
A Appendix: Details for Auxiliary Task

In this section, we present more details of the auxiliary task. As noted in the paper, the auxiliary task
is optimized by an identification loss and a regression loss, which is formulates as:

Laux = Lidf + Lreg (13)

= LBCE(Fobj(g
T
i ), δobj(yi)) + L1(Freg(gTi ), δreg(yi)) (14)

where Lidf is the identification loss and Lreg is the regression loss.

Identification loss. The identification task aims to the identify the objectiveness of each instance.
The target δobj(yi)) encodes the binary classification labels, denoting whether the instance is randomly
generated or manually annotated:

δobj(yi) =

{
0, if yi is randomly sampled.
1, if yi is human annotated.

(15)

We simply use the binary cross entropy loss averaged over each instance as the identification loss:

Lidf = − 1

N

N∑
i=1

δobj(yi) log
(
Fobj(g

T
i )
)

+ (1− δobj(yi)) log
(
1−Fobj(g

T
i )
)

(16)

where Fobj(·) is a prediction function with sigmoid activation.

Regression loss. The regression task aims to locate object boundaries. The design of the regression
loss is analogous to [5, 42, 8]. We adopt relative distance as distance metrics following [5, 8],
all coordinates are normalized by the image size, e.g., horizontal coordinates along the x-axis are
normalized by the image width, rendering all valid coordinates in range [0, 1].

First, each bounding box is presented as a 4D coordinate (x1i , y
1
i , x

2
i , y

2
i ) for instance yi, which is

composed of the left-top corner position (x1i , y
1
i ) and the right-bottom corner position (x2i , y

2
i ). Next,

Given the disturbed box center (x′i, y
′
i), the regression target can be written as position offsets relative

to the box center. Finally, we introduce a MLP network Freg(·) with sigmoid activation to predict
these offsets:

δreg(yi) = [li, ti, ri, bi] = [x′i − x1i , y′i − y1i , x2i − x′i, y2i − y′i] ∈ R4 (17)

Freg(gTi ) = [l′i, t
′
i, r
′
i, b
′
i] ∈ R4 (18)

Following the above formulation, the localization loss with L1 distance is written as:

Lreg =
1

Nr

N∑
i=1

δobj(yi)(
|li − l′i|
wi

+
|ti − t′i|
hi

+
|ri − r′i|
wi

+
|bi − b′i|
hi

) (19)

where wi and hi is the width and height of each bounding box, Nr =
∑N

i=1 δobj(yi) is the number
of human annotated instances. Note that we only optimize the regression loss for real instances.

Fake instances. We present more details on how to sample fake instances for the instance identi-
fication task. The instance yi is either drawn from human annotations, or randomly sampled. We
empirically sample five fake instances for every single real instance. In details, the category of each
fake instance is drawn from a distribution, where the probability for each class is proportional to their
frequency in the training set. At the same time, the location for each fake instance is generated by
sampling a center position and a bounding box size. Empirically, we assume that widths and heights
of bounding boxes for each class obey the Gaussian distribution. We calculate the statistical mean
and variance according to the training set and draw the fake bounding box sizes from the distribution.
Besides, center positions are sampled inside the image uniformly. Lastly, we clip bounding boxes
that grow outside the image.
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Warm-up for distillation. We train our decoding modules with the auxiliary task jointly with the
detector to reduce computation, yet decoding modules take some time to converge, which may cause
unstable training at initial iterations. To avoid it, the distillation loss is introduced after the first 1000
iterations of training. Moreover, we introduce an extra warm-up stage to initialize the decoding
modules for smaller datasets like Pascal VOC [12] and Cityscapes [10], to ensure the convergence of
decoding modules. In the warm-up stage, we only train decoding modules with the auxiliary task loss,
which is much faster than regular training (only takes 26% of the time for each iteration). Teacher
and student are fixed in the warm-up stage for the fair comparison.

B Appendix: Extended Experiments

More datasets. We report results on smaller datasets to verify the effectiveness on different envi-
ronments, we adopt Pascal VOC [12] to benchmark performance on common scenes and Cityscapes
[10] to benchmark performance on street views. Pascal VOC6 is a classic detection benchmark that
includes 20 classes. We use the union of VOC 2012 and VOC 2007 trainval for training, VOC
2007 test for evaluation. We evaluate our method on Cityscapes7 to benchmark performance on
the outdoor environment, performance is evaluated on instance segmentation. All experimental
settings follow Detectron2 [47], networks are trained for 18k iterations on VOC and 24k iterations on
Cityscapes. We introduce an extra 6k iterations for auxiliary task warm-up for smaller datasets to
stabilize training.

We conduct experiments and comparison on VOC with two widely used detectors: Faster R-CNN
and RetinaNet. As shown in Table 7, students with smaller backbones surpass corresponding teachers
on both detectors.Combined with the inheriting strategy, the gap further expands. Our method also
outperforms SOTAs in VOC, which proves the method’s efficacy and robustness.

Table 7: Comparison with other methods on VOC. † denotes using inheriting strategy.

Method Backbone Faster R-CNN [36] RetinaNet [30]
AP AP50 AP75 AP AP50 AP75

Teacher ResNet-101 56.3 82.7 62.6 57.1 82.2 63.0
Student ResNet-50 54.2 82.1 59.9 54.7 81.1 59.4
FitNet [37] ResNet-50 55.0 82.2 61.2 56.4 81.7 61.7
Li et al. [28] ResNet-50 56.2 82.9 61.8 - - -
Wang et al. [45] ResNet-50 55.3 82.1 61.1 55.6 81.4 60.5
Zhang et al. [51] ResNet-50 55.4 82.0 61.3 56.7 81.9 61.9
Ours ResNet-50 56.4 82.2 63.4 57.7 82.4 63.5
Ours† ResNet-50 57.3 82.9 63.4 58.5 82.7 64.5

We evaluate our method on Cityscapes with Mask R-CNN [16] and CondInst [41] for instance
segmentation on street views. Experiments are conducted on MobileNet V2 to fit low-power devices.
Besides, due to the limitation of the dataset scale, the trade-off for stronger models is unattractive
(only 0.3 AP gap between ResNet-50 and ResNet-101 on Mask R-CNN). As shown in table 8, our
method consistently improves over the baseline, with up to 3.6 AP gain on Mask R-CNN. The gap
between teacher and student for CondInst [41] is smaller, yet our method also improves it for 1.6 AP,

Table 8: Experiments on Cityscapes with our method. † denotes using the inheriting strategy.

Method Backbone Mask R-CNN [16] CondInst [30]
AP AP50 AP AP50

Teacher ResNet-50 33.5 60.8 33.7 60.0
Student MobileNet V2 28.8 55.2 30.5 55.5
Ours MobileNet V2 32.2 60.1 31.1 57.1
Ours † MobileNet V2 32.4 60.1 32.1 57.9

FPN-free architectures. In above experiments, we examine most prevailing architectures for distil-
lation, most of them are equiped with FPN [29] to imporve performace. To verify the generalization

6Images and annotations are publicly available, the use of images follows the Flickr Terms of Use.
7Cityscapes is public available for academic purposes, refer to [10] for more details.
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ability of ICD on FPN-free architectures, we conduct experiments on two Faster R-CNN variations
denoted by C4 and DC5. For Faster R-CNN C4, the fourth resblock of the backbone is embedded in
the RoI head, RPN, RoI head and distillation module is stacked at the third block. For Faster R-CNN
DC5, the last ResNet block is dilated with stride 2, RPN, RoI head and distillation module is stacked
at the last block. As shown in Table 9, our method significantly improves the baseline for 2.8 and 2.0
AP seperately for C4 and DC5.

Table 9: Experiments with different teacher-student pairs on MS-COCO. We do not use the inheriting
strategy for fair illustration.

Teacher Student Distillation
Detector Backbone AP Detector Backbone AP AP ∆AP
Faster R-CNN (3×) ResNet-101 42.0 Faster R-CNN (1×) ResNet-50 37.9 40.4 +2.5
Cascade Mask R-CNN (3×) ResNet-101 45.5 Faster R-CNN (1×) ResNet-50 37.9 40.6 +2.7
RetinaNet (3×) ResNet-101 40.4 RetinaNet (1×) ResNet-50 37.4 39.9 +2.5
FCOS (3×) ResNet-101 42.6 RetinaNet (1×) ResNet-50 37.4 39.7 +2.3

Distillation across architectures. ICD is designed to transfer knowledge between detectors with
similar detection heads, the situation naturally facilities the feature alignment. However, it is also
possible to apply ICD across different detectors. As shown in Table 10, ICD also achieves considerable
performance gain despite detection heads are different.

Table 10: Experiments with FPN-free variations on MS-COCO. † denotes the inheriting strategy.

Method Backbone Sche. Faster R-CNN C4 [36] Faster R-CNN DC5 [36]
AP APS APM APL AP APS APM APL

Teacher ResNet-101 3× 41.1 22.2 45.5 55.9 40.6 22.9 45.1 54.1
Student ResNet-50 1× 35.7 19.2 40.9 48.7 37.3 20.1 41.7 50.0
Ours ResNet-50 1× 37.1 20.9 41.9 50.7 38.8 20.9 43.3 52.5
Ours † ResNet-50 1× 38.5 20.6 43.1 53.0 39.3 20.9 44.1 53.5

Longer schedules. We further examine our method on longer training periods, as shown in Table
11, the improvement obtained by our method is still impressive. Specifically, the student with
RetinaNet detector outperforms its teacher by 0.6 AP and the student with Faster R-CNN performs on
par with the teacher. The gain of the inheriting strategy is impressive on 1× scheduler, yet it becomes
smaller under sufficient training iterations (3×), which shows the improvement on accelerating
training.

Table 11: Experiments with different schedulers on MS-COCO. † denotes the inheriting strategy.

Method Backbone Sche. Faster R-CNN [36] RetinaNet [30]
AP APS APM APL AP APS APM APL

Teacher ResNet-101 3× 42.0 25.2 45.6 54.6 40.4 24.0 44.3 52.2
Student ResNet-50 1× 37.9 22.4 41.1 49.1 37.4 23.1 41.6 48.3
Student ResNet-50 3× 40.2 24.2 43.5 52.0 38.7 23.3 42.3 50.3
Ours ResNet-50 1× 40.4 23.4 44.0 52.0 39.9 25.0 43.9 51.0
Ours † ResNet-50 1× 40.9 24.5 44.2 53.5 40.7 24.2 45.0 52.7
Ours ResNet-50 3× 41.8 24.9 45.4 54.4 40.8 24.3 44.6 52.8
Ours † ResNet-50 3× 41.8 24.7 45.1 54.6 41.0 25.1 44.7 53.0

Sensitivity of hyperparameters. ICD introduces a hyperparameter λ to control the distillation
strength. We conduct a sensitivity analyze of this hyperparameter on MS-COCO with Faster R-CNN
and RetinaNet in Table 12. The result shows the performance is robust across a wide range of λ.

C Appendix: Overview of recent methods.

For a fair comparison of recent methods in Sec. 4, we re-implement recent methods on the same
baseline with same teacher-student pairs and training settings. As for complement, we also list their
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Table 12: Sensitivity analyze of hyper-parameter λ on MS-COCO. * denotes adopted settings.

Method Backbone Faster R-CNN [36] RetinaNet [30]
λ AP APS APM APL λ AP APS APM APL

Teacher ResNet-101 (3×) - 42.0 25.2 45.6 54.6 - 40.4 24.0 44.3 52.2
Student ResNet-50 (1×) - 37.9 22.4 41.1 49.1 - 37.4 23.1 41.6 48.3
ICD ResNet-50 (1×) 1 40.5 24.1 43.9 53.1 2 40.5 24.0 44.8 52.2
ICD* ResNet-50 (1×) 3 40.9 24.5 44.2 53.5 6 40.7 24.2 45.0 52.7
ICD ResNet-50 (1×) 5 40.7 23.5 43.8 53.8 12 40.6 23.9 44.8 52.5

settings and paper-reported performance in Table 13, which shows the difference in settings and
baselines. Compare with former settings, ICD adopts the 1× scheduler with multi-scale jitters (ms),
all training settings follow the standard protocols and we use public released models as our teachers.
The baseline has similar performance compared with others and our method outperforms most of
the methods with much less training time (2× v.s. 1×). We also conduct experiments on similar 2×
single-scale (ss) training settings and adopt strong teachers (as suggested by [51]) for Faster R-CNN8,
ICD still shows impressive performance with strong final AP and gains. In addition, we highlight that
there are many design variations as suggested by former studies, e.g., [51, 11, 6] adopt multiple loss
functions in parallel for distillation, Guo et al.[14] adopt complicated rules for foreground-background
balancing. The complicated design usually achieves higher performance, yet they also introduce
extra hyperparameters and detector-dependant designs that are hard for tuning, while our method
only uses a simple distillation loss and only introduces one λ to control the distillation strength.

Table 13: Overview of recent methods on MS-COCO. We summarize choices of teacher-student
pairs, training schedulers, library and number of hyperparameters (Num.) of recent methods. RCNN
denotes Faster R-CNN [36], MRCNN denotes Mask R-CNN [16] and CMRCNN denotes Cascade
Mask R-CNN [4]. 2×* denotes the 1× scheduler with 32 batch size.

Method Teacher Student Distillation
Detector Backbone Available AP Detector Backbone Scheduler AP Library Num. AP ∆AP

Chen et al.(2017) [6] FRCNN VGG16 No 24.2 FRCNN VGGM - 16.1 - 3+ 17.3 +1.2
Wang et al.(2019) [45] FRCNN R101 No 34.4 FRCNN R101-h - 28.8 Yang et al.[48] 1+ 31.6 +2.8
Zhang et al.(2021) [51] CMRCNN X101-dcn Yes 47.3 FRCNN R50 2× SS 38.4 mmdet [7] 3+ 41.5 +3.1
Dai et al.(2021) [11] FRCNN R101 No 39.6 FRCNN R50 2× SS 38.3 - 3+ 40.2 +1.9
Guo et al.(2021) [14] FRCNN R152 No 41.3 FRCNN R50 2×* SS 37.4 mmdet [7] 5+ 40.9 +3.5
Ours FRCNN R101 Yes 42.0 FRCNN R50 1× MS 37.9 Detectron2 [47] 1+ 40.9 +3.0
Ours MRCNN R101 Yes 48.9 FRCNN R50 2× SS 38.2 Detectron2 [47] 1+ 42.2 +4.0
Zhang et al.(2021) [51] RetinaNet X101-dcn Yes 41.0 RetinaNet R50 2× SS 37.4 mmdet [7] 3+ 39.6 +2.2
Dai et al.(2021) [11] RetinaNet R101 No 38.1 RetinaNet R50 2× SS 36.2 - 3+ 39.1 +2.9
Guo et al.(2021) [14] RetinaNet R152 No 40.5 RetinaNet R50 2×* SS 36.5 mmdet [7] 5+ 39.7 +3.2
Ours RetinaNet R101 Yes 40.4 RetinaNet R50 1× MS 37.4 Detectron2 [47] 1+ 40.7 +3.3
Ours RetinaNet R101 Yes 40.4 RetinaNet R50 2× SS 36.2 Detectron2 [47] 1+ 40.5 +4.3

8We use released models from Detectron2 new baselines as stronger teachers.
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