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Abstract

A key challenge in crowdsourcing is inferring the ground truth from noisy and
unreliable data. To do so, existing approaches rely on collecting redundant in-
formation from the crowd, and aggregating it with some probabilistic method.
However, oftentimes such methods are computationally inefficient, are restricted to
some specific settings, or lack theoretical guarantees. In this paper, we revisit the
problem of binary classification from crowdsourced data. Specifically we propose
Streaming Bayesian Inference for Crowdsourcing (SBIC), a new algorithm that
does not suffer from any of these limitations. First, SBIC has low complexity and
can be used in a real-time online setting. Second, SBIC has the same accuracy
as the best state-of-the-art algorithms in all settings. Third, SBIC has provable
asymptotic guarantees both in the online and offline settings.

1 Introduction

Crowdsourcing works by collecting the annotations of large groups of human workers, typically
through an online platform like Amazon Mechanical Turk1 or Figure Eight.2 On one hand, this
paradigm can help process high volumes of small tasks that are currently difficult to automate at
an affordable price [Snow et al., 2008]. On the other hand, the open nature of the crowdsourcing
process gives no guarantees on the quality of the data we collect. Leaving aside malicious attempts
at thwarting the result of the crowdsourcing process [Downs et al., 2010], even well-intentioned
crowdworkers can report incorrect answers [Ipeirotis et al., 2010].

Thus, the success of a crowdsourcing project relies on our ability to reconstruct the ground-truth
from the noisy data we collect. This challenge has attracted the attention of the research community
which has explored a number of algorithmic solutions. Some authors focus on probabilistic inference
on graphical methods, including the early work of Dawid and Skene [1979] on EM estimation,
variational inference [Welinder and Perona, 2010; Liu et al., 2012] and belief propagation [Karger et
al., 2014]. These techniques are stable in most settings, easy to generalise to more complex models
(e.g. [Kim and Ghahramani, 2012]), but generally require several passes over the entire dataset to
converge and lack theoretical guarantees. In contrast, other authors have turned to tensor factorisation
[Dalvi et al., 2013; Zhang et al., 2016] and the method of moments [Bonald and Combes, 2017].
This choice yields algorithms with tractable theoretical behaviour, but the assumptions required to do
so restrict them to a limited number of settings.

1www.mturk.com
2www.figure-eight.com
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At the same time, there have been several calls to focus on how we sample the data from the crowd,
rather than how we aggregate it [Welinder and Perona, 2010; Barowy et al., 2012; Simpson and
Roberts, 2014; Manino et al., 2018]. All of these end up recommending some form of adaptive
strategy, which samples more data on the tasks where the crowd is disagreeing the most. Employing
one of these strategies improves the final accuracy of the crowdsourcing system, but requires the ability
to work in an online setting. Thus, in order to perform crowdsourcing effectively, our algorithms
must be computationally efficient.

In this paper, we address these research challenges on the problem of binary classification from
crowdsourced data, and make the following contributions to the state of the art.:

• We introduce Streaming Bayesian Inference for Crowdsourcing (SBIC), a new algorithm
based on approximate variational Bayes. This algorithm comes in two variants.

• The first, Fast SBIC, has similar computational complexity to the quick majority rule, but
delivers more than an order of magnitude higher predictive accuracy.

• The second, Sorted SBIC, is more computationally intensive, but delivers state-of-the-art
predictive accuracy in all settings.

• We quantify the asymptotic performance of SBIC in both the offline and online setting
analytically. Our theoretical bounds closely match the empirical performance of SBIC.

The paper is structured in the following way. In Section 2 we introduce the most popular model of
crowdsourced classification, and the existing aggregation methods. In Section 3 we present the SBIC
algorithm in its two variants. In Section 4 we compute its asymptotical accuracy. In Section 5 we
compare its performance with the state of the art on both synthetic and real-world datasets. In Section
6 we conclude and outline possible future work.

2 Preliminaries

Existing works in crowdsourced classification are mostly built around the celebrated Dawid-Skene
model [Dawid and Skene, 1979]. In this paper we adopt its binary, or one-coin variant, which has
received considerable attention from the crowdsourcing community [Liu et al., 2012; Karger et al.,
2014; Bonald and Combes, 2017; Manino et al., 2018]. The reason for this is that it allows to study
the fundamental properties of the crowdsourcing process, without dealing with the peculiarities of
more complex scenarios. Furthermore, generalising to the multi-class case is usually straightforward
(e.g. [Gao et al., 2016]).

2.1 The one-coin Dawid-Skene model

According to this model, the objective is to infer the binary ground-truth class yi = {±1} of a set
tasks M , with i ∈M . To do so, we can interact with the crowd of workers N , and ask them to submit
a set of labels X = {xij}, where j ∈ N is the worker’s index. We have no control on the availability
of the workers, and we assume that we interact with them in sequential fashion. Thus, at each time
step t a single worker j = a(t) becomes available, gets assigned to a task i and provides the label
xij = ±1 in exchange for a unitary payment. We assume that we can collect an average of R ≤ |N |
labels per task, for a total budget of T = R|M | labels. With slight abuse of notation, we set xij = 0
for any missing task-worker pairs, so that we can treat X as a matrix when needed. On a similar note,
we use Mj to denote the set of tasks executed by worker j, and Ni for the set of workers on task i.
Furthermore, we use the superscript t (e.g. Xt) to denote the information visible up to time t.

A key feature of the one-coin Dawid-Skene model is that each worker has a fixed probability
P(xij = yi) = pj of submitting a correct label. That means that the workers behave like independent
random variables (conditioned on the ground-truth yi), and their accuracy pj remains stable over time
and across different tasks.

2.2 Sampling the data

When interacting with the crowd, we need to decide which tasks to allocate the incoming workers
to. The sampling policy π we use to make these allocations has a considerable impact on the final
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accuracy of our predictions, as demonstrated by Manino et al. [2018]. The existing literature provides
us with the following two main options.

Uniform Sampling (UNI). This policy allocates the same number of workers |Ni| ≈ T/|M | to
each task i (rounded to the closest integer). The existing literature does not usually specify how this
policy is implemented in practice (e.g [Karger et al., 2014; Manino et al., 2018]). In this paper we
assume a round-robin implementation, where we ensure that no worker is asked to label the same
task twice:

πuni(t) = argmin
i6∈Mt

a(t)

{
|N t

i |
}

(1)

where M t
a(t) is the set of tasks labelled by the currently available worker j = a(t) so far.

Uncertainty Sampling (US). A number of policies proposed in the literature are adaptive, in that
they base their decisions on the data collected up to time t [Welinder et al., 2010; Barowy et al., 2012;
Simpson and Roberts, 2014]. In this paper we focus on the most common of them, which consist of
greedily choosing the task with the largest uncertainty at each time-step t. More formally, assume
that we have a way to estimate the posterior probability on the ground-truth y given the current data
Xt. Then, we can select the task to label as follows:

πus(t) = argmin
i 6∈Mt

a(t)

{
max
`∈{±1}

(
P(yi = `|Xt)

)}
(2)

Compared to uniform sampling, this second policy is provably better [Manino et al., 2018]. However,
it can only be implemented in an online setting, when we have estimates of the posterior on y at
every t. Producing such estimates in real time is an open challenge. Current approaches are based on
simple heuristics like the majority voting rule [Barowy et al., 2012].

We study the theoretical and empirical performance of SBIC under these two policies in Sections 4
and 5 respectively.

2.3 Aggregating the data

Given a (partial) dataset Xt as input, there exist several methods in the literature to form a prediction
ŷ over the ground-truth classes y of the tasks. The simplest is the aforementioned majority voting
rule (MAJ), which forms its predictions as ŷi = sign{∑j∈Ni

xij}, where ties are broken at random.

Alternatively, we can resort to Bayesian methods, which infer the value of the latent variables y
and p by estimating their posterior probability P(y,p|X, θ) given the observed data X and prior
θ. In this regard, Liu et al. [2012] propose an approximate variational mean-field algorithm (AMF)
and show its similarity to the original expectation-maximisation (EM) algorithm of Dawid and
Skene [1979]. Conversely, Karger et al. [2014] propose a belief-propagation algorithm (KOS) on
a spammer-hammer prior, and show its connection to matrix factorisation. Both these algorithms
require several iterationd on the whole dataset X to converge to their final predictions. As another
option, we can directly estimate the value of the posterior by Montecarlo Sampling (MC) [Kim and
Ghahramani, 2012], even though this is usually more expensive computationally than the former two
techniques.

Finally, there have been attempts at applying the frequentist approach to crowdsourcing [Dalvi et
al., 2013; Zhang et al., 2016; Bonald and Combes, 2017]. The resulting algorithms have tractable
theoretical properties, but put strong constraints on the rank and sparsity of the task-worker matrix X ,
which limit their range of applicability. For completeness, we include in our experiments of Section 5
the Triangular Estimation algorithm (TE) recently proposed in [Bonald and Combes, 2017].

3 The SBIC algorithm

In this section we introduce Streaming Bayesian Inference for Crowdsourcing (SBIC) and discuss the
ideas behind it. Then, we present two variants of this method, which we call Fast SBIC and Sorted
SBIC. These prioritise two different goals: namely, computational speed and predictive accuracy.
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Figure 1: A graphical representation of the SBIC algorithm.

The overarching goal in Bayesian inference is estimating the posterior probability P(y,p|Xt, θ) on
the latent variables y and p given the data we observed so far Xt and the prior θ. With this piece of
information, we can form our current predictions ŷt on the task classes by looking at the marginal
probability over each yi as follows:

ŷti = argmax
`∈{±1}

{
P(yi = `|Xt, θ)

}
(3)

Unfortunately the marginal in Equation 3 is computationally intractable in general. In fact, just
summing P(y,p|Xt, θ) over all vectors y that contain a specific yi has exponential time complexity
in |M |. To overcome this issue, we turn to a mean-field variational approximation as done before in
[Liu et al., 2012; Kim and Ghahramani, 2012]. This allows us to factorise the posterior as follows:

P(y,p|Xt, θ) ≈
∏
i∈M

µti(yi)
∏
j∈N

νtj(pj) (4)

where the factors µti correspond to each task i and the factors νtj to each worker j.

Our work diverges from the standard variational mean field paradigm [Murphy, 2012] in that we use a
novel method to optimise the factors µt and νt. Previous work minimises the Kullback-Leibler (KL)
divergence between the two sides of Equation 4 by running an expensive coordinate descent algorithm
with multiple passes over the whole datasetXt [Liu et al., 2012; Kim and Ghahramani, 2012]. Instead,
we aim at achieving a similar result by taking a single optimisation step after observing each new
data point. This yields quicker updates to µt and νt, thus allowing us to run our algorithm online.

More specifically, the core ideas of the SBIC algorithm are the following. First, assume that the prior
on the worker accuracy is pj ∼ Beta(α, β). This assumption is standard in Bayesian statistics, since
the Beta distribution is the conjugate prior of a Bernoulli-distributed random variable [Murphy, 2012].
Second, initialise the task factors µ0 to their respective prior P(yi = +1) = q, that is µ0

i (+1) = q
and µ0

i (−1) = 1− q for all i ∈M .3 Then, upon observing a new label at time t, update the factor
νtj corresponding to the current available worker j = a(t) only. Thanks to the properties of the KL
divergence, νtj is still Beta-distributed:

νtj(pj)∼Beta
( ∑
i∈Mt−1

j

µt−1
i (xij)+α,

∑
i∈Mt−1

j

µt−1
i (−xij)+β

)
(5)

where M t−1
j is the set of tasks labelled by worker j up to time t− 1. Next, we update the factor µi

corresponding to the task we observed the new label xij on:

µti(yi) ∝
{
µt−1
i (yi)p̄

t
j if xij = yi

µt−1
i (yi)

(
1− p̄tj

)
if xij 6= yi

where p̄tj =

∑
i∈Mt−1

j
µt−1
i (xij) + α

|M t−1
j |+ α+ β

(6)

Finally, we can inspect the factors µt and form our predictions on the task classes as ŷti =
argmax`∈{±1}{µti(`)}. Note that we set p̄tj = Epj{νtj} in Equation 6. An exact optimisation
step would require p̄tj = exp

(
Epj{log(νtj)}

)
instead. However, the first-order approximation we use

has a negligible impact on the accuracy of the inference, as demonstrated in [Liu et al., 2012].

We summarise the high-level behaviour of the SBIC algorithm in the explanatory sketch of Figure
1. There, it is easy to see that SBIC falls under the umbrella of the Streaming Variational Bayes
framework [Broderick et al., 2013]: in fact, at each time step t we trust our current approximations

3Exact knowledge of α, β and q is not necessary in practice. See Section 5 for examples.
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Algorithm 1 Fast SBIC
Input: dataset X , availability a, policy π, prior θ
Output: final predictions ŷT

1: z0
i = log(q/(1− q)), ∀i ∈M

2: for t = 1 to T do
3: i← π(t)
4: j ← a(t)

5: p̄tj ←
∑

h∈Mt−1
j

sig(xhjz
t−1
h )+α

|Mt−1
j |+α+β

6: zti ← zt−1
i + xij log(p̄tj/(1− p̄tj))

7: zti′ ← zt−1
i′ , ∀i′ 6= i

8: return ŷTi = sign(zTi ), ∀i ∈M

µt and νt to be close to the exact posterior, and we use their values to inform the next local updates.
From another point of view, SBIC is a form of constrained variational inference, where the constraints
are implicit in the local steps we make in Equations 5 and 6, as opposed to an explicit alteration
of the KL objective. Finally, the sequential nature of the SBIC algorithm means that its output is
deeply influenced by the order in which we process the dataset in X . By altering its ordering, we can
optimise SBIC for different applications, as we show in the next two Sections 3.1 and 3.2.

3.1 Fast SBIC

Recall that crowdsourcing benefits from an online approach, since it allows the deployment of an
adaptive sampling strategy which can greatly improve the predictive accuracy (see Section 2.2). Thus,
our main goal here is computational speed, which we achieve by keeping the natural ordering of the
set X unaltered.

We call the resulting algorithm Fast SBIC, and show its pseudocode in Algorithm 1. There, we
use the following computational tricks. First, we express the value of each factor µti in terms of its
log-odds. Accordingly, Equation 6 becomes:

zti = log

(
µti(+1)

µti(−1)

)
= zt−1

i + xij log

(
p̄tj

1− p̄tj

)
where z0

i = log

(
q

1− q

)
(7)

This has both the advantage of converting the chain of products into a summation, and removing
the need of normalising the factors µti. Second, we can use the current log-odds zt to compute the
worker accuracy estimate as follows:

p̄tj =

∑
i∈Mt−1

j
sig(xijz

t−1
i ) + α

|M t−1
j |+ α+ β

where sig(zt−1
i ) ≡ 1

1 + exp(−zt−1
i )

= µt−1
i (+1)

(8)

Thanks to the additive nature of Equation 7, we can quickly update the log-odds zt as we observe
new labels. More in detail, in Line 1 of Algorithm 1 we set z0

i to its prior value. Then, for every new
label xij , we estimate the mean accuracy of worker j given the current value of zt−1 (see Line 5),
and add its contribution to the log-odds on task i (see Line 6). In the end (Line 7), we compute the
final predictions by selecting the maximum-a-posteriori class ŷTi = sign(zTi ).

This algorithm runs in O(TL) time, where L = maxj(|Mj |) is the maximum number of labels per
worker. This makes it particularly efficient in an online setting, e.g. under an adaptive collection
strategy, since it takes only O(L) operations to update its estimates after observing a new label. In
Section 5 we show that its computational speed is on par with the simple majority voting scheme.

3.2 Sorted SBIC

In an offline setting, or when more computational resources are available, we have the opportunity of
trading off some of the computational speed of Fast SBIC in exchange for better predictive accuracy.
We can do so by running multiple copies of the algorithm in parallel, and presenting them the labels
in X in different orders. We show the implementation of this idea in Algorithm 2, which we call
Sorted SBIC.

The intuition behind the algorithm is the following. When running Fast SBIC, the estimates µ̂t and ν̂t
are very close to their prior in the first rounds. As time passes, two things change. First, we have more
information since we observe more data points. Second, we run more updates on each factor µti and
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Algorithm 2 Sorted SBIC
Input: dataset X , availability a, policy π, prior θ
Output: final predictions ŷT

1: ski = log(q/(1− q)), ∀i ∈M,∀k ∈M
2: for t = 1 to T do
3: i← π(t)
4: j ← a(t)
5: for all k ∈M : k 6= i do

6: p̄kj ←
∑

h∈Mt
j
\k sig(xhjs

k
h)+α

|Mt
j\k|+α+β

7: ski ← ski + xij log(p̄kj /(1− p̄kj ))

8: zti = log(q/(1− q)), ∀i ∈M
9: for u = 1 to t do

10: i← π(u)
11: j ← a(u)

12: p̄ij ←
∑

h∈Mt
j
\i sig(xhjs

i
h)+α

|Mt
j\i|+α+β

13: zti ← zti + xij log(p̄ij/(1− p̄ij))
14: return ŷTi = sign(zTi ), ∀i ∈M

νtj . Because of these, the estimates µ̂t and ν̂t become closer and closer to their ground-truth values.
As a result, we get more accurate predictions on a specific task i when the corresponding subset
of labels is processed towards the end of the collection process (t ≈ T ), rather than the beginning
(t ≈ 0).

We exploit this property in Sorted SBIC by keeping a separate view of the log-odds sk for each task
k ∈M (see Line 1). Then, every time we observe a new label xij we update the views for all tasks k
except the one we observed the label on (see Lines 5-7). We skip it because we want to process the
corresponding label xij at the end. Note that in Line 6 we compute a different estimate p̄kj for each
task k 6= i. This is because we are implicitly running |M | copies of Fast SBIC, and each copy can
only see their correponding information stored in sk.

Finally, we need to process all the labels we skipped. If we are running Sorted SBIC offline, we only
need to do so once at the end of the collection process. Conversely, in an online setting we need to
repeat the same procedure at each time step t. Lines 8-13 contain the corresponding pseudocode.
Notice how we compute the estimates p̄ij by looking at all the tasks M t

j labelled by worker j except
for task i itself. This is because we skipped the corresponding label xij in the past, and we are
processing it right now.

The implementation of Sorted SBIC presented in Algorithm 2 runs in O(|M |TL) time, which is a
factor |M | slower than Fast SBIC since we are running |M | copies of it in parallel. By sharing the
views sk across different tasks, we can reduce the complexity to O(log(|M |)TL). However, this is
only possible if the algorithm is run in an offline setting, where the whole dataset X is known in
advance. This additional time complexity comes with improved predictive accuracy. In Sections 4
and 5 we quantify such improvement both theoretically and empirically.

4 Theoretical analysis

In this section we study the predictive performance of SBIC from the theoretical perspective. As
is the norm in the crowdsourcing literature, we establish an exponential relationship between the
probability of an error and the average number of labels per task R = T/|M | in the form P(ŷi 6=
yi) ≤ exp(−cR+ o(1)). Computing the constant c is not trivial as its value depends not only on the
properties of the crowd and the aggregation algorithm, but also the collection policy π we use (see
Section 2.2). In this regard, previous results are either very conservative [Karger et al., 2014; Manino
et al., 2018], or assume a large number of labels per worker so that the estimates of p are close to
their ground-truth value [Gao et al., 2016].

Here, we take a different approach and provide exponential bounds that are both close to the empirical
performance of SBIC, and valid for any number of labels per worker. We achieve this by focusing on
the asymptotic case, where we assume that the predictions of SBIC are converging to the ground-truth
after observing a large enough number of labels. More formally:
Definition 1. For any small ε > 0, define t′ as the minimum size of the dataset X , such that
µt
′

i (yi) ≥ 1− ε for any task i ∈M with high probability.

For any larger dataset, when t ≥ t′ the term µti(xij) is very close to the indicator I(xij = yi).
As a consequence, we can replace the worker accuracy estimates in Equation 6 with p̄tj = (ktj +
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α)/(|M t
j |+ α+ β), where ktj is the number of correct answers. With this in mind, we can establish

the following bound on the performance of SBIC under the UNI policy:
Theorem 1. For a crowd of workers with accuracy pj ∼ Beta(α, β), L labels per worker, R labels
per task, the probability of an error under the UNI policy is bounded by:

P(ŷi 6= yi) ≤ exp
(
−R logF (L,α, β) + o(1)

)
, for all i ∈M (9)

where F (L,α, β) depends on the variant of SBIC we use. For Sorted SBIC we have:

Fsorted(L,α, β) =

L̄∑
k=0

P(k|L̄, α, β)2

√(
k + α

L̄+ α+ β

)(
L̄− k + β

L̄+ α+ β

)
(10)

where L̄ = L− 1, and the probability of observing k is:

P(k|L̄, α, β) =

(
L̄

k

)
B(k + α, L̄− k + β)

B(α, β)
(11)

For Fast SBIC we have instead:

Ffast(L,α, β) =
1

L

L∑
h=1

Fsorted(h, α, β) (12)

For reasons of space, we only present the intuition behind Theorem 1 here (the full proof is in
Appendix A). First, P(k|L̄, α, β) is the probability of observing a worker with accuracy pj ∼
Beta(α, β) produce k correct labels over a total of L̄ labels. Second, the square root term converges
to the corresponding term 2

√
pj(1− pj) in [Gao et al., 2016] when the estimates p̄tj become close to

their ground-truth value pj . Finally, the constant Ffast is averaged over L̄ ∈ [0, L− 1] as this is the
number of past labels we use to form each worker’s estimate p̄tj during the execution of Fast SBIC.

Similarly, for the US policy we have the following theorem:
Theorem 2. For a crowd of workers with accuracy pj ∼ Beta(α, β), L labels per worker, an average
of R labels per task, and |M | → ∞, the probability of an error under the US policy is bounded by:

P(ŷi 6= yi) ≤ exp
(
−RG(L,α, β) + o(1)

)
, for all i ∈M (13)

where G(L,α, β) depends on the variant of SBIC we use. For Sorted SBIC we have:

Gsorted(L,α, β) =

L̄∑
k=0

P(k|L̄, α, β) log

(
k + α

L̄− k + β

)
(k + α)− (L̄− k + β)

L̄+ α+ β
(14)

For Fast SBIC we have instead:

Gfast(L,α, β) =
1

L

L∑
h=1

Gsorted(h, α, β) (15)

A full proof of Theorem 2 is in Appendix A. Here, note that the logarithm term corresponds to the
log-odds of a worker with accuracy p̄tj , and the right-most term is the expected value of a new label
xij provided by said worker.

In practice, both variants of SBIC reach the asymptotic regime described in Definition 1 for fairly
small values of R. As an example, in Figure 2 we compare our theoretical results with the empirical
performance of SBIC on synthetic data. There, we can see how the slope we predict in Theorems
1 and 2 closely matches the empirical decay in prediction error of SBIC. This in contrast with the
corresponding state-of-the-art results in [Manino et al., 2018], which apply to any state-of-the-art
probabilistic inference algorithm (i.e. not MAJ) but are significantly more conservative.

5 Empirical analysis

In this section we compare the empirical performance of SBIC with the state-of-the-art algorithms
listed in Section 2.3. Our analysis includes synthetic data, real-world data and a discussion on
time complexity. For reasons of space, we report the details of the algorithm implementations and
experiment parameters in Appendix B.
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(b) US sampling policy

Figure 2: Prediction error on synthetic data with pj ∼ Beta(α, β), q = 0.5 and L = 10. The accuracy
guarantees for SBIC are represented by a dotted line in the corresponding colour.

Synthetic data. First, we run the algorithms on synthetic data. With this choice we can make sure
that the assumptions of the underlying one-coin Dawid-Skene model are met. In turn, this allows us
to compare the empirical performance of SBIC with the theoretical results in Section 4.

To do so, we extract workers from a distribution pj ∼ Beta(4, 3), representing a non-uniform
population with large variance. Crucially, the mean of this distribution is above 1

2 , thus ensuring that
the crowd is biased towards the correct answer. Additionally, we set the number of tasks toM = 1000
and the number of labels per worker to L = 10. This represents a medium-sized crowdsourcing
project with a high worker turnout. Finally, we run EM, AMF, MC and SBIC with parameters α and
β matching the distribution of pj . Conversely, MAJ and KOS do not require any extra parameter. We
omit the results for TE since in this setting the task-worker matrix X is too sparse for the algorithm
to produce non-random predictions.

In Figures 2a and 2b we show the results obtained under the UNI and US sampling policies respec-
tively. For reference, we also plot the bounds of Theorems 1 and 2 up to an arbitrary o(1) constant
(see Section 4 for the related discussion). As expected, the performance of all algorithms under the
US policy greatly improves with respect to the UNI policy. Also, notice how MAJ is consistently
outperformed by the other algorithms in this setting (this is not the case on real-world data, as
we show below). Additionally, both variants of SBIC perform well, with Sorted SBIC achieving
state-of-the-art performance under the UNI policy and matching the computationally-expensive MC
algorithm under the US policy. Interestingly, Fast SBIC is asymptotically competitive as well, but
suffers from an almost constant performance gap (in logarithmic scale). Finally, both EM and AMF
tend to lose their competitiveness as the number of labels per task R increases. This is due to their
inability to form unbiased estimates of the workers’ accuracy with few labels per worker. Under
the US policy this may lead to poor sampling behaviour, which explains the lack of improvement in
predictive accuracy for R > 40 in Figure 2b.

Time complexity. As we show in our experiments on synthetic data, all algorithms benefit from an
adaptive sampling strategy. However, in order to deploy such policy we need to be able to update
our estimates in real time, and only the MAJ and Fast SBIC algorithms are capable of that. To prove
this point, we measure the average time the algorithms take to complete the simulations presented in
Figure 2b, i.e. when used in conjunction with the US policy. We plot the results in Figure 3. Note
how Fast SBIC matches MAJ in terms of computational speed, whereas all the other algorithms are
orders of magnitude slower. This makes Fast SBIC the only viable alternative to MAJ for the online
setting, particularly because it can deliver superior predictive accuracy.

Real-world data. Second, we consider the 5 publicly available dataset listed in Table 1, which
come with binary annotations and ground-truth values. For more information on the datasets see
[Snow et al., 2008; Welinder et al., 2010; Lease and Kazai, 2011]. The performance of the algorithms
is reported in Table 2. There we run EM, AFM, MC and SBIC with the generic prior α = 2, β = 1
and q = 1

2 as proposed in Liu et al. [2012]. Additionally, we include the triangular estimation (TE)
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Figure 3: Time required to complete a single run with |M | = 1000 tasks under the US policy.

algorithm from Bonald and Combes [2017], since it outputs non-random predictions on most of the
aforementioned datasets.

Table 1: Summary of the real-world datasets
Dataset # Tasks # Workers # Labels Avg. L Avg. R

Birds 108 39 4212 108 39
Ducks 240 53 9600 181 40
RTE 800 164 8000 49 10
TEMP 462 76 4620 61 10
TREC 711 181 2199 12 3

Table 2: Prediction error on the real-world datasets
Dataset MAJ EM AMF KOS MC Fast SBIC Sorted SBIC TE

Birds 0.241 0.278 0.278 0.278 0.341 0.260 0.298 0.194
Ducks 0.306 0.412 0.412 0.396 0.412 0.400 0.405 0.408
RTE 0.100 0.072 0.075 0.491 0.079 0.075 0.072 0.257
TEMP 0.057 0.061 0.061 0.567 0.095 0.059 0.062 0.115
TREC 0.257 0.217 0.266 0.259 0.302 0.251 0.239 0.451

Interestingly, the MAJ algorithm performs quite well and achieves the best score on the Ducks and
TEMP datasets. This confirms the practitioner’s knowledge that majority voting is a robust and viable
algorithms in most settings. Unsurprisingly, TE achieves its best score on the Birds dataset, which has
a full task-worker matrix X . On the contrary, its predictions are almost random on the TREC dataset,
which has a low number of labels per worker. Finally, both variants of SBIC match the performance
of the other state-of-the-art Bayesian algorithms (EM, AFM, MC), with Sorted SBIC achieving the
best score on RTE, and EM on both RTE and TREC. More importantly, Fast SBIC is always close to
the other algorithms, making a strong case for its computationally efficient approach to Variational
Bayes.

6 Conclusions

In this paper we proposed Streaming Bayesian Inference for Crowdsourcing, a new method to infer
the ground-truth from binary crowdsourced data. This method combines strong theoretical guarantees,
state-of-the-art accuracy and computational efficiency. The latter makes it the only viable alternative
to majority voting when real-time decisions need to be made in an online setting. We plan to extend
these techniques to the multi-class case as our future work.
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