
Summary: We thank the reviewers for constructive comments, including noting that the work is non-trivial and1

is a needed contribution. We (re-)emphasize that the key contribution of the present work is the new finite sample2

consistency guarantee for a non-parametric EM algorithm; the key technical advance is the novel use of Gateaux3

derivatives to replace inner products in classical parametric EM theory. Experiments: We conducted experiments to4

address comments about the more challenging MNAR setting and comparison against additional baselines: we conclude5

that the utility is not limited to MCAR. We mimic MNAR in the bladder tumor dataset by artificially masking counts6

with probability ε conditional on zero counts (ε = 0.25, 0.3, 0.35) or non-zero counts (ε = 0.2). Figure 1a) has results.7

An increase in the zero missingness probability of 1% leads to an approximately 0.28% increase in the final estimate of8

expected tumors over MCAR: this is still useful for moderate differences in conditional missingness probabilities. For9

baselines, we include last value carried forward (LVCF), median, and complete case analysis (CCA). At study end,10

MCAR overestimates the expected number of tumors relative to using the full dataset by 0.11 ; LVCF underestimates11

by 0.08 and median and CCA both underestimate by 1.36. CCA has high variance. LVCF does well estimating the12

bladder tumor mean function, but handles discontinuities poorly. Figure 1b) shows results on a step function: LVCF13

shows higher bias after a discontinuity than EM. CCA again displays high variance. Theory: We clarify the non-trivial14

nature of theoretical extensions under departure from MCAR, for which the present work paves the way (line 32).15

Reviewer 1: Lack of uncertainty quantification: this is challenging due to lack of asymptotic normality of the16

distance between the estimator and true mean function. We took the common approach of proving consistency and rate17

of convergence [18,30], leaving test statistics to future work [2]. Linking c to r intuitively: as the lower bound on18

expected number of cigarettes over any interval increases, we become more robust to initialization. This happens as19

minimum smoking risk and/or minimum interval sizes grow. Verifying that r ≤ c
4 holds in practice requires knowing20

the true mean function. We recommend (line 135) trying multiple initializations and examining likelihood. Existing21

EM approaches [3, 35] have similar limitations. Assumption 7: is satisfied if N(τ) (e.g., cigarettes over study) is22

uniformly bounded. Lack of missingness tolerance check: we have this. Our theory holds for ε < c
3b+c (line 219).23

We need scientific intuition about b and c (uniform upper and lower bound on mean function increments) to apply it.24

Reviewer 2 Thank you for your positive comments. We added two requested experiments in Figure 1.25

Reviewer 3: Complete case analysis baseline: this requires deleting a participant’s data starting from their first26

missing observation. With 5% missingness and four EMAs per day this on average loses all information after day 527

of a 15 day study, which is inefficient. Figure 1 shows the high variance of this method. Observed data likelihood28

baseline: it may not have a unique maximizer. Consider only one participant with three intervals with the middle29

missing. The observed data likelihood does not have a unique maximizing mean function (middle increment could be30

any non-negative value). Adding more participants with no observation times aligning with those of the first participant31

would still lack a unique maximizer. Should show MAR and/or MNAR theory: While asymptotic EM MAR results32

exist, the finite sample case is unstudied. Current finite sample results assume MCAR [3,35]. Our finite sample MCAR33

results for panel count are useful for smaller mHealth datasets. In our setting, proving local uniform strong concavity is34

difficult under MAR. Eqn 13 of the appendix relies on a constant ε and linearity of expectation. MAR and sometimes35

MNAR full data distribution is identified: thank you for the helpful references, which we will cite. Their setting is36

different: they have multiple observations of the same random variable. In ours, when sampling interval sizes from an37

absolutely continuous distribution, with probability 1 no two interval sizes across participants will be equal. Every38

count observation in the study may come from a different random variable. Further the references focus primarily on39

identification, but estimation poses additional challenges. (Malinsky et al. 2020) addresses estimation, but again in the40

setting of iid samples of the same random vector.41

Reviewer 4: Baselines added (Fig. 1). Lack of sensitivity to missingness: we have this in Figure 4 of the supplement.42

Comparison to literature: work is limited on whether participants underestimate/overestimate their smoking count43

EMAs over long intervals. However our psychology coauthors who specialize in smoking consider this finding plausible.44

Figure 1: a) MNAR: Missingness (ε = 0.2 for non-zero counts, varied ε for zero counts) results in minimal bias for our
method. Other baselines treat the MCAR case. b) Step mean function: LVCF introduces bias compared to EM (blue).


