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Abstract

In all manifold learning algorithms and tasks setting the kernel bandwidth ε used
construct the graph Laplacian is critical. We address this problem by choosing
a quality criterion for the Laplacian, that measures its ability to preserve the
geometry of the data. For this, we exploit the connection between manifold
geometry, represented by the Riemannian metric, and the Laplace-Beltrami operator.
Experiments show that this principled approach is effective and robust.

1 Introduction

Manifold learning and manifold regularization are popular tools for dimensionality reduction and
clustering [1, 2], as well as for semi-supervised learning [3, 4, 5, 6] and modeling with Gaussian
Processes [7]. Whatever the task, a manifold learning method requires the user to provide an external
parameter, called “bandwidth” or “scale” ε, that defines the size of the local neighborhood.

More formally put, a common challenge in semi-supervised and unsupervised manifold learning
lies in obtaining a “good” graph Laplacian estimator L. We focus on the practical problem of
optimizing the parameters used to construct L and, in particular, ε. As we see empirically, since the
Laplace-Beltrami operator on a manifold is intimately related to the geometry of the manifold, our
estimator for ε has advantages even in methods that do not explicitly depend on L.

In manifold learning, there has been sustained interest for determining the asymptotic properties of L
[8, 9, 10, 11]. The most relevant is [12], which derives the optimal rate for ε w.r.t. the sample size N

ε2 = C(M)N−
1

3+d/2 , (1)

with d denoting the intrinsic dimension of the data manifoldM. The problem is that C(M) is a
constant that depends on the yet unknown data manifold, so it is rarely known in practice.

Considerably fewer studies have focused on the parameters used to construct L in a finite sample
problem. A common approach is to “tune” parameters by cross-validation in the semi-supervised
context. However, in an unsurpervised problem like non-linear dimensionality reduction, there is
no context in which to apply cross-validation. While several approaches [13, 14, 15, 16] may yield
a usable parameter, they generally do not aim to improve L per se and offer no geometry-based
justification for its selection.

In this paper, we present a new, geometrically inspired approach to selecting the bandwidth parameter
ε of L for a given data set. Under the data manifold hypothesis, the Laplace-Beltrami operator ∆M
of the data manifoldM contains all the intrinsic geometry ofM. We set out to exploit this fact by
comparing the geometry induced by the graph Laplacian L with the local data geometry and choose
the value of ε for which these two are closest.
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2 Background: Heat Kernel, Laplacian and Geometry

Our paper builds on two previous sets of results: 1) the construction of L that is consistent for ∆M
when the sample size N →∞ under the data manifold hypothesis (see [17]); and 2) the relationship
between ∆M and the Riemannian metric g on a manifold, as well as the estimation of g (see [18]).

Construction of the graph Laplacian. Several methods methods to construct L have been suggested
(see [10, 11]). The one we present, due to [17], guarantees that, if the data are sampled from a manifold
M, L converges to ∆M:

Given a set of points D = {x1, . . . , xN} in high-dimensional Euclidean space Rr, construct a
weighted graph G = (D,W ) over them, with W = [wij ]ij=1:N . The weight wij between xi and xj
is the heat kernel [1]

Wij ≡ wε(xi, xj) = exp
(
||xi − xj ||22 /ε

2
)
, (2)

with ε a bandwidth parameter fixed by the user. Next, construct L = [Lij ]ij of G by

ti=
∑
j

Wij , W ′ij =
Wij

titj
, t′i =

∑
j

W ′ij , and Lij =
∑
j

W ′ij
t′j

. (3)

Equation (3) represents the discrete versions of the renormalized Laplacian construction from [17].
Note that ti, t′i,W

′, L all depend on the bandwidth ε via the heat kernel.

Estimation of the Riemannian metric. We follow [18] in this step. A Riemannian manifold (M, g)
is a smooth manifoldM endowed with a Riemannian metric g; the metric g at point p ∈M is a scalar
product over the vectors in TpM, the tangent subspace ofM at p. In any coordinate representation
ofM, gp ≡ G(p) - the Riemannian metric at p - represents a positive definite matrix1 of dimension d
equal to the intrinsic dimension ofM. We say that the metric g encodes the geometry ofM because
g determines the volume element for any integration overM by

√
detG(x)dx, and the line element

for computing distances along a curve x(t) ⊂M, by
√(

dx
dt

)
TG(x)dxdt .

If we assume that the data we observe (in Rr) lies on a manifold, then under rotation of the original
coordinates, the metric G(p) is the unit matrix of dimension d padded with zeros up to dimension r.
When the data is mapped to another coordinate system - for instance by a manifold learning algorithm
that performs non-linear dimension reduction - the matrix G(p) changes with the coordinates to
reflect the distortion induced by the mapping (see [18] for more details).

Proposition 2.1 Let x denote local coordinate functions of a smooth Riemannian manifold (M, g)
of dimension d and ∆M the Laplace-Beltrami operator defined onM. Then, H(p) = (G(p))−1 the
(matrix) inverse of the Riemannian metric at point p, is given by

(H(p))kj = 1
2∆M

(
xk − xk(p)

) (
xj − xj(p)

)
|x=x(p) with i, j = 1, . . . , d. (4)

Note that the inverse matrices H(p), p ∈ M, being symmetric and positive definite, also defines a
metric h called the cometric onM. Proposition 2.1 says that the cometric is given by applying the
∆M operator to the function φkj =

(
xk − xk(p)

) (
xj − xj(p)

)
, where xk, xj denote coordinates

k, j seen as functions onM. A converse theorem [19] states that g (or h) uniquely determines ∆M.
Proposition 2.1 provides a way to estimate h and g from data. Algorithm 1, adapted from [18],
implements (4).

3 A Quality Measure for L

Our approach can be simply stated: the “best” value for ε is the value for which the corresponding L
of (3) best captures the original data geometry. For this we must: (1) estimate the geometry g or h

1This paper contains mathematical objects likeM, g and ∆, and computable objects like a data point x, and
the graph Laplacian L. The Riemannian metric at a point belongs to both categories, so it will sometimes be
denoted gp, gxi and sometimes G(p), G(xi), depending on whether we refer to its mathematical or algorithmic
aspects (or, more formally, whether the expression is coordinate free or in a given set of coordinates). This also
holds for the cometric h, defined in Proposition 2.1.
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Algorithm 1 Riemannian Metric(X, i, L, pow ∈ {−1, 1})
Input: N × d design matrix X , i index in data set, Laplacian L, binary variable pow
for k = 1→ d, l = 1→ d do
Hk,l ←

∑N
j=1 Lij (Xjk −Xik)(Xjl −Xil)

end for
return Hpow (i.e. H if pow = 1 and H−1 if pow = −1)

from L (this is achieved by RiemannianMetric()); (2) find an independent way to estimate the data
geometry, locally (this is done in Sections 3.2 and 3.1); (3) define a measure of agreement between
the two (Section 3.3).

3.1 The Geometric Consistency Idea and gtarget

There is a natural way to estimate the geometry of the data without the use of L. We consider
the canonical embedding of the data in the ambient space Rr for which the geometry is trivially
known. This provides a target gtarget; we tune the scale of the Laplacian so that the g calculated
from Proposition 2.1 matches this target. Hence, we choose ε to maximize consistency with the
geometry of the data. We denote the inherited metric by gRr |TM, which stands for the restriction of
the natural metric of the ambient space Rr to the tangent bundle TM of the manifoldM. We tune
the parameters of the graph Laplacian L so as to enforce (a coordinate expression of) the identity

gp(ε) = gtarget, with gtarget = gRr |TpM ∀p ∈M . (5)

In the above, the l.h.s. will be the metric implied from the Laplacian via Proposition 2.1, and the r.h.s
is the metric induced by Rr. Mathematically speaking, (5) is necessary and sufficient for finding the
“correct” Laplacian. The next section describes how to obtain the r.h.s. from a finite sample D. Then,
to optimize the graph Laplacian we estimate g from L as prescribed by Proposition 2.1 and compare
with gRr |TpMnumerically. We call this approach geometric consistency (GC). The GC method is not
limited to the choice of ε, but can be applied to any other parameter required for the Laplacian.

3.2 Robust Estimation of gtarget for a finite sample

First idea: estimate tangent subspace We use the simple fact, implied by Section 3.1, that
projecting the data onto TpM preserves the metric locally around p. Hence, Gtarget = Id in the
projected data. Moreover, projecting on any direction in TpM does not change the metric in that
direction. This remark allows us to work with small matrices (of at most d× d instead of r × r) and
to avoid the problem of estimating d, the intrinsic dimension of the data manifold.

Specifically, we evaluate the tangent subspace around each sampled point xi using weighted (local)
Principal Component Analysis (wPCA) and then express gRr |TpM directly in the resulting low-
dimensional subspace as the unit matrix Id. The tangent subspace also serves to define a local
coordinate chart, which is passed as input to Algorithm 1 which computes H(xi), G(xi) in these
coordinates. For computing Txi

M, by wPCA, we choose weights defined by the heat kernel (2),
centered around xi, with same bandwidth ε as for computing L. This approach is similar to sample-
wise weighted PCA of [20], with one important requirements: the weights must decay rapidly away
from xi so that only points close xi are used to estimate TxiM. This is satisfied by the weighted
recentered design matrix Z, where Zi:, row i of Z, is given by:

Zi: = Wij(xi − x̄)/

 N∑
j′=1

Wij′

 , with x̄ =

 N∑
j=1

Wijxj

 /

 N∑
j′=1

Wij′

 . (6)

[21] proves that the wPCA using the heat kernel, and equating the PCA and heat kernel bandwidths
as we do, yields a consistent estimator of Txi

M. This is implemented in Algorithm 2.

In summary, to instantiate equation (5) at point xi ∈ D, one must (i) construct row i of the graph
Laplacian by (3); (ii) perform Algorithm 2 to obtain Y ; (iii) apply Algorithm 1 to Y to obtain
G(xi) ∈ Rd×d; (iv) this matrix is then compared with Id, which represents the r.h.s. of (5).
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Algorithm 2 Tangent Subspace Projection(X,w, d′)
Input: N × r design matrix X , weight vector w, working dimension d′
Compute Z using (6)
[V,Λ]← eig(ZTZ, d′) (i.e.d′-SVD of Z)
Center X around x̄ from (6)
Y ← XV:,1:d′ (Project X on d′ principal subspace)
return Y

Second idea: project onto tangent directions We now take this approach a few steps further in
terms of improving its robustness with minimal sacrifice to its theoretical grounding. In particular,
we perform both Algorithm 2 and Algorithm 1 in d′ dimensions, with d′ < d (and typically d′ = 1).
This makes the algorithm faster, and make the computed metrics G(xi), H(xi) both more stable
numerically and more robust to possible noise in the data2. Proposition 3.1 shows that the resulting
method remains theoretically sound.

Proposition 3.1 Let X, Y, Z, V, W:i, H , and d ≥ 1 represent the quantities in Algorithms 1 and 2;
assume that the columns of V are sorted in decreasing order of the singular values, and that the rows
and columns of H are sorted according to the same order. Now denote by Y ′, V ′, H ′ the quantitities
computed by Algorithms 1 and 2 for the same X, W:i but with d← d′ = 1. Then,

V ′ = V:1 ∈ Rr×1 Y ′ = Y:1 ∈ RN×1 H ′ = H11 ∈ R. (7)

The proof of this result is straightforward and omitted for brevity. It is easy to see that Proposition 3.1
generalizes immediately to any 1 ≤ d′ < d. In other words, by using d′ < d, we will be projecting
the data on a proper subspace of Txi

M - namely, the subspace of least curvature [22]. The cometric
H ′ of this projection is the principal submatrix of order d′ of H , i.e. H11 if d′ = 1.

Third idea: use h instead of g Relation (5) is trivially satisfied by the cometrics of g and gtarget
(the latter being Htarget = Id). Hence, inverting H in Algorithm 1 is not necessary, and we will use
the cometric h in place of g by default. This saves time and increases numerical stability.

3.3 Measuring the Distortion

For a finite sample, we cannot expect (5) to hold exactly, and so we need to define a distortion
between the two metrics to evaluate how well they agree. We propose the distortion

D = 1
N

N∑
i=1

||H(xi)− Id|| (8)

where ||A|| = λmax(A) is the matrix spectral norm. Thus D measures the average distance of H
from the unit matrix over the data set. For a “good” Laplacian, the distortion D should be minimal:

ε̂ = argminεD . (9)

The choice of norm in (8) is not arbitrary. Riemannian metrics are order 2 tensors or TM
hence the expression of D is the discrete version of Dg0 (g1, g2) =

∫
M ||g1 − g2||g0 dVg0 , with

||g||g0
∣∣
p

= supu,v∈TpM\{0}
<u,v>gp

<u,v>g0p
, representing the tensor norm of gp on TpM with respect to

the Riemannian metric g0p. Now, (8) follows when g0, g1, g2 are replaced by I, I andH , respectively.

With (9), we have established a principled criterion for selecting the parameter(s) of the graph
Laplacian, by minimizing the distortion between the true geometry and the geometry derived from
Proposition 2.1. Practically, we have in (9) a 1D optimization problem with no derivatives, and we
can use standard algorithms to find its minimum. ε̂.

4 Related Work

We have already mentioned the asymptotic result (1) of [12]. Other work in this area [8, 10, 11, 23]
provides the rates of change for ε with respect to N to guarantee convergence. These studies are

2We know from matrix perturbation theory that noise affects the d-th principal vector increasingly with d.
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Algorithm 3 Compute Distortion(X, ε, d′)

Input: N × r design matrix X , ε, working dimension d′, index set I ⊆ {1, . . . , N}
Compute the heat kernel W by (2) for each pair of points in X
Compute the graph Laplacian L from W by (3)
D ← 0
for i ∈ I do
Y ← TangentSubspaceProjection(X,Wi,:, d

′)
H ← RiemannianMetric(Y, L, pow = 1)
D ← D + ||H − Id′ ||2/|I|

end for
return D

relevant; but they depend on manifold parameters that are usually not known. Recently, an extremely
interesting Laplacian "continuous nearest neighbor” consistent construction method was proposed
by [24], from a topological perspective. However, this method depends on a smoothness parameter
too, and this is estimated by constructing the persistence diagram of the data. [25] propose a new,
statistical approach for estimating ε, which is very promising, but currently can be applied only to
un-normalized Laplacian operators. This approach also depends on unknown pparameters a, b, which
are set heuristically. (By contrast, our method depends only weakly on d′, which can be set to 1.)

Among practical methods, the most interesting is that of [14], which estimates k, the number of
nearest neighbors to use in the construction of the graph Laplacian. This method optimizes k
depending on the embedding algorithm used. By contrast, the selection algorithm we propose
estimates an intrinsic quantity, a scale ε that depends exclusively on the data. Moreover, it is not
known when minimizing reconstruction error for a particular method can be optimal, since [26] even
in the limit of infinite data, the most embeddings will distort the original geometry. In semi-supervised
learning (SSL), one uses Cross-Validation (CV) [5].

Finally, we mention the algorithm proposed in [27] (CLMR). Its goal is to obtain an estimate of the
intrinsic dimension of the data; however, a by-product of the algorithm is a range of scales where
the tangent space at a data point is well aligned with the principal subspace obtained by a local
singular value decomposition. As these are scales at which the manifold looks locally linear, one can
reasonably expect that they are also the correct scales at which to approximate differential operators,
such as ∆M. Given this, we implement the method and compare it to our own results.

From the computational point of view, all methods described above explore exhaustively a range
of ε values. GC and CLMR only require local PCA at a subset of the data points (with d′ < d
components for GC, d′ >> d for CLMR); whereas CV, and [14] require respectively running a SSL
algorithm, or an embedding algorithm, for each ε. In relation to these, GC is by far the most efficient
computationally. 3

5 Experimental Results

Synthethic Data. We experimented with estimating the bandwidth ε̂ on data sampled from two
known manifolds, the two-dimensional hourglass and dome manifolds of Figure 1. We sampled
points uniformly from these, adding 10 “noise” dimensions and Gaussian noiseN (0, σ2) resulting in
r = 13 dimensions.

The range of ε values was delimited by εmin and εmax. We set εmax to the average of ||xi − xj ||2
over all point pairs and εmin to the limit in which the heat kernel W becomes approximately equal
to the unit matrix; this is tested by maxj(

∑
iWij)− 1 < γ4 for γ ≈ 10−4. This range spans about

two orders of magnitude in the data we considered, and was searched by a logarithmic grid with
approximately 20 points. We saved computatation time by evaluating all pointwise quantities (D̂,
local SVD) on a random sample of size N ′ = 200 of each data set. We replicated each experiment
on 10 independent samples.

3In addition, these operations being local, they can be further parallelized or accelerated in the usual ways.
4Guaranteeing that all eigenvalues of W are less than γ away from 1.
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σ = 0.001 σ = 0.01 σ = 0.1

Figure 1: Estimates ε̂ (mean and standard deviation over 10 runs) on the dome and hourglass data, vs sample
sizes N for various noise levels σ; d′ = 2 is in black and d′ = 1 in blue. In the background, we also show as
gray rectangles, for each N,σ the intervals in the ε range where the eigengaps of local SVD indicate the true
dimension, and, as unfillled rectangles, the estimates proposed by CLMR [27] for these intervals. The variance
of ε̂ observed is due to randomness in the subsample N ′ used to evaluate the distortion. Our ε̂ always falls in the
true interval (when this exists), and have are less variable and more accurate than the CLMR intervals.

Reconstruction of manifold w.r.t. gold standard These results (relegated to the Supplement) are
uniformly very positive, and show that GC achieves its most explicit goal, even in the presence of
noise. In the remainder, we illustrate the versatility of our method on on other tasks. Effects of d′,
noise and N . The estimated ε are presented in Figure 1. Let ε̂d′ denote the estimate obtained for a
given d′ ≤ d. We note that when d1 < d2, typically ε̂d1 > ε̂d2 , but the values are of the same order
(a ratio of about 2 in the synthetic experiments). The explanation is that, chosing d′ < d directions
in the tangent subspace will select a subspace aligned with the “least curvature” directions of the
manifold, if any exist, or with the “least noise” in the random sample. In these directions, the data
will tolerate more smoothing, which results in larger ε̂. The optimal ε decreases with N and grows
with the noise levels, reflecting the balance it must find between variance and bias. Note that for the
hourglass data, the highest noise level of σ = 0.1 is an extreme case, where the original manifold
is almost drowned in the 13-dimensional noise. Hence, ε is not only commensurately larger, but also
stable between the two dimensions and runs. This reflects the fact that ε captures the noise dimension,
and its values are indeed just below the noise amplitude of 0.1

√
13. The dome data set exhibits the

same properties discussed previously, showing that our method is effective even for manifolds with
border.

Semi-supervised Learning (SSL) with Real Data. In this set of experiments, the task is classifica-
tion on the benchmark SSL data sets proposed by [28]. This was done by least-square classification,
similarly to [5], after choosing the optimal bandwidth by one of the methods below.

TE Minimize Test Error, i.e. “cheat” in an attempt to get an estimate of the “ground truth”.

CV Cross-validation We split the training set (consisting of 100 points in all data sets) into two
equal groups;5 we minimize the highly non-smooth CV classification error by simulated
annealing.

Rec Minimize the reconstruction error We cannot use the method of [14] directly, as it requires
an embedding, so we minimize reconstruction error based on the heat kernel weights w.r.t. ε

(this is reminiscent of LLE [29]): R(ε) =
∑n
i=1

∣∣∣∣∣∣xi −∑j 6=i
Wij∑
l 6=iWij

xj

∣∣∣∣∣∣2
Our method is denoted GC for Geometric Consistency; we evaluate straighforward GC, that uses the
cometric H and a variant that includes the matrix inversion in Algorithm 1 denoted GC−1.

5In other words, we do 2-fold CV. We also tried 20-fold and 5-fold CV, with no significant difference.
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TE CV Rec GC−1 GC

Digit1 0.67±0.08 0.80±0.45 0.64 0.74 0.74
[0.57, 0.78] [0.47, 1.99]

USPS 1.24±0.15 1.25±0.86 1.68 2.42 1.10
[1.04, 1.59] [0.50, 3.20]

COIL 49.79±6.61 69.65±31.16 78.37 216.95 116.38
[42.82, 60.36] [50.55, 148.96]

BCI 3.4±3.1 3.2±2.5 3.31 3.19 5.61
[1.2, 8.9] [1.2, 8.2]

g241c 8.3± 2.5 8.8±3.3 3.79 7.37 7.38
[6.3, 14.6] [4.4, 14.9]

g241d 5.7± 0.24 6.4±1.15 3.77 7.35 7.36
[5.6, 6.3] [4.3, 8.2]

Table 1: Estimates of ε by methods presented for the six SSL data sets used, as well as TE. For TE
and CV, which depend on the training/test splits, we report the average, its standard error, and range
(in brackets below) over the 12 splits.

CV Rec GC−1 GC
Digit1 3.32 2.16 2.11 2.11
USPS 5.18 4.83 12.00 3.89
COIL 7.02 8.03 16.31 8.81
BCI 49.22 49.17 50.25 48.67

g241c 13.31 23.93 12.77 12.77
g241d 8.67 18.39 8.76 8.76

d′=1 d′=2 d′=3

Digit1 GC−1 0.743 0.293 0.305
GC 0.744 0.767 0.781

USPS GC−1 2.42 2.31 3.88
GC 1.10 1.16 1.18

COIL GC−1 116 87.4 128
GC 187 179 187

BCI GC−1 3.32 3.48 3.65
GC 5.34 5.34 5.34

g241c GC−1 7.38 7.38 7.38
GC 7.38 9.83 9.37

g241d GC−1 7.35 7.35 7.35
GC 7.35 9.33 9.78

Table 2: Left panel: Percent classification error for the six SSL data sets using the four ε estimation
methods described. Right panel: ε obtained for the six datasets using various d′ values with GC and
GC−1 . ε̂ was computed for d=5 for Digit1, as it is known to have an intrinsic dimension of 5, and
found to be 1.162 with GC and 0.797 with GC−1 .

Across all methods and data sets, the estimate of ε closer to the values determined by TE lead to
better classification error, see Table 2. For five of the six data sets6, GC-based methods outperformed
CV, and were 2 to 6 times faster to compute. This is in spite of the fact that GC does not use label
information, and is not aimed at reducing the classification error, while CV does. Further, the CV
estimates of ε are highly variable, suggesting that CV tends to overfit to the training data.

Effect of Dimension d′. Table 2 shows how changing the dimension d′ alters our estimate of ε. We
see that the ε̂ for different d′ values are close, even though we search over a range of two orders of
magnitude. Even for g241c and g241d, which were constructed so as to not satisfy the manifold
hypothesis, our method does reasonably well at estimating ε. That is, our method finds the ε̂ for
which the Laplacian encodes the geometry of the data set irrespective of whether or not that geometry
is lower-dimensional. Overall, we have found that using d′ = 1 is most stable, and that adding more
dimensions introduces more numerical problems: it becomes more difficult to optimize the distortion
as in (9), as the minimum becomes shallower. In our experience, this is due to the increase in
variance associated with adding more dimensions.

Using one dimension probably works well because the wPCA selects the dimension that explains the
most variance and hence is the closest to linear over the scale considered. Subsequently, the wPCA
moves to incrementally “shorter” or less linear dimensions, leading to more variance in the estimate
of the tangent subspace (more evidence for this in the Supplement).

6In the COIL data set, despite their variability, CV estimates still outperformed the GC-based methods. This is
the only data set constructed from a collection of manifolds - in this case, 24 one-dimensional image rotations.
As such, one would expect that there would be more than one natural length scale.
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Figure 2: Bandwidth Estimation For Galaxy Spectra Data. Left: GC results for d′ = 1 (d′ = 2, 3 are
also shown); we chose radius = 66 the minimum of D for d = 1′. Right: A log-log plot of radius
versus average number of neighbors within this radius. The region in blue includes radius = 66 and
indicates dimension d = 3. In the code ε = radius/3, hence we use ε = 22.

Embedding spectra of galaxies (Details of this experiment are in the Supplement.) For these data
in r = 3750 dimensions, with N = 650, 000, the goal was to obtain a smooth, low dimensional
embedding. The intrinsic dimension d is unknown, CV cannot be applied, and it is impractical
to construct multiple embeddings for large N . Hence, we used the GC method with d′ = 1, 2, 3
and N ′ = |I| = 200. We compare the ε̂’s obtained with a heuristic based on the scaling of the
neighborhood sizes [30] with the radius, which relates ε, d and N (Figure 2). Remarkably, both
methods yield the same ε, see the Supplement for evidence that the resulting embedding is smooth.

6 Discussion

In manifold learning, supervised and unsupervised, estimating the graph versions of Laplacian-type
operators is a fundamental task. We have provided a principled method for selecting the parameters
of such operators, and have applied it to the selection of the bandwidth/scale parameter ε. Moreover,
our method can be used to optimize any other parameters used in the graph Laplacian; for example,
k in the k-nearest neighbors graph, or - more interestingly - the renormalization parameter λ [17]
of the kernel. The latter is theoretically equal to 1, but it is possible that it may differ from 1 in the
finite N regime. In general, for finite N , a small departure from the asymptotic prescriptions may be
beneficial - and a data-driven method such as ours can deliver this benefit.

By imposing geometric self-consistency, our method estimates an intrinsic quantity of the data. GC is
also fully unsupervised, aiming to optimize a (lossy) representation of the data, rather than a particular
task. This is an efficiency if the data is used in an unsupervised mode, or if it is used in many different
subsequent tasks. Of course, one cannot expect an unsupervised method to always be superior to a
task-dependent one. Yet, GC has shown to be competitive and sometimes superior in experiments
with the widely accepted CV. Besides the experimental validation, there are other reasons to consider
an unsupervised method like GC in a supervised task: (1) the labeled data is scarce, so ε̂ will have
high variance, (2) the CV cost function is highly non-smooth while D is much smoother, and (3)
when there is more than one parameter to optimize, difficulties (1) and (2) become much more severe.

Our algorithm requires minimal prior knowledge. In particular, it does not require exact knowledge
of the intrinsic dimension d, since it can work satisfactorily with d′ = 1 in many cases.

An interesting problem that is outside the scope of our paper is the question of whether ε needs to
vary overM. This is a question/challenge facing not just GC, but any method for setting the scale,
unsupervised or supervised. Asymptotically, a uniform ε is sufficient. Practically, however, we believe
that allowing ε to vary may be beneficial. In this respect, the GC method, which simply evaluates
the overall result, can be seamlessly adapted to work with any user-selected spatially-variable ε, by
appropriately changing (2) or sub-sampling D when calculating D.
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