
Pavel Pavlov
ppavlo14@student.aau.dk

AUTOMATION OF

INFORMATION FLOW

FROM REVIT TO BSIM

USING DYNAMO

MANAGEMENT IN THE
BUILDING INDUSTRY

4TH SEMESTER, MASTER THESIS

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 3 of 70

Table of Contents

01. PREFACE .. 6

02. INTRODUCTION .. 7

03. PROBLEM FORMULATION .. 9

04. METHODOLOGY ... 11

05. DYNAMO – SOFTWARE POSSIBILITIES AND CURRENT LIMITS 13

05.1. Visual Programming ... 13

05.2. Software Possibilities ... 15

05.3. Software Limitations ... 18

Hardware Requirements and Memory Management .. 18
Array Handling and Crashing .. 19
Execution Time ... 19
Looping and Logical Formulas .. 19

06. DEVELOPMENT PROCESS AND DECISIONS .. 21

06.1. At Which Point to Introduce New Information? .. 21

06.2. Changes Throughout Development .. 21

06.3. Efficiency Optimisation ... 22

06.4. What Data to Export? ... 22

06.5. Exported Storey Partition Elevation? ... 23

06.6. Windows and Doors Dimensions .. 23

06.7. Resource Usage vs. Accuracy ... 24

Matching construction type ... 24
Storey partition elevation .. 25
External walls need to be connected in one chain .. 25
External walls need to be the same width ... 25
No sloped ceilings or sloped windows .. 25

06.8. Testing ... 25

07. OUTPUT REQUIREMENTS ... 27

08. DYNAMO SCRIPT DESIGN .. 30

08.1. General Structure ... 31

08.2. Building Blocks .. 32

Windows and Doors ... 32
Storey Partition Thicknesses .. 35
Elevation Correction ... 37
Trim Walls ... 38

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 4 of 70

Split Walls ... 40
Create Floor Solids ... 41
Lines of Analysed Rooms .. 42
Create Room Solids ... 45
Write to File .. 47

08.3. Script Constraints ... 48

External walls need to be connected in one chain .. 48
External walls need to have the same width .. 48
Uniform storey partitions throughout the storey ... 48
Sloped ceilings are not supported .. 49
Curtain walls are not supported ... 49
Floor covering – no support for stacked separate floor elements ... 49
Internal and external wall connection problem in specific situation 50

09. USER GUIDE ... 53

09.1. Requirements ... 53

I. Software and Packages ... 53
II. Walls ... 53
III. Wall Connections .. 54
IV. Curtain Walls .. 55
V. Windows and Doors ... 55
VI. Balconies and Terraces ... 56
VII. Building Storeys Amount .. 56
VIII. Storey Partitions .. 56
IX. Sloped Ceilings and Sloped Windows ... 58
X. Room Requirements ... 58
XI. Workflow Requirements ... 59

09.2. Recommendations ... 59

I. Deleting Unnecessary Internal Walls ... 59
II. Unexpected Performance Loss ... 60

10. FUTURE DEVELOPMENT .. 61

10.1. Possible Optimisations ... 61

Windows and Doors – Size .. 61
Windows and Doors – Alternative to Projection ... 61
Code in Python ... 62
Calculation Time Analysis and Optimisation ... 62
Keeping Link Between Construction and Geometry ... 63

10.2. Possible Additions ... 63

Curtain Wall support .. 63
Sloped Ceilings Support .. 63
Sloped Windows Support .. 64
Roof Geometry Support ... 64
Results Feedback .. 64
Split Script in Separate Files .. 65
Multiple thickness storey partitions .. 65
Balconies/Terraces .. 65

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 5 of 70

11. CONCLUSION ... 67

12. BIBLIOGRAPHY .. 68

13. TABLE OF FIGURES .. 69

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 6 of 70

01. Preface

This dissertation is based on the work of developing a Dynamo script, as a part of an automation

process for information transfer from Revit to BSim. It is written as graduation requirement for

Management in Building Industry programme in Aalborg University (AAU) by me, Pavel Pavlov. The

work has been carried out in collaboration with a group of students in Indoor Environmental and

Energy Engineering programme in AAU, consisting of Frederik Søndergaard Mikkelsen, Emil Greve

Bonde, and Mia Buhrkal-Donau, which is working on the second part of the automation process,

scheduled to be finished later this year.

In this paper I am presenting the process of development and describing the inner works of the

script, as well as guidance to the users of the script and anyone intending to continue the work on the

script and improving or optimising. As such, the paper is intended to be read by anyone interested in

using the script or further developing the project, as well as anyone interested in application of

Dynamo in Revit projects, or getting higher level of proficiency with Dynamo and new ideas on

methods of work within the software. The thesis is written in a way that allows reading only the

relevant to the user chapters without having read everything else. In the places where additional

information is available elsewhere in the paper, such references are leaved.

As Revit enthusiast, it was a great experience for me to work with Dynamo, even though its still early

stage of development and respective quirks and limitations, and am proud of the result of my efforts.

I would like to express my gratitude to Frederik, Emil, and Mia for their cooperation throughout the

semester and help in difficult times when feeling stuck with the progress. I would also like to thank my

supervisor Kjeld Svidt for his guidance and support. His similar enthusiasm for tools like Dynamo was

very contagious. Also thank you to Rasmus Jensen, supervisor of Frederik, Emil, and Mia, for his

great input in our common discussions.

I hope you enjoy reading.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 7 of 70

02. Introduction

In today’s era in the construction industry, there is a rapid change happening. More and more

countries and companies are transitioning from conventional workflow to BIM – a modern way of

managing project information in an intelligent way that has many benefits over older methods.

What is BIM?

BIM (Building Information Modelling) is a process. A process of managing information from the idea

of a construction project, to potentially decades after it has been executed and handed over. It is

widely considered to be much more efficient in many areas than conventional construction processes

in variety of ways by providing integration and thus enabling different disciplines in the process to

communicate with much less effort and errors, along with new tools for the professionals, which can

be used to do their work better and effectively. The benefits of BIM are many but could be

summarised in several points:

 Faster design process
 Fewer mistakes in cross-disciplinary communication and fewer errors on construction site
 Enhanced building energy performance, due to availability of relevant information from earlier

on in the design
 Improved life cycle and waste management
 Better overall client satisfaction, due to being able to make more informed decisions earlier in

the process

Figure 02-1 Parametric Architecture (Gillen, 2015)

Building Information Modeling (BIM) is an intelligent 3D model-based process that equips

architecture, engineering, and construction professionals with the insight and tools to more

efficiently plan, design, construct, and manage buildings and infrastructure. (Autodesk, 2016)

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 8 of 70

At the core of the BIM process lies an intelligent 3D model. Intelligent, because it contains information

that is accessible and manageable by compatible software. That allows architects, structural and

energy engineers, contractors, owners and clients, to have access to the same centralised

information.

Figure 02-2 BIM as a Platform for Communication (Graphisoft, 2016)

As the needs for more energy efficient construction raises, so does the focus on more accurate

energy analysis of the building in the early stages of the project. Therefore the link between the

modelling and analysis software is very important. As the software develops and new ones often

comes to the scene, the question of managing the communication between these software

(interoperability) is of constant importance. As Epstein puts it, “Interoperability is the ability of

different systems (hardware or software) to work together” (Epstein, 2012). Software developer

companies have been making great progress, but there is still more to be desired. While link between

many modelling and energy analysis software is available, there is one missing between two of the

most popular tools for modelling and energy analysis in Denmark – Revit and BSim. This lack of

communication issue is the root of the problem that this student projects is aiming to solve.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 9 of 70

03. Problem Formulation

Typically the energy analysis of a building is performed by the engineering company, but it could be

a hired consultant specifically for that job – that would be more feasible for larger scale projects. The

workflow of the engineer performing the energy analysis usually involves taking the architect’s model

of the building, creating an energy model that will be used for the simulations, and performing

analysis on the results of the simulations, creating suggestion on changes on the model such as used

materials, size and location of windows, shading and others. It is evident that a link or at least

import/export communication between the architectural model and the energy analysis model is

important. A big problem in Denmark is that two very popular software – Revit and BSim cannot do

this communication. So typically energy engineers need to manually remake the geometry and

information from the architectural model they need for the simulation, and that requires a lot of

resources. These restrictions cause negative effects on the final outcome for reasons such as not

being able to analyse wider variety of geometrical options due to the need to manually recreate that

geometry every time. Ideally the Revit model would be exportable to BSim and these changes could

be made in the model, instead of manually. If such link existed, feedback from the simulation could

be fed back into the original model in the form of a schedule or colour-coded floor plans with

legends.

The author of this thesis and a group of students from Indoor Environmental and Energy Engineering

programme in AAU have decided to work together on creating this missing link. The chosen method

is to use visual programming extension for Revit called Dynamo to extract the needed information to

an Excel spreadsheet, then via VBA script in Excel to process that information to include data, related

to the energy analysis, to an XML file, which in the end is used for performing the simulations in BSim.

The goal of the flow is to automate the manual work that usually accompanies these tasks. The overall

work has been split in two parts:

 Export model geometry, room, and construction information from Revit to Excel via Dynamo
 Processing that Excel file and automating BSim simulations, which involves including

information regarding HVAC systems, people load, equipment load, construction properties
and weather information.

The first part of this process is taken by the author of this paper and thus the main focus and problem

of this report is as follows:

Problem Formulation:
How to export information from a Revit building model to Excel file, formatted in a BSim

compatible schema, to allow automation of energy simulations?

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 10 of 70

As mentioned above, the software used for the export is Dynamo, which is presented in more details

in the next chapter. This raises several sub-questions to the main problem statement:

 What are the limitations of the software?

 What are the requirements for the output file?

 What is the general approach and structure of the script?

 Are there any specific guidance going to be needed for the users?

These sub-questions are answered in the following chapters, along with description of the script

development process, discussions on some major decisions that have taken place, balance between

functionality and computational time and hardware demands, and creator’s recommendations for

future development.

Project Limitations

While the interface of Dynamo allows for visual programming, there are some limitations to what is

possible with the current version of the software, which are described in chapter 05.3. Software

Limitations. There is an option to include blocks of code, written in Python language, in the visual

environment to supplement the overall script. That allows to overcome some limitations, however, the

script is created without the use of coding in Python language, due to the lack of author’s skills in that

language. This also serves as a good representation of the abilities of the software to develop

algorithms without much textual scripting. The few exceptions of this are several places where

“Design Script” language is used for clarity and saving canvas space. Design script is a scripting

language developed specifically for Dynamo and following a syntax very similar to the visual

programming nodes. All code written in Design Script in this project can be translated to visual

nodes. More details on visual programming and nodes can be found in chapter 05. Dynamo –

Software Possibilities and Current Limits.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 11 of 70

04. Methodology

The methodology this thesis is based on is called Contextual Design. It is developed by Karen

Holtzblatt, psychologist, and Hugh Beyer, developer, in the early 1980s (Interaction Design

Foundation, 2015). They created the methodology incorporating practices from their fields of work.

Contextual design is a design process that focuses on finding the needs of the users by establishing

strong communication with them, analysing the collected information, use the interpretation of the

data to develop prototypes, and iteratively test and improve on those prototypes by continuing the

communication with the users. Contextual design is primarily used in computer information and IT

systems, however parts of the methodology is used in various different fields (Interaction Design

Foundation, 2015).

The Contextual Design methodology comprises of two major parts: Finding requirements and

solutions, and defining and validating concepts. Refer to Figure 04-1 Contextual Design Process :

Figure 04-1 Contextual Design Process (Interaction Design Foundation, 2015)

Requirements and Solutions

The first part of the process is defining the requirements of the people involved in the process – end

users, indirect users, managers – by establishing communication. First in the process is defining

what they do and what their needs are by analysing the present work practices. The goal is to attain a

good understanding of the users as they are. This comprises of the first three tasks on Figure 04-1

above. Second in the process is, based on the attained understanding of the work practices, to

create a plan of transforming some tasks to make the work practices more efficient.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 12 of 70

Defining and Validating Concepts

The second part of the Contextual Design process is developing and testing a system to implement

the changes, defined in the plan for transforming the tasks. That involves the four steps, shown in

green in Figure 04-1 Contextual Design Process , and namely: defining details of tasks and roles,

designing new system for the changes in the work, developing a prototype, and testing the prototype

against the set criteria.

Project Methodology

Most points of the Contextual Design process can be successfully applied to the project, and thus it

has been chosen as basis for the used methodology. Since the topic of the project is more specific

than the common projects the Contextual Design steps would be used for, the main focus of the

project is on the second part of the Contextual Design process, and namely – the development of a

working system to improve the efficiency of the working practices. The exact steps of the process are

as follows:

1. Defining Requirements of the engineers performing the energy analysis

2. Creating a Plan for improving the current work practice

3. Inventing a System to implement the plan

4. Developing Prototype of the system

5. Testing the prototype against the requirements and refining

As the problem of the project can be defined early in the process, the majority of the work on the

project is spent on step 3 to 5 from the described above – inventing a system, development of

prototype, and testing.

The requirements of the engineers performing the energy analysis are improvement on the tedious

process of manual work to remodel the Revit model to BSim. And, as main subject of the project, the

plan for improving the work practice is automating that process. The system for automating the

process is the workflow between Revit and BSim using Dynamo and Excel. As mentioned in chapter

03 Problem Formulation, this project is based on the development of the first part of the system

(exporting data from Revit to Excel), thus the prototype for the current thesis is the Dynamo script,

which has been tested on multiple Revit input files.

The details of the development of the system, prototype, and testing are described in the following

chapters.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 13 of 70

05. Dynamo – Software Possibilities and Current Limits

This chapter introduces the software used to develop the system of automating the workflow –

Dynamo. It discusses the possibilities and current limits of the software and gives an inside of how

Dynamo is useful for the process.

Dynamo is a relatively new software. At the time of writing, it is just now reaching version 1.0, being in

very early stage of development. Seeing as the script is created using an older version (0.9.1), the

chapter does not focus on any changes with the latest or future versions but rather the state, in which

Dynamo was used to develop the script. This chapter is taking a look at the foundations behind

Dynamo and its possibilities and current limitations. For simplicity, when referring to “visual

programming” it is meant visual programming in the environment of Dynamo. There are other

software providing similar visual interface of textual coding that do not necessarily share all the points

discussed in this chapter.

05.1. Visual Programming

Dynamo is a visual programming extension for Revit and Maya, currently developed by Autodesk.

The official learning centre for Dynamo (Dynamo Primer, 2015) gives a good overview of what visual

programming is. Conventional computer programming and visual programming essentially have

similar goal – to allow the user to define a set of algorithms via means of either text, formatted in a

certain syntax, or in a visual, and for some more intuitive, way by connecting pre-packaged “nodes”,

which represent various commands. Nodes are boxes with inputs and outputs, which provided the

right arguments, act as commands in a code. As an example, Figure 05-1 and Figure 05-2 show the

algorithm "draw a circle through a point", defined in textual and visual programming.

 Visual programming:

Figure 05-1 Example of Visual Programming (Dynamo Primer, 2015)

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 14 of 70

 Textual programming:
myPoint = Point.ByCoordinates(0.0,0.0,0.0);

x = 5.6;

y = 11.5;

attractorPoint = Point.ByCoordinates(x,y,0.0);

dist = myPoint.DistanceTo(attractorPoint);

myCircle = Circle.ByCenterPointRadius(myPoint,dist);

Figure 05-2 Example of Textual Programming (Dynamo Primer, 2015)

Both examples do the exact same thing and have the same input and output. Generally visual

programming is best suited for people with no or limited textual programming knowledge. For

example architects who have never worked with coding, can use visual programming to achieve

similar results, as with coding. There are a few major differences between the two methods of

programming:

Possibilities. Textual programming has been around for as long as software existed. Visual

programming (at least in the scene of substituting textual programming in construction software) is

much newer. As such, it is not as developed and can never come in front of its “parent”. In situations

where it is not sufficient, blocks of textual code can be inserted within the visual environment for the

specific needs. Given this fact visual programming is not as rich and enabling as textual, but does

allow developing algorithms without coding skills.

Flexibility. After executing a written code, there is no way to go back and see exactly what happened,

where. If the code is working as expected, that is not a problem, but a major time of any programmer

is spent in finding errors in code. A solution is to write additional lines of “debugging” code, to help

track the changes in the information flowing through the code. Working with visual programming

allows things to be simpler in that sense, as after executing a “visual script”, one can go back to

every command and see its results at the time of calculation. This makes debugging much simpler

than going through many lines of code without such aid.

Real time execution. Understandably, a code cannot be executed at the time of its creation. Visual

programming removes this limitation, as placing a node, as a single action, acts as a complete and

finished block of code. After connecting its inputs appropriately, the code can be executed

automatically and changing any of the inputs is reflected on the result in real life. Taking the example

above – if executed automatically, moving the sliders changes the radius of the produced circle:

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 15 of 70

Figure 05-3 Real Life Execution of Code
Visual programming is in the core of Dynamo and understanding it is essential to understanding

Dynamo.

05.2. Software Possibilities

Being able to manipulate Revit data in such a powerful and easily accessible way brings many

possibilities. Understanding these allows for a better grasp of the possibilities of Dynamo. In a

presentation for Autodesk University (Keough, 2014), Ian Keough, the father of Dynamo, presents

several potential uses for Dynamo. Here are some of them:

Software Communication: Traditionally creating a complex geometry is often done in more competent

software for the task, and then imported in Revit. Dynamo allows for creation of very complex

geometry directly in Revit without the need of external tools.

Parametric Dependencies: Every element in Revit has parameters. In some instances Revit allows for

some dependencies between parameters and simple formulas. Dynamo allows for anything with

parameters to drive anything else, it allows elements to "talk" to each other. Furthermore it can take

parameters from other files, like Excel, the Internet, etc, and drive data in and out of Revit.

Design and Analysis at the same time: With Dynamo analysis can be done directly in Revit, at the

same time, using the same model. Having this analysis being performed at the same time as the

design is taking place, removes the need of back and forth communication with analysers and thus

the chance of miscommunication and mistakes. Also allows the designer to produce a higher quality

design, being able to see the direct effect of his decisions immediately. Ian Keough shows an

example of visibility analysis that writes a parameter in the model file and allows adaptive

components to be sized according to that parameter.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 16 of 70

Figure 05-4 Visibility Analysis Done with Dynamo (Keough, 2014)

Figure 05-4 Visibility Analysis Done with Dynamo represents that analysis. To the left can be seen the

data from the Dynamo analysis, represented as colours-coded plan view. The view on the right

indicates the dynamic sizing of Revit elements (adaptive components) in the model..

In a presentation for Autodesk University (Hudson, 2014) called Dynamo Hero: Using Revit Scripting

Tools to Optimize Real-World Projects, Michael Hudson (architect) and Andrea Vannini (expert in

Adaptive Architecture and Computation) talk about two real project examples of the power of

Dynamo, allowing design and analysis to happen at the same time. The first project is development

of a bandstand for the seaside town of Littlehampton, UK, which does not require sound

amplification. Regardless of the tight budget, Dynamo has made the project possible by allowing the

acoustic analysis and the geometry creation to happen at the same time, and thus achieving the best

possible result.

Figure 05-5 Acoustic Analysis with Dynamo (Hudson, 2014)

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 17 of 70

Figure 05-5 Acoustic Analysis with Dynamo above shows that analysis. The light blue area represents

the area that would receive, which would receive a good sound without too large interval between

direct and bounced sound (echo).

The second example project consists of two buildings, with the goals of maximising floor area while

mitigating a windy microclimate (Figure 05-6 Prefabrication Optimisation with Dynamo below).

Figure 05-6 Prefabrication Optimisation with Dynamo

While building 101, on the left, could maintain typical 4-side façade, building 100 required more

complex 7-side façade (refer to the floor plan on the right of Figure 05-6). Initial analysis of the façade

of building 100 revealed that it would require 13 unique elements per floor. Development of

optimisation script in Dynamo allowed for dynamic analysis while working on the building design in

the Revit model. The results were improving the cost-effectiveness of the façade significantly, due to

the decrease of unique elements per floor from 13 to 3 – refer to Figure 05-7 Facade Quantity Take-

off below.

Figure 05-7 Facade Quantity Take-off

The value of performing analysis while designing can be easily understood from these examples.

Flexibility from Software Constrains: Like all software, Revit has many constrains on the elements,

such as floors are supposed to be flat, beams – horizontal, columns – vertical, etc. Dynamo has none

of these constrains and can create geometry directly in Revit. With that freedom, parametrically

driven roof construction like the one shown on Figure 05-8 Parametric Roof Construction below can

be created directly in the model.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 18 of 70

Figure 05-8 Parametric Roof Construction (Keough, 2014)

As shown in Figure 05-8, curved beam elements are supporting a roof structure and the rafters are

created based on the variation of supports elevations.

All these possibilities paint a good picture for the software’s abilities, but there are limitations that

become visible only after one starts using it on daily basis.

05.3. Software Limitations

At the current state of development (version 0.9.1, as used for the development of the script,

described in this thesis) there are limitations of Dynamo that affect the developed script. Some of

them can be lifted with future versions but the current limitations are as described below. Most of

them may originate from the assumption that Dynamo is not made to handle scripts of the scale of

this project, but rather smaller and simpler ones. For such scripts, most of the listed points are not of

any significant concern.

Hardware Requirements and Memory Management

The hardware requirements of Dynamo are seemingly quite substantial. Author’s testing shows that

even a relatively small Revit model requires significant amount of processing power and available

RAM. On the test computer, the final script, used on the Revit test model (made specifically to

include potentially troublesome to calculate scenarios) uses the following amount of memory,

reported by Windows Task Manager: fresh start of Revit and opening test file: 400MB; opening

Dynamo script: 1.5GB, running dynamo script: maximum of 2.3GB for the execution duration of 1:20

min. That is by no means an objective study but is meant to indicate that the script is best ran on a

computer with better hardware, if different options are available. Moreover, memory leaks have been

observed, increasing with the time of use of the program and keeping RAM used until Revit is closed

and reopened.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 19 of 70

Array Handling and Crashing

Related to the point above, it has been observed that combining larger arrays of data into fewer,

bigger arrays, causes the programme to use significantly more memory and processing time, and at

times crash during execution. It is thus proved necessary to monitor memory consumption of the

script during development and avoid using too big arrays. That has been the reason for the decision

to write the data to the output file several times instead of all at once – along with other considerations

of handling of lists of arrays.

Execution Time

Managing a script of this size requires significant amount of time to execute compared to smaller

scripts often found on the internet. Execution of the tested files is usually more than 1 minute. For one

time execution that is not much but for continuous development, when the script needs to be

executed very often for testing, it builds up. Dynamo is optimising this time to an extent, recalculating

only parts of the script that have been changed, but as the file has been opened for longer time and

ran multiple times, this time gradually increases, perhaps due to the poor memory management

being observed and described in the previous point. In the later versions of the software a feature

was implemented, allowing to freeze a point in the script and everything following would not be

executed.

Looping and Logical Formulas

Familiar to anyone, who has

worked with code or some form

of logical programming, looping

is an extremely helpful asset

when creating algorithms such

as the ones in this project. The

algorithms used in the script are

described in chapter 08.

Dynamo Script Design. Dynamo

does have a node called “Loop

While”, which is a good solution

in principal, however in practice it is complex to use, offers very limited functionality, and in the case

of the script getting stuck in the loop, there is no way to stop it without killing the whole programme

and losing the work since the last save point. Considering that saving takes significant amount of

time, it is quite impractical to use “Loop While” in the few situations where applicable. Instead the

script developer needs to find a way to manage the lists of data by performing actions to the whole

lists, without the ability to go through the items one by one and testing a condition. Usually

workarounds are needed to achieve the desired result. An option is to write the loop code in Python,

Figure 05-9 Loop While Node

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 20 of 70

using standard coding syntax, but that is not possible for people without such skills and is beyond

the project constrains set out in chapter 03. Problem Formulation.

The workaround used in many places throughout the script is using a combination between the more

complicated list structure in Dynamo and the so called “lacing”, together with creative “cycling” of

some of the lists. “Lacing” and “cycling” are described below:

The term “lacing” in Dynamo defines how two or more inputs (lists) of different amount of items are

processed by a given command. There are three lacing options:

1. Shortest: Each of the items of the shortest list is matched with each of the first X items of the

longer list(s), where X is the amount of items in the shorter list.

2. Longest: Same as Shortest lacing, however the last of the items in the shortest list is also

matched with each of the remaining items of the longer lists.

3. Cross Product: each of the items of each list is matched with each of the items in all other

lists. This creates all possible matches, structured as “list of lists”.

The above-referred “cycling” of lists refers to the node List.Cycle in Dynamo. It allows all items of a

list to be repeated X amount of times, where, for the purpose of the workaround, usually X is the

amount of items in another list.

The lack of proper looping restricts the possibilities of the Dynamo script without the use of Python

and for that reason the output file cannot meet one of the desired criteria, outlined in chapter 07.

Output Requirements. It has been agreed with the collaborating group that the problem will be solved

in the following VBA script, after the Dynamo export.

Another limitation of Dynamo is the way it handles

logical formulas, such as standard “IF”. Typically

in programming, a condition would be checked,

and depending on whether it is true or false, one of

two things is being done. However in Dynamo,

both “true” and “false” are being calculated and

the condition decides which of the two results to

use. That requires additional processing time that

is not used for anything useful.

Besides the more major limitations to the development, there are more minor limitations of the

software that make the development process more difficult – such as the lack of more sophisticated

grouping of nodes and ability to have nested groups in one another. Although these would make the

clarity of the canvas and navigation significantly easier, they are not of such importance to the

outcome of the project and are therefore not being discussed in detail.

Figure 05-10 IF Node

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 21 of 70

06. Development Process and Decisions

The project has been developed in constant communication with the colleagues from the Indoor

Environmental and Energy Engineering group, especially in the earlier stages of development. There

have been numerous discussions and decisions taken with the group and some more technical

decisions taken by the author while creating the script. Some of these are being described in this

chapter with the goal of giving the reader a better inside to the development process and general

approach toward the problem. Additionally, as part of the development process, learning of the

software has been described, along with testing of the script and final refinements.

06.1. At Which Point to Introduce New Information?

Creating the automated process has the benefits of allowing the creators to choose at which point in

the flow new information is being introduced. Information that needs to be added is information

regarding which rooms are being analysed in detail in the simulation, which thermal zone the rooms

belong to, HVAC systems, people load, equipment load construction specifications. There are two

points in the flow, at which new information can be introduced: in the Revit Model, by editing the

model in Revit; or in the XLSX file. Moreover, there are several approaches – either all information

could be added in one of the places, or the information can be split, and some of it can be added in

the Revit file, and the rest – in the Excel file. Given the fact that the Dynamo script has some

limitations and requires some editing of the Revit file in preparation of the execution of the script,

avoiding adding the information in Revit provides no benefits. Having information on what is needed

for the simulation can greatly help the resource requirements of the script, thus it is very logical that

information regarding which room(s) are going to be analysed is added in the Revit model. On the

other hand adding too much information in the model (that does not help the script in being less

resource demanding) can slow the script down. So it is logical that the rest of the information would

be added after the export from the script. Considering all these factors, the creators have decided to

add room information, regarding whether a room should be analysed, and the thermal zone it

belongs to, to the Revit file, and all additional required information, in the excel file – such as HVAC

systems, people load, equipment load, and also the properties of the constructions. It is decided that

the script exports the names of the elements, which are unique for the type of construction, and

enough to look up the needed information from the Revit model. After the export from the script, these

unique names are linked to BSim construction database, for the simulation to use.

06.2. Changes Throughout Development

The question of how big part of the flow the script can handle has been continuous throughout the

earlier stages of the development with the answer varying as the script got more developed.

Accepting a conservative stance on what can be done with Dynamo from the beginning proved to be

a good approach, considering how new the software is and the lack of experience with it. Initially not

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 22 of 70

overly complicated task was expected to be not as easy as thought, and correctly so. While initially

there were ideas of having the script to also provide suggestions on changes to the construction – for

example location, size, shape, and amount of the windows – it was later decided that it is of higher

importance to have a working flow from start to finish with a simple structure, to avoid potential

problems. And after proven working well to develop further features such as changes suggestions.

Another discussion was if the script would be able to feed back the result of the simulation to the

model. While Dynamo is indeed capable of doing that, it makes more sense to have that task handled

by a separate script, to make both lighter and less likely to crash. Thus it has been decided to be left

out of the current project until future development is taken over. Further discussion of the idea of

feeding back the simulation results to the Revit Model can be found in chapter 10. Future

Development.

06.3. Efficiency Optimisation

There has been discussion on the topic of whether optimisations for the script should be made in the

Revit model – in terms of the information being processed by the script. While the execution time of

the script may be improved, if the model is cleaned up of information that is not relevant for the

analysis, the script has been designed in a way to filter out information that is not relevant and not

process data that is not needed, for the most part. There are however limitations to this, and that is

the reason it may be improved by cleaning the model. However the decision was to have the script

work on mostly unmodified Revit file, with a few exceptions, that are described in the User Guide.

06.4. What Data to Export?

While there is a lot of information that can be exported, an analysis of what information is needed and

exporting only that information is critical to the speed and resource consumption of the script and to

avoid crowding the output file with data that is not used later. While initially things seem clear, there

are more grey areas, which are a matter of approach. One such is in areas with suspended ceiling.

While the most accurate representation of the construction would be to have the floor slab and ceiling

defined as two separate entities in the geometry and the air between them as separate “cell” (more

details on the terminology in chapter 07. Output Requirements), that would make both the script and

simulation more time consuming. Therefore a decision on which exact building elements to include in

the export has been taken, and they are: walls, floors, ceilings, and roofs. The materials and specific

composition of each element however is not pulled by Dynamo, but instead, the unique element

identification is exported by means of its Family Name and Family Type. After the export, the different

element constructions are included in a database, which links the family name and type to the

specific detailed construction for BSim to use.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 23 of 70

06.5. Exported Storey Partition Elevation?

As described in more detail in the next chapter (chapter 07. Output Requirements), whenever a

storey partition is inside the building, it needs to be exported as a surface, located in the middle of

the construction. For example if a storey partition has a total thickness of 400mm, the surface in the

exported geometry would lie in the centre of the element (200mm from the top and the bottom).

However, as described in detail in chapter 08. Dynamo Script Design, the script can handle only one

elevation for the whole floor. If there are rooms/spaces on the floor with different ceiling height, they

would ideally have different elevations of the storey partition geometry in the XML file. Seeing that the

script can only export one elevation, a decision needs to be made on whether to take the highest,

lowest, on anywhere in the middle.

A typical scenario in an office building is a case where a corridor has a lower ceiling and the offices

have higher. Choosing to use the higher level would leave the air volume in the corridor bigger than

the actual, while choosing the lower level, would leave the volume of the offices lower than desired.

Taking into account the rest of the problems and questions discussed, it was decided that the best

approach is to compare the heights of the ceilings of only analysed rooms for the given floor. Which

rooms are being analysed is then defined in the Revit Model by adding a parameter to the Room

Element, as described in the User Guide. That significantly lowers the negative effect of the limitation

of the script, leaving the problem in consideration only in cases of two rooms with different ceiling

levels being analysed on the same floor. In such case, a choice has been made to take the lower

ceiling level between the two, as being more conservative.

06.6. Windows and Doors Dimensions

The script needs a way to find the dimensions of each window and door. In Revit, typically windows

and doors have parameters for width and height. The cleanest approach would be for the script to

find the location of each window and door and read their width and height from these parameters.

However that requires that these parameters are both named exactly “Width” and “Height” (or

whichever name is chosen in the script), and that they point to the same dimension on the window

and door. It is not rare to see elements with several dimensions defining the width and height, for

example “width” and “rough width”. That raises a problem of consistency and taking that approach in

the script would require that all windows and doors in the model have the exact same names for both

parameters and both parameters point to the exact same location within the family. It is very likely

that that is not the case and going through the families in a big project to fix these parameters is a

very tedious task, so a different approach is considered.

The alternative to that method is to consider the actual geometry of the window/door and choosing

width and height of the exported element based on the location of their outermost points. That is a

little more resource heavy task but deals with the above-described issues. The downsides of this

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 24 of 70

method is that not all families are created equally well and “clean” and sometimes it may happen that

some geometry of the element is being created outside of the desired borders of the window/door.

That may happen if a 2D representation of the window/door frame, meant to be shown in plan view, is

made as 3D geometry, instead of 2D. That would create the “outermost points” further out than the

actual dimensions of the element.

There are arguments for both methods, however the second method has been chosen, which takes

the outermost 3D points of the element. The reason is that it is considered less likely that a family

would be made in a way that would cause the script to calculate wrong values, than the parameters

being named differently, or not pointing to the desired references in the family. A suggested fix to the

cases when a window or a door is created wrong, and the calculated dimensions are bigger than the

element is, after the script is executed, to visually examine the 3D model in Revit and see whether the

calculated size of windows and doors matches the lines of the elements. The script is created in a

way that visualises 3D lines in the Revit model so the calculations of the script can be compared to

the structure of the model and any mistakes – visible. If any elements are detected as being wrongly

calculated, they need to be edited in Revit and the geometry that is causing the issue to be deleted.

Detailed steps of this process are described in the User Guide.

06.7. Resource Usage vs. Accuracy

Generally speaking, a lot of the current limitations of the script could be removed by using more

elaborate algorithms. That would increase the accuracy and amount and quality of features of the

script but would cause the script to use a lot more resources at the same time. In ideal situation, on a

good hardware, increase in resource usage would only cost execution time, which compared to the

time required by the BSim simulation is not very much. But in sub-optimal conditions, when the

hardware may not be up to par with the task, and especially considering the lack of optimisation of

Dynamo for bigger scripts like this yet, the script may simply crash and not be able to finish

executing. Observation during the development show that the hardware requirements of the script

surpasses the Revit requirements for a given Revit model. Considering that Revit is a very hardware-

demanding software, complexity of the Dynamo script algorithms need to be taken seriously. That is

the reason, at least with the current version of Dynamo, to make compromises between accuracy and

resource demands. Chapter 08. Dynamo Script Design describes in more detail the specific

compromises that have been made in the script. A few more major ones are:

Matching construction type

The algorithm used measures distance from the centre of the face of the exported geometry to the

closest element and taking its construction type. There may be rare cases when the geometry is at

equal distance between the actual element it represents and a different one. A more sophisticated

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 25 of 70

algorithm would be one that calculates the intersection of the geometry with each family and decides

which is the best mach.

Storey partition elevation

As described above, the script only allows for one elevation of the storey partition for a whole floor.

The reason is to not make it more complex than already needed, as incorporating multiple elevations

(and connections between the different elevations) would require a lot of new calculations.

External walls need to be connected in one chain

While that restriction covers most of the buildings, it also allows the script to be very simple in the

initial steps when extracting and processing the external walls from the model.

External walls need to be the same width

The script extracts the centre-lines of the external walls and in case of having different widths, it

would need to do separate evaluation for each wall to decide how far to offset the line, to meet the

face of the wall. Being the same width, it can evaluate only once and save a lot of time.

No sloped ceilings or sloped windows

Sloped ceilings or sloped windows would require separate algorithm entirely to manage the

generated surfaces. Currently all surfaces created by the script are either horizontal or vertical.

06.8. Testing

Part of the development process is testing the prototype. As it is not possible to write a script like this

without a Revit model to work over, an initial simple model has been created. As the script developed

further, the same test model increased in complexity, with the goal to cause as much trouble for the

script, as possible, and thus test the reliability of the script and reveal unexpected issues. The test

model includes intentionally created complexity such as (among others):

 multiple storeys

 walls that face directions different than the common North, East, South, West, with openings

 multiple windows on the same wall, above one another

 different combinations of rooms being “analysed” and not

 different types of construction for storey partitions being used

 different combinations of presence of ceilings in the rooms and lack of such

 different techniques of creating window families

A 3D view of the test model, along with two room plans can be observed on Figure 06-1 Revit Test

Model – 3D View and Room Plans below.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 26 of 70

Figure 06-1 Revit Test Model – 3D View and Room Plans

After the prototype of the script has been thoroughly tested with the described test model, another

test was performed with another, real project model. The new test presented several issues, which

were not initially predicted. Some of the issues were with present algorithms, which were optimised to

overcome the issues, while others required developing new algorithms to manage unforeseen

situations. One example of a limitation to one of the algorithms, found during this test is the

connection between internal and external wall in specific situation, described in subchapter 08.3.

Script Constraints. Initially the issue with the algorithm required much bigger workaround, however,

after optimisation without adding extra complexity, the workaround was reduced to an acceptable

magnitude. As described in the above sub-chapter 06.7. Resource Usage vs. Accuracy, balance

between the two is a goal, and this situation is one, where it was decided to optimise the current

algorithm instead of developing a new, more complex one, that would be more accurate.

After finalising the refinements and final optimisations to the script, several tests were completed

without any issues, and the version of the script was officially labelled as “stable” and final.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 27 of 70

07. Output Requirements

As described in chapter 03. Problem Formulation, the goal of the Dynamo script is to output a file with

very particular set of data from the Revit Model, structured in a very specific way. Due to the better

possibilities of Dynamo to output data to Excel file (.xlsx) compared to XML, it has been agreed and

chosen to export the data to XLSX.

The requirements for the output file have been discussed with the collaborating group from Indoor

Environmental and Energy Engineering. The needs for the output file include specific information for

the geometry of the building, and the type of the construction in the different exported elements. It

has also been decided that the thermal zones shall be defined in Revit, instead of manually in excel

later. Along with that information, general information about the extracted rooms is exported too –

such as room name and room number. The output file requires the geometry of the building envelope

and the analysed rooms, and does not need any other geometry that would make the file output more

complex than needed. That has been used to lower the computational time of the script, by not

analysing geometry that does not need to be exported. More information on that can be found in

chapter 08. Dynamo Script Design.

BSim requires the input data to be structured in very specific manner. After discussion with the

group, the required set of data for the automation of analysis has been chosen. That defines the

structure of the output file as described in this chapter.

The output file contains 9 objects, exported in different sheet: CONSTRUCTION, ROOM, CELL,

FACE_SIDE, FACE, WINDOOR, EDGE, VERTEX, VECTOR3D. Below is a short description of each of

them, followed by a summary table, describing the whole structure of the output file:

VECTOR3D is a point, defined by X, Y, and Z coordinates. These are defining the location of the

vertices (below).

VERTEX is an object that contains vector3d. Each vertex has exactly one vector3d. Vertices define all

exported geometry.

EDGE is an object defined by two vertices.

WINDOOR is an object, defined by four edges. Windoor includes windows and doors, from where it

get its name.

FACE is a surface object that is defined by 3 or more edges (typically 4). Walls and storey partitions

are defined as a face. The specific location of the face object in relation to the building element

depends on the type and location of the element:

 Walls: for external walls, a face is the external side of the wall. For internal walls, the face lies

on the centreline of the wall.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 28 of 70

 Storey partitions: for storey partitions, the face lies in the centreline of the cross section,

except for the bottom and top floor/roof. The bottom floor has the face in the lowest surface of

the floor (in touch with the soil) and the top has the face object on the top.

In other words the outermost faces of the building envelope are defining the external face of the

construction element, and any internal faces, describe the centreline of the object – wall or storey

partition element.

FACE_SIDE is one of the two sides of a face. Each face has two face_sides. A face can either face a

cell (see below) or outside of the building. They also may contain windoor objects.

CELL is an object that is defined by several face_sides. A typical space with 4 walls, ceiling and floor

would be a cell with 6 face_sides.

ROOM is a room object. It is being represented by a cell and has properties typical for a room, taken

from Revit, such as name and number, along with a thermal zone, which it belongs to.

CONSTRUCTION is an object that describes an element. Each “construction” object is represented

by a face. It has an ID, which is then linked to a specific construction type from BSim’s database. In

this case that ID is formed by the Revit model Family Name and Family Type – a combination, which

is always unique in Revit, and also usually descriptive enough, to be understandable by the user.

Each of these objects has a unique reference number (RID), which is used when referring to the

specific object. The RID is a # sign, followed by a string of numbers. Below is a table, describing in

more detail the structure of the file:

object name contains notes

CONSTRUCTION rid (unique reference id)
id (describing the construction)
represented_by (face rid)
includes_segments (windoor rid)

If more than one
windoors in
includes_segments
separate them with a
space.

ROOM rid
id (name of room)
represented_by_cell (cell rid)
thermal_zone_id (defined as room parameter in Revit)
revit_room_number (room number from Revit)

CELL rid
bounded_by (face_side rid)

bounded_by is
series of face_sides
with spaces as
separators

FACE_SIDE rid
faces_cell (cell rid)
has_face (face rid)

faces_cell is $ if the
face_side is external

FACE rid
has_edge (edge rid)
has_face_side (face_side rid)

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 29 of 70

WINDOOR rid
represented_by (face rid)

EDGE rid
has_vertex (vertex rid)

Vertices are
separated by spaces

VERTEX rid
has_geometry (vector3d rid)

VECTOR3D rid
x
y
z

Below is an example of the output file from the script:

Figure 07-1 Output File

As can be observed from the description above, in some cases different cells would be in contact

with the same face – for example, when two rooms are divided by the same wall. Due to limitations of

the algorithm, described in chapter 08. Dynamo Script Design, the output of the script actually

exports different face for the different cells, which in turns creates more than one face on the same

physical space. As described in sub-chapter 05.3. Software Limitations, after agreement with the

Indoor Environmental and Energy Engineering group, it has been decided clean-up of the duplicate

faces and correction of their references to be done in the VBA script rather than in the Dynamo script.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 30 of 70

08. Dynamo Script Design

Fi
gu

re
 0

8-
2

D
yn

am
o

C
an

va
s

–
R

ig
ht

 H
al

f o
f t

he
 S

cr
ip

t

Fi
gu

re
 0

8-
1

D
yn

am
o

C
an

va
s

–
Le

ft
H

al
f o

f t
he

 S
cr

ip
t

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 31 of 70

This chapter describes the design of the script and in particular the details of how it works and what

are its limitations. In the beginning there is an overall flow of the logic of the script, followed by more

detailed description of the different parts. The latter part contains more technical language and is

mainly aimed at people who are interested in taking over future development of the script or

potentially fixing and/or optimising the script for a particular project.

08.1. General Structure

Figure 08-1 and Figure 08-2 Dynamo Script Canvas on the previous page represent the canvas of the

script in Dynamo. Higher resolution can be found in Appendix A. The nodes are organised by

groups. The colours represent common purpose of the different groups. The work that the script

performs can be summarised as shown below:

1. Elements of analysed rooms – The scripts extracts the elements of the analysed rooms and

processes them separately

2. Internal walls – The centre-lines of the internal walls are extracted, along with their levels.

3. Storey partitions – All floors and ceilings are extracted and the total thickness of each storey

partition is defined

4. Z-correction – Calculates the elevation change (z-direction), by which to move the wall-lines,

according to the thickness of the storey partitions. This way they align to the bottom, middle,

or top of the storey partitions, according to the output requirements, stated in chapter 07.

Output Requirements.

5. External Walls – Extracts the outer base lines of all external walls and aligns them to the

proper elevations.

6. Windows and Doors – Extracts all windows and doors, finds which wall they are hosted on

and creates their geometry on that wall face. The script uses two different methods of

calculation for the windows and doors, depending on which direction they are facing. It uses

the simpler (and quicker) algorithm for elements facing the project north, west, south or east,

and a more complex algorithm for the rest.

7. Extending Internal Walls to External – Internal wall lines are initially exported to meet the

centre-lines of each other wall. That includes external walls. Therefore each internal wall-line

needs to be extended to the external face of the external walls.

8. Trimming Wall Lines – All the walls produce lines from the start of the wall to the end of the

wall. These lines need to be split on every intersection in such way, that no line is being

intersected by another line in any point of its length except the start or end point.

9. Creating Building Solid – Creates one solid form for the whole building envelope.

10. Splitting Solid to Floors – Splits the building solid to floors

11. Creating Room Solids – Creates solid forms for each of the analysed rooms.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 32 of 70

12. Subtracting Rooms from Floors – Removing the room solids from the respective floor solid.

This leaves the rest of the space of the floor as one unit that is later defined as a Cell and

Room for the output file.

13. Writing to Output File – Processes all the needed information and writes to the output file,

which is located in the same directory as the Revit file and named the same way including “ -

output” string. The writing to the file happens several times throughout the execution of the

script. Each writing opens the file in Excel after finishing. This may be confusing, letting the

user think the script has finished, while it may not have. A good practice is to minimise the

Excel window and to wait for the confirmation “Run Completed” in the Dynamo window.

This simplified representation of the actions of the script include 13 steps. It is worth noting that they

do not execute in the exact order shown above and many of them run partially simultaneously, but

this summary serves as a good representation of the general logic and structure of the script.

08.2. Building Blocks

This sub-chapter goes in further detail in the major parts of the script. It is meant to be read by

anyone interested in the little details of the script, and anyone interested in continuing development of

the script. Anyone who is already working with Dynamo may also find these details interesting and

perhaps educating. The script, which can be found in Appendix A, is schematised in Figure 08-3 and

Figure 08-4 on page 33 below, which can also be found in higher resolution in Appendix B. The

scheme is made in a way that keeps the same relative position of the script elements, and preserves

visually similar colours. The goal is to serve as a simplified guide to understanding the way the script

works in better detail.

Each of the coloured boxes on the scheme represents a group of nodes from the script. These

coloured boxes are referred to as building blocks in this paper. Different sets of building blocks are

bounded in the scheme by a thick coloured line. This line indicates group of blocks with similar

purpose, and combines them under a common name. These sets of boxes with common purpose are

referred to as groups of blocks in this chapter. Each group is described in more detail below.

Windows and Doors

This group’s purpose is importing and processing window and door elements. It consists of five

building blocks, as seen the scheme in Figure 08-3 Scheme of Canvas (Left Side). The block called

Import Windoor performs the actions of importing all windows and all doors, filtering only external

doors, and then combining them in one list. It is important to note that that list is ordered in the way

the elements are being imported by the Dynamo nodes and has not got a link to which floor, wall or

room they belong to.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 33 of 70

Figure 08-4 Scheme of Canvas (Right Side) Figure 08-3 Scheme of Canvas (Left Side)

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 34 of 70

The next two blocks find the wall-host of each element and identify the vector of direction of each
host – which subsequently indicates the facing direction of the windoor element. Afterwards split the
windoor elements in two groups: one group that faces one of the project cardinal directions
(N/E/S/W), and another, which face different directions. In the script, there is a set of nodes, which
filter elements not facing horizontal direction – such as skylights, or windows on slanted walls or
roofs. This is meant to be used in future development, if support for such windoor elements is
implemented.

Each of the two groups of nodes are being processed using two methods – bounding box (being
faster and lighter), and projection method (being heavier but supporting elements not facing the
cardinal directions). Each of them is described below:

Method 1: Bounding Box

It creates a cuboid shape, aligned to the x and y axes, around each element. Then intersects that

solid with the surface representations of the external walls, and the result is the desired surface of the

windoor element. Since the bounding box is always aligned to the project x and y axes, it is not a

suitable method for elements facing different direction, and that is the reason for using two separate

methods.

Method 2: Projection

The method involves projecting all vector points of the elements, towards the external walls, in the

direction, in which the elements face. This is done via the node Surface.ProjectSurfaceOnto. The

node has three inputs: Surface (representing the walls), geometryToProject (vertex points of the

elements), and projectionDirection (the vector of facing direction of each element).

The input geometryToProject if calculated by exploding the geometry of all of the elements in the

group and extracting all vertex points. The input of Surface.ProjectSurfaceOnto is calculated by

finding the closest wall-surface to the centre of each windoor element by using Geometry.DistanceTo

node. That can cause incorrect results in rare occasions of very thick and short walls with windows,

but is used as a compromise between accuracy and resource usage – a topic, discussed in sub-

chapter 06.7. Resource Usage vs. Accuracy. Finally the input projectionDirection is calculated by

finding the facing direction of the wall-host of each element (vector).

Normally, having three lists of equal lengths of inputs can be simply connected normally to the node

Surface.ProjectSurfaceOnto. The three lists are surfaces of walls, geometry of elements, and vector

directions. However, since each element has many vertex points, each of which has to be projected

to the same surface in the same projection, that makes the second list much longer than the other

two. While normally this issue could be solved with looping, for reasons discussed in sub-chapter

05.3. Software Limitations, this is not an option. Had there been only two lists, Dynamo does offer the

node List.Map, which would work, but since the required inputs are three, that would not work. The

chosen solution is to implement a workaround by duplicating the items in the two shorter lists as

many times, as there are vertices in each element. That causes the three lists to be of equal length

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 35 of 70

and all items to be ordered correctly. Then the three lists

can be processed using the node List.Combine with a

combinatory of Surface.ProjectSurfaceOnto. This

described issue in this situation is found in several places

throughout the script and the chosen workaround of

duplicating the items in the shorter lists, to match the

length of the longest list, is found to be the most efficient

solution.

Finally, having projected all vertices of each windoor

element, the outermost points for each element need to be

extracted. This is done by means of converting the 3D

points to 2D points on the surface they lie on, and finding

the outermost points using their 2D coordinates. Those

four points are in the end connected to form the surface,

representing the element. The result of this group of

building blocks can be seen as blue lines on Figure 08-5

Windoor Geometry to the left. The process has been

performed on the test file, shown in Figure 06-1 Revit Test

Model – 3D View and Room Plans on page 26.

Storey Partition Thicknesses

This group’s purpose is calculating the thickness of each storey partition. That thickness is used later

in the script to correct the elevations of the surfaces of walls, so the values passed on from this group

of blocks actually represents the corrections of the elevations for each floor. As described in chapter

07. Output Requirements, the geometry of the lowest storey partition needs to lie at its bottom, the top

storey partition – at its top, and all storey partitions in-between – in the middle. That requires the

values passed on by the group “Storey Partition Thicknesses” to be: full thickness for the lowest

storey, and half thickness for all storeys above. These values are referred to as Z-correction

throughout the script, as they correct the Z-coordinate (elevation) of the geometry. Refer to Figure

08-6 Storey Partition Geometry.

The group “Storey Partition Thicknesses” comprises of two building blocks: Filter Ceilings and Floors,

and Calculate Storey Partition Thicknesses. While the first is fairly simple, the second block

represents more than 10 groups of nodes in the script. All of these groups of nodes are coloured in

purple or pink in the script, for visual clarification. The script can be found in Appendix A.

Figure 08-5 Windoor Geometry

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 36 of 70

Filter Ceilings and Floors

As can be seen on Figure 08-3 Scheme of Canvas (Left

Side) on page 33, the input (blue line) is the building

block Import Rooms. It is intentional decision not to

import all ceiling and floor elements, but only the ones

around analysed rooms. It could be the case that there

may be several storeys of a building without analysed

rooms, and thus no storey partitions will be generated by

the script. That is also intentional, and the resulting

space is combined into one CELL in the output file. This

saves calculation time and lowers the complexity of the

output file. The group of blocks “Filter Ceilings and

Floors” takes all elements binding the analysed rooms

and extracts only the ceiling and floor elements. From

the floor elements, the floor with lowest elevation is taken

out, and the Z-correction for the lowest storey is created

from the floor’s thickness.

Calculate Storey Partition Thicknesses

The rest of the floors are combined with the ceilings and grouped by level – as defined in the Revit

model. This is done by reading the Revit parameter “Level” of each element. A peculiarity in the

ceiling elements in Revit is that their “Level” parameter points to the level below them, and not to the

actual storey partition they are belong to. This is accounted for in the script by offsetting them by one

level when grouping by level.

The algorithm then calculates the distance from the bottom of each element to the level. That is done

differently for ceiling and for floor elements.

Floors: for each element, the thickness is added to the offset from the corresponding level.

Ceilings: Since the ceiling elements are hosted by the level below, the same method does not work.

The absolute elevation of each element (base) is calculated, and then their corresponding level’s

elevations are deducted.

For both Floors and Ceilings, there are groups of nodes in the script named Preserving Indices. Their

purpose is to prevent elements being assigned incorrect level, in case there are not such elements

on every level. Preserving Indices maintains a list of elements of the same length, as the amount of

Levels in the Project. If there are not elements on each level, placeholders are used to populate the

respective Level.

Figure 08-6 Storey Partition Geometry

Red lines represent the storey partitions

Blue lines represent the created geometry

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 37 of 70

At the end, all calculated storey partitions for each level are combined. Since, the script can only

create a single surface for each storey partition of the building, a single value needs to be chosen for

its thickness, and respectively its elevation. As discussed in sub-chapter 06.5. Exported Storey

Partition Elevation?, after a discussion, it has been decided that the maximum thickness of the storey

partition is chosen and thus, that is the value that is passed onward to the rest of the script.

Elevation Correction

The purpose of this group of building blocks is to correct the elevations of the wall-lines using the Z-

corrections calculated in “Storey Partition Thicknesses”, and assure the lines of the internal and

external walls respectively lie on the locations that are required. The group of building blocks

represents all nodes from the script, on the same relative location of the canvas, grouped under blue

colour. The input of the group of blocks are the internal and external wall lines, on their original

locations, while the output is the same lines with corrected elevations and external lines offset

outwards to the outer wall face. Visualisation can be observed on Figure 08-7 Wall Location Lines.

The blue lines represent the original locations, and the black lines beneath them – the corrected

locations. Not that the lines at the lowest level are moved down by a larger distance, since that is the

lowest floor of the building. It should be noted that the object Curve in Dynamo can often represent

straight lines, and as such, some of the line-objects are sometimes referred to as “curves”. For the

scope of this project, both terms are used interchangeably.

Figure 08-7 Wall Location Lines of Level 0 and Level 1

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 38 of 70

Wall Curves Z-Correction

Using the location lines of the imported internal walls from the building block “Filter Internal Walls”,

seen in blue on Figure 08-3 Scheme of Canvas (Left Side), a correction in elevation is performed with

the respective Z-correction, from the group “Storey Partition Thicknesses”. The same is done for the

centre-lines of the external walls, which are imported from the building block “Import External Walls”.

On the same figure, the downwards pointing green arrows show the Z-correction, and the green

dashed line – the corrected location of the wall centre-lines. Note that the external walls are all walls

from the Revit model, while the internal walls are only the ones in contact with analysed rooms.

Offset External Wall Curves Outside

The imported external wall lines are located in the centre of the walls, while the geometry needs to be

generated on the outer face of the walls. Thus they need to be offset by half of the thickness of the

walls towards the outer face. The horizontal green arrows on Figure 08-7 Wall Location Lines

represent the direction of offset. There are two ways to offset a curve in Dynamo – offset in a

direction, determined by the way the curve is created, or explicitly specify direction to offset. Since

dealing with multiple curves, rotated in different directions on the XY plane, determining offset

direction for each curve individually is resource demanding. However relying on consistent method of

creation of the curves is not reliable. Therefore, the solution used in the algorithm is to combine the

curves of external walls of each floor to a polygon and offset it twice: once with the distance equal to

half of the thickness of the wall, and once with the same distance, but with negative value. All offsets

are being done in the same plane of the polygon, therefore, there are only two options of offset. After

that, the two polygons are compared and the larger of the two is being selected.

The reason the Z-correction is done before the horizontal offset instead of after, is that the centre-

lines are required to be on the correct elevation because they are used in later in the script in the

building block “Extend Internal Walls to External Walls”.

Top Wall Curves

Since all curves are created at the bases of the walls, until this point there is nothing defining the

geometry of the curves of the roof. These are created by reading the height of the external walls of

the top floor, and copying the external wall face-lines of the top floor by the same distance.

Trim Walls

Seeing as initially, all wall lines are created at the centre-line of the walls, when offsetting outwards

the lines of the external walls, the ends of the internal wall lines are being disconnected from the

external wall-lines, as seen on Figure 08-8 Internal Walls, Which Need Extending. The solution is to

extend them, so they intersect the external wall-lines. Typically drawing softwares have trim/extend

feature but Dynamo does not have one natively, so the algorithm is created manually. Dynamo

distinguishes each line with Start and End, each of which needs to be processed separately.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 39 of 70

Figure 08-8 Internal Walls, Which Need Extending

Does the Start/End Point Intersect with External Wall Centre-Line?

Determining which lines need to be extended, means determining which lines intersect with external

walls. That is achieved by testing if their start points lie on any centre-line of external wall. That is later

done for their end points. It is important to do the tests one after another and not simultaneously,

because each end needs separate processing.

Extending Lines

After determining whether a line start or end should be extended, the corresponding distance is

calculated to the nearest wall face line, and the internal wall-line is then extended by that number.

There is one scenario of internal wall meeting external wall in a T-section, which causes issues. Refer

to Figure 08-9 Wall Lines – Problematic Area below.

Extending the internal wall line by any amount does not result in a connection of the wall and the

external wall-line. The suggested solution is to modify the wall in the Revit model, as shown in Figure

08-10 Wall Lines – Suggested Solution. This way its centre-line correctly extends to the external face-

Figure 08-9 Wall Lines – Problematic Area Figure 08-10 Wall Lines – Suggested Solution

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 40 of 70

line. The same situation causes another issue, described in group of blocks “Lines of Analysed

Roms”, and requires more specific needs for the workaround, defined in the description of the group

later in the sub-chapter.

Split Walls

All wall lines until this point of the script span the entire length of the wall element in the model.

However, for the creation of the geometry later in the script, it is required that all wall-lines are split at

every intersection with another line. Or in other words, all wall lines should only intersect another wall-

line at either its start- or end-point, not anywhere in-between. Since Dynamo does not have such

intersection tool that can be used for this purpose, it is created manually.

Extract Intersection Points

Firstly all lines are intersected with all lines using Geometry.Intersect node. That causes every line to

inevitably be intersecting with itself, which results in a line segment with the same length and location

as the original. From the aggregated list of geometry, only the points are extracted and any

duplicated points are deleted.

Filter Out Walls Not Containing Intersection Points

The next step involves taking all internal and external wall-lines from the previous building blocks and

filtering only the ones, which intersect with any of the intersection points.

Split Walls on Intersections

This is the main part of the algorithm that finds which walls need to be split and splits them at the

correct location. The group of nodes in the script is shown in Figure 08-11 "Split Walls on

Intersections" Nodes below.

Figure 08-11 "Split Walls on Intersections" Nodes

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 41 of 70

Using the node Curve.ParameterAtPoint, allows to see at what distance from the start of a line, a

given point lies. The result is a parameter with value of 0 for the start of the line and 1 for its end. So a

value of 0.5 would mean the point lies exactly in the middle of the line. This is used to find which wall

lines contain intersection points anywhere between their start and end. The result of the node for

each of these lines is 0<X<1. Then on these lines the node Curve.ParameterSplit is used to split them

at the same parameter value. At the end all wall-lines are combined in a list and duplicate lines are

removed. Since this list is not sorted in any particular order, the following building blocks in the script

filter the lines in two groups: external and internal walls, and after that group each of them by level

Create Floor Solids

This group contains one building block, whose purpose is to generate solid

objects for each floor of the building. The script later splits these solids into

rooms, and further – each room (solid), to faces (surface), then edges, and

then vertices.

Whole Building Solid

The first step is creating a solid for the whole building. That is done by creating

a “loft” from the bottom and top level external wall-lines, using the node

Solid.ByLoft. The result can be seen on Figure 08-12 Building Solid to the right.

Splitting Building Solid to Floors

Next, the building solid needs to be split for each floor. Dynamo does not offer a node that can do

this operation easily, so a more creative approach is taken. The node used is Geometry.Trim. It splits

a geometry in two, using a “tool” (a surface), and deletes one of the two sides, determined by a

“pick” (a point). It has three inputs: geometry (to be trimmed), tool (to slice the geometry), and pick

(point, determining which side of the geometry delete).

Since the building needs to be split

several times, the “tool”-s need to be

the storey partition surfaces. However,

if the node is given severalo “tol”-s at

once, it slices the original geometry

once for each of the tools, instead of

all at once. If the top geometry is

deleted, the result can be seen on

Figure 08-13 Initial Results of

Geometry.Trim. The algorithm then

uses the node again on each of the

Figure 08-12 Building Solid

Figure 08-13 Initial Results of Geometry.Trim

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 42 of 70

results, this time deleting the lower geometries, and the results can be seen in Figure 08-14 Building

Floors – Final Result below.

Figure 08-14 Building Floors – Final Result

The method of using Geometry.Trim two consecutive times is creating two pick points – one above

and one below the building. Then use the node for the whole building with the first pick point (above

the building). That gives the results in Figure 08-13. Then for each of the results, excluding the first

one, perform the Geometry.Trim, using the second pick point (below the building).

Lines of Analysed Rooms

The purpose of this group of building blocks is to generate the geometry of wall-lines around each

analysed room, which will serve as a base for creation of room solid later in the script. It consists of

two building blocks – Surface of Internal Walls and Wall Lines of All Analysed Rooms. The first one

generates surfaces representing the internal walls, to be used in geometry intersection later. The

second one searches through all of the created wall-lines in the previous blocks, and finds the

correct match for each of the walls for each of the analysed rooms. There are methods used in the

algorithm to minimise the amount of lines that are searched. Both building blocks are described

below.

Surfaces of Internal Walls

All lines of internal walls are extruded by 10 metres to form a surface. All surfaces are “intersected”

with the solid of the floor they belong to, to cut them down to the correct height. Afterwards the

surfaces of each floor are combined in one “polysurface”, which is an element in Dynamo that

represents a collection of surfaces and acts as one solid object. That is required for later processing.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 43 of 70

Wall Lines of all Analysed Rooms

The method used in the first part of the building block is using the custom node Room.Boundaries

from Clockwork package, which creates lines at the edges of the floor of each of the analysed rooms,

referred to as “room lines” from here on, for clarity. These lines are matched with their corresponding

lines generated thus far in the script, referred to as “final lines” from here on. The final lines represent

the wall-lines with correction for the elevation and horizontal offset. On Figure 08-15 Room Lines and

Final Lines below, the room lines are shown in blue, the final lines are shown in red, and green arrows

represent the correction in elevation and horizontal offset. There are four analysed rooms on the

shown example, therefore the blue lines form four polygons.

Figure 08-15 Room Lines and Final Lines

A horizontal plane is created for each of the rooms, with the

elevation of the room lines. That surface is used to intersect

the internal wall surfaces to determine which walls

correspond to which room. On Figure 08-16 Intersecting

Room Floors with Internal Walls to the right, the floor surfaces

are shown in blue, and the wall surfaces – in grey. The result

of this operation is that all wall lines, which are on a floor with

at least one analysed rooms, are extracted to a “pool” of wall

lines. That pool is used for searching in the following

matching algorithm.

Figure 08-16 Intersecting Room Floors
with Internal Walls

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 44 of 70

The following part of the script is used for the actual matching of room lines and correct lines. Figure

08-17 Wall Intersection Algorithm below serves as a visual representation of the logic. It represents

the workaround described in the “Trim Walls” building block, but with additional details. The room

lines are shown in blue and the correct lines are shown in red.

Figure 08-17 Wall Intersection Algorithm

Two planes generated near the start and end of each room, which are perpendicular to the line. The

example shown in Figure 08-17 above describes the calculations for the room line shown in thick

blue colour. The two planes for this line are shown as green dashed lines. These planes are used to

intersect each of the lines in the pool generated in the previous step (shown as red lines). On the

figure, the lines that are being intersected by at least one of the planes are shown wider than the rest.

After the intersection the algorithm calculates the smallest distance from the room line to each of the

intersected lines (shown as wide and red colour) and chooses the closest one as the best match.

Performing these steps for each of the room lines, results in a closed loop of correct lines, which are

used later in the script for generating room solids.

As seen in Figure 08-17 of this example, if interior wall, shown as thick red line, is too close to the

calculated room line, the algorithm would inaccurately chose it as the best match, and result in

overlapping lines which do not form a closed loop. That will subsequently result in not being able to

create a solid for the room and inevitably the script not being able to output correct geometry.

Therefore, as described in sub-chapter 08.3. Script Constraints a safe clear distance between the

external wall and the parallel internal wall segment is at least as much, as the thickness of the

external wall. The same is true for the segment of the internal wall, intersecting with the external wall:

the distance between its face (facing west on Figure 08-17) and the face of the parallel external wall

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 45 of 70

(facing the same direction) needs to be at least as wide as the thickness of the external wall. This

requirement is also explained, in a simplified way, in the User Guide in chapter 09. User Guide.

Had the surface used for intersection been only one instead of two, as shown on Figure 08-18 Wall

Intersection Algorithm – Alternative, then it would have only intersected the wrong line of the pool

(shown as wide and red colour). That is the reason why the algorithm uses two surfaces at the start

and end of each room line. That way the movement of the walls in the model for the workaround does

not need to be as drastic.

Figure 08-18 Wall Intersection Algorithm – Alternative

Create Room Solids

This group of building blocks creates solids of each

analysed room and combines the rest of the space on

each floor in as few rooms as possible. That is done to

improve the efficiency of the script and decrease the

complexity of the output file.

Using the closed wall lines for each room as a base, a

solid is made by extruding the form vertically by 20m

using the node Solid.BySweep. The solids of each

room are intersected with its corresponding floor solid,

generated in building block “Create Solids of Each

Storey”, as seen on Figure 08-19 Intersecting Room

and Floor Solids.
Figure 08-19 Intersecting Room and Floor Solids

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 46 of 70

The resulting geometries have the exact dimensions of the rooms, needed for output. Refer to Figure

08-20 Solids of Analysed Rooms below.

The node Solid.DifferenceAll is then used to remove the volume of these solids from the floor solids.

That results in the rest of the space of each floor to be combined in one solid. However, if there are

more than one formed solids on each floor, even if they are physically separated, in Dynamo they

behave as one unit. As seen on Figure 08-21 Solids of Rest of the Building above, the blue coloured

spaces behave as one object. That would cause them to be exported as one room, even though they

should be two.

The solution is to convert them to polysurfaces and then back to solids. That creates a separate solid

for each of the enclosed spaces. Then both lists of rooms are combined and passed to the rest of the

writing part of the script

Figure 08-20 Solids of Analysed Rooms Figure 08-21 Solids of Rest of the Building

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 47 of 70

Write to File

This group of building blocks comprises of significant amount of the nodes in the script, however this

description does not go in details of every building block. Instead it presents the general structure

and describes the logic used in defining the unique ID’s of the objects (RID).

This group of blocks can be divided in two algorithms running side by side – RID’s and geometry.

The geometry part extracts smaller objects from bigger objects and preserves the hierarchy and list-

nesting necessary for proper exporting.

The RID’s of the objects are required to be unique. They need to start with # string, followed by series

of numbers. The script uses certain positions of the RID for specific object identification. The first

characters are reserved for the ROOM object. The amount of characters saved depends on how

many rooms there are in the file. The leading character is always 1, followed by the consecutive

number of room with zeroes used as fillers. So, as example, if there are 12 rooms in the project,

rooms will have consecutive numbers from 01 to 12. Including the # and the leading character of 1

creates a series of numbers like #101, #102 … #112. The reason for including 1 in front of the number

is to keep the same amount of digits in the RID’s of all objects of the same type.

The following character of the RID describes either a CELL or a WINDOOR. A cell always contains

one ROOM, so the RID of a CELL is always the RID of its ROOM with 0 added in the end. If the

number is 1, it describes a WINDOOR with consecutive numbers following.

The following characters describe a FACE. Each CELL has several faces and each face’s RID starts

with the RID of its CELL and its consecutive number. This consecutive number is always the same

amount of digits with leading zeroes as fillers.

The following character is FACE_SIDE. Each FACE always has two FACE_SIDE’s, therefore this

number is always 1 or 2, if the RID is of a FACE_SIDE, or 0, if the RID is of a EDGE, VERTEX, or

VECTOR3D.

The following numbers represent EDGE, VERTEX, and VECTOR3D respectively, and each of the

series maintains the same amount of digits with leading zeroes. The RID scheme looks as presented

in Figure 08-22 RID Scheme.

Green: ROOM (1+consecutive number)

Red: CELL (0) or WINDOOR (1)

Blue: FACE (consecutive number)

Yellow: FACE_SIDE (1 or 2) or EDGE, VERTEX, or VECTOR3D (0)

Purple: EDGE (consecutive number)

Grey: VERTEX (0 or 1)

Black: VECTOR3D (0)

Figure 08-22 RID Scheme

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 48 of 70

08.3. Script Constraints

There are things that the script cannot do, either because of a compromise, due to the resource

requirements, or due to limitations set out by Dynamo itself. This sub-chapter describes these

constrains. Most of them can be fixed by incorporating more complex algorithms, with the drawback

of making the script more recourse demanding, and all of them could be fixed by using code in

Python, overcoming the main constrain of the visual programming environment of Dynamo – lack of

well implemented Looping.

Some of the information in this sub-chapter may overlap with some already presented information but

it is placed here because it is relevant and in the case of some reader being interested in this

particular topic and not much in the others.

External walls need to be connected in one chain

As described in the previous sub-chapter (08.2. Building Blocks), this is a constraint that is

intentionally set, with the purpose of simplifying the script and improving the calculation time and

resource requirements. Having the walls in such order allows for the extracted centrelines to form one

connected polygon, which is then offset outwards to meet the wall faces.

It is considered that most buildings, which are going to be analysed, do have all external walls in one

connected chain. In case of the presence of additional buildings in the same Revit file, they can be

deleted before execution of the script.

External walls need to have the same width

The purpose of this constraint is to allow the formed polygon of wall centrelines, described above, to

be offset by the same amount and meet the external wall faces. Had some walls been of different

width, then the polygon would have had to be offset by different amounts in its different segments.

Alternatively, before creating the polygon, each individual wall line could be offset by the

corresponding value and then the lines trimmed to meet each other in a polygon. Dynamo does not

have native “trim” node, therefore that would have to be created manually, adding additional

computational time and resource demands.

Uniform storey partitions throughout the storey

This constraint is that for each storey partition of the building, all areas, parts of analysed rooms,

need to have the same thickness. Having different thicknesses throughout one storey partition would

require change in elevation of the created floor-surface in the script, due to the requirement to have

the surface lying in the middle of the thickness of the storey partition. This difference in elevation of

the surfaces, need to be connected together. The surface that is required to connect them is not

representative of a floor in the model, therefore would need to be created in the script, which is

significant addition to the complexity.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 49 of 70

Sloped ceilings are not supported

The script is designed to be able to create only vertical and horizontal surfaces. Creating surfaces in

other planes requires different algorithms that are not implemented in the current version to keep the

script less complex.

Curtain walls are not supported

After testing it was found that curtain walls are not fully supported. When curtain walls are used as

normal walls, the script does not consider them as “windoor” elements, which, for the purpose of

correct output, it should, but as normal walls, since that is their type in Revit. This results in having

them represented as normal walls in the output file, which is a problem, if the curtain wall represents

a glazing façade, or any kind of transparent surface, allowing light to come into the building. Solution

to this issue is somewhat more complex than adding a simple filter to the script, because these

elements are not “hosted” by another wall. And a “windoor” element needs to be hosted by a wall

element in the output file. Thus, it requires generating a wall that is not currently in the Revit model,

and the script does not contain such algorithm, hence such has to be created.

Another use of curtain walls is when they are embedded in another wall. That case does not require

generating a new geometry, not existing in the input model, but it does involve the problem that

Dynamo reads these walls as one inside another. And since the curtain wall element is neither a

window, nor a door, it attempts to create a wall inside a wall, which is not a valid construction and

thus fails to finish execution properly. A solution is to treat each instance of embedded curtain wall as

a window or a door. That would require a filter to all external walls to find any walls that are of such

type and process them as “windoor”.

Additionally there needs to be a filter to distinguish embedded curtain walls from ones that are not.

Because each needs different kind of processing.

Floor covering – no support for stacked separate floor elements

A practice used in some architectural models is to create a common floor element for the load

bearing construction of the floor (with negative offset from the floor level) and creating another floor

element with the floor covering, for example parquet, tiles, or carpet. The way the script works is, it

starts from the room and finds all elements that are in contact to the room. That means that the floor it

finds in this case is the covering element, but not the load bearing element, which is of higher

importance. There are ways to improve on the algorithm and make it more sophisticated, described

in chapter 10. Future Development, but the solution for the current version of the script is to edit the

Revit model by doing one of two things:

1. Split the load bearing floor to the boundaries of each covering, include the covering as top

layer in the element and delete the covering element itself. After that correct the offset of the

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 50 of 70

floor to match the level of the room. That keeps the same construction as designed but has

only one floor element in the room and is correctly processed by the script;

2. Delete the floor covering element and correct the offset of the load bearing element to match

the designed floor. That solution is simpler but changes the construction of the floor element.

However, if considered that this has negligible effect on the simulations, it may be a faster

way to prepare the Revit model

Internal and external wall connection problem in specific situation

There are situations when internal wall meets an external wall in a way, shown in Figure 08-23 Wall

Connection Problem. This happens when an internal wall meets parallel external wall, and is located

on the inside of the external wall’s external face, and only if the walls belong to a room that is marked

as “analysed”. Note that wall elements in Revit may span multiple rooms.

Figure 08-23 Wall Connection Problem (left) and Solution (right)

The details on the solution are explained in the User Guide. The reason for the problem occurring in

this situation is that there are two places in the script, where such geometry causes problems – when

the internal walls centrelines are extended to meet the external wall’s external face, and in the

creation of the room solids that are extracted from the overall building floor solid. The summary of the

two algorithms is presented below:

Extending internal wall centre-lines to external walls

external faces

As described in sub-chapter 08.1. General Structure, as

step 7, at that point the script has all internal walls

represented by their centre-lines, and all external walls –

as lines, lying at their external faces. As shown on Figure

08-24 to the right, internal walls end at the point of

meeting the inner face of external wall. Their centre-lines

are not reaching the external faces of the external wall.

The internal wall lines needs to be extended to meet the

Figure 08-24 Wall Lines Diagram

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 51 of 70

external wall line. But a problem occurs if they actually cannot intersect the external wall’s lines. Refer

to Figure 08-26 Wall Lines – Problematic Area.

As can be observed, regardless of how much the internal wall line is extended, it will not intersect the

correct external wall line. This requires that a simple workaround takes place. Refer to Figure 08-25

Wall Lines – Suggested Solution. By changing the internal wall path in the shown manner, the centre

line can be extended to the line of the external wall with no problem. The added volume to the room

on the left will alter the results of the simulation but not by a large margin.

This suggested solution does solve the problem, however, as mentioned earlier, there is another
algorithm to consider.

Generating room solids

As described in sub-chapter 08.1. General Structure, steps 11 and 12 involve creation of solids of the

rooms that are analysed in order to subtract them from the volume (solid) of the whole building floor.

One difference between the volume of the rooms that need to be generated and the rooms in the

Revit model, is that the floor of the generated room (bottom face of solid) lies in the middle of the

storey partition, while the bottom of the room in the model lies at the top of the storey partition. This

means that when creating the solid of the room, each of the lines forming the bottom face, needs to

be “moved” down to match the correct elevation. Moreover, since the bottom face of the volume of

the Revit room is bounded by the internal surfaces of all walls, they also need to be moved out, to

match the correct location of either centre-lines (for internal walls) or face-lines (for external walls).

Figure 08-27 Correction of Wall Lines below gives a visual representation.

Figure 08-25 Wall Lines – Suggested Solution Figure 08-26 Wall Lines – Problematic Area

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 52 of 70

Figure 08-27 Correction of Wall Lines

In aim of doing this complicated calculation as simple as

possible, the matching is done by an algorithm that finds

the closest already generated line (the red lines in

Figure 08-28 Wall Intersection Algorithm to the right) to

each of the lines in the base of the Revit model room

(blue lines in the figure). The algorithm creates two

surfaces on each line near the start and end (shown as

green dashed lines) that are perpendicular to the line.

Then only searches through lines that are intersected by

one of the two surfaces.

That creates the requirements for the size of the area

added to the room. Each side of the formed “square”

needs to be at least as long as the width of the external

wall.

Figure 08-28 Wall Intersection Algorithm

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 53 of 70

09. User Guide

This chapter is aimed at the user of the script and summarises a lot of the information described in

chapter 08. Dynamo Script Design in the form of simplified and easy to understand requirements and

recommendations. It comprises of two sections: Requirements and Recommendations

09.1. Requirements

This sub-chapter describes what the user is required to do in preparation of the model, in order to

have successful execution of the script and result, matching the expectations. These requirements

are caused by limitations of the script or the software (Dynamo), which are described in more details

in sub-chapters 08.3. Script Constraints and 05.03. Software Limitations.

I. Software and Packages

It is required to have minimum versions of Dynamo and the used additional packages equal to the

ones used for creation of the script. If later versions are used and errors occur, downgrade to may be

required. The version used are:

Dynamo 0.9.1.3703

archi-lab.net: 2015.11.12

Clockwork for Dynamo 0.9.x: 0.90.3

If Equal Return Index: 0.1.0

LunchBox for Dynamo: 2015.11.25

Rhythm: 2015.11.25

II. Walls

All walls in the building are required to be connected in one chain and have the same thickness. If

there are separate structures in the same model file, the script will not be able to manage it and will

likely stop execution before finishing, or export incomplete or wrong data in the output file.

The external walls do not need to be of the same type but need to have the same construction. A

workaround, however not tested, could be to add an internal layer of “material” air to the thinner

external walls to match the thickness of the rest. That air material should be defined in the wall family

in Revit as having the lowest priority function – Finish 2 [5]. This preserves as much as possible the

designed connections between the wall and other elements. Moreover, the material should have the

parameter “Wraps” checked and “Structural Material” as not checked.

Furthermore, each wall type need to have the type parameter “Function” set appropriately. The script

distinguishes external from internal walls using this parameter. If this parameter is set to anything

other than “External” or “Internal”, the walls are not processed by the script.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 54 of 70

III. Wall Connections

Revit allows to have two walls not forming a connection, if explicitly set to do so. Internal walls,

reaching external walls need to be connected for the script to process walls correctly. If the wall joint

is “disallowed” in the model, the script will not manage to distinguish the adjacent rooms as separate.

Example of incorrect and correct connections can be observed in Figure 09-1 and Figure 09-2 below.

A correct connection, shows the end point marker of the internal wall (when the wall is selected) in

the centre of the external wall.

Another wall connection that needs attention is a place where internal wall connects to a 90° external

wall, as shown in Figure 09-3 Wall Connection Problem below. Due to the algorithms used in the

script, such connection cannot be processed correctly and a workaround is required. The internal

wall needs to be split as shown on Figure 09-4 Wall Connection Solution below.

Wall End Point Marker

Figure 09-3 Wall Connection Problem Figure 09-4 Wall Connection Solution

Figure 09-1 Incorrect Wall Connection (Plan View) Figure 09-2 Correct Wall Connection (Plan View)

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 55 of 70

There is a minimum requirement for the two dimensions of the newly added area to the room (shown

as x and y), such that both of them need to be bigger than the width of the external wall. Note that

equal length is not enough. The reasons for this limitation are explained in details in sub-chapter

08.3. Script Constraints.

IV. Curtain Walls

The script does not support curtain walls. A suggested workaround is to delete the curtain wall and

create a similarly sized window (or door) with similar parameters to the curtain wall. Alternatively, to

simply exclude the curtain walls from the analysis, instead of deleting them, the wall type function

parameter can be changed to anything different than “External” and “Internal”. That would cause the

script to disregard this type of wall.

V. Windows and Doors

The script projects the geometry of the windows and doors to their host wall, after which finds the

outermost points and generates the opening geometry. This process will produce inaccurate results if

there is any geometry of the window, outside of the projected opening on the wall. This means that

any geometry that is outside of the opening, but still within the boundaries of the projection, will not

cause problems – for example a window sill, protruding out of the wall. A properly created family

usually does not contain such geometry. If the connection of the element to the wall is meant to be

shown, it is typically done via 2D representation, visible in plan or section view. These 2D elements

are not geometry that is used for the projection in the script.

Some families, however, are created without much concern for this, since typically that would not

cause a problem in a Revit model. Example of “geometry” that is occasionally placed outside of the

opening boundaries is a flip-switch or a model line (3D object) that is supposed to be detail line (2D

object). Since control over the creation of the families is usually not possible, and inspecting each

element separately is very tedious task, a suggested approach is to run the script and visually see

the results in the Revit model. The script creates 3D lines of the edges of the surfaces of all elements

(windows, doors, walls, and storey partitions) in the Revit model. Example can be observed in Figure

09-5 Dynamo Geometry Visualisation below.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 56 of 70

On the figure, the blue lines represent the geometry,

generated by the script. Typically, on a 3D view of the

model in Revit, it is easy to identify lines that do not

match the actual openings of windows and doors.

These are the families that need to be revised for

geometry outside of the boundaries of the projected

wall opening. Revision of the elements could be a

difficult task, considering that different families are

created using different techniques and Revit many

different ways to accomplish one goal. A suggested,

more systematised method is, in Revit, to edit the

family, go through each of the views, select everything,

use “Filter” to filter out only annotations and hide them in

view. After hiding the annotations (2D geometry), what is going to be left is 3D geometry, that can be

checked one by one in search for any, which is outside of the borders of the wall opening.

In addition to the factors described above, the function family type parameters of all doors need to be

set correctly. Using external door type families inside the building can create errors, and using

internal type doors on external walls, will cause the doors to be ignored and not generated.

VI. Balconies and Terraces

The script currently does not support Balconies and Terraces. The script will succeed in execution,

as long as the balconies or terraces are not adjacent to an analysed rooms. However, the geometry

of the balconies and terraces will not be exported, and on their place, there will be only external

walls, as if they had been closed off.

VII. Building Storeys Amount

The script supports only buildings that have equal amounts of storeys throughout. Some bigger

residential buildings for example may have sections with different amount of storeys. Such buildings

are not supported by the script, and could be analysed only if the different sections are analysed as

separate buildings, or the difference in storeys is removed.

VIII. Storey Partitions

There are two storey partition requirements: all parts of each storey partition can be of only one

thickness, and all storey partitions that need to be analysed, need to be bounding an analysed

rooms.

Figure 09-5 Dynamo Geometry Visualisation

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 57 of 70

If there are two rooms that are going to be

analysed on one floor, and their respective floor

slabs are of different thicknesses, the whole

storey partition is being generated with a

thickness equal to the thicker slab. This input

model would not cause issues in generating

the output, however, it may cause the output

data to be inaccurate. In the described

example, the thinner floor will be offset lower than the thicker floor, due to the reason that all storey

partitions are aligned by their centre of thickness. Refer to Figure 09-6 Floors with Different

Thicknesses below. The blue line represents the created geometry from the script.

The same logic applies to the ceilings of each room. Note that there may be storey partition with

entirely different thicknesses in the model, but as long as they are not adjacent to any analysed

rooms, their thickness is disregarded.

Additionally to the above described requirement, all floors need to be “bounding” a room. For

Dynamo the term “bounding” refers to any element that is at least partly intersecting the room object

in Revit. A room in Revit, although not visible unless selected, is considered a family and has some of

the typical “Constraints” parameters associated with any family. In particular it has base and top

Level and base and top offset. Although they are named slightly differently, it helps to consider them

the same. Therefore, if the floor of a room has a negative offset from the level (similar to the one on

the left on Figure 09-6 Floors with Different Thicknesses), while the room has 0 offset, that would

make the floor not bounding for that room. A fix for such situation is to correct either the base offset of

the room, or the top offset of the floor.

Another factor to consider is floor covering. It is not uncommon to have floor coverings, such as

carpets, parquets, tiles, etc., created as a separate elements on top of a common structural floor.

This scenario causes the script to identify only the floor covering as a room bounding element,

disregarding the structural floor beneath, since it is a separate element, not in contact with the room.

One solution to this is to delete the floor covering element and lower the base offset of the room, to

match the offset of the floor beneath. That increases the total volume of the room but is a simple fix. If

considered that the increase in volume is significant for the results and thus ideally avoided,

alternative fix is to delete the covering, then split the structural floor in a way that creates a separate

element just for the analysed room. Then duplicate the family type of the floor and add a top layer(s)

representing the covering. In the end, correct the offset of the floor to match the original offset of the

covering element. The net result from this operation is the same construction as designed, but having

both floor elements combined in one.

Figure 09-6 Floors with Different Thicknesses

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 58 of 70

IX. Sloped Ceilings and Sloped Windows

The script can only create horizontal and vertical surfaces. Therefore it cannot support sloped

ceilings or floors, and any windows hosted in them. Having any of them present in the model can

result in the script not completing, incorrect data output, or crash.

X. Room Requirements

Any room separator lines have to be flush with the wall face of the room, to prevent problems arising

in the algorithm analysing room bounding elements. Figure 09-7 and Figure 09-8 represent incorrect

and correct placement of a room separator.

There are two room parameters that need to be created in the Revit model, for correct execution of

the script. One of them defines each room as being analysed or not and the other – which thermal

zone it belongs to, for the purposes of following the energy analysis. The parameters are inserted by

from Manage → Project Parameters → Add. Refer to Figure 09-9 Revit Room Parameter Setup below.

Figure 09-9 Revit Room Parameter Setup

Figure 09-8 Room Separator – Correct Placement Figure 09-7 Room Separator – Incorrect Placement

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 59 of 70

The red markers on the dialog box for adding a new project parameter, shown on the figure, mark the

data that needs to be modified. There are two parameters that need to be setup for each room. Both

of them need to have Room selected in the Categories section on the right, and set as Instance

parameters, so each room can have a separate value. The rest of the parameter settings are of no

importance for the script and can be set as desired. Individual settings are:

 Name: Analyse, Type of Parameter: Yes/No

 Name: Thermal Zone, Type of Parameter: Text

The parameters for each room can be set by either selecting the rooms and changing the

parameters, or by creating a room schedule and including the custom parameters. The parameter

values can also be visualised in a room plan by having colour-coding, based on the room parameter

values.

Only rooms with parameter “Analyse” set to Yes are analysed by the script, and related data

exported with high level of accuracy. The rest of the rooms are combined in one, for the purpose of

increasing the execution time and hardware demands of the script and simplicity of the output file.

XI. Workflow Requirements

Dynamo is created in such way, that, once a script is opened, after the first execution, any following

execution recalculates only the nodes that are affected by any changes made to the script. Typically

it accounts for changes in the Revit model too, however, due to the complexity of the script, the

changes made in the Revit model after the script has been executed once do not reliably affect the

result of the script. That sets the required that, if any changes are made to the Revit model, the script

needs to be reopened. Otherwise there is a high risk of inaccurate representation of the changes

made in the model.

09.2. Recommendations

This sub-chapter comprises of recommendations to the user for improving his experience with the

script. Unlike the requirements set out in the previous sub-chapter, the recommendations are not

necessary for correct execution of the script. However they can improve the execution time and

respectively the hardware demands of the script, or serve as potential solution to a crash occurring

during the script execution.

I. Deleting Unnecessary Internal Walls

The script imports only internal walls that are bounding to at least one room, with the purpose of

importing the least amount of needed information from the model. However, walls in Revit typically

span multiple rooms, and the script imports the whole wall, not only parts of it that are relevant for the

analysis. Refer to Figure 09-10 Wall Spanning Multiple Rooms below.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 60 of 70

The selected wall in the figure is

imported as a whole, regardless of

which of the rooms on the plan are

being analysed.

A way to decrease the computation

time of the script is to delete the

segments of the wall that do not bind

any analysed room. That way less

information is being imported to the

script and processed.

II. Unexpected Performance Loss

Official release of Dynamo is still in the future, and thus there is some unexpected performance loss

is occurring – unexpected, but predictable. That needs to be considered, in order to avoid wasting

time in using the script. In particular, considering the following situation: after the script has been

executed, Dynamo monitors the model for changes. Since the script is very big, any small changes in

the model would require very long time to take effect. Thus, to save time in editing the model, it is

best practice to close the Dynamo window. However, closing the Dynamo window does not release

the used memory from the script (judging from Windows Task Manager), and further changes to the

model still take significant amount of time to complete. For this reason, it is recommended that if any

changes to the model are required to be done, the whole Revit programme is being closed and

opened again. That significantly improves the waiting time.

Figure 09-10 Wall Spanning Multiple Rooms

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 61 of 70

10. Future Development

While limited by some constraints, the current script is fully functional in respect to the set out

requirements, described in detail in Chapter 07. Output Requirements. However, there are many

aspects that can be optimised for higher efficiency and thus less computational time and demands

on the hardware, as well as additions of new abilities of the script. Both of these topics are described

in this chapter. Some of the suggested optimisations and additions have not been implemented due

to the lack of skill of the author at the time in which the corresponding part of the script was being

created. However, some of the suggestions in this chapter have intentionally not been implemented,

due to the balance between script complexity and accuracy.

10.1. Possible Optimisations

Windows and Doors – Size

As described in chapter 06. Development Process and Decisions, currently the windows and doors

sizes are extracted from their geometry. That has several drawbacks, such as the computational time

required to extract the whole geometry of every element, calculating its boundaries, and in the case

of the elements not facing one of the project four cardinal directions (North, East, South, West),

projecting the geometry to the hosted wall surface. Alternatively to these steps, the width, height, and

location data could be read from the Revit element, however that requires specific names of the Revit

family parameters to be defined in the script. While the decision to use the element geometry in the

script is taken, whenever possible to work with Revit families, created in a systematic manner, their

parameters could be predicted and defined in the script. In such cases, it is suggested that the

script is updated to use that logic instead, for the purpose of being “lighter”.

Windows and Doors – Alternative to Projection

As described in chapter 08. Dynamo Script Design, there are two methods for handling window and

door elements. First is used whenever the elements face one of the project four cardinal directions

(North, East, South, West). It creates a bounding box of the geometry, converts that bounding box to

cuboid and intersects that with the wall-host. The second is for elements not facing the project

cardinal directions. The node that creates a bounding box of the Revit element, creates the bounding

box aligned to the project coordinate system. Therefore the first method cannot be used for elements

not aligned to the coordinate system of the project (facing the cardinal directions).

The method used for elements not facing the cardinal directions is as follows: extracts the geometry;

from that extracts only the vertices; creates 3D points from them; projects all 3D points to the surface

of the wall-host; transforms the 3D point coordinates to relative 2D coordinates on the surface; finds

the four outermost points and connects them with lines to form a polygon.

Alternative, however not tested, method to this after extracting the element geometry, using the node

BoundingBox.ByGeometryCoordinateSystem. That allows creating a bounding box from a geometry,

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 62 of 70

aligned to a custom coordinate system. That custom coordinate system can be created to be aligned

to the facing direction of the element. After creating that bounding box, the same steps can be used

from the first method – creating cuboid from the bounding box and intersecting it with the wall. After

successful application of the algorithm it can be compared to the existing algorithm, which projects

the geometry on the wall surface, and it can be concluded whether it is more efficient.

Alternatively, another approach could be the same as described above, but without extracting the

geometry of each element. Instead extracting three parameters: width, height, and relative location

on the wall-host. This allows for manual creation of a polygon on the surface of the wall using the

extracted parameters. Which of the two alternatives to be used can be decided by considering the

arguments presented in “Windows and Doors – Size” optimisation suggestion above.

Code in Python

As described in sub-chapter 05.3. Software Limitations, Dynamo cannot use looping. Inserting shorts

blocks of code with looping and conditional statements, written in Python, can have a significant

positive impact on the required resources of the script. Logic that can be improved with Looping is:

 Filtering of windows and doors in two groups: facing cardinal directions, and facing other

directions;

 Using looping for the cases where List.Cycle node is used to repeat list values, to match the

length (amount of items) of another list. There are many such cases in the script;

 Finding corresponding wall faces (wall-hosts of window and door elements);

 Alleviating the restrictions of having all external walls being connected in one chain and

having the same thickness. Potentially Python code can extract the external faces of external

walls much more simply, than the logic used in the script;

 Splitting, trimming, and extending internal wall centre-lines;

 Filtering ceiling and floors, and combining them in lists, grouped by level.

Calculation Time Analysis and Optimisation

An efficient way of finding the parts of the script that are main contributors to the computation time, is

analysing the amount of time different parts of the script take to execute. Finding out these parts

provides high priority targets for optimisation. While not having performed such analysis in controlled

conditions, based on the experience developing the script, the author has hypothesised that two

factors have significant contribution to the processing demands of the script – communicating with

Revit and processing long list of arrays. Thus, it has been a goal throughout development to minimise

data requests to the input model and to split very large arrays of data to smaller ones and processing

them separately.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 63 of 70

Keeping Link Between Construction and Geometry

The present version of the script extracts data from the Revit model elements and creates geometry

as per the set requirements, then matches the generated geometry back to the model elements, to

establish the link between both. Alternative approach would be to keep the information for the

element from the initial import of data, and keep it running parallel to the generated geometry by

manipulating the structure of both sets of lists. While theoretically possible, it is unclear whether that

approach would yield benefits in terms of computational time. It will not require the matching of

geometry and model data, thus omitting the heavy algorithms of intersecting and finding closest

geometry (which require communication with the model – assumed to consume substantial

computational time), however, managing a second set of lists from the beginning may

counterbalance the benefits and prove to be less efficient. That said, managing the second set of

lists would theoretically only require finding the changes happening to the first set of list, thus

requiring far less resources than them. For this reason it could be hypothesised that it may be more

efficient and worth analysing. The reason the first approach was chosen for this thesis is that more

importance was assigned to generating the geometry per BSim requirements and less – to the linking

of the construction data from the elements, since that could also be done manually, while the

geometry generation would save the majority of the time previously spent on manual recreation of the

architectural model.

10.2. Possible Additions

Curtain Wall support

As stated in sub-chapter 08.3. Script Constraints, the current version of the script does not support

Curtain Walls. Since Curtain Walls are not uncommon in architectural models, this is a reasonable

addition to the initial version of the script. As described in the same sub-chapter, there are two types

of curtain walls that need to be managed in two different ways – hosted and not. While the hosted

curtain walls can be managed the same way window and door elements are managed, not hosted

elements need to be managed like normal walls. Thus a filter, distinguishing one from the other is

needed in the script. Since that cannot be read from a parameter of the particular curtain wall

instance, this filter needs to analyse if the curtain wall is lying inside another wall.

Sloped Ceilings Support

Currently the script can only generate horizontal and vertical surfaces. Sloped ceilings lie on planes,

which are neither horizontal, nor vertical, thus a new algorithm needs to be developed for their

support. Furthermore, the current algorithm would yield incorrect results in presence of sloped

ceilings. The script finds the height of each of the building storeys and creates one surface for each

storey, after which the building’s solid geometry is split using these surfaces. In case some of the

ceilings are sloped, one surface for the whole floor cannot be used, and a combination of horizontal

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 64 of 70

and sloped surfaces need to be used. Thus this new algorithm will need to manage all types of storey

partitions, not only sloped, and has to be approached as such from the beginning of its development.

Sloped Windows Support

As discussed in chapter 08. Dynamo Script Design, currently two methods are used for managing

window (and door) elements: one, for elements facing project north, east, south, or west, and

another, for elements facing directions in-between the cardinal. Both of these methods assume the

windows are vertical and their direction vector lies in the XY plane of the project coordinate system.

Sloped windows, and thus windows on any sloped surface, have a direction vector, not meeting

these criteria, hence a new method needs to be developed.

Similarly to the method used for windows not facing one of the cardinal directions, a projection

method of geometry can be used for these elements. However, sloped windows are usually hosted

by roof elements, which are entirely different than wall elements. The current version of the script

projects the geometry only to the external walls, and sloped windows would require projection onto

roof geometry. And more specifically, representation of roof geometry that is compatible with BSim.

Thus an algorithm for that also needs development, as described below.

Roof Geometry Support

Roofs can be simple but also very complex. Dynamo does offer a simple method of importing any

roof geometry as a solid object in the script. From this solid, only external surfaces need to be

extracted, by means of using Python code or manually in the visual environment. If implementation of

support for sloped windows is intended, these surfaces could serve as a projection surfaces for the

window elements geometry. Several other factors need consideration to successfully implementing

roof geometry in the project:

1. Internal and external walls need to connect to the roof surface, which usually would require

their geometries to be extended by certain amount.

2. In case of sloped ceilings, attached to the roof, they need to be included in the construction

of the element, and not having a separate surface representation. If there is air between the

ceiling and roof construction, that air could be described as a layer in the construction in

BSim’s database of construction types. Alternatively a pocket of air could be defined as a

separate room entirely, and then the bounding elements (ceiling and roof) would need to be

defined separately, by their respective surfaces.

Results Feedback

As an addition to the present script, an algorithm can be developed to import the results of the BSim

simulations to the Revit Model. Dynamo does offer ways to write and modify Revit views. A good

approach is creating parameters to the Rooms that would be filled with the simulation data and

presented in a schedule and as colour-coded plan views.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 65 of 70

The feedback script can be part of the original script, however it would be more efficient to have it as

a separate script. Being part of the original script would require checking for presence of simulation

results first, and, if present, execute feedback to the model; if not, perform the original script.

Computational time however can be expected to be longer using only one script, due to the limitation

of Dynamo to calculate both True and False results of an IF condition (described in sub-chapter 05.3.

Software Limitations).

Split Script in Separate Files

As suggested in the above paragraph, the script could be separated in different files. Doing so would

require less hardware requirements for the execution and less computational time. Also, it would be

much less likely to result in a crash. Downside to splitting the algorithm would be that the whole

process would not require one action from the user and result in a ready output file, but instead, the

user has to monitor the process and interact.

The script can be split in different parts, each of which writes to the Output file. That way the next part

of the script could read the processed data, if needed, and would start fresh. Splitting the script in

separate files could, however make the development process more difficult, since different files might

need to be worked on simultaneously. Though, smaller files make navigation and interaction with the

interface much smoother. Therefore whether it will make development more difficult or less difficult,

depends on what part of the whole script needs changing – if it is only specific part of the script that

needs work, then working with separate files would be much easier.

Multiple thickness storey partitions

Currently the script can handle only one storey partition thickness for one storey partition in the

building. The reason is because the requirements for the exported geometry state that the surface,

representing the storey partition, needs to be in the middle of the thickness of the storey partition.

This means that different thicknesses of storey partition require separate surfaces at different

elevations. The current algorithm, however, uses the storey partition of each floor to split the building

solid to separate objects for each storey. In order for this operation to succeed, each storey partition

needs to be one combined object. So the surfaces with different elevations would need to be

connected with a vertical surface. The creation of this surface needs to be managed in the new

algorithm.

Balconies/Terraces

The script requires all external walls to be connected in one chain. That excludes the possibility of

analysing a building with balconies or terraces. Thus, implementing support for such, requires

management of external walls to be different. As suggested in sub-chapter 10.1. Possible

Optimisations, Python code can be used to extract the outer faces of external walls. Textual coding

allows the flexibility needed to manage structures of balconies and terraces.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 66 of 70

Furthermore, changes in the method used to create the volumes of rooms, and consecutively – faces,

edges, and vertices, needs to be modified or changed. Currently it creates a solid of the whole

building by taking the building’s base and top edges and connecting them to form a solid. That

would cause a wall to be running through any balconies of the building’s facades. Additionally, a top-

floor terrace, would cause an error in the algorithm, since the used function (commonly known as

“Loft” in modelling software) requires two planar profiles to be connected. These profiles are

represented by the bottom and top edges of the building. The presence of a top-floor terrace would

cause the top edges not to lie on the same plane, and the Loft function would fail.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 67 of 70

11. Conclusion

In today’s world of constant increasing demands for energy performance, a great focus is placed on

quality energy analysis, early in the process. That can only be achieved with good communication

between modelling software and analysis tools. This thesis aims at bridging the gap between Revit

and BSim – two very widely used software tools for modelling and energy analysis in Denmark.

Together, the author of this thesis and a group of students in Indoor Environmental and Energy

Engineering created a communication flow for information transfer from Revit model to BSim.

This objective of this thesis is to create and describe the first part of the information flow, namely:

How to export information from a Revit building model to Excel file, formatted in a BSim compatible

schema, to allow automation of energy simulations. The present paper describes the process and

details involved in the creation of the script that performs this operation.

The sub-questions, set out have been investigated, and have guided the process of creation of the

script and overall flow. At several points in time some parts of the information processing have been

moved from one part of the flow to another. The decisions for these arrangements have been made

on the basis of efficiency of the overall process.

In conclusion to the presented work, it can be stated that the final product of this thesis fully satisfies

the initial objective to export the information form the model to Excel file, formatted in the required

structure. The script is created in a way, allowing possibilities for future development, such as

feeding back the results from the simulation, support for more complex geometries, such as

balconies and attics, and even optimisation suggestions, such as suggesting new shape or number

of windows.

With the future of Dynamo, many new possibilities could be opened for this script. Additional features

could make it more useful and even incorporate the full information process in the script, exporting

the data directly to XML, ready for simulations. Until then, the current version can save significant

amount of manual work. Energy engineers can spend their time on what is important and make

higher quality analyses for less time.

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 68 of 70

12. Bibliography

Autodesk, 2016. BIM Overview. [Online]

Available at: http://www.autodesk.com/solutions/bim/overview

[Accessed Jan 2016].

Dynamo Primer, 2015. Dynamo Primer. [Online]

Available at: http://dynamoprimer.com/

[Accessed 2015].

Dynamo Primer, 2015. What is Visual Programming. [Online]

Available at: http://dynamoprimer.com/01_Introduction/1-1_what_is_visual_programming.html

[Accessed 2016].

Epstein, E., 2012. Implementing Successful Building Information Modeling. s.l.:Artech House.

Gillen, D., 2015. Are Computers Bad for Architecture?. [Online]

Available at: http://www.archdaily.com/618422/are-computers-bad-for-architecture

[Accessed 2016].

Graphisoft, 2016. BIM as a Platform for Communication. [Online]

Available at: http://helpcenter.graphisoft.com/guides/archicad-17-guides/graphisoft-collaboration-

guide/interoperability/bim-as-a-platform-for-communication/

[Accessed January 2016].

Hudson, M., 2014. Dynamo Hero: Using Revit Scripting Tools to Optimize Real-World Projects.

[Online]

Available at: http://au.autodesk.com/au-online/classes-on-demand/class-catalog/2014/revit-for-

architects/ab6495#chapter=-1

[Accessed 2015].

Interaction Design Foundation, 2015. Contextual Design. [Online]

Available at: https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-

interaction-2nd-ed/contextual-design

[Accessed 2016].

Keough, I., 2014. Explore the Possibilities with Computational BIM. [Online]

Available at: http://au.autodesk.com/au-online/classes-on-demand/class-catalog/2014/revit-for-

architects/ab6542#chapter=6

[Accessed Nov 2015].

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 69 of 70

13. Table of Figures

Figure 02-1 Parametric Architecture (Gillen, 2015) .. 7

Figure 02-2 BIM as a Platform for Communication (Graphisoft, 2016) ... 8

Figure 04-1 Contextual Design Process (Interaction Design Foundation, 2015) 11

Figure 05-1 Example of Visual Programming (Dynamo Primer, 2015) ... 13

Figure 05-2 Example of Textual Programming (Dynamo Primer, 2015) ... 14

Figure 05-3 Real Life Execution of Code .. 15

Figure 05-4 Visibility Analysis Done with Dynamo (Keough, 2014) .. 16

Figure 05-5 Acoustic Analysis with Dynamo (Hudson, 2014) ... 16

Figure 05-6 Prefabrication Optimisation with Dynamo ... 17

Figure 05-7 Facade Quantity Take-off .. 17

Figure 05-8 Parametric Roof Construction (Keough, 2014) .. 18

Figure 05-9 Loop While Node ... 19

Figure 05-10 IF Node .. 20

Figure 06-1 Revit Test Model – 3D View and Room Plans .. 26

Figure 07-1 Output File .. 29

Figure 08-1 Dynamo Canvas – Left Half of the Script ... 30

Figure 08-2 Dynamo Canvas – Right Half of the Script .. 30

Figure 08-3 Scheme of Canvas (Left Side) ... 33

Figure 08-4 Scheme of Canvas (Right Side) ... 33

Figure 08-5 Windoor Geometry ... 35

Figure 08-6 Storey Partition Geometry .. 36

Figure 08-7 Wall Location Lines of Level 0 and Level 1 ... 37

Figure 08-8 Internal Walls, Which Need Extending .. 39

Figure 08-9 Wall Lines – Problematic Area ... 39

Figure 08-10 Wall Lines – Suggested Solution ... 39

Figure 08-11 "Split Walls on Intersections" Nodes .. 40

Figure 08-12 Building Solid ... 41

Figure 08-13 Initial Results of Geometry.Trim ... 41

Figure 08-14 Building Floors – Final Result ... 42

Figure 08-15 Room Lines and Final Lines ... 43

Figure 08-16 Intersecting Room Floors with Internal Walls ... 43

Figure 08-17 Wall Intersection Algorithm .. 44

Figure 08-18 Wall Intersection Algorithm – Alternative ... 45

Figure 08-19 Intersecting Room and Floor Solids... 45

Figure 08-20 Solids of Analysed Rooms ... 46

Figure 08-21 Solids of Rest of the Building ... 46

Management in the Building Industry
Master Thesis
4th semester AAU

Aalborg Universitet Universitet · Bajers Vej 5 · Postboks 159 9100 Aalborg | Page 70 of 70

Figure 08-22 RID Scheme ... 47

Figure 08-23 Wall Connection Problem (left) and Solution (right) .. 50

Figure 08-24 Wall Lines Diagram .. 50

Figure 08-25 Wall Lines – Suggested Solution ... 51

Figure 08-26 Wall Lines – Problematic Area ... 51

Figure 08-27 Correction of Wall Lines ... 52

Figure 08-28 Wall Intersection Algorithm .. 52

Figure 09-1 Incorrect Wall Connection (Plan View) .. 54

Figure 09-2 Correct Wall Connection (Plan View) ... 54

Figure 09-3 Wall Connection Problem .. 54

Figure 09-4 Wall Connection Solution ... 54

Figure 09-5 Dynamo Geometry Visualisation .. 56

Figure 09-6 Floors with Different Thicknesses .. 57

Figure 09-7 Room Separator – Incorrect Placement .. 58

Figure 09-8 Room Separator – Correct Placement ... 58

Figure 09-9 Revit Room Parameter Setup ... 58

Figure 09-10 Wall Spanning Multiple Rooms .. 60

