
a

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Simon Steinegger

Reconfigurable Hardware OS
Prototype - Part FPGA
Masters Thesis DA-2004-05
Winter Term 2003/2004
Tutor: Herbert Walder
Supervisor:
Prof. Dr. Lothar Thiele
7.5.2004

a

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory





Contents

Contents iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Introduction vii

1: RHWOS Platform: XF-Board / XILINX Virtex-II 1
1.1 XF-Board Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Virtex-II R-FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Clock Net Structure on the Virtex-II XC2V3000 . . . . . . . . . . . . . 4

2: Use and Organisation of Reconfigurable Chip Area 7
2.1 Static vs. Dynamically Reconfigurable Area . . . . . . . . . . . . . . . 7

2.2 Variable-Sized 1D Resource Model . . . . . . . . . . . . . . . . . . . . . 8

2.3 Granular Variable-Sized Resource Model . . . . . . . . . . . . . . . . . 9

3: The RHWOS Generation: XFOSGen 15
3.1 Modular Design and Partial Reconfiguration . . . . . . . . . . . . . . . 15

3.1.1 Modular Design Directory Structure . . . . . . . . . . . . . . . . 16

3.1.2 Modular Design Entry and Synthesis . . . . . . . . . . . . . . . 16

3.1.3 Initial Budgeting Phase . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.4 Active Module Implementation Phase . . . . . . . . . . . . . . . 19

3.1.5 Final Assembly Phase . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 How to Use XFOSGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 XFOSGen Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



Contents

4: Reconfiguration Effects 25
4.1 Clock Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 What is the Problem with the Clock Distribution? . . . . . . . . 25

4.1.2 First Approach to the Clock Net Problem . . . . . . . . . . . . . 26

4.1.3 The Quick Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Transient Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Why Do Transient Effects Occur During Reconfiguration? . . . 31

4.2.2 Ways to Deal With Transient Effects . . . . . . . . . . . . . . . . 31

5: Communication on the R-FPGA 33
5.1 The Task Communication Bus (TCB) . . . . . . . . . . . . . . . . . . . . 33

5.2 The Bus Arbitration OS Service . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 The Bus Access Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 The BAC - User Task Interface . . . . . . . . . . . . . . . . . . . 36

6: Design and Implementation 39
6.1 Experiment 1: LED Counter . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Experiment 2: Knightrider . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Experiment 3: Sawtooth . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4 Experiment 4: Write Communication . . . . . . . . . . . . . . . . . . . . 43

6.5 Experiment 5: Loop Back . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7: Achievements and Outlook 47
7.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3 Visions of FPGAs Produced for RHWOS Platforms . . . . . . . . . . . . 49

8: Acknowlegement 51

A: An Example Synthesis Project File 53

B: An Example Synthesis Settings File 55

C: An Example Settings File for Bitstream generation 57

D: BitStreamParser 59

iv



List of Figures

1-1 The XF-Board RHWOS Platform . . . . . . . . . . . . . . . . . . . . . . 2

1-2 Virtex-II Architecture Overview, [19] . . . . . . . . . . . . . . . . . . . . 3

1-3 A Virtex-II CLB Element, [19] . . . . . . . . . . . . . . . . . . . . . . . . 4

1-4 The Clock Net Structure in a Virtex-II Device, [19] . . . . . . . . . . . . 5

2-1 Bipartition of FPGA Area into Static and Dynamically Reconfigurable
Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2-2 Fixed-Size Task Slot Model from [3] and [12] . . . . . . . . . . . . . . . 9

2-3 The Variable-Sized Task Model Proposed in [24], Configured with a
Set of Tasks (T1, T2, T3,Tx) with Different Sizes . . . . . . . . . . . . . . 10

2-4 Not Explicitly Configured FPGA Area Must Contain the Necessary
Routing to Connect Other Tasks to the OS Frame. . . . . . . . . . . . . 10

2-5 Schematic of how Tri-State Buffers are Instantiated in a Bus Macro . 11

2-6 An Unconfigured Area with Width w < wmin, Emerging from Partial
Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2-7 A Set of Different Configurations in the Granular Variable-Sized Re-
source Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3-1 Modular Design Directory Structure . . . . . . . . . . . . . . . . . . . . 17

3-2 Physical Implementation of a Bus Macro (adapted from [21]) . . . . . . 18

3-3 The XFOSGen Graphical User Interface . . . . . . . . . . . . . . . . . . 22

3-4 XFOSGen configured to Create a Design with a Larger Right
OS Frame and a User Task with Width 2 ∗ wmin . . . . . . . . . . . . . 23

4-1 Two Possibilities for Clock Net Problems Caused by Partial Reconfig-
uration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4-2 Screenshot from XILINX FPGA Editor of a Fully Activated Clock Net . 27

4-3 Different routing for signal lines through tasks . . . . . . . . . . . . . . 31

5-1 Task Communicaton Bus Overview . . . . . . . . . . . . . . . . . . . . . 34

5-2 Finite State Machine for the Bus Arbitration . . . . . . . . . . . . . . . 35

v



List of Figures

5-3 Finite State Machine Describing the Behaviour of the BAC for Read
and Write Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6-1 Schematic of the LED Counter Project . . . . . . . . . . . . . . . . . . . 40

6-2 Schematic of the Knightrider Project . . . . . . . . . . . . . . . . . . . . 41

6-3 Schematic of the Sawtooth Project . . . . . . . . . . . . . . . . . . . . . 42

6-4 Timing Analysis of the Sawtooth Project (excerpt) . . . . . . . . . . . . 43

6-5 Schematic of the Write Communication Project . . . . . . . . . . . . . . 44

6-6 Schematic of the Loop Back Project . . . . . . . . . . . . . . . . . . . . . 45

D-1 Type 1 Packet Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

D-2 Type 2 Packet Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

D-3 Configuration Registers (1/2) . . . . . . . . . . . . . . . . . . . . . . . . 60

D-4 Configuration Registers (2/2) . . . . . . . . . . . . . . . . . . . . . . . . 60

D-5 Command Register Commands . . . . . . . . . . . . . . . . . . . . . . . 60

vi



Introduction

Processing elements in embedded systems have gone through a kind of evolution in
the last years. Being split into software-programmable CPUs, fixed-function hard-
ware (ASICs) and reprogrammable hardware, namely the ASICs were more and
more replaced by programmable hardware. Reason for that were shorter time to
market and the possibility of hardware updating. Having reached large densities
and dynamic partial reconfigurability, nowaday’s FPGAs can be used much more
dynamically. Possible application domains are wearable computing, mobile systems
and network processors. Using FPGAs as dynamic processing resources raises the
necessity of a reconfigurable hardware operating system (RHWOS). Potential bene-
fits of such an operating system could be:

Increased productivity: By means of re-use of reliable code the development cy-
cles can be shortened.

Increased portability: If an OS is supporting different platforms, versions may
often be ported just by recompiling/resynthesizing them.

Eased sysem re-partitioning: Tasks running in software on the CPU can be
mapped to the FPGA to have an increased performance. Objects can be added
or removed without affecting the rest of the system.

Simplified debugging: Monitoring and triggering facilities help to overcome the
challenge of debugging dynamically reconfigured hardware and communica-
tion hardware.

There is a multiplicity of services a reconfigurable hardware operating system
must provide: Device partitioning, placement, multitasking, task preemption and
scheduling to name but a few. More details concerning reconfigurable hardware
operating systems can be found in [13], [14], [27] and [28].

This master thesis provides and examines solutions for implementations of hard-
ware tasks on a dynamically reconfigurable FPGA controlled by a reconfigurable
hardware operating system.

As an underlying prototype board serves the developed by S. Nobs [10].
A short description of the is given in chapter 1.

Chapter 2 focusses on use and organisation of the reconfigurable chip area.

XFOSGen is a piece of software developped to facilitate the implementation of a
partial reconfigurable design. Its use and benefits are described in chapter 3.
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Introduction

In a design that is being dynamically partially reconfigured certain effects might
appear, that affect the operation of the FPGA. They are discussed in chapter 4.
Namely influences on the clock distribution are subject to section 4.1; transient ef-
fects on signal lines are dealt with in section 4.2.

Similar to clock distribution communication on a partial reconfigurable FPGA is
not trivial. This issue is discussed in chapter 5.

The design and implementation of the partially reconfigurable R-FPGA, done
during this thesis, is explained in chapter 6.

Finally chapter 7 takes a look back on the work done during this thesis and also
looks forward to further work. How far has the project proceeded? How can the
abilities and performance of the R-FPGA and the be increased? This
chapter will also give some visionary ideas on how an FPGA should be designed to
give better support to a system like the .

viii



1
RHWOS Platform:

XF-Board / XILINX Virtex-II

All practical work in this master thesis targets the . Therefore one
needs to be familiar to some extent with this platform. This chapter gathers the
properties of the from [10] and [24] that are most relevant for this
thesis. The same holds for section 1.2 about the XILINX Virtex-II FPGA: A detailed
description of the FPGA would go beyond the scope of this thesis but can be found
in [19].

1.1 XF-Board Overview

The two main elements on the are the C-FPGA and the R-FPGA.
The C-FPGA (CPU FPGA) is a XILINX Virtex-II XC2V1000, containing a soft core
RISC processor, namely the XILINX MicroBlaze (see [18] for further documentation).
While such a soft core solution is inferior in performance compared to a dedicated
standard processor, its advantage lies in its higher flexibility. The larger XILINX
Virtex-II XC2V3000 takes the part of the reconfigurable FPGA (R-FPGA) being
managed and dynamically reconfigured during system runtime by the C-FPGA.
Thus the R-FPGA contrasts the C-FPGA, which is only configured on system
start-up and remains static during system runtime. The two FPGAs are connected
by a 40 bit wide general-purpose I/O (GPIO) and an optional general-purpose I/O
(OGPIO) bus to provide high communication bandwidth. 16 signals of the GPIO bus
are connected to the top left side of the R-FPGA, 24 signals to the top-right side,
foreknowing that there they will connect to the static part of the R-FPGA. For the
same reason all devices and interfaces connected to the R-FPGA contact on its left
and right side respectively. The attached devices are the following:

• 16 bit Audio CoDec AK4563A by AKM [2]

1



Chapter 1: RHWOS Platform: XF-Board / XILINX Virtex-II

• 24 bit Video DAC HI1178 by Intersil [7]

• 1M x 16 SRAM AS7C34096 by Alliance Semiconductor [1]

• 16M x 16 SDRAM HYB39S256160CT by Infineon Technologies [5]

• 8-LED Bar connected to 8 GPIO lines

• 36 pin I/O Slot (32 signal pins, 5V, 3.3V, 1.5V and ground)

• RS-232 Single Port

• Ethernet PHY with Full-duplex at 10 and 100 Mbps; LXT970A by Intel [6]

• 2 push buttons

• JTAG Header that allows for boundary scan configuration

Figure 1-1
The XF-Board RHWOS Platform

2



1.2. The Virtex-II R-FPGA

1.2 The Virtex-II R-FPGA

The Virtex-II architecture contains input/output blocks (IOBs) and a multiplicity of
configurable logic. The configurable logic includes the following elements:

• Configurable Logic Blocks (CLBs)

• Dual-port SRAM in 18 Kbit block SelectRAM resources (BRAM),

• 18-bit ∗ 18-bit Multiplier blocks

• Digital Clock Managers (DCMs)

CLBs are regularly distributed on the FPGA, surrounded by the IOBs. On the
XC2V3000 there are 6 columns of 16 BRAM and 16 Multiplier blocks distributed
among the CLBs. One BRAM block has a capacity to store 18 kbits. Located above
and below these columns are the DCMs. Figure 1-2 gives an overview of a Virtex-II
device. Thereby it concerns a smaller device than the XC2V3000. Besides a larger
number of CLBs there are six instead of 4 columns of BRAM and Multipliers.

Virtex™-II Platform FPGAs: Introduction and Overview
R

DS031-1 (v2.0) August 1, 2003 www.xilinx.com Module 1 of 4
Product Specification 1-800-255-7778 3

Architecture

Virtex-II Array Overview
Virtex-II devices are user-programmable gate arrays with 
various configurable elements. The Virtex-II architecture is 
optimized for high-density and high-performance logic 
designs. As shown in Figure 1, the programmable device is 
comprised of input/output blocks (IOBs) and internal 
configurable logic blocks (CLBs).

Programmable I/O blocks provide the interface between 
package pins and the internal configurable logic. Most 
popular and leading-edge I/O standards are supported by 
the programmable IOBs. 

The internal configurable logic includes four major elements
organized in a regular array.

• Configurable Logic Blocks (CLBs) provide functional 
elements for combinatorial and synchronous logic, 
including basic storage elements. BUFTs (3-state 
buffers) associated with each CLB element drive 
dedicated segmentable horizontal routing resources.

• Block SelectRAM memory modules provide large 
18 Kbit storage elements of dual-port RAM.

• Multiplier blocks are 18-bit x 18-bit dedicated 
multipliers.

• DCM (Digital Clock Manager) blocks provide 
self-calibrating, fully digital solutions for clock 
distribution delay compensation, clock multiplication 
and division, coarse- and fine-grained clock phase 
shifting.

A new generation of programmable routing resources called
Active Interconnect Technology interconnects all of these
elements. The general routing matrix (GRM) is an array of
routing switches. Each programmable element is tied to a
switch matrix, allowing multiple connections to the general
routing matrix. The overall programmable interconnection is
hierarchical and designed to support high-speed designs.

All programmable elements, including the routing
resources, are controlled by values stored in static memory

cells. These values are loaded in the memory cells during
configuration and can be reloaded to change the functions
of the programmable elements. 

Virtex-II Features
This section briefly describes Virtex-II features.

Input/Output Blocks (IOBs)
IOBs are programmable and can be categorized as follows:

• Input block with an optional single-data-rate or 
double-data-rate (DDR) register

• Output block with an optional single-data-rate or DDR 
register, and an optional 3-state buffer, to be driven 
directly or through a single or DDR register

• Bidirectional block (any combination of input and output 
configurations)

These registers are either edge-triggered D-type flip-flops
or level-sensitive latches.

IOBs support the following single-ended I/O standards:

• LVTTL, LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V)

• PCI-X compatible (133 MHz and 66 MHz) at 3.3V

• PCI compliant (66 MHz and 33 MHz) at 3.3V

• CardBus compliant (33 MHz) at 3.3V

Figure 1:  Virtex-II Architecture Overview

Global Clock Mux

DCM DCM IOB

CLB
Programmable I/Os

Block SelectRAM Multiplier

Configurable Logic

DS031_28_100900

Figure 1-2
Virtex-II Architecture Overview, [19]

A CLB can be looked at in more detail. Each CLB contains 4 so called slices and
two 3-state buffers. Each slice includes two 4-input function generators that can
be configured either as 4-input LUTs, 16 bits distributed SelectRAM memory or
16-bit variable tap shift register element. Also within a slice are two registers, each
configurable as either an edge-sensitive flip-flop or a level-sensitive latch. Each
CLB can access the general routing matrix via a switch matrix. See figure 1-3 for a
visualization of a CLB.
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Virtex™-II Platform FPGAs: Detailed Description
R
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Configurable Logic Blocks (CLBs)
The Virtex-II configurable logic blocks (CLB) are organized
in an array and are used to build combinatorial and synchro-
nous logic designs. Each CLB element is tied to a switch
matrix to access the general routing matrix, as shown in
Figure 14. A CLB element comprises 4 similar slices, with
fast local feedback within the CLB. The four slices are split
in two columns of two slices with two independent carry
logic chains and one common shift chain.
 

Slice Description
Each slice includes two 4-input function generators, carry
logic, arithmetic logic gates, wide function multiplexers and
two storage elements. As shown in Figure 15, each 4-input
function generator is programmable as a 4-input LUT, 16
bits of distributed SelectRAM memory, or a 16-bit vari-
able-tap shift register element. 

The output from the function generator in each slice drives 
both the slice output and the D input of the storage element. 
Figure 16 shows a more detailed view of a single slice.

Configurations

Look-Up Table

Virtex-II function generators are implemented as 4-input
look-up tables (LUTs). Four independent inputs are pro-
vided to each of the two function generators in a slice (F and
G). These function generators are each capable of imple-
menting any arbitrarily defined boolean function of four
inputs. The propagation delay is therefore independent of
the function implemented. Signals from the function gener-
ators can exit the slice (X or Y output), can input the XOR
dedicated gate (see arithmetic logic), or input the carry-logic
multiplexer (see fast look-ahead carry logic), or feed the D
input of the storage element, or go to the MUXF5 (not
shown in Figure 16). 

In addition to the basic LUTs, the Virtex-II slice contains
logic (MUXF5 and MUXFX multiplexers) that combines
function generators to provide any function of five, six,
seven, or eight inputs. The MUXFX are either MUXF6,
MUXF7 or MUXF8 according to the slice considered in the
CLB. Selected functions up to nine inputs (MUXF5 multi-
plexer) can be implemented in one slice. The MUXFX can
also be a MUXF6, MUXF7, or MUXF8 multiplexers to map
any functions of six, seven, or eight inputs and selected
wide logic functions.

Register/Latch

The storage elements in a Virtex-II slice can be configured
either as edge-triggered D-type flip-flops or as level-sensi-
tive latches. The D input can be directly driven by the X or Y
output via the DX or DY input, or by the slice inputs bypass-
ing the function generators via the BX or BY input. The clock
enable signal (CE) is active High by default. If left uncon-
nected, the clock enable for that storage element defaults to
the active state.

In addition to clock (CK) and clock enable (CE) signals,
each slice has set and reset signals (SR and BY slice
inputs). SR forces the storage element into the state speci-
fied by the attribute SRHIGH or SRLOW. SRHIGH forces a
logic “1” when SR is asserted. SRLOW forces a logic “0”.
When SR is used, a second input (BY) forces the storage
element into the opposite state. The reset condition is pre-
dominant over the set condition. (See Figure 17.)

The initial state after configuration or global initial state is
defined by a separate INIT0 and INIT1 attribute. By default,
setting the SRLOW attribute sets INIT0, and setting the
SRHIGH attribute sets INIT1.

For each slice, set and reset can be set to be synchronous
or asynchronous. Virtex-II devices also have the ability to
set INIT0 and INIT1 independent of SRHIGH and SRLOW.

The control signals clock (CLK), clock enable (CE) and
set/reset (SR) are common to both storage elements in one
slice. All of the control signals have independent polarity. Any
inverter placed on a control input is automatically absorbed. 

Figure 14:  Virtex-II CLB Element

Figure 15:  Virtex-II Slice Configuration 
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Figure 1-3
A Virtex-II CLB Element, [19]

1.3 Clock Net Structure on the Virtex-II XC2V3000

The Virtex-II devices provides dedicated low-skew clock distribution resources. 16
Global Clock Multiplexer Buffers (BUFGMUX) serve as inputs to these nets. Each
BUFGMUX can be driven by a clock pad or an output of a DCM. Eight such clock
buffers and pads are located on top and on the bottom of the device. These 16
clock signals form the trunk of the clock tree. There are six branchings to each side
of the device. Thereby each quarter of the FPGA can be supplied with at most 8 out
of the 16 possible clock signals. The clock signals are distributed further from these
branches up and down towards the CLBs. Through the routing matrices each regis-
ter in a CLB can access any of the eight clock nets in its device quarter. A schematic
drawing of the Virtex-II clock net resources is shown in figure 1-4.
Clock net resources are discussed more detailed in section 4.1.
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Global Clock Multiplexer Buffers
Virtex-II devices have 16 clock input pins that can also be
used as regular user I/Os. Eight clock pads are on the top
edge of the device, in the middle of the array, and eight are
on the bottom edge, as illustrated in Figure 38. 

The global clock multiplexer buffer represents the input to
dedicated low-skew clock tree distribution in Virtex-II
devices. Like the clock pads, eight global clock multiplexer
buffers are on the top edge of the device and eight are on
the bottom edge.

Each global clock buffer can either be driven by the clock
pad to distribute a clock directly to the device, or driven by
the Digital Clock Manager (DCM), discussed in Digital
Clock Manager (DCM), page 30. Each global clock buffer

can also be driven by local interconnects. The DCM has
clock output(s) that can be connected to global clock buffer
inputs, as shown in Figure 39. 

Global clock buffers are used to distribute the clock to some
or all synchronous logic elements (such as registers in
CLBs and IOBs, and SelectRAM blocks. 

Eight global clocks can be used in each quadrant of the
Virtex-II device. Designers should consider the clock distri-
bution detail of the device prior to pin-locking and floorplan-
ning (see the Virtex-II User Guide).

Figure 40 shows clock distribution in Virtex-II devices.
 

Figure 38:  Virtex-II Clock Pads
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Figure 39:  Virtex-II Clock Distribution Configurations
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Figure 40:  Virtex-II Clock Distribution
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2
Use and Organisation of

Reconfigurable Chip Area

In dynamically partially reconfigurable computing, FPGA area has become a
resource, which needs to be managed similarily to memory. To be able to do so, with
effective area utilisation and large flexibility, efforts were taken during this thesis
to apply the variable-sized 1D resource model, presented in [24].
Section 2.1 of this chapter explains the bipartition of the available area into static
and dynamically reconfigurable areas. Afterwards section 2.2 explains the concept
of the variable-sized 1D resource model. Finally section 2.3 affiliates the granular
variable-sized resource model.

2.1 Static vs. Dynamically Reconfigurable Area

In the environment, the R-FPGA serves as a resource for different com-
putational and data processing tasks. However there are also operating system ser-
vices to be implemented on the R-FPGA.

• device drivers (Memory, Audio, Video, Ethernet,...)

• infrastructure for on-chip communication

• infrastructure for communication with the C-FPGA

• memory management

• . . .

These OS services need to be present for all or at least several tasks at any time.
Thus they are configured statically. This means that this part of the FPGA is
configured only once on initial configuration. In this thesis this static section on the
device is called OS frame. The above list of OS services shows, that the OS frame
has to deal with a lot of I/O. Therefore the OS frame needs to be placed at the

7



Chapter 2: Use and Organisation of Reconfigurable Chip Area

border of the FPGA. Actually the OS frame area needs to be split in two parts to
access enough IOBs. One part is located on the left side and one on the right side
of the FPGA. The remaining area between the OS frame left and OS frame right is
left to be dynamically reconfigurable by any application running on the C-FPGA.
The resulting bipartition in static and dynamically reconfigurable area is shown in
figure 2-1.

Figure 2-1
Bipartition of FPGA Area into Static and Dynamically Reconfigurable Area

Thereby the resource model is chosen to be one-dimensional due to the fact that
Virtex-II devices only support partial reconfiguration in complete columns. In
theory other area models are conceivable. Some of them are discussed in [25]
and [26].

2.2 Variable-Sized 1D Resource Model

In previous works [3] and [12] the reconfigurable area consisted only of two areas,
called task slots seperated by a third partition of the OS frame (see figure 2-2). Both
tasks are connected to a part of the OS frame via a standard task interface (STI).
The three OS frame parts left, middle and right are connected by means of the
Inter-Frame-Communication-Channel-Interface (IFCCI). This kind of model allows
only two tasks to run concurrently. This concept has two major drawbacks: Firstly,
due to the partition in two task slots the maximal possible complexity is limited to
the half of the reconfigurable device area. It is not possible to configure the two slots
at once with one single large task. Secondly, for tasks with little complexity and
little area requirements, there still needs to be configured one complete task slot,
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Figure 2-2
Fixed-Size Task Slot Model from [3] and [12]

leading to poor area utilization. This is due to the high slot-internal fragmentaton.
On the R-FPGA of the we have one single large reconfigurable area. It
would be a great improvement, if the C-FPGA configured only the area just needed
by a certain task. So the system can not configure just one out of several given slots
with fixed-size, rather it can configure slots in variable sizes. Figure 2-3 shows a
configuration of an FPGA with OS frame and several variable-sized tasks.

2.3 Granular Variable-Sized Resource Model

Figure 2-3 reveals two difficulties that are somehow related to each other. One is the
fragmentation of the FPGA area that will occur at least after some reconfigurations.
The other one is that unused chip area must not be left unconfigured, since this
would disconnect communication lines between tasks and the OS frame. Let’s post-
pone the discussion of fragmentation for a while and concentrate on communication
lines. It is evident that FPGA regions, that do neither contain a task nor are a part
of the OS frame, need to contain the necessary routing ressources, to enable the
task to communicate with the OS frame (see fig. 2-4).
Such a task, that contains no logic but only routing, is henceforth called dummy

task. At this point we need to anticipate the introduction of the bus macro. A
bus macro needs to be instantiated, for signals that cross the border between
two modules (i.e. two tasks or a task and a part of the OS frame). Why we need
bus macros and how they work is not of importance at this point. What we need
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Figure 2-3
The Variable-Sized Task Model Proposed in [24], Configured with a Set of Tasks (T1, T2,
T3,Tx) with Different Sizes

Figure 2-4
Not Explicitly Configured FPGA Area Must Contain the Necessary Routing to Connect
Other Tasks to the OS Frame.

to know is that each bus macro instantiates two pairs of tri-state buffers in both
affected modules, all positioned in sidewise adjacent CLBs. See figure 2-5 for a
schematic of such a bus macro.
As we need the signals to traverse the dummy task, there are two bus macros to

be instantiated. One where a signal enters the dummy task and one to guide the
signal out of the dummy task. To get the most simple routing possible, these two
bus macros are placed on a horizontal line. As there are only two tri-state buffers
available per CLB, we need to instantiate the tri-state buffers of 4 CLBs in a line.
Thus the minimal width (wmin) for a dummy task becomes 4 CLBs. This minimal
width applies as well to non-dummy tasks1. Proper communication is assured if
every unused space between tasks and OS frames is configured with a dummy task.

1This value is purely theoretical. Especially non-dummy tasks need to be wider to have sufficient
routing resources inside.
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Figure 2-5
Schematic of how Tri-State Buffers are Instantiated in a Bus Macro

Coming back to the fragmentation problem we now can state that no partial recon-
figuration process may leave an unused fragment narrower than wmin. An example
how such a forbidden case can emerge from a partial reconfiguration is shown in
figure 2-6.
The granular variable-sized resource model helps to get rid of such cases. This

Figure 2-6
An Unconfigured Area with Width w < wmin, Emerging from Partial Reconfiguration

model is based on the following rules:

1. The whole dynamically reconfigurable area needs to be an integer multiple of
the minimal dummy task width wmin wide.
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2. Tasks, that are to be dynamically reconfigured, need to have widths of integer
multiples of wmin. (It goes without saying, that a task can not be larger than
the whole reconfigurable area)

3. A task must always be configured to areas in such a way, that remaining gaps
to the left and right OS frames have widths of an integer multiple of the mini-
mal task width.

This model is much more easier to understand by means of an example: Let’s sup-
pose the size of the reconfigurable FPGA area is 5 ∗ wmin wide. So the FPGA can be
configured with up to 5 tasks with width wmin (figure 2-7a). Each such task has 5 dif-
ferent location, where it can be configured to. A tasks of with 2∗wmin could be placed
in 4 different locations. As shown for tasks TA through TD in figures 2-7b and c.
And so on, until finally one single task with width 5 ∗ wmin could be configured to
fill the whole reconfigurable area alone (task TZ in figure 2-7d). It is understood,
that tasks configured on the FPGA at the same time can have different sizes (fig-
ures 2-7b and c).
Most implementations done during this thesis use OS frame sizes of 8 CLBs. Also
minimal-sized dummy tasks and user tasks are 8 CLBs wide. Since the Virtex-II
XC2V3000 is exactly 56 CLBs wide this results in a reconfigurable area, which
is 40 CLBs wide and therefore provides space for five concurrently configured
minimal-sized tasks.

The above example reveals, that the granular variable-sized resource model is
somehow constrained in the freedom to choose size and position of tasks, compared
to the pure variable-sized model. But there is also an advantage in the need
for granularity. At the current state of the project partial bitstreams are not
relocatable. This means, that it is not yet evaluated if and how an existing partial
bitstream could be edited to configure a certain other part of the FPGA than the
one constrained during implementation. From this it follows that for each task
to be configured to the R-FPGA, as many partial bitstreams have to be stored,
as there are possible target locations. So by applying rule number 3 from the
above list, memory needed to store the partial bitstreams is reduced significantly.
Consider a design where n CLB columns form the dynamically reconfigurable area.
There are now n

wmin
possible target locations for a minimal-sized task, instead of

2 ∗ (n − wmin) + 1 when the configured task could be placed originating in any
slice-column of the reconfigurable area.
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Figure 2-7
A Set of Different Configurations in the Granular Variable-Sized Resource Model
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3
The RHWOS Generation: XFOSGen

Creating a partially reconfigurable design such as the one for is a
pretty extensive work.
On one side in a partial reconfigurable design with up to five user tasks a countless
number of bus macros and signal lines need to be connected. Let’s make an example
as a substantiation: Assuming the OS frames and the five user tasks are connected
with a shared bus of 32 bits width, we would need eight bus macros that guide four
signals from module to module, on every module border. There are six such borders.
Makes 48 bus macros. These bus macros need to be connected with four input and
four output signals plus eight signals determining the direction of the respective
signal line. So in addition to the 48 instantiations 48 ∗ 16 = 768 signals need to be
connected. This would be a very boring and also error-prone work to do by hand.
On the other side does XILINX ISE Project Navigator not support Modular Design,
which is necessarily used for partially reconfigurable designs. Therefore Modular
Design needs to be done with the XILINX ISE-tools ran in command-line mode.
However, when XFOSGen has fulfilled its work this is a favorable fact, as it creates
a .bat file that controls the complete implementation flow. So the XFOSGen user
does not need to worry about Modular Design flow anymore.
Still the next section 3.1 gives an overview on the Modular Design flow. The
way XFOSGen is used, is described in section 3.2. Section 3.3 describes the files
produced by XFOSGen as well as their content, functionality and relations to the
modular design flow.

3.1 Modular Design and Partial Reconfiguration

The term ”Modular Design” is introduced in chapter 4 of the XILINX ISE Refer-
ence [17]. There, the primary motivation for building modular designs is to allow
a team of engineers to independently work on different pieces of one large design.
Also individual modules might be modified without affecting other modules that
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need no changes. When all modules are implemented, they can be merged into one
final design. The main motivation for using the modular design flow in this thesis
is that any module can be defined as partially reconfigurable. Thereby, in addition
to the regular modular design flow, each module gets constraints about where its
logic is to be placed on the FPGA. Plus, the place and route tool is directed not to
do any routing of the logic outside this module area. So a module can not only be
changed during implementation without affecting other modules, it now can also be
partially reconfigured during runtime.
The detailed description of all aspects of ”Modular Design” and ”Partial Reconfigu-
ration” is covered by the Xylinx ISE Reference [17] and the XILINX application note
290 [21]. So this section shall not copy these two documents but rather serve as a
digest of the factors, that are most important in the context of this thesis. Thereby
the division into the three phases Initial Budgeting, Active Module Implementation
and Final Assembly shall remain. But before starting with the design entry, it is a
good idea to set up a directory structure for the modular design to keep track of the
different files generated during design.

3.1.1 Modular Design Directory Structure

XILINX application note 290 [21] recommends to have a well-organised directory
structure to keep track of the multitude of files being created during the different
phases of modular design. The chosen directory structure, with some adaption made
to the one proposed by XILINX, is shown in figure 3-1.

hdl contains the source code for the design, written in any HDL.

synth contains the files necessary for synthesis. In this thesis XILINX Synthesis
Technology (XST) is used for synthesis.

top \initial is the directory, where the Initial Budgeting is done.

modules contains a subdirectory for each module to be implemented in a different
area on the device.

pims contains intermediate files from the Active Module Implementation, which are
used later during Final Assembly.

top \assemble is the directory, where during the Final Assembly phase the full
configuration bitstream is produced.

bitstreams gathers all full and partial bitstreams.

For a better understanding of, what is done during implementation of a modular
design read the following subsections 3.1.2 to 3.1.5.

3.1.2 Modular Design Entry and Synthesis

First of all a complete design entry and synthesis for the top-level design needs
to be done. Thereby all modules are instantiated as black boxes in the top-level
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Figure 3-1
Modular Design Directory Structure

design. Their interconnections are realized by means of Bus Macros (see subsec-
ton 3.1.2.1). Also included in the top-level design are I/O ports, global logic and
signals connecting these elements. Global logic (i.e. logic that is not part of a lower
level module) shall be kept to a minimum, because area used for top-level logic is
no more available for the modules.

3.1.2.1 Communication via Bus Macros

Communication between two modules in a partially reconfigurable design is not a
trivial thing. Recalling the idea of independent design of different modules, made
in the introduction of section 3.1. It needs to be assured, that both modules use
the same fixed routing resource for communication. This means, the routing used
for these intermodule signals must not change when a module is reconfigured. A
Bus Macro satisfies this demand. It is a hard macro used to specify the exact rout-
ing resources between two configuration areas. The physical implementation of a
Bus Macro is shown in figure 3-2.

As the figure shows, one Bus Macro guides exactly four signal lines. These lines can
be configured to either guide the signal from the left to the right side or vice versa.
To configure the Bus Macro to guide the signal from left to right, the ”LT” inputs
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RI [3:0]

RO [3:0]

RT [3:0]

LI [3:0]

LO [3:0]

LT [3:0]

Boundary beween modules:

OS Frame left
Task n
Task 5

Task 1
Task (n+1)
OS Frame right

Figure 3-2
Physical Implementation of a Bus Macro (adapted from [21])

needs to be connected to a constant ’0’ and the ”RT” inputs to ’1’ . For guidance
from right to left, the constants are exchanged.

3.1.3 Initial Budgeting Phase

After every module is designed in VHDL or Verilog, it is synthesized seperately in
either XILINX Synthesis Technology (XST) or any other XILINX-supported synthesis
tool. Then the actual ”Modular Design” flow can begin with Initial Budgeting.
In this phase each module must be sized and positioned on the target FPGA. Global
logic must be positioned as well as all bus macros. To facilitate the setting of these
constraints ngdbuild is run in the initial mode with the top-level design file.

ngdbuild -p xc2v3000-4fg676 -modular initial top.ngc

The option -p xc2v3000-4fg676 sets the target device to the XILINX Virtex-II
used as R-FPGA on the . -modular initial tells ngdbuild that the
implementation is currently in initial mode and therefore the processed input file
is the top-level design file. top.ngc denotes the input file for ngdbuild. Ngdbuild
generates a .ngd file with all instantiated modules represented as unexpanded
blocks. This file can be used with the Floorplanner tool to easily assign the location
constraints for each module and the bus macros. This is a very important part
in a design for partial reconfiguration. As now the .ucf file is provided with
the information on where module boundaries will occur. Setting such area group
constraints is done either by using Floorplanner or by hand, as it is shown here:
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INST ”u_task_1” AREA_GROUP=”AG_u_task_1”;
AREA_GROUP "AG_u_task_1" RANGE=SLICE_X16Y127:SLICE_X31Y0;
AREA_GROUP "AG_u_task_1" RANGE=TBUF_X16Y127:TBUF_X30Y0;
AREA_GROUP "AG_u_task_1" RANGE=RAMB16_X1Y15:RAMB16_X1Y0;
AREA_GROUP "AG_u_task_1" RANGE=MULT18X18_X1Y15:MULT18X18_X1Y0;

This defines the modules as area groups in terms of slices, tri-state buffers, BRAM
and Multiplierblocks, it is allowed to use.
To assure, that no routing of module logic outside the module area is done, the
following command is placed in the .ucf :

AREA_GROUP "AG_u_task_1" MODE=RECONFIG;

Finally the bus macros need to be placed. The command used looks like this:

INST "bm_1_we_1" LOC="TBUF_X12Y0";

The assigned location is only one TBUF element. The information about other in-
stances is contained in the macro-file. There the relative position to the located (LOC)
instance is described.
To assign the constraints for the pin locations a web application was created in con-
text with the term thesis [10]. It can be found on the CD attached to this thesis or
on the internet at:

http://www.tik.ee.ethz.ch/~xfboard/R-FPGA.htm

However, Floorplanner and the abovementioned web application will only be used
for manual changes in the design since XFOSGen will already take care of both.
Please take care that ngdbuild needs to be rerun, whenever changes to the .ucf
constraint file have been made. Otherwise these changes are not applied to the
complete design.

3.1.4 Active Module Implementation Phase

This phase has to be run seperately for every module. The general context of the
module is provided by the top.ngc file generated in the Initial Budgeting phase.

ngdbuild -p xc2v3000-4fg676 -uc task_1.ucf
-modular module -active task_1 .. \.. \top \initial \top.ngc

Again the -p option denotes the target device. Optionally module-level timing con-
straints can be added to the .ucf file specified in the -uc option. Differently from
the Initial Budgeting phase, this time the -modular module option tells ngdbuild,
that a module is being implemented. The -active option tells, which module from the
top-level design is being implemented. Attention has to be paid, that the argument
to the -active option is the component name and NOT the instance name of the mod-
ule to be implemented.
Next the resulting .ngd file can be mapped, placed and routed:
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map -u -detail -pr b top.ngd -o top_map.ncd top.pcf

The -u option tells the map tool not to remove unused logic. This option proved
to be necessary in some cases to prevent map from optimizing away complete
modules. -detail produces a more detailed map report. The -pr b option allows
map to place input and output registers in I/O cells. This saves FPGA area and
provides better I/O timing. top.ngd specifies the input file which resulted from
ngdbuild. -o top_map.ncd denotes the output file. top.pcf contains the information
from the .ucf file in a different format.

par -n 1 -s 1 -ol high -w top_map.ncd mppr.dir top.pcf

Options -n 1 and -s 1 tell par to run one iteration and store its result. Setting these
parameters to higher values might be an option if timing constraints are marginally
missed. -ol high sets the overall effort level for placing and routing. -w allows par
to overwrite existing output files. top_map.ncd is the input file for par. mppr.dir is
the directory where the results of the par iterations are stored and again top.pcf
denotes the constraints file.

When a module is successfully mapped, placed and routed it is published for inclu-
sion in the final design. The files published are called PIMs, standing for Physically
Implemented Module. The necessary command is the following:

pimcreate .. \.. \pims -ncd top.ncd

Pimcreate copies the files ”<design_name>.ngo”, ”<design_name>.ncd” and ”<de-
sign_name>.ngm” to ”<design_name>.ngo”, ”<module_name>.ncd” and ”<mod-
ule_name>.ngm” into the pims directory.
To generate a partial bitstream the following command is applied:

bitgen -d -f bitgen_v2_std.ut top.ncd task_1.bit

The option -d disables the DRC check, although this seems something critical to do.
Experiences show, that too often errors about signals crossing the module bound-
aries prevent bitgen from successfully creating a bitstream. Bitstreams created
later without DRC never fail to operate. For further options -f bitgen_v2_std.ut as-
signs an options file, which contains a large list of options shown in C. Most options
are set to their defaults. The most important options for partial reconfigurable de-
signs are the following:

- g ActiveReconfig:Yes prevents the assertions of GHIGH and global
set/reset (GSR) during configuration. This is required for the active partial
reconfiguration enhancement features, since GHIGH would set all CLB
outputs of the device to ’1’ and GSR would reset all flip-flops and latches for at
least one cycle.
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- g Persist:Yes is needed for readback and partial reconfiguration using the
SelectMAP configuration pins. If Persist is set to ”Yes” , the pins used for
SelectMAP mode are prohibited for use as user I/O.

- g ActivateGCLK:Yes allows any partial bitstream for a reconfigurable area
to have its registered elements wired to the correct clock domain.

These and all other options are described in [17], which is left to the reader to con-
sult, since their impact is not of large importance in context with this thesis.

3.1.5 Final Assembly Phase

During this phase, the modules are assembled into one design by running ngdbuild
in assemble mode:

ngdbuild -p xc2v3000-4fg676 -modular assemble -pimpath
.. \.. \pims top.ngc

Thereby the top-level .ngo file , constraints from the top-level .ucf file and all
PIMs are read to create a design, where all modules are fully expanded. Then for
map, place and route (par) the placement and routing information from each PIM is
used to preserve the results from the Active Module Implementation Phase. Finally
bitgen is run with the DRC enabled to create a full bitstream.

bitgen -f bitgen_v2_assemble.ut top.ncd

3.2 How to Use XFOSGen

Figure 3-3 shows the Graphical User Interface of XFOSGen. In the uper left section
several parameters can be set:

• Device Type: Currently only Virtex-II 3000 is supported.

• OS Frame width: The left (L) and right (R) part of the os frame can be sized
seperately. The widths are measured in number of slices. Remember one CLB
is 2 slices wide. The sizes of the os frames must be chosen to leave a reconfig-
urable area width open, that is an integer multiple of 16 slices wide.

• Number of IFCCs: The number of signal lines can be set seperately for sig-
nals running from west to east (WE) and from east to west (EW). Since one
bus macro contains four signal lines, numbers entered must be an integer mul-
tiple of four.

In the field ’Design Step’ it can be chosen whether only a blank OS frame with
dummy tasks inbetween is created, or if additionally a user task is produced. If
’User Task’ is selected the following options can be set for the user task:
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Figure 3-3
The XFOSGen Graphical User Interface

• Position: The position where the user task is to be configured can be adjusted
in steps of 16 slices.

• Width: The width of the user task can be an integer multiple of 16 slices, but
it must not exceed the width of the reconfigurable area.

The button ’Update OS Layout’ applies the parameters to the visualization in the
right part of the GUI. Several check boxes control whether CLBs, slices, OS frame,
bus macros, IFCCs and user task are displayed.

The lower left section shows how many dummy tasks are created and how many
bus macros are instantiated, with the current settings.

On the bottom line the target directory can be selected with the ’Browse...’ button.
Finally the generation of the design files is initiated.
Figure 3-4 shows a view of XFOSGen with different settings.

3.3 XFOSGen Output Files

XFOSGen generates a complete directory structure to match the paradigms of mod-
ular design flow as already shown in figure 3-1.
There are several sorts of files created inside the design directory structure:

• Batch files, that control the modular design flow.
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Figure 3-4
XFOSGen configured to Create a Design with a Larger Right OS Frame and a User Task
with Width 2 ∗ wmin

• VHDL files, containing application independent code, such as: operating sys-
tem components, communication infrastructure, instantiations of modules and
bus macros, . . .

• Constraint files (.ucf ), that contain: area constraints, bus macro placement
constraints and pad location constraints.

• Options files for synthesis and bitstream generation.

Before the implementation is started, the user is free to add his code to the
various .vhd files in the hdl directory. operating system components shall be added
to ”os_left.vhd” and ”os_right.vhd” respectively. If a user task shall be
produced its functionality shall be added to ”user_task.vhd” . The dummy tasks
’”task_i.vhd” need no changes. The logic they contain is necessary to prevent the
ISE tools from optimizing them away.
Also the correct Bus Macro file needs to be copied to the directories
”Project \top \initial” and ”Project \top \assemble” .
The implementation is started by double-clicking the ”run_design.bat” batch
file. Thereupon the synthesis is started, using XILINX Synthesis Technology
(XST). If the user has added files to the project, they need to be listed in
”Project \synth \project_files \<module>.prj” before synthesis is started.
Where <module> stands for the module name wherein the additional component
is instantiated. Since by default all area is distributed to os frames and tasks, it is
not allowed to add any other components to the ”top.vhd” file. The listing in the
.prj files must be in reverse-hierarchical order as shown in the example for an
”os_right.prj file in appendix A.
Synthesis options are set in the .xst files, which are located in
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”Project \synth \xst_settings \<module>.xst” . An example .xst file can
be found in appendix B. Changes to this file shall only be done with precaution.
Namely important settings to be left unchanged are:

- bus_delimiter () keeps the netlist compatible to following ISE tools, while
other delimiters as [], {} or <> would cause trouble.

- iobuf NO tells the synthesizer not to instantiate I/O pads for port signals. It
must be set to ”NO” for all modules (including os frames). For the top-level
design it must be set to ”YES” .

The synthesis output files are copied by the ”run_design.bat” file to the ap-
propriate directory in the ”Project \modules” directory, where they are further
processed during Active Module Implementation.
After synthesis has taken place the Initial Budgeting phase takes place in the
”Project \top \initial” directory.
Thereafter ”run_design.bat” moves to the ”Project \modules” directory to
start the subordinate batch files, which control the Active Module Implementation of
the OS frames, dummy tasks and user task. These batch files run ngdbuild, map,
par, bitgen and pimcreate as described in subsection 3.1.4. The created partial
bitstreams are copied to the ”Project \bitstreams” directory. An example for
the bitgen settings file can be found in appendix C.
Then ”run_design.bat” moves on to the directory ”Project \top \assemble” .
There the last batch file called ”assemble.bat” takes care of the Final Assembly
phase as described in subsection 3.1.5. ”assemble.bat” creates one full bitstream
containing the OS frame and the reconfigurable area filled with dummy tasks.
Depending on whether a user task was implemented, a second full bitstream is
created. It contains the OS frame, the user task and — if necessary — dummy tasks
to fill the reconfigurable FPGA area. Again the produced bitstreams are copied to
the ”Project \bitstreams” directory.
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Reconfiguration Effects

When an FPGA is used in a static manner, configuration is done on system start-up.
As such a configuration is always a full configuration and no part of the FPGA is pro-
cessing data at configuration time, there are no Reconfiguration effects that would
affect functionality of the device. This is different in a design where the FPGA is
partially reconfigured during runtime. There two possible effects might affect the
proper operation of other, running tasks. These two effects are leaks in the clock
distribution (discussed in section 4.1) and transient effects (discussed in section 4.2).

4.1 Clock Distribution

When designing dynamically partial reconfigurable designs, there are some situ-
ations concerning the clock net to be expected, which would lead to undesirable
behaviour of the FPGA. Subsection 4.1.1 describes from what these situations
could evolve. Thereafter subsection 4.1.2 shows how one can avoid the named
complications with the clock nets.

4.1.1 What is the Problem with the Clock Distribution?

Firstly recall that the groundbreaking fact about the dynamic partial reconfigu-
ration: Parts on the FPGA which are not to be overwritten by an applied partial
bitstream are able to do their work during and after the partial reconfiguration
without an interrupt. To be able to do so without any errors, two preconditions must
be fulfilled:

1. No signal lines of the running tasks may cross the border to the area where a
task is being reconfigured.
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2. The clock signal driving any sequential logic must not be disrupt. As shown in
figure 4-1a and b

Precondition 1 is met by using the XILINX design flow for partial reconfiguration
with the area constraints, described earlier in section 3.1 of this report. Precondition
number two needs to be taken care of.
Furthermore a newly configured task needs to be connected to the proper clock
nets to be able to start its operation. Not as depicted in figure 4-1b. One needs to
consider this situation as well when creating partially reconfigurable designs.
For the following paragraphs let’s call the pitfall in figure 4-1a cut off clock, where
task TX disconnects the right OS frame from the clock net. And let’s call the one in
figure 4-1b missing clock, where task TY lacks an existing clock net.

Figure 4-1
Two Possibilities for Clock Net Problems Caused by Partial Reconfiguration

4.1.2 First Approach to the Clock Net Problem

Let’s take heavily simplified view of the problems described in the previous section:
The problems are inactve wires or wire parts in a partial configuration file. They
appear because the bitstreams were produced without a global context, which
consists of adjacent areas containing logic and the global clock net. What we need
to do, is somehow manually insert this contextual information. So we need to
manually activate clock net sections, which are not used by the reconfigured area
itself but by another area already configured or one to be configured in the future.
Figure 4-2 shows, how one completely activated clock net looks like.

Obviously it would be an enormously extensive and tedious work to check for every
part of the clock net, whether it is needed to be active at any time or not. The secure
workaround is to activate the complete clock net in the initial full bitstream and
also in every partial bitstream.
The manufacturer of the Virtex-II devices is not willing to provide information of
the internal structure of the configuration files to its devices. So a direct manipu-
lation of configuration bitstreams is out of the question. Instead, XILINX provides
a Java pakage called JBits, which supports generation of new and manipulation

26



4.1. Clock Distribution

Figure 4-2
Screenshot from XILINX FPGA Editor of a Fully Activated Clock Net

of existing bitstreams at lowest level. Therefore, a software to activate a clock net,
must be written in Java using XILINX JBits. Unfortunately there exists only little
documentation on JBits. The tutorial provided gives a quick introduction on how
to do some basic operations as manipulating LUTs or connecting wires. However,
to access a specific resource, it is hard to find the correct class and method among
the huge number of possibilities. Unfortunately the API provided with JBits does
not give much information on how the packages are structured. Also the naming of
methods and fields is barely self-explanatory.

The approach to the desired software was pretty much based on trial and error:
To be able to see whether a JBits command affects a bitstream in the desired
manner, a bitstream was taken, in which all flip-flops on the FPGA and therefore
one complete clock net were active. Then using ”XILINX FPGA Editor” the clock
net was deleted. After producing a bitstream from this edited design, the clock net
was step by step reintroduced using JBits. Comparing the manipulated and the
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original bitstream with the full clock net helped to check if the used JBits command
really did the desired routing. To be able to observe changes made to the bitstream
and differ control-bits from configuration-bits, a software called ”BitStreamParser”
was written to translate any bitstream from bit format to the XILINX configuration
instructions described in [16] and [20]. See appendix D for more details on ”Bit-
StreamParser”. Finally ”ClockActivator” included all the commands necessary to
activate a full clock net.

4.1.2.1 Clock Activator

The ClockActivator was oritinally written to support designers for the
platform. It can only activate 5 clock nets because there are only five pads connected
to clock sources. One of them bearing the 50 MHz clock signal from the on-board
cristal oscillator. The others being programmable clock signals from the C-FPGA.
See table 4-1 for a list of all these clock signals, PADs they are attached to and clock
net numbers they are supplying.

Clock PAD Clock Net Nr.
Clock 0 from C-FPGA D13 5
Clock 1 from C-FPGA G14 1
Clock 2 from C-FPGA AB13 6
Clock 3 from C-FPGA AB14 2
Clock 4 from 50 MHz Oscillator F13 7

Table 4-1: Clock Inputs to the R-FPGA, Clock Pads and Clock Nets

Let’s concentrate on the commands found to be useful to fulfill the needs of clock net
activation.

First it is important to know, that for the use with JBits a Virtex-II device is orga-
nized in a multitude of so called ”tiles”. The most common ones are called ”CEN-
TER”. They contain the CLB information. To find out which ones contain clock net
information, the following method is valuable:

MyDevice.getTileType(TileYCoord, TileXCoord)

With the knowledge of tile names and coordinates as well as the JBits API [15] it
was possible to find out, which tiles of the device contains resources that control the
routing of the clock net.
Depending on which clock net needs to be configured the first routing step is either
in the middle of the top tile row or in the middle of the bottom tile row. As it is
the global clock buffer which needs to be enabled. Clocks 0, 1 and 4 enter the device
through the buffer on top, clocks 2 and 3 through buffers on the bottom of the device.
The respective tiles are called ”CLKT” or ”CLKB” .
The command

MyJBits.setTileBits(TileYCoord, TileXCoord,
com.xilinx.JBits.Virtex2.Bits.Logic.Clkt.DISABLE_VALUE.CONFIG[7],
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com.xilinx.JBits.Virtex2.Bits.Logic.Clkt.DISABLE_VALUE.LOW);

enables the clock buffer number 7 from the top clock input. Further the command

MyJBits.setTileBits(TileYCoord, TileXCoord,
com.xilinx.JBits.Virtex2.Bits.Logic.Clkt.SINV.CONFIG[5],
com.xilinx.JBits.Virtex2.Bits.Logic.Clkt.SINV.S_B

selects the input to the buffer by either inverting (S_B) or not inverting (S) the se-
lect input (SINV) to the buffer. Like this, the clock signal is routed to the clock trunk
placed vertically in the middle of the device. To feed the horizontal branches, the
tiles ”CLKVD1” , ”CLKVD2” , ”CLKVU1” or ”CLKVU2” need to be configured, depend-
ing on the clock net to be routed. The following commands supply the horizontal
branches to the left and the right with the clock signal sourced on from the top of
the device. Affected is clock net number 7.

MyJBits.setTileBits(TileYCoord, TileXCoord,
GCLKC_GCLKL7.GCLKC_GCLKL7, GCLKC_GCLKL7.GCLKC_GCLKT7);

MyJBits.setTileBits(TileYCoord, TileXCoord,
GCLKC_GCLKR7.GCLKC_GCLKR7, GCLKC_GCLKR7.GCLKC_GCLKT7);

Next step to do is to lead the clock signal from the branches to the routing matrices
and thereby to the CLBs. This is done by configuring tiles called ”GCLKH” .

MyJBits.setTileBits(TileYCoord, TileXCoord,
GCLK_UP7.GCLK_UP7, GCLK_UP7.GCLK_B7);

MyJBits.setTileBits(TileYCoord, TileXCoord,
GCLK_DN7.GCLK_DN7, GCLK_DN7.GCLK_B7);

Finally the clocks to the slices in each CLB can be connected to the clock net:

MyJBits.setTileBits(TileYCoord, TileXCoord, CLK0.CLK0,
CLK0.GCLK7);

MyJBits.setTileBits(TileYCoord, TileXCoord, CLK1.CLK1,
CLK1.GCLK7);

MyJBits.setTileBits(TileYCoord, TileXCoord, CLK2.CLK2,
CLK2.GCLK7);

MyJBits.setTileBits(TileYCoord, TileXCoord, CLK3.CLK3,
CLK3.GCLK7);

A look at all these commands reveals, that each causes the clock net to be routed
in a either horizontal or vertical direction. Recalling, the two possible pitfalls,
described in subsection 4.1.1 we see, that we only need to be afraid of broken
or inexistent horizontal clock net sections. These sections are activated in the
”CLKVD1” , ”CLKVD2” , ”CLKVU1” and ”CLKVU2” tiles. An analysis of how the above
JBits commands affect full bitstreams reveals the following. The changes due to
the manipulations in the tiles ”CLKT” , ”CLKB” , ”CLKVD1” , ”CLKVD2” , ”CLKVU1”
and ”CLKVU2” affect only the very beginning of a full configuration bitstream. That
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means configuration words with low addresses. However, these addresses never
appear in partial bitstreams. This means that the clock net needs to be set up in
the full bitstreams already. Thus it is impossible fot a partial bitstream to cut or
configure a horizontal clock line.

4.1.3 The Quick Solution

So when generating bitstreams for an application the designer needs to find out,
which branches of which clock net are needed to be active in any configuration.
Then he has to assure that in the inital full configuration exactly these branches
are activated, for instance because they are used by some dummy logic. The easiest
way to do so is to instantiate a register for every used branch of each used clock net.
It has to be assured, that this register is placed in a location on the chip, where the
respective clock net branch is supplying its signal. One way to do so would be to use
a placement constraint in the .ucf file. Unluckily, these constraints are not sup-
ported in modular design. An easy workaround is to generate a large counter within
the design for the full bitstream. 128 bit with the XC2V3000. The necessary regis-
ters will then be placed in one vertical column across the whole chip, thus using all
six branches of the clock net on one half of the FPGA (see section 4.1). So the regis-
ters and their clock inputs will be overwritten by any partial reconfiguration of that
section but not the activation of the — now possibly unused — clock net branches.
So the clock signal will be available again to following partial reconfigurations.
In all designs done during this thesis the solution to the problem is even more sim-
ple. The only clock used at all is the 50 MHz system clock. This clock the largest use
of it is in the OS frame. Consequently all necessary clock net branches are activated
anyway.

4.2 Transient Effects

To understand the impact of transient effects in partially dynamic reconfigurable
designs, we must bear in remembrance, that during partial reconfiguration logic
shall be able to continue its execution. It was already shown in the previous section,
how this is facilitated in terms of clock net. It was also stated, that signal lines
must not cross borders between different task slots to avoid them from being
disrupt by the partial reconfiguration. In this section transient effects on signal
lines are discussed. We have to pay attention to those, because the possibility
to continue calculations is worthless, as long as the data being processed is not
assured to be valid. So subsection 4.2.1 deals with the reason for transient effects
while subsection 4.2.2 shows how a situation during dynamic reconfiguration can
be handeled without transient effects affecting processed data.
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4.2.1 Why Do Transient Effects Occur During Reconfiguration?

Other than clock signals, data signals have a much larger number of routing re-
sources, they are able to be attached to. Consequently there are also several ways,
how a signal can be guided between two pieces of logic or through a task. See fig-
ure 4-3 for a visualization: Task A leaves enough space to pick the timing-optimal
routing. Logic in Task B forces the routed line to leave the direct path. Task C even
routes the signal through its own logic. All three of them produce transient signals,
when exchanged for each other.

Figure 4-3
Different routing for signal lines through tasks

These transients occur, because the existing signal line cannot be maintained during
reconfiguration. Instead it has to be erased and replaced by the new one. Thereby
the signal traversing the task slot is interrupted. So during the time of partial re-
configuration it has to be assumed that signals entering, leaving or traversing the
reconfigured task are flawed. There is no easy way of having communication lines
routed the same way for every implementation of a task. This is because the XILINX
routing tool uses a non-deterministic algorithm to connect the placed elements.

4.2.2 Ways to Deal With Transient Effects

In an earlier work [3] Erni and Reichmuth already pointed at the breaks during the
bitstream-download. Their solution was, to freeze all critical signals (Reset, Read-
Enable and WriteEnable) during the download. Thereby the affected signals were
stored in a flip-flop and conserved until configuration was complete and the freeze
signal released. To ensure, that the freezing signal is not interrupted itself, it was
carried to a pin in the OS-Middle and connected to the left and right OS frame by
means of an external wire. To recall the situation, please refer back to figure 2-2.
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The idea, how to suppress influences of transient effects, realized during this the-
sis, adheres the idea of freezing signals. The difference lies in the fact that there is
no need for external wiring anymore. Instead the operating system can initiate a
freeze phase, whose duration is proportional to the size of the task to be reconfig-
ured. During this freeze time every task neither reads nor writes any signal outside
its own area, but it can still continue with intermediate computations. The duration
of the freezing is submitted to the tasks via a dedicated signal line. The minimal
freeze time for a full configuration is tfull reconfig = 28 ms, this time was reached
and measured in [8]. There are 2 ms overhead and 26 ms configuration time. Con-
figuration time degrades linear with the area size to be reconfigured. Therefore one
minimal-sized task should take about tpart reconfig = 9 ms for reconfiguration. So the
freeze signal needs to be active for one clock cycle if a minimal-sized task is to be
configured. For each additional wmin in task size the signal needs to be kept HIGH
for an additional period, to keep the freeze signal active long enough. So if the oper-
ating system needs to reconfigure a task with a width of 3 ∗ wmin the freeze signal
will be pulled up for 3 periods. As soon as the freeze signal is released a counter is
started in each task to freeze all access to the bus for the following 3 ∗ tpart reconfig.
An example code for the implementation can be found on the CD attached to this
report.
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Communication on the R-FPGA

In sections 2.3 and 4.2 the communication on the R-FPGA has been discussed from
the point of view, that they might cause a lot of trouble, if communication lines
between interacting modules were not handeled carefully. Thereby almost no infor-
mation was given on how these modules communicate. Therefore this chapter covers
this topic. The chosen bus system is discussed in section 5.1. How the arbitration of
the bus is done is topic to section 5.2. Section 5.3 discusses the bus access controller
provided to the user tasks in the reconfigurable area. These sections contain the
ideas from [29] explained in some more details towards the implementation.

5.1 The Task Communication Bus (TCB)

Choosing an adequate communication infrastructure for the RHWOS on R-FPGA is
very much a matter of weighing up data throughput with necessary resources. Max-
imum throughput would be reached if every task had its dedicated wires, turning
the communication infrastructure into a crossbar. Recalling that there are up to five
user tasks and two OS frame parts participating in communication on the FPGA, it
is evident that a crossbar would demand way too many resources (i.e. FPGA area!).
Therefore a shared bus structure was chosen to serve as communication resource
for the R-FPGA. Let’s call this bus Task Communication Bus, or abbreviated TCB.
Bus arbitration is done in the OS frame with the Bus Arbiter Left (BARL) and Bus
Arbiter Right (BARR). User tasks have access to the bus by means of the Bus Access
Controller (BAC). Figure 5-1 gives an overview on the TCB infrastructure.

As described in subsection 3.1.2.1 the TCB needs to be routed through bus macros
when traversing module boundaries. The direction, these bus macros are guiding
the signals to, is set by constants during design entry. Thus it is not possible to
have a bidirectional bus. Therefore the TCB consists not only of one bus, but much
more two busses. One which is transmitting signals from the left hand side to the
right hand side, and one which is transmitting signals from the right hand side to
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3 Design of a Runtime Environment

The most important characteristic of Xilinx Virtex is its column-wise chip-spanning
partial reconfiguration which asks for a one-dimensional resource model. Consequently,
we partition the user task area into a number of vertical task slots. The main feature
of our runtime system with respect to resource management is its ability to deal with
variable-sized slots. In the following, we emphasize on the partitioning of the reconfig-
urable surface and the communication infrastructure.
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Fig. 3. OS frame (left, right) and Task Communication Bus (TCB)

3.1 OS Frames and Variable-sized Task Slots

According to the concept of Section 2.3, the FPGA surface is split into a static and a
dynamic region. The static region comprises all operating system modules and is orga-
nized into two OS frames located at the left and right edges of the FPGA. This is shown
in Figure 3. While the static region that contains the OS modules remains unchanged
during system operation, it can still be adapted to fit the needs of different application
domains on a longer time scale. The dynamic region comprises logic resources available
for user hardware tasks.

Whenever the system is powered up or the RHWOS is adapted, the FPGA undergoes
a full configuration. This initial configuration contains the OS frames with the RHWOS
elements and the dynamic area organized into a number of dummy tasks. Dummy tasks
are placeholders for user tasks. They do not implement any functionality but establish
the communication infrastructure of the runtime environment. Each dummy task imple-
ments a part of the overall communication infrastructure consisting of bus macros and
bus wires. The width of a dummy task defines a static grid of reconfigurable slots on
the reconfigurable area.

Figure 5-1
Task Communicaton Bus Overview

the left hand side. These ’sub-busses’ are arbitrated seperately, consequently two
communication events in opposite directions can proceed at the same time. From
here the two parts of the bus are called west-east-bus (WE-bus) and east-west-bus
(EW-bus). These namings refer to the direction of the data being sent, they do not
necessarily conform with the direction of control signals also being part of the bus.
Such signals are divided into signals using shared bus lines and signals dedicated
for commmunication between a single task and the OS frame:

1. Shared bus lines:

• Task ID signals, identifying the task, that accesses the bus

• FIFO ID signals, denoting the FIFO, which the task accesses

• Read/Write request signals

• Read/Write acknowledge signals

• Read/Write error signals

2. Dedicated signal lines:

• Request Read/Write bus signals

• Grant Read/Write bus signals

• Reset, enable, ready and done signals, used for task control

The communication protocol used on the TCB is an asynchronous handshake. The
reason why this protocol was chosen instead of a synchronous one is due to timing
problems on the bus. The observation was made in the design described later in
section 6.3.
Communication between tasks or between tasks and OS frame elements is always
done by means of FIFO buffers. So any read or write access on the bus targets
the memory management unit (MMU) in the OS frame. The MMU is developed by
Krisofer Jonsson, so please refer to [8] for more details about the MMU.
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5.2. The Bus Arbitration OS Service

5.2 The Bus Arbitration OS Service

The motivation for implementing the bus arbitration is obvious. There might be up
to five user tasks configured to the reconfigurable area of the device. Concurrent
bus access by more than one such task must be made impossible. Still there must
be fair treatment of all tasks requesting the bus at the same time. For these reasons
and for its simplicity a round-robin-style algorithm is used. Figure 5-2 shows the
finite state machine used to implement the bus arbitration.
As long as no task requests the bus, the bus arbiter scans the request lines of

Figure 5-2
Finite State Machine for the Bus Arbitration

all tasks in circular order. When a request is detected, the grant is asserted in
state ”Grant Bus”. At the transition to this state, the number of the task currently
accessing the bus is stored in a seperate register. This allows to prefer the request
of the other tasks as soon as the current access is stopped. So if a transaction is
acknowledged and another request (”New Bus Req”) from a different task is already
pending, the arbiter FSM immediatly passes to the state ”Grant Bus”, where the
bus is granted to the newly active task. Again the task number is stored.
There are some transitions which are not present in figure 5-2 for the sake of
clarity: When a transaction finishes — due to either an acknowledge (”Ack”), error
(”Err”) or bus release (not ”Req i”) — and no other bus request is pending, the FSM
leaves its current state (”Grant Bus”, ”Await Ack”, ”Ack” or ”Error”) and re-enters a
”Task i” state. So the circular scanning of request lines is resumed.
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5.3 The Bus Access Controller

The idea behind the Bus Access Controller (BAC) is to make the complete Bus
Structure, which is needed for communication between the user tasks and the
OS frame, transparent for the user tasks. This means that the user task does
not have to request the bus and wait for the grant signal from the bus arbiter,
before it can accomplish a data transaction. Also a user task does not need to
know about the communication protocol used on the bus. The only rule it has to
follow is: After initiating a data transaction to or from the OS frame, applying a
DataReady or ReadRequest signal to the BAC, every following DataReady or
ReadRequest signal is ignored, until the transaction has been acknowledged by
the OS frame.
In case of a failed transaction (due to full or empty FIFO), the BAC releases the
bus, to grant fair access to the bus to other user tasks. But shortly after it will
re-request bus access for another attempt on the same transaction. This is done
until the transaction is acknowledged, or the operating system detects the repeated
failure (in fact it should detect the full FIFO). The operating system then can react
in several ways: Either a task is started, which reads from the affected FIFO,
or the user task is either reconfigured or reset and/or disabled. The finite state
machine showed in figure 5-3 shows the behaviour of the bus access controllers.
BACs controlling read and write accesses to a bus have the same behaviour.

5.3.1 The BAC - User Task Interface

Another benefit of the BAC is, that it provides a unified interface for any user task
to be implemented. This interface consists of three groups of signals.

1. Write Interface

• DataRdyinxSI is used to initiate a write transaction.

• WriteDataxDI transmits the data to be written.

• WriteAckxSO signals, that the data has been written successfully.

2. Read Interface

• ReadReqxSI requests a read transaction.

• ReadAckxSO reports, that the requested data is available.

• ReadDataxDO carries the requested data.

3. Control and Status Signals

• ResetxRO is a reset signal, that enables exclusive reset of the attached
user task. The signal is thought to be controlled by the operating system
(i.e. the software part of the OS, running on the C-FPGA).

• EnablexSO allows the operating system to stop the computations in a
user task. Initiated data transactions can not be intercepted by removing
this enable signal.
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Figure 5-3
Finite State Machine Describing the Behaviour of the BAC for Read and Write Interfaces

• ReadyxSI is set by the user task to indicate, when it is ready to process
data. For instance after having completed a setup procedure.

• DonexSI is assured by the user task, when it has finished its work and
therefore could be reconfigured.
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6
Design and Implementation

The implementation of the Reconfigurable Hardware Operating System services on
the R-FPGA was done in an incremental style. In the beginnng the verification of
reconfiguration capabilities was the main goal of the designs. The first of these is
called ”LED counter” project. Its purpose, functionality, implementation and results
are topic to section 6.1.
In the second design described in section 6.2, the concept of granular variable-sized
tasks was verified.
In the following designs (sections 6.3, 6.4 and 6.5) more and more OS services were
added to prove that their concept is realizable.

6.1 Experiment 1: LED Counter

The ”LED counter” was chosen as a starter project for partial reconfigurable design
for several reasons. Firstly it should be as simple as possible to not run the risk of se-
mantical and/or syntactical errors. Therefore a simple counter was chosen. Secondly
the success of the project should be easily observable. That’s why the seven most sig-
nificant bits (MSBs) of the counter are carried to the LEDs on the . In
addition also the signal from one switch on the was carried to a LED.
In spite of the simplicity of the project there should also be obtained some insight,
that helps to push the project farther. On the one hand a test is done whether a bus
structure as described in section 5.1 is possible to implement. On the other hand a
first partial reconfiguration should be done.
To keep this second aim simple, the user task only changes the order of the trans-
mitted counter bits. More precisely the MSB is exchanged with the LSB, the second
is exchanged with the last but one, and so on. Thereby no logic is applied to the
data in the user task. So there are the OS frames left and right connected by the
TCB (without arbiters and bus access controllers). In between the OS frame parts
remains the 80 CLBs wide reconfigurable area. In a first attempt to implement the
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design, the routing in the 10 four CLBs wide dummy tasks failed due to insufficient
routing resources. Therefore the width of the tasks was broadened to eight CLBs
(this was already noted in section 2.3). Figure 6-1 shows a view of the finally imple-
mented ”LED Counter” project: The counter is located in the right OS frame. The
signals addressing the LEDs are routed on the EW-bus through the reconfigurable
area to the left OS frame, where they are sent back on the WE-bus to the right
OS frame. There they are finally written out to the LEDs. So obviously the bus is
not a shared medium in this design, as it was described in section 5.1. Much more it
is dedicated to the counter signals and the signal from the switch.

Figure 6-1
Schematic of the LED Counter Project

During the implementation of the ”LED counter” project it turned out to be neces-
sary to include dummy logic into modules where only routing is required. Otherwise
the complete module got optimized away. Such dummy logic is nothing but signals
carried into a register, whose output is never used. Still these registers would get
optimized away, so the attribute ”keep” must be applied to the registers outputs.
The completely implemented design performes as desired. Additionally, during re-
configuration of the user task, the transient effects described in section 4.2 are ob-
servable. They appear as somewhat chaotic behaviour of the LEDs. This is due to
the unrouting and rerouting in the area being reconfigured, mixed with the fact,
that the counter is not stopped for the reconfiguration time.

6.2 Experiment 2: Knightrider

In this second project the idea was to implement user tasks that do not just route but
rather generate data. Again the result should be visible. Therefore again the LEDs
of the were targeted with the produced signals. As a further extension
the signals produced in different tasks are not exclusively written on the bus. The
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signal on the bus is much more a superposition of the different OR-ed user task
signals. So the functionality of a single user task is to generate a ”Knightrider”
signal at a certain speed. This speed is different for the five user tasks targetting
the five different positions in the reconfigurable area. Like this it is possible to
observe the operation of all concurrently configured user tasks. The operation of

Figure 6-2
Schematic of the Knightrider Project

this project is as desired. All five user tasks can be configured to the device. So up
to five LEDs can be watched running back and forth in knightrider-style. Every
single one can be removed by configuring the respective task slot with the matching
dummy task.
There were two other observations made. The first was, that some of the user tasks
need to be reset, before they operate properly. The fact that only some of the five
versions of the user task are affected is somewhat confusing, as the implemented
code does not differ besides the size of the counter used to determine the speed of
the respective signal. So it is reasonable, to implement the possibility to reset tasks
individually as described in section 5.1. Implementing only a global reset would
undo all advantages of dynamic partial reconfigurability. A second observation
made associates with the partial reconfiguring process. After a partial reconfig-
uration it can happen, that the reconfiguration logic of the device is in a sort of
error state, although the configuration actually has succeeded. However this state
is left as soon as the status of the configuration logic is either read out or after any
other partial reconfiguration. This reconfiguration will not succed then in the first
attempt, but surely in the one thereafter.
Thereupon, the ”Knightrider” project was pushed forward one more step. To prove,
that the concept of the granular variable-sized resource model is successfully
applicable, a dummy task with width 2 ∗ wmin was created. This way it is possible
to overwrite two ”knightrider” tasks at one partial reconfiguration. Now it can
also be shown that when larger dummy task gets overwritten by a smaller task, a
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dummy task must be additionally configured to have a complete bus structure again.

6.3 Experiment 3: Sawtooth

The ”Sawtooth” project was initiated to add some small operating system function-
ality to the design. Therefore instead of the LEDs the 16 bit audio codec was chosen
as the utilized output device. So the necessary service provided by the operating
system consisted of the audio driver, implemented in an earlier student thesis [9].
The audio data, which is produced in a user task, is a sawtooth signal. It is written
into a FIFO in the right OS frame. From there the audio driver reads the data to be
played. In this project only the right-most user task is able to sent its signal to the
right OS frame. It is cutting off the signals coming from user tasks on its left hand
side. Then it only puts its own signal on the bus. See figure 6-3 for a view on the
project.

Figure 6-3
Schematic of the Sawtooth Project

It was the ”Sawtooth” project, where it became obvious, that the delay on the bus is
too large to have a 50 MHz synchronous communication. This showed as the signal
generated in the left-most task slot appeared with the doubled frequency, compared
to the one generated in the other task slots. So obviously every other data word
was lost on the bus. The analysis of the full bitstreams without the user task logic
showed the dummy signals from register outputs in the area of the left OS frame
traversing the whole device to the right OS frame area. Thereby six bus macros were
travesed. Figure 6-4 shows an extract of the timing analysis done with the ”Timing
Analyzer” tool by XILINX.

For each bus macro 0.546 ns combinational delay was estimated. Around 2.144 ns
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Figure 6-4
Timing Analysis of the Sawtooth Project (excerpt)

routing delay between each pair of bus macro were added. Together with some other
combinational delay in the OS frames, the desired 20 ns period could not be reached
anymore. So the decision to use the asynchronous handshake protocol was made, to
prevent further timing problems on the bus.

6.4 Experiment 4: Write Communication

This project introduces for the first time a bus arbiter and a bus access controller.
So access to the bus needs to be requested and can only happen after the request
was granted by the bus arbiter. So in the ”Write Communication” project the
user task contains the bus access controller (BAC) for the bus, which sends data
to the right OS frame. The arbiter is located in the right OS frame. The incoming
signals connect to the memory management unit (MMU; also located in the right
OS frame). To configure the ”MMU” from the CPU-FPGA the ”OS Bridge” module
needed to be added. This component was designed in a previous masters thesis [11],
more information on the ”OS Bridge” can be found there. The data produced by
the user task is again a sawtooth signal to be output to the audio codec. The saw-
tooth task was implemented according to the interface described in subsection 5.3.1.
Thus the sawtooth component does not need to worry about requesting the bus. The
complete design is outlined in figure 6-5.

The implementation and debugging of this design was a painstaking process. A
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Figure 6-5
Schematic of the Write Communication Project

complete implementation took several hours. Yet the earlier projects showed that
most probably the bus structure built of bus macros caused a lot of computing
during ’place and route’. In the ”Write Communication” project it seems that espe-
cially the MMU, being a component with large routing requirements, slowed ’place
and route’ down. This is an estimation, based on observations on several failed
implementation runs. The implementation tools do not give a lot of information
why routing was unsuccessful. But partially routed designs can be watched in
”FPGA Editor” and unrouted signals were mostly related to the MMU. However
in the n-th attempt a successful implementation was obtained, letting the signals
from the ”sawtooth” user task pass the bus to the MMU and from there to the audio
driver and finally the audio codec.

6.5 Experiment 5: Loop Back

The ”Loop Back” project is an attempt to add a read interface to the bus access
controller. Thereby allowing a user task to read from a FIFO in the OS frame
and write the data back to another FIFO. At this time the operating system on
the CPU-FPGA allowed to write and read FIFOs in the right OS frame. So the
verification of the design should be no problem. Additionally, the infrastructure to
freeze, enable/disable and reset existing user tasks was included in the code. Again
an outline of the project is shown, this time in figure 6-6.

However a successful implementation could not be reached. Most implementation
attempts stopped because of unsuccessful routing. There was one design which was
routed completely except for four constant signals, as visual inspection of the design
in ”FPGA Editor” revealed. Since these signals were constant ’1’ , the attempt was
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6.5. Experiment 5: Loop Back

Figure 6-6
Schematic of the Loop Back Project

taken to route them manually to nearby Vcc pads. But the received bitstream did not
show the desired behaviour. It remains unclear, whether the driving capabilities of
the pad are insufficient or any other reasons are causing the failure. Also a timing
analysis revealed some very slow paths in the MMU. So the design was rerun for
half the clock frequency. Still this attempt brought no improvement.
Regrettably there was no time left to do further debugging on the ”Loop Back”
project, since the time available for this masters thesis was nearly over. The
incomplete implementation files are provided on the attached CD as well as all
successful implementations described in this chapter. So in a following thesis the
status of this currently unsuccessful project could hopefully be ameliorated.
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7
Achievements and Outlook

7.1 Achievements

During this thesis several steps towards a Reconfigurable Hardware Operating Sys-
tem for the were successfully taken.

The Granular Variable-Sized Resource Model was constructed. This model allows to
configure the reconfigurabe device area of the R-FPGA with variable sized modules,
without running a risk of discontinuous communication lines.
The implementation of such a partially reconfigurable design with several
user tasks turned out to be a laborious task. So a piece of software called
”XFOSGEN” was built, to produce the complex VHDL code. Additionally
”XFOSGen” provides batch- and settings- files that automatize the whole Modu-
lar Design Flow for partially reconfigurable designs.
Two possible pitfalls in dynamically partially reconfigurable designs were analyzed.
First the impacts of partial reconfigurations on the clock net were evaluated. Re-
sulting in the insight, that the clock net per se is neither activated nor disabled by
user tasks. Much more the information about all used clock nets needs to be con-
tained in the full bitstream, which is configured initially in each application.
The second pitfall analyzed, was the transient effects on communication lines be-
tween different modules during partial reconfiguration. To avoid negative impact of
these phenomenons, the freeze functionality was presented.
Further the task communication bus (TCB) was chosen to connect OS frames and
user tasks. Bus Access Controlers provide access to the bus via a standardized in-
terface, removing the burden of the bus request procedure from the user tasks. A
fair bus arbitration concept was found and implemented.
To prove the concepts above, they were implemented in a step by step manner. OS
services implemented in other theses, were also included in these designs. The ”LED
counter” project was done to demonstrate partial reconfiguration and the concept
of the dummy tasks. In the ”Knightrider” project user tasks were implemented to
produce a LED signal. Thereby it was shown that several user tasks can run con-
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currently. The concept of the Granular Variable-Sized Resource Model was proven
by overwriting two minimal-sized user tasks with one larger dummy task.
In the ”Sawtooth” project, an audio driver has been successfully added to the right
OS frame. Plus the insight was gained, that the delay on the task communication
bus will be too high to maintain synchronous communication.
The ”Write Communication” implementation successfully added more OS services
to the design. These were Bus Arbiter Right (BARR), Bus Access Controller (BAC),
Memory Management Unit (MMU) and OS Bridge.

7.2 Outlook

Generally it can be said, that there are still a lot of things left to do in the devel-
opment of a RHWOS for the . There are services coded and ready to be
included into the OS on the R-FPGA. The ethernet driver was done in [8]. A VGA
video driver was developed in [4]. The video codec is connected to the left side of
the R-FPGA, therefore several OS services would be necessary to make use of it.
Firstly a MMU will be necessary in the left OS frame. Also a OS bridge to the left
OS frame will be of use. It has to be decided how these elements will connect to
the task communication bus. This rises the question, if new seperate busses will be
inserted with their own arbiters, or if the existing EW- and WE-busses are used for
communication with the left OS frame. If the latter is the case arbitration of the
existing busses will sureley be more complicate.
”XFOSGen” also has a large improvement potential. Preconditioned all OS services
are successfully implemented. It would be nice to augment ”XFOSGen” to a ap-
plication specific operating system generator. This means, that depending on the
application to be developed, the user can select any OS service he needs. ”XFOSGen”
will then produce the design files with only these components instantiated, thereby
providing best possible OS frame area allocation.
Another option to improve the RHWOS would be to analyze partial bitstreams
on their relocatability. This idea was shortly elucidated in section 2.3. If tasks
were relocatable, they need not be stored in several versions for different task
slots. Instead a Task Preparation Unit (see [29]) would manipulate one stored
bitstream to configure the desired task slot before partial reconfiguration takes
place. However, to be able to do so without errors, bitstreams and the whole device
configuration process need to be extensively analyzed and understood.
The topic of task preemption could also be addressed. The problem here is that
the current state needs to be either read back to the C-FPGA or stored in BRAM,
SRAM or SDRAM. This is to enable an error-free continuation of the task after
preemption.
There are also interesting applications ready to be implemented on the
with RHWOS. Namely the ”MPEG decoder” designed in [30] contains functions
which are coded in hardware to speed the whole application up. Also the ”Spectrum
Analyzer” and ”Turbo Decoder” designed in [4] contain functions accelerated as
hardware tasks.
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Although countless other improvements and applications exist, there are limita-
tions to be expected. Open questions remain. For instance it is uncertain how far
the bandwidth of the TCB will satisfy the requirements of more complex tasks. The
same holds for the OS bridge and the communication requirements of the RHWOS
between C-FPGA and R-FPGA.
There are observations made during the different implementations described in
chapter 6, which might cause for concern. First there are rapidly increasing time
requirements of the implementation of designs, namely place and route lasts longer
with every added OS service. While a ”Knightrider” project implementation with
five dummy tasks and one user tasks took 1:30 hours, the ”Write Communication”
project took 3:50 hours, the ”Loop Back” even took 6:15 to implement.
Also an increasing number of uncomplete routing efforts was observed.
Lastly the differences in timing analysis between stand-alone implementations of
an OS service and the same service included in the OS frames are large — to the
disadvantage of the version included in the OS frame.
Based on these reasons the estimation could be done, that routing resources of the
Virtex-II FPGA are not sufficient in number or density for a complex structure as a
reconfigurable hardware operating system. It is an assumption at this stage, based
on observation of the behaviour of the XILINX ISE tools. Only future work will
show, if it is true.

7.3 Visions of FPGAs Produced for RHWOS
Platforms

Today’s FPGAs are optimized for use in static designs. The ability of dynamical
partial reconfiguration is a rather recent acquired feature. Also the manufacturer
does not expect the user, to make use of the partial reconfigurability for more than
one or maybe two fixed modules. Maybe this thesis was the first attempt, to push
this concept so far, thereby possibly asking too much of the devices capabilities. So
for the last part of this report let’s make the assumption that todays FPGAs (for
example the Virtex-II) are not exactly the optimal product to implement a partially
reconfigurable device as intended on the . What characteristics would
make an FPGA more suitable for such a design?
One great improvement would be, if an FPGA was not only column-wise partially
reconfigurable. If reconfigurable areas could be rectangular of any size, area
utilization was a lot better although scheduling and allocation will become more
complex (see [26] for a more detailled discussion). With such a model it was also
possible to have only one OS frame part, for instance made of four squares forming
a ring at the border of the device, thereby having all I/O resources disposable and
avoiding ”inter-OS frame” communication difficulties. Like that more than two
user tasks could have a direct connection to the OS frame. So it would be possible
to manage communication from the OS to a multiplicity of tasks without a bus
or large resource overhead via dedicated lines. Even the transient effects during
reconfiguration could become harmless, as there are no third participants on a
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communication line which is being reconfigured.
Another idea, which might bring some improvements in performance is to mix ASIC
and FPGA technology on one device. If there was a fixed configuration of OS frame
services, they could be integrated in ASIC manner, while the rest of the device
would be reconfigurable FPGA technology. Thereby the danger of a computation-,
communication- or routing-resource-bottleneck in the OS frame is largely reduced.
That is because ASIC integration density is much higher, and therefore delays on
logic and routing are much smaller than on an FPGA.

No one knows, whether these or similar ideas will be applied in future FPGA tech-
nology. At least it is most probable that logic densities in FPGA integration will
increase. As a consequence the application field for FPGAs will continue its growth.
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A
An Example Synthesis Project File

This is an example for a XILINX Synthesis Technology (XST) synthesis project file
(.prj ). It belongs to the right OS frame of the ”Write Communication” project,
which was described in section 6.4.

work ../../hdl/globals.vhd
work ../../hdl/osbridge_opcodes.vhd
work ../../hdl/bridge_controller.vhd
work ../../hdl/pfid.vhd
work ../../hdl/vfdl.vhd
work ../../hdl/write.vhd
work ../../hdl/read.vhd
work ../../hdl/osbridge.vhd
work ../../hdl/controller.vhd
work ../../hdl/osb_mmu.vhd
work ../../hdl/xfrosbridge.vhd
work ../../hdl/top_mmu.vhd
work ../../hdl/BusArbiterRightv2.vhd
work ../../hdl/os_right.vhd

When adding other source files to this list, take into account, that all files must be
listed in this file in reverse hierarchical order.
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B
An Example Synthesis Settings File

This is a settings file for synthesis, done with XILINX Synthesis Technology (XST).
It belongs to the right OS frame from the ”Write Communication” project, which
was described in section 6.4.

set -tmpdir xst_settings
set -xsthdpdir ./xst
run
-ifn project_files \os_right.prj
-ifmt VHDL
-ofn os_right
-ofmt NGC
-p xc2v3000-4fg676
-ent os_right
-opt_mode Area
-opt_level 1
-iuc NO
-keep_hierarchy YES
-glob_opt AllClockNets
-rtlview No
-read_cores YES
-write_timing_constraints NO
-cross_clock_analysis NO
-hierarchy_separator _
-bus_delimiter ()
-case lower
-slice_utilization_ratio 100
-fsm_extract YES -fsm_encoding Auto
-ram_extract Yes
-ram_style Auto
-rom_extract Yes
-rom_style Auto
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-mux_extract YES
-mux_style Auto
-decoder_extract YES
-priority_extract YES
-shreg_extract YES
-shift_extract YES
-xor_collapse YES
-resource_sharing YES
-mult_style auto
-iobuf NO
-max_fanout 500
-bufg 16
-register_duplication YES
-equivalent_register_removal YES
-register_balancing No
-slice_packing YES
-iob auto
-slice_utilization_ratio_maxmargin 5

Please do only change settings after consulting the XST User Guide [22].
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C
An Example Settings File for

Bitstream generation

Shown below are the contents of a ”bitgen_v2_std.ut” settings file. It contains
information neccessary for proper configuration of a given device. Configuration
mode, configuration clock and CRC checking are just some examples. An exhaus-
tive description of all options can be found in the ”Development System Reference
Guide” for XILINX ISE 6 [17].

-w
-l
-m
-g ReadBack
-g DebugBitstream:No
-g CRC:Disable
-g ConfigRate:4
-g CclkPin:PullUp
-g M0Pin:Pullnone
-g M1Pin:Pullnone
-g M2Pin:Pullnone
-g ProgPin:PullUp
-g DonePin:PullUp
-g DriveDone:No
-g PowerdownPin:PullUp
-g TckPin:PullUp
-g TdiPin:PullUp
-g TdoPin:PullNone
-g TmsPin:PullUp
-g UnusedPin:PullDown
-g UserID:0xFFFFFFFF
-g DCMShutDown:Disable
-g DisableBandgap:No
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-g StartUpClk:Cclk
-g DONE_cycle:4
-g GTS_cycle:5
-g GWE_cycle:6
-g LCK_cycle:NoWait
-g Match_cycle:NoWait
-g Security:None
-g Persist:Yes
-g DonePipe:No
-g Encrypt:No
-g ActiveReconfig:Yes
-g ActivateGCLK:Yes

Again caution is advisable when changing these settings.
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D
BitStreamParser

”BitStreamParser” was written during the analysis of the clock net issue, described
in section 4.1. Something even better than such a parser would have been a tool,
that visualizes, how a bitstream configures the device. Unfortunately such a tool
does not exist. Therefore ”BitStreamParser” was written to have at least an idea on
how jBits commands affect a bitstream.

First ”BitStreamParser” finds the dummy word FFFF FFFFh and the synchroniza-
tion word AA99 5566h . These two words mark the beginning of the bitstream data.
Next instructions matching ”Type 1 Packet Headers” (fig. D-1) and ”Type 2 Packet
Headers” (fig. D-2) are decoded.
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32-bit words are in the following Packet Data portion. A Type 1 Packet Data portion may contain 
anywhere from 0 to 2,047 32-bit data words.

The first packet in Table 8 is a Type 1 packet header that specifies writing one data word to the 
CMD register. The following packet data is a data word specifying a reset of the CRC register 
(compare the data field of Table 8 to the binary codes of Table 6).

The second packet in Table 8 loads the frame size into the FLR. The value is the frame size 
from Table 4, divided by 32, minus 1, and converted to Hex (e.g., the FLR for a V300 is 14h).

The third packet loads the configuration options into the COR register. The binary description of 
this register is not documented in this application note. Following this is a similar write of the 
SWITCH command to the CMD register which selects the CCLK frequency specified in the 
COR. Next, the starting frame address is loaded into the FAR. Finally, the WCFG command is 
loaded into the CMD register so the loading of frame data may commence.

Table 9 shows the packets that load all the data frames starting with a Type 1 packet to load the 
starting frame address, which is always 0h.

Packet Header Type
Operation

(Write/Read)
Register Address

(Destination)
Byte 

Address
Word Count 

(32-bit Words)
Bits[31:0] 31:29 28:27 26:13 12:11 10:0

Type 1 001 10/01 XXXXXXXXXXXXXX XX XXXXXXXXXXX

Figure 10:  Type 1 Packet Header

Packet Header Type Operation (Write/Read) Word Count (32-bit Words)
Bits[31:0] 31:29 28:27 26:0

Type 2 010 10/01 XXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 11:  Type 2 Packet Header

Table  9:  Bitstream Data Frames and CRC

Data Type Data Field

Packet Header: Write to FDRI 3000 4000h

Packet Header Type 2: Data words 5--- ----h

Packet Data: Configuration data frames in 32-bit words. Total number of 
words specified in Type 2 Packet Header

---- ----h
.... ....
.... ....

Packet Header: Write to FAR register 3000 2001h

Packet Data: Next frame address ---- ----h

Packet Header: Write to FDRI 3000 4---h

Packet Data: Configuration data frames in 32-bit words. Total number of 
words specified in Packet Header

---- ----h
.... ....

Packet Header: Write to FAR register 3000 2001h

Packet Data: Next frame address ---- ----h

Packet Header: Write to FDRI 3000 4---h

Packet Data: Configuration data frames in 32-bit words. Total number of 
words specified in packet header

---- ----h
.... ....

Packet Header: Write to CRC 3000 0001h

Packet Data: CRC value ---- ----h

Packet Header: Write to CMD register 3000 8001h

Figure D-1
Type 1 Packet Header
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32-bit words are in the following Packet Data portion. A Type 1 Packet Data portion may contain 
anywhere from 0 to 2,047 32-bit data words.

The first packet in Table 8 is a Type 1 packet header that specifies writing one data word to the 
CMD register. The following packet data is a data word specifying a reset of the CRC register 
(compare the data field of Table 8 to the binary codes of Table 6).

The second packet in Table 8 loads the frame size into the FLR. The value is the frame size 
from Table 4, divided by 32, minus 1, and converted to Hex (e.g., the FLR for a V300 is 14h).

The third packet loads the configuration options into the COR register. The binary description of 
this register is not documented in this application note. Following this is a similar write of the 
SWITCH command to the CMD register which selects the CCLK frequency specified in the 
COR. Next, the starting frame address is loaded into the FAR. Finally, the WCFG command is 
loaded into the CMD register so the loading of frame data may commence.

Table 9 shows the packets that load all the data frames starting with a Type 1 packet to load the 
starting frame address, which is always 0h.

Packet Header Type
Operation

(Write/Read)
Register Address

(Destination)
Byte 

Address
Word Count 

(32-bit Words)
Bits[31:0] 31:29 28:27 26:13 12:11 10:0

Type 1 001 10/01 XXXXXXXXXXXXXX XX XXXXXXXXXXX

Figure 10:  Type 1 Packet Header

Packet Header Type Operation (Write/Read) Word Count (32-bit Words)
Bits[31:0] 31:29 28:27 26:0

Type 2 010 10/01 XXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 11:  Type 2 Packet Header

Table  9:  Bitstream Data Frames and CRC

Data Type Data Field

Packet Header: Write to FDRI 3000 4000h

Packet Header Type 2: Data words 5--- ----h

Packet Data: Configuration data frames in 32-bit words. Total number of 
words specified in Type 2 Packet Header

---- ----h
.... ....
.... ....

Packet Header: Write to FAR register 3000 2001h

Packet Data: Next frame address ---- ----h

Packet Header: Write to FDRI 3000 4---h

Packet Data: Configuration data frames in 32-bit words. Total number of 
words specified in Packet Header

---- ----h
.... ....

Packet Header: Write to FAR register 3000 2001h

Packet Data: Next frame address ---- ----h

Packet Header: Write to FDRI 3000 4---h

Packet Data: Configuration data frames in 32-bit words. Total number of 
words specified in packet header

---- ----h
.... ....

Packet Header: Write to CRC 3000 0001h

Packet Data: CRC value ---- ----h

Packet Header: Write to CMD register 3000 8001h

Figure D-2
Type 2 Packet Header

Then the ”Register Address” is decoded. There are Internal Configuration Registers
listed in figure D-3 and figure D-4. Furthermore Command Register Commands are
listed in figure D-5.
To explain the meaning of all these commands is not necessary in context with this

thesis, therefore the interested reader is refered to [23]. The most important entry
is the FAR configuration register. This register contains information about where
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Configuration Details
This section provides a bit-level understanding of the configuration stream. For the 
purpose of debugging, designing embedded readback operations, or otherwise complex 
styles of configuring multiple FPGAs, the Virtex-II bitstream, internal configuration logic, 
and internal processing of configuration data are described here.

Data Frames
The internal configuration memory is partitioned into segments called “Frames.” The 
portions of the bitstream that actually get written to the configuration memory are “Data 
Frames.” The number and size of frames varies with device size as shown in Table 4-12. 
The total number of configuration bits for a particular device is calculated by multiplying 
the number of frames by the number of bits per frame, and then adding the total number 
of bits needed to perform the Configuration Register Writes shown in Table 4-12.

Configuration Registers
The Virtex-II configuration logic was designed so that an external source can have 
complete control over all configuration functions by accessing and loading addressed 
internal configuration registers over a common configuration bus. The internal 
configuration registers that are used for configuration and readback are listed in 
Table 4-13. All configuration data, except the synchronization word and dummy words, is 
written to internal configuration registers.

Table 4-12: Virtex-II Configuration Data Frames and Programming Times

Device
No. of 

Frames

 Frame 
Length in 

Bits

Configuration 
Bits

Total No. of 
Bits (including 

header)

Approx. 
SelectMAP 

Download Time 
(50 MHz) ms

Approx. Serial 
Download Time 

(50 MHz) ms

Approx. JTAG 
Download Time 

(33 MHz) ms

XC2V40 404 832 336,128 338,976 0.84 6.72 10.19

XC2V80 404 1472  594,688 598,816 1.49 11.89 18.02

XC2V250 752 2112  1,588,224 1,593,632 3.97 31.76 48.13

XC2V500 928 2752  2,553,856 2,560,544 6.38 51.08 77.39

XC2V1000 1104 3392  3,744,768 4,082,592 9.36 74.90 113.48

XC2V1500 1280 4032  5,160,960 5,170,208 12.90 103.22 156.39

XC2V2000 1456 4672  6,802,432 6,812,960 17.01 136.05 206.13

XC2V3000 1804 5312  9,582,848 10,494,368 23.96 191.66 290.39

XC2V4000 2156 6592  14,212,352 15,659,936 35.53 284.25 430.68

XC2V6000 2508 7872  19,742,976 21,849,504 49.36 394.86 598.27

XC2V8000 2860 9152  26,174,720 26,194,208 65.44 523.49 793.17

Table 4-13: Internal Configuration Registers

Symbol Register Name Address

CRC CRC Register 00000

FAR Frame Address Register 00001

FDRI Frame Data Input Register (Write Configuration Data) 00010

FDRO Frame Data Output Register (Readback Configuration Data) 00011

CMD Command Register 00100

Figure D-3
Configuration Registers (1/2)
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Command Register (CMD)

Commands shown in Table 4-14 are executed by loading the binary code into the CMD register.

Frame Length Register (FLR)

The FLR is used to indicate the frame size to the internal configuration logic. This allows 
the internal configuration logic to be identical for all Virtex-II devices. The value loaded 
into this register is the number of actual configuration words that get loaded into the 
configuration memory frames minus one word. 

CTL Control Register 00101

MASK Masking Register for CTL 00110

STAT Status Register 00111

LOUT Legacy Output Register (DOUT for daisy chain) 01000

COR Configuration Option Register 01001

MFWR Multiple Frame Write 01010

FLR Frame Length Register 01011

IDCODE Product ID Code Register 01110

Table 4-14: CMD Register Commands

Symbol Command Binary Code

WCFG Write Configuration Data 0001

MFWR Multi-Frame Write 0010

DGHIGH De-asserts GHIGH 0011

RCFG Read Configuration Data 0100

START Begin STARTUP Sequence 0101

RCAP Reset CAPTURE (after Single-Shot Capture) 0110

RCRC Reset CRC Register 0111

AGHIGH Assert GHIGH 1000

SWITCH Switch CCLK Frequency 1001

GRESTORE Pulse GRESTORE Signal 1010

SHUTDOWN Begin SHUTDOWN Sequence 1011

GCAPTURE Pulse GCAPTURE Signal (one shot) 1100

DESYNCH Forces realignment to 32 bits 1101

Table 4-13: Internal Configuration Registers

Symbol Register Name Address

Figure D-4
Configuration Registers (2/2)
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Command Register (CMD)

Commands shown in Table 4-14 are executed by loading the binary code into the CMD register.

Frame Length Register (FLR)

The FLR is used to indicate the frame size to the internal configuration logic. This allows 
the internal configuration logic to be identical for all Virtex-II devices. The value loaded 
into this register is the number of actual configuration words that get loaded into the 
configuration memory frames minus one word. 

CTL Control Register 00101

MASK Masking Register for CTL 00110

STAT Status Register 00111

LOUT Legacy Output Register (DOUT for daisy chain) 01000

COR Configuration Option Register 01001

MFWR Multiple Frame Write 01010

FLR Frame Length Register 01011

IDCODE Product ID Code Register 01110

Table 4-14: CMD Register Commands

Symbol Command Binary Code

WCFG Write Configuration Data 0001

MFWR Multi-Frame Write 0010

DGHIGH De-asserts GHIGH 0011

RCFG Read Configuration Data 0100

START Begin STARTUP Sequence 0101

RCAP Reset CAPTURE (after Single-Shot Capture) 0110

RCRC Reset CRC Register 0111

AGHIGH Assert GHIGH 1000

SWITCH Switch CCLK Frequency 1001

GRESTORE Pulse GRESTORE Signal 1010

SHUTDOWN Begin SHUTDOWN Sequence 1011

GCAPTURE Pulse GCAPTURE Signal (one shot) 1100

DESYNCH Forces realignment to 32 bits 1101

Table 4-13: Internal Configuration Registers

Symbol Register Name Address

Figure D-5
Command Register Commands

configuration data is written to on the device. Thanks to detecting this command the
information solving the clock net problem from section 4.1 could have been found.
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