
Hard Real-Time Multiobjective Scheduling in Heterogeneous Systems Using
Genetic Algorithms

Mohammad Reza Miryani
Department of Computer Engineering,

Ferdowsi University of Mashhad, Mashhad,
Iran

miryani@stu-mail.um.ac.ir

Mahmoud Naghibzadeh
Department of Computer Engineering,

Ferdowsi University of Mashhad, Mashhad,
Iran

naghibzadeh@um.ac.ir

Abstract

Optimal tasks allocation is one of the most

important problems in multiprocessing. Optimal
assignment of tasks to a multiprocessor is an NP-
hard problem in general cases, and precedence task
graph makes it more complex. Many factors affect
optimal tasks allocation. One of them is cache reload
time in multiprocessor systems. These problems exist
in real-time systems, too. Due to high sensitivity of
‘time’ in real-time systems, scheduling with respect
to time constraints becomes very important. This
paper proposes a suboptimal scheduler for hard real-
time heterogeneous multiprocessor systems
considering time constraints and cache reload time
simultaneously, using multiobjective genetic
algorithm. In addition, it tries to propose a
generalized method for real-time multiobjective
scheduling in multiprocessor systems using genetic
algorithms.

1. Introduction

Computational activities and their responses
should be performed within a specified time-frame in
real-time systems. A task τi requested at time ti needs
ci units of time for execution and this time shall be
allocate to it before its deadline ti + di. Otherwise,
problems may arise in the system. Real-time systems
are classified into two categories with respect to the
severity of missing a deadline to Hard Real-Time and
Soft Real-Time systems [1]. All deadlines shall meet,
in hard real-time systems.

Some optimal scheduling of real-time tasks, on
single processor systems to meet deadlines are
already developed considering the task
characteristics. Scheduling algorithm of EDF and RM

are optimal. However, in multiprocessor systems
there is no known optimal scheduler [1], [2].

To be optimal for a scheduler means the schedules
satisfies one or more criteria of optimality [1], [2].
Generally, it means each task was allocated to a
processor such that the overall system is optimal
based on predefined criteria. In real-time systems,
these criteria can be total tardiness, completion time,
throughput, utilization, waiting time, etc. Finding an
efficient optimal scheduler for multiprocessor
systems is an open problem [3] - [5].

Reference [3] has shown that just minimizing total
tardiness for N independent task on one machine is
an NP-hard problem and in majority of cases, the
solution is an NP-hard one. Therefore, developing
heuristic algorithms is useable in many applications.
Genetic Algorithms is one such algorithm with
reasonable efficiency, in many cases [4]-[6].

In recent years, several genetic approaches have
been proposed for multiprocessor environments.
Reference [6] proposes a scheduler with genetic
algorithm for nonpreemptive tasks with precedence
and deadline constraints but it does not have suitable
performance necessarily. Reference [7] presents a
hybrid genetic algorithm, in which different operators
are applied at different stages of the lifetime, for
scheduling partially ordered nonpreemptive tasks in a
multiprocessor environment. Reference [8] proposes
a genetic algorithm implementation to solve a
scheduling problem for real-time nonpreemptive
tasks.

These algorithms minimize only one objective
such as completion time, total tardiness, or cost.
Reference [5] presents a multiobjective genetic
algorithm for scheduling nonpreemptive tasks in a
soft real-time system with symmetric processors.
Nevertheless, some extra local improvement
heuristics has been used to find the smallest number
of processors. In addition, this work has not

considered cache reload time. Other works are in [9],
[10] for tasks without timing constraints, but [4]
considers to a multiobjective scheduling problem for
nonpreemptive soft real–time tasks with conflicting
objectives, total tardiness and completion time
without considering cache reload time.

With respect to processor affinity one way to
decrease the execution time is to try to assign
processors to execute tasks so that two related tasks
that share their code and data segments be executed
on same processor. Therefore second task does not
need to fetch all its data from main memory or
auxiliary memories and it can use the already fetched
data.

In this paper, we propose a new scheduling
algorithm for non-preemptive tasks with precedence
relationship on heterogeneous multiprocessor
systems, with cache reload time (CRT) and other
timing constrains. CRT is important because in
practical systems, all timing constrains should be
considered otherwise the system may crash. The
criteria are completion time and number of
processors in a way that all of deadlines are met.
Trying to minimize both criteria is done
simultaneously. Since there is a conflict between
objectives, we use Adaptive Weight Approach [4],
[11]. Adaptive Weight Approach uses some useful
current population’s information in order to justify
weights and to move searching in answer space
towards positive answers.

The rest of the paper is organized as follows. In
section 2, scheduling problem for hard real-time tasks
on heterogonous multiprocessors will be defined
mathematically. Section 3 describes the proposed
genetic algorithm, applied procedures, genetic
operators, and stopping condition. Section 4 and
Section 5 explain validation and the experience
results, respectively. Finally, conclusion and future
works are in section 6.

2. Mathematical Model for Hard Real-

Time Scheduling Problem

In this research, we consider the offline
scheduling of a set of hard real-time tasks with
precedence constraint with task graph on a set of
heterogeneous processors in which completion time
(f1) and number of processors (f2) are to be minimized
under the following conditions:

 All tasks are nonpreemptive
 Every task is processed on only one processor

at a time
 Every processor processes only one task at a

given time

 All deadlines must be met.
In addition, there are these assumptions:
 A time unit is an artificial time unit
 Execution time of all tasks on each processor is

given
 Precedence relationship or task graph is given

prior to scheduling
 Cache reload time with respect to task graph

and run time is computable.
Therefore, mathematical statements formulate

problem as follows. Presented formulations are
developed in [4]-[6] and we have done proper
modifications based on new requirements, objectives
and limitations of defined problem:

min f1 = max{ti
F} (1)

min f2 = Number of Processors (2)
ittts S

i
E
i ∀≤.. (3)

()
}{max F

jpre

E
i tt

ij ττ ∈
≥ (4)

,1
1

ix
M

m im ∀=∑ =
 (5)

Mimiim xxmix ×=∀∈ 1][,}1,0{ (6)

Equations (1) and (2) are fitness functions in this
scheduling problem. Equation (1) defines minimizing
completion time of tasks because minimization of
finish time of each task (ti

F) means that the
completion time of the set of tasks is minimized, and
(2) expresses minimizing number of processors.
Constraint conditions have been shown in (3) to (6).
Equation (3) means a task can be started after its own
earliest start time begins [4] (ti

S: real start time of τi).
Equation (4) shows earliest start time (ti

E) of the task
which is based on task graph. In the other word, each
task can execute on a processor after its precedence
tasks is finished and its initial data reload from other
processors in the cache is done. So we exert cache
reload time by (4). Equation (5) means that each
processor process only one task at a time. Equation
(6) is a decision variable because the system is
heterogeneous. Note it is required to meet deadlines
in hard real-time systems. Thus, there is a default
objective formulated as follows:

}))}(:max{

)7((,0max{min
11

3

imiij
T
jiji

im
S
i

M

m

N

i

xdprexxcrt

ctf

−∈

−+= ∑∑
==

ττ
Equation (7) shows that when completion time of

task is carried out after the relevant deadline, the
system would have tardiness. Otherwise, tardiness
will be equal to zero. Tardiness is not acceptable in
the hard real-time systems. It is unacceptable because
it has deadly effects. So it has to be equal to zero in
our study.

Following and developing definitions on [4], [5]
the following notations are used for the above
equations:
 Indices:

• i, j: task index, i, j=1, 2, … , N
• m: processor index, m=1, 2, … , M

 Parameters:
• N: Total number of tasks
• M: Total number of processors
• G(T,E): task graph
• T = {τ1, τ2, … ,τn }: a set of N tasks
• E = {eij}, i, j = 1,2, … , N, a directed acyclic

graph representing precedence relationship
• kij:∀eij ∃kij :is a random value in∈[103,106]
• eij: precedence relationship between task τi

and task τj
•

cim: computation time of task τi on mth
processor

•)8(
otherwise0

τandτprocesses
processorsameaif

ji

⎪
⎩

⎪
⎨

⎧

=

accessTimek
crt

ij

ij

γ

γ is a random value in [0,1], accessTime is
average time to access main memory and
auxiliary memory. γ kijaccessTime is not
more than 0.05×cim.

• di: deadline of task τi

• pre*(τi): set of all predecessors of task τi

• suc*(τi): set of all successors of task τi

• pre(τi): set of immediate predecessors of
task τi

• suc(τi): set of immediate successors of task
τi

• E
it : earliest start time of task τi

{ }()⎪
⎩

⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧ ∈×−+

∅=
=

∑
=

∈

M

m
jk

T
jkkjjmjm

E
jpre

i
E
i prexxcrtxct

pre
t

ij 1
)(

)(|maxmax

)(if0

*
ττ

τ

ττ

(9)

• F
it : finish time of task τi

{ }{ } ,,)(|maxmin idprexxcrtxctt iij
T
jijiimim

S
i

F
i ∀∈×−+= ττ

(10)
 Decision variables:

• S
it : real start time of task τi

•
⎪
⎩

⎪
⎨

⎧
=

otherwise.0
, task

for selectedis processor if1

i

m

im τ
p

x

(11)

3. The Proposed Genetic Algorithm

In this paper, our proposed scheduler is based on
genetic algorithm. In genetic algorithm, an initial
population of feasible answers is shown by a set of
chromosomes. Then, a new population of
chromosomes is produced by applying operations,
such as selection, crossover, mutation, etc. The
process of producing new generation continues until
a stopping criterion is satisfied. Encoding acts as a
mapping of feasible answers space of the problem to
initial population and decoding evaluates
chromosomes towards an ideal answer.

For scheduling problem, several methods and
versions for genetic’s operators and procedures have
been proposed and some of them can be found in [4]-
[6]. In this paper, we propose a new encoding
procedure. In addition, we have used the proposed
decoding procedure in [4], and have extended it to be
useful for our problem.

3.1. Encoding

A chromosome chk = 1,2,…,populationSize is a
feasible map from set of tasks to set of processors, in
which the populationSize is the total number of
chromosomes. A chromosome has two parts: u(.) and
v(.). u(.) shows scheduling order and v(.) means
allocation information [4]. The length of each
chromosome is equal to the number of tasks, because
all of the tasks must be executed. Scheduling order
must satisfy a ‘Topologic Sort’ result [12] with
respect to task graph. Allocation information
determines that each processor shall execute which
task.

References [4], [5] propose an encoding
procedure, while considering topological order but
[5] has not implemented topological order. We
noticed some errors in the implemented of [4]. In
every next level of scheduling, we not only can
schedule a task’s children but also tasks without
precedence. By doing this, we are able to produce
more scheduling orders, and it will have positive
effect on meeting deadlines. The proposed encoding
procedure is shown in Figure 1. Line 16 is designed
to satisfy topological sort.

In addition, for initial state, total number of
processors is assumed to be equal to the total number
of tasks. In other hand, in order to meet deadlines,
each task must execute on a separate processor, in the
worst case. Therefore, in line 13 of Figure1 M is
equal to N.

Figure 2 is an example of task graph related to an
assumed application with seven tasks.

Table 1 is information about this application. It
shows execution time of each task on processors and
Table 2 shows one run of the encoding procedure.
Finally, the instance output chromosome of encoding
procedure is shown in Figure 3.

1 procedure: Encoding for Scheduling Problem for Hard
Real-Time

2 input: task graph data set, total number of processors M
3 output: u(.),v(.)
4 begin
5 l ← 1 , W ← ∅;
6 while T ≠ ∅
7

W ← {τi | pre*(τi) = ∅ ∀i}

8
T ← T – W

9 j ← random(W);
10 u(l) ← j;
11 W ← W – { j }
12 pre*(τi) ← pre*(τi) –{τj} ∀i;
13 m ← random[1: M]
14 v(l) ← m;
15 l ← l + 1;
16 T ← T U {τi, i ∈ W};
17 endwhile;
18 output u(.),v(.);
19 end;

Figure 1. Encoding procedure

1τ

τ1
1τ

τ2

1
τ

τ3
1

τ

τ4

1
τ

τ5

1τ

τ7

1τ

τ6

Figure 2. An example precedence task graph for an

application with seven tasks

Table 1. Data set of assumed application related to
Figure 2

cim di ci7 ci6 ci5 ci4 ci3 ci2 ci1
pre*(τi) i

20 2 3 10 2 5 10 3 - 1
17 12 11 15 11 10 7 11 - 2
31 10 12 7 10 13 6 12 1 3
23 10 8 5 8 9 9 8 2 4
45 6 12 10 6 10 5 12 1,2,3 5
30 22 25 13 22 8 3 10 - 6
32 5 4 9 7 7 11 4 6 7

7 6 5 4 3 2 1 l
5 3 1 7 4 2 6 u(.)
3 4 1 5 2 1 3 v(.)

Figure 3. An example of encoding procedure and a
typical output chromosome (Chromosome chk)

(Figure 1, 2 and Table 2)

Table 2. An instance run of task graph on encoding
procedure

T W j m l
{τ1,τ2,τ3,τ4,τ5,τ6,τ7}∅

{τ3,τ4,τ5,τ7} {1,2,6} 6 3 1
{τ1,τ2,τ3,τ4,τ5,τ7}

{τ3,τ4,τ5} {1,2,7} 2 1 2
{τ1,τ3,τ4,τ5,τ7}

{τ3,τ5} {1,4,7} 4 2 3
{τ1,τ3,τ5,τ7}

{τ3,τ5} {1,7} 7 5 4
{τ1,τ3,τ5}

{τ3,τ5} {1} 1 1 5
{τ3,τ5}
{τ5} {3} 3 4 6
{τ5}
∅ {5} 5 3 7
∅ ∅

3.2. Decoding

Decoding procedure is shown in Figure 4 that is
the same decoding in [4]. Total tardiness of each task
is computed in line 14, completion time of all tasks is
determined in line 18 and number of applied
processors is calculated in line 19. Table 3 shows
tracing of decoding procedure for the presented
chromosome in Figure 3.The Gantt chart of Table 3
and obtained fitness functions f1, f2 and f3 are shown
in Figure 5.

1 procedure: Decoding for Scheduling Problem for Hard

Real- Time
2 input: task graph data set, chromosome chk

3 output: schedule set S, completion time f1, number of
 processors f2, total tardiness of tasks f3

4 begin
5 l ← 1, S ← ∅;
6 while l ≤ N
7 i ← u(l)
8 m ← v(l)
9 if (exist suitable idle time) then
10 insert(i);
11 endif;
12 start(i);
13 update_idle();
14 f3 ← f3 + max {0 , ti

S + cim - max{crtji xixj
T |

 τj∈pre(τi)}- di } ;

15
S ← S U { i, m : ti

S - ti
F };

16 l ← l + 1;
17 endwhile;
18 f1 ← max { ti

F };

19 f2 ← Different Numbers in v(.);
20 output S, f1, f2, f3;
21 end;

Figure 4. Decoding procedure

Table 3. Tracing of presented chromosome in Figure
3

ti
F ti

S m i l
25 1 3 6 1
12 1 1 2 2
23 14 2 4 3
19 10 5 7 4
16 13 1 1 5
28 18 4 3 6
40 30 3 5 7

Figure 5. The output of decoding procedure and the
Gantt chart of instance chromosome (chromosome

related to Figure 3)

3.3 Evolution Function and Competitive
Selection

We use Adaptive Weighted Approach (AWA) to
move ideal positive point in this research [4], [11]. In
AWA, maximum and minimum values are obtained
among all the values of fitness functions of
chromosomes by (11). Next, adaptive weight of each
fitness function is calculated by (13). Then, the
weighted-sum objective function for each
chromosome is computed by (14). Finally, evaluated
function for each chromosome is obtained as shown
in (15).

(){ }
(){ }⎩

⎨
⎧

=
=

=
minyfor min
maxyfor max

ki

kiy
i chf

chf
f (11)

where i=1,2,3; k =1, … ,populationSize (12)

3,2,1,1
minmax =

−
= p

ff
w

pp
p (13)

() ()

()()∑

∑

=

=

−=

=

3

1

minmax

3

1

p
ppkp

p
kppk

ffchf

chfwchF

(14)

() ()kk chFcheval 1= (15)

For competitive selection we have used of
Roulette Wheel Selection [11].

3.4. Genetic Operators

We have used modified one-cut crossover and
standard mutation ([4], [11]) in this research as
shown in Figure 6 and 7 respectively. Procedures of
them operate on the v(.) part of chromosomes.
Because, if they operate on the u(.) part, scheduling
order might be changed. Therefore, it will not agree
with task graph. So, our modified operators operate
only on the v part of the chromosomes.

procedure: Crossover 1
input: parent chromosomes chk , chk’ 2
output: proto-offspring chromosomes chk , chk’ 3
begin 4
 r ← random[1:N]; 5
 temp ← v([r + 1: N]); 6
 v([r + 1: N]) ← v’([r + 1: N]); 7
 v’([r + 1: N]) ← temp; 8
 output chk , chk’; 9
end; 10

Figure 6. One-cut crossover operator operates on
the v(.) part

procedure: Mutation 1
input: chromosome chk , 2
output: offspring chromosomes chk 3
begin 4
 r ← random[1:N]; 5
 v(r) ← random[1:M]; 6
 output chk ; 7
end; 8

Figure 7. Mutation operator operates on the v(.) part

3.5. Proposed Genetic Algorithm

Proposed genetic algorithm is presented in Figure
8. Algorithm terminates when main loop in line 7
reaches a default value. In the other hand, it is
iterated for a fix number of times.

4. Validation

For evaluation of the proposed genetic algorithm
several numeral experiments were preformed.
Numeral experiments are done with a random
precedence task graph.

We used P-Method [13] to produce the random
precedence task graph. P-Method is based on an
adjacency matrix of a task graph. If there is a
precedence relation between tasks τi and τj then

element aij of adjacency matrix will be one, otherwise
it will be zero. An adjacency matrix is made with all
its lower triangular and diagonal elements equal to
zero. Each of the remaining upper triangular elements
of the matrix is examined independently as part of a
Bernoulli process with factor ε, which represents the
probability of a success. For each element, when the
Bernoulli test is a success, then the element is
assigned a value of one; for a failure the element is
given a value of zero. The parameter ε can be
considered to be the sparsity of the task graph. With
this method, a probability parameter of ε = 1 creates a
totally sequential task graph, and ε = 0 creates an
inherently parallel one. Values of ε that lie in
between these two extremes generally produce task
graphs that possess intermediate structures [13], [4],
[5].

1 procedure: Proposed_Genetic_Algorithm
2 input: task graph data set

3 output: best schedule set S
4 begin
5 numberOfGeneration ← 0;
6 initialize population(numberOfGeneration) byEncoding

 procedure;
7 while (NumberOfGeneration ≤ maxGeneration) do
8 Evaluate f1, f2 ,f3 by Decoding procedure;
9 eval(population); /*eavl(chk): k=1,..,populationSize (15)
10 if (not NumberOfGeneration ≤ maxGeneration) then
11 creating new_population by roulette wheel selection;
12 new_population ← crossover(new_population);
13 new_population ← Mutation(new_population);
14 population ← new_population;
15 numberOfGeneration ← numberOfGeneration +1;
16 endif;
17 endwhile;
18 output best schedule set S;
19 end;

Figure 8. The proposed genetic algorithm

For the tasks’ computation time, deadline and cache
reload time between them, we use random numbers
based on exponential distribution and normal
distribution as follows ([4], [14], [15]):

 Exp
imc : a random value based on exponential

distribution with mean 5,
 Nor

imc : a random value based on normal
distribution with mean 5 and variance 2,

 r1
Exp: a random value based on exponential

distribution with mean Exp
imc ,

 r1
Nor: a random value based on normal

distribution with mean Nor
imc ,

 Exp
id : equals to ExpExp

im
m

E
i rct 1}{max ++ ,

 Nor
id : equals to NorNor

im
m

E
i rct 1}{max ++ ,

 r2
Exp: equals to a random value based on

exponential distribution between 0.05 to 0.1,
 r2

Nor: equals to a random value based on
Normal distribution between 0.05 to 0.1,

 Exp
ijcrt : a random value between

}]{max05.0,0[lExponentia
imm

c ,

 Nor
ijcrt : a random value between

}]{max05.0,0[Normal
imm

c× .

The parameters of genetic algorithm were set to
0.7 for crossover, 0.3, and 1000 for number of
generation.

5. Experiments

Here, we have designed some experiments based
on previous sections.

5.1. Experiment 1

The first experiment is taken from [4]. In this
experiment we have some information as well as it is
shown in Table 4 that has been created by the P-
Method (same as our method).

Table 4. Data set of experiment 1

cim
di

ci3 ci2 ci1
pre*(τi) i

13 10 3 5 8 1
17 12 7 3 6 2
12 1 4 3 4, 5 3
12 6 16 2 6, 7, 8 4
27 4 2 12 6, 10 5
24 7 4 2 9 6
13 4 15 2 - 7
18 4 5 3 - 8
27 8 5 5 10 9
29 6 5 1 - 10

We divided this experiment into two parts. In first
part we scheduled it without considering cache reload
time, in Figure 9. In our method, the best answer as
the completion time (f1) is 13, total tardiness (f3) is 0,
and number of applied processors (f2) is 3 whereas
report of this experiment in [4] is as completion time;
15, total tardiness is 6 and minimizing of number of
processors is not their objective (Figure 9-A). In
addition, another run of our proposed algorithm is
shown in Figure 9-B. For this run; f1 = 18, f2 = 2, f3 =
0 whereas in an optimistic way, [4] has reported f1 =
18, f2 = 3, f3 = 2. In Figure 10 has been shown a

comparison between our proposed method and the
proposed method in [4].

In the second part with respect to cache reload time,
some obtained results are shown in Figure 11 and two
suboptimal schedulers are shown in Figure 12. In
Figure 11 we computed average of completion time of
best obtained scheduler in 50 iterations of experience
with considering and nonconsidering cache reload
time when population size increases.

Figure 9. Experiment 1 without cache reload time

Figure 10. A comparison between our proposed

method and the proposed method in [4]

5.2. Experiment 2

Second experiment was taken from [4] too.
Execution time of each task on processers is given in
Table 5, and for testing of local optimal problem we
duplicate these processors in Table 6.

Figure 13 shows three instances of the best output
answers that they describe the best answer of our
proposed method according to Table 5 without
considering cache reload time.

In Figure 14 has been shown 2 schedulers
considering cache reload time. It is obvious scheduler

with 3 processors has a lower completion time than
scheduler with 4 processors. In fact this Comparison
shows importance of considering cache reload time.
An overall result has been presented in Figure 15.

Figure 11. A comparison of completion time

considering and nonconsidering cache reload time

Figure 12. Experiment 1 with cache reload time

Table 5. Data set of experiment 2

cim
di

ci4 ci3 ci2 ci1
pre*(τi) i

19 8 11 3 5 8 1
9 13 4 5 6 6 2

18 7 6 8 11 4, 5 3
37 6 5 13 10 6, 7, 8 4
38 11 8 13 10 6, 10 5
37 3 11 11 2 9 6
44 8 11 10 3 - 7
30 5 10 12 4 - 8
37 10 7 9 6 10 9
58 4 6 12 11 - 10

Table 6. Data set of experiment 2 with duplicated

processors

cim
di

ci8 ci7 ci6 ci5 ci4 ci3 ci2 ci1

pre*(τ
i)

i

19 8 11 3 5 8 11 3 5 8 1
9 13 4 5 6 13 4 5 6 6 2

18 7 6 8 11 7 6 8 11 4,
5 3

37 6 5 13 10 6 5 13 10
6,
7,
8

4

38 11 8 13 10 11 8 13 10 6,
10 5

37 3 11 11 2 3 11 11 2 9 6
44 8 11 10 3 8 11 10 3 - 7
30 5 10 12 4 5 10 12 4 - 8
37 10 7 9 6 10 7 9 6 10 9
58 4 6 12 11 4 6 12 11 - 10

Figure 13. Schedulers for experiment 2 considering

Table 5 and without considering cache reload time

Figure 14. Two best schedulers considering cache

reload time

In this part for testing of optimal locality of
proposed algorithm we duplicated the assumed
processors from Table 5 to Table 6. Overall results
has been shown in Figure 16 which this figure
declares not only considering cache reload time in
scheduling can cause using lower processor and
decreases completion time simultaneously but also
our proposed algorithm could gain obtained results
when we use data set Table 5 without duplication.

Figure 15. Comparisons between obtained

completion time considering and nonconsidering
cache reload time

Figure 16. Comparisons between obtained

completion time considering and nonconsidering
cache reload time

6. Conclusion and Future Works

In this paper we have tried generalization on latest
works ([4] – [6]) and covered their shortcomings.
Paying attention to cache reload time in
heterogeneous real-time systems is one of the aspects
of this work.

Improving the encoding procedure which has large
influence on the proposed scheduler is part of this
paper. For this part, we designed a suitable encoding
procedure based on topological sort. Same
chromosome like [4] has been used to be able for
comparing the proposed algorithm and the proposed
algorithms in [4].

Also, trying to minimize the number of
heterogeneous processors while all deadlines are met
is done by genetic algorithm, whereas, in [5] this work
is done by some extra local improvement heuristics
moreover we have considered heterogeneous
processors as oppose to [5] which assumes
homogeneous processors. So our proposed algorithm
is a generalization on [5].

Unlike [6], designed chromosome is simple and
efficient, has fewer limitations, and while using
limited information can minimize conflicted objective
simultaneously.

For future works, we will try to design some better
stopping conditions and some improvements on
convergent conditions too.

7. References

[1] CM. Krishna and GS. Kang, Real-time systems, New

York, McGraw-Hill, 1997.
[2] P. Marwedel, Embedded System Design, Netherland,

Springer, 2006.
[3] J. Du and J. Y. T. Leung, “Minimizing total tardiness

on one machine is NP-hard,” Mathematics of
Operational Research 15, pp. 483–495, 1990.

[4] M. Yoo and M. Gen, “Scheduling algorithm for real-
time tasks using multiobjective hybrid genetic
algorithm in heterogeneous multiprocessors system,”
Journal of Computers & Operations Research 34, pp.
3084-3098, 2007.

[5] J. Oh and C. Wu, “Genetic-algorithm-based real-time
task scheduling with multiple goals,” Journal of
Systems and Software, pp.245-258, 2004.

[6] H. Mitra and P. A. Ramanathan, “Genetic approach
for scheduling non-preemptive tasks with precedence
and deadline constraints,” In: Proceedings of the 26th
Hawaii international conference on system sciences,
pp. 556–64, 1993.

[7] M. Lin and L. Yang, “Hybrid genetic algorithms for
scheduling partially ordered tasks in a multi-processor
environment,” In: Proceedings of the sixth
international conference on real-time computer
systems and applications, pp. 382–87, 1999.

[8] Y. Monnier, J. P. Beauvais and A. M. Deplanche, “A
genetic algorithm for scheduling tasks in a real-time
distributed system,” In: Proceedings of the 24th
euromicro conference, pp. 708–14, 1998.

[9] A. J. Page and T. J. Naughton, “Dynamic task
scheduling using genetic algorithm for heterogeneous
distributed computing,” In: Proceedings of the 19th
IEEE international parallel and distributed processing
symposium, pp. 189.1, 2005.

[10] M.K. Dhodhi, I. Ahmad, I. Ahmad and A. Yatama,
“An integrated technique for task matching and
scheduling onto distributed heterogeneous computing
systems,” Journal of Parallel and Distributed
Computing 62, pp. 1338–61, 2002.

[11] M. Gen and R. Cheng, Genetic Algorithm and
Optimization Engineering, John Wiley and Sons, INC,
New York, 2000.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C.
Stein, Introduction to Algorithms, New York,
McGraw-Hill, 2nd Edition, 2001.

[13] S. Al-Sharaeh, and B. E. Wells, “A comparison of
heuristics for list schedules using the box-method and
P-method for random digraph generation,” In:
Proceedings of the 28th Southeastern symposium on
system theory, pp. 467–71, 1996.

[14] M. Cosnard, M. Marrakchi, Y. Robert, and D.
Trystram, “Parallel Gaussian elimination on an MIMD
computer,” Journal of Parallel Computing, Vol. 6,
No. 3, pp. 275-296, 1998.

[15] M.Y. Wu, and D.D. Gajski, “Hypertool: A
programming aid for message-passing system”, IEEE
Trans. Parallel and Distributed Systems, Vol. 1, No.
3, pp. 330-343, 1990.

