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Abstract
This paper considers the problem of embedding directed graphs in Euclidean
space while retaining directional information. We model the observed graph as
a sample from a manifold endowed with a vector field, and we design an algo-
rithm that separates and recovers the features of this process: the geometry of the
manifold, the data density and the vector field. The algorithm is motivated by our
analysis of Laplacian-type operators and their continuous limit as generators of
diffusions on a manifold. We illustrate the recovery algorithm on both artificially
constructed and real data.

1 Motivation

Recent advances in graph embedding and visualization have focused on undirected graphs, for which
the graph Laplacian properties make the analysis particularly elegant [1, 2]. However, there is
an important number of graph data, such as social networks, alignment scores between biological
sequences, and citation data, which are naturally asymmetric. A commonly used approach for this
type of data is to disregard the asymmetry by studying the spectral properties ofW +WT orWTW ,
where W is the affinity matrix of the graph.

Some approaches have been offered to preserve the asymmetry information contained in data: [3],
[4], [5] or to define directed Laplacian operators [6]. Although quite successful, these works adopt
a purely graph-theoretical point of view. Thus, they are not concerned with the generative process
that produces the graph, nor with the interpretability and statistical properties of their algorithms.

In contrast, we view the nodes of a directed graph as a finite sample from a manifold in Euclidean
space, and the edges as macroscopic observations of a diffusion kernel between neighboring points
on the manifold. We explore how this diffusion kernel determines the overall connectivity and
asymmetry of the resulting graph and demonstrate how Laplacian-type operators of this graph can
offer insights into the underlying generative process.

Based on the analysis of the Laplacian-type operators, we derive an algorithm that, in the limit of in-
finite sample and vanishing bandwidth, recovers the key features of the sampling process: manifold
geometry, sampling distribution, and local directionality, up to their intrinsic indeterminacies.

2 Model
The first premise here is that we observe a directed graph G, with n nodes, having weights
W = [Wij ] for the edge from node i to node j. In following with common Laplacian-based embed-
ding approaches, we assume that G is a geometric random graph constructed from n points sampled
according to distribution p = e−U on an unobserved compact smooth manifoldM ⊆ Rl of known
intrinsic dimension d ≤ l. The edge weight Wij is then determined by a directed similarity kernel
kε(xi, xj) with bandwidth ε. The directional component of kε(xi, xj) will be taken to be derived
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from a vector field r onM, which assigns a preferred direction between weights Wij and Wji. The
choice of a vector field r to characterize the directional component of G might seem restrictive at
first. In the asymptotic limit of ε → 0 and n → ∞ however, kernels are characterized by their
diffusion, drift, and source components [7]. As such, r is sufficient to characterize any directionality
associated with a drift component and as it turns out, the component of r normalM in Rl can also
be use to characterize any source component. As for the diffusion component, it is not possible
to uniquely identify it from G alone [8]. Some absolute knownledge of M is needed to say any-
thing about it. Hence, without loss of generality, we will construct kε(xi, xj) so that the diffusion
component ends being isotropic and constant, i.e. equal to Laplace-Beltrami operator ∆ onM.

The schematic of this generative process is shown in the top left of Figure 1 below.

From left to right: the graph gen-
erative process mapping the sam-
ple on M to geometric random
graph G via the kernel kε(x, y),
then the subsequent embedding
Ψn of G by operators H

(α)
aa,n,

H
(α)
ss,n (defined in section 3.1).

As these operators converge to
their respective limits, H

(α)
aa and

H
(α)
ss , so will Ψn → Ψ, pn → p,

and rn → r.
We design an algorithm that,
given G, produces the top right
embedding (Ψn, pn, and rn).

Figure 1: Schematic of our framework.

The question is then as follows: can the generative process’ geometryM, distribution p = e−U , and
directionality r, be recovered from G? In other words, is there an embedding of G in Rm, m ≥ d
that approximates all three components of the process and that is also consistent as sample size
increases and the bandwidth vanishes? In the case of undirected graphs, the theory of Laplacian
eigenmaps [1] and Diffusion maps [9] answers this question in the affirmative, in that the geometry
of M and p = e−U can be inferred using spectral graph theory. The aim here is to build on
the undirected problem and recover all three components of the generative process from a directed
graph G.

The spectral approach to undirected graph embedding relies on the fact that eigenfunctions of the
Laplace-Beltrami operator are known to preserve the local geometry ofM [1]. With a consistent
empirical Laplace-Beltrami operator based on G, its eigenvectors also recover the geometry ofM
and converge to the corresponding eigenfunctions on M. For a directed graph G, an additional
operator is needed to recover the local directional component r, but the principle remains the same.
The schematic for this is shown in Figure 1 where two operators - H(α)

ss,n, introduced in [9] for
undirected embeddings, and H(α)

aa,n, a new operator defined in section 3.1 - are used to obtain the
embedding Ψn, distribution pn, and vector field rn. As H(α)

aa,n and H(α)
ss,n converge to H(α)

aa and
H

(α)
ss , Ψn, pn, and rn also converge to Ψ, p, and r, where Ψ is the local geometry preserving the

embedding ofM into Rm.

The algorithm we propose in Section 4 will calculate the matrices corresponding to H(α)
·,n from the

graph G, and with their eigenvectors, will find estimates for the node coordinates Ψ, the directional
component r, and the sampling distribution p. In the next section we briefly describe the mathemat-
ical models of the diffusion processes that our model relies on.
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2.1 Problem Setting

The similarity kernel kε(x, y) can be used to define transport operators onM. The natural transport
operator is defined by normalizing kε(x, y) as

Tε[f ](x) =
∫
M

kε(x, y)
pε(x)

f(y)p(y)dy , where pε(x) =
∫
M
kε(x, y)p(y)dy . (1)

Tε[f ](x) represents the diffusion of a distribution f(y) by the transition density
kε(x, y)p(y)/

∫
kε(x, y′)p(y′)dy′. The eigenfunctions of this infinitesimal operator are the

continuous limit of the eigenvectors of the transition probability matrix P = D−1W given by
normalizing the affinity matrix W of G by D = diag(W1) [10]. Meanwhile, the infinitesimal
transition

∂f

∂t
= lim
ε→0

(Tε − I)f
ε

(2)

defines the backward equation for this diffusion process overM based on kernel kε. Obtaining the
explicit expression for transport operators like (2) is then the main technical challenge.

2.2 Choice of Kernel

In order for Tε[f ] to have the correct asymptotic form, some hypotheses about the similarity ker-
nel kε(x, y) are required. The hypotheses are best presented by considering the decomposition of
kε(x, y) into symmetric hε(x, y) = hε(y, x) and anti-symmetric aε(x, y) = −aε(y, x) components:

kε(x, y) = hε(x, y) + aε(x, y) . (3)

The symmetric component hε(x, y) is assumed to satisfy the following properties: 1. hε(||y −
x||2) = h(||y−x||2/ε)

εd/2
, and 2. h ≥ 0 and h is exponentially decreasing as ||y − x|| → ∞. This form

of symmetric kernel was used in [9] to analyze the diffusion map. For the asymmetric part of the
similarity kernel, we assume the form

aε(x, y) =
r(x, y)

2
· (y − x)

h(||y − x||2/ε)
εd/2

, (4)

with r(x, y) = r(y, x) so that aε(x, y) = −aε(y, x). Here r(x, y) is a smooth vector field on the
manifold that gives an orientation to the asymmetry of the kernel kε(x, y). It is worth noting that the
dependence of r(x, y) on both x and y implies that r :M×M→ Rl with Rl the ambient space of
M; however in the asymptotic limit, the dependence in y is only important “locally” (x = y), and
as such it is appropriate to think of r(x, x) being a vector field onM. As a side note, it is worth
pointing out that even though the form of aε(x, y) might seem restrictive at first, it is sufficiently
rich to describe any vector field . This can be seen by taking r(x, y) = (w(x) + w(y))/2 so that at
x = y the resulting vector field is given by r(x, x) = w(x) for an arbitrary vector field w(x).

3 Continuous Limit of Laplacian Type Operators

We are now ready to state the main asymptotic result.

Proposition 3.1 Let M be a compact, closed, smooth manifold of dimension d and kε(x, y) an
asymmetric similarity kernel satisfying the conditions of section 2.2, then for any function f ∈
C2(M), the integral operator based on kε has the asymptotic expansion∫

M
kε(x, y)f(y)dy = m0f(x) + εg(f(x), x) + o(ε) , (5)

where

g(f(x), x) =
m2

2
(ω(x)f(x) + ∆f(x) + r · ∇f(x) + f(x)∇ · r + c(x)f(x)) (6)

and m0 =
∫

Rd h(||u||2)du, m2 =
∫

Rd u
2
ih(||u||2)du.
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The proof can be found in [8] along with the definition of ω(x) and c(x) in (6). For now, it suffices
to say that ω(x) corresponds to an interaction between the symmetric kernel hε and the curvature of
M and was first derived in [9]. Meanwhile, c(x) is a new term that originates from the interaction
between hε and the component of r that is normal toM in the ambient space Rl. Proposition 3.1
foreshadows a general fact about spectral embedding algorithms: in most cases, Laplacian operators
confound the effects of spatial proximity, sampling density and directional flow due to the presence
of the various terms above.

3.1 Anisotropic Limit Operators

Proposition 3.1 above can be used to derive the limits of a variety of Laplacian type operators
associated with spectral embedding algorithms like [5, 6, 3]. Although we will focus primarily on
a few operators that give the most insight into the generative process and enable us to recover the
model defined in Figure 1, we first present four distinct families of operators for completeness.

These operator families are inspired by the anisotropic family of operators that [9] introduced for
undirected graphs, which make use of anisotropic kernels of the form:

k(α)
ε (x, y) =

kε(x, y)
pαε (x)pαε (y)

, (7)

with α ∈ [0, 1] where α = 0 is the isotropic limit. To normalize the anisotropic kernels, we need
to redefine the outdegrees distribution of k(α)

ε as p(α)
ε (x) =

∫
M k

(α)
ε (x, y)p(y)dy. From (7), four

families of diffusion processes of the form ft = H(α)[f ](x) can be derived depending on which
kernel is normalized and which outdegree distribution is used for the normalization. Specifically,
we define transport operators by normalizing the asymmetric k(α)

ε or symmetric h(α)
ε kernels with the

asymmetric pε or symmetric qε =
∫
M hε(x, y)p(y)dy outdegree distribution1. To keep track of all

options, we introduce the following notation: the operators will be indexed by the type of kernel and
outdegree distribution they correspond to (symmetric or asymmetric), with the first index identifying
the kernel and the second index identifying the outdegree distribution. For example, the family of
anisotropic limit operators introduced by [9] is defined by normalizing the symmetric kernel by
the symmetric outdegree distribution, hence they will be denoted as H(α)

ss , with the superscript
corresponding to the anisotropic power α.

Proposition 3.2 With the above notation,

H(α)
aa [f ] = ∆f − 2 (1− α)∇U ·∇f + r·∇f (8)

H(α)
as [f ] = ∆f − 2 (1− α)∇U · ∇f − cf + (α− 1)(r · ∇U)f − (∇ · r)f + r · ∇f (9)

H(α)
sa [f ] = ∆f − 2 (1− α)∇U · ∇f + (c+∇ · r + (α− 1)r · ∇U)f (10)

H(α)
ss [f ] = ∆f − 2(1− α)∇U · ∇f. (11)

The proof of this proposition, which can be found in [8], follows from repeated application of
Proposition 3.1 to p(y) or q(y) and then to kα(x, y) or hα(x, y), as well as the fact that 1

pαε
=

1
p−α [1− αε(ω + ∆p

p + 2r · ∇pp + 2∇ · r + c)] + o(ε).

Thus, if we use the asymmetric kε and pε, we get H(α)
aa , defined by the advected diffusion equa-

tion (8). In general, H(α)
aa is not hermitian, so it commonly has complex eigenvectors. This makes

embedding directed graphs with this operator problematic. Nevertheless, H(1)
aa will play an impor-

tant role in extracting the directionality of the sampling process.

If we use the symmetric kernel hε but the asymmetric outdegree distribution pε, we get the family
of operators H(α)

sa , of which the WCut of [3] is a special case (α = 0). If we reverse the above, i.e.
use kε and qε, we obtain H(α)

as . This turns out to be merely a combination of H(α)
aa and H(α)

sa .
1The reader may notice that there are in fact eight possible combinations of kernel and degree distribution,

since the anisotripic kernel (7) could also be defined using a symmetric or asymmetric outdegree distribution.
However, there are only four distinct asymptotic results and they are all covered by using one kernel (symmetric
or asymmetric) and one degree distribution (symmetric or asymmetric) throughout.
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Algorithm 1 Directed Embedding
Input: Affinity matrix Wi,j and embedding dimension m, (m ≥ d)
1. S ← (W +WT )/2 (Steps 1–6 estimate the coordinates as in [11])
2. qi ←

∑n
j=1 Si,j , Q = diag(q)

3. V ← Q−1SQ−1

4. q(1)
i ←

∑n
j=1 Vi,j , Q

(1) = diag(q(1))

5. H(1)
ss,n ← Q(1)−1

V
6. Compute the Ψ the n× (m+1) matrix with orthonormal columns containing the m+1 largest
right eigenvector (by eigenvalue) ofH(1)

ss,n as well as the Λ the (m+1)× (m+1) diagonal matrix
of eigenvalues. Eigenvectors 2 to m+ 1 from Ψ are the m coordinates of the embedding.
7. Compute π the left eigenvector of H(1)

ss,n with eigenvalue 1. (Steps 7–8 estimate the density)
8. π ← π/

∑n
i=1 πi is the density distribution over the embedding.

9. pi ←
∑n
j=1Wi,j , P = diag(p) (Steps 9–13 estimate the vector field r)

10. T ← P−1WP−1

11. p(1)
i ←

∑n
j=1 Ti,j , P

(1) = diag(p(1))

12. H(1)
aa,n ← P (1)−1

T

13. R← (H(1)
aa,n −H(1)

ss,n)Ψ/2. Columns 2 to m+ 1 of R are the vector field components in the
direction of the corresponding coordinates of the embedding.

Finally, if we only consider the symmetric kernel hε and degree distribution qε, we recoverH(α)
ss , the

anisotropic kernels of [9] for symmetric graphs. This operator for α = 1 is shown to separate the
manifold from the probability distribution [11] and will be used as part of our recovery algorithm.

4 Isolating the Vector Field r

Our aim is to esimate the manifoldM, the density distribution p = e−U , and the vector field r. The
first two components of the data can be recovered from H

(1)
ss as shown in [11] and summarized in

Algorithm 1.

At this juncture, one feature of generative process is missing: the vector field r. The natural approach
for recovering r is to isolate the linear operator r · ∇ from H

(α)
aa by substracting H(α)

ss :

H(α)
aa −H(α)

ss = r · ∇ . (12)

The advantage of recovering r in operator form as in (12) is that r · ∇ is coordinate free. In other
words, as long as the chosen embedding ofM is diffeomorphic toM2, (12) can be used to express
the component of r that lies in the tangent space TM, which we denote by r||.

Specifically, let Ψ be a diffeomorphic embedding ofM ; the component of r along coordinate ψk is
then given by r · ∇ψk = rk, and so, in general,

r|| = r · ∇Ψ . (13)

The subtle point that only r|| is recovered from (13) follows from the fact that the operator r · ∇ is
only defined alongM and hence any directional derivative is necessarily along TM.

Equation (13) and the previous observations are the basis for Algorithm 1, which recovers the three
important features of the generative process for an asymmetric graph with affinity matrix W .

A similar approach can be employed to recover c + ∇ · r, or simply ∇ · r if r has no component
perpendicular to the tangent space TM (meaning that c ≡ 0). Recovering c+∇ · r is achieved by
taking advantage of the fact that

(H(1)
sa −H(1)

ss ) = (c+∇ · r) , (14)

2A diffeomorphic embedding is guaranteed by using the eigendecomposition of H
(1)
ss .
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which is a diagonal operator. Taking into account that for finite n (H(1)
sa,n −H(1)

ss,n) is not perfectly
diagonal, using ψn ≡ 1n (vector of ones), i.e. (H(1)

sa,n−H(1)
ss,n)[1n] = (cn+∇· rn), has been found

empirically to be more stable than simply extracting the diagonal of (H(1)
sa,n −H(1)

ss,n).

5 Experiments

Artificial Data For illustrative purposes, we begin by applying our method to an artificial example.
We use the planet Earth as a manifold with a topographic density distribution, where sampling
probability is proportional to elevation. We also consider two vector fields: the first is parallel to the
line of constant latitude and purely tangential to the sphere, while the second is parallel to the line
of constant longitude with a component of the vector field perpendicular to the manifold. The true
model with constant latitude vector field is shown in Figure 2, along with the estimated density and
vector field projected on the true manifold (sphere).

Model Recovered Latitudinal Longitudinal

(a) (b)

Figure 2: (a): Sphere with latitudinal vector field, i.e East-West asymmetry, with Wew > Wwe if node w
lies to the West of node e. The graph nodes are sampled non-uniformly, with the topographic map of the world
as sampling density. We sample n = 5000 nodes, and observe only the resulting W matrix, but not the node
locations. From W , our algorithm estimates the sample locations (geometry), the vector field (black arrows)
generating the observed asymmetries, and the sampling distribution at each data point (colormap). (b) Vector
fields on a spherical region (blue), and their estimates (red): latitudinal vector field tangent to the manifold
(left) and longitudinal vector field with component perpendicular to manifold tangent plane (right).
Both the estimated density and vector field agree with the true model, demonstrating that for artificial
data, the recovery algorithm 1 performs quite well. We note that the estimated density does not
recover all the details of the original density, even for large sample size (here n = 5000 with ε =
0.07). Meanwhile, the estimated vector field performs quite well even when the sampling is reduced
to n = 500 with ε = 0.1. This can be seen in Figure 2, b, where the true and estimated vector fields
are superimposed. Figure 2 also demonstrates how r · ∇ only recovers the tangential component of
r. The estimated geometry is not shown on any of these figures, since the success of the diffusion
map in recovering the geometry for such a simple manifold is already well established [2, 9].

Real DataThe National Longitudinal Survey of Youth (NLSY) 1979 Cohort is a representative sam-
ple of young men and women in the United States who were followed from 1979 to 2000 [12, 13].
The aim here is to use this survey to obtain a representation of the job market as a diffusion process
over a manifold.

The data set consists of a sample of 7,816 individual career sequences of length 64, listing the jobs
a particular individual held every quarter between the ages of 20 and 36. Each token in the sequence
identifies a job. Each job corresponds to an industry× occupation pair. There are 25 unique industry
and 20 unique occupation indices. Out of the 500 possible pairings, approximately 450 occur in the
data, with only 213 occurring with sufficient frequency to be included here. Thus, our graph G has
213 nodes - the jobs - and our observations consist of 7,816 walks between the graph nodes.

We convert these walks to a directed graph with affinity matrix W . Specifically, Wij represents the
number of times a transition from job i to job j was observed (Note that this matrix is asymmetric,
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i.e Wij 6= Wji). Normalizing each row i of W by its outdegree di gives P = diag(di)−1W , the
non-parametric maximum likelihood estimator for the Markov chain over G for the progression
of career sequences. This Markov chain has as limit operator H(0)

aa , as the granularity of the job
market increases along with the number of observations. Thus, in trying to recover the geometry,
distribution and vector field, we are actually interested in estimating the full advective effect of the
diffusion process generated by H(0)

aa ; that is, we want to estimate r ·∇− 2∇U ·∇ where we can use
−2∇U · ∇ = H

(0)
ss −H(1)

ss to complement Algorithm 1.
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Figure 3: Embedding the job market along with field r − 2∇U over the first two non-constant eigenvectors.
The color map corresponds to the mean monthly wage in dollars (a) and to the female proportion (b) for each
job.
We obtain an embedding of the job market that describes the relative position of jobs, their distri-
bution, and the natural time progression from each job. Of these, the relative position and natural
time progression are the most interesting. Together, they summarize the job market dynamics by
describing which jobs are naturally “close” as well as where they can lead in the future. From a
public policy perspective, this can potentially improve focus on certain jobs for helping individuals
attain better upward mobility.

The job market was found to be a high dimensional manifold. We present only the first two dimen-
sions, that is, the second and third eigenvectors of H(0)

ss , since the first eigenvector is uninformative
(constant) by construction. The eigenvectors showed correlation with important demographic data,
such as wages and gender. Figure 3 displays this two-dimensional sub-embedding along with the
directional information r − 2∇U for each dimension. The plot shows very little net progression
toward regions of increasing mean salary3. This is somewhat surprising, but it is easy to overstate
this observation: diffusion alone would be enough to move the individuals towards higher salary.
What Figure 3 (a) suggests is that there appear to be no “external forces” advecting individuals to-
wards higher salary. Nevertheless, there appear to be other external forces at play in the job market:
Figure 3 (b), which is analogous to Figure 3 (a), but with gender replacing the salary color scheme,
suggests that these forces push individuals towards greater gender differentiation. This is especially
true amongst male-dominated jobs which appear to be advected toward the left edge of the embed-
ding. Hence, this simple analysis of the job market can be seen as an indication that males and
females tend to move away from each other over time, while neither seems to have a monopoly on
high- or low- paying jobs.

6 Discussion

This paper makes three contributions: (1) it introduces a manifold-based generative model for di-
rected graphs with weighted edges, (2) it obtains asymptotic results for operators constructed from
the directed graphs, and (3) these asymptotic results lead to a natural algorithm for estimating the
model.

3It is worth noting that in the NLSY data set, high paying jobs are teacher, nurse and mechanic. This is due
to the fact that the career paths observed stop at at age 36, which is relatively early in an individual’s career.
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Generative Models that assume that data are sampled from a manifold are standard for undirected
graphs, but to our knowledge, none have yet been proposed for directed graphs. When W is sym-
metric, it is natural to assume that it depends on the points’ proximity. For asymmetric affinities W ,
one must include an additional component to explain the asymmetry. In the asymptotic limit, this is
tantamount to defining a vector field on the manifold.

Algorithm We have used from [9] the idea of defining anisotropic kernels (indexed by α) in order to
separate the density p and the manifold geometryM. Also, we adopted their general assumptions
about the symmetric part of the kernel. As a consequence, the recovery algorithm for p andM is
identical to theirs.

However, insofar as the asymmetric part of the kernel is concerned, everything, starting from the
definition and the introduction of the vector field r as a way to model the asymmetry, through the
derivation of the asymptotic expression for the symmetric plus asymmetric kernel, is new. We go
significantly beyond the elegant idea of [9] regarding the use of anisotropic kernels by analyzing the
four distinct renormalizations possible for a given α, each of them combining different aspects of
M, p and r. Only the successful (and novel) combination of two different anisotropic operators is
able to recover the directional flow r.

Algorithm 1 is natural, but we do not claim it is the only possible one in the context of our model.
For instance, we can also use H(α)

sa to recover the operator ∇ · r (which empirically seems to have
worse numerical properties than r · ∇). In the National Longitudinal Survery of Youth study, we
were interested in the whole advective term, so we estimated it from a different combination of
operators. Depending on the specific question, other features of the model could be obtained

Limit Results Proposition 3.1 is a general result on the asymptotics of asymmetric kernels. Re-
covering the manifold and r is just one, albeit the most useful, of the many ways of exploiting these
results. For instance,H(0)

sa is the limit operator of the operators used in [3] and [5]. The limit analysis
could be extended to other digraph embedding algorithms such as [4, 6].

How general is our model? Any kernel can be decomposed into a symmetric and an asymmetric
part, as we have done. The assumptions on the symmetric part h are standard. The paper of [7] goes
one step further from these assumptions; we will discuss it in relationship with our work shortly.
The more interesting question is how limiting are our assumptions regarding the choice of kernel,
especially the asymmetric part, which we parameterized as aε(x, y) = r/2 · (y − x)hε(x, y) in (4).
In the asymptotic limit, this choice turns out to be fully general, at least up to the identifiable aspects
of the model. For a more detailed discussion of this issue, see [8].

In [7], Ting, Huang and Jordan presented asymptotic results for a general family of kernels that
includes asymmetric and random kernels. Our kε can be expressed in the notation of [7] by taking
wx(y)← 1+r(x, y)·(y−x), rx(y)← 1,K0 ← h, h← ε. Their assumptions are more general than
the assumptions we make here, yet our model is general up to what can be identified from G alone.
The distinction arises because [7] focuses on the graph construction methods from an observed
sample of M, while we focus on explaining an observed directed graph G through a manifold
generative process. Moreover, while the [7] results can be used to analyze data from directed graphs,
they differ from our Proposition 3.1. Specifically, with respect to the limit in Theorem 3 from
[7], we obtain the additional source terms f(x)∇ · r and c(x)f(x) that follow from not enforcing
conservation of mass while defining operators H(α)

sa and H(α)
as .

We applied our theory of directed graph embedding to the analysis of the career sequences in
Section 5, but asymmetric affinity data abound in other social contexts, and in the physical and
life sciences. Indeed, any “similarity” score that is obtained from a likelihood of the form
Wvu =likelihood(u|v) is generally asymmetric. Hence our methods can be applied to study not
only social networks, but also patterns of human movement, road traffic, and trade relations, as well
as alignment scores in molecular biology. Finally, the physical interpretation of our model also
makes it naturally applicable to physical models of flows.
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