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Abstract

Many manifold learning algorithms aim to create embeddings with low or no dis-
tortion (isometric). If the data has intrinsic dimension d, it is often impossible to
obtain an isometric embedding in d dimensions, but possible in s > d dimensions.
Yet, most geometry preserving algorithms cannot do the latter. This paper pro-
poses an embedding algorithm to overcome this. The algorithm accepts as input,
besides the dimension d, an embedding dimension s ≥ d. For any data embedding
Y, we compute a Loss(Y), based on the push-forward Riemannian metric associ-
ated with Y, which measures deviation of Y from from isometry. Riemannian
Relaxation iteratively updates Y in order to decrease Loss(Y). The experiments
confirm the superiority of our algorithm in obtaining low distortion embeddings.

1 Introduction, background and problem formulation

Suppose we observe data points sampled from a smooth manifold M with intrinsic dimension d
which is itself a submanifold of D-dimensional Euclidean space M ⊂ R

D. The task of manifold
learning is to provide a mapping φ : M → N (where N ⊂ R

s) of the manifold into lower
dimensional space s ≪ D. According to the Whitney Embedding Theorem [11] we know that
M can be embedded smoothly into R

2d using one homeomorphism φ. Hence we seek one smooth
map φ : M → R

s with d ≤ s ≤ 2d ≪ D.

Smooth embeddings preserve the topology of the original M. Nevertheless, in general, they distort
the geometry. Theoretically speaking1, preserving the geometry of an embedding is embodied in the
concepts of Riemannian metric and isometric embedding. A Riemannian metric g is a symmetric
positive definite tensor field on M which defines an inner product <,>g on the tangent space TpM
for every point p ∈ M. A Riemannian manifold is a smooth manifold with a Riemannian metric at
every point. A diffeomorphism φ : M → N is called an isometry iff for all p ∈ M, u, v ∈ TpM
we have < u, v >gp=< dφpu, dφpv >hφ(p)

. By Nash’s Embedding Theorem [13], it is known that
any smooth manifold of class Ck, k ≥ 3 and intrinsic dimension d can be embedded isometrically
in the Euclidean space R

s with s polynomial in d.

In unsupervised learning, it is standard to assume that (M, g0) is a submanifold of RD and that it
inherits the Euclidean metric from it2. An embedding φ : M → φ(M) = N defines a metric g on
N given by < u, v >g(φ(p))=< dφ−1u, dφ−1v >g0(p) called the pushforward Riemannian metric;
(M, g0) and (N , g) are isometric.

Much previous work in non-linear dimension reduction[16, 20, 19] has been driven by the desire
to find smooth embeddings of low dimension that are isometric in the limit of large n. This work
has met with mixed success. There exists the constructive implementation [19] of Nash’s proof

1For a more complete presentation the reader is referred to [8] or [15] or [10].
2Sometimes the Riemannian metric onM is not inherited, but user-defined via a kernel or distance function.
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technique, which guarantees consistence and isometry. However, the algorithm presented falls short
of being practical, as the embedding dimension s it requires is significantly higher than the minimum
necessary, a major drawback in practice. Overall, the algorithm leads to mappings φ that, albeit
having the desired properties, are visually unintuitive, even for intrinsic dimensions as low as d = 1.

There are many algorithms, too many for an exhaustive list, which map the data using a cleverly
chosen reconstruction criterion. The criterion is chosen so that the mapping φ can be obtained as the
unique solution of a “classic” optimization problem, e.g. Eigendecomposition for Laplacian Eigen-
maps [2], Diffusion Maps [12] and LTSA [21], Semidefinite Programming for Maximum Variance
Unfolding [20] or Multidimensional Scaling for Isomap [3]. These embedding algorithms some-
times come with guarantees of consistency [2] and, only in restricted cases, isometry [3].

In this paper we propose an approach which departs from both these existing directions. The main
difference, from the algorithmic point of view, is that the loss function we propose does not have a
form amenable to a standard solver (and is not even guaranteed to be convex or unimodal). Thus, we
do not obtain a mapping φ in “one shot”, as the previous algorithms do, but by the gradual improve-
ments of an initial guess, i.e. by gradient descent. Nevertheless, the loss we define directly measures
the deviation from isometry; therefore, when this loss is (near) 0, (near) isometry is achieved.

The algorithm is initialized with a smooth embedding Y = φ(M) ⊆ R
s, s ≥ d; we define the

objective function Loss(Y) as the averaged deviation of the pushforward metric from isometry. Then
Y is iteratively changed in a direction that decreases Loss. To construct this loss function, we exploit
the results of [15] who showed how a pushforward metric can be estimated, for finite samples and
in any given coordinates, using a discrete estimator of the Laplace-Beltrami operator ∆M. The
optimization algorithm is outlined in Algorithm 1.

Input :data X ∈ R
n×D , kernel function Kh(), weights w1:n, intrinsic dimension d, embedding dimension s

Initial coordinates Y ∈ R
n×s, with Yk,: representing the coordinates of point k.

Init :Compute Laplacian matrix L ∈ R
n×n using X and Kh().

while not converged do

Compute H = [Hk]k=1:n ∈ R
n×s×s the (dual) pushforward metric at data points from Y and L.

Compute Loss(H1:n) and∇Y Loss(H)
Take a gradient step Y← Y− η∇Y Loss(H)

end
Output :Y

Algorithm 1: Outline of the Riemannian Relaxation Algorithm.

A remark on notation is necessary. Throughout the paper, we denote by M, p∈M, TpM,∆M a
manifold, a point on it, the tangent subspace at p, and the Laplace-Beltrami operator in the abstract,
coordinate free form. When we describe algorithms acting on data, we will use coordinate and finite
sample representations. The data is X ∈ R

n×D, and an embedding thereof is denoted Y ∈ R
n×s;

rows k of X,Y, denoted Xk, Yk are coordinates of data point k, while the columns, e.g Y
j represent

functions of the points, i.e restrictions to the data of functions on M. The construction of L (see be-
low) requires a kernel, which can be the (truncated) gaussian kernel Kh(z) = exp(z2/h), |z| < rh
for some fixed r > 0 [9, 17]. Besides these, the algorithm is given a set of weights w1:n,

∑

k wk = 1.

The construction of the loss is based on two main sets of results that we briefly review here. First,
an estimator L of the Laplace-Beltrami operator ∆M of M, and second, an estimator of the push-
forward metric g in the current coordinates Y.

To construct L we use the method of [4], which guarantees that, if the data are sampled from a
manifold M, L converges to ∆M [9, 17]. Given a set of points in high-dimensional Euclidean space
R

D, represented by the n×D matrix X, construct a weighted neighborhood graph G = ({1 : n},W )
over them, with W = [Wkl]k,l=1:n. The weight Wkl between Xk: and Xl: is the heat kernel [2]
Wkl ≡ Kh(||Xk: − Xl:||) with h a bandwidth parameter fixed by the user, and || || the Euclidean
norm. Next, construct L = [Lkl]ij of G by

D= diag(W1) , W̃ = D
−1

WD
−1 , D̃ = diag(W̃1) , and L = D̃

−1
W̃ (1)

Equation (1) represents the discrete versions of the renormalized Laplacian construction from [4].
Note that W,D, D̃, W̃,L all depend on the bandwidth h via the heat kernel. The consistency of L
has been proved in e.g [9, 17].
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The second fact we use is the relationship between the Laplace-Beltrami operator and the Rieman-
nian metric on a manifold [11]. Based on this, [15] gives a a construction method for a discrete
estimator of the Riemannian metric g, in any given coordinate system, from an estimate L of ∆M.
In a given coordinate representation Y, a Riemannian metric g at each point is an s × s positive
semidefinite matrix of rank d. The method of [15] obtains the matrix Moore-Penrose pseudoinverse
of this metric (which must be therefore inverted to obtain the pushforward metric). We denote this
inverse at point k by Hk; let H = [Hk, k = 1, . . . n] be the three dimensional array containing the
inverse for each data point. Note that H is itself the (discrete estimate of) a Riemannian metric,
called the dual (pushforward) metric. With these preliminaries, the method of [15] computes H by

H
ij =

1

2

[

L(Yi · Y
j)− Y

i · (LY
j)− Y

j · (LY
i)
]

(2)

Where here H
ij is the vector whose kth entry is the ijth element of the dual pushforward metric H

at the point k and · denotes element-by-element multiplication.

2 The objective function Loss

The case s = d (embedding dimension equals intrinsic dimension). Under this condition, it
can be shown [10] that φ : M → R

d is an isometry iff gp, p ∈ M expressed in a normal coordinate
system equals the unit matrix Id. Based on this observation, it is natural to measure the quality of the
data embedding Y as the departure of the Riemannian metric obtained via (2) from the unit matrix.

This is the starting idea for the distortion measure we propose to optimize. We develop it further as
follows. First, we choose to use the dual of g, evaluated by H instead of pushforward metric itself.
Naturally Hk = Id iff H

−1
k = Id, so the dual metric identifies isometry as well. When no isometric

transformation exists, it is likely that optimizing w.r.t g and optimizing w.r.t h will arrive to different
embeddings. There is no mathematically compelling reason, however, to prefer optimizing one
over the other. We choose to optimize w.r.t h for three reasons; (1) it is computationally faster, (2) it
is numerically more stable, and (3) in our experience users find H more interpretable. 3

Second, we choose to measure the distortion of Hk by ||Hk−I|| where || || denotes the matrix spectral
norm. This choice will be motivated shortly. Third, we choose the weights w1:n to be proportional
to D̃ from (1). As [4] show, these values converge to the sampling density π on M. Putting these
together, we obtain the loss function

Loss(Y;L, w) =

n∑

k=1

wk ||Hk − Id||
2
. (3)

To motivate the choice of a “squared loss” instead of simply using ||Hk − Id||, notice (the proofs are
straightforward) that || || is not differentiable at 0, but || ||2 is.

A natural question to ask about Loss is if it is convex. The following proposition proved in the
Supplement summarizes a set of relevant convexity facts.

Proposition 1 Denote by λ1:d(Hk) ≥ 0 the eigenvalues of Hk, in decreasing order and assume Y

is in a compact, convex set. Then

1. λ1(Hk), λ1(Hk)− λd(Hk) and λ1(Hk)−
∑d

d′=1 λd′(Hk) are convex in Y.
2. ||Hk − Id|| is convex in Y for (λ1(Hk) + λd(Hk))/2 ≥ 1 and concave otherwise.
3. ||Hk − Id||

2 is convex in Y whenever ||Hk − Id|| is convex and differentiable in Y.

This proposition shows that Loss may not be convex near its minimum, and moreover that squaring
the loss only improves convexity.

Choosing the right measure of distortion The norm of a Hermitian bilinear functional (i.e
symmetric tensor of order 2) g : R

s × R
s → R is defined as supu6=0 |g(u, u)|/||u||. In a

fixed orthonormal base of R
s, g(u, v) = u′Gv, ||g|| = supu6=0 |u

′Gu|. One can define norms
with respect to any metric g0 on R

s (where g0 is represented in coordinates by G0, a symmetric,
positive definite matrix), by ||u||G0

= u′G0u, respectively ||g||G0
= supu6=0 |u

′Gu|/||u||G0
=

3
Hk represents the direction & degree of distortion as opposed to the scaling required to “correct" the space.
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supũ6=0 |ũ
′G

−1/2
0 GG

−1/2
0 ũ|/||ũ|| = λmax(G

−1/2
0 GG

−1/2
0 ). In particular, since any Riemannian

metric at a point k is a g as above, setting g and g0 respectively to Hk and Id we measure the opera-
tor norm of the distortion by ||Hk − Id||. In other words, the appropriate operator norm we seek can
be expresed as a matrix spectral norm.

The expected loss over the data set, given a distribution represented by the weights w1:n is then
identical to the expression of Loss in (3). If the weights are computed as in (1), it is easy to see that
the loss function in (3) is the finite sample version of the squared L2 distance between h and g0 on
the space of Riemannian metrics on M, w.r.t base measure πdVg0

||h− g0||
2
g0 =

∫

M

||h− g0||
2
g0πdVg0 , with dVg0volume element on M. (4)

Defining Loss for embeddings with s > d dimensions Consider G,G0 ∈ R
s×s, two symmetric

matrices with G0 semipositive definite of rank d < s. We would like to extend the G0 norm of G to
this case. We start with the family of norms ||||G0+εIs for ǫ > 0 and we define

||G||G0
= lim

ǫ→0
||G||G0+εIs . (5)

Proposition 2 Let G,G0 ∈ R
s×s be symmetric matrices, with G0 semipositive definite of rank

d < s, and let ǫ > 0, γ(u, ε) = u′
Gu

u′G0u+ǫ||u||2 . Then,

1. ||G||G0+εIs = ||G̃||2 with G̃ = (G0 + ǫI)−1/2G(G0 + ǫI)−1/2.

2. If ||G||G0+εIs < r, then λ†(G) < ǫr with λ†(G) = supv∈Null(G0) γ(v, ε),

3. ||||G0
is a matrix norm that takes infinite values when NullG0 6⊆ NullG.

Hence, || ||G0+εIs can be computed as the spectral norm of a matrix. The computation of || ||G0
is

similar, with the additional step of checking first if NullG0 6⊆ NullG, in which case we output
the value ∞. Let Bǫ(0, r) (B(0, r)) denote the r-radius ball centered at 0 in the || ||G0+εIs (|| ||G0

).
From Proposition 2 it follows that if G ∈ Bǫ(0, r) then λ†(G) < ǫr and if G ∈ B(0, r) then
Null(G0) ⊆ Null(G). In particular, if rankG = rankG0 then Null(G) = Null(G0).

To define the loss for s > d we set G = Hk and G0 = UkU
′
k, with Uk an orthonormal basis for

TkM the tangent subspace at k. The norms || ||G0+εIs , || ||G0
act as soft and hard barrier functions

constraining the span of Hk to align with the tangent subspace of the data manifold.

Loss(Y; L, w, d, εorth) =

n∑

k=1

wk|| (UkU
′
k + ε2orthIs)

−1/2
(
Hk − UkU

′
k

)
(UkU

′
k + ε2orthIs)

−1/2

︸ ︷︷ ︸

G̃k

||2.

(6)
3 Optimizing the objective

Let Lk denote the kth row of L, then Hk can be rewritten in the convenient form

Hk(Y) =
1

2
Y
′[trace(Lk)− (eke

′
kL)− (eke

′
kL)′]Y ≡

1

2
Y
′
LkY (7)

where ek refers to the kth standard basis vector of Rn and Lk is a symmetric positive semi-definite
matrix precomputed from entries in L; Lk has non-zero rows only for the neighbors of k.

Proposition 3 Let Lossk denote term k of Loss. If s = d, the gradient of Lossk as given by (3) is

∂ Lossk
∂Y

= 2wkλ
∗
kLkYuku

′
k, (8)

with λ∗
k the largest eigenvalue of Hk − Id and uk is the corresponding eigenvector.

If s > d, the gradient of Lossk of (6) is

∂ Lossk
∂Y

= 2wkλ
∗
kLkYΠkuku

′
kΠ

′
k (9)

where Πk = (UkU
′
k + (εorth)kIs)

−1/2, λ∗
k is the largest eigenvalue of G̃k of (6) and uk is the

corresponding eigenvector.
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When embedding in s > d dimensions, the loss function depends at each point k on finding the
d-dimensional subspace Uk. Mathematically, this subspace coincides with the span of the Jacobian
DYk which can be identified with the d-principal subspace of Hk. When computing the gradient of
Loss we assume that U1:n are fixed. Since the derivatives w.r.t Y are taken only of H and not of the
tangent subspace Uk, the algorithm below is actually an alternate minimization algorithm, which
reduces the cost w.r.t Y in one step, and w.r.t U1:n in the alternate step.

3.1 Algorithm

We optimize the loss (3) or (6) by projected gradient descent with line search (subject to the obser-
vation above). The projection consists of imposing

∑

k Yk = 0, which we enforce by centering ∇Y

before taking a step. This eliminates the degeneracy of the Loss in (3) and (6) w.r.t constant shift
in Y. To further improve the good trade-off between time per iteration and number of iterations,
we found that a heavy-ball method with parameter α is effective. At each iteration computing the
gradient is O((S + s3)n) where S is the number of nonzero entries of L.

Input :data X, kernel function Kh(), initial coordinates Y
0, weights w1:n, intrinsic dimension d,

orthonormal tolerance εorth, heavy ball parameter α ∈ [0, 1)
Init :Compute: graph Laplacian L by (1), matrices L1:n as in (7). Set S = 0
while not converged do

Compute∇Loss:
for all k do

1. Calculate Hk via (2);
2. If s > d

(a) Compute Uk by SVD from Hk;
(b) Compute gradient of∇Lossk(Y) using (9);

3. Else (s = d): calculate gradient∇Lossk(Y) using (8);
4. Add∇Lossk(Y) to the total gradient;

end
Take a step in Y:

1. Compute projected direction S and project S← (In − ene
′

n)∇Loss+αS;
2. Find step size η by line search and update Y← Y− ηS;

end
Output :Y

Algorithm 2: RIEMANNIANRELAXATION (RR)

3.2 For large or noisy data

Here we describe an extension of the RR Algorithm which can naturally adapt to large or noisy data,
where the manifold assumption holds only approximately. The idea is to subsample the data, but in
a highly non-uniform way that improves the estimation of the geometry.

A simple peliminary observation is that, when an embedding is smooth, optimizing the loss on a
subset of the data will be sufficient. Let I ⊂ {1, . . . n} be set of size n′ < n. The subsampled
loss LossI will be computed only for the points k′ ∈ I. If every point k has O(d) neighbors in I,
this assures that the gradient of LossI will be a good approximation of ∇Loss at point k, even if
k 6∈ I, and does not have a term containing Hk in LossI . To optimize LossI by RR, it is sufficient
to run the “for” loop over k′ ∈ I. Algorithm PCS-RR below describes how we choose a “good"
subsample I, with the help of the PRINCIPALCURVES algorithm of [14].

Input :data X, kernel function Kh(), initial coordinates Y
0, intrinsic dimension d, subsample size n′, other

parameters for RR
Compute X̂ = PRINCIPALCURVES(X,Kh, d)
Take a uniform sample I0 of size n′ from {1, . . . n} (without replacement).
for k′ in I0 do

Find Xl the nearest neigbor in X of X̂k′ , and add l to I (removing duplicates)
end

Output :Y = RR(Y0,Kh, d, I, . . .)

Algorithm 3: PRINCIPALCURVES-RIEMANNIANRELAXATION (PCS-RR)

5
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Figure 1: Hourglass to sphere. From left to right: target Y (noisy sphere), initialization Y
0 of RR (noisy

hourglass), output of RR, mean-squared error and Loss vs. noise level σ (on a log
10

scale). Convergence of
RR was achieved after 400 iterations.

Informally speaking, PRINCIPALCURVES uses a form of Mean-Shift to obtain points in the d-
dimensional manifold of highest density in the data. The result is generally biased, however [7]
have shown that this algorithm offers a very advantageous bias-variance trade-off in case of mani-
folds with noise. We use the output Ŷ of PRINCIPALCURVES to find a subset of points that (1) lie
in a high density region relative to most directions in R

D and (2) are “in the middle” of their neigh-
bors, or more formally, have neighborhoods of dimension at least d. In other words, this is a good
heuristic to avoid “border effects”, or other regions where the d-manifold assumption is violated.

4 Experimental evaluation

Hourglass to sphere illustrates how the algorithm works for s = 3, d = 2. The data X is sampled
uniformly from a sphere of radius 1 with intrinsic dimension d = 2. We sample n = 10000 points
from the sphere and add i.i.d. Gaussian noise with Σ = σ2/sIs

4, estimating the Laplacian L on
the noisy data X. We initialize with a noisy “hourglass” shape in s = 3 dimensions, with the same
noise distribution as the sphere. If the algorithm works correctly, by using solely the Laplacian and
weights from X, it should morph the hourglass Y

0 back into a sphere. The results after convergence
at 400 iterations are shown in Fig. 1 (and an animation of this convergence in the Supplement). We
see that RR not only recovers the sphere, but it also suppresses the noise.

The next two experiments compare RR to several embedding algorithms w.r.t geometric recov-
ery. The algorithms are Isomap, Laplacian Eigenmaps, HLLE[6], MVU 5 . The embeddings
Y
LE,MV U,HLLE need to be rescaled before being evaluated, and we use a Procrustes transforma-

tion to the original data. The algorithms are compared w.r.t the dual metric distortion Loss, and w.r.t
mean squared errror in pairwise distance (the loss optimized by Isomap 6 ). This is

dis(Y,Ytrue) = 2/n(n−1)

∑

k 6=k′

(
||Yk − Yk′ || − ||Ytrue

k − Y
true
k′ ||

)2
(10)

where Y is the embedding resulting from the chosen method and Y
true are the true noiseless coor-

dinates. Note that none of Isomap, MVU, HLLE could have been tested on the hourglass to sphere
data of the previous example, because they work only for s = d. The sample size is n = 3000 in
both experiments, and noise is added as described above.

Flat “swiss roll” manifold, s = d = 2. The results are displayed in Fig. 2.

Curved “half sphere” manifold, s = d = 2. Isometric embedding into 2D is not possible. We
examine which of the algorithms achieves the smallest distortions in this scenario. The true distances
were computed as arc-lengths on the half-sphere. The results are displayed in Fig 2.

RR was initialized at each method. In almost every initalization and noise level, RR achieves a
decrease in dis, in some cases significant decreases. Isomap also performs well and even though
RR optimizes a different loss function it never increases dis and often improves on it. This demon-
strates the ability of the Riemannian Metric to encode simultaneously all aspects of manifold geom-

4For this artificial noise, adding dimensions beyond s has no effect except to increase σ.
5embeddings were computed using drtoolbox: https://lvdmaaten.github.io/drtoolbox/
6Isomap estimates the true distances using graph shortest path
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Figure 2: Swiss hole (left) & half sphere (right). Top plots display example initial embeddings and their
Riemannian Relaxed versions. Middle row displays dis value vs. noise level σ. Bottom row displays Loss
value vs. noise level σ. As RR was initialized at each method dashed lines indicated relaxed embeddings

etry. Convergence of RR varies with the initialization but was in all cases faster than Isomap. The
extension of RR to PCS-RR allows for scaling to much larger data sets.

4.1 Visualizing the main SDSS galaxy sample in spectra space

The data consists of spectra of galaxies from the Sloan Digital Sky Survey7 [1]. We extracted a
subset of spectra whose SNR was sufficiently high, known as the main sample. This set contains
675,000 galaxies observed in D = 3750 spectral bins, preprocessed by first moving them to a
common rest-frame wavelength and filling-in missing data following [18] but using the more sophis-
ticated weighted PCA algorithm of [5], before computing a sparse neighborhood graph and pairwise
distances between neighbors in this graph. A log-log plot of the average number neighbors m(r)
vs. neighborhood radius r (shown in the Supplement), indicates that the intrinsic dimension of these
data varies with the scale r. In particular, in order to support m = O(d) neighbors, the radius must
be above 60, in which case d ≤ 3. We embedded the whole data set by Laplacian Eigenmaps, ob-
taining the graph in Fig. 3 a. This figure strongly suggests that d is not constant for this data cloud,
and that the embedding is not isometric (Fig 3, b). We “rescaled” the data along the three evident

7 www.sdss.org
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Figure 3: a: Initial LE embedding from D = 3750 to s = 3 dimensions, with the principal curves Ŷ

superimposed. For clarity, we only show a small subsample of the Y
0; a larger one is in the Supplement; b:

same embedding, only points “on” principal curves, colored by log
10
||Hk|| (hence, 0 represents isometry); c:

same points as in (b), after RR(color on the same scale as in (b)); d: 40,000 galaxies in the coordinates from (c),
colored by the strength of Hydrogen α emission, a very nonlinear feature which requires dozens of dimensions
to be captured in a linear embedding. Convergence of PCS-RR was achieved after 1000 iterations and took 2.5
hours optimizing a Loss with n′ = 2000 terms over the n × s = 105 × 3 coordinates, corresponding to the
highest density points. (Please zoom for better viewing)

principal curves shown in Figure 3 a by running PCS-RR (Y, n = 105, n′ = 2000, s = 3, d = 1).
In the new coordinates (Fig 3, c), Y is now close to isometric along the selected curves, while in
Fig. 3,b, ||Hk|| was in the thousands on the uppermost “arm”. This means that, at the largest scale,
the units of distance in the space of galaxy spectra are being preserved (almost) uniformly along
the sequences, and that they correspond to the distances in the original D = 3750 data. Moreover,
we expect the distances along the final embedding to be closer on average to the true distance, be-
cause of the denoising effect of the embedding. Interpreting the coordinates along these “arms” is in
progress. As a next step of the analysis, RR with s = d = 3 will be used to rescale the high-density
region at the confluence of the three principal curves.

5 Discussion

Contributions: we propose a new, natural, way to measure the distortion from isometry of any
embedding Y ∈ R

n×s of a data set X ∈ R
n×D, and study its properties. The distortion loss is based

on an estimate of the push-forward Riemannian metric into Euclidean space R
s.

The RR we propose departs from existing non-linear embedding algorithms in several ways. First,
instead of a heuristically chosen loss, like pairwise distances, or local linear reconstruction error, it
directly optimizes the (dual) Riemannian metric of the embedding Y. When this is successful, and
the loss is 0 all geometric properties (lengths, angles, volumes) are preserved simultaneously. From
the computational point of view, the non-convex loss is optimized iteratively by projected gradient.

Third, our algorithm explicitly requires both an embedding dimension s and an intrinsic dimension
d as inputs. Estimating the intrinsic dimension of a data set is not a solved problem, and beyond
the scope of this work. However, as a rule of thumb, we propose chosing the smallest d for which
Loss is not too large, for s fixed, or, if d is known (something that all existing algorithms assume),
increasing s until the loss becomes almost 0. Most existing embedding algorithms, as Isomap, LLE,
HLLE, MVU, LTSA only work in the case s = d, while Laplacian Eigenmaps/Diffusion Maps
requires only s but does not attempt to preserve geometric relations. Finally, RR is computationally
competitive with existing algorithms, and can be seamlessly adapted to a variety of situations arising
in the analysis of real data sets.
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