1 Reviewer #1

- We thank the reviewer for the constructive feedback. We will make the suggested clarifications and fix the typos.
- 3 The framework of the paper uses the model to improve the reparameterization directly. When the model is not specified
- 4 or perhaps does not exist, using covariates as an alternative objective to optimize could be an extension of the current
- 5 framework. Reparameterizing in such an extension is an interesting future direction to explore.

6 Reviewer #2

- 7 We thank the reviewer for the constructive feedback. We will clarify Figure 7. For 7(b), the intuition is that the learned
- 8 reparameterizations put more weight on movies with higher average ratings (x-axis) and higher variation (y-axis) the
- 9 reparameterization is focused on distinguishing between different top-rated movies with some variance in opinions to
- specialize the recommendation set to the particular users.
- 11 Linearity of reparameterization. Whereas this paper shows that linear reparameterization provides a significant
- benefit, we agree that this opens the door to further research in reparameterization. In particular, exploring non-linear
- 13 reparameterizations is an interesting future direction. It will require substantial additional development due to the
- resulting non-convex constraints, and the theoretical guarantees may not hold.
- 15 **Theorem 2.** We thank the reviewer for pointing out the confusion. We will remove the term "for simplicity" as
- recommended. Extending to convex objectives is an interesting topic for future work. It would allow us to adopt more
- 17 flexible (e.g., convex) reparameterization while maintaining the theoretical guarantees.

Reviewer #3

- 19 We thank the reviewer for the constructive comments. We want to highlight that our approach should be understood in
- terms of how we reframe the predict-then-optimize problem in a conceptually different way. By doing optimization
- in a learned representation space instead of the problem's original space, we enable substantial benefits against the
- state-of-the-art approaches.
- Theorem 1. Yes, Theorem 1 still holds without the condition $P \ge 0$. Throughout the paper, we assume the feasible
- 24 region (if bounded) to be in the first quadrant, so that a non-negative reparameterization suffices. The reviewer is correct
- that the theorem and the proof still holds without this condition. We thank the reviewer for pointing this out and will
- 26 clarify this in the write-up.
- 27 **Theorem 2.** The constant C is defined as $C := \sup_{\theta} (\max_x f(x, \theta) \min_{x'} f(x', \theta))$. We will clarify this by adding a
- 28 formal definition.
- 29 Convergence of the predictive model. When the objective function is linear and the hypothesis class has a finite
- 30 Natarajan dimension, the generalization error will converge to 0 as the number of training examples approaches infinity.
- 31 This indicates that the performance of the predictive model will converge to its expected performance too. (Technically,
- 32 the parameters of the predictive model may not converge as they could alternate between two optimal solutions, but the
- performance converges asymptotically.) We will clarify this in the write-up.

34 Reviewer #4

- 35 We thank the reviewer for the constructive suggestions. We will make the suggested clarifications and fix the typos.
- 36 **Theorem 2.** We agree that extending to non-linear objective functions is an open and interesting question. In particular,
- our empirical results have shown that our reparameterization approach also works for non-linear objective functions.
- We think the theoretical result for a linear objective serves as an important step toward the convex case. The sample
- complexity of the linear case depends on the slope of the linear objective function (constant C in Equation 4). An
- analogous term (e.g., Lipchitz constant) will likely appear in the convex case, so the result would likely be in terms of
- 41 convex functions that are Lipschitz over the feasible region.
- Time complexity. Using a smaller dimensional reparameterization reduces both the theoretical and empirical time
- 43 complexity, despite having to learn and back-propagate through an additional parameter P. The reduced computational
- 44 cost includes 1) inverting a smaller dimensional KKT matrix which takes roughly cubic less time 2) solving a lower
- dimensional optimization problem. The increased computational cost includes 1) matrix-vector multiplication x = Py
- 46 and 2) additional back-propagation to the parameter P, which is also matrix-vector multiplication and thus takes square
- time. Thus, overall the time complexity is reduced.
- 48 **Hyperparameters.** We hand-tuned the learning rate and reparameterization size for all competing methods. We will
- 49 add more details about how the parameters are chosen to the appendix. We agree that adding an additional experiment
- varying reparameterization size would be informative for hyperparameter selection. We will also add this to the
- 51 appendix.