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We introduce a Unified Disentanglement Network (UFDN) trained on The Cancer Genome
Atlas (TCGA), which we refer to as UFDN-TCGA. We demonstrate that UFDN-TCGA
learns a biologically relevant, low-dimensional latent space of high-dimensional gene expres-
sion data by applying our network to two classification tasks of cancer status and cancer
type. UFDN-TCGA performs comparably to random forest methods. The UFDN allows for
continuous, partial interpolation between distinct cancer types. Furthermore, we perform
an analysis of differentially expressed genes between skin cutaneous melanoma (SKCM)
samples and the same samples interpolated into glioblastoma (GBM). We demonstrate
that our interpolations consist of relevant metagenes that recapitulate known glioblastoma
mechanisms.
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1. Introduction

Deep learning is being applied to many difficult problems in genomics and medicine such as
understanding cancer prognosis. Chaudhary et al. were able to robustly predict survival in
liver cancer.1 Cruz-Roa et al. leveraged deep learning to quantify the extent of breast cancer
tumors in imaging data.2 Other groups have trained networks to identify metastatic breast
cancer and lymph node metastasis.3

There are significant questions remaining in oncology about the relationships between
different cancer types. For instance, while there is an association between melanoma, a type
of skin cancer, and glioblastoma, a type of brain cancer, little is known about the molecular
underpinnings of this relationship.4,5 Nevertheless, there is little work in machine learning
being done on what changes are occurring at a gene expression level during metastasis.

Recently, deep generative models such as variational auto encoders (VAEs) and generative
adversarial networks (GANs) have made large advances in image, audio, and text genera-
tion.6–8 VAEs and GANs learn generative distributions on lower-dimensional encodings of
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input data.9 VAEs have found genomic applications. Rampasek et al. applied VAEs to learn
drug responses based on gene expression data.10 Way et al. trained a VAE called Tybalt to
encode The Cancer Genome Atlas (TCGA).9 Huang et al. have developed a theory of cancer
development as a progression along a low dimensional space, justifying exploration of cancer
metastasis using machine learning algorithms that learn low dimensional representations.11

A new VAE-GAN hybrid architecture known as the Unified Feature Disentanglement Net-
work (UFDN) learns fundamental features that distinguish input domains.12 For multiple
input data types, such as photographs, sketches, and watercolor paintings, the UFDN learns
an VAE encoding of the data domains and trains a discriminator in the latent space to dis-
criminate between domain types. Then, the UFDN can subsequently encode data from one
domain and decode the data into a different domain.12 An additional GAN distinguishes
between real/fake images in the pixel space to promote high quality decodings.12

The primary goal of this work is to utilize the UFDN architecture to learn a disentangled
latent space of cancer gene expression data, which allows for interpolation between cancer
types.

Fig. 1: We encoded RNA-Seq samples from skin cutaneous melanoma and decoded them into
glioblastoma using UFDN-TCGA, then analyzed which sets of genes were changing between
cancer types.

2. Overview of UFDN-TCGA

In this work, we apply this new UFDN architecture to TCGA RNA-Seq data and learn a latent
space embedding that allows us to convert between different cancer types given gene expression
data. Given a sample’s gene expression levels in one type of cancer, we can predict gene
expression levels as if that cancer sample were of another type. This represents a generative,
personalized model of metastasis. We can sample points in our latent space encoding and
decode them into any new cancer domain.

Additionally, we can partially interpolate between cancer domains. UFDN decoding is not
strictly binary—input data can be decoded into a mix of output domains. We investigate
partial interpolations of one cancer type into another, mimicking the progressive nature of
metastasis.

We analyze the performance of our TCGA-trained UFDN on two tasks: predicting whether
a sample is from cancerous or normal tissue and predicting which cancer sub-type a sample
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consists of. Additionally, we investigate partial interpolations from skin cutaneous melanoma
(SKCM) TCGA samples to glioblastoma (GBM) by looking at differential expression of
genes. We compute metagenes that summarize gene expression changes using integrative non-
negative matrix factorization. Finally, we analyze Gene Ontology (GO) term enrichment in
highly activated metagenes for each interpolated dataset.

2.1. UFDN Architecture

Liu et al. develop a UFDN as a combination of an encoder E, a generator G, and two discrim-
inators: Dv in the latent space and Dx in the pixel space.12 In our application, pixel space is
replaced by “gene expression space.” E takes input data and encodes it in a latent space. In
our UFDN, we encode gene expression using fully connected networks. Dv learns to discrimi-
nate between domains, or cancer types. Then, generator G uses a latent space encoding z and
a domain vector dv to produce gene expression data in domain v.12 Our UFDN uses dv ∈ R33

since there are 33 cancer types in TCGA.

Fig. 2: The neural network architecture of UFDN-TCGA.

We define a partial interpolation with parameter p ∈ [0, 1] of an input of domain c to domain
ĉ to be the decoding of the input into into a composition of domains c and ĉ, with weight
p given to domain ĉ. That is, the domain vector of the partial interpolation has components
dvĉ

= p, dvc
= 1− p, and remaining components zero. For instance, a 0.25-GBM interpolation

means an input has been decoded with dvGBM
= 0.25 and original domain entry is 0.75.

In the input space, Dx learns to distinguish between samples that have been decoded to
their original domain c or a new domain ĉ.12 The network is trained by iterative stochastic
gradient updates to E, Dv, and Dx. For a more detailed exposition of the architecture of and
gradient updates for training the UFDN, please see Section 3 of Liu et al. 2018.12

The encoder E and generator G are single layer networks, each with 500 hidden units,
that learn a 100 dimensional latent space. The feature space discriminator Dv is a single layer
network with 64 hidden units and the pixel space discriminator Dx is a two layer network
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with 500 and 100 hidden units. All networks are fully connected with leaky ReLU activation
functions. We use 50,000 iterations of Adam updates with a learning rate of 10−4.

3. Methods

3.1. Data Preprocessing

The data consisted of 10,433 samples of RNA-Seq gene expression levels across 33 cancer types
for 20,501 genes from TCGA obtained via the R Package curatedTCGA.13,14 For the purpose
of this work, we only considered the RSEM15 normalized expression levels. We divided the
data 70%, 20%, and 10% to train, test, and holdout datasets, respectively.

Way et al. demonstrated that preprocessing gene expression levels by scaling gene-wise
expression levels (across all samples) to between 0 and 1 yields a trainable latent space.9 We
adapted this procedure by first clipping expression levels to fall within 3 standard deviations
from the mean of gene-wise expression levels followed by the same min-max normalization of
Way et al..9

3.2. Classification Tasks

We assessed two classification tasks using the UFDN. The first Cancer Status task was clas-
sifying a sample as tumor or normal. The second Domain task was predicting cancer domain,
one of 33 types of cancer in the TCGA.

We compared three different ways of using UFDN-TCGA on these tasks:

• UFDN-MSE : Classify a sample’s type by encoding the sample and decoding it into
all 33 domains, predicting the type of the domain with lowest reconstruction error as
defined by mean square error (MSE).

• Unsupervised UFDN : Inspired by the unsupervised domain adaptation experiments
from Liu et al.,12 this algorithm predicts cancer status by encoding a sample into
the latent space, then decoding it into the mesothelioma domain, regardless of input
domain. We trained a random forest classifier to predict cancer status on mesothelioma
training data, then use the prediction of this classifier to predict cancer status in the
original input domain. The motivation for this approach is that the classifier trained
on mesothelioma data is strong but the test data of interest is of a different cancer
type.

• Semi-supervised UFDN : A hybrid of the two above algorithms used to predict cancer
status and type. First, predict cancer type using UFDN-MSE. Then, predict cancer
status using a random forest classifier trained on that specific type’s status data.

3.3. Interpolation Analysis

We encoded 95 samples of SKCM (skin cutaneous melanoma) from our test set partition of
the TCGA into our latent space using our trained UFDN. Then, we interpolated the samples
into glioblastoma (GBM) at four different fractions of interpolation: 25%, 50%, and 75%, and
100%. The 100% interpolation represents a prediction of gene expression levels of the SKCM
samples as GBM samples.
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In order to analyze how gene expression changed between SKCM samples and these samples
as GBM, we performed a differential expression analysis using edgeR.16,17 This is an R package
that uses a negative binomial distribution model to analyze significant gene expression changes
between two groups.16,17 Although normally edgeR works with raw read counts, more recently
the package creator has stated that RSEM normalized reads are also suitable for use with
edgeR.18

We applied the inverse transformation of our min-max normalization to our four in-
terpolated datasets since our UFDN decodes gene expression levels to within the range of
[0,1]. Then we used edgeR to find differentially expressed genes between SKCM samples and
100% GBM interpolated samples. A p-value threshold for differential expression was set at
p = .05/20501 = 2.438 ∗ 10−6 to control for false discovery.

Analyzing every single gene that significantly changed between SKCM and GBM would be
a computational challenge, so we used integrative non-negative matrix factorization (IntNMF)
to learn metagenes that summarized gene expression changes.19 IntNMF learns a reduced
dimensionality representation across multiple datasets.19 IntNMF learns a shared basis matrix
W ∈ Rp×k and where p is the number of features (here, the differentially expressed genes) and
k is the number of metagenes, k << p. Each dataset Dj is described by a learned matrix
Hj ∈ Rk×n where n is the number of samples in the dataset.19 Each row of Hj represents the
linear combination of metagenes of W that combine to reconstruct the original sample in Dj.19

We chose k = 60 based on an analysis of the reconstruction error
∑

j ||Dj −WHj ||F , where F
is the Frobenius norm. We learned W and Hj for each dataset using the R package IntNMF.19

Every element g of column W (i) is non-negative and represents the contribution of gene
g to the i-th metagene.19 Each element s of the n-th row of Hj represents the contribution
of metagene s to the n-th sample of the j-th dataset. We can analyze how these metagenes
change over the different interpolation datasets in order to understand how gene expression
is changing.19

Finally, to understand the broad composition of the metagenes discovered by IntNMF, we
used Gene Ontology (GO) enrichment analysis. GO terms are an ontology of three categories:
biological processes, molecular function, and cellular component. They link together informa-
tion about the functions and relationships of genes and proteins. topGO is an R package that
analyzes if GO terms, which have been mapped to genes, show up more often than expected
in a set of genes and associated scores for each gene.20

We used test similar to the Kolmogorov-Smirnov test known as Gene Score Enrichment
Analysis that calculates p-values of enrichment based on a score for each gene.20 We tested
each metagene derived from IntNMF with the score for gene g as W (i)

g .20 By looking at the
top scoring GO terms for each metagene, we understand what sort of genes are changing as
we interpolate between cancer types.20

4. Results

4.1. UFDN Training and Performance

First, we validated that our UFDN learned a disentangled latent space representation of
TCGA RNA-Seq data. Liu et al. define a latent space as disentangled if domain information
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is uncoupled from representation in the latent space.12 Figure 3 shows the TCGA data and
latent space encodings projected into UMAP space.21 UMAP learns a Riemann manifold
representation of the data.21 We observed distinct clusters by cancer types for both the original
data, but less distinct clusters for the encodings. This represents a disentangling of domain
information and latent space representation and allows for interpolation between domains.

Next, we estimated the ability of our UFDN to take data from a source domain (original
cancer type) and interpolate these data into a target domain (new cancer type). We considered
the fraction of the k nearest neighbors, in the training data, of the interpolated samples that
were in the target domain as a measure of success. These decoding rates are shown in Figure 4.
There were certain cancers that the UFDN was able to more robustly interpolate into. These
included glioblastoma, acute myloid leukemia, mesothelioma, and prostate adenocarcinoma,
among others. Difficult cancers to interpolate into were sarcomas, which are a heterogeneous
subcategory of soft tissue cancers, and cervical squamous cell carcinoma.

Fig. 3: UMAP projections of the RNA-Seq TCGA data (Figure 3A) and UFDN latent space
encodings of said data (Figure 3B). The full 20,501 dimensional representation of gene expres-
sion levels have more cancer specific clusters, while the 100 dimensional latent space encodings
have uncoupled from domain information, to some extent.

Finally, we analyzed our UFDN’s performance on two classification tasks: Cancer Status
and Domain prediction. Table 1 reports the performances of our three UFDN classification
algorithms as compared to a random forest baseline. The random forests had a maximum
depth of 15 and were composed of 100 trees. The Semi-supervised UFDN algorithm was able
to match the performance of random forests on the cancer status task and was comparable on
the cancer type task. Other UFDN algorithms were less successful compared to the baseline.

4.2. Gene Expression Changes

After interpolating 95 samples of SKCM from the test set into GBM, we analyzed which genes
had significant changes in expression between the SKCM and 1.0-GBM samples. Using edgeR,
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Fig. 4: The fraction of k nearest neighbors that were in the target domain (the rows of the
figures) after decoding from a source domain (the columns of the figures). Some domains were
noticeably more difficult to interpolate into. Glioblastoma had strong interpolation results
across k ∈ [1, 5, 10, 20].

Table 1: Results on two classification tasks compared to a random forest baseline.

Algorithm Cancer Status Acc (Train/Test) Domain Acc (Train/Test)

Random Forests 99.60%/98.41% 99.65%/95.20%
UFDN-MSE — 96.51%/94.10%
Unsupervised UFDN 95.60%/86.14% —
Semi-supervised UFDN 99.60%/98.41% 96.51%/94.10%

we looked for genes that had differential expression that exceeded a significance threshold of
p = 2.43 ∗ 10−6, which accounts for the Bonferroni correction. There were 10,557 genes that
exceeded this threshold.

For the 10,557 differential expressed genes, we learned a shared basis W using IntNMF.
By varying the rank of that basis, we were able to decrease the reconstruction error across
datasets SKCM, 0.25-GBM, 0.5-GBM, 0.75-GBM, and 1.0-GBM. We chose k = 60 for subse-
quent analysis based on the inflection point of this reconstruction curve (see Supplementary
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Materials). Hutchins et al. suggest that this is an optimal way to select k for NMF.22

Fig. 5: Heatmap visualization of the Hj matrices for each interpolation of the SKCM test
data set. No row or column reordering was done to keep consistent metagene order across
datasets. A full interpolation of SKCM data into GBM data results in a consistent activation
of metagene 23 (Figure 5E). This is replicated in HGBM (Figure 5F), which was optimized
against the fixed W basis learned for the other 5 datasets.

Finally, we visualized the rows of Hj for each dataset in {SKCM, 0.25-GBM, 0.50-GBM,
0.75-GBM, 1.00-GBM}. The columns of each heatmap in Figure 5 represent the relative activa-
tion of the respective metagene. As interpolation towards GBM increases, distinct metagenes
increase their responsibility for reconstructing Hj. In SKCM, metagene 36 has the most rep-
resentation in the data. For 0.25-GBM, 0.50-GBM, and 0.75-GBM, metagenes 15, 32, and 1
had the most representation in the data, respectively.

In the 1.00-GBM heatmap (Figure 5 E), we saw the increased activation of metagene
23. When we took 33 samples of TCGA GBM data from the test set and learned the matrix
HGBM that minimized reconstruction error ||DGBM−WHGBM ||F for the same, fixed, W learned
previously by IntNMF, we observed the same metagene 23 dominating (Figure 5 F).

We proceeded to analyze the dominant metagene for every dataset Hj for GO term enrich-
ment. In the interest of space, we only report the top 15 most enriched GO terms for metagene
23 based on p-value. Table 2 reports the GO term as well as p-value for each term.
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Table 2: The top 15 Gene Ontology Terms enriched in metagene 23

GO ID Term p-value

GO:0003676 Nucleic acid binding 5.20E-19
GO:0003735 Structural constituent of ribosome 2.70E-15
GO:0003723 RNA binding 3.90E-14
GO:0003677 DNA binding 1.60E-12
GO:0005198 Structural molecule activity 3.80E-12
GO:0000981 DNA-binding transcription factor activit... 4.70E-12
GO:0003700 DNA-binding transcription factor activit... 3.50E-11
GO:0140110 Transcription regulator activity 2.80E-09
GO:0008376 Acetylgalactosaminyltransferase activity 4.10E-08
GO:0043492 ATPase activity, coupled to movement of ... 1.00E-07
GO:0060089 Molecular transducer activity 1.30E-07
GO:0004126 Cytidine deaminase activity 2.10E-07
GO:0019239 Deaminase activity 4.50E-07
GO:0048020 CCR chemokine receptor binding 7.30E-07
GO:0008009 Chemokine activity 8.10E-07

Additional analysis was performed after controlling for false positive in edgeR results using
the Wilcoxon signed-rank test. See the Supplementary Materials for this analysis.

5. Discussion

Our UFDN was able to learn a biologically relevant latent space encoding of TCGA data.
Classification task results in Table 1 indicate that our UFDN was able to compete with
random forests that were trained on all 20,501 gene expression features. This indicates our
algorithm was able to learn an efficient, useful embedding of gene expression data. Some UFDN
classification methods likely performed worse than random forest methods due to a reduction
in dimensionality. UFDN-MSE, semi-supervised, and unsupervised classification methods all
encode gene expression from the 20,501 TCGA space into a 100 dimensional latent space. This
encoding decreases the amount of information available to downstream classifiers (even after
decoding), resulting in a decrease in performance. The goal of this analysis was not to learn a
state-of-the-art classifier for cancer status/domain, but rather validate that our UFDN retains
information about cancer status/domain.

Figure 3 demonstrates that we learned an encoding that disentangled domain information
from latent space representation. Additionally, our UFDN could robustly interpolate into many
cancer domains. Figure 4 demonstrates that interpolated gene expression levels are comparable
to real gene expression levels. Since interpolated gene expression levels are consistently near
real training samples of the target domain according to mean square error, we are accurately
recapitulating gene expression levels.

We observed 10,557 differentially expressed genes between SKCM and 1.0-GBM interpo-
lated samples. edgeR was mainly employed to reduce the number of genes analyzed with Int-
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NMF. This reduction in dimensionality allowed us to make IntNMF computationally tractable.
A further reduction in dimensionality was done by filtering with the Wilcoxon ranked-sign test
for differentially express genes. 8,878 genes remained after Wilcoxon filtering. Alternative gene
filtering methods could be considered in future works. The lower number of genes considered
in IntNMF, the faster the learning of the shared basis W and dataset specific Hj. Analysis
of the reconstruction error from IntNMF informed our choice of 60 metagenes (see Supple-
mentary Materials). In Figure 5, we investigated how the relative weighting of each metagene
change for each partial interpolation. We observed unique metagenes increasing in importance
for each partial interpolation. This is an approximation of how gene expression profiles change
during metastasis.

When we learned HGBM , the representation of TCGA GBM samples with respect to the
basis W , something remarkable happened. Note that W was not informed by the TCGA
dataset GBM at all. W was simply the shared basis trained by IntNMF on interpolation
datasets SKCM (equivalently, 0.00-GBM), 0.25-GBM, 0.5-GBM, 0.75-GBM, and 1.0-GBM.
Yet when H1.0−GBM and HGBM were compared side by side in Figure 5 E&F, their metagene
activation profiles were dominated by the same metagene 23. Therefore, our interpolation from
SKCM to GBM successfully recapitulated observed gene expression activity.

One advantage of the UFDN interpolations as compared to standard differential expression
techniques is that we can look at which metagenes are activated for these partial interpolations.
Metagene 23 would likely be recovered if you learn a new basis on just differentially expressed
genes between TCGA-SKCM and TCGA-GBM. However, the UFDN interpolations allow us
to examine what metagenes are activating as cells are transformed from one cell type to
another in silico. Clearly, having gene expression data from cells undergoing metastasis would
be ideal to understand the transition from SKCM to GBM. The UFDN interpolations allow
us to make hypotheses about which groups of genes are activating during metastasis.

Furthermore, when we explored several of the GO terms identified by a GO term en-
richment analysis, metagene 23 was enriched for terms related to glioblastoma. GO:0008376
represents a glycoprotein with a known association to glioblastoma.23,24 GO:0004126 refers
to cytidine deaminase activity. Cytidine deaminase gene therapy has been identified as a
potential treatment for glioblastoma.25,26 GO:0048020 and GO:0008009 are associated with
chemokines, which are implicated in glioblastoma development.27,28 Our metagenes learned
glioblastoma-specific genes and our UFDN interpolated skin cancer samples to glioblastoma.
Further analysis of the metagenes activated during interpolations 0.25-GBM, 0.50-GBM, and
0.75-GBM could provide starting points for the investigation of the metastasis pathway from
SKCM to GBM. This could help explain the association between melanoma and glioblastoma
that is currently not understood.4,5

One factor that remains unexplored in this work is tumor purity. It would be interesting to
see how different levels of tumor purity cluster in the UFDN latent space. Would all samples
from one domain cluster together regardless of purity? How would they stratify within said
cluster? These questions could be answered by using copy number information available in
the TCGA and running FACETS to quantify purity.29 We could also consider making synthetic
datasets and training a new UFDN.
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Ultimately, a significant limitation of this method is analyzing out of domain samples. This
UFDN has been trained on specific cancer types and gene sets. When adding additional data
sources, it is necessary to retrain the network. Additionally, the UFDN model currently re-
quires a uniform number of input features across all samples. If some samples have incomplete
feature sets, they likely cannot be used for training or evaluation.

6. Conclusion

Our UFDN learned a biologically relevant latent space that facilitated meaningful interpo-
lations between cancer domains. Our latent space can be used to generate more examples
of transitions between cancers types. Our interpolations from SKCM to GBM have feasible
biological interpretations and suggest possible gene expression changes during the transition
from melanoma to glioblastoma.

6.1. Code and Supplementary Materials

All of our code and Supplementary Materials is available at https://github.com/bkompa/

UFDN-TCGA.

Acknowledgements

BK was supported by NIH T32HG002295.

References

1. K. Chaudhary, O. B. Poirion, L. Lu and L. X. Garmire, Deep Learning–Based Multi-Omics
integration robustly predicts survival in liver cancer, Clin. Cancer Res. 24, 1248 (March 2018).

2. A. Cruz-Roa, H. Gilmore, A. Basavanhally, M. Feldman, S. Ganesan, N. N. C. Shih,
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