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Abstract—Advanced vehicle safety is a recently emerging issue, 
appealed from the rapidly explosive population of car owners. 
Increasing driver assistance systems have been designed for 
warning drivers of what should be noticed by analyzing 
surrounding environments with sensors and/or cameras. As one of 
the hazard road conditions, road bumps not only damage vehicles 
but also cause serious danger, especially at night or under poor 
lighting conditions. In this paper we propose a vision-based road 
bump detection system using a front-mounted car camcorder, 
which tends to be widespread deployed. First, the input video is 
transformed into a time-sliced image, which is a condensed video 
representation. Consequently, we estimate the vertical motion of 
the vehicle based on the time-sliced image and infer the existence 
of road bumps. Once a bump is detected, the location fix obtained 
from GPS is reported to a central server, so that the other vehicles 
can receive warnings when approaching the detected bumpy 
regions. Encouraging experimental results show that the proposed 
system can detect road bumps efficiently and effectively. It can be 
expected that traffic security will be significantly promoted 
through the mutually beneficial mechanism that a driver who is 
willing to report the bumps he/she meets can receive warnings 
issued from others as well. 

Keywords—intelligent vehicle; driver assistance system; pattern 
recognition; signal processing; motion analysis 

I.  INTRODUCTION  
The rapid expansion of car ownership worldwide 

necessitates the development of traffic surveillance systems and 
driver assistance systems. Incorporating techniques of sensing, 
communication, control, and video processing, these systems are 
intended for monitoring traffic conditions, improving safety, 
enhancing mobility, and so on. As an important component in 
Intelligent Transportation System (ITS), computer-assisted 
traffic surveillance enables manifold functionalities. With the 
deployment of fixed sensors or cameras along roads or highways, 
real-time traffic information, such as traffic flow and average 
driving speed, can be provided to drivers for avoiding the 
congestion area [1], [2]. Also, traffic accidents or violations can 
be detected to promptly inform the police or rescue workers [3]. 

The research on driver assistance (DA) systems is another 
trend for ensuring security and preventing accident. Since a 

driver may not maintain a high level of concentration for a 
prolonged period of time, most DA systems are designed 
primarily for calling attention to potential dangers. Playing an 
essential role in DA systems, lane detection/tracking aims at 
locating the lane markings or boundaries on the road surface [4]-
[6]. Not only the information about the lane marking patterns 
(solid or dash, single or double, etc.) and road types (straight or 
curve) can be provided, but the position of the vehicle within a 
lane can also be continually monitored. Thus, lane detection 
leads to many applications such as lane departure warning, lane 
change assistance, route direction guidance, and so on. 

Object detection is another crucial element in developing 
intelligent vehicles. Many research works utilize cameras or 
multiple sensors for detecting/sensing vehicles, pedestrians, or 
obstacles nearby so as to warn drivers of the vehicles in the 
blind-spot areas [7], assist drivers in noticing that there are 
pedestrians or obstacles around the vehicle [6] or give alarms 
when being too close to the front vehicle [8]. As for collision 
avoidance at night, the detection of taillights and brake lights is 
of vital importance [8], [9]. Some works endeavor to achieve 
collaborative pre-collision warning through inter vehicle 
communication (IVC) and vehicular ad-hoc network (VANET) 
[10], [11]. 

Most DA systems focus on enhancing safety by informing 
drivers of what should be noticed, while some systems are 
intended for providing convenient and realistic functionalities to 
ease driving efforts, such as adaptive cruise control [12], 
automatic parking [13], and traffic sign recognition [14]. 
Gaining more attention than ever, the detection or monitoring of 
driver inattention, distraction, or drowsiness is another nascent 
topic in DA applications [15]. 

DA systems analyze surrounding environments with sensors 
and cameras for warning drivers of what should be noticed, 
while traffic surveillance systems usually survey wider areas for 
providing global information. However, the spatial coverage of 
the static traffic surveillance systems is still limited. 
Consequently, the concept of community sensing is brought up 
[16], which harnesses the wealth of mobile probe data via the 
cameras/sensors of DA systems to obtain real-time or historical 
information. The resources of a potential extensive and 
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distributed set of mobile cameras/sensors can be leveraged to 
enable large-scale sensing [17]. Orchestrating both the static and 
mobile cameras/sensors of TS and DA systems, more explicit 
and comprehensive data and inferences can be obtained. 

Road bump detection has often been mentioned in the 
literature [17]-[19]. Road bumps not only damage vehicles but 
also cause danger to drivers or pedestrians. Especially at night 
or under poor lighting conditions, informing drivers of 
hazardous road conditions is of great importance. The task of 
road surface monitoring, such as bump detection, cannot be 
easily achieved by the static sensors/cameras deployed on roads, 
but demands mobility to accomplish. There are increasing 
community sensing works on road bump detection using the 
accelerometers in smartphones [18], [19]. However, a 
smartphones is not fixed on the vehicle, and may be put in a 
pocket or even be taken out of the vehicle. Primarily, a 
smartphone is someone’s phone, which is very likely to be used 
in the vehicle, maybe not by the driver, but by a passenger. The 
detection results may be badly influenced by human motion. 
Hence, in this paper, we propose a vision-based road bump 
detection system using a front-mounted car camcorder. The 
rapid development and reduced cost of video capturing devices 
have made it economically feasible to deploy front-mounted car 
camcorders, which have stable power supply and can record the 
scenes along the way. Since these camcorders are fixed on 
vehicles, the proposed road bump detection system has the 
advantage of not being influenced by human motion. 
Furthermore, the images at the vicinities of the detected bumps 
can also be provided, displaying the road conditions and what 
cause the bumps. 

The rest of this paper is organized as follows. In the next 
section, we give an architecture overview of the proposed road 
bump detection system. In Section III, the main processing 
modules, including time-sliced image generation, vertical 
motion estimation, and road bump locating are elaborated. 
Section IV presents the experimental results with comparison. 
Finally, we conclude this paper in Section V. 

II. SYSTEM ARCHITECTURE 
Based on the concept of community sensing, we outline a 

system framework for distributed road bump detection using 
front-mounted car camcorders, as illustrated in Fig. 1. First, a 
vision-based road bump detection algorithm is proposed, 
thereby allowing the vehicles equipped with car camcorders to 
be deemed as distributed sensors with high mobility. With stable 
power supply, the car camcorder keeps capturing the scenes all 
the way. Once a bump is detected, the location fix obtained from 
GPS is reported to a central server and is added into the bump 
location database as a suspect bump. The central server 
maintains a database of detections from multiple vehicles and 
clusters the detections based on location. If several suspect 
bumps are reported in the same vicinity, the region will be 
regarded as bumpy, and marked with a pushpin on a map. This 
mechanism facilitates filtering out the spurious detections which 
are not real road anomalies. The confidence and severity of the 

bumpy region (corresponding to the report time and vibration 
amplitude, respectively) will also be recorded in the database. 
Hereafter, vehicles approaching the detected bumpy regions can 
receive warning signals from the server, informing the drivers of 
hazard road conditions. In this paper, we focus specially on the 
sensing component, which uses the front-mounted camcorder 
equipped on vehicles to detect road bumps.  

The main contributions of this work are summarized as 
follows: 

� To the best of our knowledge, we propose the first vision-
based system for detecting road bumps using a front-
mounted car camcorder, which has the advantages of 
high mobility and not being influenced by human motion. 

� It is quite an inexpensive and practical way to detect 
abnormal road conditions by utilizing the car camcorders, 
which tend to be widespread deployed. The task of large-
scale sensing is achieved merely by means of software 
operating on existing hardware. The proposed scheme 
requires no additional hardware and can avoid the 
dependence on infrastructure. 

� A mutually beneficial mechanism is proposed that a 
driver who is willing to provide the information of 
abnormal road conditions which he/she meets can 
receive warnings issued from others as well. These 
warnings are especially of vital importance at night or 
under poor lighting conditions.  

Fig. 1. Architecture of distributed road bump detection using front-mounted 
car camcorders. 
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III. ROAD BUMP DETECTION 
A camera (the car camcorder) mounted frontward on a 

vehicle is used to capture the scenes along the path, as shown in 
Fig. 2(a). Therefore, we can infer the vehicle motion from the 
camera motion. There have been lots of researches on camera 
motion estimation in the literature by matching points, lines, and 
regions [20], tracing non-vertical edges [21], or utilizing image 
registration methods [22]. However, the iterative processing of 
video frames and statistics computation is time consuming. 
Moreover, these features which provide strong clues to camera 
motions are not always workable for the front-mounted car 
camcorder. Matching errors may also occur due to some 
problems such as repeated patterns and object occlusions. 

Drawing the inspiration from the idea of time-sliced image 
in [5], we present a vision-based road bump detection algorithm 
via analyzing the vertical motion of a vehicle through a time-
sliced image generated from the video captured by a front-
mounted car camcorder. The generated time-sliced image 

contains only a very small fraction of data compared to the 
original video, and much redundancy in consecutive frames is 
discarded. Only one pixel line from each frame is extracted for 
motion estimation, so the proposed approach can be very 
efficient. 

  The flowchart of the proposed road bump detection 
algorithm is illustrated in Fig. 2. Three major processing steps 
including time-sliced image generation, vertical motion analysis, 
and road bump locating are explained as follows.  

A. Time-Sliced Image Generation 
For road bump detection, the vertical motion of the camera 

is of our interest. Thus, we generate a time-sliced image by 
extracting a vertical slice (instead of a horizontal one as in [5]) 
at the x-coordinate x = W/2 (W: frame width) from each frame f, 
as shown in Fig. 2(a), and then paste it into a continuous image 
memory, as shown in Fig. 2(b), wherein the horizontal axis 
indicates the frame index and the vertical axis indicates the y-
coordinate as in the video frame. 

For noise smoothing, instead of directly extracting a one-
pixel wide vertical slice from each frame, we extract an n-pixel 
wide slice and condense it into one-pixel wide by taking the 
horizontal average of each row. As a result, a video containing 
F frames with resolution of W � H (H: frame height) will 
produce a time-sliced image with size of F � H. 

B. Vertical Motion Estimation 
An inherent property of the time-sliced image is that 

traversing along the horizontal axis is equivalent to tracing 
through different frames in the video or different road sections 
on the way. Hence, it is an efficient way to acquire the vertical 
motion of the vehicle through the generated time-sliced image. 

In general, the time-sliced image should be smooth when the 
vehicle is moving on an even road. However, the time-sliced 
image would be jagged and waved once the camera suffers from 
vehicle shaking. Fig. 3 displays an example of time-sliced image 
with jitters, indicated by red arrows. Utilizing this property, we 
can analyze the vehicle motion for inferring road bumps. 

 
Fig. 2. Flowchart of the proposed vision-based road bump detection. 

 

Fig. 3. Example of time-sliced image with jitters, indicated by red arrows.
 
 

4539



The illustration of vertical motion estimation is presented in 
Fig. 4. For each slice S(f) in the time-sliced image (f: frame 
index), we attempt to compute its vertical displacement from the 
previous slice S(f�1). It can be observed from Fig. 2(b) that most 
texture information exists in the central part and there tends to 
be less texture in the air and on the road surface, i.e., the upper 
and lower parts. For efficiency, we extract from each current 
slice S(f) the central part of H/2 in height, termed a sub-slice s(f), 
and then search the most similar sub-slice in the previous slice. 

Let Ck(f, y) be pixels in the time-sliced image, where k �{r, 
g, b} for three color channels. The difference between the two 
sub-slices can then be measured by their Mean Square Error 
(MSE), defined as: 

������ �	 
 

������� �
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where d represents the vertical displacement, limited to a range 
[�p, p]. The goal of the search is to find a displacement d as the 
vertical motion v(f) such that MSE(f, d) is minimum: 

���"��	 
 #��$������� �	�%&�'%(%')'� � * +�,� ,- ./ (2)

Finally, we can obtain the vertical motion v(f) at each frame 
index f, as shown in Fig. 2(c). 

For our application, the mean absolute difference is 
sufficient to find good match of sub-slices. Of course, this 
measure is by no means the only possible choice. Some other 
error measures, such as the Mean Absolute Difference (MAD) or 
simply Sum of Absolute Difference (SAD), may also be 
appropriate.  

C. Road Bump Locating 

As shown in Figs. 2(b) and (c), road bumps result in notable 
vertical jerks, which are expected to register in the signal of 

vertical motion v(f). Also, since the vehicle shifts both up and 
down, there would be both peaks and dips in v(f). Hence, we can 
infer the existence of road bumps by detecting both peaks and 
dips in v(f) within a small time duration. Here, we apply a 
sliding-window scheme to accomplish this task, as illustrated in 
Fig. 5. In each iteration, we compute the difference between the 
max and min values of v(f) in an observation window of w frames. 
If the difference is greater than a threshold �, it can be judged 
that there exists a bump in the time duration of the observation 
window. Then, the window is moved forward, and the above 
process is iterated. The process of bump detection within an 
observation window can be formulated as: 

0�1	 
 2�� 1� '345*+678����6789:- "��	 �� '%(5*+678����6789:- "��	 ; <
=� >?@ABC1DA �����������������������������������  (3)

where B(i) indicates whether a bump is detected or not, i is the 
window index, w and t are the window size  and the step size 
between adjacent windows, respectively. 

In our system, the reception rate of GPS data are received 
once per second, so the window size w and step size t are set to 
45 and 30 frames, respectively, which involves 50% overlap 
between adjacent windows. Finally, when a bump is detected, 
the location fix obtained from GPS data is reported to the central 
server, marked with a pushpin on a map, as presented in Fig. 
2(d), enabling the other vehicles to receive warnings when 
approaching the detected bumpy regions.  

IV. EXPERIMENTAL RESULTS 
To evaluate the performance of the proposed road bump 

detection algorithm, we conduct the experiments on a video data 
set collected by a front-mounted car camcorder fixed on a sedan. 
The video resolution is 960 � 480 and the frame rate is 30 fps. 
We select 25 video clips (about 5 minutes per clip and 207810 
frames in total) containing bumps under different road 
conditions, including highway, urban, campus, etc. The 
proposed system is implemented in C++ with OpenCV 2.46 
libraries [23], and the experiments run on a notebook (AMD 
Athlon II X2 240 Dual-Core Processor @2.679 MHz, 8GB 
RAM, Windows 7 64-bit OS) show that the proposed system can 
achieve a very high processing speed of over 300 fps.  

 
Fig. 4. Illustration of vertical motion estimation. 

 

Fig. 5. Sliding window with some overlap, wherein w and t represent the
window size and the step size between adjacent windows, respectively. 
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As mentioned in [18], [19], it is difficult to establish the 
ground truth for road bumps. Manually annotation is a typical 
way, but it is subjective and may be influenced by how the 
vehicle crosses over the bump and at what speed. In our 
experiments, the ground truth data are generated by inspecting 
the video clips and marking the occurring time of each bump 
manually. In total, there are 338 ground truth bumps manually 
marked in our testing data. A bump is said to be detected 
correctly if the time difference between the system output 
detection and the ground truth one is less than one second. The 
proposed system is evaluated in terms of precision, recall, and 
F-score, as defined by:  

,BAE1D1>F 
 GE>BBAE?���GE>BBAE? � G�HIDA	, (4)

BAEHII 
 GE>BBAE?�GJ?, (5)

���K 
 � 7 ,BAE1D1>F 7 BAEHII���,BAE1D1>F � BAEHII	 (6)

where #correct and #false denote the numbers of correct 
detections and false alarms, and #gt represents the total number 
of ground truth bumps (i.e., #gt = 338). The results of road bump 
detection with different � values, which is used in Eq. (3), are 
presented in Table I and Fig. 6. Based on the concept of 
community sensing, it is often the case that a bump mis-detected 
by one car can still be detected by others. Therefore, we prefer a 
high � value to assure the precision. In our experiments, � is set 
to 6 and the precision and recall rates are about 0.8 and 0.75, 
respectively. By inspection, we find that errors mostly occur 
when the car turning at a corner with complex scene variation or 
facing a scene with messy texture, as presented in Fig. 7, 

wherein the left column shows the video frame captured by a car 
camcorder and the right one shows a part of the time-sliced 
image. We have ongoing research to eliminate these error cases 
by applying more constraints.  

For performance comparison, we also implement another 
road bump detection method based on phase correlation, which 
is originally proposed for the registration of translated images 
[22]. To avoid the influence of the hood of the car and the 
overlaid map on frames (see Fig. 7), we perform phase 
correlation on only the center quarter region (W/2 � H/2) of each 
frame and estimate the relative translation offset (Tx, Ty) between 
consecutive frames. The y-directional offset Ty is utilized for 
bump detection and other settings are the same as our proposed 
approach. The detection results of this phase correlation-based 
method are shown in Table II, and the comparison between the 
two approaches on precision and recall is presented in Fig. 8. By 
inspecting the error cases, we find that the phase correlation-
based method is more likely to produce the false alarms resulted 

TABLE I.    RESULTS OF ROAD BUMP DETECTION WITH DIFFERENT 
���VALUES 

�  #correct #false Precision Recall F-score
1 338 656 0.34 1 0.51
2 336 504 0.4 0.99 0.57
3 333 441 0.43 0.99 0.6 
4 325 288 0.53 0.96 0.68
5 292 131 0.69 0.86 0.77
6 249 58 0.81 0.74 0.77
7 186 40 0.82 0.55 0.66
8 142 29 0.83 0.42 0.56

(# of ground truth bumps = 338, #correct: number of correct detections, 
and #false: number of false alarms.) 

 

 
Fig. 6. Results of road bump detection with different � values. 
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Fig. 7. Error cases: (a) turning at a corner with complex scene variation; 
(b) facing trees with messy texture. (Left: original video frame; right: part of a 
time-sliced image.) 
 

TABLE II.    RESULTS OF THE COMPARATIVE PHASE CORRELATION-
BASED METHOD. 

�  #correct #false Precision Recall F-score
1 337 625 0.35 1 0.52 
2 329 402 0.45 0.97 0.61 
3 305 230 0.57 0.9 0.7 
4 249 140 0.64 0.74 0.69 
5 181 93 0.66 0.54 0.59 
6 135 82 0.62 0.4 0.49 
7 101 86 0.54 0.3 0.39 
8 68 86 0.44 0.2 0.28 

(# of ground truth bumps = 338, #correct: number of correct detections, 
and #false: number of false alarms.) 
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from the moving object(s) in frames. Table III shows the 
comparison on processing speed. To process a total of 207810 
frames, the correlation-based method takes 3779 seconds, while 
our proposed approach takes only 571 seconds. Overall, our 
proposed road bump detection approach can achieve better 
results with much higher processing efficiency.  

V. CONCLUSION 
Bumps on the road may cause serious danger, especially 

when the lighting condition is poor or the driver is distracted. In 
this paper, we propose a vision-based system capable of 
detecting road bumps using a front-mounted car camcorder. 
Unlike the static traffic surveillance systems, car camcorders 
have the advantage of high mobility. Hence, it is an inexpensive 
and practical way to achieve the task of large-scale sensing by 
the widespread deployed car camcorders. Experiments on real 
video data captured by a front-mounted car camcorder show that 
our proposed system can effectively detect bumps with very 
high efficiency. As we believe, through the mutually beneficial 
mechanism that a driver who is willing to report the bumps 
he/she meets can receive warnings issued from others as well, 
traffic security will be significantly promoted.  
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Fig. 8. Comparison between the phase correlation-based method and our
proposed approach. 

 
TABLE III.    COMPARISON ON PROCESSING SPEED. 

 Phase correlation-based  Our proposed 
# of total frames 207810 207810 
Processing time 3779 sec 571 sec 
Frame per second 54.99 fps 363.94 fps 
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