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Recently developed methods for rapid continuous volumetric two-photon microscopy facili-
tate the observation of neuronal activity in hundreds of individual neurons and changes in
blood flow in adjacent blood vessels across a large volume of living brain at unprecedented
spatio-temporal resolution. However, the high imaging rate necessitates fully automated
image analysis, whereas tissue turbidity and photo-toxicity limitations lead to extremely
sparse and noisy imagery. In this work, we extend a recently proposed deep learning vol-
umetric blood vessel segmentation network, such that it supports temporal analysis. With
this technology, we are able to track changes in cerebral blood volume over time and identify
spontaneous arterial dilations that propagate towards the pial surface. This new capability
is a promising step towards characterizing the hemodynamic response function upon which
functional magnetic resonance imaging (fMRI) is based.
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1. Introduction

The mammalian neocortex is innervated by a dense, regulated network of blood vessels known
as the cortical angiome.1 The cortical angiome exhibits neurovascular coupling, namely a
temporary change in cerebral blood flow triggered by neuronal activity through direct and
indirect signalling pathways, replenishing the surrounding tissue with oxygen and nutrients
and removing excess heat and waste.2–5 Impaired neurovascular coupling is associated with a
variety of debilitating pathological conditions, such as dementia, hypertension, diabetes and
Alzheimer’s disease.3,4,6 While the structural properties of the cortical angiome have been
considerably elucidated,1 our understanding of its functional properties is limited, owing in
part to the insufficient spatiotemporal resolution of existing imaging techniques.5 Simply put,
it is still unknown how individual microvessels react to individual neuronal action potentials,
with preliminary evidence suggesting that the vascular response is mostly driven by specific
subtypes of interneurons.3,7,8

Previous attempts to measure the vascular response to neuronal activity were limited to
imaging changes in vascular diameter one plane at a time.7–11 Most works have repeatedly ex-
posed the animal to an artificial prolonged sensory stimulation over hundreds of consecutive
trials, eliciting a vigorous neuronal activation that gave rise to a measurable vascular re-
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sponse.7,9–11 By repeating these visual,9 olfactory10 or somatosensory7,11 sensory stimuli while
focusing on differing layers of the cortex, a laminar difference in the average onset time and
time-to-peak of the vascular response was revealed.12 In particular, instances of vasodilation
begun earlier in the deepest cortical layers, suggesting that vasodilation propagates upwards
along penetrating arteries.7,11,12

With neuronal activity per se being at the primary focus of most neuroimaging labs,13

several imaging methods have been recently tailored for rapidly tracking neuronal activity
across considerable large brain volumes, with cellular or near-cellular resolution. These include
light field microscopy,14 lensless imaging,15 scanned line angular projection microscopy,16 and
reconstruction of 3D imagery from 2D images using deep neuronal networks.17 While the
spatial resolution of these methods is sufficient to discern neuronal cell bodies with little cross-
talk, it is insufficient for tracking minuscule changes in cerebral blood diameter, which cause
considerable changes in cerebral blood flow. Conversely, while optical coherence tomography
and functional ultrasound imaging allow noninvasive, label-free tracking of vascular dynamics
over large fields of views, they are incapable of tracking neuronal activity with single cell
resolution.5 The invention of the ultrasonic variofocal lens allowed axial scanning at > 100 kHz
rates, enabling rapid continuous volumetric multi-photon imaging.18,19 It is now technically
possible to track the activity of hundreds of neurons and vasoactivity along neighbouring
blood vessels, simultaneously across a large brain volume.19 To name but a few of the benefits
of continuous volumetric imaging over traditional planar imaging:

(1) The propagation of vasodilation and vasoconstriction through cortical vessels can be
directly observed during spontaneous brain activity, rather than indirectly deduced
from averaging repeated evoked trials at differing cortical depths.

(2) Most neuronal cell bodies surrounding a given blood vessel segment are observable with
volumetric imaging, but not in planar imaging. Therefore a greater proportion of the
neuronal activity that drives vasoactivity is accounted for.

(3) Instances in which neuronal action potentials at a given cortical layer affect metabolic
demand at another cortical layer can be accounted for.

(4) Axial motion (z-drift), that is known to introduce a considerable bias during planar
imaging of neuronal activity,20 can be accounted for in rapid continuous volumetric
imaging.18

(5) Cerebral blood volume can be directly measured for each vessel segment, rather than
derived from its diameter along an arbitrary axis in an error-prone fashion.21

However, the size of 4D datasets generated by volumetric imaging precludes manual time-
lapse segmentation of the imaged blood vessels. Furthermore, the sparse imagery obtained
by rapid volumetric two-photon imaging19,22 complicates time-lapse vascular segmentation
even for trained annotators. The development of accurate algorithms for automated vascular
segmentation in 3D-movies is therefore essential for the analysis of neurovascular interactions.

In this paper we show the potential applications of automated angiomal segmentation for
the tracking of changes in cerebral blood volume over time, as well as for the identification of
spontaneous vascular dilations propagating along penetrating arteries towards the pial surface.
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Fig. 1. Network architecture. C2 and C3 are intermediate activations from the ResNet encoder,
which are skip-connected to both Dseg and Drec at the marked locations.

Fig. 2. Illustration of the 3D structuring ele-
ments of B. The elements are used as masks in
the morphological pooling layer.
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Fig. 3. A 2D Masked Pooling Layer.

To the best of our knowledge, this is the first time that such capabilities are shown.
From a technical perspective, our work extends a recently proposed deep learning technique

for microvessel segmentation23 called the ACWE network, which is presented in Section 2.
This network is trained in an unsupervised manner and does not require carefully labeled
training samples, in contrast to other recent deep learning approaches.24–28 It is based on
the optimization problem minimized by the morphological Active Contours Without Edges
method,29 which is converted into a deep learning solution. The ACWE network was shown to
outperform both classical active contour methods as well as the recent deep learning solutions,
and to be robust to domain shift across datasets.23

While the ACWE network is able to perform well on the task of extracting a single (time-
collapsed) microvascular map from a given 4D volume (the same task that is being handled
by other recent contributions23–25), there is no prior work capable of handling 4D datasets.
We demonstrate that the state of the art static map obtained by ACWE is insufficient for
performing an analysis of the temporal dynamics. We therefore propose a method to obtain
a sequence of such maps, that makes use of the temporal dynamics, and which is much more
suitable for our analysis. The full temporal treatment is made possible by the novel skeleton
layer, which ties the segmentation results of the individual frames together.

2. The ACWE network

The ACWE network23 reincarnates the ACWE method29 as a deep learning technique. This
is done by replacing the iterative energy minimization that occurs in the classical method
into a loss, and the morphological operations of this method into morphological layers. The
network receives an input I ∈ [0, 1]1×k×m×n, which is a 3D intensity-response input volume,
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where k × m × n are the volume dimensions of a single intensity channel and the network
outputs a segmentation map, S ∈ [0, 1]1×k×m×n, and thresholding is performed to obtain the
final result. The network’s architecture is illustrated in Fig. 1 and consists of a main Encoder-
Decoder branch with skip connections, denoted as E and Dseg (for segmentation), followed by
successive operations of Morphological Pooling Layer (Eq. 4-5) for smoothing. It is trained
in an unsupervised manner, using an auxiliary reconstruction loss, provided by an additional
decoder Drec, which is used only during training, and outputs a reconstruction Ī. The network
components are then rewritten as follows:

Ī := Drec(E(I)) (1)

S̄(I) := Dseg(E(I)) (2)

S(I) := SI(IS(. . . (SI(IS
︸ ︷︷ ︸

SI◦IS µ times

(S̄(I)))))) (3)

where the operator SI ◦ IS repeats µ times, S̄ is the segmentation before smoothing, and S

is the segmentation mask obtained after applying the morphological pooling layers SI and
IS µ = 3 times (the two layers are defined below). The Encoder architecture is based on
ResNet34,30 where 2D convolutions are replaced with 3D ones. Each of the two decoders Dseg

and Drec consists of three upsampling blocks with skip connections.
The morphological layers IS and SI employ a set of nine structuring elements B, fol-

lowing,29 where each element B ∈ B is a binary mask of size 3 × 3 × 3 as illustrated in
Fig. 2. The layers perform masked max pooling ∀B ∈ B, and then take the maximum

or minimum across all results, according to the desired operation (SI or IS respectively).
Formally, the function MaskPool(x,B) = max{x ⊗ B} first applies an element-wise multi-
plication between the mask and the input, denoted by ⊗, and then takes the maximum
over all locations, see Fig. 3 for an illustration of the 2D case. The layers are define as:

SI(x) = max
B∈B

−MaskPool(−x,B) (4) IS(x) = min
B∈B

MaskPool(x,B) (5)

The active contour loss term, LAC , is derived from the ACWE algorithm. Let Γ be the
energy that the ACWE minimizes, defined as:

Γ = ‖∇S̄‖1(α(I − c1)
2 − β(I − c2)

2) (6)

where I is the input volume, and c1 (c2) are the average intensities inside and outside the

segmentation mask S, i.e, c1 =
∑

p
I(p)S(p)

∑
p
S(p) , and c2 =

∑
p
I(p)(1−S(p))
∑

p
1−S(p) , where p is a voxel. The loss

is averaged over all 3D points, where per point in the 3D volume p it is given as:

LAC(p) =

{

exp(Γ(p)S(p)) if Γ(p) <= 0

exp(−Γ(p)(1− S(p))) if Γ(p) > 0
(7)

The loss is high if the exponent is applied to a value that is close to zero. This hap-
pens if the term Γ(p) is negative and S(p) is close to zero, or if Γ(p) is positive and S(p)

is close to one. Therefore, the loss minimizes Γ. The other loss terms are briefly given as:

Lrank = exp(c2 − c1) (8)

Lrec = Ep

[

(Ī(p)− I(p))2 + ‖∇Ī(p)‖1
]

(9)

Ltight =
∑

p

S(p) (10)

LMV = exp(Ep[S(p)
2]− E[S(p)]2) (11)

LME = Ep[−S(p) · log(S(p))] (12)
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Eq. 8 pushes c1 to be significantly larger than c2, Eq. 9 is the loss of the reconstruction
pathway, where ∇Ī is a smoothing term, Eq. 10 pushes the segmentation S to be minimal,
and Eq. 11- 12 encourage S to have semi-binary values close to 0 or close to 1.

The ACWE network employs a compound loss (λ1, .., λ6 are weights):

L = λ1LAC + λ2Lrank + λ3Ltight + λ4Lrec + λ5LMV + λ6LME (13)

3. Method

Our method extends the time-collapsed segmentation,23 where we add an additional novel
skeletonization layer on top of the network and perform per-frame segmentation of the 4D
movie. The resulting skeleton serves as an anchoring structure that ties all temporal results
together regardless of the transient vascular changes. We first describe our novel differentiable
3D skeletonization layer and proceed with the algorithm specifics.

Skeleton layer The skeleton layer promotes spatially coherent tree-like structures. The novel
iterative layer is fully differentiable with respect to the input image, and it is based on the
MaskPool layers and the extension of Lanturjoul’s formula31 by Beucher et al.32 .

Let S be the segmentation output of our network, the skeleton layer’s out-
put is given by Zn, and it is obtained after n iterations, starting from Z0 = S:

erosion := min
B∈B

−MaskPool(−x,B) (14)

dilation := max
B∈B

MaskPool(x,B) (15)

Zn = (Zn−1 ⊖ B) ∪R(Zn−1) (16)

where R(Q) = Q/(Q)B for some input Q, and the operator ()B denotes the open operator,
i.e., erosion followed by dilation. The union marks a point-wise maximum, and the erosion
operator is denoted by ⊖. In Fig. 5(e) we show a sample of the temporal skeleton output.

Training First, network f = Dseg ◦E trains on the time-collapsed data obtained by averaging
all time frames and generates a segmentation S. The skeleton layer is then used (n = 5) to
produce the anchor skeleton K from S.

The temporal segmentation network is then the same f , retrained on each sparse frame
of the 4D image (a 3D volume denoted It), with an additional skeleton loss, which encourage
the temporal segmentation to be aligned with the static time-collapsed skeleton K. For each
temporal segmentation St made by f , we compute the skeleton Kt = Zn|Z0=St

and the loss:

Lt = L+ Ep‖K(p)−Kt(p)‖1 (17)
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where the loss L (Eq. 13) is computed on It. Fig. 4 illustrate the entire training process.

Pre/Post processing We initially downsample the 4D movie to 60Hz as the input to our
network. The resulting 4D segmented movie is then smoothed by a moving average along the
z axis with a width of one tenth of the volume.

4. Results

All imaging experiments and surgical procedures were approved by the Tel Aviv Univer-
sity ethics committee for animal use and welfare and followed pertinent Institutional Animal
Care and Use Committee (IACUC) and local guidelines. Please see22 for a full description
of surgical procedures. Neuronal activity was monitored in an adult male mouse from the
C57BL/6J-Tg(Thy1-GCaMP6f)GP5.5Dkim/J transgenic line. Vascular dynamics were moni-
tored by injecting Fluorescein isothiocyanate (FITC) conjugated with 2MDa dextran. Prior to
imaging, the mouse was habituated to the imaging conditions across five consecutive days. To
minimize motion artifacts during imaging, its head was restrained to a custom-made holder
and its platform was clamped to the imaging stage.

We examine two datasets acquired using rapid volumetric two-photon laser scanning mi-
croscopy.22 The first dataset (Fig. 5(a)) tracks cerebral blood volume in nine penetrating
arteries and neuronal activity in 103 adjacent neurons (see Fig. 5(a-6)), within a volume of
living mouse brain spanning 430 × 440 × 200 µm3, imaged over 536 sec. at a rate of 125.87
volumes per second. The 4D movie was parsed into 110× 512× 108 voxels and its first 60 sec.
(7552 volumes) were selected for analysis. The second dataset (Fig. 5(b)) was acquired within
the same imaging session, in the same mouse, at the same magnification, and was centered on
the same field of view, albeit spanning only 92× 440× 200 µm3, imaged over 268 seconds at a
rate of 125.87 volumes per second. The 4D movie was parsed into 110× 512× 108 voxels and
its first 60 seconds (7552 volumes) were selected for analysis. In both datasets, a binning of 2
over time was used for ease of computation, yielding 3776 binned volumes.

All fluorescence values were normalized by their mean and standard deviation, followed
by a range stretching, such that the minimal value is 0 and the maximal is 1. A human
expert has identified and annotated twelve penetrating arteries in the 3D volume, and we
rely on this annotation in our analysis. The human annotation takes the form of rectangular
region in each z-slice. We note that our segmentation results could promote the development
of automatic vessel annotation methods. However, in this work, we focus on the much more
critical bottleneck of obtaining reliable vessel activity measurements.

In Fig. 5 we present the raw data as well as the output of multiple steps of processing. These
include: (1) Time-collapsed original data (2) Raw video, (3) Time-collapsed segmentation, (4)
Time-varying segmentation (5) Time-varying skeleton. We have also annotated the twelve
penetrating vessels. As can be seen, the raw data is almost non informative, while in our
time-varying method, the vessels are most clearly visible.

The evaluation is limited by the inability to measure the dynamic behavior by other
means. We therefore ran multiple auxiliary experiments as sanity check. In one experiment,
we have acquired the same vessels with twice the magnification, in addition to the two 4D
movies. To assess our method, we compared the diameter of each annotated vessel, in the
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(a-1) (a-6)
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Fig. 5. Two 4D movies, (a-*) and (b-*), with sampled images shown for a depth of z = 75µm below
pial surface, at t=1.5 seconds. (*-1) Time-collapsed, (*-2) Raw video Time-collapsed original data,
(*-3) Time-collapsed segmentation, (*-4) Time-varying segmentation (*-5) Time-varying skeleton.
Annotated vessels are marked from 1-6. (a-6) shows 103 neuronal cell bodies demarcated in a depth-
color-coded projection of the same volume.

Pacific Symposium on Biocomputing 25:331-342(2020)

337



(a)

0 10 20 30 40 50
Time (sec)

0 2 4 6 8 10
Time (sec)

(b)

0 10 20 30 40 50
Time (sec)

0 2 4 6 8 10
Time (sec)

(c)

0 10 20 30 40 50
Time (sec)

0 2 4 6 8 10
Time (sec)

Fig. 6. Analyzing vessel #1 in Fig. 5(b). (a) The intensity for a single penetrating vessel in various
cortical depths (sum over annotated region). Deeper layers (larger z values) are at the bottom and
marked with darker colors. (b) The intensity after the data was multiplied by the time-collapsed
segmentation mask obtained with the ACWE network.23 (c) The output of our time-varying seg-
mentation mask. (right) zoom-in plots of the subfigure on the left.
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(a) (b)

Fig. 7. The following figures refer to vessel #1 in Fig. 5(b). (a) The temporal sequence obtained
by our method. (b) the result of applying a temporal low-pass filter of 1 Hz.

temporal segmentation, with its x1 and x2 magnification. For accurate measurements, the
ratio in diameters would be exactly 2. With the skeleton layer, the average ratio is 2.04± 0.17.
Performing an identical 4D analysis, but without this layer, the ratio is 1.33± 0.40.
Correlation between depth slices While we do not have ground truth vascular data, we
can expect certain properties to hold in such data. One easily tested property is the correlation
in the measured vascular activity of the same penetrating artery across adjacent axial slices.

As can be seen in Fig. 6(a), the raw measurements are very noisy and show very little cor-
relation between adjacent axial slices. This is further illustrated in Fig. 8(a), which presents
the correlation coefficients matrix between different axial slices, after removing the diagonal.
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Fig. 8. Analzing vessel #1 in Fig. 5(b). (a) The correlation between layers for the raw data. (b)
Correlation for the data segmented by the ACWE network. (c) The correlation obtained by our
segmentation method. (d) The correlation obtained by our method w/o the skeleton layer.

Table 1. The effect of the skeleton layer on the average Pearson correlation.
zmax and n are the maximum z-depth and neighboring z-slices, respectively, con-
sidered for the correlation computation.

zmax when n = 5 n when zmax = max

Method 25 50 75 max 1 2 5 10

W/O Skeleton layer 0.629 0.585 0.542 0.490 0.871 0.755 0.490 0.307
W/ Skeleton layer 0.743 0.731 0.728 0.721 0.956 0.907 0.721 0.485

Table 2. The increase percentage in average Pearson correlation of our method with, over
our method without the skeleton layer, with respect to zmax and n.

zmax

n
1 2 5 10

zmax

n
1 2 5 10

25 3.8% 4.2% 6.4% 9.7% 75 18.0% 25.0% 34.4% 47.2%
50 7.6% 8.9% 13.3% 20.0% max 30.6% 39.2% 48.2% 57.8%

The situation is not much better when multiplying the raw data by the segmentation mask
of,23 since the sparsity of the imaging modality leads to very noisy measurements (Fig. 6(b)
and Fig. 8(b)). For instance, at a depth of z = 100µm below pial surface, the brightest voxel
within the brightest vessel has a time-averaged brightness of merely 0.045 photons per second,
corresponding to less than 0.0004 photons per frame in time. As Fig. 6(c) shows, our method
leads to a much more coherent dynamic output, which presents a large amount of correlation
between adjacent axial slices. Fig. 8(c) shows that this correlation exists only between ad-
jacent axial slices, which is a result of the gradual propagation of waves of vasodilation and
vasoconstriction along the penetrating artery.

We tested our proposed skeleton layer for correlation between depth slices. In Fig. 8(c,d) we
show the correlation matrix for our method with, and without, the skeleton layer, respectively.
As the number of collected photons decreases with imaging depth, the resulting segmentation
tends to be less coherent. This is shown in Fig. 8(d) on the bottom right side of the correlation
matrix, where the correlation between neighboring slices decreases. Additionally, in Tab. 1, we
show the average Pearson correlation for two cases: (i) average correlation as the maximum
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Fig. 9. The vasoconstriction and vasodilation behavior as a function of depth, extracted from vessels
in Fig. 5.(a) - (f) and (g) - (l) correspond to vessels #1 to #6 in Fig. 5 (b) and (a) respectively. The
measurements are taken along a single penetrating artery. In all plots, darker colors correspond to
deeper cortical layers.(*-1) the result of applying a temporal low-pass filter with a cut-off frequency of
1 Hz. (*-2) zoom in on time intervals in which vasodilation begins. These results are congruent with
previous observations, which were obtained using planar imaging one layer at a time and averaging
over many evoked trials time-locked to an external sensory stimulus.7,11,12 (*-3) zoom in on time
intervals in which vasoconstriction begins.

depth, zmax, increases, considering 5-neighboring slices, and (ii) the average correlation along
all depth slices, considering only n neighboring slices. In Tab. 2 we show the full experiment
results, showing the superiority of the skeleton layer, as an increase percentage in average
Pearson correlation, especially in deeper slices and distant neighbors.
Vasodilation and vasoconstriction The dilation and constriction of the penetrating artery
are depicted in Fig. 9 and Fig. 7, where we show results for the 12 annotated vessels. As can
be seen in panel (a) of Fig. 7, the output of our method, when drawing multiple z-slices on the
same plot, varies very fast in time. Indeed our high volumetric sampling rate, used for tracking
fast neuronal activity and rigid brain motion, oversampled the propagation of vasoactivity
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along the penetrating artery. We therefore applied a temporal low-pass filter with a cut-off
frequency of 1 Hz. As expected, the low-pass-filtered vasoactivity traces are tightly correlated
across axial depths, as shown in panel (b) of Fig. 7. Importantly, instances of vasodilation
exhibit an earlier onset at deeper axial slices, as illustrated in Fig. 9(*-2). These observations
of individual vasodilations tracked in several axial depths simultaneously are congruent with
earlier sensory-evoked observations that were acquired and averaged one plane at a time.7,11,12

Conversely, instances of vasoconstriction exhibit an earlier onset at shallower axial slices, as
illustrated in Fig. 9(*-3). As far as we can ascertain, this result was not observed in the past.
While Fig. 9 shows only a handful of samples of vasodilation and vasoconstriction, these results
are typical, and many more samples were found.

5. Conclusions

Using automated time-lapse segmentation of blood microvessels in living mouse brain we were
able to track, to the best of our knowledge for the first time, how individual instances of vasodi-
lation and vasoconstriction propagate along a penetrating artery. The observed propagation
of vasodilation upwards along the penetrating artery is congruent with earlier sensory-evoked
observations that were acquired one plane at a time.7,11,12 These propagating waves of va-
soactivity along the penetrating artery are not detected by bounding the vessel with a box
(Fig. 5(a)), nor by segmenting it using the time-collapsed volume (Fig. 5(b)).

Our ability to track spontaneous vasoactivity along penetrating arteries and other blood
vessels in an ecologically-relevant setting paves the path towards linking it with individual ac-
tion potentials. By computing the spike-triggered vasoactivity for different neuronal subtypes,
we plan to distill a canonical hemodynamic response function (HRF), namely the small-signal
impulse response of various classes of vessels to a single neuronal action potential.
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