FGT) [5], using two expansions, the far-field Hermite expansion and the local Taylor expansion, and
a translation process that converts between the two, yielding an overall complexity of O(M + N).
However, due to the expensive translation operation, O(pd) constant term, and the box based data
structure, this method becomes less effective for higher dimensions (e.g. d > 3) [6].

Dual-tree methods [7, 8, 9, 10] approach the problem by building two separate trees for the source
and target points respectively, and recursively considering contributions from nodes of the source
tree to nodes of the target tree. The most recent works [9, 10] present new expansions and error
control schemes that yield improved results for bandwidths in a large range above and below the op-
timal bandwidth, as determined by the standard least-squares cross-validation score [11]. Efficiency
across bandwidth scales is important in cases where the optimal bandwidth must be searched for.

∗Our code is available for download as open source at http://sourceforge.net/projects/figtree.

Another approach, the Improved Fast Gauss Transform (IFGT) [6, 12, 13], uses a Taylor expansion
and a space subdivision different than the original FGT, allowing for efficient evaluation in higher
dimensions. This approach also achieves O(M + N) asymptotic computational complexity. How-
ever, the approach as initially presented in [6, 12] was not accompanied by an automatic parameter
selection algorithm. Because the parameters interact in a non-trivial way, some authors designed
simple parameter selection methods to meet the error bounds, but which did not maximize perfor-
mance [14]; others attempted, unsuccessfully, to choose parameters, reporting times of “∞” for
IFGT [9, 10]. Recently, Raykar et al [13] presented an approach which selects parameters that mini-
mize the constant term that appears in the asymptotic complexity of the method, while guaranteeing
that error bounds are satisfied. This approach is automatic, but only works for uniformly distributed
sources, a situation often not met in practice. In fact, Gaussian summations are often used because
a simple distribution cannot be assumed. In addition, the IFGT performs poorly at low bandwidths
because of the number of Taylor expansion terms that must be retained to meet error bounds.

We address both problems with IFGT: 1) small bandwidth performance, and 2) parameter selection.
First we employ a tree data structure [15, 16] that allows for fast neighbor search and greatly speeds
up computation for low bandwidths. This gives rise to four possible evaluation methods that are
chosen based on input parameters and data distributions: direct evaluation, direct evaluation using
tree data structure, IFGT evaluation, and IFGT evaluation using tree data structure (denoted by
direct, direct+tree, ifgt, and ifgt+tree, respectively). We improve parameter selection by removing
the assumption that data is uniformly distributed and by providing a method for selecting individual
source and target truncation numbers that allows for tighter error bounds. Finally, we provide an
algorithm that automatically selects the evaluation method that is likely to be fastest for the given
data, bandwidth, and error tolerance. This is done in a way that is automatic and transparent to the
user, as for other software packages such as FFTW [17] and ATLAS [18].The algorithm is tested on
several datasets, including those in [10], and in each case found to perform as expected.

2 Improved Fast Gauss Transform

We briefly summarize the IFGT, which is described in detail [13, 12, 6]. The speedup is achieved by
employing a truncated Taylor series factorization, using a space sub-division to reduce the number
of terms needed to satisfy the error bound, and ignoring sources whose contributions are negligible.
The approximation is guaranteed to satisfy the absolute error |ĝ(yj) − g(yj)| /Q ≤ ǫ, where Q =
∑

i |qi|. The factorization that IFGT uses involves the truncated multivariate Taylor expansion

e−‖yj−xi‖
2/h2

= e−‖xi−x∗‖
2/h2

e−||yj−x∗‖
2/h2





∑

|α|≤p−1

2α

α!

(

yj − x∗

h

)α (

xi − x∗

h

)α


 + ∆ij

where α is multi-index notation1 and ∆ij is the error induced by truncating the series to exclude
terms of degree p and higher and can be bounded by

∆ij ≤ 2p

p!

(||xi − x∗||
h

)p (||yj − x∗||
h

)p

e−(||xi−x∗||−||yj−x∗||)
2/h2

. (1)

Because reducing the distance ||xi − x∗|| also reduces the error bound given above, the sources can
be divided into K clusters, so the Taylor series center of expansion for source xi is the center of
the cluster to which the source belongs. Because of the rapid decay of the Gaussian function, the

contribution of sources in cluster k can be ignored if ||yj − ck|| > rk
y = rk

x + h
√

log(1/ǫ), where

ck and rk
x are cluster center and radius of the kth cluster, respectively.

In [13], the authors ensure that the error bound is met by choosing the truncation number pi for each

source so that ∆ij ≤ ǫ. This guarantees that |ĝ(yj) − g(yj)| = |∑N
i=1 qi∆ij | ≤

∑N
i=1 |qi|ǫ = Qǫ.

Because ||yj − ck|| cannot be computed for each ∆ij term (to prevent quadratic complexity), the
authors use the worst case scenario; denoting dik = ||xi − ck|| and djk = ||yj − ck||, the bound on

error term ∆ij is maximized at d∗jk =
dik+

√
d2

ik
+2pih2

2 , or d∗jk = rk
y , whichever is smaller (since

targets further than rk
y from ck will not consider cluster k).

1Multi-index α = {α1, . . . , αd} is a d-tuple of nonnegative integers, its length is |α| = α1 + . . . + αd, its

factorial is defined as α! = α1!α2! . . . αd!, and for x = (x1, . . . , xd) ∈ R
d, x

α = x
α1

1
x

α2

2
. . . x

αd

d
.

T a r g e t

S o u r c e s

r

T a r g e t

S o u r c e s

r

T a r g e t

S o u r c e s

c
2

c
1

c
3

r

T a r g e t

S o u r c e s

c
2

c
3c

1

direct direct+tree ifgt ifgt+tree

Figure 1: The four evaluation methods. Target is displayed elevated to separate it from sources.

The algorithm proceeds as follows. First, the number of clusters K, maximum truncation number
pmax, and the cut-off radius r are selected by assuming that sources are uniformly distributed. Next,
K-center clustering is performed to obtain c1, . . . , cK , and the set of sources S is partitioned into
S1, . . . , Sk. Using the max cluster radius rx, the truncation number pmax is found that satisfies
worst-case error bound. Choosing pi for each source xi so that ∆ij ≤ ǫ, source contributions are
accumulated to cluster centers:

Ck
α =

2α

α!

∑

xi∈Sk

qie
−

||xi−ck||
2

h2

(

xi − ck

h

)α

1|α|≤pi−1

For each yi, influential clusters for which ||yi − ck|| ≤ rk
y = rk

x + r are found, and contributions
from those clusters are evaluated:

ĝ(yj) =
∑

||yi−ck||≤ry

k

∑

|α|≤pmax−1

Ck
αe−

||yj−ck||
2

h2

(

yj − ck

h

)α

The clustering step can be performed in O(NK) time using a simple algorithm [19] due to Gonzalez,
or in optimal O(N log K) time using the algorithm by Feder and Greene [20]. Because the number
of values of α such that |α| ≤ p is rpd = C(p + d, d), the total complexity of the algorithm is

O
(

(N + Mnc)(log K + r(pmax−1)d)
)

where nc is the number of cluster centers that are within the
cut-off radius of a target point. Note that for fixed p, rpd is polynomial in the dimension d rather than
exponential. Searching for clusters within the cut-off radius of each target can take time O(MK),
but efficient data-structures can be used to reduce the cost to O(Mnc log K).

3 Fast Fixed-Radius Search with Tree Data Structure

One problem that becomes apparent from the point-wise error bound on ∆ij is that as bandwidth h
decreases, the error bound increases, and either dik = ||xi − ck|| must be decreased (by increasing
the number of clusters K) or the maximum truncation number pmax must be increased to continue
satisfying the desired error. An increase in either K or pmax increases the total cost of the algorithm.
Consequently, the algorithm originally presented above does not perform well for small bandwidths.

However, few sources have a contribution greater than qiǫ at low bandwidths, since the cut-off radius
becomes very small. Also, because the number of clusters increases as the bandwidth decreases, we
need an efficient way of searching for clusters that are within the cut-off radius. For this reason, a
tree data structure can be used since it allows for efficient fixed-radius nearest neighbor search. If h
is moderately low, a tree data structure can be built on the cluster centers, such that the nc influential
clusters within the cut-off radius can be found in O(nc log K) time [15, 16]. If the bandwidth is
very low, then it is more efficient to simply find all source points xi that influence a target yj and
perform exact evaluation for those source points. Thus, if ns source points are within the cut-off
radius of yj , then the time to build the structure is O(N log N) and the time to perform a query is
O(ns log N) for each target. Thus, we have four methods that may be used for evaluation of the
Gauss Transform: direct evaluation, direct evaluation with the tree data structure, IFGT evaluation,
and IFGT evaluation with a tree data structure on the cluster centers. Figure 1 shows a graphical
representation of the four methods. Because the running times of the four methods for various
parameters can differ greatly (i.e. using direct+tree evaluation when ifgt is optimal could result in a
running time that is many orders of magnitude larger), we will need an efficient and online method
selection approach, which is presented in section 5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of clusters, K

M
a
x
 C

lu
s
te

r
R

a
d
iu

s
,
r x

Actual radius

Predicted radius

10
−2

10
−1

10
−1

10
0

10
1

10
2

10
3

Bandwidth h

S
p
e
e
d
u
p

d = 1

d = 2

d = 3

d = 4

d = 5

d = 6

Figure 2: Selecting pmax and K using cluster radius, for M=N=20000, sources dist. as mixture of

25 N (µ ∼ U [0, 1]d,Σ=4−4I), targets as U [0, 1]
d
, ǫ=10−2. Left: Predicted cluster radius as K−1/d

vs actual cluster radius for d = 3. Right: Speedup from using actual cluster radius.

4 Choosing IFGT Parameters

As mentioned in Section 1, the process of choosing the parameters is non-trivial. In [13], the point-
wise error bounds described in Eq. 1 were used in an automatic parameter selection scheme that is
optimized when sources are uniformly distributed. We remove the uniformity assumption and also
make the error bounds tighter by selecting individual source and target truncation numbers to satisfy
cluster-wise error bounds instead of the worst-case point-wise error bounds. The first improvement
provides significant speedup in cases where sources are not uniformly distributed, and the second
improvement results in general speedup since we are no longer considering the error contribution of
just the worst source point, but considering the total error of each cluster instead.

4.1 Number of Clusters and Maximum Truncation Number

The task of selecting the number of clusters K and maximum truncation number pmax is difficult
because they depend on each other indirectly through the source distribution. For example, increas-
ing K decreases the cluster radius, which allows for a lower truncation number while still satisfying
the error bound; conversely, increasing pmax allows clusters to have a larger radius, which allows
for a smaller K. Ideally, both parameters should be as low as possible since they both affect compu-
tational complexity. Unfortunately, we cannot find the balance between the two without analyzing
the source distribution because it influences the rate at which the cluster radius decreases. The uni-
formity assumption leads to an estimate of maximum cluster radius, rx ∼ K−1/d [13]. However,
few interesting datasets are uniformly distributed, and when the assumption is violated, as in Fig. 2,

actual rx will decrease faster than K−1/d, leading to over-clustering and increased running time.

Our solution is to perform clustering as part of the parameter selection process, obtaining the actual
cluster radii for each value of K. Using this approach, parameters are selected in a way that the
algorithm is tuned to the actual distribution of the sources.

We can take advantage of the incremental nature of some clustering algorithms such as the greedy al-
gorithm proposed by Gonzalez [19] or the first phase of the Feder and Greene algorithm [20], which
provide a 2-approximation and 6-approximation of the optimal k-center clustering, respectively. We
can then increment the value K, obtain the maximum cluster radius, and then find the lowest p that
satisfies the error bound, picking the final value K which yields the lowest computational cost.

Note that if we simply set the maximum number of clusters to Klimit = N , we would spend
O(N log N) time to estimate parameters. However, in practice, the optimal value of K is low
relative to N , and it is possible to detect when we cannot lower cost further by increasing K or
lowering pmax, thus allowing the search to terminate early. In addition, in Section 5, we show how
the data distribution allows us to intelligently choose Klimit.

4.2 Individual Truncation Numbers by Cluster-wise Error Bounds

Once the maximum truncation number pmax is selected, we can guarantee that the worst source-
target pairwise error is below the desired error bound. However, simply setting each source and
target truncation number to pmax wastes computational resources since most source-target pairs do
not contribute much error. This problem is addressed in [13] by allowing each source to have its own
truncation number based on its distance from the cluster center and assuming the worst placement of

10
−2

10
−1

10
0

Bandwidth h

S
p

e
e

d
u

p

d = 1

d = 2

d = 3

d = 4

d = 5

d = 6

Figure 3: Speedup obtained by using cluster-wise instead of point-wise truncation numbers, for

M=N=4000, sources dist. as mixture of 25 N (µ ∼ U [0, 1]d,Σ=4−4I), targets as U [0, 1]
d
, ǫ=10−4.

For d=1, the gain of lowering truncation is not large enough to make up for overhead costs.

any target. However, this means that each cluster will have to compute r(pi−1)d coefficients where

pi is the truncation number of its farthest point.

We propose a method for further decreasing most individual source and target truncation numbers
by considering the total error incurred by evaluation at any target

|ĝ(yj) − g(yj)| ≤
∑

k : ||yj−ck||≤rk
y

∑

xi∈Sk

|qi|∆ij +
∑

k : ||yj−ck||>rk
y

∑

xi∈Sk

|qi|ǫ

where the left term on the r.h.s. is the error from truncating the Taylor series for the clusters that
are within the cut-off radius, and the right term bounds the error from ignoring clusters outside the
cut-off radius, ry . Instead of ensuring that ∆ij ≤ ǫ for all (i, j) pairs, we ensure

∑

xi∈Sk
|qi|∆ij ≤ ∑

xi∈Sk
|qi|ǫ = Qkǫ

for all clusters. In this case, if a cluster is outside the cut-off radius, then the error incurred is no
greater than Qkǫ; otherwise, the cluster-wise error bounds guarantee that the error is still no greater
than Qkǫ. Summing over all clusters we have

|ĝ(yj) − g(yj)| ≤
∑

k Qkǫ = Qǫ,

our desired error bound. The lowest truncation number that satisfies the cluster-wise error for each
cluster is found in O(pmaxN) time by evaluating the cluster-wise error for all clusters for each
value of p = {1 . . . pmax}. In addition, we can find individual target point truncation numbers by
not only considering the worst case target distance rk

y when computing cluster error contributions,
but considering target errors for sources at varying distance ranges from each cluster center. This
yields concentric regions around each cluster, each of which has its own truncation number, which
can be used for targets in that region. Our approach satisfies the error bound tighter and reduces
computational cost because:

• Each cluster’s maximum truncation number no longer depends only on its farthest point, so
if most points are clustered close to the center the maximum truncation will be lower;

• The weight of each source point is considered in the error contributions, so if a source point
is far away but has a weight of qi = 0 its error contribution will be ignored; and finally

• Each target can use a truncation number that depends on its distance from the cluster.

5 Automatic Tuning via Method Selection

For any input source and target point distribution, requested absolute error, and Gaussian bandwidth,
we have the option of evaluating the Gauss Transform using any one of four methods: direct, di-
rect+tree, ifgt, and ifgt+tree. As Fig. 4 shows, choosing the wrong method can result in orders of
magnitude more time to evaluate the sum. Thus, we require an efficient scheme to automatically
choose the best method online based on the input. The scheme must use the distribution of both the
source and target points in making its decision, while at the same time avoiding long computations
that would defeat the purpose of automatic method selection.

Note that if we know d, M , N , ns, nc, K, and pmax, we can calculate the cost of each method:

Costdirect(d, N, M) O(dMN)
Costdirect+tree(d, N, M, ns) O(d(N + Mns) log N)
Costifgt(d, N, M, K, nc, pmax) O(dN log K + (N + Mnc)r(pmax−1)d + dMK)
Costifgt+tree(d, N, M, K, nc, pmax) O((N + Mnc)(d log K + r(pmax−1)d))

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

10
2

Bandwidth h

C
P

U
 T

im
e
 (

s
e
c
o
n
d
s
)

direct

direct−tree

ifgt

ifgt−tree

auto

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Bandwidth h

T
im

e
 r

a
ti
o

d = 1, auto to best

d = 2, auto to best

d = 3, auto to best

d = 4, auto to best

d = 5, auto to best

d = 6, auto to best

d = 1, auto to worst

d = 2, auto to worst

d = 3, auto to worst

d = 4, auto to worst

d = 5, auto to worst

d = 6, auto to worst

Figure 4: Running times of the four methods and our automatic method selection for M=N=4000,

sources dist. as mixture of 25 N (µ ∼ U [0, 1]d,Σ=4−4I), targets as U [0, 1]
d
, ǫ=10−4. Left: example

for d=4. Right: Ratio of automatic to fastest method and automatic to slowest method, showing that
method selection incurs very small overhead while preventing potentially large slowdowns.

Algorithm 1 Method Selection

1: Calculate n̂s, an estimate of ns

2: Calculate Costdirect(d, N, M) and Costdirect+tree(d, N, M, n̂s)
3: Calculate highest Klimit ≥ 0 such that for some nc and pmax

min(Costifgt, Costifgt+tree) ≤ min(Costdirect, Costdirect+tree)
4: if Klimit > 0 then
5: Compute pmax and K ≤ Klimit that minimize estimated cost of IFGT
6: Calculate n̂c, an estimate of nc

7: Calculate Costifgt+tree(d, N, M, K, n̂c, pmax) and Costifgt(d, N, M, K, n̂c, pmax)
8: end if
9: return arg mini Costi

More precise equations and the correct constants that relate the four costs can be obtained directly
from the specific implementation of each method (this could be done by inspection, or automatically
offline or at compile-time to account for hardware). A simple approach to estimating the distribution
dependent ns and nc is to build a tree on sample source points and compute the average number of
neighbors to a sampled set of targets. The asymptotic complexity of this approximation is the same
as that of direct+tree, unless sub-linear sampling is used at the expense of accuracy in predicting
cost. However, ns and nc can be estimated in O(M + N) time even without sampling by using
techniques from the field of database management systems for estimating spatial join selectivity[21].
Given ns, we predict the cost of direct+tree, and estimate Klimit as the highest value that might yield
lower costs than direct or direct+tree. If Klimit > 0, then, we can estimate the parameters and costs
of ifgt or ifgt+tree. Finally, we pick the method with lowest cost. As figure 4 shows, our method
selection approach chooses the correct method across bandwidths at very low computational cost.

6 Experiments

Performance Across Bandwidths. We empirically evaluate our method on the same six real-world
datasets as in [10] and compare against the authors’ reported results. As in [10], we scale the data to
fit the unit hypercube and evaluate the Gauss transform using all 50K points as sources and targets,
with bandwidths varying from 10−3 to 103 times the optimal bandwidth. Because our method satis-
fies an absolute error, we use for absolute ǫ the highest value that guarantees a relative error of 10−2

(to achieve this, ǫ ranges from 10−1 to 10−4 by factors of 10). We do not include the time required to
choose ǫ (since we are doing this only to evaluate the running times of the two methods for the same
relative errors) but we do include the time to automatically select the method and parameters. Since
the code of [10] is not currently available, our experiments do not use the same machine as [10], and
the CPU times are scaled based on the reported/computed the times needed by the naive approach on
the corresponding machines. Figure 5 shows the normalized running times of our method versus the
Dual-Tree methods DFD, DFDO, DFTO, and DITO. For most bandwidths our method is generally
faster by about one order of magnitude (sometimes as much as 1000 times faster). For near-optimal
bandwidths, our approach is either faster or comparable to the other approaches.

Gaussian Process Regression. Gaussian process regression (GPR) [22] provides a Bayesian frame-
work for non-parametric regression. The computational complexity for straightforward GPR is

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Bandwidth scale h/h*

C
P

U
 T

im
e
 /
 N

a
iv

e
 C

P
U

 T
im

e sj2, d = 1, h
*
 = 0.001395

DFD

DFDO

DFTO

DITO

Our method

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Bandwidth scale h/h*

C
P

U
 T

im
e
 /
 N

a
iv

e
 C

P
U

 T
im

e mockgalaxy, d = 3, h
*
 = 0.000768

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Bandwidth scale h/h*

C
P

U
 T

im
e
 /
 N

a
iv

e
 C

P
U

 T
im

e bio5, d = 5, h
*
 = 0.000567

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Bandwidth scale h/h*

C
P

U
 T

im
e
 /
 N

a
iv

e
 C

P
U

 T
im

e pall7, d = 7, h
*
 = 0.001319

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Bandwidth scale h/h*

C
P

U
 T

im
e
 /
 N

a
iv

e
 C

P
U

 T
im

e covtype, d = 10, h
*
 = 0.015476

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Bandwidth scale h/h*

C
P

U
 T

im
e
 /
 N

a
iv

e
 C

P
U

 T
im

e CoocTexture, d = 16, h
*
 = 0.026396

Figure 5: Comparison with Dual-Tree methods for six real-world datasets (lower is faster).

O(N3) which is undesirable for large datasets. The core computation in GPR involves the solution
of a linear system for the dense covariance matrix K + σ2I , where [K]ij = K(xi, xj). Our method
can be used to accelerate this solution for Gaussian processes with Gaussian covariance, given by

K(x, x′) = σ2
f exp(−∑d

k=1 (xk − x′
k)2/h2

k) [22]. Given the training set, D = {xi, yi}N
i=1, and a

new point x∗, the training phase involves computing α = (K + σ2I)−1y, and the prediction of y∗
is given by y∗ = k(x∗)

T α, where k(x∗) = [K(x∗, x1), . . . ,K(x∗, xN)]. The system can be solved
efficiently by a conjugate gradient method using IFGT for matrix-vector multiplication. Further, the
accuracy of the matrix-vector product can be reduced as the iterations proceed (i.e. ǫ is modified
every iteration) if we use inexact Krylov subspaces [23] for the conjugate gradient iterations.

We apply our method for Gaussian process regression on four standard datasets: robotarm, abalone,
housing, and elevator2. We present the results of the training phase (though we also speed up
the prediction phase). For each dataset we ran five experiments: the first four fixed one of the
four methods (direct, direct+tree, ifgt, ifgt+tree) and used it for all conjugate gradient iterations;
the fifth automatically selected the best method at each iteration (denoted by auto in figure 6). To
validate our solutions, we measured the relative error between the vectors found by the direct method
and our approximate methods; they were small, ranging from ∼ 10−10 to ∼ 10−5. As expected,
auto chose the correct method for each dataset, incurring only a small overhead cost. Also, for
the abalone dataset, auto outperformed any of the fixed method experiments; as the right side of
figure 6 shows, half way through the iterations, the required accuracy decreased enough to make ifgt
faster than direct evaluation. By switching methods dynamically, the automatic selection approach
outperformed any fixed method, further demonstrating the usefulness of our online tuning approach.

Fast Particle Smoothing. Finally, we embed our automatic method selection in the the two-filter
particle smoothing demo provided by the authors of [3]3. For a data size of 1000, tolerance set at
10−6, the run-times are 18.26s, 90.28s and 0.56s for the direct, dual-tree and automatic (ifgt was
chosen) methods respectively. The RMS error for all methods from the ground truth values were
observed as 2.904 ± 10−04.

2The last three datasets can be downloaded from http://www.liaad.up.pt/˜ltorgo/Regression/DataSets.html;
the first, robotarm, is a synthetic dataset generated as in [2]

3The code was downloaded from http://www.cs.ubc.ca/˜awll/nbody/demos.html

Robotarm Abalone Housing Elevator

Dims 2 7 12 18

Size 1000 4177 506 8752

direct 0.578s 16.1s 0.313s 132s

ifgt 0.0781s 32.3s 1317s 133s

direct-tree 5.45s 328s 2.27s 0.516s

ifgt-tree 0.0781s 35.2s 549s 101s

auto 0.0938s 14.5s 0.547s 0.797s 0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

−
lo

g
(d

e
s
ir
e

d
 a

c
c
u

ra
c
y
)

Iteration Number

IFGT

Direct Method

Figure 6: GPR Results. Left: CPU times. Right: Desired accuracy per iteration for abalone dataset.

7 Conclusion

We presented an automatic online tuning approach to Gaussian summations that combines a tree data
structure with IFGT that is well suited for both high and low bandwidths and which users can treat
as a black box. The approach also tunes IFGT parameters to the source distribution, and provides
tighter error bounds. Experiments demonstrated that our approach outperforms competing methods
for most bandwidth settings, and dynamically adapts to various datasets and input parameters.

Acknowledgments. We would like to thank the U.S. Government VACE program for supporting
this work. This work was also supported by a NOAA-ESDIS Grant to ASIEP at UMD.

References

[1] M.P. Wand and M.C. Jones. Kernel Smoothing. Chapman and Hall, 1995.

[2] C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In NIPS, 1995.

[3] M. Klaas, M. Briers, N. de Freitas, A. Doucet, S. Maskell, and D. Lang. Fast particle smoothing: if I had
a million particles. In ICML, 2006.

[4] N. de Freitas, Y. Wang, M. Mahdaviani, and D. Lang. Fast Krylov methods for N-body learning. In NIPS,
2006.

[5] L. Greengard and J. Strain. The fast Gauss transform. SIAM J. Sci. Stat. Comput., 1991.

[6] C. Yang, R. Duraiswami, N. A. Gumerov, and L. S. Davis. Improved fast Gauss transform and efficient
kernel density estimation. In ICCV, 2003.

[7] A. G. Gray and A. W. Moore. ‘N-body’ problems in statistical learning. In NIPS, 2000.

[8] A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward computational tractability. In
SIAM Data Mining, 2003.

[9] D. Lee, A. Gray, and A. Moore. Dual-tree fast Gauss transforms. In NIPS, 2006.

[10] D. Lee and A. G. Gray. Faster Gaussian summation: Theory and experiment. In UAI, 2006.

[11] B. W. Silverman. Density estimation for statistics and data analysis. Chapman and Hal, 1986.

[12] C. Yang, R. Duraiswami, and L. S. Davis. Efficient kernel machines using the improved fast Gauss
transform. In NIPS, 2004.

[13] V. Raykar, C. Yang, R. Duraiswami, and N. Gumerov. Fast computation of sums of Gaussians in high
dimensions. UMD-CS-TR-4767, 2005.

[14] D. Lang, M. Klaas, and N. de Freitas. Empirical testing of fast kernel density estimation algorithms.
Technical Report UBC TR-2005-03, University of British Columbia, Vancouver, 2005.

[15] S. Arya and D. Mount. Approximate nearest neighbor queries in fixed dimensions. In SODA, 1993.

[16] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for approxi-
mate nearest neighbor searching fixed dimensions. Journal of the ACM, 1998.

[17] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of the IEEE, 2005.

[18] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software and the
ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

[19] T. F. Gonzalez. Clustering to minimize the maximum inter–cluster distance. In Journal of Theoretical
Computer Science, number 38, pages 293 – 306, October 1985.

[20] T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. In STOC, 1988.

[21] C. Faloutsos, B. Seeger, A. Traina, and C. Traina. Spatial join selectivity using power laws. In SIGMOD
Conference, 2000.

[22] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006.

[23] V. Simoncini and D. Szyld. Theory of inexact Krylov subspace methods and applications to scientific
computing. Technical Report 02-4-12, Temple University, 2002.

