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Abstract 
 
Optimal tasks allocation is one of the most 

important problems in multiprocessing. Optimal 
assignment of tasks to a multiprocessor is an NP-
hard problem in general cases, and precedence task 
graph makes it more complex. Many factors affect 
optimal tasks allocation. One of them is cache reload 
time in multiprocessor systems. These problems exist 
in real-time systems, too. Due to high sensitivity of 
‘time’ in real-time systems, scheduling with respect 
to time constraints becomes very important. This 
paper proposes a suboptimal scheduler for hard real-
time heterogeneous multiprocessor systems 
considering time constraints and cache reload time 
simultaneously, using multiobjective genetic 
algorithm. In addition, it tries to propose a 
generalized method for real-time multiobjective 
scheduling in multiprocessor systems using genetic 
algorithms. 
 
1. Introduction 
 

Computational activities and their responses 
should be performed within a specified time-frame in 
real-time systems. A task τi requested at time ti needs 
ci units of time for execution and this time shall be 
allocate to it before its deadline ti + di. Otherwise, 
problems may arise in the system. Real-time systems 
are classified into two categories with respect to the 
severity of missing a deadline to Hard Real-Time and 
Soft Real-Time systems [1]. All deadlines shall meet, 
in hard real-time systems. 

Some optimal scheduling of real-time tasks, on 
single processor systems to meet deadlines are 
already developed considering the task 
characteristics. Scheduling algorithm of EDF and RM 

are optimal. However, in multiprocessor systems 
there is no known optimal scheduler [1], [2].  

To be optimal for a scheduler means the schedules 
satisfies one or more criteria of optimality [1], [2]. 
Generally, it means each task was allocated to a 
processor such that the overall system is optimal 
based on predefined criteria. In real-time systems, 
these criteria can be total tardiness, completion time, 
throughput, utilization, waiting time, etc. Finding an 
efficient optimal scheduler for multiprocessor 
systems is an open problem [3] - [5]. 

Reference [3] has shown that just minimizing total 
tardiness for N independent task on one machine is 
an NP-hard problem and in majority of cases, the 
solution is an NP-hard one. Therefore, developing 
heuristic algorithms is useable in many applications. 
Genetic Algorithms is one such algorithm with 
reasonable efficiency, in many cases [4]-[6]. 

In recent years, several genetic approaches have 
been proposed for multiprocessor environments. 
Reference [6] proposes a scheduler with genetic 
algorithm for nonpreemptive tasks with precedence 
and deadline constraints but it does not have suitable 
performance necessarily. Reference [7] presents a 
hybrid genetic algorithm, in which different operators 
are applied at different stages of the lifetime, for 
scheduling partially ordered nonpreemptive tasks in a 
multiprocessor environment. Reference [8] proposes 
a genetic algorithm implementation to solve a 
scheduling problem for real-time nonpreemptive 
tasks. 

These algorithms minimize only one objective 
such as completion time, total tardiness, or cost. 
Reference [5] presents a multiobjective genetic 
algorithm for scheduling nonpreemptive tasks in a 
soft real-time system with symmetric processors. 
Nevertheless, some extra local improvement 
heuristics has been used to find the smallest number 
of processors. In addition, this work has not 



considered cache reload time. Other works are in [9], 
[10] for tasks without timing constraints, but [4] 
considers to a multiobjective scheduling problem for 
nonpreemptive soft real–time tasks with conflicting 
objectives, total tardiness and completion time 
without considering cache reload time. 

With respect to processor affinity one way to 
decrease the execution time is to try to assign 
processors to execute tasks so that two related tasks 
that share their code and data segments be executed 
on same processor. Therefore second task does not 
need to fetch all its data from main memory or 
auxiliary memories and it can use the already fetched 
data. 

In this paper, we propose a new scheduling 
algorithm for non-preemptive tasks with precedence 
relationship on heterogeneous multiprocessor 
systems, with cache reload time (CRT) and other 
timing constrains. CRT is important because in 
practical systems, all timing constrains should be 
considered otherwise the system may crash. The 
criteria are completion time and number of 
processors in a way that all of deadlines are met. 
Trying to minimize both criteria is done 
simultaneously. Since there is a conflict between 
objectives, we use Adaptive Weight Approach [4], 
[11]. Adaptive Weight Approach uses some useful 
current population’s information in order to justify 
weights and to move searching in answer space 
towards positive answers. 

The rest of the paper is organized as follows. In 
section 2, scheduling problem for hard real-time tasks 
on heterogonous multiprocessors will be defined 
mathematically. Section 3 describes the proposed 
genetic algorithm, applied procedures, genetic 
operators, and stopping condition. Section 4 and 
Section 5 explain validation and the experience 
results, respectively. Finally, conclusion and future 
works are in section 6. 
 
2. Mathematical Model for Hard Real-

Time Scheduling Problem 
 

In this research, we consider the offline 
scheduling of a set of hard real-time tasks with 
precedence constraint with task graph on a set of 
heterogeneous processors in which completion time 
(f1) and number of processors (f2) are to be minimized 
under the following conditions: 

 All tasks are nonpreemptive 
 Every task is processed on only one processor 

at a time 
 Every processor processes only one task at a 

given time 

 All deadlines must be met. 
In addition, there are these assumptions: 
 A time unit is an artificial time unit 
 Execution time of all tasks on each processor is 

given 
 Precedence relationship or task graph is given 

prior to scheduling 
 Cache reload time with respect to task graph 

and run time is computable. 
Therefore, mathematical statements formulate 

problem as follows. Presented formulations are 
developed in [4]-[6] and we have done proper 
modifications based on new requirements, objectives 
and limitations of defined problem: 
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Equations (1) and (2) are fitness functions in this 
scheduling problem. Equation (1) defines minimizing 
completion time of tasks because minimization of 
finish time of each task (ti

F) means that the 
completion time of the set of tasks is minimized, and 
(2) expresses minimizing number of processors. 
Constraint conditions have been shown in (3) to (6). 
Equation (3) means a task can be started after its own 
earliest start time begins [4] (ti

S: real start time of τi). 
Equation (4) shows earliest start time (ti

E) of the task 
which is based on task graph. In the other word, each 
task can execute on a processor after its precedence 
tasks is finished and its initial data reload from other 
processors in the cache is done. So we exert cache 
reload time by (4). Equation (5) means that each 
processor process only one task at a time. Equation 
(6) is a decision variable because the system is 
heterogeneous. Note it is required to meet deadlines 
in hard real-time systems. Thus, there is a default 
objective formulated as follows: 
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Equation (7) shows that when completion time of 

task is carried out after the relevant deadline, the 
system would have tardiness. Otherwise, tardiness 
will be equal to zero. Tardiness is not acceptable in 
the hard real-time systems. It is unacceptable because 
it has deadly effects. So it has to be equal to zero in 
our study. 



Following and developing definitions on [4], [5] 
the following notations are used for the above 
equations: 
 Indices:  

• i, j: task index, i, j=1, 2, … , N 
• m: processor index, m=1, 2, … , M 

 Parameters: 
• N: Total number of tasks 
• M: Total number of processors 
• G(T,E): task graph 
• T = {τ1, τ2, … ,τn }: a set of N tasks 
• E = {eij}, i, j = 1,2, … , N, a directed acyclic 

graph representing precedence relationship 
• kij:∀eij ∃kij :is  a random value in∈[103,106] 
• eij: precedence relationship between task τi 

and task τj 
• 

 

cim: computation time of task τi on mth 
processor 
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γ is a random value in [0,1], accessTime is 
average time to access main memory and 
auxiliary memory. γ kijaccessTime is not 
more than 0.05×cim. 

• di: deadline of task τi 

• pre*(τi): set of all predecessors of task τi 

• suc*(τi): set of all successors of task τi 

• pre(τi): set of immediate predecessors of 
task τi 

• suc(τi): set of immediate successors of task 
τi 

• E
it : earliest start time of task τi 

{ }( )⎪
⎩

⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧ ∈×−+

∅=
=

∑
=

∈

M

m
jk

T
jkkjjmjm

E
jpre

i
E
i prexxcrtxct

pre
t

ij 1
)(

)(|maxmax

)(if0

*
ττ

τ

ττ

(9)

 

• F
it : finish time of task τi 
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 Decision variables: 

• S
it : real start time of task τi 
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3. The Proposed Genetic Algorithm 
 

In this paper, our proposed scheduler is based on 
genetic algorithm. In genetic algorithm, an initial 
population of feasible answers is shown by a set of 
chromosomes. Then, a new population of 
chromosomes is produced by applying operations, 
such as selection, crossover, mutation, etc. The 
process of producing new generation continues until 
a stopping criterion is satisfied. Encoding acts as a 
mapping of feasible answers space of the problem to 
initial population and decoding evaluates 
chromosomes towards an ideal answer. 

For scheduling problem, several methods and 
versions for genetic’s operators and procedures have 
been proposed and some of them can be found in [4]-
[6]. In this paper, we propose a new encoding 
procedure. In addition, we have used the proposed 
decoding procedure in [4], and have extended it to be 
useful for our problem. 
 
3.1. Encoding 
 

A chromosome chk = 1,2,…,populationSize is a 
feasible map from set of tasks to set of processors, in 
which the populationSize is the total number of 
chromosomes. A chromosome has two parts: u(.) and 
v(.). u(.) shows scheduling order and v(.) means 
allocation information [4]. The length of each 
chromosome is equal to the number of tasks, because 
all of the tasks must be executed. Scheduling order 
must satisfy a ‘Topologic Sort’ result [12] with 
respect to task graph. Allocation information 
determines that each processor shall execute which 
task.  

References [4], [5] propose an encoding 
procedure, while considering topological order but 
[5] has not implemented topological order. We 
noticed some errors in the implemented of [4]. In 
every next level of scheduling, we not only can 
schedule a task’s children but also tasks without 
precedence. By doing this, we are able to produce 
more scheduling orders, and it will have positive 
effect on meeting deadlines. The proposed encoding 
procedure is shown in Figure 1. Line 16 is designed 
to satisfy topological sort. 

In addition, for initial state, total number of 
processors is assumed to be equal to the total number 
of tasks. In other hand, in order to meet deadlines, 
each task must execute on a separate processor, in the 
worst case. Therefore, in line 13 of Figure1 M is 
equal to N.  

Figure 2 is an example of task graph related to an 
assumed application with seven tasks. 



Table 1 is information about this application. It 
shows execution time of each task on processors and 
Table 2 shows one run of the encoding procedure. 
Finally, the instance output chromosome of encoding 
procedure is shown in Figure 3. 

 

1 procedure: Encoding for Scheduling Problem for Hard 
Real-Time 

2 input: task graph data set, total number of processors M 
3 output: u(.),v(.) 
4 begin 
5         l ← 1 , W ← ∅; 
6         while T ≠ ∅ 
7                 

W ← {τi | pre*(τi) = ∅ ∀i}
 

8                 
T ← T – W

 

9                 j ← random(W);  
10                 u(l) ← j; 
11                 W ← W – { j } 
12                 pre*(τi) ← pre*(τi) –{τj} ∀i; 
13                 m ← random[1: M] 
14                 v(l) ← m; 
15                 l ← l + 1; 
16                 T ← T U {τi, i ∈ W}; 
17         endwhile; 
18         output u(.),v(.); 
19 end; 

Figure 1. Encoding procedure 
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Figure 2. An example precedence task graph for an 

application with seven tasks 

Table 1. Data set of assumed application related to 
Figure 2 

cim di ci7 ci6 ci5 ci4 ci3 ci2 ci1 
pre*(τi) i 

20 2 3 10 2 5 10 3 - 1 
17 12 11 15 11 10 7 11 - 2 
31 10 12 7 10 13 6 12 1 3 
23 10 8 5 8 9 9 8 2 4 
45 6 12 10 6 10 5 12 1,2,3 5 
30 22 25 13 22 8 3 10 - 6 
32 5 4 9 7 7 11 4 6 7 

 
7 6 5 4 3 2 1 l 
5 3 1 7 4 2 6 u(.) 
3 4 1 5 2 1 3 v(.) 

Figure 3. An example of encoding procedure and a 
typical output chromosome (Chromosome chk) 

(Figure 1, 2 and Table 2) 

Table 2. An instance run of task graph on encoding 
procedure 

T W j m l 
{τ1,τ2,τ3,τ4,τ5,τ6,τ7}∅

{τ3,τ4,τ5,τ7} {1,2,6} 6 3 1 
{τ1,τ2,τ3,τ4,τ5,τ7}     

{τ3,τ4,τ5} {1,2,7} 2 1 2 
{τ1,τ3,τ4,τ5,τ7}     

{τ3,τ5} {1,4,7} 4 2 3 
{τ1,τ3,τ5,τ7}     

{τ3,τ5} {1,7} 7 5 4 
{τ1,τ3,τ5}     

{τ3,τ5} {1} 1 1 5 
{τ3,τ5}     
{τ5} {3} 3 4 6 
{τ5}     
∅ {5} 5 3 7 
∅ ∅    

 
3.2. Decoding 
 

Decoding procedure is shown in Figure 4 that is 
the same decoding in [4]. Total tardiness of each task 
is computed in line 14, completion time of all tasks is 
determined in line 18 and number of applied 
processors is calculated in line 19. Table 3 shows 
tracing of decoding procedure for the presented 
chromosome in Figure 3.The Gantt chart of Table 3 
and obtained fitness functions f1, f2 and f3 are shown 
in Figure 5. 
 
1 procedure: Decoding for Scheduling Problem for Hard 

Real- Time 
2 input: task graph data set, chromosome chk 

3 output: schedule set S, completion time f1, number of 
              processors f2, total tardiness of tasks f3 

4 begin 
5          l ← 1, S ← ∅; 
6          while l ≤ N 
7                   i ← u(l) 
8                   m ← v(l) 
9                   if (exist suitable idle time) then 
10                            insert(i); 
11                   endif; 
12                   start(i); 
13                   update_idle(); 
14                   f3 ← f3 + max {0 , ti

S + cim - max{crtji xixj
T |

                                              τj∈pre(τi)}- di } ;
 

15                   
S ← S U { i, m : ti

S - ti
F };

 

16                   l ← l + 1; 
17          endwhile; 
18            f1 ← max { ti

F }; 

19            f2 ← Different Numbers in v(.); 
20          output S, f1, f2, f3; 
21 end; 

Figure 4. Decoding procedure 



Table 3. Tracing of presented chromosome in Figure 
3 

ti
F ti

S m i l 
25 1 3 6 1 
12 1 1 2 2 
23 14 2 4 3 
19 10 5 7 4 
16 13 1 1 5 
28 18 4 3 6 
40 30 3 5 7 

 

 
Figure 5. The output of decoding procedure and the 
Gantt chart of instance chromosome (chromosome 

related to Figure 3) 
 
3.3 Evolution Function and Competitive 
Selection 
 

We use Adaptive Weighted Approach (AWA) to 
move ideal positive point in this research [4], [11]. In 
AWA, maximum and minimum values are obtained 
among all the values of fitness functions of 
chromosomes by (11). Next, adaptive weight of each 
fitness function is calculated by (13). Then, the 
weighted-sum objective function for each 
chromosome is computed by (14). Finally, evaluated 
function for each chromosome is obtained as shown 
in (15). 
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For competitive selection we have used of 
Roulette Wheel Selection [11]. 

 
3.4. Genetic Operators 
 

We have used modified one-cut crossover and 
standard mutation ([4], [11]) in this research as 
shown in Figure 6 and 7 respectively. Procedures of 
them operate on the v(.) part of chromosomes. 
Because, if they operate on the u(.) part, scheduling 
order might be changed. Therefore, it will not agree 
with task graph. So, our modified operators operate 
only on the v part of the chromosomes. 

 
procedure: Crossover 1 
input: parent chromosomes chk , chk’ 2 
output: proto-offspring chromosomes chk , chk’ 3 
begin 4 
          r ← random[1:N];  5 
          temp ← v([r + 1: N]);  6 
          v([r + 1: N]) ← v’([r + 1: N]);  7 
          v’([r + 1: N]) ← temp;  8 
          output chk , chk’; 9 
end; 10 

Figure 6. One-cut crossover operator operates on 
the v(.) part 

 
procedure: Mutation 1 
input: chromosome chk ,  2 
output: offspring chromosomes chk  3 
begin 4 
          r ← random[1:N];  5 
          v(r) ← random[1:M]; 6 
          output chk ; 7 
end; 8 

Figure 7. Mutation operator operates on the v(.) part 
 
3.5. Proposed Genetic Algorithm 
 

Proposed genetic algorithm is presented in Figure 
8. Algorithm terminates when main loop in line 7 
reaches a default value. In the other hand, it is 
iterated for a fix number of times. 

 
4. Validation 
 

For evaluation of the proposed genetic algorithm 
several numeral experiments were preformed. 
Numeral experiments are done with a random 
precedence task graph. 

We used P-Method [13] to produce the random 
precedence task graph. P-Method is based on an 
adjacency matrix of a task graph. If there is a 
precedence relation between tasks τi and τj then 



element aij of adjacency matrix will be one, otherwise 
it will be zero. An adjacency matrix is made with all 
its lower triangular and diagonal elements equal to 
zero. Each of the remaining upper triangular elements 
of the matrix is examined independently as part of a 
Bernoulli process with factor ε, which represents the 
probability of a success. For each element, when the 
Bernoulli test is a success, then the element is 
assigned a value of one; for a failure the element is 
given a value of zero. The parameter ε can be 
considered to be the sparsity of the task graph. With 
this method, a probability parameter of ε = 1 creates a 
totally sequential task graph, and ε = 0 creates an 
inherently parallel one. Values of ε that lie in 
between these two extremes generally produce task 
graphs that possess intermediate structures [13], [4], 
[5]. 

 
1 procedure: Proposed_Genetic_Algorithm 
2 input: task graph data set 

3 output: best schedule set S 
4 begin 
5    numberOfGeneration ← 0; 
6    initialize population(numberOfGeneration) byEncoding  

   procedure; 
7    while (NumberOfGeneration ≤ maxGeneration) do 
8         Evaluate f1, f2 ,f3 by Decoding procedure; 
9         eval(population); /*eavl(chk): k=1,..,populationSize  (15) 
10         if (not NumberOfGeneration ≤ maxGeneration) then 
11               creating  new_population by roulette wheel selection; 
12               new_population ← crossover(new_population); 
13               new_population ← Mutation(new_population); 
14               population ← new_population; 
15               numberOfGeneration ← numberOfGeneration +1; 
16         endif; 
17    endwhile; 
18    output best schedule set S; 
19 end; 

Figure 8. The proposed genetic algorithm 
 

For the tasks’ computation time, deadline and cache 
reload time between them, we use random numbers 
based on exponential distribution and normal 
distribution as follows ([4], [14], [15]): 

 Exp
imc : a random value based on exponential 

distribution with mean 5, 
 Nor

imc : a random value based on normal 
distribution with mean 5 and variance 2, 

 r1
Exp: a random value based on exponential 

distribution with mean Exp
imc , 

 r1
Nor: a random value based on normal 

distribution with mean Nor
imc , 

 Exp
id : equals to ExpExp

im
m

E
i rct 1}{max ++ , 

 Nor
id : equals to NorNor

im
m

E
i rct 1}{max ++ , 

 r2
Exp: equals to a random value based on 

exponential distribution between 0.05 to 0.1, 
 r2

Nor: equals to a random value based on 
Normal distribution between 0.05 to 0.1, 

 Exp
ijcrt : a random value between 

}]{max05.0,0[ lExponentia
imm

c , 

 Nor
ijcrt : a random value between  

}]{max05.0,0[ Normal
imm

c× . 

The parameters of genetic algorithm were set to 
0.7 for crossover, 0.3, and 1000 for number of 
generation. 
 
5. Experiments 
 

Here, we have designed some experiments based 
on previous sections. 
 
5.1. Experiment 1 
 

The first experiment is taken from [4]. In this 
experiment we have some information as well as it is 
shown in Table 4 that has been created by the P-
Method (same as our method). 

 
Table 4. Data set of experiment 1 

cim 
di 

ci3 ci2 ci1 
pre*(τi) i 

13 10 3 5 8 1 
17 12 7 3 6 2 
12 1 4 3 4, 5 3 
12 6 16 2 6, 7, 8 4 
27 4 2 12 6, 10 5 
24 7 4 2 9 6 
13 4 15 2 - 7 
18 4 5 3 - 8 
27 8 5 5 10 9 
29 6 5 1 - 10 

We divided this experiment into two parts. In first 
part we scheduled it without considering cache reload 
time, in Figure 9. In our method, the best answer as 
the completion time (f1) is 13, total tardiness (f3) is 0, 
and number of applied processors (f2) is 3 whereas 
report of this experiment in [4] is as completion time; 
15, total tardiness is 6 and minimizing of number of 
processors is not their objective (Figure 9-A). In 
addition, another run of our proposed algorithm is 
shown in Figure 9-B. For this run; f1 = 18, f2 = 2, f3 = 
0 whereas in an optimistic way, [4] has reported f1 = 
18, f2 = 3, f3 = 2. In Figure 10 has been shown a 



comparison between our proposed method and the 
proposed method in [4]. 

In the second part with respect to cache reload time, 
some obtained results are shown in Figure 11 and two 
suboptimal schedulers are shown in Figure 12. In 
Figure 11 we computed average of completion time of 
best obtained scheduler in 50 iterations of experience 
with considering and nonconsidering cache reload 
time when population size increases. 

 
Figure 9. Experiment 1 without cache reload time 

 
Figure 10. A comparison between our proposed 

method and the proposed method in [4] 
 
5.2. Experiment 2 
 

Second experiment was taken from [4] too. 
Execution time of each task on processers is given in 
Table 5, and for testing of local optimal problem we 
duplicate these processors in Table 6.  

Figure 13 shows three instances of the best output 
answers that they describe the best answer of our 
proposed method according to Table 5 without 
considering cache reload time.  

In Figure 14 has been shown 2 schedulers 
considering cache reload time. It is obvious scheduler 

with 3 processors has a lower completion time than 
scheduler with 4 processors. In fact this Comparison 
shows importance of considering cache reload time. 
An overall result has been presented in Figure 15. 

 
Figure 11. A comparison of completion time 

considering and nonconsidering cache reload time 

 
Figure 12. Experiment 1 with cache reload time 
 

 
Table 5. Data set of experiment 2 

cim 
di 

ci4 ci3 ci2 ci1 
pre*(τi) i 

19 8 11 3 5 8 1 
9 13 4 5 6 6 2 

18 7 6 8 11 4, 5 3 
37 6 5 13 10 6, 7, 8 4 
38 11 8 13 10 6, 10 5 
37 3 11 11 2 9 6 
44 8 11 10 3 - 7 
30 5 10 12 4 - 8 
37 10 7 9 6 10 9 
58 4 6 12 11 - 10 

 

Table 6. Data set of experiment 2 with duplicated 



processors 

cim 
di 

ci8 ci7 ci6 ci5 ci4 ci3 ci2 ci1 

pre*(τ
i ) 

i 

19 8 11 3 5 8 11 3 5 8 1 
9 13 4 5 6 13 4 5 6 6 2 

18 7 6 8 11 7 6 8 11 4, 
5 3 

37 6 5 13 10 6 5 13 10 
6, 
7, 
8 

4 

38 11 8 13 10 11 8 13 10 6, 
10 5 

37 3 11 11 2 3 11 11 2 9 6 
44 8 11 10 3 8 11 10 3 - 7 
30 5 10 12 4 5 10 12 4 - 8 
37 10 7 9 6 10 7 9 6 10 9 
58 4 6 12 11 4 6 12 11 - 10 

 
Figure 13. Schedulers for experiment 2 considering 

Table 5 and without considering cache reload time 

 
Figure 14. Two best schedulers considering cache 

reload time 

In this part for testing of optimal locality of 
proposed algorithm we duplicated the assumed 
processors from Table 5 to Table 6. Overall results 
has been shown in Figure 16 which this figure 
declares not only considering cache reload time in 
scheduling can cause using lower processor and 
decreases completion time simultaneously but also 
our proposed algorithm could gain obtained results 
when we use data set Table 5 without duplication.  

 
Figure 15. Comparisons between obtained 

completion time considering and nonconsidering 
cache reload time 

 
Figure 16. Comparisons between obtained 

completion time considering and nonconsidering 
cache reload time 

 
6. Conclusion and Future Works 
 

In this paper we have tried generalization on latest 
works ([4] – [6]) and covered their shortcomings. 
Paying attention to cache reload time in 
heterogeneous real-time systems is one of the aspects 
of this work. 

Improving the encoding procedure which has large 
influence on the proposed scheduler is part of this 
paper. For this part, we designed a suitable encoding 
procedure based on topological sort.  Same 
chromosome like [4] has been used to be able for 
comparing the proposed algorithm and the proposed 
algorithms in [4]. 

Also, trying to minimize the number of 
heterogeneous processors while all deadlines are met 
is done by genetic algorithm, whereas, in [5] this work 
is done by some extra local improvement heuristics 
moreover we have considered heterogeneous 
processors as oppose to [5] which assumes 
homogeneous processors. So our proposed algorithm 
is a generalization on [5]. 

Unlike [6], designed chromosome is simple and 
efficient, has fewer limitations, and while using 
limited information can minimize conflicted objective 
simultaneously. 



For future works, we will try to design some better 
stopping conditions and some improvements on 
convergent conditions too. 
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