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Abstract

The evolution of biological sequences, such as proteins or DNAs, is driven by the
three basic edit operations: substitution, insertion, and deletion. Motivated by the
recent progress of neural network models for biological tasks, we implement two
neural network architectures that can treat such edit operations. The first proposal
is the edit invariant neural networks, based on differentiable Needleman-Wunsch
algorithms. The second is the use of deep CNNs with concatenations. Our analysis
shows that CNNs can recognize regular expressions without Kleene star, and
that deeper CNNs can recognize more complex regular expressions including the
insertion/deletion of characters. The experimental results for the protein secondary
structure prediction task suggest the importance of insertion/deletion. The test
accuracy on the widely-used CB513 dataset is 71.5%, which is 1.2-points better
than the current best result on non-ensemble models.

1 Introduction

Neural networks are now used in many applications, not limited to classical fields such as image
processing, speech recognition, and natural language processing. Bioinformatics is becoming an
important application field of neural networks. These biological applications are often implemented
as a supervised learning model that takes a biological string (such as DNA or protein) as an input,
and outputs the corresponding label(s), such as a protein secondary structure [[13} 14, [15} (18} 19, 23}
24, 126]), protein contact maps [4 8], and genome accessibility [12].

Invariance, which forces a prediction model to satisfy a desirable property for a specific task, is
important in neural networks. For example, CNNs with pooling layers capture the shift invariant
property that is considered to be an important property for image recognition tasks. CNNs were first
proposed to imitate the organization of the visual cortex [6]]. This is often used to explain why CNNs
work for visual tasks. Similarly, rotation invariance for image tasks is also studied [25]]. Generally, it
is important to model the proper invariances for a given application domain.

What is, then, the invariance in biological tasks? As is well known in bioinformatics, similar
sequences tend to exhibit similar functions or structures (i.e., similar labels in terms of machine
learning). Here, the similarity is evaluated by sequence alignment, which is closely related to the edit
distance. This implies that labels associated with the biological sequences exhibit (weak) invariance
with respect to a small number of edit operations, i.e., substitution, insertion, and deletion. This paper
aims to incorporate such invariances, which we call edit invariance, into neural networks.

Contribution. We consider two neural network architectures that incorporate the edit operations.
First, we propose the edit invariant neural networks. This is obtained by interpreting the classical
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Needleman-Wunsch algorithm [[17] as a differentiable neural network. Next, we show that deep CNNs
with concatenations can treat regular expressions without Kleene stars, indicating that such CNNs
can capture edit operations including insertion/deletion. Our experiments demonstrate the validity of
our approach. The test accuracy of protein secondary structure prediction on the widely-used CB513
dataset (e.g., [26]) results in 71.5% accuracy, the state-of-the-art performance compared to those of
previous studies on non-ensemble models.

2 Edit Invariant Neural Networks (EINN) Yin
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to a differentiable function using embedding. Algorithm[I|shows the proposed dynamic programming
procedure to calculate the NW score snw (Z1.m, Y1:n; g)- Here, the scalar parameter g is the gap cost
that represents the cost to insert or delete a character. The differences from the original NW algorithm
are three-fold.

1. The input sequences 1.y, = [Z1, - ,Zm] and Y1., := [y1,- - ,yn] are each d-dimensional
time series (i.e., x; and y; are vectors in R%) of length m and n, respectively.

2. Following the modification above, the score function is defined as the inner product instead of a
predefined lookup table (Line 7).

3. The softmax function max”(x) = v log(>_, exp(z;/7)) is used instead of the hard max function
(Line 10).

The dynamic programming in Algorithm ] can be re-
garded as a computational graph, allowing us to dif-
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These derivatives are derived similarly to SoftDTW [3]], a differentiable distance function correspond-
ing to the dynamic time warping (hence the gapcost is not involved). For the derivative with respect to
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the gapcost g, we can derive it similarly using the matrix P in Algorithm 3: 65'% = P,, . As in the
original NW algorithm, the proposed method can consider insertions/deletions. It is well known that
the NW score is closely related to the edit distance. Given sequences x1.,, and ¥1.,, let us consider
a modified sequence x/1; (m—1) where one feature vector x; is deleted from x1.,,. In such a case,

the calculated scores syw(, y) and snw(z’, y) show a similar value. We call this property the edit
invariance, which is expected to be important for tasks involving biological sequences.

Convolutional EINN. Here, we extend the traditional CNNs by the NW score introduced above.
Let us consider an embedded sequence X € R%*L of length L, and a convolutional filter w € R4*K
of kernel size K. Let x € R?*¥ be a frame of length K at a certain position in the embedded
sequence X . In CNNs, the similarity is computed by the (Frobenius) inner product, i.e., w-z. Our
idea is to replace this inner-product-based similarity with the above proposed syw(z, w; g). Taking a
limit as g — oo (i.e., insertion and deletion are prohibited), syw is associated with a convolution as
follows.

Proposition 1. For any 2 € R X and any w € R¥K | we have w-z = limy o0 snw(z, w5 g).

Proof. 1f g — oo, we have F; ; = F;_1j 1 + w;-x; in Line 10 of Algorithm [I] This leads to

. K
limg oo snw(z, w5 9) = Fx g = D 0 Wi T = w-. O

Therefore, the replacement of w-2 in CNNs with snw (z, w; g) can be regarded as a generalization of
CNNs. As mentioned above, the NW score is related to the edit distance, while the inner-product
w-x corresponds to the Hamming distance, a special case of edit distance when insertion/deletion
are prohibited (i.e., only substitutions are allowed). We also emphasize that this EINN-based
convolutional architecture allows for the use of GPUs for batch, filter, and CNN-frame dimensions,
although we cannot parallelize the innermost double loop of the dynamic programming.

Summary. In this section, we discussed a differentiable sequence alignment, EINN, to render the
neural networks edit invariant. Subsequently, we proposed to replace the inner products in CNNs with
EINNs. The proposed method is a generalization of CNNs, because the NW score syw converges
to an inner product as g — oo (Proposition|[I). We employed a plain NW alignment in place of the
inner product; however, there are many other alignment strategies, such as alignments with affine gap
costs, Smith-Waterman (SW) alignment [22], and BLAST [1]]. It is easy to replace the inner product in
CNNs with an affine gap cost alignment or the SW alignment because these alignment methods are
described as computational graphs with basic operations, such as ‘4’ and ‘max.” In contrast, creating
a differentiable BLAST is highly challenging owing to its heuristic operations.

3 Deep CNN as a Regular Expression Recognizer

In bioinformatics, meaningful string patterns are called motifs, which resemble to regular expressions.
For example, the N-glycosylation site motif is represented as N[~P] [ST] [~P], where N, P, S, and T



are amino acids, [~P] means any amino acid except for P, and [ST] means an amino acid S or T.
This motif represents the following pattern: N, followed by any amino acid but P, followed by S or
T, followed by anything but P. Another example is the C2H2-type zinc finger domain represented
as C-x(2,4)-C-x(3)-[LIVMFYWC] -x(8) -H-x(3,5) -H, where x(i) and x(j,k) mean any se-
quence of length ¢ and any sequence of length between j and k, respectively (we inserted “-” for
readability).

We show the relationship between CNNs and regular expressions. First, we introduce regular
expressions without Kleene star, which is a subset of the standard regular expressions.

Definition 1. The regular expression without Kleene star is a set of strings on an alphabet ¥ defined
recursively as follows. First, the following are the regular expressions without Kleene star: 1) Empty
set (J; 2) Empty string ¢; 3) A single character Va € X. Next, let R and S be regular expressions
without Kleene star. Then, the following sets of strings are also regular expressions without Kleene
star. 4) Concatenation of strings in R and S, denoted by RS. 5) A union of the sets R and S, denoted
by R|S (called alternation). Moreover, given a string ¢, we say ¢ matches R if ¢ is included in R.0J

In short, this is equivalent to the standard regular expressions without the Kleene star, R*, which
accepts (potentially) infinite repeats of strings in K. Following this definition, we can easily confirm
that the sets of strings represented by the two motifs mentioned above are the regular expressions
without Kleene star. Hereafter, we use the Unix-like notations of regular expressions (see also
the regular expression cheetsheet in the supplementary material (Appendix D)). For example, a
regular expression /a.b/ describes strings such as “a, followed by any character, followed by b.”
Furhter, /a[bc]a/, means strings such as “a, followed by b or c, followed by a,” and / (abc|ac) /
implies “abc or ac.” It is noteworthy that the last regular expression / (abc|ac) / is equal to /ab7c/,
where ‘?” means zero or one occurrence of the preceding token. Because the Kleene star “*” is not
considered, regular expressions such as “/ab*/,” describing “a followed by any number of b,” are
not considered.

Simple regular expressions with CNNs. Here, we reveal the relationship between regular expres-
sions and CNNs. Let us start from a simple example to verify whether a given input string « of length
L on an alphabet ¥ = {a, b, c} matches a regular expression /abc/ for each position. We assume a
one-hot representation for x, where each dimension corresponds to a character in 3.

We compose a one-dimensional (1d)-convolutional layer whose filter matrix w; and bias b; are
given by the one-hot representation w; = (e,, e, e.) and by = —2, respectively, where e, is the
one-hot vector of character “a.” This filter matrix, wy, is shown in Fig. Q] (a). Using this filter, the
output of the layer at position ¢ is 1 if (;_1).(;41) matches the regular expression /abc/, or smaller
than 1 otherwise (see Fig. 2 (b)). Therefore, using ReLU (i.e., relu(w; “T(i-1):(i41) — b1)), we
obtain 1 for matching and O for non-matching. This shows that we can emulate the exact pattern
matching using a single 1d-convolutional layer. To simplify the discussion, we denote the convolution
by a tuple (wq, by). Similarly, the recognizer for a regular expression /ac/ can be emulated by a
1d-convolutional layer of kernel size k = 3 consisting of we = (e,, €., 0) and by = —1 (Fig. .

Next, let us use a regular expression /ab?c/=/(abc|ac)/ as an example, which represents the
pattern ‘abc’, but accepts the deletion of the middle ‘b’. This can be recognized by the following
multi-layer network. First, we apply the two convolutions above, (w1, b1) and (ws, b2). Then, using
the outputs of these two filters as an input, the next convolutional layer of kernel size 1 with parameter
w3 = (€qpe + €qc) = [1,1]7 and b = 0 is applied (see the lowest matrix in Fig. (b)).

Relation between CNNs and regular expressions without Kleene star. In principle, given a
regular expression without Kleene star R, we can construct a two-layered convolutional network that
accepts R similarly. Let k& be the maximum length of strings in R. It is noteworthy that % is finite
because R does not involve the Kleene stars. For the same reason, R is a finite set. For each string
in R, we construct a convolutional layer with kernel size k£ accepting r. Subsequently, the outputs of
these layers are input to the next convolutional layer of kernel size 1, which realizes the OR operation
similarly to the filter (w3, b3) above. This discussion leads to the following general proposition.

Proposition 2 (CNN as a regular expression recognizer). Given a regular expression without Kleene
star R, there exists a CNN that can verify whether a given string x matches R for each position of x.

Although this proposition demonstrates the potential ability of CNNs, the construction is inefficient
especially when | R| is large. For example, let us consider a regular expression /ba. /, which consists
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of |X]| strings. In this case, the construction above requires |%| convolutional filters that might not be
acceptable. In fact, it can be represented by only one filter, consisting of wy = (ep, €4, €q + € + €¢)
and by = —2 (Fig. (a)). Furthermore, /a[bcla/ corresponds to ws = (e, €p+€¢, €4) and by = —2
(Fig.[3](a)). These examples show a possibility that a large regular expression R could be compressed
into a small CNN. We extend this discussion in the following.

Going Deeper for Complex Regular Expressions. According to Proposition 2] shallow yet wide
neural networks can recognize an arbitrary regular expression without Kleene star k. Here, we
discuss how the depth of the neural network relates to regular expressions. Further, we investigate the
meaning of DenseNet [[11] -like concatenation of the outputs from various layers.

Briefly, the depth and concatenation are important to obtain the distributed representations of string
patterns, similar to that in image processing. Combining deep convolutions with concatenation, we
can construct a recognizer for highly complicated regular expressions from small building blocks of
simple regular expressions.

We explain based on an example using Fig. 3| In addition to the atomic regular expressions /a/,
/b/, and /c/, let us consider two regular expressions, /a[bcla/, and /ba./, as discussed above.
Furthermore, we consider a regular expression /a[bc]a[ac]ba./, which is more complicated, yet
is a combination of the simple regular expressions above. This regular expression can be divided
into three parts: 1) /albcla/ 2) /ba./ and 3) /[ac]/. The first two regular expressions can be
recognized by w, and ws discussed above. To recognize the last one, /[ac]/, we employ the
concatenation of two matrices, as shown in Fig. 3] (b). This allows us to combine with the atomic
regular expressions. Concretely, using the convolutional filter we shown in Fig. 3] (a) with b = —2,
we can recognize /a[bc]lalac]lba./ as shown in the lowest matrix in Fig.[3|(b). Similarly, if the
shaded cell of wg in Fig.[3](a) is set to 1, we can represent another regular expression with a deletion
(i.e., /a[bclalac] ?ba./).

Summary. In this section, we first showed that even shallow CNNs can treat regular expressions
without Kleene star in principle (Proposition[2). The number of filters can be, however, much larger
than that in EINNs, which explicitly model edit operations. We provided an upper-bound of the
filter size, |R|, although this bound is not very tight. This indicates that shallow CNNs cannot treat
complex regular expressions efficiently. Then, we explained that the depth and concatenation can
mitigate this issue. Concatenations allow us to reuse and combine simple regular expressions (like
/a/, /b/, ...). In the next sections, we discuss and investigate what happens if concatenations are not
used by comparing with the ResNet architecture, which does not involve concatenations. We also
discuss the advantages and disadvantages of EINNs and CNNs.



4 Discussion

CNNs and EINNs. In the previous sections, we have shown how to treat insertion and deletion
of characters in a string, which is expected to be important for biological tasks. The EINNs treat
insertions and deletions explicitly, while the deep CNNs with concatenation treat them implicitly.
Here, we discuss their advantages and disadvantages. Although the EINNs model the well-established
biological process directly through the NW algorithm, the computational cost is high due to the
dynamic programming. Meanwhile, the computational cost of the deep CNNss is significantly lower.
However, if the target regular expression involves many insertions and deletions, the number of
convolutional filters required to represent it will increase rapidly. This is because the CNNs may have
to treat such gapped patterns with separate convolutional filters, as shown in Fig.[2] One might wonder
if we can mitigate this problem with pooling layers; however, we could not obtain improvements in
the accuracy in a protein secondary structure prediction problem.

The CNN analysis in Section [3| was restricted to one-hot representations (called binarized CNNs
herein). However, the filter weights and inputs of the normal CNNs are real numbers. We believe
that this binarized analysis is still meaningful because such binarized CNNs are included in normal
CNNs, indicating that the normal CNNs can learn more flexible patterns than the binarized CNNs.

ResNet-like architecture. Finally, we discuss ResNet[10]-like architectures (i.e., using additive
skip connections instead of dense connections). We argue that ResNet-like architectures are difficult
to interpret. In fact, adding two matrices in the top and middle of Fig. [2] (b) generates matching
results for /(alabc) / and / (blac) / (here, we ignored the third row of the top matrix). This implies
that additive skip connections do not allow us to combine simpler regular expressions freely. In our
experiments, ResNet-like architectures do not demonstrate a better performance than DenseNet-like
architectures for the protein secondary structure prediction task (see Section|[6).

5 Related Work

Sequence alignment and dynamic programming. The NW algorithm [17] is a fundamental
sequence alignment algorithm. It is a global alignment algorithm, which aligns along the entire
sequence. The Smith-Waterman (SW) algorithm [22], another well-known algorithm, is a local
alignment algorithm where the subsequences are aligned.

Dynamic programming is used frequently for similarity computation between two sequences. Dy-
namic time warping (DTW) is often used for tasks involving time series (e.g., speech recognition
[21]). Unlike the NW algorithm, DTW does not allow us to insert gaps (i.e., DTW does not consider
the gap cost). Cuturi and Blondel [3] proposed a differentiable loss function called Soft-DTW. In
speech recognition, connectionist temporal classification (CTC) is used as a loss function for two
sequences [9]]. The CTC explicitly models gaps differently from the NW algorithm. In bioinformatics,
Saigo et al. [20] used a local alignment kernel, which is similar to SW alignment, to optimize amino
acid substitution matrices by gradient descent. The gradient is computed similarly to EINNs, while
embedding is not used. The difference between these methods and EINNS is that these methods are
used as loss functions, whereas EINNs are used as similarity functions in convolutions to make neural
networks edit invariant.

NN as a language recognizer Thus far, the relationships between neural networks and the formal
language theory have been studied in terms of RNNs. Minsky [[16] demonstrated that any finite state
machines can be emulated by a discrete state RNN with McCulloch-Pitts neurons. Forcada and
Carrasco [3]] considered a continuous version of the RNN, called the neural state machine. Gers and
Schmidhuber [7] showed experimentally that the LSTM can learn context free grammar, including
regular grammar. Unlike these studies, we focus on CNNs and reveal the relationship to regular
expressions without Kleene star (Section [3).

NN for biological sequences. Neural networks are used for several biological predictive tasks, such
as protein secondary structure (shown below), protein contact maps [4} 8], and genome accessibility
[[12]]. We herein focus on the protein secondary structure prediction problem, which is a sequence
labeling problem predicting a label for each sequence position. The existing approaches are classified
into three groups: 1) RNN-based models [[13}[15} 23], 2) Hybrid of probabilistic models with neural



networks [18, 24, 26], and 3) CNN-based models [2} [14]]. Among them, Li and Yu [[13] reported
the test accuracy of 69.4% for the CB513 dataset, a standard open dataset for this task, based on a
bidirectional GRU model. Busia and Jaitly [2] reported the highest CB513 accuracy, 70.3% using a
CNN-based modelE] Based on the discussion in Section [3) we employ a much deeper architecture in
our experiment. Consequently, we achieved a much higher accuracy, 71.5% (Section [6).

6 Experiments

In this section, we present the experimental results using a real task for biological sequences. We
focus on the protein secondary structure prediction problem, which is widely studied both in the
machine learning and bioinformatics communities. Overall, we will demonstrate that for protein
structure prediction, it is important to adopt network architectures that consider insertions/deletions,
as we have discussed previously.

Dataset and implementation. We follow the previous studies for the secondary structure predic-
tion. For the test, we used the widely-used CB513 dataset. For training, we used the filtered CB6133
dataset [13| [26], which has filtered out proteins in the original CB6133 dataset having 25% or higher
similarity with some proteins in CB513. Consequently, the filtered CB6133 dataset includes 5534
proteins. We train the models that predict the eight-class secondary structure labels assigned at each
position of a given sequence (i.e., a sequence labeling task). The feature vector at each position
given in these datasets is the one-hot representation of amino acid (22-dim), and the position specific
scoring matrix (PSSM, 22-dim). We employ zero-padding for convolutional operations to keep the
sequence length constant. For implementations, we used PyTorch version 0.2. Unless otherwise
noted, the default settings are used (e.g., weight initialization and hyperparameters for optimizers).
The training was conducted on Nvidia Tesla GPUs.

Results for simplified models. First, we investigate the effect of EINNs using simplified models
and datasets. Here, two types of models are used: Tiny-CNN and Tiny-EINN. Figure [6] (a) shows
the Tiny-CNN while the Tiny-EINN is obtained by replacing the Conv-5 layers with the EINN
convolutional layer proposed in Section [2]

For training, we used the one-hot vector for input (i.e., PSSM Table 1: Test accuracy (CB513).
is not used here), and 2% of training data (sequences) sam-

pled from the filtered CB6133 dataset. We used the Adam Method Acc. (%)
optimizer with the minibatch size of 128, initial learning rate Tiny-CNN 42.0
of 0.0002 (reduced by 1/10 at epoch 15), and weight decay Tiny-EINN (g = 2.5) 43.0

(10~®). We report the CB513 accuracy at epoch 30.

In Table[T] Tiny-EINN shows an accuracy that is 1.0-point better than Tiny-CNN. In this experiment,
we used the fixed gapcost g = 2.5. Figure [d] shows how the accuracy changes with respect to g. We
observe that, for g > 10, the accuracy is equal to that of the CNN, 42.0% (Proposition [I). Furhter, the
maximum accuracy is achieved at g = 2.5, indicating the potential importance of insertion/deletion.

Next, we investigate what happens when different sizes of training data are used. Figure 5] shows the
test accuracy for the CB513 dataset against the gapcost with the 1%, 2%, and 5% datasets. For the
5% dataset, the performance gain, defined by the difference between EINN (with g at the peak) and
CNNs (with g — 00), is 0.6%, which is smaller than that of the 2% dataset, i.e., 1.0%. For the 1%
dataset, the performance gain is 1.4%, larger than that of the 2% dataset. To summarize, we obtained
larger gains for smaller dataset. Thus, this result shows that the modeling power of EINNS is better
than that of CNNSs.

Results for deeper models. Next, we show results for fully-deep models with realistic configura-
tions, including a model achieving the state-of-the-art CB513 accuracy. Throughout the experiments,
we used RMSProp for optimization, with the initial learning rate of 0.00033 and minibatch size of 8.
The models are trained for 150 epochs, and the test accuracy at the last epoch is reported. We do not

!This accuracy is based on a single model (i.e., non-ensemble model) prediction result. With model
ensembling, they obtained 71.4%, which is comparable to our result, 71.5% (note that we do not use model
ensembling in our experiment).
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use weight decay, and the learning rate is reduced by 1/10 at epoch 100. We do not employ other
techniques including beam-search-based classification [2f], or model ensembling [2} [13]].

In addition, we found that data augmentation improves the accuracy. To create a new training data,
we replaced the one-hot vector at randomly chosen positions with an amino acid drawn from the
uniform distribution. In our experiments, we randomly replaced 15% of the residues. We maintained
the PSSM dimension. This simple augmentation strategy improved the CB513 accuracy by up to
0.8-points. In the supplementary material (Appendix C), we investigate the effect of this augmentation.
To the best of our knowledge, this technique has not been adopted in previous studies.

As a baseline, we stack the ConvBlocks shown in Fig. [6] (b). This is similar to the current state-
of-the-art model proposed in [2]]. Unlike their architecture, we do not employ nonlinearity after
Conv-1 because we found it deteriorates the test performance when stacked deeply. We first apply
two ConvBlocks. Then, at each position, a fully connected layer (of size 455) is applied, followed by
batch normalization, dropout (p = 0.2) and ReLU. Finally, another fully-connected layer is applied to
output the 8-class scores. To investigate the effect of the EINNs, we replace the convolutions shaded
in Fig.[6](b) in the first ConvBlock with EINNs of the same filter and kernel sizes.

The test accuracies for these models (2-block CNNT and . ..
2-block EINN' in Table [2) indicate that the EINN-based ~ Laple 2: Comparison of precisions for
model is again better, while the degree of improvement the secondary structure prediction on
gets smaller. This can be interpreted as follows. Follow- CB513 dataset. Note that these):.esu.l ts
ing the analysis in Section 3} the ConvBlock itself can 4™ for no.n-ensefmb.le models. (*: with
recognize complex string patterns. This could reduce the multitasking / {: with data augment.)

need for EINNSs, although it can potentially recognize Method Acc. (%)
complex patterns alone. Our 2-block CNNT 69.7
It is impossible to replace all of the convolutions in Our 2-block EINN' 69.8
the model with EINN's owing to the following reasons. | Our 2-block CNN*T 69.8
First, EINNs consume much more GPU memory than Our 4-block CNN* 70.6
CNNs, thereby preventing us from applying them widely. | Our 8-block CNN*! 71.2
Second, the computation time of the EINNS is slower Our 12-block CNN*' 71.5
than that of the CNNs. Although we have implemented Our 16-block CNN* 71.3
EINNs using GPUs, as mentioned in Section 2} the com- Our 8-block MCNN*7 . 71.3
putation speed is more than ten times slower than that Our 12-block MCNN*' 71.5
of CNN:s if the kernel size is £k = 5. This is because ResNet*T (best result) 71.0
the innermost double loop cannot be parallelized, thus GSN [26] (2014) 66.4
resulting in a time complexity of O(k?), while the CNN DeepCNE [24] (2016) 68.3
computation runs in O(1) time using GPUs. Hence, we DCRNN [[13] (2016) 69.4
investigate only CNNs in the following. NextCond CNN [2] (2017) 70.3

In Section[3] we argued that the 1) depth and 2) concatenation are important to handle edit operations
with CNNs efficiently. In the following, we investigate the effect of each factor by

1) increasing the depth while keeping other conditions equivalent, and

2) using two different network architectures that do not involve concatenation (i.e., ResNet).



Secondary Structure (8-class) ©
[ Full-Conneced | #
3 4 Retu & 5
[ Full-Conneced | 0
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Protein sequence (one-hot, 22-dim) . i g T
(a) Tiny-{CNN/EINN} (b) ConvBlock (inspired by [2]) (c) Modified-ConvBlock

Figure 6: Network architectures. Conv-k is the 1d-convolutional layer with kernel size k. The number
at the top-left indicates the number of filters used. By replacing the shaded convolutions with EINN
of the same kernel size, we obtain their EINN version. Here, (C) means concatenation along the filter
dimension. (a) 32-convs implies a grouped convolution with 32 groups. (b) This ConvBlock is
stacked deeply. Then, at each position, a fully-connected layer is applied to output the 8-class scores
(see the text for details.) (c) An alternative ConvBlock. This is to show the robustness against the
network architecture.

Effect of depth. Next, we investigate the deeper CNN architectures. We begin with the shallow
stacking of ConvBlocks, and make the stacking deeper (from 2 blocks to 16 blocks). The training
procedure is the same as that in the previous experiment, except for the following points. First, we
employed the widely-used multitasking technique [13||19]], simultaneously predicting the secondary
structure (eight classes) and solvent accessibility (four classes). Second, we trained each model for
300 epochs, and the learning rate was reduced by 1/10 at 200 epochs.

As shown in Table a71.5% CB513 accuracy is achieved by our 12-block CNN*T, which is much
higher than the results of the previous model, shown in the bottom of the table. In particular, it is
more accurate than the previous best accuracy of 70.3%, for a single model [2]]. Further, deeper
models tend to show higher accuracy, which corresponds to the discussion in Section 3]

We can test other techniques such as ensemble models or templates [[15] to improve the accuracy and
avoid potential overfitting. Further, we should evaluate our model using various independent datasets
and investigate other network architectures; however, we omitted most of them primarily because of
resource limitations. In the following, we show what happens if different architectures are used.

Effect of network architecture. We investigate how network architecture affects performance by
replacing the ConvBlock with the modified ConvBlock (Fig. [f] (c)), which also involves convolu-
tional layers with concatenations. Note that the original and modified blocks have the same output
dimensions and receptive fields. Table [2] (“8-block MCNN” and “12-block MCNN") shows that this
modification does not change the accuracy. This indicates that there are many different architectures
that can achieve the same performance, and there is still room for improvement.

Finally, we replace the ConvBlocks with the residual blocks [10], which we discussed in Section[z_f}
Consequently, the best CB513 accuracy achieved by the ResNet-like models is 71.0% (‘ResNet’ in
Table[2), and is worse than the models in Fig. [f] (b) and (c). For details, see Appendix B.

7 Conclusion

In this paper, we discussed how to make neural networks edit-invariant, a new important feature
for ML tasks for biological sequences. First, we proposed EINNSs that consisted of differentiable
NW algorithm modules. Using EINNs as a generalization of CNNs, we confirmed that EINNs
performed better than the corresponding CNN for a real biological task. This indicated that handling
insertion/deletion was important for biological ML tasks. Next, we discussed that sufficiently deep
CNNs with concatenation could emulate complex regular expressions. This implied that such deep
CNNs could also treat the insertion/deletion of characters. Finally, for the protein secondary structure
prediction task on the CB513 test dataset, the accuracy of our deep CNN was better than the current
best result among the non-ensemble models.
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