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Theory of Optimal Bayesian Feature Filtering

Ali Foroughi pour∗ and Lori A. Dalton†

Abstract. Optimal Bayesian feature filtering (OBF) is a supervised screening
method designed for biomarker discovery. In this article, we prove two major
theoretical properties of OBF. First, optimal Bayesian feature selection under a
general family of Bayesian models reduces to filtering if and only if the underlying
Bayesian model assumes all features are mutually independent. Therefore, OBF
is optimal if and only if one assumes all features are mutually independent, and
OBF is the only filter method that is optimal under at least one model in the
general Bayesian framework. Second, OBF under independent Gaussian models
is consistent under very mild conditions, including cases where the data is non-
Gaussian with correlated features. This result provides conditions where OBF is
guaranteed to identify the correct feature set given enough data, and it justifies
the use of OBF in non-design settings where its assumptions are invalid.
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1 Introduction

Biomarker discovery entails mining a small-sample high-dimensional dataset for a list of
features that represent potentially interesting molecular biomarkers. The hope is that
the reported features might direct future studies (Feng et al., 2004) that ultimately lead
to new diagnostic or prognostic tests, better treatment recommendations, or a better
understanding of the regulatory mechanisms underlying the biological phenomena or
disease under study (Ilyin et al., 2004; Rifai et al., 2006; Ramachandran et al., 2008).

Unfortunately, discovering reliable and reproducible biomarkers has proven to be
difficult (Diamandis, 2010). One reason is that the algorithms employed (see Ilyin et al.
(2004), Saeys et al. (2007), Diamandis (2010) and Ang et al. (2016) for reviews on
common methods) are typically not well suited for the biomarker discovery problem.
Univariate filter methods often exhibit quirks depending on the scoring function em-
ployed (Lazar et al., 2012). For example, the popular t-test cannot detect markers based
on large differences between variance alone (Foroughi pour and Dalton, 2018b), even
though such markers may have an important role to play in the disease under study or
help uncover previously unknown subclasses of the disease. Multivariate methods may
seem to have an advantage over filters because they can account for correlations; how-
ever, rather than use this correlation information to identify all markers that may be of
interest, they tend to avoid selecting redundant markers or reward selecting smaller fea-

∗Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH,
43210, foroughipour.1@osu.edu

†Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH,
43210, dalton@ece.osu.edu

c© 2020 International Society for Bayesian Analysis https://doi.org/10.1214/19-BA1182

https://bayesian.org/resources/bayesian-analysis/
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
mailto:foroughipour.1@osu.edu
mailto:dalton@ece.osu.edu
https://doi.org/10.1214/19-BA1182


1170 Theory of Optimal Bayesian Feature Filtering

ture sets to simplify model construction or avoid overfitting (Sima and Dougherty, 2008;
Awada et al., 2012; Ang et al., 2016; Li et al., 2017). This effect is so catastrophic for
biomarker discovery that univariate methods often far outperform multivariate meth-
ods (Sima and Dougherty, 2006, 2008; Foroughi pour and Dalton, 2018b).

Here we examine optimal Bayesian feature filtering (OBF), a supervised univariate
filter method designed from the ground up for exploratory biomarker discovery (For-
oughi pour and Dalton, 2015). OBF assumes a finite number of classes (e.g., patients
given drug A versus drug B). Under its assumed model, OBF optimally detects and
ranks the set of all features with distributional differences between the classes. It has
been shown through simulations that OBF has competitive and robust performance
across Bayesian models with block-diagonal covariances, and that it enjoys particularly
excellent performance when markers are individually strong with low correlations (For-
oughi pour and Dalton, 2017d, 2018a). Foroughi pour and Dalton (2018b) also examined
the performance of OBF when its modeling assumptions (e.g., independence, priors, and
Gaussianity) are violated, provided guidance on choosing inputs and objective criteria
for robust performance, and demonstrated that OBF enjoys low computation cost.

Under Gaussian models with certain non-informative priors, OBF reduces to testing
each feature separately using the test statistic studied by Pearson and Neyman (1930)
and Zhang et al. (2012) for the equality of two Gaussian populations. OBF does not
use classification or regression in any part of its framework. While variable selection
methods based on classification or regression (for instance LASSO) are useful for de-
signing predictive models (O’Hara and Sillanpää, 2009), like most multivariate methods
they are typically not suitable for biomarker discovery because their objective is model
construction. Small sample sizes worsen the overfitting problem, often resulting in small
feature sets. If classification is involved, error estimation bias and variance result in poor
selection performance (Sima and Dougherty, 2006).

Bayesian variable selection methods like Bayesian LASSO (Park and Casella, 2008),
the Bayesian extension to group LASSO by Xu and Ghosh (2015), and works by Lee
et al. (2003) and Baragatti (2011) based on generalized linear models (GLMs), suffer
from similar problems. Whereas OBF places priors directly on the underlying data
generation model, most priors for Bayesian variable selection, for example spike and
slab priors (Mitchell and Beauchamp, 1988; Madigan and Raftery, 1994; George and
McCulloch, 1997; Ishwaran and Rao, 2005), place uncertainty on the classification or
regression parameters, which are difficult to justify, interpret and validate in practice.
Multicollinearity can be assuaged by grouping genes, but methods by Rockova and
Lesaffre (2014) and Xu and Ghosh (2015) assume grouping information is known a
priori, which is infeasible in exploratory analysis. Also, in contrast with OBF, Bayesian
methods often rely on computationally intensive methods like Markov-Chain Monte-
Carlo (MCMC) sampling or variational inference (Carbonetto and Stephens, 2012).

Shared kernel Bayesian screening (SKBS) by Lock and Dunson (2015) is an inter-
esting approach that assumes all feature distributions belong to a family of mixture
models with K components, and the objective is to test whether the classes have dif-
ferent weights in the mixture distribution. Whereas OBF treats each individual feature
separately, SKBS uses the same K dictionary mixture components for all features and
allows only the kernel weights to vary. When sample size is small we observed better
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performance using small K, but in this case the data may not be properly modeled for
all features and the detected mixture components lose interpretability. SKBS also uses
MCMC, making it more computationally expensive than OBF. Bayesian non-parametric
methods, for example those based on Dirichlet or Pitman-Yor processes, have also gained
popularity in bioinformatics for classification, inferring gene networks, clustering, and
detecting chromosomal aberrations (Shahbaba and Neal, 2009; Libbrecht and Noble,
2015; Mitra and Müller, 2015; Ni et al., 2017). Spike-and-slab Dirichlet processes avoid
the need to specify the number of mixtures; however, it is still difficult to specify and
justify the base distribution and priors in practice. While our focus here is on the super-
vised case, many works like that of Cui and Cui (2012) focus on the unsupervised case.
Computation is also a key concern; Cui and Cui use Bayesian expectation-maximization,
which is more demanding than OBF. Holmes et al. (2015) present a supervised method
based on Pólya trees, however, the model may require larger samples than available in
a typical exploratory analysis and may be sensitive to imbalanced samples.

Our main contributions are two-fold: (1) we prove optimal Bayesian feature selection
under a general family of Bayesian models reduces to filtering (e.g., OBF) if and only if
the underlying Bayesian model assumes all features are independent, and (2) we prove
OBF under independent Gaussian models is a consistent estimator of the feature set we
wish to select under mild conditions, including cases where the data is non-Gaussian
with correlated features. Contribution (1) has two practical implications: OBF is the
only filter method for which there exists a model in the general Bayesian framework
where it is optimal, and OBF is optimal if and only if one assumes all features are
independent. Contribution (2) is of enormous importance, since it provides conditions
where OBF is guaranteed to identify the correct feature set given enough data, and it
justifies the use of OBF in non-design settings where its assumptions are invalid.

We review the Bayesian model in Section 2 and optimal set selection in Section 3. In
Section 4 we discuss OBF and present contribution (1) in Theorem 1, and in Section 5
we examine consistency and present contribution (2) in Theorems 2 and 3. We provide
a demonstration on synthetic microarray data in Section 6, and conclude in Section 7.
We provide a demonstration on real colon cancer microarray data in Sections S2 and
S3 of Supplementary Material A (Foroughi pour and Dalton, 2019).

2 Bayesian Model

In Section 2.1, we describe the general three-level Bayesian model originally proposed
in Dalton (2013). In Sections 2.2 and 2.3 we cover the independent case and independent
Gaussian case, respectively, which are originally presented in Foroughi pour and Dalton
(2015). Although not covered here, an independent categorical model and several models
with correlations in the general Bayesian framework have been proposed (Dalton, 2013;
Foroughi pour and Dalton, 2016a, 2017c,d).

2.1 General Bayesian Model

Consider a feature selection problem in which we are to identify all features that have
distinct distributions between two classes, y = 0 and y = 1. Although we consider binary
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labels here, the multiclass case is similar and has been characterized in Foroughi pour
and Dalton (2017b). Let F be a set of feature indices, let each feature f ∈ F be
associated with a space, Xf , and let X =

∏
f∈F Xf be the feature space. Typically,

Xf = R for all f . We call features that we wish to select, e.g. those with distributional
differences between classes, “good features.” When viewed as a random quantity, we
denote this set by Ḡ, and we denote a realization of this random set by G. Likewise, we
call features that we wish not to select “bad features,” and denote them by B̄ = F\Ḡ
when random and B = F\G when fixed, where “\” is the set difference. Conditioning on
events like {Ḡ = G} or {f ∈ Ḡ} does not mean the set of good features is deterministic.
Rather, this should be interpreted as merely a hypothesis that these events hold for
the current G ⊆ F or f ∈ F under consideration. Furthermore, since Ḡ = G if and
only if B̄ = B, conditioning on the event {Ḡ = G} is equivalent to conditioning on the
event {B̄ = B}. We denote conditioning on these events by “|G” or “|B”, and use these
notations interchangeably throughout.

We denote a prior on Ḡ across the power set of F by p(G) = P (Ḡ = G). Given
Ḡ = G, let θGy denote data generation parameters of class y ∈ {0, 1} features in G, let

θB denote data generation parameters of features in B, and let θ = {θG0 , θG1 , θB} be the
set of all data generation parameters. Define corresponding parameter spaces: ΘG

y , Θ
B

and Θ = ΘG
0 ×ΘG

1 ×ΘB . We denote a prior on θ by p(θ|G), and assume θG0 , θ
G
1 and θB

are conditionally mutually independent, i.e.,

p(θ|G) = p(θG0 |G)p(θG1 |G)p(θB |B). (2.1)

We assume feature selection is aided by the observation of feature-label pairs, and
we denote the complete dataset, including features and labels, by S. Though we assume
the data is complete here, the missing data problem has been studied for special cases
of this model in Foroughi pour and Dalton (2016b). Let x ∈ X be a feature vector, and
let xG and xB denote elements of x that correspond to features in G and B respectively.
Given Ḡ = G, parameter θ and class y, we also assume xG and xB are independent:

p(x|y, θ,G) = p(xG|θGy )p(xB |θB). (2.2)

Assume the data is comprised of n points with ny points in class y, that the label of each
point is determined by a process independent of θ and G, and that, conditioned on the
labels, sample points are independent with points belonging to the same class identi-
cally distributed. These assumptions are true in many sampling strategies, for instance
random and separate sampling. Let SG

y and SB be the part of the data corresponding
to features in G from class y and features in B from both classes, respectively. Due to
independence between xG and xB and independence between sample points,

p(S|θ,G) ∝ p(SG
0 |θG0 )p(SG

1 |θG1 )p(SB |θB), (2.3)

where the proportionality constant depends on the distribution of ny for the given
sampling strategy, p(SG

y |θGy ) =
∏

xG∈SG
y
p(xG|θGy ), and p(SB |θB) =

∏
xB∈SB p(xB |θB).

Thus, SG
0 , SG

1 and SB are mutually independent given θ and G. Further, from (2.1)
and (2.3), they are also independent given only G, that is,

p(S|G) =
∫
Θ
p(θ|G)p(S|θ,G)dθ ∝ p(SG

0 |G)p(SG
1 |G)p(SB |B), (2.4)
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where for y ∈ {0, 1},

p(SG
y |G) =

∫
ΘG

y
p(θGy |G)p(SG

y |θGy )dθGy , p(SB |B) =
∫
ΘB p(θB |B)p(SB |θB)dθB . (2.5)

Let p(G|S) = P (Ḡ = G|S) be the posterior probability that the set G is precisely the
set of good features, given our observation of the data. Applying Bayes’ rule and (2.4),

p(G|S) ∝ p(G)p(S|G) ∝ p(G)p(SG
0 |G)p(SG

1 |G)p(SB |B). (2.6)

The marginal prior and posterior probabilities that an individual feature, f ∈ F , is in
Ḡ are denoted by π(f) = P (f ∈ Ḡ) =

∑
G:f∈G p(G) and

π∗(f) = P (f ∈ Ḡ|S) =
∑

G:f∈G

p(G|S), (2.7)

respectively. Note that P (f ∈ B̄) = 1− π(f) and P (f ∈ B̄|S) = 1− π∗(f). Also,

E
(
|Ḡ|

)
= E

⎛
⎝∑

f∈F

I(f ∈ Ḡ)

⎞
⎠ =

∑
f∈F

P (f ∈ Ḡ) =
∑
f∈F

π(f), (2.8)

where | · | denotes cardinality for sets, and I(q) is the indicator function, equal to 1 if
q holds and 0 otherwise. Similarly, E

(
|Ḡ|

∣∣S) =
∑

f∈F π∗(f). The expected number of
good features, before and after observing data, may be found from π and π∗, respectively.

In biomarker discovery, previously known biomarkers can be integrated into the prior
to aid the discovery of new biomarkers (Foroughi pour and Dalton, 2017a). When prior
knowledge is not available, improper priors for p(θ|G) may be needed and the above
derivations become invalid. To circumvent this problem we: (1) require p(θ|G) to be such
that the integrals in (2.5) are positive and finite, (2) require π(G) to be proper, and (3)
take (2.5), (2.6) and (2.7) as definitions with the proportionality constant in (2.6) de-
fined such that

∑
G:G⊆F p(G|S) = 1. Although improper priors are controversial, see for

example marginalization paradoxes described by Dawid et al. (1973), counterexamples
discussed by Jaynes (2003), and discussions on the Jeffreys-Lindley paradox by Robert
(1993, 2014), this guarantees the posterior p(G|S) and marginal posterior π∗(f) un-
der improper priors are normalizable to valid densities and have definitions consistent
with proper priors. See Sections S5 and S6 of Supplementary Material A for further
discussions on improper priors.

2.2 Independent Bayesian Model

Assume a prior p(G) on Ḡ where the events {f ∈ Ḡ} are mutually independent. Then,

p(G) = P
(
(∩g∈G{g ∈ Ḡ}) ∩ (∩b∈B{b ∈ B̄})

)
=

∏
g∈G

π(g)
∏
b∈B

(1− π(b)). (2.9)
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To completely characterize this prior, note that one need only specify π(f) for all f ∈ F .
Further, if π(f) = p is constant for all f ∈ F , then |Ḡ| is binomial(|F |, p).

For every f ∈ F we assign three parameters, θf0 , θ
f
1 and θf , with parameter spaces

Θf
0 , Θ

f
1 and Θf and densities p(θf0 ), p(θ

f
1 ) and p(θf ), respectively. Let θGy = {θfy : f ∈ G}

and θB = {θf : f ∈ B} and assume parameters of individual features are mutually
independent given Ḡ = G. Then (2.1) becomes p(θ|G) =

∏
g∈G p(θg0)p(θ

g
1)

∏
b∈B p(θb).

Finally, we assume features are mutually independent given Ḡ = G, θ and y, thus the
joint density in (2.2) is now of the form p(x|y, θ,G) =

∏
g∈G p(xg|θgy)

∏
b∈B p(xb|θb),

where p(xg|θgy) and p(xb|θb) are the marginals of good and bad features, respectively.

As in (2.6), one can show

p(G|S) ∝ p(G)
∏
g∈G

p(Sg
0 |g ∈ Ḡ)p(Sg

1 |g ∈ Ḡ)
∏
b∈B

p(Sb|b ∈ B̄), (2.10)

where, as in (2.5),

p(Sf
y |f ∈ Ḡ) =

∫
Θf

y
p(θfy )p(S

f
y |θfy )dθfy , p(Sf |f ∈ B̄) =

∫
Θf p(θ

f )p(Sf |θf )dθf . (2.11)

Dividing the right-hand side of (2.10) by the constant
∏

f∈F (1− π(f))p(Sf |f ∈ B̄), we
have

p(G|S) ∝
∏
g∈G

h(g), (2.12)

where for all f ∈ F , we define

h(f) =
π(f)

1− π(f)
× p(Sf

0 |f ∈ Ḡ)p(Sf
1 |f ∈ Ḡ)

p(Sf |f ∈ B̄)
. (2.13)

Furthermore, from (2.7),

π∗(f) =

∑
G:f∈G

∏
g∈G h(g)∑

G

∏
g∈G h(g)

=
h(f)

∑
G:f �∈G

∏
g∈G h(g)

(1 + h(f))
∑

G:f �∈G

∏
g∈G h(g)

=
h(f)

1 + h(f)
. (2.14)

Once h(f) is found, π∗(f) is obtained from (2.14). Note that h(f) = π∗(f)/(1− π∗(f)).
Plugging this in (2.12) and normalizing by the constant

∏
f∈F (1− π∗(f)), we have

p(G|S) ∝
∏
g∈G

π∗(g)
∏
b∈B

(1− π∗(b)). (2.15)

In fact, (2.15) holds with equality, thus the events {f ∈ Ḡ} are mutually independent
conditioned on S. Just as π(f) characterizes p(G), π∗(f) characterizes p(G|S).

When p(θfy ) or p(θf ) are improper, we require π(f) to be proper, we require the
integrals in (2.11) to be positive and finite and take these equations as definitions, and
we define π∗(f) = h(f)/(1 + h(f)) as in (2.14), where h(f) is defined in (2.13).
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2.3 Independent Gaussian Model

Now suppose all features are Gaussian with conjugate priors. If f ∈ Ḡ then θfy = [μf
y , σ

f
y ],

where μf
y and σf

y are the mean and variance of xf in class y, respectively. Similarly, if

f ∈ B̄, then θf = [μf , σf ], where μf and σf are the mean and variance of xf . To
simplify notation, we drop the conventional square in variances, σf

y and σf .

Assume p(θfy ) = p(σf
y )p(μ

f
y |σf

y ), where p(σf
y ) = Af

y(σ
f
y )

−0.5(κf
y+2) exp(−0.5sfy/σ

f
y ),

p(μf
y |σf

y ) = Bf
y (σ

f
y )

−0.5 exp(−0.5νfy (μ
f
y − mf

y)
2/σf

y ), and sfy , κ
f
y ,m

f
y and νfy are real-

valued hyper-parameters. For a proper prior we require sfy , κ
f
y , ν

f
y > 0, in which case

p(σf
y ) is an inverse-Wishart distribution with mean sfy/(κ

f
y − 2) if κf

y > 2, and p(μf
y |σf

y )

is Gaussian with mean mf
y and variance σf

y/ν
f
y . A

f
y and Bf

y scale the two distributions,

where under a proper prior Af
y = (0.5sfy)

0.5κf
y/Γ(0.5κf

y) and Bf
y = (2π/νfy )

−0.5.

The posterior, p(θfy |Sf
y ), is of the same form as the prior, p(θfy ), with updated hyper-

parameters κf∗
y = κf

y + ny, ν
f∗
y = νfy + ny, m

f∗
y = (νfym

f
y + nyμ̂

f
y)/(ν

f
y + ny), and

sf∗y = sfy +(ny−1)σ̂f
y +

νf
yny

νf
y+ny

(μ̂f
y −mf

y)
2, where μ̂f

y and σ̂f
y =

∑
x∈Sf

y
(x− μ̂f

y)
2/(ny−1)

are the sample mean and unbiased sample variance, respectively, of feature f points in
class y (Murphy, 2007). Note that p(Sf

y |f ∈ Ḡ) is the normalization constant in finding

the posterior, p(θfy |Sf
y ), from the prior times likelihood, p(θfy )p(S

f
y |θfy ):

p(Sf
y |f ∈ Ḡ) =

p(θfy )p(S
f
y |θfy )

p(θfy |Sf
y )

=
Af

yB
f
yΓ(0.5κ

f∗
y )

(2π)0.5(ny−1)(νf∗y )0.5(0.5sf∗y )0.5κ
f∗
y

. (2.16)

Moving on to bad features, we assume, p(θf ) = p(σf )p(μf |σf ), where given real-

valued hyper-parameters sf , κf ,mf , and νf , p(σf ) = Af (σf )−0.5(κf+2) exp(−0.5sf/σf )
and p(μf |σf ) = Bf (σf )−0.5 exp(−0.5νf (μf −mf )2/σf ). For a proper prior, sf , κf , νf >

0, Af = (0.5sf )0.5κ
f

/Γ(0.5κf ) and Bf = (2π/νf )−0.5. The posterior has updated hyper-
parameters, κf∗ = κf + n, νf∗ = νf + n, mf∗ = (νfmf + nμ̂f )/(νf + n), and sf∗ =

sf + (n− 1)σ̂f + νfn
νf+n

(μ̂f −mf )2, where μ̂f and σ̂f are the sample mean and variance,
respectively, of feature f points in both classes (Murphy, 2007). As in (2.16),

p(Sf |f ∈ B̄) =
AfBfΓ(0.5κf∗)

(2π)0.5(n−1)(νf∗)0.5(0.5sf∗)0.5κf∗ . (2.17)

Plugging (2.16) and (2.17) in (2.13),

h(f) =
π(f)

1− π(f)
Lf

(
2πνf∗

νf∗0 νf∗1

)0.5
Γ(0.5κf∗

0 )Γ(0.5κf∗
1 )(0.5sf∗)0.5κ

f∗

Γ(0.5κf∗)(0.5sf∗0 )0.5κ
f∗
0 (0.5sf∗1 )0.5κ

f∗
1

, (2.18)

where Lf = Af
0B

f
0A

f
1B

f
1 /(A

fBf ). If π(f), Lf , νfy , ν
f , κf

y and κf do not depend on f ,

h(f) ∝ (sf∗)0.5κ
f∗

(sf∗0 )0.5κ
f∗
0 (sf∗1 )0.5κ

f∗
1

. (2.19)
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Under improper priors we require π(f) to be proper, and to ensure (2.16) and (2.17) are

positive and finite we require sf∗0 , κf∗
0 , νf∗0 , sf∗1 , κf∗

1 , νf∗1 , sf∗, κf∗, νf∗ > 0 for all f ∈ F .
In addition, Lf > 0 becomes a separate parameter specified by the user. All theorems in
this work hold under these improper priors, and set selection under proper and improper
priors for the independent Gaussian case have been studied extensively in Foroughi pour
and Dalton (2018b). Following Berger (1985), DeGroot (1970) and Akaike (1980), in
Section S5 of Supplementary Material A we also show that π∗(f) from these improper
priors is equivalent to a limit of π∗(f) from a sequence of proper priors.

3 Optimal Bayesian Feature Selection

We define five criteria for optimal Bayesian feature selection under the general Bayesian
model: (1) the maximum a posteriori (MAP) criterion selects the feature set having
the highest posterior probability of being the good feature set, (2) constrained MAP
(CMAP) uses the MAP objective but considers only feature sets of a given size, (3)
the minimal risk (MR) criterion minimizes a notion of risk, with the maximum num-
ber correct (MNC) rule being a special case that minimizes the number of mislabeled
features, (4) constrained MNC (CMNC) uses the MNC objective but considers only
feature sets of a given size, and (5) the Neyman-Pearson (NP) criterion maximizes the
expected number of good features selected given a limited expected number of bad fea-
tures selected. MAP was originally presented in Dalton (2013), while MNC and an early
form of CMNC constrained to selecting two features (2MNC) were originally presented
in Foroughi pour and Dalton (2014); all of the other criteria are new.

3.1 Maximum a Posteriori

The MAP feature set is the set having maximum posterior probability:

GMAP = argmax
G⊆F

p(G|S). (3.1)

We also define the CMAP feature set to be the MAP feature set under the constraint
of selecting exactly D features for some user-specified constant D:

GCMAP = argmax
G⊆F :|G|=D

p(G|S). (3.2)

Let �(G, Ḡ) be a loss function in selecting G when Ḡ is the true set of good features,
and let E(�(G, Ḡ)|S) be the risk in selecting G. It can be shown that the MAP feature
set minimizes risk under a zero-one loss function that assigns �(G, Ḡ) = 0 when Ḡ = G
and �(G, Ḡ) = 1 when Ḡ �= G. Therefore, one drawback of the MAP objective is that
it assigns the same loss to all incorrect feature sets, regardless of how many features
are labeled incorrectly. This is remedied by the MR objective, described in the next
section.
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3.2 Minimal Risk

Consider the family of objective criteria with �(G, Ḡ) of the form:

�(G, Ḡ) = λGG|G ∩ Ḡ|+ λGB|G ∩ B̄|+ λBG|B ∩ Ḡ|+ λBB |B ∩ B̄|, (3.3)

where λGG, λGB , λBG, and λBB are constants such that λGB ≥ λBB and λBG ≥ λGG.
The MR feature set is defined as:

GMR = argmin
G⊆F

E(�(G, Ḡ)|S). (3.4)

Observe that,

E
(
|G ∩ Ḡ|

∣∣S) = E
(∑

g∈G I(g ∈ Ḡ)|S
)
=

∑
g∈G P

(
g ∈ Ḡ|S

)
=

∑
g∈G π∗(g), (3.5)

E
(
|G ∩ B̄|

∣∣S) = ∑
g∈G(1− π∗(g)). (3.6)

Similarly, E
(
|B ∩ Ḡ|

∣∣S) = ∑
b∈B π∗(b) and E

(
|B ∩ B̄|

∣∣S) = ∑
b∈B(1− π∗(b)). Thus,

E(�(G, Ḡ)|S) = λGG

∑
g∈G π∗(g) + λGB

∑
g∈G(1− π∗(g))

+ λBG

∑
b∈B π∗(b) + λBB

∑
b∈B(1− π∗(b)). (3.7)

E(�(G, Ḡ)|S) is minimized by considering each feature, f ∈ F , individually. In particu-
lar, f is inGMR if the risk incurred by including this feature, λGGπ

∗(f)+λGB(1−π∗(f)),
is less than the risk incurred by not including it, λBGπ

∗(f)+λBB(1−π∗(f)), or equiv-
alently, if (λGB + λBG − λGG − λBB)π

∗(f) > λGB − λBB . Thus,

GMR = {f ∈ F : π∗(f) > T} , (3.8)

where T = (λGB − λBB)/(λGB + λBG − λGG − λBB). In other words, the MR objective
ranks features by their marginal posterior probability of being in Ḡ, and selects those
with probabilities exceeding a given threshold.

When λGG = λBB = 0 and λGB = λBG = 1, the MR cost function minimizes the
expectation of the number of mislabeled features, |G ∩ B̄| + |B ∩ Ḡ|, or equivalently,
maximizes the expectation of the number of correctly labeled features, c(G, Ḡ) = |G ∩
Ḡ|+ |B ∩ B̄|. This results in the MNC objective:

GMNC = argmax
G⊆F

E(c(G, Ḡ)|S) = {f ∈ F : π∗(f) > 0.5} . (3.9)

MNC thus selects features with a posterior probability of being in Ḡ greater than 0.5.

Constrained MR (CMR) minimizes risk under the constraint of selecting exactly D
features:

GCMR = argmin
G⊆F :|G|=D

E(�(G, Ḡ)|S). (3.10)

Following a similar procedure used to derive (3.8), observe:

GCMR = argmax
G⊆F :|G|=D

∑
g∈G

π∗(g). (3.11)

Thus, GCMR ranks π∗(f) and selects the D features with highest rank. Since the λ’s
need not be specified, we also call this criterion CMNC.
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3.3 Neyman-Pearson

Viewing the number of correctly identified good features, |G∩ Ḡ|, as the number of true
positives, and the number of incorrectly identified bad features, |G∩ B̄|, as the number
of false positives, the NP objective maximizes the expected number of true positives
while bounding the expected number of false positives by 0 ≤ α ≤ E(|B̄|

∣∣S):
GNP = argmax

G⊆F
E
(
|G ∩ Ḡ|

∣∣S)
subject to E

(
|G ∩ B̄|

∣∣S) ≤ α.
(3.12)

From (3.5) and (3.6), we have that

GNP = argmax
G⊆F

∑
g∈G

π∗(g)

subject to
∑
g∈G

(1− π∗(g)) ≤ α.
(3.13)

This is solved by ranking π∗(f) and iteratively adding features with highest rank to
GNP until adding a new feature results in violating the constraint. NP is closely related
to MR and CMNC in that all of these methods rank features using the same scoring
function, π∗(f). However, they use different score cutoffs; in MR the cutoff is a constant
threshold, in CMNC the cutoff forces a certain set size, and in NP the cutoff depends
on the values of the π∗(f). For selection rule Gk with free parameter k, plotting the pair
(E(|Gk ∩ B̄|

∣∣S), E(|Gk ∩ Ḡ|
∣∣S)) in the [0, E(|B̄|

∣∣S)]× [0, E(|Ḡ|
∣∣S)] space under various

k results in a curve analogous to a receiver operating characteristic (ROC) curve. The
ROC curve for MR (varying T ), CMNC (varying D) and NP (varying α) are all

(k −
∑k

f=1 π
∗
(f),

∑k
f=1 π

∗
(f)) (3.14)

for k = 0, 1, . . . , |F |, where the π∗
(f) are the π∗(f) ordered from largest to smallest.

4 Optimal Bayesian Feature Filtering

In the general Bayesian model, MAP and CMAP require finding p(G|S) for all G ⊆ F ,
which is computationally prohibitive when |F | is large. Although MR (and thus MNC),
CMNC and NP always reduce to ranking features by π∗(f) with various methods of
thresholding, finding π∗(f) also requires evaluating p(G|S) for all G ⊆ F . In this section,
we discuss how this problem is circumvented under independent Bayesian models.

Under independent Bayesian models, any method that ranks features by π∗(f) (or
equivalently h(f)) and selects top ranking features is considered an OBF rule. While
MAP and CMAP generally do not reduce to ranking π∗(f), in independent Bayesian
models MAP reduces to MNC and CMAP reduces to CMNC by (2.15) and (3.1), thus
all selection criteria covered in Section 3 reduce to OBF rules. Furthermore, since π∗(f)
can be found separately for each feature under independent Bayesian models via (2.14)
(for instance using (2.18) or (2.19) in the Gaussian case), all OBF rules reduce to
filtering. The fact that optimal Bayesian feature selection reduces to filtering under
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independent models is not surprising, in light of similar results for Bayesian multiple
comparison rules (Müller et al., 2006). By assuming independence we lose the ability to
take advantage of correlations, but we greatly simplify optimal selection.

Define a univariate filter on F to be a feature selection rule that ranks features by
a scoring function h(f, Sf ), which is a function of only the feature index f and the
portion of the labeled data corresponding to f , and selects top ranking features using
some score thresholding rule, which is based on only the set of feature scores. t-tests
with Benjamini and Hochberg (1995) multiple testing correction are univariate filters.
Define a simple univariate filter on F to be a univariate filter that uses a constant
threshold, i.e., a feature selection rule that reduces to the form:

G = {f ∈ F : h(f, Sf ) > T}, (4.1)

where T is a constant. t-tests without multiple testing correction are simple univariate
filters. By the following theorem, not only does optimal selection reduce to OBF under
independent models, but optimal selection reduces to simple univariate filtering only
under independent models, and the resulting filter must be equivalent to an OBF rule.

Theorem 1. MR under a general Bayesian model M on feature set F is a simple
univariate filter on F for all thresholds T if and only if there exists an independent
Bayesian model M′ on F such that π∗(f |M′) = π∗(f |M) for all f ∈ F and all labeled
datasets S.

Proof. Suppose an independent Bayesian model, M′, exists as characterized above. Let
T be an arbitrary constant. MR simplifies to GMR = {f ∈ F : π∗(f |M′) > T} by (3.8),
where π∗(f |M′), given in (2.14), depends only on f and Sf (note that Sf is comprised

of Sf
0 and Sf

1 , along with the labels). Thus, MR reduces to a simple univariate filter on
F under both M′ and M for all T .

Now suppose that MR under M is a simple univariate filter on F for all T . Suppose
there exist samples S• �= S◦ and f ∈ F such that Sf

• = Sf
◦ , but P (f ∈ Ḡ|S•,M) >

P (f ∈ Ḡ|S◦,M). Let T be the midpoint between P (f ∈ Ḡ|S•,M) and P (f ∈ Ḡ|S◦,M).
MR at threshold T selects f under S•, but does not select f under S◦. This contradicts
the premise that MR is a simple univariate filter. Thus, for all triplets S•, S◦ and f
such that S• �= S◦ and Sf

• = Sf
◦ , we must have P (f ∈ Ḡ|S•,M) = P (f ∈ Ḡ|S◦,M).

Fix f0 ∈ F . Assume that P (f0 ∈ Ḡ|S,M), which is in general a function of S, cannot
be written as a function of only Sf0 . Then there exists a pair of samples S• and S◦ such
that S• �= S◦, S

f0
• = Sf0

◦ and P (f0 ∈ Ḡ|S•,M) �= P (f0 ∈ Ḡ|S◦,M). By contradiction,
P (f0 ∈ Ḡ|S,M) can be written as a function of only Sf0 . Since f0 is arbitrary, we must
have that the marginal posterior for each feature can be expressed as π∗(f |M) ≡ P (f ∈
Ḡ|S,M) = P (f ∈ Ḡ|Sf ,M) for all f ∈ F and all S. From Bayes rule,

π∗(f |M) =
p0

p0 + p1
, (4.2)

where p0 = P (f ∈ Ḡ|M)
∏

y∈{0,1} p(S
f
y |f ∈ Ḡ,M), p1 = P (f ∈ B̄|M)p(Sf |f ∈ B̄,M),

p(Sg
y |g ∈ Ḡ,M) =

∑
G:g �∈G

P (Ḡ = G ∪ {g}|g ∈ Ḡ,M)p(Sg
y |G ∪ {g},M), (4.3)
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p(Sb|b ∈ B̄,M) =
∑

B:b �∈B

P (B̄ = B ∪ {b}|b ∈ B̄,M)p(Sb|B ∪ {b},M), (4.4)

p(Sg
y |G,M) =

∫
ΘG

y
p(θGy |G,M)p(Sg

y |θGy ,M)dθGy and p(Sb|B,M) =
∫
ΘB p(θB |B,M)

p(Sb|θB ,M)dθB . We now construct an independent Bayesian model, M′. The idea is
to create auxiliary random variables for each f ∈ F that are independent from other
features and yet sufficient to describe π∗(f |M). Define P (f ∈ Ḡ|M′) = P (f ∈ Ḡ|M),

define the data generation parameters φg
y = {H̄, θ

H̄∪{g}
y } for each g ∈ F , and define

priors on a realization of H ⊆ F\{g} and θ
H∪{g}
y ∈ Θ

H∪{g}
y from M by,

p(φg
y|M′) = P (Ḡ = H ∪ {g}|g ∈ Ḡ,M)p(θH∪{g}

y |H ∪ {g},M). (4.5)

Similarly, for all b ∈ F , define φb = {H̄, θH̄∪{b}}, and define priors on H ⊆ F\{b} and
θH∪{b} ∈ ΘH∪{b} from M by,

p(φb|M′) = P (B̄ = H ∪ {b}|b ∈ B̄,M)p(θH∪{b}|H ∪ {b},M). (4.6)

In this way, for each feature f ∈ F we merge the identity of features excluding f with
the data generation parameters. Finally, we define the distributions p(xg|φg

y,M′) =

p(xg|θH∪{g}
y ,M) and p(xb|φb,M′) = p(xb|θH∪{b},M) using the marginal distribu-

tions of xf under M. Note that p(Sg
y |φg

y,M′) = p(Sg
y |θ

H∪{g}
y ,M) and p(Sb|φb,M′) =

p(Sb|θH∪{b},M). Applying (2.14), the definition of h(f), and the definition of P (f ∈
Ḡ|M′), π∗(f |M′) is of the form in (4.2) with p0 = P (f ∈ Ḡ|M)

∏
y∈{0,1} p(S

f
y |f ∈

Ḡ,M′) and p1 = P (f ∈ B̄|M)p(Sf |f ∈ B̄,M′), where

p(Sg
y |g ∈ Ḡ,M′) =

∑
H:g �∈H

∫
Θ

H∪{g}
y

p({H, θH∪{g}
y }|M′)p(Sg

y |{H, θH∪{g}
y },M′)dθH∪{g}

y , (4.7)

p(Sb|b∈ B̄,M′) =
∑

H:b �∈H

∫
ΘH∪{b}

p({H, θH∪{b}}|M′)p(Sb|{H, θH∪{b}},M′)dθH∪{b}. (4.8)

Plugging in p(φg
y|M′), p(φb|M′), p(Sg

y |φg
y,M′) and p(Sb|φb,M′), and comparing

p(Sg
y |g ∈ Ḡ,M′) and p(Sb|b ∈ B̄,M′) with counterparts in M, we have π∗(f |M′) =

π∗(f |M).

5 Consistency

A key property of any estimator is consistency: as data are collected, will the estimator
converge to the quantity it is to estimate? We are now interested in frequentist asymp-
totics, that is, the behavior of an estimator under a fixed set of good features, Ḡ, a fixed
set of parameters, θ̄, and the corresponding sampling distribution.

Let S∞ denote a countably infinite labeled dataset, and let Sn denote the first n
observations. In general, a sequence of estimators, θ̂n(Sn) for n ≥ 1, of a parameter, θ̄,
is said to be strongly consistent at θ̄ if

P (θ̂n(Sn) → θ̄
∣∣θ̄) = 1, (5.1)
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where convergence is understood with respect to a distance metric d, and this probability
is taken with respect to the infinite sampling distribution on S∞ under some true
data generation parameter, θ̄. For feature selection, we will use d(Ḡ,G) = I(Ḡ �= G).
Under this metric, Gn → Ḡ if and only if Gn = Ḡ for all but finitely many n. The
following theorem addresses the convergence of MR, CMNC and NP under any sequence
of posteriors, p(G|Sn). The posteriors may be based on any general Bayesian model.

Theorem 2. Fix S∞. If limn→∞ p(Ḡ|Sn) = 1, then GMR → Ḡ if T ∈ (0, 1), GCMNC →
Ḡ if D = |Ḡ|, and GNP → Ḡ if α ∈ (0, 1).

Proof. By (2.7), limn→∞ p(Ḡ|Sn) = 1 implies π∗(g) → 1 and π∗(b) → 0 for all g ∈ Ḡ
and b ∈ B̄. The consistency of MR and NP follow immediately for the range of T and
α specified, and the consistency of CMNC follows if D = |Ḡ|.

By Theorem 2, if p(G|Sn) converges almost surely (a.s.), i.e., with probability 1,
to a point mass at Ḡ, then MR (and thus MNC) and NP are strongly consistent and
CMNC is strongly consistent when constrained to select the correct number of features.
In Section 5.1 we prove that p(G|Sn) converges almost surely for independent Gaussian
models under very mild conditions; the data need not be independent or Gaussian.

5.1 Convergence of p(G|Sn) Under Independent Gaussian Models

For fixed Ḡ, let F Ḡ
∞ be the infinite sampling distribution on S∞. For fixed Sn, define

ρ = n0/n, c
f
y = sf∗y /(ny − 1) for all f ∈ F and y = 0, 1, and cf = sf∗/(n − 1) for all

f ∈ F . Throughout this section, we assume p(G|Sn) is calculated under an independent
Gaussian model with proper or improper priors on p(θfy ) and p(θf ), and (in a slight
generalization) allow p(G) to be arbitrary. Allowing p(G) to be arbitrary, equations
analogous to (2.12) and (2.18) are straightforward to derive. We have:

p(G|Sn) ∝ a(G,Sn)z(G,Sn), (5.2)

where z(G,Sn) = p(G)
∏

f∈G l(f, Sn),

l(f, Sn) = Lf (n0, n1)
Γ(0.5κf∗

0 )Γ(0.5κf∗
1 )

Γ(0.5κf∗)

(
2πνf∗0.5κ

f−κf
0−κf

1 (n− 1)κ
f∗

νf∗0 νf∗1 (n0 − 1)κ
f∗
0 (n1 − 1)κ

f∗
1

)0.5

(5.3)

and

a(G,Sn) =
∏
f∈G

(
(cf )κ

f∗

(cf0 )
κf∗
0 (cf1 )

κf∗
1

)0.5

. (5.4)

We write Lf as a function of n0 and n1 to emphasize that it may be allowed to change
depending on the sample size. We assume all other inputs and hyper-parameters of the
independent Gaussian model are constant across all samples sizes.

Definition 1. Ḡ is an independent unambiguous set of good features if, for each g ∈ Ḡ
μg
y and σg

y exist and are finite such that either μg
0 �= μg

1 or σg
0 �= σg

0 , and for each b ∈ B̄

μb
y and σb

y exist and are finite such that μb = μb
0 = μb

1 and σb = σb
0 = σb

0.
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Definition 2. S∞ is called a balanced sample if the label of sample points are such that
lim infn→∞ ρ > 0 and lim supn→∞ ρ < 1, and, conditioned on the labels, sample points
are independent with points belonging to the same class identically distributed.

Definition 3. p(θ|G) is called semi-proper if, for all f ∈ F , there exists c > 0 and
p < 1 such that

Lf (n0, n1) ∼ cnp (5.5)

as n → ∞. f ∼ g as n → ∞ means limn→∞ f(n)/g(n) = 1.

The following theorem proves our desired result. Three lemmas used in the proof are
provided in Section S1 of Supplementary Material A. The conditions assumed by the
theorem are very mild. Condition (i) is based on Definition 1 and essentially says that
Ḡ is really the feature set we wish to select, i.e., good features must truly have different
means or variances between the classes, and bad features must truly have the same
means and the same variances between the classes. Conditions (i) and (ii) require certain
moments to exist, but there is no requirement for the data to be Gaussian or for features
to be independent from each other. Condition (iii) is based on Definition 2 and addresses
the sampling strategy; the assumptions are similar to those made by most finite sample
data generation models for classification, with an additional requirement on the infinite
sample that the proportion of points observed in either class must not converge to zero.
Conditions (iv) and (v) place constraints on the inputs to OBF. Condition (iv) requires
that OBF assign a non-zero probability prior to the feature set we ultimately wish to
select, which is easily achieved by setting 0 < π(f) < 1 for all f ∈ F . Condition (v) is
based on Definition 3 and addresses the possibility that one might input different Lf for
an improper prior to OBF depending on sample size. Condition (v) is always satisfied
with p = 0 under proper priors, and under improper priors with Lf set to a positive
constant across all samples sizes. By Theorems 2 and 3, under these conditions and
posteriors computed based on the independent Gaussian model, we have that MR (and
thus MNC and MAP) is strongly consistent, and CMNC (and thus CMAP) is strongly
consistent when constrained to select the correct number of features.

The proof of Theorem 3 also characterizes the rate of convergence of the posterior.
Under the conditions stated in the theorem, there exist R > 1 and N > 0 such that
h(g) > Rn (a.s.) for all n > N and all good features g ∈ Ḡ. Equivalently, there exist
0 < r < 1 and N > 0 such that π∗(g) > 1 − rn (a.s.) for all n > N and all g ∈ Ḡ;
thus the marginal posterior of good features converges to 1 at least exponentially (a.s.).
Further, there exist c,N > 0 such that h(b) < n−c (a.s.) for all n > N and all bad
features b ∈ B̄. Equivalently, there exist c,N > 0 such that π∗(b) < n−c (a.s.) for all
n > N and all b ∈ B̄; thus the marginal posterior of bad features converges to 0 at least
polynomially (a.s.). Extending these facts to the full posterior on feature sets, there
exist 0 < r < 1 and N > 0 such that

p(G|Sn)

p(Ḡ|Sn)
< rn a.s. (5.6)

for all n > N and all G missing at least one feature in Ḡ, and there exist c,N > 0 such
that

p(G|Sn)

p(Ḡ|Sn)
< n−c a.s. (5.7)
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for all n > N and all G �= Ḡ. More discussions on rates of convergence are provided in
Section S6 of Supplementary Material A.

Theorem 3. Suppose the following are true: (i) Ḡ is an independent unambiguous set
of good features, (ii) Fourth order moments exist and are finite for all features b ∈ B̄,
(iii) S∞ is a balanced sample with probability 1, (iv) p(Ḡ) �= 0, and (v) p(θ|G) is semi-
proper. Then limn→∞ p(Ḡ|Sn) = 1 for F Ḡ

∞-almost all sequences.

Proof. It suffices to show that for all G ⊆ F such that G �= Ḡ,

lim
n→∞

p(G|Sn)

p(Ḡ|Sn)
= 0 a.s. (5.8)

Let G �= Ḡ. If p(G) = 0, then (5.8) holds trivially. Thus, assume p(G) �= 0. Note that

p(G|Sn)

p(Ḡ|Sn)
=

z(G,Sn)

z(Ḡ, Sn)

∏
g∈B∩Ḡ

(
(cg0)

κg∗
0 (cg1)

κg∗
1

(cg)κg∗

)0.5 ∏
b∈G∩B̄

(
(cb)κ

b∗

(cb0)
κb∗
0 (cb1)

κb∗
1

)0.5

. (5.9)

Since p(θ|G) is semi-proper, by Lemma S1 in Supplementary Material A, there exists
L1 > 0 and q > 0 such that

z(G,Sn)

z(Ḡ, Sn)
∼ L1n

q(|Ḡ|−|G|) (5.10)

as n → ∞ (a.s.), where ∼ denotes asymptotic equivalence. Therefore, it suffices to show
that for each g ∈ B ∩ Ḡ and each b ∈ G ∩ B̄ we have

lim
n→∞

nq

(
(cg0)

κg∗
0 (cg1)

κg∗
1

(cg)κg∗

)0.5

= 0 a.s., (5.11)

lim
n→∞

n−q

(
(cb)κ

b∗

(cb0)
κb∗
0 (cb1)

κb∗
1

)0.5

= 0 a.s. (5.12)

First, we prove (5.11). Let g ∈ B ∩ Ḡ. Consider a fixed sample in which μ̂g
y con-

verges to μg and σ̂g
y converges to σg

y for y = 0, 1. Since sample points in a class are
independent and identically distributed with finite first and second order moments,
this event occurs almost surely by the strong law of large numbers. By Lemma S2 in
Supplementary Material A, there exists ε > 0 and L2 > 0 such that for n large enough

nq

(
(cg0)

κg∗
0 (cg1)

κg∗
1

(cg)κg∗

)0.5

< nqL2(1− ε)0.5n. (5.13)

Since the limit of the right-hand side is zero, so is that of left-hand side.

Now we prove (5.12). Let b ∈ G ∩ B̄. Observe that

cb

σ̂b
= 1 +

sb

(n− 1)σ̂b
+

νbn(μ̂b −mb)2

σ̂b(n− 1)(νb + n)
. (5.14)
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Consider a fixed sample in which μ̂b
y and μ̂b are bounded and σ̂b

y and σ̂b converge to σb,
which occurs almost surely. There exists L4 > 0 such that for n large enough,

1 <
cb

σ̂b
< 1 +

L4

n
. (5.15)

Similarly, there exists L50, L51 > 0 such that for n large enough

1 <
cb0
σ̂b
0

< 1 +
L50

n
and 1 <

cb1
σ̂b
1

< 1 +
L51

n
. (5.16)

From (5.15) and (5.16) we conclude there exists L6 > 0 such that for n large enough:

(
cb

(cb0)
ρ(cb1)

1−ρ

)0.5n

< L6

(
σ̂b

(σ̂b
0)

ρ(σ̂b
1)

1−ρ

)0.5n

. (5.17)

Furthermore, as cb and cby converge, there exists L7 > 0 such that for n large enough,

(
(cb)κ

b

(cb0)
κb
0(cb1)

κb
1

)0.5

< L7. (5.18)

Therefore, for n large enough we may write

n−q

(
(cb)κ

b∗

(cb0)
κb∗
0 (cb1)

κb∗
1

)0.5

<
L6L7

nq

(
σ̂b

(σ̂b
0)

ρ(σ̂b
1)

1−ρ

)0.5n

. (5.19)

The following property of sample variance holds, provided that sample moments exist:

σ̂b = ρσ̂b
0 + (1− ρ)σ̂b

1 +
ρ(1− ρ)n

n− 1
(μ̂b

0 − μ̂b
1)

2 − 1− ρ

n− 1
σ̂b
0 −

ρ

n− 1
σ̂b
1

≤ ρσ̂b
0 + (1− ρ)σ̂b

1 +
ρ(1− ρ)n

n− 1
(μ̂b

0 − μ̂b
1)

2. (5.20)

Let us consider the sample mean term in (5.20). Since σ̂b
0, σ̂

b
1 → σb, for n large enough,

nρ(1− ρ)(μ̂b
0 − μ̂b

1)
2

(n− 1)(σ̂b
0)

ρ(σ̂b
1)

1−ρ
<

2ρ(1− ρ)(μ̂b
0 − μ̂b

1)
2

σb
. (5.21)

Recall that (5.15) through (5.19) and (5.21) hold when the sample means are bounded
and the sample variances converge to σb. We now consider the rate of convergence of the
means and variances. Suppose xi, i = 1, . . . , n0, are the values of feature b for points in
class 0. Observe that (xi − μb)/

√
σb are independent random variables with zero mean

and unit variance. By the law of the iterated logarithm (Kolmogorov, 1929),

lim sup
n0→∞

∣∣∣∣(n0 log logn0)
−0.5

n0∑
i=1

xi − μb

√
σb

∣∣∣∣ = √
2 a.s. (5.22)
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Further,

|μ̂b
0 − μb| =

√
σb

n0

∣∣∣∣
n0∑
i=1

xi − μb

√
σb

∣∣∣∣. (5.23)

Hence for n large enough,

|μ̂b
0 − μb| < 2

√
σb log log ρn

ρn
< 2

√
σb log logn

ρn
a.s. (5.24)

Similarly, for n large enough,

|μ̂b
1 − μb| < 2

√
σb log log(1− ρ)n

(1− ρ)n
< 2

√
σb log logn

(1− ρ)n
a.s. (5.25)

By the triangle inequality, for n large enough,

|μ̂b
0 − μ̂b

1| < 2
√
σb

(
ρ−0.5 + (1− ρ)−0.5

)√ log logn

n
a.s. (5.26)

Note that for all 0 < ρ < 1,

ρ(1− ρ)
(
ρ−0.5 + (1− ρ)−0.5

)2 ≤ 2. (5.27)

Combining (5.21), (5.26), and (5.27), we see that for n large enough,

nρ(1− ρ)(μ̂b
0 − μ̂b

1)
2

(n− 1)(σ̂b
0)

ρ(σ̂b
1)

1−ρ
< 16

log logn

n
a.s. (5.28)

Now, consider variance terms in (5.20). We have another property of sample variance:

|σ̂b
0 − σb| =

∣∣∣∣ 1

n0 − 1

n0∑
i=1

(xi − μ̂b
0)

2 − σb

∣∣∣∣
=

∣∣∣∣ 1

n0 − 1

n0∑
i=1

(xi − μb + μb − μ̂b
0)

2 − σb

∣∣∣∣
=

∣∣∣∣ 1

n0 − 1

n0∑
i=1

(
(xi − μb)2 − σb

)
− n0

n0 − 1
(μb − μ̂b

0)
2 +

1

n0 − 1
σb

∣∣∣∣
≤

∣∣∣∣ 1

n0 − 1

n0∑
i=1

(
(xi − μb)2 − σb

) ∣∣∣∣+ n0

n0 − 1
(μb − μ̂b

0)
2 +

1

n0 − 1
σb. (5.29)

Under balanced sampling, ρn increases with n. Note that limn→∞ ρn/(ρn−1) = 1, thus
ρn/(ρn−1) < 2 for n large enough (a.s.). Also, 1/(ρn−1) < (log logn)/(ρn) for n large
enough (a.s.). In addition, we can use (5.24) to bound (μb − μ̂b

0)
2. Hence, for n large

enough,
ρn

ρn− 1
(μb − μ̂b

0)
2 +

1

ρn− 1
σb < 9σb log logn

ρn
a.s. (5.30)
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Since we assume fourth order (and thus lower order) moments of features in B̄ are finite,
the variance of (xi − μb)2/σb is finite, and we call this variance K0. Again applying the
law of the iterated logarithm,

1

ρn− 1

ρn∑
i=1

((
xi − μb

√
σb

)2

− 1

)
< 2

√
K0

log log ρn

ρn
a.s. (5.31)

Combining (5.29), (5.30), and (5.31) we conclude that for n large enough,

|σ̂b
0 − σb| < 2σb

√
K0

log log ρn

ρn
+ 9σb log logn

ρn
≤ 4σb

√
K0

log logn

ρn
a.s. (5.32)

Similarly, we can show there exists K1 > 0 such that for n large enough,

|σ̂b
1 − σb| < 4σb

√
K1

log logn

(1− ρ)n
a.s. (5.33)

Now, observe that

ρσ̂b
0 + (1− ρ)σ̂b

1

(σ̂b
0)

ρ(σ̂b
1)

1−ρ
= ρ

(
σ̂b
0

σ̂b
1

)1−ρ

+ (1− ρ)

(
σ̂b
0

σ̂b
1

)−ρ

. (5.34)

Using (5.32) and (5.33), we can show that for n large enough,

∣∣∣∣ σ̂b
0

σ̂b
1

− 1

∣∣∣∣ =
∣∣∣∣ σ̂b

0 − σ̂b
1

σ̂b
1

∣∣∣∣ a.s.

≤ 2

σb

∣∣σ̂b
0 − σ̂b

1

∣∣ a.s.

≤ 2

σb

(∣∣σ̂b
0 − σb

∣∣+ ∣∣σ̂b
1 − σb

∣∣) a.s.

≤ K

(
1
√
ρ
+

1√
1− ρ

)√
log logn

n
a.s., (5.35)

where K = 8max{
√
K0,

√
K1}. By Lemma S3 in Supplementary Material A, there

exists r > 0 such that for all t ∈ (0, 1) and x ∈ (1− r, 1 + r),

tx1−t + (1− t)x−t ≤ 1 + t(1− t)(x− 1)2. (5.36)

Using (5.34), (5.35), and (5.36), we see that for n large enough,

ρσ̂b
0 + (1− ρ)σ̂b

1

(σ̂b
0)

ρ(σ̂b
1)

1−ρ
≤ 1 +K2ρ(1− ρ)

(
1
√
ρ
+

1√
1− ρ

)2
log log n

n
a.s.

≤ 1 + 2K2 log logn

n
a.s., (5.37)
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where in the last inequality we have used (5.27). Combining (5.20), (5.28), and (5.37)
we see that for n large enough,

n−q

(
σ̂b

(σ̂b
0)

ρ(σ̂b
1)

1−ρ

)0.5n

<n−q

(
1 +

(
16 + 2K2

) log logn
n

)0.5n

< n−q(log n)K
2+8 a.s.,

(5.38)

where in the last inequality we have used the fact that for all x, t > 0, (1 + t/x)x < et.
Since the limit of the right-hand side is 0 whenever q > 0, so is that of the left-hand
side. Combining (5.19) and (5.38) we see that (5.12) holds almost surely.

6 Performance and Consistency on Synthetic Data

Here we implement OBF and several other feature selection methods on synthetically
generated microarray data. An application on real colon cancer microarray data is pro-
vided in Sections S2 and S3 of Supplementary Material A. Although OBF assumes all
features are independent with Gaussian class-conditional distributions, the data gen-
eration model employed violates these assumptions by generating correlated and non-
Gaussian features. Remarkably, OBF is still theoretically consistent by Theorems 2
and 3. Since the main contributions of this paper are theoretical, and numerous ex-
tensive simulation studies have already shown that OBF has competitive and robust
performance (Foroughi pour and Dalton, 2017d, 2018a,b), our primary objective in this
section is to simply observe whether OBF is indeed consistent, i.e. whether it eventually
selects the correct feature set as sample size grows. Our secondary objective is to pro-
vide new examples showing that OBF enjoys competitive performance, running time,
and memory consumption compared with popular Bayesian and non-Bayesian feature
selection algorithms, including several methods that OBF has not been compared with
before.

The data is generated using a variant of the “synergetic” model originally proposed
in Hua et al. (2009). For a fixed sample size, n, in each iteration we assign an equal
number of points to class 0 and 1 (n is always even). We generate |F | = 20,000 fea-
tures, including a random assignment of 20 global markers, 80 heterogeneous markers,
11,900 low-variance non-markers and 8,000 high-variance non-markers. Markers have
distinct class conditional distributions, non-markers have identical distributions in both
classes, and heterogeneous markers and high-variance non-markers account for unknown
subclasses in the data. Global markers, heterogeneous markers, and low-variance non-
markers are randomly partitioned into blocks of size k = 5. All features within a block
are correlated, while all blocks of markers, all blocks of low-variance non-markers, and
all high-variance non-markers are independent from each other. All features are also
randomly assigned to one of four groups, i = 0, 1, 2, 3, such that each group contains
one block of global markers, four blocks of heterogeneous markers, 595 blocks of low-
variance non-markers and 2,000 high-variance non-markers.

We now focus on how data is generated in group i. The single block of global markers
is jointly Gaussian in class y = 0, 1 with mean μy and covariance matrix Σy,i = σy,iΣ,
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where μ0 = [0, . . . , 0], μ1 = [1, 1/2, . . . , 1/k], diagonal elements of Σ are 1, and off-
diagonal elements are ρ = 0.8. To generate heterogeneous markers, points in class 1 are
further partitioned into c = 2 roughly equal size subclasses (when n1 = n/2 is odd,
subclass 0 is assigned one more point than subclass 1). For two blocks of heterogeneous
markers, points in class 0 or subclass 0 of class 1 are drawn from N (μ0,Σ0,i) and points
in subclass 1 of class 1 are drawn from N (μ1,Σ1,i). For the remaining two blocks, points
in class 0 or subclass 1 of class 1 are drawn from N (μ0,Σ0,i) and points in subclass 0 of
class 1 are drawn from N (μ1,Σ1,i). Each block of low-variance non-markers is jointly
Gaussian with mean μ0 and covariance matrix Σ0,i in both classes. High-variance non-
markers are independent and drawn from the mixture of Gaussians pN (0, σ0,i) + (1 −
p)N (1, σ1,i), where p is independently drawn from a uniform distribution over (0, 1) for
each feature. We set σ0,0 = σ1,0 = 0.16, σ0,1 = σ1,1 = 0.49, σ0,2 = 0.09, σ1,2 = 0.25,
σ0,3 = 0.49 and σ1,3 = 0.64. These values were originally suggested in Hua et al. (2009).
Also note that in Hua et al. (2009), there is only one group, and low-variance non-
markers are all independent rather than being assigned to blocks.

We implement four variants of Gaussian OBF: MNC-OBF-PP, CMNC-OBF-PP,
MNC-OBF-JP and CMNC-OBF-JP. PP refers to a proper prior with sf0 = sf1 = sf =

0.5, κf
0 = κf

1 = κf = 3, mf
0 = mf = 0, mf

1 = 0.2 and νf0 = νf1 = νf = 0.1 for all

f ∈ F . These κ’s are the smallest integer values where E(σf
0 ), E(σf

1 ) and E(σf ) exist.

JP is based on Jeffreys non-informative prior, and sets Lf = 0.1, sf0 = sf1 = sf = 0,

κf
0 = κf

1 = κf = 0 and νf0 = νf1 = νf = 0 for all f . When ν’s are 0, m’s need not be
specified. We set π(f) = 0.005 for all f under PP and JP. Under MNC, we select all
features f such that π∗(f) = h(f)/(1 + h(f)) > 0.5, where h(f) is given in (2.18). For
MNC, the choice of π(f) (and Lf under improper priors) affects the average number
of features selected; larger π(f) and Lf produce larger feature sets. Under CMNC we
select the D = 100 features maximizing the right-hand side of (2.19). CMNC-OBF-JP

reduces to minimizing (σ̂f
0 )

0.5n0(σ̂f
1 )

0.5n1/(σ̂f )0.5n, which is essentially the Pearson and
Neyman (1930) statistic. For CMNC, as long as π(f) and Lf are constant for all f ,
their values do not affect the rank of features and thus need not be specified.

In addition to OBF, we implement: Welch’s t-test (t-test), a moderated t-test from
the limma package in R (Smyth, 2004) (Moderated t-test), the Bhattacharyya distance
between Gaussian distributions with sample means and variances computed from each
class (BD), the mutual information between features and class labels computed from a
non-parametric entropy estimator based on sample spacings of order m = 1 (Beirlant
et al., 1997) (MI), and a bolstered error estimate (Braga-Neto and Dougherty, 2004)
under nearest mean classification (NMC). In each case, we output the D = 100 top
ranked features. Note that these methods are all univariate filters.

We also implement 84 regularized regression methods, using three link functions
(linear regression, a GLM with logit link, and a GLM with probit link), two penalty
families (LASSO and elastic net), and 14 regularization parameters (using MATLAB’s
lassoglm function we set λ = 0.1, 0.2, 0.5, λ = γ/

√
n for γ = 0.1, 0.2, 0.5, 1, 2, 5, 10,

λ = (log n)γ/n for γ = 0.5, 1, 1.5, 2, and α = 0.5). See Zou (2006) for properties of
LASSO under these families of regularization parameters. For each regression method,
we output the set of features used in the regression model.
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Figure 1: Average number of correctly labeled features versus sample size for a synthetic
microarray model. (a) All feature selection algorithms for n up to 1,000; (b) Univariate
filters for n up to 5,000.

Finally, we implement three types of Bayesian variable selection methods: the uni-
variate filter method SKBS (Lock and Dunson, 2015), a regression method using a
slab-and-spike prior and probit link (Lee et al., 2003), hereafter called Bayesian probit
model (BPM), and a regression method by Makalic and Schmidt (2016) (BayesReg).
Due to the high computation cost of these methods, we run each on the top 300 fea-
tures as ranked by BD, rather than on the full set of 20,000 features. We implement
SKBS with K = 2 to K = 7 Gaussian mixture kernels. We observed best performance
with K = 2 and report on only this case. As in Lock and Dunson (2015), we find the
marginal posterior probability of each feature having distributional differences using
a Gibbs sampler with a burn-in period of 1,000 steps and a sampling period of 5,000
steps. We report the D = 100 features having largest marginal posteriors with ties bro-
ken by BD (CMNC-SKBS), and the set of all features with marginal posteriors greater
than T = 0.9 (MR-SKBS). We also implemented T = 0.5 (the threshold of MNC) and
T = 0.75, but observed best performance with T = 0.9. We implement BPM using de-
fault settings in the published code, except we initialize the MCMC chain with the top
D = 100 features ranked by BD, forgo the burn-in period, and directly generate 5,000
samples. Similar to CMNC-SKBS, we then report the D = 100 features having largest
marginal posteriors with ties broken by BD. We implement four variations of BayesReg
using default settings in the published MATLAB code. Each variant corresponds to one
combination of prior (L1 or horseshoe) and link function (linear or logit). BayesReg
outputs a t-statistic, and for each variant of BayesReg we report the D = 100 features
with largest absolute t-statistic.

This procedure is iterated 600 times for each n, where n increases from 50 to 1,000
in steps of 50. For each algorithm, reported features are labeled markers and unre-
ported features are labeled non-markers. Figure 1(a) shows the average number of cor-
rectly labeled features over iterations with respect to n. For each n, Regularized-best
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presents the best performance observed among all 84 regularized regression methods,
and BayesReg-best presents the best performance among all four BayesReg methods.

In general, the best performing algorithm is MNC-OBF-PP, which is followed by
MNC-OBF-JP, CMNC-OBF-PP, then CMNC-OBF-JP and BD. OBF and BD per-
form well because they can detect differences between both means and variances (For-
oughi pour and Dalton, 2018b). Observe that PP outperforms JP. In general, an in-
formed prior like PP can have better performance than a non-informative prior like
JP when assumptions are accurate, but may be less robust when assumptions are in-
accurate. Also observe that MNC outperforms CMNC. In general, MNC outperforms
CMNC when the sample size is small, and CMNC slightly outperforms MNC when the
sample size is large. It may seem counterintuitive for MNC to outperform CMNC, since
CMNC is directly informed with the true number of markers to select (via D) and MNC
is not. However, MNC is given some information about the number of markers through
π(f)—recall that the expected number of good features given π(f) can be found in (2.8).
In addition, MNC outputs a variable number of features, and under small samples it
can be beneficial to output a smaller feature set to avoid selecting features that one
is uncertain about. Also note that CMNC-OBF-JP and BD make similar assumptions,
and typically have very similar performance, as seen here.

Regularized-best and MR-SKBS appear to perform very well under small samples;
however, these methods are the only methods besides MNC-OBF-PP and MNC-OBF-
JP that output a variable number of features, and they perform very close to the triv-
ial algorithm that outputs no features (which always labels 19,900 features correctly).
CMNC-SKBS also performs fairly well under small samples, but drops below BPM at
around n = 300 and below Moderated t-test at around n = 650. This may be due
to insufficient sampling iterations of the Gibbs sampler, or an issue with selecting the
number of kernels. Since SKBS models mixtures of Gaussians, it can detect differences
between means and variances like OBF and BD, and potentially differences between
higher order moments, but performance may be sensitive to the number of kernels used.

Under large samples, BD is followed by BPM, t-test, CMNC-SKBS, then NMC.
BPM appears to perform close to BD under large samples because its MCMC chain
is initialized with BD. Unlike OBF and BD, t-test and NMC struggle to detect fea-
tures with similar means but different variances, which usually results in some loss in
performance relative to BD, with NMC performing worse than t-test (Foroughi pour
and Dalton, 2018b). BayesReg-best has comparable performance to Regularized-best
and MR-SKBS, while MI has the poorest performance across all sample sizes. Although
MI does not perform well here, as a non-parametric method it can detect any distribu-
tional differences, and it has been observed that MI can shine under large differences in
skewness (Foroughi pour and Dalton, 2018b).

All univariate filters (OBF, t-test, Moderated t-test, BD, MI and NMC) do not
account for correlations between features, while all regression based methods we imple-
mented (Regularized-best, BPM and BayesReg) do account for correlations. Regression-
based methods do not perform particularly well, except Regularized-best under small
samples (where it tends to output very few features) and BPM under large samples
(where performance tracks BD because the MCMC chain is initialized with BD). As
discussed in Section 1, classification and regression based methods tend to miss weak
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Method OBF t-test NMC SKBS(300, K = 2) SKBS(300, K = 7) BPM(300) BayesReg-best(300)
Running time 1 1 7 400 800 2000 300

Memory < 5MB < 5MB < 7MB 20MB 33MB 30MB 25MB
Method BD MI Regularized-best SKBS(5000, K = 2) SKBS(5000, K = 7) BPM(5000) BayesReg-best(5000)

Running time 0.9 5 30 > 10000 > 10000 > 20000 > 10000
Memory < 5MB < 50MB < 5MB 300MB > 500MB 350MB 75MB

*OBF running time is taken as the unit of time.

Table 1: Computation Cost of Feature Selection Algorithms.

features in the presence of strong features, and miss strong features that are correlated
to other stronger features, because these features are not very useful in improving the
predictive capacity of the model. See Section S4 of Supplementary Material A for more
discussion on this.

Table 1 lists the average running time and maximum memory requirement of several
methods for n = 200 over 10 iterations. MNC-OBF-PP, CMNC-OBF-PP, MNC-OBF-
JP and CMNC-ONF-JP have similar computation cost and are reported in the table
as “OBF.” t-test and Moderated t-test have comparable computation cost and are
averaged together in the table and reported as “t-test.” “Regularized-best” reports the
average computation cost for all 84 regularized regression models. We implement SKBS
with K = 2 kernels, SKBS with K = 7 kernels, BPM, and the four earlier variants of
BayesReg after filtering out all but the top 300 features with BD, and again after filtering
out all but the top 5,000 features. “BayesReg-best” reports the average computation
cost of all four variants of BayesReg. OBF is not only the best performing, but also
stands among the fastest methods with low memory requirements. SKBS, BPM and
BayesReg all have running times that are orders of magnitude higher than that of OBF
and require several times the amount of memory, particularly when run on a larger
number of features. Our code is vectorized, which tends to reduce running time at the
cost of higher memory consumption.

We conclude this section with a simulation similar to that of Figure 1(a), except we
do not implement computationally intensive methods and we let sample size increase
from 100 to 5,000 in steps of 100. Figure 1(b) plots the average number of correctly
labeled features with respect to sample size. The curves for BD, t-test, Moderated t-
test, and all methods based on OBF appear to converge to 20,000, which suggests that
these methods are consistent under the current data model. It is also interesting that
t-test becomes more competitive for very large sample sizes.

7 Conclusion

OBF should not be used in applications where the objective is dimensionality reduction
to design a simpler model or avoid overfitting. Rather, it is designed for applications
where all features that exhibit distributional differences between the classes should be
ranked and reported. That being said, as a filter method, OBF cannot identify a feature
that is itself indistinguishable between the classes, while being highly correlated with
other features that do have distributional differences. Such features are of interest in
biomarker discovery because: (1) they might be paired with other biomarkers to develop
better tests for the biological condition of interest, and (2) strong correlations between
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genes or gene products suggest possible links in the underlying biological mechanisms,
and understanding these links is an important part of the discovery process. There-
fore, a major thrust of our future work is in developing models and methods that can
take advantage of correlations. A few suboptimal methods have been proposed in prior
works (Foroughi pour and Dalton, 2014, 2016a, 2017d, 2018a), however, more work is
needed in identifying conditions under which these algorithms are consistent, and in
understanding performance and robustness properties of these algorithms.

Finally, note that the OBF framework makes it possible to conduct a Bayesian
error analysis for feature selection, much like Bayesian error estimation in classification
(Dalton and Dougherty, 2011a,b). For instance, one may find the probability p(G|S) =
P (Ḡ = G|S) in (2.15) or the expectation E(�(G, Ḡ)|S) in (3.7) for an arbitrary feature
set G, or find the ROC curve defined in (3.14) for an arbitrary feature selection rule. We
plan to study Bayesian error analysis under the OBF framework in future work, and to
develop and study methods of error analysis that also take into account correlations.

Supplementary Material

Theory of Optimal Bayesian Feature Filtering: Supplementary Material A
(DOI: 10.1214/19-BA1182SUPP; .pdf). Here we present three lemmas used in Theo-
rem 3 along with their proofs (Section S1), an example using colon cancer data (Sec-
tions S2 and S3), a discussion on regression and classification based feature selection
(Section S4), a proof that Gaussian OBF with improper priors is equivalent to a limit
based on proper priors (Section S5), and a discussion on the Jeffreys-Lindley para-
dox (Section S6).
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