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How the Carbanak cybergang stole $1bn
A targeted attack on a bank

—o Massive usage of the Internet

- More and more vulnerabilities
- More and more threats

—o Awareness of the sensitive data and infrastructures ‘>

= Network security :
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A SOLUTION

—o DS (Intrusion Detection System)

+ Monitor traffic
- Detect attacks

—o Current methods : rule-based

- Work fine on common and well-known attacks
- Cannot detect new attacks N

—o Emerging methods : anomaly-based

- Use the network data to estimate a normal behavior
- Apply algorithms to detect abnormal events (— attacks)
@
5 .-- ‘Revaelium

DARKTRACE Smart predictive analytics
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OVERVIEW

—o Basic scheme

data —— INKlol:BGIYR—— alerts

—o Many "standard” algorithms have been tested

—o Complex pipelines are emerging (ensemble/hybrid techniques)
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INHERENT PROBLEM

—o Algorithms are not magic
- They give some information about data (scores)
- But the decision often rely on a human choice

if score>threshold then trigger alert

—o The thresholds are often hard-set
- Expertise
- Fine-tuning
- Distribution assumption
—o Our idea: provide dynamic threshold with a probabilistic
meaning
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—o How to set z4 such that P(X€ > z5) < g ?
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—o Drawbacks: stuck in the interval, poor resolution
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SOLUTION 2: STANDARD MODEL
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—o Drawbacks: manual step, distribution assumption



REALITIES

—o Different clients and/or temporal drift



RESULTS

PROPERTIES Empirical quantile | Standard model
statistical guarantees Yes Yes
easy to adapt Yes No
high resolution No Yes
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EXTREME VALUE THEORY

—o Main result (Fisher-Tippett-Gnedenko, 1928)

The extreme values of any distribution have nearly the same
distribution (called Extreme Value Distribution)

heavy tail
—— exponential tail
—— bounded tail
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—o Let X1,X5,... X, a sequence of i.i.d. random variables with
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—o Central Limit Theorem
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AN IMPRESSIVE ANALOGY

—o Let X1,X5,... X, a sequence of i.i.d. random variables with

n
Sh=D)_Xi  My= max(X)
=1

1<i<n

—o Central Limit Theorem

Sn—Np d 2
7 — N(0,09)

—o FTG Theorem y
—a
—n 00 9 EVD(y)
bn
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A MORE PRACTICAL RESULT

—o Second theorem of EVT (Pickands-Balkema-de Haan, 1974)
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A MORE PRACTICAL RESULT

—o Second theorem of EVT (Pickands-Balkema-de Haan, 1974)

The excesses over a high threshold follow a Generalized Pareto
Distribution (with parameters ~, o)

—o What does it imply ?
- we have a model for extreme events
- we can compute z, for g as small as desired
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How TO USE EVT

—o Get some data X1, X2... X,

—o Set a high threshold t and retrieve the excesses Y; = X, —t
when X, >t
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How TO USE EVT

—o Get some data X1, X ... X,

—o Set a high threshold t and retrieve the excesses Y; = X, — t
when X >t

—o Fita GPD to the Y; (— find parameters v, o)

!

Compute zg such as P(X > z4) < g

q
|
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Finding anomalies in streams
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CAN WE TRUST THAT THRESHOLD Zq ?

—o An example with ground truth : a Gaussian White Noise
- 40 streams with 200 000 iid variables drawn from N(0, 1)
- g =1073 = theoretical threshold z;, ~ 3.09



CAN WE TRUST THAT THRESHOLD Zq ?

—o An example with ground truth : a Gaussian White Noise
- 40 streams with 200 000 iid variables drawn from N(0, 1)
- g = 1073 = theoretical threshold zy ~ 3.09

—o Averaged relative error

Relative error
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Application to intrusion detection




ABOUT THE DATA

—o Lack of relevant public datasets to test the algorithms ...



ABOUT THE DATA

—o Lack of relevant public datasets to test the algorithms ...
—o KDD99 ? See [McHugh 2000] and [Mahoney & Chan 2003]



ABOUT THE DATA

—o Lack of relevant public datasets to test the algorithms ...
—o KDD99 ? See [McHugh 2000] and [Mahoney & Chan 2003]
—o We rather use MAWI

- 15 min a day of real traffic (.pcap file)
- Anomaly patterns given by the MAWILab [Fontugne et al. 2010]
with taxonomy [Mazel et al. 2014]



ABOUT THE DATA

—o Lack of relevant public datasets to test the algorithms ...
—o KDD99 ? See [McHugh 2000] and [Mahoney & Chan 2003]

—o We rather use MAWI

- 15 min a day of real traffic (.pcap file)
- Anomaly patterns given by the MAWILab [Fontugne et al. 2010]
with taxonomy [Mazel et al. 2014]

—o Preprocessing step : raw .pcap — NetFlow format (only
metadata)



AN EXAMPLE TO DETECT NETWORK SYN SCAN

—o The ratio of SYN packets : relevant feature to detect network
scan [Fernandes & Owezarski 2009]
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—o The ratio of SYN packets : relevant feature to detect network
scan [Fernandes & Owezarski 2009]
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—o Goal: find peaks
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SPOT RESULTS

—o Parameters: g = 10~%,n = 2000 (from the previous day record)
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SPOT RESULTS

—o Parameters: g =10~%,n = 2000 (from the previous day record)
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DO WE REALLY FLAG SCAN ATTACKS ?

—o The main parameter g: a False Positive regulator
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DO WE REALLY FLAG SCAN ATTACKS ?

—o The main parameter g: a False Positive regulator
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—o 86% of scan flows detected with less than 4% of FP
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SPOT SPECIFICATIONS

—o A single main parameter g
- With a probabilistic meaning — P(X > z4) < g
- False Positive regulator

—o Stream capable

- Incremental learning
- Fast (~ 1000 values/s)
- Low memory usage (only the excesses)
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—o SPOT
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- uses it to detect network anomalies
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OTHER THINGS ?

—o SPOT
- performs dynamic thresholding without distribution assumption
- uses it to detect network anomalies

—o But it could be adapted to

- compute upper and lower thresholds
- other fields
- drifting contexts (with an additional parameter) — DSPOT

23
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A RECENT EXAMPLE

—o Thursday the 9th of February 2017

- 9h : explosion at Flamanville nuclear plant
- 11h : official declaration of the incident by EDF

—o What about the EDF stock prices ?
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CONCLUSION

—o Context: A great deal of work has been done to develop
anomaly detection algorithms

—o Problem: Decision thresholds rely on either distribution
assumption or expertise

—o Qur solution: Building dynamic threshold with a probabilistic
meaning

- Application to detect network anomalies
- But a general tool to monitor online time series in a blind way

—o Future: Adapt the method to higher dimensions
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