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Coxeter Groups and Abstract Elementary Classes:
The Right-Angled Case

Tapani Hyttinen and Gianluca Paolini

Abstract We study classes of right-angled Coxeter groups with respect to the
strong submodel relation of a parabolic subgroup. We show that the class of
all right-angled Coxeter groups is not smooth and establish some general com-
binatorial criteria for such classes to be abstract elementary classes (AECs), for
them to be finitary, and for them to be tame. We further prove two combina-
torial conditions ensuring the strong rigidity of a right-angled Coxeter group of
arbitrary rank. The combination of these results translates into a machinery to
build concrete examples of AECs satisfying given model-theoretic properties.
We exhibit the power of our method by constructing three concrete examples of
finitary classes. We show that the first and third classes are nonhomogeneous and
that the last two are tame, uncountably categorical, and axiomatizable by a single
L!1;! -sentence. We also observe that the isomorphism relation of any count-
able complete first-order theory is �-Borel reducible (in the sense of generalized
descriptive set theory) to the isomorphism relation of the theory of right-angled
Coxeter groups whose Coxeter graph is an infinite random graph.

1 Introduction

Abstract elementary classes (AECs; see Shelah [18]) are pairs .K; 4/ such that K
is a class of structures of the same similarity type and 4 is a partial order on K,
often referred to as a strong submodel relation, satisfying a certain set of axioms,
which generalize some of the properties of the relation of an elementary submodel
of first-order logic. Although AECs generalize the first-order setting, the situation in
AECs is very different from the one in elementary model theory. In fact, in the latter
setting the strong submodel relation is always fixed. The same remark holds for the
model theory of infinitary languages, since also in this context one tends to use the
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canonical strong submodel relations (which in this case depend on what the formula
is that defines the class under study). On the other hand, in the theory of AECs
we are free to choose any strong submodel relation, as long as the AEC axioms are
satisfied. This choice determines very strongly the model-theoretic properties of the
class under analysis. A classical example is when we consider as K the class of
all abelian groups. In this case, letting 40 be the subgroup relation and 41 be the
pure subgroup relation, we have that .K; 40/ is !-stable, while .K; 41/ is not even
superstable.

In the context of AECs, when one tries to find examples of various model-
theoretic properties, one tends to start from a class K of structures and then search
for a suitable or natural strong submodel relation 4. In this paper we conduct an
experiment and reverse this process. That is, we first choose the relation 4 and then
we try to find K so that .K; 4/ satisfies certain given model-theoretic properties. We
hope that in this way we are able to increase our understanding of the vast number
of dividing lines that currently dominate the universe of AECs and to generate new
(counter)examples for the theory. A similar approach has been pioneered in Hyttinen
and Paolini [12], where several well-behaved classes of geometric lattices have been
found in this way, when considering as 4 the strong submodel relation of principal
extension of a combinatorial geometry, arising from the work of Crapo in [8].

In this case study, we consider the strong submodel relation of a parabolic sub-
group, from geometric group theory. The beginning of our study is the search
for groups which together with the parabolic subgroup relation are AECs (i.e., the
first property we test is the property of being an AEC). We very quickly restricted
our attention to classes consisting of so-called right-angled Coxeter groups. These
groups are in fact the most well-understood structures in geometric group theory. In
particular, they satisfy a crucial requirement known as rigidity (see Castella [7]; see
also below1). However, it turns out that rigidity alone is not enough for our purposes.
In fact, we will see that the smoothness axiom fails in general, and without additional
assumptions, we do not even know whether 4 is transitive or not. We get out of this
impasse assuming a stronger property, known as strong rigidity.

Whereas in the case of finitely generated right-angled Coxeter groups clear nec-
essary and sufficient conditions are known for strong rigidity, not much is known
about infinitely generated ones. What is known is basically just that in this more
general setting these conditions are only necessary, but not sufficient. Thus, we start
our study by giving two combinatorial conditions ensuring the strong rigidity of an
arbitrary right-angled Coxeter group. These results will be used to construct three
concrete examples of AECs: .K0; 4/, .K1; 4/, and .K2; 4/.

We continue our study by giving some general criteria for a class of strongly
rigid right-angled Coxeter groups to be an AEC and for it to satisfy the usual suffi-
cient conditions for the construction of a monster model, that is, amalgamation, joint
embedding, and arbitrarily large models. We then turn to notions that describe the
behavior of Galois types, namely, homogeneity, finitarity, and tameness. (We will
also point out that, excluding the class of infinite vector spaces over the two-element
field, classes of infinite right-angled Coxeter groups are not first-order axiomatiz-
able.) Also in this case we give general criteria for the satisfaction of these proper-
ties under the assumption of strong rigidity. The underlying theme of these general
results is the reduction of model-theoretic properties of a class of right-angled Cox-
eter groups to combinatorial conditions on the associated graphs, the so-called Cox-
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eter graphs. These conditions are often easy to realize, and paired with our two gen-
eral results on the strong rigidity of right-angled Coxeter groups, they translate into
a machinery to build concrete examples of AECs. The classes .K0; 4 /, .K1; 4/,
and .K2; 4/ should be considered under this perspective as explicit examples of this
machinery.

We conclude the paper with a close analysis of these classes. First, we show that
.K0; 4/, .K1; 4/, and .K2; 4/ are finitary. Then, we show that .K0; 4/ has the inde-
pendence property (and thus it is unstable), while .K1; 4/ and .K2; 4/ are both tame
and uncountably categorical (and thus stable in every infinite cardinality). Finally,
we show that .K0; 4/ and .K2; 4/ are not homogeneous. We leave the tameness of
.K0; 4/ and the homogeneity of .K1; 4/ as open questions. John Baldwin pointed
out to us that, by combining our results with results from Krueker in [14], various
definability results can be obtained. For example, the classes .K1; 4/ and .K2; 4/

are axiomatizable by a single L!1;!-sentence, and over strong submodels Galois
types and L!1;!-types coincide in both .K1; 4/ and .K2; 4/.

In the process of writing this paper, we also observed that right-angled Coxeter
groups provide a way of finding a group whose first-order theory is maximal in the
order of complexity that was introduced in the theory of generalized descriptive set
theory (see Friedman, Hyttinen, and Kulikov [9]). We will point out how one can see
this.

2 Coxeter Groups

Let S be a set. A matrix m W S � S ! ¹1; 2; : : : ; 1º is called a Coxeter matrix if it
satisfies

m.s; s0/ D m.s0; s/;

m.s; s0/ D 1 , s D s0:

Equivalently, m can be represented by a labeled graph � , called a Coxeter graph,
whose node set is S and whose edges are the unordered pairs ¹s; s0º such that
m.s; s0/ < 1, with label m.s; s0/. (Notice that some authors refer to the Coxeter
graph as the graph � such that s and s0 are adjacent if and only if m.s; s/ > 2.) Let
S2

fin D ¹.s; s0/ 2 S2 W m.s; s0/ < 1º. A Coxeter matrix m determines a group W

with presentation´
Generators W S;

Relations W .ss0/m.s;s0/ D e; for all .s; s0/ 2 S2
fin:

(2.1)

If a group W has a presentation such as (2.1), then the pair .W; S/ is called a Coxeter
system of type m D m.W;S/ or of type � D �.W;S/. The group W D W� is called
a Coxeter group, and the set S is a Coxeter basis (or Coxeter generating set) for W .
The cardinality of S is called the rank of .W; S/. Notice that in the present paper
we do not assume that our Coxeter groups are of finite rank, as is done in most of
the literature on the subject. As is well known, the isomorphism type of �.W;S/ is
not determined by the group W alone (see, e.g., Björner and Brenti [4, Chapter 1,
Exercise 2]). This motivates the following definition.

Definition 2.1 Let W be a Coxeter group.
(1) We say that W is rigid if for any two Coxeter bases S and S 0 for W there is

an automorphism ˛ 2 Aut.W / such that ˛.S/ D S 0.
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(2) We say that W is strongly rigid if for any two Coxeter bases S and S 0 for W

there is an inner automorphism ˛ 2 Inn.W / such that ˛.S/ D S 0.
That is, W is rigid if and only if for any two Coxeter bases S and S 0 for W there exists
an isomorphism of labeled graphs between �.W;S/ and �.W;S 0/. The problem of
deciding whether two nonisomorphic Coxeter graphs determine isomorphic Coxeter
groups is known as the isomorphism problem for Coxeter groups. This problem is
highly nontrivial, and it has been solved only partially (see Bahls [1]). The most
well-understood class of Coxeter groups in this respect (and any other respect) is the
class of so-called right-angled Coxeter groups.
Definition 2.2 We say that a Coxeter system .W; S/ is right-angled if m.W;S/ has
coefficients in ¹1; 2; 1º and that a Coxeter group W is right-angled if there exists a
right-angled Coxeter system for W .
Theorem 2.3 (Castella [7, Theorem 2]) The right-angled Coxeter groups are rigid.
Thus, in the case of right-angled Coxeter systems .W; S/ the group W alone deter-
mines the isomorphism type of �.W;S/. Consequently, given a right-angled Cox-
eter group W we denote by �W (or simply �) its associated Coxeter graph (unique
modulo graph isomorphisms). Given a Coxeter group W there is a special class of
subgroups of W , which are called the parabolic subgroups of W . These subgroups
(and the subgroup relation which they induce) will be the main ingredient in our
model-theoretic analysis of right-angled Coxeter groups.
Definition 2.4 Let W be a Coxeter group.

(1) Given a Coxeter basis S for W , we say that W 0 is an S -parabolic subgroup
of W if W 0 D hS 0iW for some S 0 � S , that is, W 0 is generated by a subset
of S . In this case, we denote the subgroup W 0 as WS 0 .

(2) We say that W 0 is a parabolic subgroup of W , denoted as W 0 4 W , if W 0

is an S -parabolic subgroup of W for some Coxeter basis S of W .
A parabolic subgroup W 0 D hS 0iW of a Coxeter group W D .W; S/ is a Coxeter
group in its own right, with a Coxeter generating set the induced subgraph deter-
mined by S 0 (see, e.g., [4, Proposition 2.4.1]). As is evident from the definition, the
parabolic subgroup relation depends on the particular choice of Coxeter basis S for
W . This generates some difficulties in the analysis of this relation, for example, in the
proof of very basic properties such as transitivity. To this end, the notion of strong
rigidity (see Definition 2.1) is of great help. (Notice for example that in the presence
of strong rigidity the transitivity of the parabolic subgroup relation is essentially
trivial (see the proof of Theorem 5.2).) For this reason we are interested in sufficient
(and possibly necessary) conditions for strong rigidity. The problem of the (strong)
rigidity of a Coxeter group W is of course strictly related to our understanding of the
corresponding group of automorphisms Aut.W /. In the case of right-angled Coxeter
groups a fundamental result of Tits from [20] gives an explicit description of Aut.W /

as a semidirect product of “tame” subgroups of Aut.W /. We describe these two sub-
groups. Given a right-angled Coxeter group W with Coxeter graph � D .S; E/, let
F.�/ be the collection of the S -spheric subgroups of W , that is, the S -parabolic
subgroups WS 0 of W , with S 0 a finite clique of �.W;S/ (i.e., m.W;S/.s; s0/ 2 ¹1; 2º).
Then let Aut.W; F.�// be the subgroup of Aut.W / which stabilizes F.�/, and let
Spe.W / be the subgroup of Aut.W / which stabilizes the conjugacy class of every
s 2 S .
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Theorem 2.5 (Tits [20, p. 1]) Let W be a right-angled Coxeter group. Then
Aut.W / D Spe.W / Ì Aut

�
W; F.�/

�
:

Evidently,
Inn.W / � Spe.W / and Aut.�/ � Aut

�
W; F.�/

�
;

where Aut.�/ denotes the automorphism group of the graph � , which is naturally
thought of as a subgroup of Aut.W /, since every automorphism of � extends canon-
ically to an automorphism of Aut.W /. The next proposition shows the connection
between Inn.W / and Aut.�/ and the strong rigidity of W .

Proposition 2.6 Let W be a right-angled Coxeter group. Then
W is strongly rigid , Inn.W / D Spe.W / and Aut.�/ D Aut

�
W; F.�/

�
: (2.2)

Proof See [7, Remarque 5(b)].

We are then interested in criteria which ensure that the two containments in (2.2) are
equalities. The next theorem recapitulates what is known on the subject. We first
introduce some definitions which will be useful for the statement of the theorem.

Definition 2.7 Let � D .V; E/ be a graph.
(1) For v 2 � , we let N.v/ D ¹v0 2 � W vEv0º and st.v/ D N.v/ [ ¹vº.
(2) We say that � is star connected if for every v 2 � we have that � � st.v/ is

connected.
(3) We say that � has the star property if for every v ¤ v0 2 � we have that

st.v/ ª st.v0/.

Theorem 2.8 Let W be a right-angled Coxeter group.
(a) Aut.W; F.�// D Aut.�/ if and only if �W has the star property (see [7,

Proposition 7]).
(b) If W is of finite rank, then Spe.W / D Inn.W / if and only if �W is star

connected (see Mühlher [16, corollary to the main theorem]).
(c) If W is of arbitrary rank, then the star-connectedness of �W is a necessary

but not sufficient condition for Spe.W / D Inn.W /.

Proof (c) For the necessity of the condition, see [20, Proposition 5]. The non-
sufficiency of the condition is claimed in [20, final remark of Section 3], but the
exhibited map is not surjective. We thus show the nonsufficiency of the condi-
tion. Let � D

S
i<! �i be a countably infinite star-connected graph such that for

each i < ! we have that �i is finite and there exists ai ¤ bi 2 �i � �i�1 such
that ai is not adjacent to bi and ai is adjacent to every element in �i�1. Such a
� D

S
i<! �i can easily be found. For example, take the countably infinite random

graph. For every i < !, let ˛i 2 Spe.W�i
/ be such that for every x 2 �i we have

˛i .x/ D a0 � � � ai xai � � � a0. Then for every i 6 j < ! we have that ˛j restricted to
W�i

equals ˛i , and so ˛ D
S

i<! ˛i 2 Spe.W�/. But obviously ˛ … Inn.W�/.

Point (c) above was already observed in [20] and also noticed in [7], where it is
also shown that the star property is equivalent to one of the two conditions used in
Brady, McCammond, Mühlherr, and Neumann[6] to characterize strong rigidity in
the finite-rank case. In the case of right-angled Coxeter groups of arbitrary rank a
necessary and sufficient condition on �W ensuring Spe.W / D Inn.W / is not known.
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In the next two theorems, relying on technology from Servatius in [17] and [20], we
establish two sufficient conditions for Spe.W / D Inn.W /. We first need to develop
some combinatorics of right-angled Coxeter groups. Let .W; S/ be a Coxeter system.
Each element w 2 W can be written as a product of generators:

w D s1s2 � � � sk ;

with si 2 S . (The identity element e is represented by the empty word.) If k is
minimal among all such expressions for w, then k is called the length of w (written
as jwj D k) and the word s1s2 � � � sk is called a normal form (or reduced word) for
w. We denote by sp.w/ the set of letters appearing in any normal form for w, and
we call it the support of W with respect to the Coxeter basis S . This is well defined,
since if s1s2 � � � sk and s0

1s0
2 � � � s0

k
are two normal forms for w, then the set of letters

appearing in the word s1s2 � � � sk equals the set of letters appearing in s0
1s0

2 � � � s0
k

(see, e.g., [4, Corollary 1.4.8]). We now describe two “moves” which take a word
s1s2 � � � sk in .W; S/ and change it into another word in .W; S/ that represents the
same elements of W and which is at most as long:

(M1) if si D siC1, then cancel the letters si and siC1;
(M2) if m.si ; siC1/ D 2, then exchange si and siC1.

Theorem 2.9 (Tits [19, Theorem 3]) Let .W; S/ be a right-angled Coxeter system.
If s1s2 � � � sn and s0

1s0
2 � � � s0

m are two words representing the same element w 2 W ,
then s1s2 � � � sn and s0

1s0
2 � � � s0

m can be reduced to identical normal forms using moves
.M1/ and .M2/.

Proposition 2.10 Let s1 � � � sn be a word in the right-angled Coxeter system
.W; S/. Then s1 � � � sn is a normal form if and only if for every 1 6 i < j 6 k with
si D sj , there exists i < l < j such that sl … st.si /.

Proof See, for example, Barkauskas [3, Lemma 21].

Proposition 2.11 Let s1 � � � sn be a word in the right-angled Coxeter system
.W; S/, and suppose that si and sj can be brought next to each other using .M2/

moves in order to use the move .M1/ to shorten the word s1 � � � sn. Then si and sj

can be brought together using only moves each of which involves either si or sj .

Proof See, for example, [3, Lemma 18].

We now prove some facts about reflections (see Definition 2.12) in right-angled Cox-
eter groups. In this section we will only use Corollary 2.15, but the rest will be crucial
in what follows. Specifically, Lemma 2.14 will be the main ingredient in the proof
of Theorem 5.2.

Definition 2.12 Let .W; S/ be a Coxeter system. We define the set of reflections
of .W; S/ to be the set R.W; S/ D ¹wsw�1 W s 2 S; w 2 W º.

Lemma 2.13 Let .W; S/ be a right-angled Coxeter system, let wsw�1 2

R.W; S/, and let a1 � � � ak be a normal form for w. If a1 � � � aksak � � � a1 is not
a normal form for wsw�1, then there exists 1 6 i 6 k such that

(a) wsw D a1 � � � ai�1aiC1 � � � aksak � � � aiC1ai�1 � � � a1;
(b) ai commutes with aj for every i < j 6 k;
(c) ai commutes with s;
(d) a1 � � � ai�1aiC1 � � � ak is a normal form.
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Proof If a1 � � � aksak � � � a1 D b1 � � � b2kC1 is not a normal form for wsw�1, then
because of Theorem 2.9 and the fact that ak � � � a1 is normal, it must be the case that
in any reduction of a1 � � � aksak � � � a1 to a normal form at some point we use the
move .M1/ for the pair .bx ; by/, where x < y and either

(i) bx D bi for i 6 k and by D bkC1 D s, or
(ii) by D bi for k C 2 6 i 6 2k C 1 and bx D bkC1 D s, or
(iii) bx D bi for i 6 k and by D bj for k C 2 6 j 6 2k C 1.

Furthermore, because of Proposition 2.11, we can assume that in this reduction we
only use moves that involve either bx or by . Now, if we are in case (iii), then it is
clear that i is as desired. In fact, it must be the case that j D .2k C 1/ � .i � 1/;
otherwise, a1 � � � ak would not be normal, and so we satisfy condition (a) because of
our assumption that we use only moves that involve either bx or by . Furthermore,
conditions (b) and (c) are satisfied because of Proposition 2.10. Finally, it is easy to
see that (d) is also satisfied, because otherwise a1 � � � ak would not be normal. Cases
(i) and (ii) are symmetric, and so it suffices to analyze case (i). But this is essentially
as in case (iii), since after deleting the pair .bx ; by/ we can move b.2kC1/�.i�1/ D s

to where by D bkC1 D s was, that is, in the middle of the word.

Lemma 2.14 Let .W; S/ be a right-angled Coxeter system, let T � S , and let
wsw�1 2 R.W; S/ \ WT . Let a1 � � � ak be a normal form for w, and let aq1

� � � aqn

be the subword of a1 � � � ak obtained by deleting all the occurrences of letters in
S � T . Then

wsw�1
D aq1

� � � aqn
saqn

� � � aq1
:

Proof Iterating Lemma 2.13, we get l 6 k and a sequence of words .wi /i6l such
that

(i) w0 D a1 � � � ak ;
(ii) for every i < l , the word wiC1 is a subword of wi of length jwi j � 1;
(iii) for every i 6 l , the word wi is normal;
(iv) for every i 6 l , wi sw�1

i D wsw;
(v) wlsw�1

l
is normal (and so sp.wl /; sp.s/ � T );

(vi) wl is a subword of aq1
� � � aqn

.
For i < l , let ai be the letter witnessing that wl�i is a subword of wl�.iC1/ of
length jwl�.iC1/j � 1, and consider the sequence ..ai ; ai //i<l . Then, because of
conditions (b) and (c) of Lemma 2.13, for every X D ¹i1 < � � � < imº � l , the pairs
..ai ; ai //i2X can be put back into the word wlsw�1

l
following the order .ai1 ; ai1/ <

� � � < .aim ; aim/. This suffices, since wl is a subword of aq1
� � � aqn

.

The following corollary is immediate from Lemma 2.14. This fact is known for any
Coxeter group (see, e.g., Gal [10, Corollary 1.4]).

Corollary 2.15 Let .W; S/ be a Coxeter system, and let T � S . Then

R.W; S/ \ WT D R.WT ; T /:

We also need an explicit description of centralizers of Coxeter generators.

Lemma 2.16 (Tits [20, Corollaire 3]) Let W be a right-angled Coxeter group, and
let v 2 �W . Then the centralizer CW .v/ of v in W is the parabolic subgroup Wst.v/.

Proof See [20, Corollaire 3].
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We now go back to the main theme of this section, that is, strong rigidity. To this
end, we need two lemmas. These lemmas are essentially Theorem 3 and Lemma 4
of [17] proved in the context of Coxeter groups. (Note that [17] proves this fact for
Artin groups (also known as graph groups).)

Lemma 2.17 Let W be a right-angled Coxeter group, let ˛ 2 Spe.W /, let v 2

�W , and let Y be a connected component of �W � st.v/. Then if v 2 sp.˛.y// for
some y 2 Y , then v 2 sp.˛.x// for every x 2 Y .

Proof We show that v 2 sp.˛.x// for any x adjacent to y and not adjacent to
v. The result follows by the connectedness of Y . Now, ˛.y/ D wyw�1 for some
w 2 W , because ˛ 2 Spe.W /, and sp.wyw�1/ � sp.w/[sp.y/ (see Theorem 2.9).
By hypothesis v 2 sp.˛.y//, and evidently v … sp.y/ D ¹yº; thus, v 2 sp.w/.
Consider now ˛.x/. As for ˛.y/, there exists p 2 W such that ˛.x/ D pxp�1. By
the choice of x, the element y commutes with x, and so ˛.y/ commutes with ˛.x/.
That is, ˛.x/ 2 CW .˛.y//. By Lemma 2.16

CW .wyw�1/ D wCW .y/w�1
D wWst.y/w

�1;

and so ˛.x/ 2 wWst.y/w
�1, that is, ˛.x/ D wy0w�1 for some y0 2 st.y/. Further-

more, with ˛.x/ being conjugate to x, we have x 2 sp.˛.x// D sp.wy0w�1/. We
distinguish two cases.

Case 1: x 2 sp.y0/. If this is the case, then v 2 sp.wy0w�1/, because x is not
adjacent to v (see Theorem 2.9).

Case 2: x … sp.y0/. We show that this case is not possible. If x … sp.y0/, then
x 2 sp.w/ � sp.y0/. Thus, for any normal form w1 � � � wk and y0

1 � � � y0
m for w and

y0, respectively, we have that x occurs an even number of times in

w1 � � � wky0
1 � � � y0

mwk � � � w1:

Hence, x occurs an even number of times also in p1 � � � plxpl � � � p1, for p1 � � � pl a
normal form for p (see, e.g., Meyers [15, p. 14]), but this is obviously absurd.

Lemma 2.18 Let W be a right-angled Coxeter group such that �W satisfies the
following conditions:

(a) �W is star connected;
(b) �W is triangle-free;
(c) �W contains a copy of P4 (the path of length 4) as a subgraph (not neces-

sarily induced).
Then for every ˛ 2 Spe.W / there exists w 2 W such that w˛w�1 fixes P4

pointwise.

Proof Let P4 D aEbEcEd , and let ˛ 2 Spe.W /. Then ˛.a/ D pap�1, and
so conjugating ˛ by p�1 we get ˛1 2 Spe.W / such that ˛1.a/ D a. Now, a and b

commute, and so we have ˛1.b/ D qbq�1 with sp.q/ � N.a/ (see Lemma 2.16).
Thus, conjugating ˛1 by q�1 we get ˛2 2 Spe.W / such that ˛2.a/ D a and ˛2.b/ D

b. Similarly, b and c commute, and so we have ˛2.c/ D rcr�1 with sp.r/ � N.b/.
Let x 2 N.b/ � ¹a; cº. Then by the triangle-freeness of �W , x is adjacent neither
to a nor to c, and so a; c 2 �W � st.x/. By the star-connectedness of �W , a and c

are connected in �W � st.x/, and so given that x … sp.˛2.a// D sp.a/ D ¹aº, by
Lemma 2.17 we have x … sp.˛2.c//. Hence, sp.˛2.c// � ¹a; cº. Then h˛2.a/ D

a; ˛2.c/iW � ha; ciW . On the other hand, ˛�1
2 2 Spe.W /, ˛�1

2 .a/ D a, and
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˛�1
2 .b/ D b, and so the same argument used for ˛2 shows that sp.˛�1

2 .c// � ¹a; cº.
Thus, ˛�1

2 .c/ 2 ha; ciW , from which it follows that

c 2 ˛2

�
ha; ciW

�
D

˝
˛2.a/ D a; ˛2.c/

˛
W

;

that is, ha; ciW � ha; ˛2.c/iW . Hence,

ha; ciW D
˝
a; ˛2.c/

˛
W

;

that is, ˛2 restricted to ha; ciW D W¹a;cº 2 Aut.W¹a;cº/. Furthermore, because of
Corollary 2.15 we see that ˛2 2 Spe.W¹a;cº/. Also, .¹a; cº; E/ D .¹a; cº; ;/ is star
connected, and so by Theorem 2.8(b) we have ˛2 2 Inn.W¹a;cº/. But then obviously
it must be the case that ˛2.c/ is either c or aca, because otherwise ˛2.a/ ¤ a.
It follows that sp.r/ � ¹aº, and so conjugating ˛2 by r�1 we get ˛3 2 Spe.W /

such that ˛3.a/ D a, ˛3.b/ D b, and ˛3.c/ D c. Using the same argument for
˛3.d/ D tdt�1, we see that sp.t/ � ¹bº, and so conjugating ˛3 by t�1 we get
˛4 2 Spe.W / such that ˛4.a/ D a, ˛4.b/ D b, ˛4.c/ D c, and ˛4.d/ D d .

We now arrive at the first sufficient condition for Spe.W / D Inn.W /. This theorem
takes inspiration from [17, Theorem 6], where Servatius’s use of [17, Theorem 3 and
Lemma 4] is replaced by our Lemmas 2.17 and 2.18.

Theorem 2.19 Let W be a right-angled Coxeter group such that �W satisfies the
following conditions:

(a) �W is star connected;
(b) �W is triangle-free;
(c) �W contains P4 as a subgraph.

Then Spe.W / D Inn.W /.

Proof Let ˛ 2 Spe.W /. Then by Lemma 2.18 there exists w 2 W such that
w˛w�1 fixes P4 D aEbEcEd pointwise. We show that ˛1 D w˛w�1 is the
identity idW on W . This of course suffices, since then

˛ D w�1w˛w�1w D w�1 idW w D Inn.w�1/;

where, for x 2 W , Inn.x/ denotes the inner automorphism determined by x. To
this end, let y … P4, and suppose that ˛1.y/ ¤ gyg�1. Then there is v 2 sp.g/

such that v ¤ y and v is not adjacent to y. By the triangle-freeness of �W there
exists e 2 ¹a; b; c; dº � ¹vº such that e is not adjacent to v. It follows that � � st.v/

contains y and e. Furthermore, v 2 sp.˛1.y// and so by Lemma 2.17 we have

v 2 sp
�
˛1.e/

�
D sp.e/ D ¹eº;

which is a contradiction. Thus, we must have ˛1.y/ D y. It follows that ˛1 D

idW .

Corollary 2.20 Let W be as in Theorem 2.19, and suppose that in addition �W

has the star property. Then W is strongly rigid.

Proof This is immediate from Proposition 2.6 and Theorems 2.8 and 2.19.

Finally, we arrive at the second sufficient condition for Spe.W / D Inn.W /. This the-
orem takes inspiration from [20, Proposition 6], although the setting of the reference
is quite different from the one in the theorem.
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Theorem 2.21 Let W be a right-angled Coxeter group such that �W satisfies the
following conditions:

(a) �W is star connected;
and either �W is finite or there exists s; s0 2 �W such that

(b) st.s/ [ st.s0/ is finite and star connected (as an induced subgraph);
(c) for every v 2 �W there exists a 2 st.s/ [ st.s0/ such that a ¤ v and a is

not adjacent to v.
Then Spe.W / D Inn.W /.

Proof If �W is finite, then we know that star-connectedness suffices for Spe.W / D

Inn.W /. Suppose then that �W is infinite (and so conditions (b) and (c) hold). Let
s, s0 be as in the statement of the theorem, and let ˛ 2 Spe.W /. We will show that
there exists w 2 W such that w˛w�1 is the identity on W . By assumption ˛.s/ D

psp�1, and so conjugating ˛ by p�1 we get ˛1 2 Spe.W / such that ˛1.s/ D s.
Now, s and s0 commute, and so we have ˛1.s0/ D qs0q�1 with sp.q/ � N.a/

(see Lemma 2.16). Thus, conjugating ˛1 by q�1 we get ˛2 2 Spe.W / such that
˛2.s/ D s and ˛2.s0/ D s0. Given that CW .s/ D Wst.s/ and CW .s0/ D Wst.s0/ (see
Lemma 2.16) we must have that ˛2 fixes Wst.s/[st.s0/ setwise, that is, ˛2 restricted
to Wst.s/[st.s0/ is in Aut.Wst.s/[st.s0//. Furthermore, because of Corollary 2.15 we
see that ˛2 2 Spe.Wst.s/[st.s0//. Also, by assumption st.s/ [ st.s0/ is finite and star
connected, and so we have ˛2 2 Inn.Wst.s/[st.s0// (see Theorem 2.8(b)). Thus,
composing ˛2 with an inner automorphism, we get ˛3 2 Spe.W /, which fixes
Wst.s/[st.s0/ pointwise. We show that ˛3 fixes every element of �W . To this end,
let y … st.s/ [ st.s0/, and suppose that ˛3.y/ D gyg�1 is not fixed. Then there is
v 2 sp.g/ such that v ¤ y and v is not adjacent to y. Notice that because of (c)
there exists a ¤ v 2 st.s/ [ st.s0/ such that v is not adjacent to a. It follows that
� � st.v/ contains y and a. Furthermore, v 2 sp.˛3.y//, and so by Lemma 2.17 we
have

v 2 sp
�
˛3.a/

�
D sp.a/ D ¹aº;

which is a contradiction. Thus, we must have ˛3.y/ D y. It follows that ˛3 D

idW .

Corollary 2.22 Let W be as in Theorem 2.21, and suppose that in addition �W

has the star property. Then W is strongly rigid.

Proof This is immediate from Proposition 2.6 and Theorems 2.8 and 2.21.

We will refer to groups satisfying the conditions of Corollary 2.22 as centered right-
angled Coxeter groups (centered because of the s and s0).

3 Random Right-Angled Coxeter Groups

Let Trg be the first-order theory of random graphs, and let Tracg be T h.A/ for A

any right-angled Coxeter group such that �A ˆ Trg. This does not depend on A,
since for all right-angled Coxeter groups B and C such that �B ; �C ˆ Trg the two
groups B and C are elementary equivalent. This can be seen using, for example, the
Ehrenfeucht–Fraïssé game EF!.B; C / of length !. (This definitely suffices, since
it shows that B and C are elementary equivalent in the infinitary logic L1;! .) We
sketch the idea. If in the game EF!.B; C / Player I plays an element b0 2 B with
normal form s0

1 � � � s0
n, then Player II plays the element c0 D t0

1 � � � t0
n , for t0

1 � � � t0
n
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the answer of Player II to the move s0
1 � � � s0

n of Player I in the game EF!.�B ; �C /,
in which, as is well known, Player II has a winning strategy, since �B ; �C ˆ Trg.
(Notice that, in a game of length !, playing elements or tuples does not matter.) The
other moves are played in the same fashion.

We now fix a cardinal � > ! such that �<� D � and code models A of cardinality
� in a universal countable language L� (countably many relation symbols for any
arity) as elements �.A/ of 2� in the usual fashion (see, e.g., [9]). Given a complete
first-order theory T in the language L�, we define the isomorphism relation ŠT on
2� � 2� as the relation®�

�.A/; �.B/
�

2 2�
� 2�

W A; B ˆ T; A Š B
¯

[
®�

�.A/; �.B/
�

2 2�
� 2�

W A; B 6ˆ T
¯
:

Finally, given two complete first-order theories T0 and T1 in the language L� we can
say that the isomorphism relation of T0 reduces to the isomorphism relation of T1,
denoted as ŠT0

6B ŠT1
, if the relation ŠT0

is Borel reducible to ŠT1
in the usual

sense of generalized descriptive set theory (see, e.g., [9]). Clearly any (complete)
countable first-order theory can be thought of canonically as a (complete) theory in
the language L�. (In particular, Trg and Tracg can be thought so.) We denote by
ŠRACG the isomorphism relation ŠTracg . Given a graph � D .V; E/ and X � V we
say that V is a clique (resp., an independent set) if for every x ¤ y 2 X we have
xEy (resp., x is not adjacent to y).

Theorem 3.1 For any countable complete first-order theory T ,

ŠT 6B ŠTrg :

Proof This is folklore; we sketch a proof for completeness of exposition. As is
well known, it suffices to do the following. For every graph � of power � we define a
random graph R� of power � such that � Š � 0 if and only if R� Š R�0 . We do this.
Let � D .V; E/ be a graph of power � with V \ E D ; (without loss of generality).
Define a graph R0

� on V [ E by letting a and b be adjacent to ¹a; bº, for every
¹a; bº 2 E. Now, for every a 2 V add a clique Ka of size !1 such that a is adjacent
to co-countably many x 2 Ka, that is, Ka � N.a/ has size !. Similarly, for every
¹a; bº 2 E add a clique of size !1 such that Ka;b \ N.¹a; bº/ and Ka;b � N.¹a; bº/

both have size !1. Let R1
�.0/ be the resulting graph, and define R2

�.i C1/ by closing
R2

�.i/ under the following condition: for every finite X there exists aX such that
N.aX / D X . Then

S
i<! R2

�.i/ D R� ˆ Trg as desired.

Theorem 3.2 For any countable complete first-order theory T ,

ŠT 6B ŠRACG :

Proof Because of Theorem 3.1, it suffices to show that ŠT 6B ŠRACG for T D Trg
the theory of random graphs. But this is immediate since we can define F W 2� ! 2�

by setting

F
�
�.�/

�
D

´
�.A/ if � 6ˆ Trg;

�.A�/ if � ˆ Trg;

where in the first clause A denotes any fixed right-angled Coxeter group A such that
A 6ˆ Tracg, and in the second clause A� is the right-angled Coxeter group of type � .
The function F is evidently Borel.
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The following result shows that no nontrivial class of right-angled Coxeter groups
can be treated from the perspective of first-order model theory. This motivates our
use of AECs.

Theorem 3.3 Let K be a class of right-angled Coxeter groups such that there
exists A 2 K with �A containing two nonadjacent vertices a and b. Then K is not
first-order axiomatizable.

Proof Let A, a, and b be as in the statement of the theorem. Then for every
positive integer n the element cn D .ab/n 2 A is divisible by n. It follows that in the
ultrapower

Q
i<! Ai =U (U nonprincipal ultrafilter) there exists a divisible element

c (i.e., an element divisible by every positive integer n), but a Coxeter group cannot
contain such an element c. Thus,

Q
i<! Ai =U … K (and so K is not first-order).

4 Abstract Elementary Classes

In this section we introduce the basics of AECs (see, e.g., [18] and Jarden and Shelah
[13]). This machinery will be used in later sections in order to study various classes
of right-angled Coxeter groups. As usual in this context, type means Galois type (see,
e.g., Baldwin [2, Definition 8.10]). Given a class K of structures in the vocabulary
L, we denote by 6 the L-submodel relation on structures in K.

Definition 4.1 ([18]) Let K be a class of structures in the vocabulary L. We say
that .K; 4/ is an abstract elementary class (AEC) if the following conditions are
satisfied.

(1) K and 4 are closed under isomorphism.
(2) If A 4 B , then A is a substructure of B (A 6 B).
(3) The relation 4 is a partial order on K.
(4) If .Ai /i<ı is an increasing continuous 4-chain, then:

(4.1)
S

i<ı Ai 2 K;
(4.2) for each j < ı, Aj 4

S
i<ı Ai ;

(4.3) if each Aj 4 B , then
S

i<ı Ai 4 B (smoothness axiom).
(5) If A; B; C 2 K, A 4 C , B 4 C , and A 6 B , then A 4 B (coherence

axiom).
(6) There is a Löwenheim–Skolem number LS.K; 4/ such that if A 2 K and

B � A, then there is C 2 K such that B � C , C 4 A, and jC j 6
jBj C jLj C LS.K; 4/ (existence of LS-number).

Definition 4.2 If A; B 2 K and f W A ! B is an embedding such that f .A/ 4
B , then we say that f is a 4-embedding.

Let � be a cardinal. We let K� D ¹A 2 K j jAj D �º.

Definition 4.3 Let .K; 4/ be an AEC.
(1) We say that .K; 4/ has the amalgamation property .AP/ if for any

A; B0; B1 2 K with A 4 Bi , for i < 2, there are C 2 K and 4-embeddings
fi W Bi ! C , for i < 2, such that f0 � A D f1 � A.

(2) We say that .K; 4/ has the joint embedding property .JEP/ if for any
B0; B1 2 K there are C 2 K and 4-embeddings fi W Bi ! C , for i < 2.

(3) We say that .K; 4/ has arbitrarily large models .ALM/ if, for every � >
LS.K;4/, K� ¤ ;.
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As is well known, given an AEC, say, .K; 4/, with AP, JEP, and ALM, we can con-
struct a monster model M D M.K; 4/ for .K; 4/, that is, a �-model homogeneous
and �-universal (for � large enough) structure in K. We say that a subset A of M
is bounded if its cardinality is smaller than �. Given bounded A � M and n < !,
we denote by Sn.A/ the set of Galois types2 over A of length n and by S.A/ the setS

n<! Sn.A/.

Definition 4.4 Let .K; 4/ be an AEC with AP, JEP, and ALM. We say that
.K; 4/ has the independence property if there exist finite A � M and P � S.A/

such that for every ordinal ˛ < jMj there exist .ai /i<˛ 2 M such that for every
X � ˛ there exists bX 2 M such that tp.bX ai =A/ 2 P if and only if i 2 X .

Definition 4.5 Let .K; 4/ be an AEC with AP, JEP, and ALM. We say that
.K; 4/ is homogeneous if, for every ordinal ˛ < jMj and .ai /i<˛; .bi /i<˛ 2 M, it
holds that if tp.aX / D tp.bX / for every X �fin ˛, then tp..ai /i<˛/ D tp..bi /i<˛/.

Definition 4.6 (Hyttinen and Kesälä [11, Definition 2.5]) Let .K; 4/ be an AEC.
We say that .K; 4/ has finite character if whenever A 6 B and for every X �fin A

there exists a 4-embedding fX W A ! B such that f � X D idX , then A 4 B .

Definition 4.7 ([11]) Let .K; 4/ be an AEC. We say that .K; 4/ is finitary if the
following are satisfied:

(1) LS.K; 4/ D !;
(2) .K; 4/ has arbitrarily large models;
(3) .K; 4/ has the amalgamation property;
(4) .K; 4/ has the joint embedding property;
(5) .K; 4/ has finite character.

Definition 4.8 Let .K; 4/ be an AEC with AP, JEP, and ALM. For LS.K; 4/ 6
� 6 �, we say that .K; 4/ is .�; �/-tame if, for every B 2 K of power � and
a; b 2 M<! , it holds that if tp.a=B/ ¤ tp.b=B/, then there is A 4 B of power �

such that tp.a=A/ ¤ tp.b=A/. We say that .K; 4/ is tame if it is .LS.K; 4/; �/-tame
for every � > LS.K; 4/.

As usual, we say that .K; 4/ is uncountably categorical if for every uncountable
cardinal � there exists only one model of power �, up to isomorphism. In later
sections we will use the following classical result on AECs.

Theorem 4.9 (see, e.g., [2, Theorem 8.21]) Let .K; 4/ be an AEC with AP, JEP,
and ALM. If .K; 4/ is uncountably categorical, then .K; 4/ is stable3 in every
infinite cardinality � > LS.K; 4/.

We will also use the following results connecting finitary AECs with infinitary logic.
Given � 2 L1;! , we let Mod.�/ D ¹A W A ˆ �º.

Theorem 4.10 ([14, Theorem 3.10]) Let .K; 4/ be a finitary AEC with countable
vocabulary. If K contains at most � models of cardinality � for some infinite �, then
K D Mod.�/ for some � 2 L1;! . If in addition K contains at most � models of
cardinality less than �, then we can find � 2 L�C;! .

Definition 4.11 Let .K; 4/ be a finitary AEC with monster model M. Let also
a 2 M<! and A 4 M. Then

tp!1;!.a=A/ D
®
'.x; b/ W '.x; y/ 2 L!1;! ; b 2 A<! and M ˆ '.a; b/

¯
:
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Theorem 4.12 ([14, Remark after Corollary 4.9]) Let .K; 4/ be a finitary and
tame AEC with countable vocabulary. Assume also that .K; 4/ is !-stable. Then
for every A 4 M we have tp!1;!.a=A/ D tp!1;!.b=A/ if and only if tp.a=A/ D

tp.b=A/.

5 Triangle-Free Right-Angled Coxeter Groups

From now until the end of the paper we denote by K the class of right-angled Coxeter
groups and by 4 the parabolic subgroup relation on K (see Definition 2.4), that is,
A 4 B if and only if there exists a Coxeter basis S for B such that A\S is a Coxeter
basis for A. Also, we denote by 6 both the subgroup and the induced subgraph
relation. Finally, we simply talk of bases instead of Coxeter bases. The next theorem
shows that .K; 4/ does not give rise to an AEC. In the rest of the paper we will see
that restricting to particular classes of strongly rigid right-angled Coxeter groups we
do get AECs and actually finitary ones (and in some cases also tame).

Theorem 5.1 The smoothness axiom fails for .K; 4/.

Proof Let .B; S/ be the Coxeter system with S D ¹ai W i < !º [ ¹bi W i < !1º

such that ¹ai W i < !º is an independent set, ¹bi W i < !1º is a clique, and ai

commutes with bj if and only if j < i , for every i < !. For n < !, let cn D

a0 � � � an, let en D cnbnc�1
n , and let An D hei W i < niB . Notice that for every

i 6 j < ! we have cj bi c
�1
j D ci bi c

�1
i . It follows that, for every m < n < !, we

have Am 4 An 4 B , as witnessed by the bases ¹ei W i < mº � ¹ei W i < nº �

cnSc�1
n . We claim that

S
n<! An D A 64 B . Suppose not, and let S� be a basis

of A that extends to a basis S 0 of B . Let ˛ 2 Aut.B/ be such that ˛.S 0/ D S .
Then ˛.S�/ � ¹bi W i < !1º, and so there exists x 2 S � ˛.S�/ such that x

commutes with every element of ˛.S�/. Let y D ˛�1.x/. Then y commutes with
every element of A. Let n < ! be such that if bi or ai is in the S -support of
y, then either i > ! or i < n. Also, let z D c�1

n ycn. Now, y commutes with
every element of A, and so in particular it commutes with en. Thus, z D c�1

n ycn

commutes with c�1
n encn D bn. Now, if, for some i > n, bi is in the S -support

of z, then also an is there and so z does not commute with bn (see Lemma 2.16).
Similarly, for every i < !, ai is not in the S -support of z. Thus, z 2 hbi W i < niB

and so cnzc�1
n D y 2 hcnbi c

�1
n W i < niB D An, which is a contradiction, since

y D ˛�1.x/, for x 2 S � ˛.S�/.

Theorem 5.2 Let K0
� be a class of graphs such that .K0

�; 6/ is closed under lim-
its and every B 2 K� D ¹A 2 K W �A 2 K0

�º is strongly rigid. Then .K�; 4/

satisfies conditions (1), (2), (3), (4.1), (4.2), and (5) of Definition 4.1. Furthermore,
LS.K�; 4/ D LS.K0

�; 6/, and if .K0
�; 6/ has AP, JEP, and ALM, then .K�; 4/

does.

Proof The furthermore part is immediate. For amalgamation, let A; B; C 2 K�

be such that C 4 A; B and A \ B D C (without loss of generality). Then there exist
bases S 0 for A and T 0 for B such that S D S 0 \ A and T D T 0 \ B are bases for C .
Thus, there exists g 2 C such that gT s�1 D S , and so gT 0s�1 D S 00 is a basis for
B such that S 0 \ S 00 D S . Hence, any amalgam for .S; E/ 6 .S 0; E/; .S 00; E/ is an
amalgam for C 4 A; B . Conditions (1) and (2) of Definition 4.1 are clear. We prove
(3). Let A 4 B 4 C . Then there exists a basis S 0 for B such that S D S 0 \ A is a
basis for A, and there exists a basis T 00 for C such that T 0 D T 00 \ B is a basis for B .
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Thus, because of strong rigidity, there exists g 2 B such that S 0 D gT 0g�1, and so
S 00 D gT 00g�1 is a basis for C containing S , that is, A 4 C .

We prove (4.1) and (4.2). Let .Ai /i<ı be an increasing continuous 4-chain. Using
strong rigidity, without loss of generality we can assume that .�Ai

D .Si ; E//i<˛ is
an increasing continuous chain of graphs under the induced subgraph relation. Using
the universality property for Coxeter groups (see, e.g., [4, p. 3]) it is immediate to
see that

S
i<ı Ai D A is the Coxeter group of type

S
i<˛ �Ai

, and so A 2 K. This
establishes (4.1) and (4.2) at once.

We prove (5). Let A 4 C , B 4 C , and A 6 B . Let S 00 be a witness for A 4 C ,
and let S D S 00 \A. Let also T 00 be a witness for B 4 C , and let T 0 D T 00 \B . Now,
S 00 and T 00 are two bases for C and so we can find g 2 C such that S 00 D gT 00g�1,
that is, for every s 2 S 00 there exists ts 2 T 00 such that s D gtsg�1. Let a1 � � � ak be a
T 00-normal form for g. Notice that S � A � B and S � S 00, and so for every s 2 S

we have s D gtsg�1 2 B . Thus,

sp.gtsg�1/ � T 0; (5.1)

where the support is taken in the basis T 00. Let aq1
� � � aqn

be the subword of a1 � � � ak

obtained by deleting all the occurrences of letters in T 00 � T 0. Then because of (5.1)
and Lemma 2.14 we have that aq1

� � � aqn
D h 2 B is such that

s D gtsg�1
D htsh�1;

for every s 2 S . Thus, hT 0h�1 D S 0 is a basis for B such that S � S 0, and so
A 4 B .

Lemma 5.3 Let B be a strongly rigid right-angled Coxeter group, and let T0 and
T1 be bases for B . If T0 \ T1 contains P4 D s0Es1Es2Es3, s0 is not adjacent to s2,
s1 is not adjacent to s3, and there is no t 2 T1 such that s0EtEs1, then T0 D T1.

Proof Let T0, T1, and P4 D s0Es1Es2Es3 be as in the statement of the theorem.
Then there exists g 2 B such that T1 D gT0g�1. Let s 2 P4. Then gsg�1 D s,
because otherwise we would have s ¤ gsg�1 both in T1, contradicting the fact
that T1 is a basis for B (see Bourbaki [5, p. 5]). Suppose now that there exists
t 2 sp.g/ � ¹s0; s1º, where the support is taken in the basis T1. Then t commutes
with s0 because otherwise by Theorem 2.9 we would have s0 ¤ gs0g�1. Similarly,
t commutes with s1 because otherwise s1 ¤ gs1g�1. Thus, s0EtEs1, which is
a contradiction. Hence, sp.g/ � ¹s0; s1º. On the other hand, s0 … sp.g/ and
s1 … sp.g/, because otherwise s2 ¤ gs2g�1 or s3 ¤ gs3g�1. It follows that g D 1,
that is, T1 D T0.

Theorem 5.4 Let K� be a class of strongly rigid right-angled Coxeter groups
such that for every A 2 K� we have that �A is triangle-free. Suppose further that,
whenever A 4 B 2 K� and T is a basis for B such that S D T \ A is a basis for A,
then the basis S contains a copy of P4 D s0Es1Es2Es3 such that s0 is not adjacent
to s2 and s1 is not adjacent to s3. Then .K�; 4/ satisfies the smoothness axiom, and
it has finite character.

Proof We show that .K�; 4/ is smooth. Let .Ai /i<˛ be an increasing continuous
4-chain such that each Ai 4 B . Using strong rigidity, without loss of generality
we can assume that .�Ai

D .Si ; E//i<˛ is an increasing continuous chain of graphs
under the induced subgraph relation and that there are .Ti /i<˛ bases for B such that
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Ti \ Ai D Si , for every i < ˛. Let i < ˛. Then using the assumption of the
theorem for Ti and S0 we have that T0 \ Ti contains P4 D s0Es1Es2Es3, s0 is not
adjacent to s1, s1 is not adjacent to s3, and there is no t 2 Ti such that s0EtEs1.
Thus, by Lemma 5.3, we have that Ti D T0. Hence,

S
i<˛ Si � T0, witnessing thatS

i<˛ Ai 4 B .
We show that .K�; 4/ has finite character. Suppose that A 6 B and for every

X �fin A there exists a 4-embedding fX W A ! B such that f � X D idX . Let S

be a basis for A. For every X � A we have A Š fX .A/, and so fX .S/ is a basis for
fX .A/. It follows that

8X �fin S; 9 TX basis of B such that TX extends fX .S/ and X � TX I (?)
this is because fX .A/ 4 B , of course. Fix Y �fin S . Then fY .A/ 4 B , and so
using the assumption of the theorem for TY and fY .S/ we get P 0

4 D s0
0Es0

1Es0
2Es0

3

in fY .S/ such that s0
0 is not adjacent to s0

2 and s0
1 is not adjacent to s0

3. Now let
f �1

Y .P 0
4/ D P4 D s0Es1Es2Es3. Then, noticing that P4 � S and recalling (?) and

that �B is triangle-free, we have that TP4
is a basis of B such that s0 is not adjacent

to s1, s1 is not adjacent to s3, and there is no t 2 TP4
such that s0EtEs1. Thus, by

Lemma 5.3, for every P4 � X �fin S we have that TX D TP4
. Hence, for every

X �fin S we have X � TP4
, and so S � TP4

, that is, A 4 B .

Let K0
� be a class of graphs such that .K0

�; 6/ is an AEC with AP, JEP, and ALM.
Suppose that K� D ¹A 2 K W �A 2 K0

�º is a class of strongly rigid right-angled
Coxeter groups, and suppose that .K�; 4/ is also an AEC (and thus, by Theorem 5.2,
it has AP, JEP, and ALM). Notice that, under these conditions, by slightly modifying
the construction of M.K�; 4/ we can assume that �M.K�;4/ D M.K0

�; 6/. In the
following theorem we will use this assumption crucially.

Theorem 5.5 Let K0
� be a class of graphs such that .K0

�; 6/ is an AEC with AP,
JEP, and ALM. Suppose that K� D ¹A 2 K W �A 2 K0

�º is a class of strongly rigid
right-angled Coxeter groups, and suppose that .K�; 4/ is also an AEC (and thus, by
Theorem 5.2, it has AP, JEP, and ALM) with LS.K�; 4/ D !. Suppose further that
for every A 2 K, Aut.M=A/ 6 Aut.�M/. Then if .K0

�; 6/ is tame, so is .K�; 4/.

Proof We show the tameness of .K�; 4/ for elements; the argument generalizes to
tuples. Let B 2 K�, and let a, b be elements in M.K�; 4/. Suppose that tp.a=B/ ¤

tp.b=B/. Notice that for every ˛ 2 Aut.�M/ the following are equivalent:
(i) ˛.a/ D b;
(ii) ˛ restricted to sp.a/ is a bijection from sp.a/ into sp.b/ such that if a1 � � � ak

is a normal form for a, then ˛.a1/ � � � ˛.ak/ is a normal form b;
(iii) ˛ restricted to sp.a/ is a bijection from sp.a/ into sp.b/, and there exists a

normal form a1 � � � ak for a such that ˛.a1/ � � � ˛.ak/ is a normal form b.
Now, if jsp.a/j ¤ jsp.b/j, then for any countable A 4 B we have that tp.a=A/ ¤

tp.b=A/, since by assumption Aut.M=A/ 6 Aut.�M/. Suppose then that jsp.a/j D

jsp.b/j, fix a normal form a1 � � � ak for a, and let ¹b
j
1 � � � b

j

k
W j < nº be the set of

normal forms for b. For every j < n we must have that

tp
�
.ai /0<i6k=�B

�
¤ tp

�
.b

j
i /

�
0<i6k

=�B/;

where types are in the sense of .K0
�; 6/. In fact, otherwise there is

˛ 2 Aut
�
M.K0

�; 6/=�B

�
D Aut.�M.K�;4/=B/
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such that ˛.sp.a// D sp.b/ and ˛.a1/ � � � ˛.ak/ is a normal form b, and so
tp.a=B/ D tp.b=B/. Thus, by the tameness of .K0

�; 6/, for every j < n there is
countable �Aj

6 �B such that

tp
�
.ai /0<i6k=�Aj

�
¤ tp

�
.b

j
i /0<i6k=�Aj

�
:

Let A 4 B be such that
S

j <n Aj � A. Then tp.a=A/ ¤ tp.b=A/. In fact, other-
wise there exists ˛ 2 Aut.�M=A/ such that ˛.sp.a// D sp.b/ and ˛.a1/ � � � ˛.ak/ is
a normal form b, and so there exists j < n and ˛ 2 Aut.M.K0

�; 6/=�Aj
/ mapping

.ai /0<i6k to .b
j
i /0<i6k , which is a contradiction.

Let K0
0 be the class of graphs satisfying the following requirements:

(1) � has the star property;
(2) � is star connected;
(3) � is triangle-free;
(4) � contains C4 (the cycle of length 4) as an (induced) subgraph.

Then let K0 D ¹A 2 K W �A 2 K0
0º. Notice that, because of Corollary 2.20, every

A 2 K0 is strongly rigid. We ask that � contains C4 instead of simply P4 because
C4 has the star property, while P4 does not. The fact that C4 embeds as an induced
subgraph in every structure in K0

0 will be useful in proving joint embedding from
amalgamation. We need a lemma before proving the main theorem of this section.

Lemma 5.6 Let � be triangle-free and such that it contains C4 as an induced
subgraph. By induction on i < !, define �i such that:

(i) �0 D �;
(ii) �iC1 is the extension of �i following the condition: for every a ¤ b 2 �i if

a is not adjacent to b, then add c such that N.c/ D ¹a; bº.
Then � 6

S
i<! �i D �� 2 K0

0.

Proof Obviously, C4 6 � 6 �� and �� is triangle-free. Regarding the star prop-
erty, let a ¤ b 2 ��. We show that st.a/ ª st.b/. Assume that a; b 2 �i . Then
�iC1 � �i contains an element x which is not adjacent to a (since C4 contains two
adjacent vertices different from a). Now, �iC2 � �iC1 contains an element c which
is adjacent to a and x, but not to b. Hence, c 2 st.a/ � st.b/, as desired. Regard-
ing star-connectedness, let v 2 ��, and let a ¤ b 2 �� � st.v/. Assume that
v; a; b 2 �i . If a and b are adjacent in ��, then they are connected in �� � st.v/

(since a ¤ b 2 �� � st.v/). If a and b are not adjacent in ��, then they are not
adjacent in �i either, and so at stage �iC1 we have added c such that N.c/ D ¹a; bº,
witnessing the connectedness of a and b in �� � st.v/.

Theorem 5.7 We have that .K0; 4/ is a finitary AEC.

Proof As already noticed, because of Corollary 2.20, every A 2 K0 is strongly
rigid. Furthermore, obviously .K0

0; 6/ is closed under limits and LS.K0
0; 6/ D !.

Also, every A 2 K0 is such that �A is triangle-free and contains C4 as an induced
subgraph, and so we can always find a P4 as in Theorem 5.4. Thus, by Theorems 5.2
and 5.4, in order to conclude it suffices to show that .K0

0; 6/ has joint embedding
and amalgamation. Now, C4 2 K0

0 and C4 embeds as an induced subgraph in every
A 2 K0

0; thus, it suffices to prove amalgamation. Then let A; B; C 2 K0
0 be such that

C 6 A; B and A\B D C (without loss of generality), and consider D D .A[B/�.
Then is it easy to see that D is an amalgam of A and B over C .
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Theorem 5.8 We have the following:
(a) .K0; 4/ is not homogeneous.
(b) .K0; 4/ has the independence property, and thus it is unstable.

Proof We prove (a). Let .ti /i<! and .ai /i<! in �M, for M the monster model of
.K0; 4/, be such that the following conditions are met:

(i) .ti /i<! is an independent set;
(ii) .ai /i<! is an independent set;
(iii) for every i < !, ai is adjacent to tj if and only if j 6 i .

Such sequences .ti /i<! and .ai /i<! can be found in �M, for example, using
Lemma 5.6. For i < !, let

ci D a0 � � � ai�1ti ai�1 � � � a0:

Then for every X �fin ! we have tp.tX =;/ D tp.cX =;/, as witnessed by the inner
automorphism determined by a0 � � � ak�1, for k D max¹i < ! W i 2 Xº. On the
other hand, tp..ti /i<!=;/ ¤ tp..ci /i<!=;/ because there is no automorphism of M
such that ti 7! ci for every i < !, as this would contradict the strong rigidity of M;
in fact, no inner automorphism gxg�1 (for g 2 M) could serve as witness for this
candidate automorphism, since sp.g/ is finite. We prove (b). Let

P D
®
p 2 S2.;/ W 8a; b 2 M; if .a; b/ ˆ p, then ab D ba

¯
;

˛ < jMj, and .ti /i<˛ and .aX /X�˛ in �M be such that the following conditions are
met:

(i) .ti /i<˛ is an independent set;
(ii) .aX /X�˛ is an independent set;
(iii) for every X � ˛, aX is adjacent to ti if and only if i 2 X .

Such sequences .ti /i<˛ and .aX /X�˛ can be found in �M, for example, using
Lemma 5.6. Evidently, tp.aX ti =;/ 2 P if and only if i 2 X .

Remark 5.9 The first configuration used in the proof of Theorem 5.8 will play a
crucial role also in the proof of Theorem 6.4 (where a similar nonhomogeneity result
is proved). It is interesting to notice that the existence of this configuration (on tuples
of elements), also known as the half-graph, can always be found in a definable way
in the monster model of an unstable theory. Thus, we here have an analogy between
nonhomogeneity in AECs and instability in first-order theories.

Given a graph � D .V; E/ we define the barycentric subdivision of � , denoted O� , to
be the graph whose node set is the disjoint union of V and ¹ca;b W a; b 2 �; aEbº,
and so that N.ca;b/ D ¹a; bº and, for a 2 V , N.a/ D ¹ca;b W b 2 �; aEbº. Let K0

1

be the class of barycentric subdivisions of clique with at least four elements, and let
K1 D ¹A 2 K W �.A/ 2 K0

1º.

Theorem 5.10 We have that .K1; 4/ is a finitary AEC.

Proof Obviously, .K0
1; 6/ is closed under limits, it has AP, JEP, and ALM, and

LS.K0
1; 4/ D !. Also, it is immediate to see that every � 2 K0

1 is star connected,
it has the star property, and it contains P4, and so, by Corollary 2.20, every A 2 K1

is strongly rigid. Finally, it is obvious from the definition that for any graph � the
graph O� is bipartite (and thus triangle-free). Hence, by Theorems 5.2 and 5.4 we are
done.
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Let K00
1 be the class of infinite structures in K0

1. It is immediate to see that the class
K00

1 is axiomatizable by the following first-order theory T :
(A) there are infinitely many elements;
(B) every x has either exactly two neighbors or at least three neighbors;
(C) if x has exactly two neighbors y and z, then y and z have at least three

neighbors;
(D) if x has at least three neighbors, then each neighbor of x has exactly two

neighbors;
(E) if x ¤ y have at least three neighbors, then there exists a unique z such that

xEzEy.

Proposition 5.11 We have that T is complete and it is model complete.

Proof This is standard.

Theorem 5.12 We have that .K1; 4/ is tame.

Proof Obviously, .K0
1; 6/ is an AEC with AP, JEP, and ALM. Furthermore, by

Lemma 5.3, for every A 2 K1, Aut.M=A/ 6 Aut.�M/. Thus, by Theorem 5.5,
it suffices to show that .K0

1; 6/ is tame. Clearly, it suffices to prove tameness for
the class K00

1 of infinite structures in K0
1. By Proposition 5.11, the class K00

1 is
axiomatizable by a complete first-order theory which is model complete. Thus,
.K00

1; 6/ D .K00
1; 4�/, where 4� denotes the elementary submodel relation of first-

order logic, and clearly .K00
1; 4�/ is tame.

Theorem 5.13 We have that .K1; 4/ is uncountably categorical.

Proof For uncountable A; B 2 K1, letting �A D O�0 and �B D O�1 (for �0 and �1

cliques), we have jAj D jBj if and only if j�Aj D j�B j if and only if j�0j D j�1j if
and only if �0 Š �1 if and only if �A Š �B if and only if A Š B .

Corollary 5.14 We have that .K1; 4/ is stable in every infinite cardinality.

Proof This is a consequence of Theorems 5.7, 5.13, and 4.9.

Corollary 5.15 We have that K1 D Mod.�/ for some � 2 L!1;! . Furthermore,
for every A 4 M we have tp!1;!.a=A/ D tp!1;!.b=A/ if and only if tp.a=A/ D

tp.b=A/.

Proof This is an immediate consequence of Theorems 4.10, 4.12, 5.10, 5.12, and
5.13 together with the easy observation that K1 has at most countably many count-
able models.

6 Centered Right-Angled Coxeter Groups

Theorems 5.8 and 5.13 leave open the question of finding classes of right-angled
Coxeter groups which are stable and nonhomogeneous. In this section, we use Corol-
lary 2.22 to achieve this. Let C � be the graph on vertex set ¹s; s0º [ ¹ti W i < 4º,
with the following edge relation: t0Et2Et3Et1Et0, t0EsEt2, t1Es0Et3, and sEs0

(see Figure 1). For every BT ˆ T D T h.N; s; 0/ (where s denotes the successor
function) we define a graph �BT

D .C � [BT ; E/ in the following way (without loss
of generality, we assume that sn.0/ D n in BT ):

(1) C � is an induced subgraph of �BT
;
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s s0

t0

t2 t3

t1

Figure 1 The graph C �.

(2) t0 and t2 are adjacent to all the even numbers in N;
(3) t1 is adjacent to 2 and to all the odd numbers in N;
(4) t3 is adjacent to all the odd numbers in N;
(5) N.0/ � N D ¹1º and, for every 0 < n 2 N, N.n/ \ N D ¹n � 1; n C 1º;
(6) for every copy Z of Z in BT and b 2 Z, N.b/ \ Z D ¹b � 1; b C 1º;
(7) for every copy Z of Z in BT , there exists 0Z 2 Z such that for every ˙nZ D

0Z ˙ n we have N.˙nZ/ \ N D ¹0; : : : ; nº;
(8) for every copy Z of Z in BT , 0Z , �1Z , and 1Z are adjacent to t3.

Let K0
2 be the class of graphs � 0 isomorphic to one of the graphs � D .C � [BT ; E/

described above, and let K2 D ¹A 2 K W �A 2 K0
2º.

Remark 6.1 The proof of the theorem below is straightforward, but the details are
tiresome. We include them for completeness of exposition.

Theorem 6.2 We have that .K2; 4/ is a finitary AEC.

Proof Notice that, for every � D .C � [ BT ; E/ 2 K0
2, the structure BT can

be recovered from � , and so .K0
2; 6/ is closed under limits, it has AP, JEP, and

ALM, and LS.K0
2; 4/ D !. Thus, by Theorems 5.2 and 5.4 we are left to show that

every A 2 K2 is strongly rigid and that the assumptions of Theorem 5.4 are met.
The latter is immediate, since, for every A 2 K2 and basis T of A, the elements
sEs0Et1Et0 2 C � (without loss of generality C � is in T ) are such that s is not
adjacent to t1, s0 is not adjacent to t0, and there is no t 2 T such that sEtEs0.
To see strong rigidity we use Corollary 2.22. Let A 2 K2. Then the elements
s; s0 2 C � are such that s is adjacent to s0 in �A and st.s/ [ st.s0/ D C � is finite
and star connected, since for every x 2 C � we have C � � st.x/ D ¹y; zº, for some
y; z 2 C � such that y is adjacent to z. Furthermore, clearly for every v 2 �A there
exists v ¤ a 2 st.s/ [ st.s0/ such that v is not adjacent to a. Thus, we are left to
show that �A is star connected and it has the star property. For ease of notation, we
assume that in �A the copies of C � and N are actually C � and N. (We already did
this for C � above.) Also, we denote by Z, Z0, and so on the copies of Z possibly
present in �A. We first show that �A has the star property. Let a ¤ b 2 �A.

Case 1: a; b 2 C �. This is clear.
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Case 2: a; b 2 N. Without loss of generality a < b. If a D 0 and b D 1, then
t0 2 st.a/�st.b/, and t1 2 st.b/�st.a/. If a D 0 and b D 2, then 3 2 st.2/�st.0/

and t1 2 st.2/ � st.0/. If a D 0 and b > 2, then b C 1 2 st.b/ � st.0/ and
1 2 st.0/ � st.b/. If a > 0, then b C 1 2 st.b/ � st.a/ and a � 1 2 st.a/ � st.b/.

Case 3: a; b 2 Z. Without loss of generality a < b. We have bC1 2 st.b/�st.a/

and a � 1 2 st.a/ � st.b/.
Case 4: a 2 C � and b 2 N. If a D s or a D s0, then a is not adjacent to b. Let

a D ti , for i < 4. If i is even and b is odd, then a is not adjacent to b. If i is odd and
b is even, then a is not adjacent to b. If i is even and b is even, then s 2 st.a/�st.b/

and b C 1 2 st.b/ � st.a/. If i is odd and b is odd, then s0 2 st.a/ � st.b/ and
b C 3 2 st.b/ � st.a/. (In the case b D 1 we have 1 C 1 D 2Et1.)

Case 5: a 2 C � and b 2 Z. In this case a is not adjacent to b, unless a D t3 and
b 2 ¹0Z ; �1Z ; 1Zº. In this case we have t2 2 st.a/ � st.b/ and 3Z 2 st.b/ � st.a/.

Case 6: a 2 N and b 2 Z. Let b D ˙nZ . If a > n, then a is not adjacent
to b. If 0 < a 6 n, then n C 2 2 st.a/ � st.b/ and a � 1 2 st.b/ � st.a/. If
a D 0 D n, then n C 2 2 st.a/ � st.b/ and t3 2 st.b/ � st.a/. If a D 0 < n, then
n C 2 2 st.a/ � st.b/ and 1 2 st.b/ � st.a/.

Case 7: a 2 Z and b 2 Z0. In this case a is not adjacent to b.
We now show that �A is star connected. Let v 2 �A, and let a ¤ b 2 �A � st.v/.
Case A: v 2 C �. If v D s or v D s0, then it is clear that a is connected to b.

Suppose then that v D ti , for i < 4.
Case A.1: a; b 2 C �. This is clear.
Case A.2: a; b 2 N. Then either both a and b are even, or both a and b are odd.

In either case we are fine.
Case A.3: a; b 2 Z. If i < 3, then we have .�A � st.v// \ Z D Z. If i D 3,

then we have .�A � st.v// \ Z D Z � ¹0Z ; �1Z ; 1Zº. In either case we are fine.
Case A.4: a 2 C � and b 2 N. If a D s or a D s0, then a is not adjacent to b.

Suppose then that a … ¹s; s0º. If i is even (for v D ti , remember), then a D tj is
such that j is odd and b is odd, and so we are fine. If i is odd, then a D tj is such
that j is even and b is even, and so we are fine.

Case A.5: a 2 C � and b 2 Z. If i is even, then we can find an odd number
n 2 �A � st.v/ that connects what is left of C � to nEnZEb. If i is odd, then we
can find an even number that does the same.

Case A.6: a 2 N and b 2 Z. If i is even, then we can find an odd number
n 2 �A � st.v/ such that aEnEnZEb. If i is odd, then we can find an even number
that does the same.

Case A.7: a 2 Z and b 2 Z0. If i is even, then we can find an odd number
n 2 �A � st.v/ such that aEnZEnEnZ0Eb. If i is odd, then we can find an even
number that does the same.

Case B: v 2 N.
Case B.1: a; b 2 C �. If v D 2, then .�A � st.v// \ C � D sEs0Et3. If v ¤ 2,

then .�A � st.v// \ C � is either sEs0Et1Et3Es0 or s0EsEt0Et2Es. In all of these
cases we are fine.

Case B.2: a; b 2 N. If v D 0, then .�A � st.v// \ N D ¹1º, and so this case is
not possible, since we are assuming that a ¤ b. Thus, we must have that v D n ¤ 0,
and so n � 1 D aEb D n C 1.

Case B.3: a; b 2 Z. If v D 0 or v D 1, then .�A � st.v// \ Z is either
; or ¹0Zº, and so this case is not possible, since we are assuming that a ¤ b.
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If v D 2, then .�A � st.v// \ Z D ¹0Z ; �1Z ; 1Zº, but �1ZEt3E0ZEt3E1Z

and t3 2 �A � st.2/, and so we are fine. If v > 2, then .�A � st.v// \ Z D

¹�.vZ � 1/; : : : ; 0Z ; : : : ; .vZ � 1/º is “long enough,” and so it is connected.
Case B.4: a 2 C � and b 2 N. If a D s or a D s0, then a is not adjacent to b.

Suppose then that a … ¹s; s0º. If v is odd, then b is even and a 2 ¹t0; t2º, and so we
are fine. If v is even, then b is odd and a 2 ¹t1; t3º, and so we are fine.

Case B.5: a 2 C � and b 2 Z. If v D 0, then .�A � st.v// \ Z D ;, and so this
case is not possible. If v D 1, then .�A�st.v//\Z D ¹0Zº and .�A�st.v//\C � D

¹t0; s; s0; t2º, but then we are fine because 0ZE0Et0Et2EsEs0 and 0 2 �A � st.1/.
If v D 2, then .�A�st.v//\Z D ¹0Z ; �1Z ; 1Zº and .�A�st.v//\C � D ¹t3; s; s0º,
but �1ZEt3E0ZEt3E1Z , and so we are fine. If v > 2, then .�A � st.v// \ Z is
connected, and so we can connect it to what is left of C � via v � 1 … .�A � st.v//.

Case B.6: a 2 N and b 2 Z. If v D 0, then .�A�st.v//\Z D ;, and so this case
is not possible. If v D 1, then .�A � st.v// \ Z D ¹0Zº, .�A � st.v// \N D ¹0; 2º,
and 0ZE0E2. If v D 2, then .�A�st.v//\Z D ¹0Z ; �1Z ; 1Zº, .�A�st.v//\N D

¹1; 3º, and for x 2 ¹0Z ; �1Z ; 1Zº and y 2 ¹1; 3º we have xEt3Ey, and so we are
fine because t3 2 �A � st.2/. If v > 2, then .�A � st.v// \ Z is connected, and
vZ � 1Ev � iEv C 1.

Case B.7: a 2 Z and b 2 Z0. If v D 0, then .�A � st.v// \ Z D ; D

.�A �st.v//\Z0, and so this case is not possible. If v D 1, then .�A �st.v//\Z D

¹0Zº, .�A � st.v// \ Z D ¹0Z0º, and 0ZE0E0Z0 , and so we are fine because 0 …

�A �st.1/. If v D 2, then .�A �st.v//\Z D ¹0Z ; �1Z ; 1Zº, .�A �st.v//\Z0 D

¹0Z0 ; �1Z0 ; 1Z0º, and for x 2 ¹0Z ; �1Z ; 1Zº and y 2 ¹0Z0 ; �1Z0 ; 1Z0º we have
xEt3Ey, and so we are fine because t3 2 �A �st.2/. If v > 2, then .�A �st.v//\Z

and .�A � st.v// \ Z0 are connected, and so we can connect them via v � 1 …

�A � st.v/.
Case C: v 2 Z. Let v D ˙nZ .
Case C.1: a; b 2 C �. We have .�A � st.v// \ C � � C � � ¹t3º, and so we are

fine.
Case C.2: a; b 2 N. We have .�A � st.v// \ N D ¹m 2 N W n < mº, and so we

are fine.
Case C.3: a; b 2 Z. In this case v � 1 D aEb D v C 1.
Case C.4: a 2 C � and b 2 N. We have .�A � st.v// \ C � � C � � ¹t3º and

.�A � st.v// \ N D ¹m 2 N W n < mº, and so we are fine.
Case C.5: a 2 C � and b 2 Z. We have .�A � st.v// \ C � � C � � ¹t3º and

.�A �st.v//\Z D ¹˙nZ �1; ˙nZ C1º. Now, ˙nZ �1E ˙nZ C1EnC1Etj , for
some j < 3, and so we are fine because n C 1 2 �A � st.v/ and .�A � st.v// \ C �

is connected.
Case C.6: a 2 N and b 2 Z. We have .�A � st.v// \N D ¹m 2 N W n < mº and

.�A � st.v// \ Z D ¹˙nZ � 1; ˙nZ C 1º. Now, ˙nZ � 1E ˙ nZ C 1En C 1, and
n C 1 is connected in �A � st.v/ to every x 2 ¹m 2 N W n < mº.

Case C.7: a 2 Z and b 2 Z0. We have .�A �st.v//\Z D ¹˙nZ �1; ˙nZ C1º

and .�A � st.v// \ Z0 D Z0, and so ˙nZ � 1E ˙ nZ C 1En C 1EnZ0 C 1, and
nZ0 C 1 is connected in �A � st.v/ to every x 2 Z0.

Theorem 6.3 We have that .K2; 4/ is tame.

Proof Obviously, .K0
2; 6/ is an AEC with AP, JEP, and ALM. Furthermore, by

Lemma 5.3, for every A 2 K2, Aut.M=A/ 6 Aut.�M/. Thus, by Theorem 5.5, it
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suffices to show that .K0
2; 6/ is tame. We show the tameness of .K0

2; 6/ for elements;
the argument generalizes to tuples. Let B 2 K0

2, and assume that in B the copies of
C � and N are actually C � and N. Let a; b 2 M.K0

2; 6/ � B . Then a and b lie in
some of the copies of Z not in B , say, a is in Z and b is in Z0. Let a D 0Z ˙ n, and
let b D 0Z0 ˙ m. Notice that there is ˛ 2 Aut.M=B/ mapping a to b if and only if
n D m if and only if there is ˛ 2 Aut.M=C � [N/ mapping a to b. In fact, for every
copy Z00 of Z we have that 0Z00 ˙ n is adjacent to exactly n C 1 elements from N.
It follows that tp.a=B/ ¤ tp.b=B/ if and only if tp.a=C � [ N/ ¤ tp.b=C � [ N/,
and so .K0

2; 6/ is tame, because C � [ N 6 B .

Theorem 6.4 We have the following:
(a) .K2; 4/ is not homogeneous.
(b) .K2; 4/ is uncountably categorical.

Proof The proof of (a) is as in the proof of Theorem 5.8(a). In fact letting t 0
i D i

and ai D iZ , for Z a copy of Z, we have that the argument used in the proof of
Theorem 5.8(a) works also in this case (where the role of the ti ’s there is played by the
t 0
i ’s here). Uncountable categoricity is also immediate, since for C; D 2 K2 we have

.A[BT ; E/ D �C Š �D D .A0 [B 0
T ; E 0/ if and only if BT Š B 0

T (in the language
¹0; sº), and T D T h.N; s; 0/ is well known to be uncountably categorical.

Corollary 6.5 We have that .K2; 4/ is stable in every infinite cardinality.

Proof This is a consequence of Theorems 6.2, 6.4, and 4.9.

Corollary 6.6 We have that K2 D Mod.�/ for some � 2 L!1;! . Furthermore,
for every A 4 M we have tp!1;!.a=A/ D tp!1;!.b=A/ if and only if tp.a=A/ D

tp.b=A/.

Proof This is an immediate consequence of Theorems 4.10, 4.12, 6.2, 6.3, and 6.4,
together with the easy observation that K2 has at most countably many countable
models.

We conclude the paper with the following open problem.

Open Problem 6.7 Find combinatorial conditions on �A which are necessary and
sufficient for the strong rigidity of an arbitrary right-angled Coxeter group A, and use
them to develop the model theory of strongly rigid right-angled Coxeter groups, in
the style of the present paper.

Notes

1. Notice that here rigidity does not mean what it usually means in model theory.

2. For a definition of Galois type see, for example, [14, beginning of Section 4].

3. The notion of stability in this context is the exact analogue of the notion of stability in
the classical context of first-order logic, where we replace the notion of type with the
notion of Galois type. For an explicit definition see, for example, [2, Definition 8.20].
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