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General motivations

⊸ Massive usage of the Internet

• More and more vulnerabilities
• More and more threats

⊸ Awareness of the sensitive data and infrastructures
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⇒ Network security :
a major concern



A Solution

⊸ IDS (Intrusion Detection System)
• Monitor traffic
• Detect attacks

⊸ Current methods : rule-based

• Work fine on common and well-known attacks
• Cannot detect new attacks

⊸ Emerging methods : anomaly-based

• Use the network data to estimate a normal behavior
• Apply algorithms to detect abnormal events (→ attacks)
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Overview

⊸ Basic scheme

Algorithmdata alerts

⊸ Many ”standard” algorithms have been tested
⊸ Complex pipelines are emerging (ensemble/hybrid techniques)

data
alerts
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Inherent problem

⊸ Algorithms are not magic
• They give some information about data (scores)

• But the decision often rely on a human choice

if score>threshold then trigger alert

⊸ The thresholds are often hard-set

• Expertise
• Fine-tuning
• Distribution assumption

⊸ Our idea: provide dynamic threshold with a probabilistic
meaning
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Providing better thresholds



My problem
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⊸ How to set zq such that P(X€ > zq) < q ?
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Solution 1: empirical approach
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Solution 2: Standard Model
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Realities
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Results

Properties Empirical quantile Standard model
statistical guarantees Yes Yes

easy to adapt Yes No
high resolution No Yes
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Inspection of extreme events
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Extreme Value Theory

⊸ Main result (Fisher-Tippett-Gnedenko, 1928)

The extreme values of any distribution have nearly the same
distribution (called Extreme Value Distribution)
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An impressive analogy

⊸ Let X1, X2, . . . Xn a sequence of i.i.d. random variables with

Sn =
n∑
i=1

Xi Mn = max
1≤i≤n

(Xi)

⊸ Central Limit Theorem
Sn − nµ√n

d−→ N (0, σ2)

⊸ FTG Theorem Mn − an
bn

d−→ EVD(γ)
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A more practical result

⊸ Second theorem of EVT (Pickands-Balkema-de Haan, 1974)

The excesses over a high threshold follow a Generalized Pareto
Distribution (with parameters γ, σ)

⊸ What does it imply ?

• we have a model for extreme events
• we can compute zq for q as small as desired
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How to use EVT

⊸ Get some data X1, X2 . . . Xn
⊸ Set a high threshold t and retrieve the excesses Yj = Xkj − t

when Xkj > t

⊸ Fit a GPD to the Yj (→ find parameters γ, σ)
⊸ Compute zq such as P(X > zq) < q

EVT

q

X1, X2 . . . Xn zq
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Finding anomalies in streams



Streaming Peaks-Over-Threshold (SPOT) algorithm

(initial batch)

X1, X2 . . . Xn Calibration
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Xi>n Xi > zq

trigger alarm
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no Xi > t

yes
update model

no drop
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Can we trust that threshold zq ?

⊸ An example with ground truth : a Gaussian White Noise
• 40 streams with 200 000 iid variables drawn from N (0, 1)
• q = 10−3 ⇒ theoretical threshold zth ≃ 3.09

⊸ Averaged relative error
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Application to intrusion detection



About the data

⊸ Lack of relevant public datasets to test the algorithms ...

⊸ KDD99 ? See [McHugh 2000] and [Mahoney & Chan 2003]
⊸ We rather use MAWI

• 15 min a day of real traffic (.pcap file)
• Anomaly patterns given by the MAWILab [Fontugne et al. 2010]
with taxonomy [Mazel et al. 2014]

⊸ Preprocessing step : raw .pcap → NetFlow format (only
metadata)
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An example to detect network syn scan

⊸ The ratio of SYN packets : relevant feature to detect network
scan [Fernandes & Owezarski 2009]

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0
Time (s)

0.0

0.2

0.4

0.6

0.8

ra
tio

 o
f S

YN
 p

ac
ke

ts
 in

 5
0m

s t
im

e 
wi

nd
ow

⊸ Goal: find peaks
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SPOT results

⊸ Parameters : q = 10−4,n = 2000 (from the previous day record)
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Do we really flag scan attacks ?

⊸ The main parameter q: a False Positive regulator
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⊸ 86% of scan flows detected with less than 4% of FP
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A more general framework



SPOT Specifications

⊸ A single main parameter q
• With a probabilistic meaning → P(X > zq) < q
• False Positive regulator

⊸ Stream capable

• Incremental learning
• Fast (∼ 1000 values/s)
• Low memory usage (only the excesses)

22
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Other things ?

⊸ SPOT
• performs dynamic thresholding without distribution assumption
• uses it to detect network anomalies

⊸ But it could be adapted to

• compute upper and lower thresholds
• other fields
• drifting contexts (with an additional parameter) → DSPOT
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A recent example

⊸ Thursday the 9th of February 2017

• 9h : explosion at Flamanville nuclear plant
• 11h : official declaration of the incident by EDF

⊸ What about the EDF stock prices ?

24



A recent example

⊸ Thursday the 9th of February 2017

• 9h : explosion at Flamanville nuclear plant
• 11h : official declaration of the incident by EDF

⊸ What about the EDF stock prices ?

24



A recent example

⊸ Thursday the 9th of February 2017
• 9h : explosion at Flamanville nuclear plant

• 11h : official declaration of the incident by EDF

⊸ What about the EDF stock prices ?

24



A recent example

⊸ Thursday the 9th of February 2017
• 9h : explosion at Flamanville nuclear plant
• 11h : official declaration of the incident by EDF

⊸ What about the EDF stock prices ?

24



A recent example

⊸ Thursday the 9th of February 2017
• 9h : explosion at Flamanville nuclear plant
• 11h : official declaration of the incident by EDF

⊸ What about the EDF stock prices ?

24



EDF stock prices
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Conclusion

⊸ Context: A great deal of work has been done to develop
anomaly detection algorithms

⊸ Problem: Decision thresholds rely on either distribution
assumption or expertise

⊸ Our solution: Building dynamic threshold with a probabilistic
meaning

• Application to detect network anomalies
• But a general tool to monitor online time series in a blind way

⊸ Future: Adapt the method to higher dimensions

26
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