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Abstract

We derive risk bounds for the randomized classifiers in Sample Compression set-
ting where the classifier-specification utilizes two sources of information viz. the
compression set and the message string. By extending the recently proposed Oc-
cam’s Hammer principle to the data-dependent settings, we derive point-wise ver-
sions of the bounds on the stochastic sample compressed classifiers and also re-
cover the corresponding classical PAC-Bayes bound. We further show how these
compare favorably to the existing results.

1 Introduction

The Sample compression framework [Littlestone and Warmuth, 1986, Floyd and Warmuth, 1995]
has resulted in an important class of learning algorithms known as sample compression algorithms.
These algorithms have been shown to be competitive with the state-of-the-art algorithms such as
the SVM in practice [Marchand and Shawe-Taylor, 2002, Laviolette et al., 2005]. Moreover, the
approach has also resulted in practical realizable bounds and has shown significant promise in using
these bounds in model selection.

On another learning theoretic front, the PAC-Bayes approach [McAllester, 1999] has shown that
stochastic classifier selection can prove to be more powerful than outputing a deterministic classifier.
With regard to the sample compression settings, this was further confirmed in the case of sample
compressed Gibbs classifier by Laviolette and Marchand [2007]. However, the specific classifier
output by the algorithm (according to a selected posterior) is generally of immediate interest since
this is the classifier whose future performance is of relevance in practice. Diluting such guarantees
in terms of the expectancy of the risk over the posterior over the classifier space, although gives
tighter risk bounds, result in averaged statements over the expected true error.

A significant result in obtaining such guarantees for the specific randomized classifier has appeared
in the form of Occam’s Hammer [Blanchard and Fleuret, 2007]. It deals with bounding the perfor-
mance of algorithms that result in a set output when given training data. With respect to classifiers,
this results in a bound on the true risk of the randomized classifier output by the algorithm in accor-
dance with a learned posterior over the classifier space from training data. Blanchard and Fleuret
[2007] also present a PAC-Bayes bound for the data-independent settings (when the classifier space
is defined independently of the training data).

Motivated by this result, we derive risk bounds for the randomized sample compressed classifiers.
Note that the classifier space in the case of sample compression settings, unlike other settings, is
data-dependent in the sense that it is defined upon the specification of trainirg Hagarest of

INote that the classifier space depends on the amount of the training data as we see further and not on
the training data themselves. Hence, a data-independent prior over the classifier space can still be obtained in
this setting, e.g., in the PAC-Bayes case, owing to the independence of the classifier space definition from the
content of the training data.



the paper is organized as follows: Section 2 provides a bacigr on the sample compressed
classifiers and establishes the context; Section 3 then states the Occam’s Hammer for the data-
independent settings. We then derive bounds for the randomized sample compressed classifier in
Section 4 followed by showing how we can recover bounds for the sample compressed Gibbs case
(classical PAC-Bayes for sample compressed classifiers) in Section 5. We conclude in Section 6.

2 Sample Compressed (SC) Classifiers

We consider binary classification problems where the input sfacensists of an arbitrary subset

of R™ and the output spag@ = {—1,+1}. An examplez def (x,y) is an input-output pair where

x € X andy € ). Sample Compression learning algorithms are characterized as follows:

Given a training seb = {zi,...,z,} of m examples, the classifiet(S) returned by algorithm
A is described entirely by twoomplementary sources of informaticm subsek; of S, called the
compression setand amessage strings which represents the additional information needed to

obtain a classifier from the compression get Given a training sef, the compression set is

defined by a vectar of indicesi def (i1,d2,...,4)5) Withi; € {1,...,m} Vjandi; <i» <...<

i); and wherei| denotes the number of indices preserit iHencez; denotes théth example ofS
wherea; denotes the subset of examplesSahat are pointed to by the vector of indidedefined
above. We will usd to denote the set of indices not present.itdence, we havé = z; U z; for
any vectoli € Z whereZ denotes the set of th¥" possible realizations df

Finally, a learning algorithm is a sample compression learning algorithm (that is identified solely
by a compression sef; and a message string) iff there exists aReconstruction Functiof® :

(X x V)il x K — H, associated withl. Here,H is the (data-dependent) classifier space and
K CZx Mst. M= Uz M(i). Thatis,R outputs a classifieR (o, z;) when given an arbitrary
compression set; C S and message string chosen from the set1(z;) of all distinct messages
that can be supplied tB with the compression set.

We seek a tight risk bound for arbitrary reconstruction functions that holds uniformly for all com-
pression sets and message strings. For this, we adopt the PAC setting where eachzisaaingben
according to a fixed, but unknown, probability distributiBron X x ). The true riskR(f) of any
classifierf is defined as the probability that it misclassifies an example drawn according to

def
R(f) = Pr(x,y)ND (f(X) # y) = E(x,y)NDI(f(X) 7é y)
wherel(a) = 1 if predicateq is true and) otherwise. Given a training sét= {zi,...,2z,,} of m
examples, thempirical risk Rs(f) on .S, of any classifierf, is defined according to:

R(f) ™ L5 1(705) # 40) 2 B s 1(70) £ 9)
=1

Let Z™ denote the collection of: random variables whose instantiation gives a training sample
S = z™ = {z1,...,z,}. To obtain the tightest possible risk bound, we will fully exploit the
fact that the distribution of classification errors is a binomial. We now discuss the generic Occam'’s
Hammer principle (w.r.t. the classification scenario) and then go on to show how it can be applied
to the sample compression setting.

3 Occam’s Hammer for data independent setting

In this section, we briefly detail the Occam’s hammer [Blanchard and Fleuret, 2007] for data-
independent setting. For the sake of simplicity, we retain the key notations of Blanchard and Fleuret
[2007]. Occam’s hammer work by bounding the probability of bad event defined as follows. For
every classifieh, € H, and a confidence parameter [0, 1], the bad evenB(h, ¢) is defined as

the region where the desired property on the clasgifidoes not hold, with probability. That is,
Prg.pm [S € B(h,0)] < ¢. Further, it assumes that this region is nondecreasing Intuitively,

this means that with decreasinghe bound on the true error of the classifidbecomes tighter.

With the above assumption satisfied, [Ptbe a non-negative reference measure on the classifier
spaceH known as the volumic measure. Létbe a probability distribution ofit absolutely contin-
uous w.r.t.P such thatr = %. LetT" be a probability distribution of0, +c0) (the inverse density
prior). Then Occam’s Hammer [Blanchard and Fleuret, 2007] states that:



Theorem 1 [Blanchard and Fleuret, 2007] Given the above assumption BnH, I" defined as
above, define the level function

A(h,u) = min(o7(h)B(u), 1).
whereg(z) = fo”” udl'(u) for z € (0,400). Then for any algorithn$ — 65 returning a probability
densityds overH with respect tdP, and such thafS, k) — 6g(h) is jointly measurable in its two
variables, it holds that

—1 <
onbl g 15 € Bl A, Os(h)™))] <6,

whereQ is the distribution orf{ such that% =0gs.

Note above thaf) is the (data-dependent) posterior distributiortoafter observing the data sample

S while P is the data-independent prior 6. The subscriptS in 65 denotes this. Moreover, the
distributionII on the space of classifiers may or may not be data-dependent. As we will see later, in
the case of sample compression learning settings we will consider priors over the space of classifiers
without reference to the data (such as PAC-Bayes case). To this end, we can either opt fofla prior
independent of the data or make it the same as the volume md&asurieh establishes a distribution

on the classifier space without reference to the data.

4 Bounds for Randomized SC Classifiers

We work in the sample compression settings and as mentioned before, each classifier in this setting
is denoted in terms of a compression set and a message string. A reconstruction function then
uses these two information sources to reconstruct the classifier. This essentially means that we deal
with a data-dependent hypothesis space. This is in contrast with other notions of hypothesis class
complexity measures such as VC dimension. The hypothesis space is defined, in our case, based on
the size of data sample (and not the actual contents of the sample). Hence, we consider the priors
built on the size of the possible compression sets and associated message strings. More precisely, we
consider prior distributio® with probability densityP(z;, o) to be facotorizable in its compression
set dependent component and message string component (conditioned on a given compression set)
such that:

P(zi,0) = Pr(i) Pz (o) 1)
with Pz(i) = (Tl)p(|i|) such that}"’" /p(d) = 1. The above choice of the form fdP;(i) is

i

appropriate since we do not have ampriori information to distinguish one compression set from
other. However, as we will see later, we should chgggé such that we give more weight to smaller
compression sets.

Let P be the set of all distribution® on K satisfying above equation. Then, we are interested

in algorithms that output a posterigf € Py over the space of classifiers with probability den-
sity Q(z;, o) factorizable ag)7(i)Q () (). A sample compressed classifier is then defined by
choosing a classifide;, o) according to the posteridp(z;, o). This is basically the Gibbs classifier
defined in the PAC-Bayes settings where the idea is to bound the true risk of this Gibbs classifier
defined aR(Gq) = E(,, o)~ R((z1,0)). Onthe other hand, we are interested in bounding the true
risk of the specific classifigz;, o) output according t@). As shown in [Laviolette and Marchand,
2007], a rescaled posteri@rof the following form can provide tighter guarantees while maintaining
the Occam'’s principle of parsimony.

Definition 2 Given a distributionQ € Py, we denote by) the distribution:

@(zh U) def Q(Zi7 0) . QI(i)QM(Zi)(U) _ @(i)QM(zi)(U) V(Zi, 0) cK

(Bao~ery  [Bao~af

Hence, note that the posterior is effectively rescaled for the compression set part. Hence, any
classifier(z;,0) ~ Q@ = i ~ Qz,0 ~ Q). Further, if we denote byl; the expected
value of the compression set size over the choice of parameters according to the scaled posterior,

ds ' E, |i|, then,

Q 1N@70NQM(Zi)

1 1 1
EZ'O'N —_ = -
(17)Q|i| E

i m-dg

iN@7aNQM(Zi)



Now, we proceed to derive the bounds for the randomized sacophgressed classifiers starting
with a PAC-Bayes bound.

4.1 A PAC-Bayes Bound for randomized SC classifier

We exploit the fact that the distribution of the errors is binomial and define the following error
guantities (for a givet, and hence; overzm):

Definition 3 Let S € D™ with D a distribution onX’ x ), and (z;,0) € K. We denote by
Bing(i, o), the probability that the classifiéR (z;, o) of (true) risk R(zb;, o) makeqﬂRZT(zi, o) or
fewer errors onz/ ~ DIl That is,

[ Ry (51,0)

Binso) = > () (om0 - Rl

A=0

and byBg(i, o), the probability that this classifier makes exadily?,_(zi, o) errors onz; ~ DIl
That is,
H

B(0.0) = ([ ) (0 070 = R ) e

Now, approximating the binomial by relative entropy Chernoff bound [Langford, 2005], we have,
for a classifierf:

mRs(f)

S ()R- R < expl-m MRS (DIR))

j=0
forall Rs(f) < R(f).
As also shown in [Laviolette and Marchand, 2007], sitti€g = (" ;) andkl(Rs(f)||R(f)) =

j
kl(1 — Rs(f)|I1 — R(f)), the above inequality holds true for each factor inside the sum on the
left hand side. Consequently, in the case of sample compressed clag§iies,) € K andVvsS €
(X xy)™ .
Bs(i,0) < exp [~ [i] - KI(Ry, (0, ;)| R(0. 21))] @

Bounding this by yields:

Ini
Prg.pm (kl(Rzi(U7 Zi)HR(U, Zi)) < %) >1-96 3)
1
Now, consider the quantity in the probability in Equation 3 as the bad event over classifiers defined
by a compression séand an associated message stenget,~ (i, o) be the posterior probability
density of the rescaled data-dependent posterior distribGtiover the classifier spaaeith respect

to the volume measurP. We can now replaceé for this bad event by the delta of the Occam’s
hammer defined as:

ln(min(&r(hs)ﬁWzm (i7 0)_1)a 1)_1)

1 1
e (5'7T(h) Cmin((k + 1)~ oym (i, 0) 1, 1))
= Iny <%(h) -max((k + 1)tzm (i, O')Iclci7 1)>

IN

In <%(h) - (k+ 1) max(thm (1,0) 5, 1)>

In (5%@) (k+ 1)) +1Iny (wzm (i,a)kk“)

whereln; denotesnax(0, In), the positive part of the logarithm.



However, note that we are interested in data-independesrspsiver the space of classifigrsind
hence, we consider our pridf to be the same as the volume measBrever the classifier space
yielding = as unity. That is, our prior gives a distribution over the classifier space without any
regard to the data. Substituting fog (i, o) (the fraction of respective densities; Radon-Nikodym
derivative¥, we obtain the following result:

Theorem 4 For any reconstruction functio® : D™ x K — H and for any prior distribution

P over compression set and message strings, the sample compression algeritfimeturns a
posterior distribution@, then, for§ € (0,1] andk > 0, we have:

Pr [kl(Rzi(zi, 0)||R(zi,0))

S~D™IinQT,0~Q M(z4)
1 k+1 1 @(zh o)
_[hl( 5 )+(1+E)1n+<P o) 21-96

m — |l| (Zh

whereRzT(zi, o) is the empirical risk of the classifier reconstructed frém, o) on the training
examples not in the compression set &1d;, o) is the corresponding true risk.

Note that we do not encounter the— factor in the bound instead ef— unlike the bound

of Laviolette and Marchand [2007]. Th|s is because the PAC-Bayes bound of Laviolette and Marc-
hand [2007] computes thexpectancyver the kl-divergence of the empirical and true risk of the
classifiers chosen accordingd@b This, as a result of rescaling ¢f in preference of smaller com-
pression sets, is reflected in the bound. On the other hand, the bound of Theorem 4 is a point-wise
version bounding the true error tife specific classifier chosaecording taQ and hence concerns

the specific compression set utilized by this classifier.

4.2 A Binomial Tail Inversion Bound for randomized SC classifier

A tighter condition can be imposed on the true risk of the classifier by considering the binomial tail
inversion over the distribution of errors. Tiénomial tail inversionBin (%, 5) is defined as the
largest risk value that a classifier can have while still having a probability of atdedsibserving

at mostk errors out ofm examples:

Bin (E,(S) def sup {T : Bin <£,T> > 5}
m m

where

From this definition, it follows thaBin (Rs(f), d) is thesmallestupper bound, which holds with
probability at least — J, on the true risk of any classifigrwith an observed empirical risRs( f)
on a test set ofn examples (test set bound):

sz{R(f)S%(Rzm(f),(S)}21—5 vf 4)

This bound can be converted to a training set bound in a standard manner by considering a measure
over the classifier space (see for instance [Langford, 2005, Theorem 4.1]). Moreover, in the sample
compression case, we are interested in the empirical risk of the classifier on the examples not in the
compression set (consistent compression set assumption). Na,betaj-weighed measure on

the classifier space, i.é.ando. Then, for the compression sets and associated message strings,

Hence, the missing in the subscript ofr(h) in the r.h.s. above.
3Alternatively, letP(z;, ) and Q(z;, o) denote the probability densities of the prior distributiBrand
rescaled posterior distribution@ over classifiers such thalQ) = Q(zi, o)dy anddP = P(zi,0)du W.r.t.

some measurg. This too yields% fﬁg :2) Note that the final expression is independent of the underlying
measureu.




consider the following bad event with empirical risk of thassifier measured &ins((zi, o)) for
i~ Q1,0 ~ Qumz): .

B(h,d) = {R(zi,a) > Bin(RzT(zi,U),ér)}
Now, we replacé,. with the level function of Occam’s hammer (with the same assumptidh -ef
P,r=1):

k+1

min(07(hs)B(Yam (i,0)71),1) < 6 -min((k + 1) ehym(i,0)" 1)

< §- ! ZES
max((k + 1)wz7n (i, O')T7 1)
<5 S
(k + 1) max(¢gm (i,0) % , 1)
< 0

k+1

(k + 1)7/)zm (ia 0) k
Hence, we have proved the following:

Theorem 5 For any reconstruction functio® : D™ x K — H and for any prior distributiornP
over the compression set and message strings, the sample compression algdfifimsturns a
posterior distribution®, then, foré € (0, 1] andk > 0, we have:

Pr [R(zi,cﬂ s%@z?(zi,a), o >] S1-5
S~D™ Q1,0 ~Q M(2y) (k + 1)(%5:?,0))T

l'rd)

We can obtain a looser bound by approximating the binomial tail inversion bound using [Laviolette
et al., 2005, Lemma 1]:

Corollary 6 Given all our previous definitions, the following holds with probability-  over the
jointdraw of S ~ D™ andi ~ Q7,0 ~ Qa(z,):

B 0) =00 (s [ () * (%Z
woe ()

5 Recovering the PAC-Bayes bound for SC Gibbs Classifier

Let us now see how a bound can be obtained for the Gibbs setting. We follow the general line of
argument of Blanchard and Fleuret [2007] to recover the PAC-Bayes bound for the Sample Com-
pressed Gibbs classifier. However, note that we do this for the data-dependent setting here and also
utilize the rescaled posterior over the space of sample compressed classifiers.

The PAC-Bayes bound of Theorem 4 basically states that
Egwpm[ _ Pr [Kl(Rz (21, 0)[| R(zi,0)) > (d)]] < &

i~Qz.0~Qat(ay)

where § a )
1 0 +1 1 0 Zi, 0
o) = [ w5 s e (55
Consequently,
Eg.pm[ __ Pr [kl(Rz, (21, 0) || R(zi,0)) > (67)]] < &y

iINQz,0~Q M(zp)

Now, bounding the argument of expectancy above using the Markov inequality, we get:

PP (o) | 0)) > (6] > <5
SD™ LinQz,0~Q M (zy)



Now, discretizing the argument ovgy;, ;) = (627%,27%), we obtain
P | P (o o) | (o 0)) > (600 > 21| < 5
S~Dm inQz,0~Q M(z)
Taking the union bound ové, 7 > 1 now yields:
Pr [ ~ Pr [KI(R,-(zs,0)||R(zi,0)) > 0(027%] < 2i] >1-6 Vi>0
S~Dm iNQI-,UNQM(zi) !

Now, let us consider the argument of the above statement for a fixed s&mpkleen, for alli > 0,
the following holds with probability — ¢:

1 kE+1
e Ryt o)|RGo) > [ (B < 20
INQ7.0~Qa(ay) ‘ m — [i| 6

e (B

and hence:
__Pr [@S(zi,a) > 2i 1n2] <27
iINQz,0~Q M (z)
where:
. E+1 1 Q(z;,0)
S(. — _ . . _ S N el

®°(z3,0) = (m |1|)k1(RzT(z1,U)||R(zl,0)) 1n( 3 ) (1+ k)1n+ (P(zi,a)

@S(zi,o):

We wish to bound, for the Gibbs classifi#t,

~Q1,0~QM(z;)

E

RN O R | Pr [0%(zi,0) > 2iln2d(2i1n2)
’ z; 2

i1n2>0 i~Q1,0~Q M(zy)

IN

2mn2) L 7 o [0 (21,0) > 2iI02] <3 (5)
i>0 ’
Now, we have:

Lemma 7 [Laviolette and Marchand, 2007] For any : K — R*, and for anyQ, Q' € Pk

related by
1
Q/(Zia O')f(Zi, 0) = E—lQ(zia 0-)7
(z1,0)~Q f(zi,0)
we have:
1

E(z,0)~0r (f(ziaU)kl(Rz;(ZiaU)llR(ZiaU))) g (2
(z1,0)~Q f(z;,a))

whereRs(Gg) and R(Gg) denote the empirical and true risk of the Gibbs classifier with posterior
Q respectively.

kl(Rs(Go)l|R(Gg))

Hence, withQ’ = Q and f(z;, o) = [i|, Lemma 7 yields:
1

E(,, o)~g([{[Kl(Ry (21, 0)|| R(zi,0))) > ——KkI(Rs(GQ)||R(Gq)) (6)
mfda
Further,
- Q0] _ _ Qm,0)
E“QL”QMuw[m* Plao)| — Te@mo~@ue | ™ \ Bri) Prga (o)

M -In Q(Z—i’a)
= E(z"”)NPKPz(i)PMui)(U)) 1 (Pz(i)PM@i)(”))}
— max zlnz
0<z<1
< KL(@Q|P)+0.5 )



Equations 6 and 7 along with Equation 5 and substituting m — 1 yields the final result:

Theorem 8 For any reconstruction functioR : D™ x K — H and for any prior distributionP
over compression set and message stringsj for(0, 1], we have:

Py, (Y2 € P K(Rs(Go) | R(G)

1 1
< (1+
m—da m—

+1n(%)+3.5D >1-5

1)KL(@||P) + ﬁ

Theorem 8 recovers almost exactly the PAC-Bayes bound for the Sample Compressed Classifiers
of Laviolette and Marchand [2007]. The key differences are an additi@nngém weighted

KL-divergence term]n(Z) instead of thén(Z4) and the additional trailing terms bounded by
mfdi. Note that the bound of Theorem 8 is derived in a relatively more straightforward manner

with the Occam’s Hammer criterion.

6 Conclusion

It has been shown that stochastic classifier selection is preferable to deterministic selection by the
PAC-Bayes principle resulting in tighter risk bounds over averaged risk of classifiers according to
the learned posterior. Further, this observation resulted in tight bounds in the case of stochastic
sample compressed classifiers [Laviolette and Marchand, 2007] also showing that sparsity consid-
erations are of importance even in this scenario via. the rescaled posterior. However, of immediate
relevance are the guarantees of the specific classifier output by such algorithms according to the
learned posterior and hence a point-wise version of this bound is indeed needed. We have derived
bounds for such randomized sample compressed classifiers by adapting Occam’s Hammer principle
to the data-dependent sample compression settings. This has resulted in bounds on the specific clas-
sifier output by a sample compression learning algorithm according to the learned data-dependent
posterior and is more relevant in practice. Further, we also showed how classical PAC-Bayes bound
for the sample compressed Gibbs classifier can be recovered in a more direct manner and show that
this compares favorably to the existing result of Laviolette and Marchand [2007].
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