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1 INTRODUCTION
Achieving high quality animation for VR self-avatars on consumer
devices that retain a sense of embodiment and responsiveness is an
important, yet difficult task. A key factor in the difficulty is the lim-
ited sensor data available from typical ‘inside-out’ tracking HMDs,
whereby the headset orients itself with respect to the environment
using sensors on the headset (as opposed to ’outside-in’, which
makes use of external sensors) to generate sparse 6DoF spatial sig-
nals for the HMD and two controllers/hands. Due to this, it has been
common to animate VR self-avatars by using a mixture of inverse
kinematics (IK) and animation state machines, driven by various
heuristics and assumptions, such as the character root/hips being
directly below the user’s head, and changing to different locomo-
tion modes as the HMD moves vertically (e.g. crouching). However,
such methods are difficult to design so that they produce both high
animation quality and strong correspondence with a user’s pose.

To improve fidelity and correspondence with the user, recent
techniques leverage motion capture data to train machine learning
models to estimate a user’s pose [Du et al. 2023; Winkler et al. 2022]
given the sparse signals from an inside-out tracking VR system.
Such methods are promising, but iteration times are often too high
for use in production scenarios such as game development.

Motion matching [Büttner and Clavet 2015] is a popular real-
time animation method in industry due to its high quality output,
lower iteration time, and relatively low inference time. Furthermore,
the recent work MMVR by [Ponton et al. 2022] has demonstrated
an application of motion matching to VR self-avatars, by generating
the character trajectory required for motion matching, through the
prediction of character root orientation (hips) from the sparse HMD
and controller signals using a lightweight neural network (NN).
Such an approach can provide a better approximation of user hip
direction than naively assuming that the hips are always aligned
with the HMD, but we found the network can struggle to generalise,
given its limited capacity, likely producing an average of multiple
plausible hip orientations (Figure 2: 30-40s).
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Figure 1: Hip direction drives MMVR [Ponton et al. 2022].
The original utilises an MLP to predict hip direction from
HMD and controllers (orange). Our system aligns a 3D pose
estimation signal (blue) to the HMD tracking signals to ob-
tain a hip orientation estimate. We evaluate the resulting
directional error (yaw) between the driven character’s hip
orientation and the ground truth user hip direction

In this work, we look to overcome this issue by including human
pose estimation from webcam video, within the motion matching
framework, in addition to the VR head and hand signals as used in
MMVR. Our investigations highlight how this combined approach
can reduce ambiguity when predicting the user’s hip orientation,
leading to more accurate body pose predictions.

2 APPROXIMATING 3D JOINT POSITIONS
We utilise an off-the-shelf 3D pose estimator: MediaPipe BlazePose
GHUM 3D [Bazarevsky et al. 2020; Xu et al. 2020] to obtain camera-
space 3D landmarks. We align the three ‘Nose’ and left/right ‘Wrist’
landmarks with the VR user’s HMD and controller positions by:

(1) Manually correcting for the camera pitch so landmarks only
need a further correction of yaw and translation

(2) Vertically aligning landmarks by either translating so that
the lowest landmark is always on the ground, or aligning
the ‘Nose’ landmark to HMD

(3) Performing a constrained least-squared minimisation (e.g.
Kabsch, brute-force iterative) to find the optimal horizontal
translation and yaw correction between the three ‘Nose’
and left/right ‘Wrist’ landmarks, with the positions, man-
ually offset to correspond to the landmarks, of the HMD-
provided HMD and controller positions.

The resulting aligned landmarks are a reasonable and fast, albeit
crude, approximation of various user’s landmark positions, notably
the left and right ’Hip’ landmarks, from which we can extract
quantities with which to drive motion matching.
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Figure 2: Plot of angular error on our test data. Blue curve
shows our pose estimation driven hip direction with average
error = 16.7 degrees. Orange curve shows error for MMVR’s
NN predicted hip direction; average error = 28.9 degrees.

3 DRIVING MOTION MATCHING
In traditional motion matching, one of the matching metrics com-
putes the error in root position and root velocity between the cur-
rent and candidate frames, and another, the error in future root
trajectory at fixed times in the future, compared with an artificial
trajectory generated by the ‘gamepad’ direction and magnitude.
In MMVR, the root velocity and trajectory are generated by the
predicted hip orientation and tracked HMD velocity in the same
way a gamepad direction and magnitude generates a trajectory.

We observe that swapping out MMVR’s NN predicted hip di-
rection with a hip direction approximation from the aligned pose
estimation landmarks, computed by a cross product of the left-
to-right hip landmarks direction vector, with the world-space up
vector, results in a lower RMSE between the resulting character’s
hip direction yaw angle, and the ground truth hip direction yaw
angle on our preliminary test data, as shown in Figure 2. The sud-
den spikes in the figures occur in all regimes when the user turns
their body and the motion matching system is yet to, or is in the
process of, performing an appropriate transition to rotate the vir-
tual character to follow. To validate this fact, we show the resulting
error when the hip direction is driven directly by the ground truth
data, as shown in Figure 3.

Our test data consists of signals produced by an HTC Vive sys-
tem and Vive tracker attached to the waist, and synchronised pose
estimation landmarks produced by a basic sequence of forward,
backward and strafing locomotion. The data is then played-back in
Unity to simulate the same VR and pose estimation inputs to quan-
titatively evaluate the different hip direction estimation methods
(ours v.s. MMVR’s NN v.s. ground truth) with regards to character
and user hip alignment.

4 DISCUSSION AND FUTUREWORK
VR self-avatar locomotion is a challenging problem and we believe
there are various avenues to improve the motion matching system’s
results (besides refining the original pose matching dataset).

The error of our system is often comparable to, or slightly worse
than, the original approach during spikes in error due to turning,
likely a result of the noise and latency of the pose estimation sys-
tem or occlusion. However, note that such spikes also occur when
driving using the ground truth hip direction (figure 3).

Figure 3: Plot of angular error between character hips and
ground truth hip tracker when MMVR is driven directly by
the ground truth hip tracker direction. Demonstrates the nat-
ural turning latency of themotionmatching system. Average
error = 13.3 degrees

On the other hand, we noticed that our system tends to reduce
the turning error more rapidly, such as in the time span 13-17s,
and reduces bad cases of the NN staying misaligned for prolonged
periods, such as 30-40s in Figure 2. We believe this may be due to
issues with generalisation of the NN, or ‘averaging’ of the one-to-
manymappings of HMD signals to hip direction, which the estimate
of hip direction from pose estimation can overcome.

Also, we noticed that the motion matching system has a capa-
bility to handle the upstream noise from the pose estimation land-
marks, such as due to occlusion, as the motion matching system
usually either chooses not to transition due to the quality metric
enforcing pose consistency, or quickly re-transitions back to a suit-
able animation in a way that is imperceptible due to inertialisation
blending.

In future work, we seek to improve the base motion matching
system via refining the pose data, but also experiment with improv-
ing the alignment, and using the pose estimation foot landmark
data to guide the system to select transitions that lead with the
same foot as the user during locomotion to improve lower body
correspondence.

We are also interested in using this system to drive a non-
humanoid avatar, such as a dog, and perform experiments of animal
embodiment.
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