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HIGH TEMPERATURE SU(2) GLUON MATTER ON THE LATTICE 
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We calculate by Monte Carlo simulation on the lattice the energy density e of an SU(2) Yang-MiUs system at finite 
physical temperature. First, we study the high temperature form of e, showing that the conventional euclidean lattice for- 
mulation converges to the parameter-free Stefan-Boltzmann limit of a free gluon gas in the continuum. Secondly, we show 
that the specific heat of gluon matter exhibits a sharp peak at the transition point from the confined phase to the color- 
screened gluon gas. The resulting transition temperature is found to be 210 -+ i0 MeV. 

Recent Monte Carlo studies of  SU(2) Yang-Mills 
systems [ 1,2] have provided strong indications that 
gluon matter experiences a phase transition at a criti- 
cal temperature T c around 160 -230  MeV, changing 
from a confined phase below T c to one in which color 
Debye screening renders the gluons effectively free, 
above T c. Such a transition was expected from strong 
coupling considerations [3] as well as from a variety o f  
phenomenological approaches [4] ; nevertheless, Monte 
Carlo calculations on the lattice so far constitute the 
only way of  treating in one approach the entire range 
from cont~mement to "free" gluons. 

The aim of  this note is to further investigate by 
Monte Carlo methods the thermodynamics of  finite 
temperature gluon matter. First, we want to connect 
at high temperature the lattice formulation with the re- 
sults of  perturbative QCD [ 5 - 7 ]  in the continuum, 
where the Stefan-Boltzmann form of  the energy den- 
sity provides a completely determined parameter- 
free limit. As second point, we shall show that the 
specific heart of  gluon matter exhibits a singularity- 
like peak at the deconfinement transition - giving us 
a very physical and clear-cut way to determine the 
transition temperature T c. 
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We start, as in refs. [ 1,2], from the lattice partition 
function 

Z(N,N~,g2)- f I-I dUi/exp[-(4/g2)S(U)] (1) 
(i,i ) 

where dUij is the invariant SU(2) measure and Uij the 
corresponding link variable;g denotes the bare cou- 
pling constant. The action 

(P } - ~ tr Ui/~k Ukl Uli), (2) 

is a sum over all plaquettes (P },where i,j, k, I label 
the sites defining the plaquette. The lattice underlying 
eqs. (1) and (2) has N sites in each spatial direction 
and Nt3 sites in the temperature (= imaginary time) di- 
rection. 

Eq. (2) holds for equal lattice spacing in all direc- 
tions. Choosing the lattice spacing in the temperature 
direction, a#, to be different from the lattice spacing in 
the spatial directions, a, eq. (2) goes over into 

a{7 S =  ~ (1 -~tr Ui] Uli ) 
{Ps} 

a Z~ (1 ' ) + - -  - ~ t r  Off  ... V i i  ) . (3) 
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Here the "space-like" plaquettes {Ps} have only links 
in spatial directions and the "temperature4ike" 
plaquettes {Po} have two (opposite) links in the tem- 
perature direction. 

Imposing periodic boundary conditions in the tem- 
perature direction, for sufficiently large N and N# but 
fixed/~ = N#a#, this lattice describes a system of tem- 
perature T = ~-1. Periodic boundary conditions in the 
spatial directions (although not necessary) are usually 
also assumed. In the thermodynamic limit the overall 
spatial volume V = (Na) 3 has to be large enough for 
the spatial surface effects to become negligible. There- 
fore, generally speaking, in Monte Carlo simulations of 
finite temperature systems, Na ~ N is required (at least 
for a# = a) in order to minimize the finite volume ef- 
fects in comparison with the effects of periodicity in 
the temperature direction. The temperature T = 0 is 
obtained by holding a and a# fixed as N and N¢ be- 
come "infinite". Note that there is no particular con- 
nection between T = 0 and a finite symmetric lattice, 
just as there is no reason, other than simplicity, for spa- 
tially symmetric lattices. N u must just be large enough 
in each direction/a to leave the results insensitive to a 
change o f N , .  (For a discussion of finite temperature 
effects in previous Monte Carlo lattice calculations see 
ref. [8] .) 

In the continuum, the energy density e is given by 

e = - V -1 [a In Z(fl ,  V)/bf3l v ,  (4) 

and the pressure p by 

p =fl-1 [o3 In Z(fl, v)/avlo. (5) 

On the lattice, with fixed N and Nt3, we write 

a/a~ = N~- 1 alaa~, (6) 

~/a V = (3N3a2) - 1 a l ~ a ,  (7) 

for the derivatives in eqs. (4) and (5). With eqs. (1) 
and (3), this yields 

e = e a + e g ,  p = Pa + Pg (8) 

for energy density and pressure, where 

tr Uii ... Uli l ea _ 4 ( N 3 N # a 3 a t 3 g 2 ) _ l  a ~ [ 1  -51 
g's) 

1 ) 
_ a ~ [ l _ ~ t r U i / . . . U l i  ] , (9) 

and, with eq. (3), 

eg -- 4 ( N  3 N~a3 ) -  l O g -  2 / aa~) a (S),  

pg =- - ~ ( N 3 N o a 2 a # ) - l O g - 2 / b a ) a ¢  (S)  . (10) 

Here ( ) denotes, as usual, the thermodynamic average 
over the partition function (i). 

The pressure Pa and energy density e a "at constant 
g" are found to satisfy the zero mass relation 

1 
Pa - "~ ea , (11) 

already on the lattice. 
In the continuum, perturbation theory gives as high 

temperature limit [5-7]  

e = (Ngrr 2 / 15)T 4 [ 1 - as5Nc /n  

+ a 31z 8 0 ( N & ) 3 1 Z l x / g  +- ...1 , (12) 

where Ng = N 2 - 1 denotes the number of gluons [3 
for SU(2)] and N e the number of colors [2 for SU(2)] ; 
a s is the running coupling constant of QCD 

as = g2/167r = 3rr/22N c In (4T/A), (I 3) 

with A as the continuum normalization parameter. For 
sufficiently high temperatures, the continuum limit of 
the SU(2) lattice system must thus attain the Stefan- 
Boltzmann form 

eSB = -~ 7r2T 4 , (14) 

independently of the choice of continuum or lattice 
normalization parameters A and A L. One of our aims 
is to check if eq. (8) indeed converges to this param- 
eter-free limit. In view of the complex relationship 
between euclidean lattice and harniltonian continuum 
fornmlations, such a convergence is not a priori evident. 

The lattice spacing a, the lattice scale parameter A L 
and the coupling g are in the connected limit (a --* 0) 
connected by the renormalization group relation 

ALa = (llg2/241r2)-51/121exp(-127r2/llg2), (15) 

Monte Carlo calculations have yielded [9] 

A L = (1.3 + 0.2) X 10-2[o(0)] 1/2 (16) 

for A L in terms of the string tension o(0) at T= 0. With 
the relation o(0) = (2~ra')-1 and a Regge slope a '  = 1 
(GeV) -2,  this gives 

AL = 5.2 -+ 0.8 MeV. 0 7 )  
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Fig. 1. Energy density of gluon matter versus 4/g 2, at fixed 
temperature T = 500 A L, after about 600 iterations. The solid 
line gives the Stefan-Boltzmann limit; the dashed line includes 
the perturbative corrections of eq. (12). 

This value o f  AL, when inserted in the SU(2) relation, 
[10] 

A ~  57.5 A L (18) 

leads to A ~ 300 + 50 MeV, in reasonable consistency 
w~th what one would expect from deep inelastic scat- 
tering or e+e - annihilation data. - These connections 
being given, we shall from now on, for convenience, 
measure T in units of  A L- 

To calculate the "constant g"  part (9) of  the lattice 
energy density, we consider a 103 X Nt3 lattice with 
isotropic spacing a = at3. Holding the temperature T 
= (N#a) -1  fixed, we letN~ run from N# = 2 toN~ = 5 
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Fig. 2. Energy density of gluon matter versus lattice size, at 
T = 500 A L, in comparison with the Stefan-Boltzmann limit 
eSB; the dashed line lincludes the perturbative corrections of 
eq. (12). 

(varying a with Nt~ accordingly). We can now ask two 
questions: Has the energy density e a at the spacing a 
corresponding to a given T already reached the continu- 
um limit? If  this is the case, then the relation between 
g and a is given by eq. (15). Does e a at high tempera- 
ture approach the Stefan-Boltzmann form? This need 
not be the case, since we have so far ignored the sec- 
ond term in eq. (8). 

If  e a does satisfy the Stefan-Boltzmann relation 

ea a4 = 7r2/(SNf14), (19) 

at a given temperature T = rA L, then we have 

_ 1 7r2r4 ea a4 - -g 

× [(1 l g 2 / 2 4 n 2 )  -511121 exp(--12rr2/1 lg2)] 4 (20)  

if at the lattice spacing a = (Nt~ r A L ) -  1, which corre- 
sponds to g, the energy density e a is in the continuum 
limit. Relation (20) thus gives us a parameter-free g 

0 and high temperature limit. 
In fig. 1 we show for r = 500 (corresponding to T 

2.6 GeV) the result of  our Monte Carlo calculations, 
using the same methods as ref. [9].  Besides the 
Stefan-Boltzmann limit (20), we also display the lim- 
iting curve obtained by including the higher order cor- 
rections of  eq. (12), using A/A L = 57.5. In spite of  the 
relatively small lattice size (manageable for computers), 
both the absolute value and the g-dependence of  our 
Monte Carlo results are seen to agree quite well with the 
free gluon gas limit. To illustrate the dependence of  
our results on the lattice size, we shown in fig. 2 a 
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Fig. 3. Energy density of gluon matter versus 4 / g  2 , at fixed lattice size Nt~ = 2, after about 500 iterations. 

plot of ea/eSB as function of Nt3; the convergence to the 
free gluon gas appears to be fairly rapid. 

So far, we have considered only the first term e a of 
eq. (8), and that alone was seen to yield the correct 
Stefan-Boltzmann limit. To check that the second 
term, (S) (ag-2/Da#)a, is indeed negligible, we have nut 
merically calculated the variation o fg  as a function of 
at~ at fixed a. 

The best way to define the lattice coupling con- 
stant g in a finite temperature calculation is to choose 
a dimensional thermodynamic quantity and fix its 
physical value in terms ofg.  (This is analogous to the 
usual procedure of fixing in field theory at T = 0, 
say, the physical value of the string tension in order to 
define the dependence o fg  on a [9,11] .) An obvious 
choice in the gluon system is to fix the physical value 
of the critical temperature for the deconfining phase 
transition. It is convenient to introduce, instead of a 
and at3, the variables t c and a: 

t c -  aTc, a.~at3[a (21) 

implying 

a(ag-2 /aa)at3 = tc(ag-2 [atc)a - ~(~g-2 / ~  )t c 

a(ag-2 /aa(~)a = (ag-2 /O~)tc • (22) 
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Fig. 4. Specific heat of gluon matter versus 4/g 2, at fixed lat- 
tice size N~ = 2. 

From the connection of the lattice spacing a with the 
lattice scale parameter A L in eq. (15), there follows 
for small g, independently of the value of A L: 

tc(Og-2/atc)a=l ~ - 11/(12rr2). (23) 

The value of (Og-2/Oa)tc can be determined numeri- 
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caUy by looking for the variation of the critical 
value o f g  - 2  which corresponds to T c. When we go, 
for instance, from N 0 = 4 and a = 1 to N 0 = 3 and 
= 4/3 the value of a and t c is unchanged. The change in 
the critical value o fg  -2  gives a numerical estimate for 
(Og-2 /aa) t  c. The resulting value in our range o fg  2 
(about g2 = 1-2)  is small (of the order of a few per- 
cent of g-2) .  

In eg, the derivative (ag-2 /Oa) tc  is multiplied by 
the average action (S), which is not small and does not 
vanish exponentially for g ~ 0, as would be required 
by the renormalization group. However, e still con- 
tains the zero point term ("vacuum energy density") 
inherent in the euclidean formulation [ 12]. 

This term is infinite for g --> 0, but it does not de- 
pend on the temperature. Hence it can be removed by 
calculating the differences of (S) between two temper- 
atures at fixed g. These differences, multiplied by 
(~g-2/aot) tc ,  are less than 1% of e a in the temperature 
range we checked ( T ~  100 AL). Hence e a is for a = a 0 
indeed a good approximation of the energy density at 
these temperatures. 

Having established the connection between the lat- 
tice energy density and its high temperature continu- 
um limit, we now turn to the temperature region 
around the deconfinement transition. In fig. 3, we 
show the behaviour of e a for N 0 = 2 as function o fg  2. 
Apart from a scale change, this also gives us the tem- 
perature dependence of e a, since at fixed N 0 the cou- 
pling g and the lattice spacing a are related either by 
the renormalization group relation (15),or, in the non- 
asymptotic regime, by numerical [9] and/or strong 
coupling [11,13] results. The corresponding specific 
heat 

C~, = ~ea /aT  ~ ~eaa4/ag - 2  , (24) 

is shown in fig. 4. At 4/g  2 ~ 1.90 (for N o = 2) we have 
a clear peak as the signal of the deconfinement transi- 
tion from gluonium matter to gluon gas. (Due to the 
sharpness of the peak, its position is not changed notice- 
ably if we differentiate with respect to g -2  instead of 
r.) 

To show that the transition observed here in terms 
of the specific heat is indeed the deconfinement transi- 
tion defined in refs. [ 1,2] through the average Wilson 
loop I(L)I, we display in fig. 5 our results for I(L)I at 
N o = 2. The change from (L) ~ 0 in the confined 
phase to (L) =~ 0 in the gluon gas is seen to occur at the 
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1,5 2.0 2.5 /.ig2 

Fig. 5. Average Wilson loop versus 4/g 2, at fixed lattice size 
NO=2. 

same g2 as the rise of e a in fig. 3. We note that a deter- 
mination of T c through the peak of the specific heat, 
which seems physicallly the most clear-cut, leads to a 
higher T c than what one obtains by placing the transi- 
tion at that g2 where (L) becomes non-zero. This may ac- 
count for the lower T c found in ref. [ 1 ]. 

To assure that the transition occurs indeed at fLxed 
temperature, we have also calculated C~ for N 0 = 4. 
The peak then lies at 4/g 2 ~ 2.28; using eq. (15), this 
gives T c = 40 +- 2 A L, which by eq. (17) yields T c = 210 
-+ 10 MeV. This is in agreement with the value obtain- 
ed for N 0 = 2, if there the non-asymptotic part of the 
curve of Creutz [9] is used. 

Finally we note that at lower temperatures,  in the 
region of To, both energy density and specific heat will 
in addition have contributions from eg; these, however, 
are not expected to modify significantly the location 
of the transition. 
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