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ABSTRACT
While self-supervised 3D face reconstructionmodels have improved
over the years, because their training loss is mainly based on the
photometric loss, they struggle to predict a 3D face with a correct
head pose. On the other hand, supervised methods can predict
more accurate head pose but require a lot of annotated data. In this
work, we propose to improve self-supervised methods by adding 3D
information to their input to improve the predicted head pose. We
encode the 3D information in the form of the Projected Normalized
Coordinate Code (PNCC). To reduce the need for annotated data to
generate the PNCCs, we use transfer learning to adapt a pre-trained
face autoencoder to predict the PNCCs. Our PNCC predictor can
be trained using only a few annotated samples. Our experiments
on a self-supervised method shows that the addition of the PNCC
improves the predicted head pose.
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1 INTRODUCTION
3D face reconstruction has many applications, notably in facial ani-
mation, but acquiring 3D annotations typically requires a scanner
to capture 3D face scans which limits the number of subjects in
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Figure 1: Our two-stage framework for 3D face reconstruction
training.

the dataset. Some datasets try to overcome this limitation by using
face model fitting to annotate images but it often leads to poor
annotations. Self-supervised methods avoid this issue by training
using only 2D face images without 3D annotations, minimizing
the photometric error between the original and the reconstructed
face images. However, since no 3D information is used during the
training, these methods tend to predict a wrong head pose.

We propose to improve the quality of self-supervised methods,
especially the predicted head pose, by incorporating face shape
and pose information in the architecture, using as few annotated
samples as possible. To do so, we use a two-stage process (see
Figure 1) composed of a supervised transfer learning stage and a
self-supervised stage. The first stage involves adapting a pre-trained
face autoencoder to make it predict the Projected Normalized Coor-
dinate Code (PNCC) [Zhu et al. 2016] of an input face image. This
modified autoencoder can be trained with only 50 annotated sam-
ples. Once trained, we use it to augment, with the predicted PNCCs,
a face image dataset. In the second stage, we train a self-supervised
3D face reconstruction model on the augmented dataset but with
the PNCC as additional input. Our model predicts better head poses
compared to the original model without PNCC.
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Figure 2: Our PNCC predictor architecture which can be
trained with limited annotated data.

2 METHOD
We train two networks: a PNCC predictor (see Figure 2) and a 3D
face reconstruction network. The first one is the pre-trained face
autoencoder from 3FabRec with Interleaved Transfer Layers (ITLs)
[Browatzki and Wallraven 2020] to make it predict the PNCC. ITLs
are convolutional layers interleaved with the decoder layers. They
re-use the generative power of the decoder layers but adapt it to
generate the PNCC instead of the face image. We also add the skip-
connections from SCAF [Dornier et al. 2022] to improve the PNCC
quality. Because the encoder and decoder are already pre-trained,
only the ITLs and skip-connections layers are trained from scratch.
Thus, we are able to train our PNCC predictor with only a few
3D annotations. This training is supervised using samples from
300W-LP [Zhu et al. 2016]. Our self-supervised 3D face reconstruc-
tion model is based on MoFa [Tewari et al. 2017] but we stack the
PNCC with the face image at the input of its encoder. We train on
CelebA [Liu et al. 2015] augmented with our predicted PNCCs.

3 EXPERIMENTS
We use 4 evaluation metrics. The 2D Dense Alignment and 3D Dense
Alignment metrics are the Normalized Mean Error (NME) on the
2D and 3D vertices respectively. The 3D Face Reconstruction metric
first aligns the predicted and ground truth faces meshes prior to
computing the NME so it is invariant to the predicted head pose
and only evaluates the face shape. We also evaluate the predicted
head pose using the Mean Absolute Error (MAE) for the yaw angle.
The evaluation is done on AFLW2000-3D [Zhu et al. 2016].

We have trained 2 PNCC predictors to annotate CelebA, one
on the whole 300W-LP (122,450 samples): PNCC𝑓 𝑢𝑙𝑙 and another
using only 50 samples: PNCC𝑓 𝑒𝑤 . We then trained 2 3D face recon-
struction models, MoFaPNCC𝑓 𝑢𝑙𝑙 using PNCC𝑓 𝑢𝑙𝑙 ’s predictions
and MoFaPNCC𝑓 𝑒𝑤 which used PNCC𝑓 𝑒𝑤 ’s predictions. Table 1
reports our results on AFLW2000-3D compared to MoFa. For the
dense alignment metrics, both MoFaPNCC𝑓 𝑢𝑙𝑙 andMoFaPNCC𝑓 𝑒𝑤

achieve better results compared to MoFa demonstrating that adding
the PNCC to the model input improves the predicted head pose,
even when using PNCCs predicted from a model trained with lim-
ited annotated data. For the 3D face reconstruction metric the
vanilla MoFa is a bit better. However, the main goal of our ar-
chitecture is to improve the predicted head pose and this metric
does not take into account the predicted head pose. The addition
of the PNCC also improves the predicted yaw angle although, the

Table 1: Evaluation metrics on AFLW2000-3D.
MoFaPNCC𝑓 𝑒𝑤 uses predictions from our PNCC pre-
dictor trained with only 50 samples.

Method Dense 2D Dense 3D Face Rec. Yaw
MoFa [Tewari et al. 2017] 4.31 5.85 7.49 4.97
MoFaPNCC𝑓 𝑒𝑤 (Ours) 4.20 5.66 7.61 4.95
MoFaPNCC𝑓 𝑢𝑙𝑙 (Ours) 4.12 5.48 7.55 4.66
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Figure 3: Comparison of 3D face reconstruction predictions.

gain is quite small for MoFaPNCC𝑓 𝑒𝑤 . Figure 3 shows the predicted
face meshes of MoFa and our models on some images. Our models
predict better head pose or face scale.

4 CONCLUSION
We have proposed an effective way to improve self-supervised 3D
face reconstruction methods using only a few 3D face annotations.
We used transfer learning to train with limited annotated data a
pre-trained face autoencoder to generate PNCCs from face images.
Once trained, we used it to annotate a face dataset. We have shown
that the PNCCs can be used as additional input to a self-supervised
3D face reconstruction model and improve the predicted head pose.
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