
Universität Bielefeld

Technische Fakultät
Abteilung Informationstechnik
Forschungsberichte

On the Similarity of Sets of Permutations and its
Applications to Genome Comparison

Anne Bergeron Jens Stoye

Report 2003-01

Impressum: Herausgeber:
Robert Giegerich, Ralf Hofestädt, Peter Ladkin, Helge Ritter,
Gerhard Sagerer, Jens Stoye, Ipke Wachsmuth

Technische Fakultät der Universität Bielefeld,
Abteilung Informationstechnik, Postfach 10 01 31,
33501 Bielefeld, Germany

ISSN 0946-7831

On the Similarity of Sets of Permutations

and its Applications to Genome Comparison

Anne Bergeron

LaCIM

Université du Québec à Montréal

Canada

Jens Stoye

Technische Fakultät

Universität Bielefeld

Germany

Abstract

The comparison of genomes with the same gene content relies on our ability to
compare permutations, either by measuring how much they differ, or by measuring
how much they are alike. With the notable exception of the breakpoint distance,
which is based on the concept of conserved adjacencies, measures of distance do not
generalize easily to sets of more than two permutations. In this paper, we present
a basic unifying notion, conserved intervals, as a powerful generalization of adjacen-
cies, and as a key feature of genome rearrangement theories. We also show that
sets of conserved intervals have elegant nesting and chaining properties that allow
the development of compact graphic representations, and linear time algorithms to
manipulate them.

1 Introduction

Gene order analysis in a set of organisms is a powerful technique for phylogenetic inference.
Current methods are based on notions of distances between genomes, which are usually de-
fined as the minimum number of such and such operations needed to transform one genome
into the other one. Distance matrices can either be used directly as data for phylogenetic
reconstruction, or in more qualitative attempts to reconstruct ancestral genomes [8]. All
these methods, with the notable exception of the breakpoint distance [5], are closely tied
to initial choices of allowable rearrangement operations. They are also pure distances, in
the sense that similarities between genomes are purposefully ignored.

The breakpoint distance is based on the notion of conserved adjacencies. Compared
to other distances, it is easy to compute, but it often fails to capture more global rela-
tions between genomes [16]. Nevertheless, conserved adjacencies have two highly desirable
properties:

1. They can be defined on a set of more than two genomes, allowing for the identification
of similar features in a family of organisms.

2. They are invariant under optimal rearrangement scenarios, in the sense that it is not
necessary to break adjacencies to explain how a genome evolved from another one
[9, 14, 20].

A first generalization of adjacencies is the notion of common intervals that identify sub-
sets of genes that appear consecutively in two or more genomes [12, 21]. Common intervals
identify more global relations between genomes, but often lose the invariant property of
adjacencies with respect to optimal rearrangement scenarios. For example, all optimal sort-
ings by reversals of the permutation (1 3 2 5 − 4 6) break, in some of the intermediate
permutations, the common interval (2 3).

Are adjacencies the only structures that are invariant under biologically meaningful
rearrangement operations? No. There exists a class of common intervals, called conserved
intervals, that may be the best of two worlds. We will show that these structures both
capture local and global properties of genomes; are invariant under most rearrangement
scenarios; and their number and nature can be computed in linear time.

In the next section, we discuss the main issues of gene order comparison, with biological
data. In Section 3, we give the formal definitions and properties of conserved intervals, and
we present the associated algorithms in Section 4. Section 5 shows how conserved intervals
can be used as either a similarity or a distance measure, and Section 6 discusses the links
between conserved intervals and rearrangement theories. Section 7 concludes with a few
provocative statements.

2 Permutations, Gene Order, and Rearrangements

In the following we will take for granted the simplifying hypothesis that the genes of an
organism are ordered and oriented along linear or circular DNA molecules. For example

1

the 37 mitochondrial genes of the Fruit Fly are listed in [6], with minus signs to reflect
orientation, as:

cox1, L2, cox2, K, D, atp8, atp6, cox3, G, nad3, A, R, N, S1, E, -F, -nad5, -H, -nad4, -nad4L,

T, -P, nad6, cob, S2, -nad1, -L1, -rrnL, -V, -rrnS, UNK, I, -Q, M, nad2, W, -C, -Y

The first gene is arbitrary, since mitochondrial genomes are circular molecules. When
organisms with the same gene content are compared, one of them is chosen as a base
organism, and all identical strips of genes are converted to integers. By extension, these
are also called ”genes”. Table 1 presents the result of this transformation applied to the
mitochondrial genomes of six Arthropoda, with Fruit Fly as base organism. The original 37
genes have been divided in 17 blocks: some represent isolated genes, and others represent
longer strips. For example, 10 stands for S1, and 11 for E, -F, -nad5, -H, -nad4,

-nad4L, T, -P, nad6, cob, S2, -nad1.

Fruit Fly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Mosquito 1 2 3 4 5 6 8 7 9 -10 11 12 13 14 15 16 17

Silkworm 1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 16 17

Locust 1 2 3 5 4 6 7 8 9 10 11 12 13 14 15 16 17

Tick 1 3 4 5 6 7 8 9 10 11 -2 12 13 14 15 16 17

Centipede 1 3 4 5 6 7 8 9 10 11 -2 12 16 13 14 15 17

Table 1: Condensed mitochondrial genomes of six Arthropoda

Various techniques are then used to compare the resulting permutations. The distance
approaches focus on the differences between two particular genomes. For example, Fruit
Fly differs from Mosquito by the reversal of gene 10, and the transposition of genes 7 and
8. One can count the minimal number of reversals and/or transpositions necessary to
transform each genome into any other, yielding a distance matrix for the set of species.
Explicit rearrangement scenarios, that is, sequences of operations that transform optimally
one genome into another, are also used to reconstruct ancestral genomes.

Another approach, the breakpoint distance, counts the lost adjacencies between genomes.
It does not rely on particular rearrangement operations or an evolutionary model, and has
an associated measure of similarity: the number of conserved adjacencies. For example,
given the circularity of the genomes, Fruit Fly and Mosquito have 12 conserved adjacencies,
and a breakpoint distance of 5.

Such a similarity measure extends easily to sets of species. For example, the first four
species of Table 1 share 6 adjacencies: [1, 2], [2, 3], [11, 12], [15, 16], [16, 17], and [17, 1].
When comparing all six species, the only left adjacency is [17, 1]: this lack of conserved
adjacencies is a direct consequence of how the data was transformed. Does this mean that
losing common adjacencies amounts to losing all common structures?

A quick glance at Table 1 reveals that the six permutations are very “similar”. For
example, the genes between in the interval [1, 12] are all the same, with small variations
in their ordering. This is also true for the genes in the intervals: [3, 6], [6, 9], [9, 11],
and [12, 17]. It turns out that such intervals, together with conserved adjacencies, play a

2

fundamental role in rearrangement and distance theories, ancestral genome reconstructions,
and phylogeny.

The following family portrait gives a representation of the conserved intervals of the
permutations of Table 1:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

This representation boxes the elements in rectangles, which can be glued together to form
larger objects. It takes its roots in PQ-trees [7] that are used to represent sets of permu-
tations. All permutations of Table 1 fit the representation with the following conventions:
(1) free objects within a rectangle can be reordered, or can change sign, (2) connections
between rectangles are fixed. This representation also captures the features that should be
invariant in biologically plausible rearrangement scenarios within the family.

In order to illustrate this last point, consider the two following rearrangement scenarios
that transform Silkworm into Locust using a minimal number of reversals (operations that
reverse the elements of a consecutive block while changing their signs).

1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 16 17

1 2 3 -4 5 6 7 8 9 10 11 12 14 13 15 16 17

1 2 3 -4 -5 6 7 8 9 10 11 12 14 13 15 16 17

1 2 3 5 4 6 7 8 9 10 11 12 14 13 15 16 17

1 2 3 5 4 6 7 8 9 10 11 12 -14 13 15 16 17

1 2 3 5 4 6 7 8 9 10 11 12 -14 -13 15 16 17

1 2 3 5 4 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 16 17

1 2 3 4 -14 -12 -11 -10 -9 -8 -7 -6 -5 13 15 16 17

1 2 3 4 -14 5 6 7 8 9 10 11 12 13 15 16 17

1 2 3 4 -13 -12 -11 -10 -9 -8 -7 -6 -5 14 15 16 17

1 2 3 5 6 7 8 9 10 11 12 13 -4 14 15 16 17

1 2 3 5 4 -13 -12 -11 -10 -9 -8 -7 -6 14 15 16 17

1 2 3 5 4 6 7 8 9 10 11 12 13 14 15 16 17

Those two scenarios are fundamentally different, even if they both use six reversals. The
right one uses much longer reversals than the left one, and the right one breaks conserved
intervals between Silkworm and Locust in intermediate permutations, namely [3, 6], [1, 12],
and [12, 17]. If a rearrangement scenario is expected to reflect the various intermediate
species between Silkworm and Locust, the right one looks highly suspicious. Recent papers
address these problems in various ways, for example by assigning weights to operations [1],
or with probabilistic studies of the possible scenarios [15].

The two main flaws of the second scenario – long reversals and breaking conserved
intervals – are closely tied: breaking conserved intervals, as we will show in Section 6, often
involves long range operations that radically disturb a genome. In this sense, conserved
intervals can be used as an intrinsic measure that allows to screen out rearrangement
scenarios, or phylogenetic hypothesis, without the need of arbitrary weights or probability
measures.

3 Conserved Intervals

This section presents a formalization of the notion of conserved intervals, together with
properties that allow the development of linear time algorithms to manipulate them. We
also discuss the necessary adaptations to model conserved intervals in circular and multi-
chromosomal genomes.

3

Definition 1 Let G be a set of signed permutations on n elements. An interval [a, b] is a
conserved interval of the set G if:

1) either a precedes b, or −b precedes −a, in each permutation, and

2) the set of unsigned elements that appear between a and b is the same for all permu-
tations in G.

An elementary consequence of this definition is the fact that if [a, b] is a conserved
interval, so is [−b,−a]. We will consider these intervals as equivalent.

Table 1 contains several examples of conserved intervals. Their description is eased
by the fact that the identity permutation belongs to the set G. When this is the case,
all conserved intervals can be identified with their positive endpoints a < b, and the set
of elements that appear between a and b is {a + 1, . . . , b − 1}. The following example
illustrates a more general case. Consider the two permutations:

P = 1 2 3 7 5 6 −4 8
Q = 1 7 −3 −2 5 −6 −4 8

In this example, [1, 5] and [2, 3] are conserved intervals, but not [1, 6]. The other conserved
intervals of P and Q are [1, -4], [1, 8], [5, -4], [5, 8] and [-4, 8]. The diagram representation
of these intervals, with respect to the permutation P , is:

1 2 3 7 5 6 -4 8

When the identity permutation is not in G, it is always possible to rename the el-
ements of G such that conserved intervals will be intervals of consecutive elements. For
example, if one composes1 the permutations P and Q of the above example with the inverse
permutation P−1, one gets the set:

P ′ = P−1 ◦ P = 1 2 3 4 5 6 7 8
Q′ = P−1 ◦Q = 1 4 −3 −2 5 −6 7 8

whose diagram representation of conserved intervals, with respect to P ′ is equivalent to
the one of P and Q, up to renaming of the elements:

1 2 3 4 5 6 7 8

In general, it is elementary to transform a set of conserved intervals to its equivalent up to
renaming. It is a consequence of the following proposition:

Proposition 1 Let R be a permutation and G a set of permutations, denote by R ◦G the
set of permutations obtained by composing each permutation in G with R. The interval
[a, b] is conserved in G if and only if the interval [R(a), R(b)] is conserved in R ◦G.

1Here, composition is understood as the standard composition of functions. Dealing with signed per-
mutations requires the additional axiom that P (−a) = −P (a).

4

Proof: Note that if a permutation P is written as:

P = p1 p2 . . . pn

then R ◦ P is:
R ◦ P = R(p1) R(p2) . . . R(pn).

If [a, b] is conserved in G, then each permutation in G has a consecutive block of elements
beginning with a end ending with b, or beginning with −b and ending with −a. These
properties hold also for the set R ◦G, if one replaces a by R(a) and b by R(b). 2

Some intervals, such as [1, 7] for the set {P ′, Q′} in the above example, are the union
of smaller intervals: [1, 7] = [1, 5]∪ [5, 7]. Intervals that are not unions are specially useful:

Definition 2 Conserved intervals that are not the union of shorter conserved intervals are
called irreducible.

Sets of conserved intervals can be simply characterized by the corresponding set of
irreducible intervals. Indeed, disjoint irreducible intervals, as highlighted in the diagram
representation, are either chained or nested. The following proposition captures the basic
properties of these structures.

Proposition 2 Two different irreducible conserved intervals [a, b] and [c, d] of a set G of
permutations, are either:

1) disjoint,

2) nested with different endpoints, or

3) overlapping on one element.

Proof: Without loss of generality, by Proposition 1, we can assume that G contains the
identity permutation, and that conserved intervals are intervals of consecutive elements.
Suppose that [a, b] and [c, d] are nested with a = c and d < b. Since [c, d] is a conserved
interval, it contains all integers between c and d, therefore, the interval [d, b] contains all
integers between d and b, and [a, b] is not irreducible.

If [a, b] and [c, d] overlap with more than one element, we can suppose a < c < b < d.
Since all elements between c and d are greater than c, then the interval between a and c
must contain all elements between a and c, thus [a, b] is not irreducible. 2

The three cases of Proposition 2 are illustrated in Fig. 1.
Overlapping irreducible intervals form chains linked by their successive common ele-

ments. A chain of k − 1 intervals [a1, a2][a2, a3] . . . [ak−1, ak] will be denoted simply by its
k links [a1, a2, a3 . . . ak]. For example, [1, 5, 7, 8] is a chain of the set of conserved intervals
of P ′ and Q′. A maximal chain is a chain that cannot be extended. We have:

Proposition 3 Every irreducible conserved interval belongs to a unique maximal chain.

5

disjoint

a b c d

nested

a bc d

overlapping

a b d

Figure 1: Chaining and nesting irreducible conserved intervals

Proof: By Proposition 2, if [a, b] is an irreducible conserved interval, then no other can
begin by a or end by b. 2

One consequence of Proposition 3 is that maximal chains, as sets of links, together with
isolated genes, form a partition of the set of genes. This will reveal useful to construct
data structures to keep track of conserved intervals.

A set of permutations on n elements can have as many as n(n−1)/2 conserved intervals,
but at most n−1 irreducible intervals. These bounds are achieved with sets containing only
one permutation. A key observation, that will eventually lead to linear time algorithms to
compute the number of conserved intervals, is the following:

Proposition 4 Each maximal chain of k links contributes k(k− 1)/2 to the total number
of conserved intervals.

Proof: Conserved intervals [a, b], are in bijection with chains of the form

[a, x1, . . . xk, b]

of irreducible intervals. Each maximal chain of k links has k(k − 1)/2 such sub-chains. 2

Finally, we will want to construct sets of conserved intervals for the union of two
sets of permutations. Definition 1 implies that the set of conserved intervals of a union
of two sets of permutations is the intersection of their sets of conserved intervals. The
following properties relate these sets to their respective irreducible intervals when both
sets of permutations have at least one permutation in common.

Proposition 5 Let P be a permutation that is contained in both sets G1 and G2. The
interval [a, b] is a conserved interval of G = G1 ∪ G2 if and only if there exist two chains
of irreducible conserved intervals, with respect to P , with k ≥ 0, l ≥ 0:

[a, x1, . . . , xk, b] in G1,
[a, y1, . . . , yl, b] in G2.

The interval [a, b] is irreducible if and only if {x1, . . . , xk} and {y1, . . . , yl} are disjoint.

Proof: The interval [a, b] is a conserved interval of G if and only if it is a conserved interval
in both G1 and G2, therefore there must exist chains beginning by a and ending by b for
both sets G1 and G2. If [a, b] is irreducible in G, and if [a, x] and [x, b] are conserved
intervals of G1, say, then x cannot belong to the set {y1, . . . , yl}. If there is a common
element x to both sets {x1, . . . , xk} and {y1, . . . , yl}, then [a, b] = [a, x] ∪ [x, b], and both
[a, x] and [x, b] are conserved intervals of G. 2

6

Variable Geometry Genomes. Although the definition of conserved intervals was
given for permutations that model genomes composed of single linear chromosomes, they
can be adapted to other types of genomes.

For circular genomes, the easiest approach is to align all permutations of the set begin-
ning with gene +1. This can always be done. Indeed, negative signs are used to code the
strand of the DNA molecule on which the gene is read and, since the choice of strand is
arbitrary, a chromosome can always be flipped by changing all the signs of its genes and
reversing their order. It is also convenient to add an extra gene n + 1 at the end of each
permutation to simulate the fact that the last gene of each permutation is adjacent to the
first one. This creates artificial conserved intervals that can be discarded later.

Multi-chromosomal genomes can also be represented by permutations, with special
marks that identify different chromosomes. For example, consider the following two genomes,
for which each chromosome is on a separate line:

1 2 3 4 5
6 7 8
9 10 11

1 −3 −2 4 7 8
5 6 9 −10 11

genome 1 genome 2

Clearly, even if the adjacency [5, 6] is conserved between the two permutations, the first
genome does not even have those genes on the same chromosome. In the case of multi-
chromosomal genomes, conserved intervals [a, b] should have the added requirement that a
and b belong to the same chromosome, in each genome.

4 Algorithms

This section discusses three algorithms. The first one is an adaptation of an existing
algorithm that computes the conserved intervals of two permutations. The second one
computes the conserved intervals of a set of permutations. The third one, finally, computes
the conserved intervals of two sets of permutations, directly from their two individual sets
of conserved intervals.

Conserved Intervals of Two Permutations. Conserved intervals between two per-
mutations are strongly related to the notion of connected components of the overlap graph
of a signed permutation. This graph plays a fundamental role in the sorting by reversals
problem [10], and the sorting by reversals and translocations problem [11]. In the last few
years, linear algorithms to identify these components have been devised [2]. The following
algorithm is adapted from [4], and identifies all irreducible intervals2 [a, b] of a permutation
π with the identity permutation such that a > 0 and b > 0 in π. The case of negative
endpoints is treated by reversing π.

2In the original paper, these were called framed common intervals.

7

For example, for the permutation

P = 0 −4 −3 −2 5 8 6 7 9 −1 10,

Algorithm 1 identifies the positive irreducible intervals [6, 7], [5, 9], and [0, 10]. It will
identify [2, 3] and [3, 4] on the reversed permutation.

The algorithm assumes that the input permutation is in the form:

π = (0, π1, . . . , πn−1, n).

Define Mi to be the nearest unsigned element of the permutation that precedes πi and is
greater than |πi|. (Set Mi to n, if such an element does not exist). The following lemma
relates the values of Mi to conserved intervals.

Lemma 1 If [πs, πe] is a positive conserved interval of π and the identity permutation,
then Ms = Me.

The algorithm uses two stacks: S contains the possible start positions of conserved
intervals; M contains possible candidates for Mi. The top of S is always denoted by s.
The top ofM is always denoted by m.

Algorithm 1 (Positive irreducible intervals with the identity permutation)

1: stack 0 on S
2: stack n onM
3: M0 ← n
4: for i = 1, . . . , n do

5: // Computation of Mi

6: unstack fromM all elements m smaller than |πi|
7: Mi ← m
8: stack the element |πi| onM
9: // Identification of irreducible intervals

10: unstack from S all indices s such that (|πi| < πs or |πi| > Ms)
11: if i− s = πi − πs and Mi = Ms then

12: output [πs, πi]
13: end if

14: if πi is positive then

15: stack the index i on S
16: end if

17: end for

Proposition 6 Algorithm 1 outputs the positive irreducible conserved intervals of a per-
mutation π with the identity permutation in O(n) time.

8

Proof: Let πk . . . πi be an interval in π such that |πk| = Mi. Thus, |πk| > |πi|, and all
unsigned elements between πk and πi are smaller than πi. No element between πk and
πi can unstack πk in line 6, and πi will unstack all of them, thus the algorithm correctly
computes Mi, when it is different from n. If Mi = n, then πi is larger than any element in
0, π1, . . . , πi−1, and it will unstack all of them. In this case, the initialization of M yields
the correct value for Mi.

Line 12 always outputs positive conserved intervals, since (1) i− s = πi − πs provides
the correct number of elements, (2) all unsigned elements in the interval are greater than
πs by the first condition of line 10, and (3) all unsigned elements in the interval are smaller
than πi since Mi = Ms.

If [πs, πs′] and [πs′ , πe] are both conserved, then any element πi that unstacks s′ will
also unstack s, since Ms′ = Ms, and |πi| < πs′ implies |πi| < πs. Thus only irreducible
intervals can be reported by the algorithm.

If [πs, πe] is an irreducible interval and πs is positive, then πs will be stacked. Since
Me = Ms, and all unsigned elements between πs and πi are greater than πs, πs will not
be unstacked before πe is reached. If s′ 6= s is on the top of the stack once πe is reached,
then all unsigned elements between πs′ and πe must be greater than than πs′ , otherwise
πs′ would have been unstacked. But there is at least one element greater than πs′ that lies
between πs and πs′ , otherwise [πs′ , πe] would be a conserved interval, thus Ms′ < πe, and
s′ will be unstacked once πe is reached. Thus all irreducible intervals will be reported by
the algorithm.

The analysis of the time complexity is elementary, since each index is stacked or un-
stacked at most once. 2

Corollary 1 By applying Algorithm 1 both to π = P−1 ◦ Q and to the reverse of π, the
irreducible conserved intervals of two permutations P and Q can be found in O(n) time.

Proof: This follows immediately from Propositions 1 and 6 and the fact that each irre-
ducible interval must have either two positive or two negative endpoints in π. 2

Conserved Intervals of a Set of Permutations. In order to find the irreducible
conserved intervals of a set of permutations, the first step is to compute the irreducible
intervals of each permutation with one particular permutation from the set, say π1, us-
ing Algorithm 1, and then merge together the resulting sets of irreducible intervals. For
example, computing the irreducible intervals of the set:

Id = 0 1 2 3 4 5 6 7 8 9 10
P = 0 −4 −3 −2 5 8 6 7 9 −1 10
Q = 0 5 −7 −6 8 9 1 2 3 −4 10

would first yield the following sets of conserved intervals, in graphic representation, of P
and the identity:

9

0 1 2 3 4 5 6 7 8 9 10

and of Q and the identity:

0 1 2 3 4 5 6 7 8 9 10

In terms of maximal chains, the two sets are described by:

{[0, 10], [2, 3, 4][5, 9], [6, 7]} and {[0, 10], [1, 2, 3], [5, 8, 9], [6, 7]},

and their intersection by:
{[0, 10], [2, 3], [5, 9], [6, 7]}.

Assume that each set of irreducible conserved intervals is given by its maximal chains.
Since these form partitions of the genes that are endpoints of conserved intervals, there
exists a data structure with the following properties:

1. For each index from 1 to n, it is possible to determine in constant time the interval,
if any, that starts and/or ends at this index.

2. It is possible to determine in constant time if two intervals belong to the same chain.

Let I1 and I2 be two sets of irreducible conserved intervals of sets of permutations G1

and G2 that have one permutation π1 in common. For the moment we will assume that π1

is the identity permutation. Then Algorithm 2 finds all irreducible conserved intervals of
G1∪G2. It uses a stack S that contains possible start positions – or, equivalently, elements
of the identity permutation. The top of the stack S is always denoted by s.

The correctness and time complexity of Algorithm 2 are established by the following
theorem.

Theorem 1 Algorithm 2 outputs the irreducible intervals of G = G1 ∪ G2 in O(n) time,
given I1 and I2, the irreducible intervals of two sets of permutations G1 and G2 that both
contain the identity permutation.

Proof: If a and b belong to the same chain both in I1 and I2, then [a, b] is certainly a
conserved interval of G by Proposition 5. Thus the algorithm outputs only conserved
intervals.

If an interval [a, b] of G is irreducible, element a will be stacked in line 13, since there
exists an interval that starts at a in I1, and one in I2. Since a is the beginning of a unique
irreducible interval, it can be unstacked in line 10 only when b is reached. If a is unstacked
in either line 4 or line 7, then [x, i] is an irreducible interval either in I1 or I2, and x < a < i.
By Proposition 2, b < i, thus a cannot be unstacked before b is reached.

We must also make sure that, when b is reached, a is on the top of the stack. Suppose
that [a, b] corresponds to the following chains

[a, x1, . . . , xk, b] in I1

[a, y1, . . . , yl, b] in I2.

10

Algorithm 2 (Irreducible intervals of G1 ∪G2, both containing the identity permutation)

1: stack 0 on S
2: for i = 1, . . . , n do

3: if there is an interval [x, i] in I1 then

4: unstack from S all elements larger than x
5: end if

6: if there is an interval [x, i] in I2 then

7: unstack from S all elements larger than x
8: end if

9: if s and i belong to the same chain both in I1 and I2 then

10: unstack s from S and output [s, i]
11: end if

12: if there is an interval that starts at i in I1, and one in I2 then

13: stack i on S
14: end if

15: end for

Any value x stacked after a and before b cannot belong to the same chain both in I1 and
I2, since [a, b] would not be irreducible, by Proposition 5. Thus x falls, say in I2, between
two consecutive values of the chain [a, y1, . . . , yl, b]. When the second value is reached, x
will be unstacked in line 7.

Finally, if a conserved interval [a, b] of G is not irreducible, then it can be written
as [a, b] = [a, x] ∪ [x, b], and we can assume that [a, x] is irreducible. Element a will be
unstacked in line 10, after identifying the interval [a, x], thus the algorithm will never
output [a, b].

The analysis of the time complexity is elementary, since each index is stacked or un-
stacked at most once. 2

Corollary 2 Let I1 and I2 be the irreducible intervals of two sets of permutations G1 and
G2 that both contain a permutation P . The irreducible intervals of G = G1 ∪ G2 can be
found in O(n) time by applying Algorithm 2 to I ′

1 = {[P−1(a), P−1(b)] | [a, b] ∈ I1} and
I ′

2 = {[P−1(a), P−1(b)] | [a, b] ∈ I2}.

Proof: This follows immediately from Proposition 1 and Theorem 1. 2

Corollary 3 The set of irreducible conserved intervals of a set of permutations G can be
computed in O(|G|n) time and O(n) additional space.

Proof: Let G = {π1, . . . , πk}. For i = 2, . . . , k denote the set of irreducible conserved
intervals of {π1, . . . , πi} by Ii. Intially generate I2 by applying Algorithm 1 to π1 and π2.
Then, for i = 3, . . . , k, apply Algorithm 1 to the pair π1 and πi generating I∗

i
, and apply

Algorithm 2 to I∗

i
and Ii−1 generating Ii. 2

11

Conserved Intervals of Disjoint Sets. Finally we are interested in computing the
conserved intervals of two sets of permutations G1 = {P1, . . . , Pk} and G2 = {Q1, . . . , Ql}
that not necessarily have a permutation in common, given their sets of irreducible conserved
intervals I1 and I2, respectively.

This can be done by properly combining Algorithms 1 and 2. The idea is to select one
permutation from each set, say P1 from G1 and Q1 from G2, and compute the conserved
intervals of these two by Algorithm 1. Then observe that the two sets {P1, Q1} and G1 =
{P1, . . . , Pk} have a joint permutation P1, and hence their common irreducible intervals can
be computed by Algorithm 2. Similarly, {Q1, P1, . . . , Pk} and G2 = {Q1, . . . , Ql} contain
a joint permutation Q1, so their common irreducible intervals can also be computed by
Algorithm 2.

This procedure is formalized in Algorithm 3.

Algorithm 3 (Irreducible intervals of G1 ∪G2)

1: Select a permutation P1 ∈ G1 and a permutation Q1 ∈ G2.
2: Compute I ′, the irreducible conserved intervals of P1 and Q1, by Algorithm 1.
3: Compute I ′

1, the irreducible intervals of G1 ∪ {Q1}, by applying Algorithm 2 to I1 and
I ′.

4: Compute I, the irreducible intervals of G1 ∪G2, by applying Algorithm 2 to I ′

1 and I2.

Theorem 2 Algorithm 3 finds the irreducible intervals of G = G1 ∪ G2, given I1 and I2,
the irreducible intervals of two sets of permutations G1 and G2, in O(n) time.

Proof: This follows immediately from Corollaries 1 and 2. 2

5 Similarity and Distance

The number of conserved intervals of a set of permutations is a measure of similarity,
but it can easily be transformed into a distance between two permutations, or two sets of
permutations. The basic idea is that two sets of conserved intervals can be compared with
the cardinality of their symmetric difference.

Definition 3 Let G1 and G2 be two sets of permutations on n elements, with respectively
N1 and N2 conserved intervals. Let N be the number of conserved intervals in G1 ∪ G2,
the interval distance between G1 and G2 is defined by:

d(G1, G2) = N1 + N2 − 2N.

12

Note: The interval distance satisfies the fundamental properties of a mathematical dis-
tance since one can prove that the relation is symmetric, reflexive, and satisfies the triangle
inequality: d(P, Q) + d(Q,R) ≥ d(P, R).

When comparing two permutations, the interval distance counts the total number of
intervals that are unique to one of them. For example, the distance between:

P = 0 1 2 3 4 5 6 7 8 9 10
Q = 0 5 −7 −6 8 9 1 2 3 4 10

is given by d(P, Q) = (11 ∗ 10)/2 + (11 ∗ 10)/2− 2 ∗ 11 = 88.
Table 2 gives a comparison of the matrix of interval distances of the six species of

Section 2, – left columns –, together with the matrix of reversal distances of the same
species – right columns.

Fruit Fly Mosquito Silkworm Locust Tick Centipede

Fruit Fly - - 90 4 62 3 62 3 158 2 188 5
Mosquito 90 4 - - 140 7 140 7 200 6 230 9
Silkworm 62 3 140 7 - - 116 6 180 5 194 7
Locust 62 3 140 7 116 6 - - 188 5 218 8
Tick 158 2 200 6 180 5 188 5 - - 110 3
Centipede 188 5 230 9 194 7 218 8 110 3 - -

Table 2: Interval distances (left) and reversal distances (right)

It can readily be seen, in Table 2, that the two measures sometimes disagree. For
example, Fruit Fly and Tick have the smallest reversal distance, but certainly not the
smallest interval distance. The behavior of the interval distance is a consequence of the
fact that it is affected be the length – or number of genes – involved in a rearrangement
operation: short reversals, for example, are less disturbing than long ones. In particular,
the amount of disruption due to a single rearrangement operation can readily be computed.
For example, we have the following:

Proposition 7 Suppose that P and Q have n elements, then:

1) if P is obtained from Q by reversing k elements, then the interval distance between
P and Q is k(n− k);

2) if P is obtained from Q by transposing two consecutive blocks of a and b elements,
then the interval distance between P and Q is (a + b)(n− (a + b)) + ab.

Since the interval distance is affected by length, the practice of collapsing identical
strips of genes should be questioned. Indeed, as we saw in the example of Section 2, the
integers resulting from such a transformation stand for strips of genes that vary greatly in
length. We believe that whole genome comparison should use all available information, and

13

that length of segments is relevant to the study of rearrangement scenarios, as advocated
in [18].

Although the above discussion focused on the reversal distance, similar results can be
observed with the breakpoint distance (see Table 3). The only measure that agrees in trend
with the interval distance is the transposition+reversal distance, but, as can bee seen in
Table 4, interval distance has a much broader range.

Fruit Fly Mosquito Silkworm Locust Tick Centipede

Fruit Fly - - 90 5 62 3 62 3 158 3 188 6
Mosquito 90 5 - - 140 8 140 8 200 8 230 11
Silkworm 62 3 140 8 - - 116 6 180 6 194 8
Locust 62 3 140 8 116 6 - - 188 6 218 9
Tick 158 3 200 8 180 6 188 6 - - 110 3
Centipede 188 6 230 11 194 8 218 9 110 3 - -

Table 3: Interval distances (left) and breakpoint distances (right)

Fruit Fly Mosquito Silkworm Locust Tick Centipede

Fruit Fly - - 90 2 62 1 62 1 158 2 188 3
Mosquito 90 2 - - 140 3 140 3 200 4 230 5
Silkworm 62 1 140 3 - - 116 2 180 3 194 4
Locust 62 1 140 3 116 2 - - 188 3 218 4
Tick 158 2 200 4 180 3 188 3 - - 110 1
Centipede 188 3 230 5 194 4 218 4 110 1 - -

Table 4: Interval distances (left) and transposition+reversal distances (right)

6 Links With Rearrangement Theories

In Section 2, we gave an example of how conserved intervals could be used to evaluate
optimal reversal scenarios between two genomes. Reversals are one of the many operations
that are currently used to model genome evolution: the main other ones – among those
that do not need to model duplication of genes – are transpositions, reverse transpositions,
translocations, fusions, and fissions.

In this section, we want to characterize the rearrangement operations, or scenarios, that
preserve conserved intervals:

Definition 4 Let P and Q be two permutations, and ρ a rearrangement operation applied
to P yielding P ′. We say that ρ preserves the conserved intervals of P and Q if the
conserved intervals of {P, Q} are contained in those of {P ′, Q}.

14

Keeping in mind the graphical representation of the conserved intervals, it is easy
to identify the operations that preserve conserved intervals: only rearrangements within
blocks are preserving. To be more formal, note that all operations, except fusions, destroy
some adjacencies that existed in the original permutation: the number and nature of these
adjacencies is a key concept.

Definition 5 Let ρ be a rearrangement operation that transforms P into P ′. A breakpoint
of ρ is a pair of elements that are adjacent in P but not in P ′.

In other words, breakpoints are where one has to cut P in order to apply ρ. Reversals
and translocations have 2 breakpoints, transpositions have 3, and fissions have 1.

Consider the irreducible intervals of P and P ′ with respect to P . Adjacencies in P
either belong to a (smallest) irreducible interval, or are free. For example, in the following
diagram:

1 2 3 4 5 6 7 8 9 10

The adjacency (3, 4) belongs to the interval [1, 5], (2, 3) belongs to [2, 3], and (8, 9) is
free. Note that when two or more adjacencies belong to the same irreducible interval, then
none of these adjacencies is conserved between P and P ′.

Theorem 3 Reversals, transpositions, and reverse transpositions are preserving if and
only if all their breakpoints belong to the same irreducible interval, or are free.

Translocations and fissions are preserving if and only if all their breakpoints are free.

Proof: If the breakpoints of any operation are free, then clearly no conserved interval is
cut. If the breakpoints of a reversal, transposition, or reverse transposition belong to the
same irreducible interval, then the operation reorders, or reverses, some blocks within that
interval, thus preserving conserved intervals.

If a reversal has its two breakpoints in different intervals, it will break those two in-
tervals. If it has only one free breakpoint, it will break the interval containing the other
breakpoint. The same kind of arguments hold for transpositions and reverse transpositions.

If a breakpoint of a translocation or fission is not free, then it belongs to an irreducible
interval whose extremities will end up in two different chromosomes. 2

It turns out that most rearrangement operations used in optimal scenarios are indeed
preserving. It is outside the scope of this paper to discuss these results in detail: they
involve the cycle structure of a permutation, which are special subsets of the breakpoints
of a permutation P with respect to a permutation P ′. The following result has been proved
in various disguises in recent years [4, 10, 13]:

Theorem 4 All the breakpoints of a cycle belong to the same irreducible interval.

In the sorting by reversals theory, a sorting reversal is defined as a reversal that decreases
the reversal distance by 1. It is shown [10, 19] that the breakpoints of sorting reversals,
except one type called hurdle merging, belong to a single cycle, thus we have:

15

Corollary 4 All sorting reversals, except hurdle merging, are preserving.

Hurdle mergings are a rare type of reversals in optimal scenarios: they break at least
two disjoint irreducible intervals, thus involving long reversals. In Section 2, for example,
the first reversal of the second scenario that transformed Silkworm into Locust was a hurdle
merging.

The theory of translocations, fusions and fissions [11, 17] relies on the properties of
sorting by reversals, thus most sorting reversals are preserving. Finally, transpositions are a
more delicate matter since sorting transpositions are not (yet) characterized. Nevertheless,
it is known that transpositions that increase the number of cycles – a desirable property
when sorting permutations – have all their breakpoints in the same cycle [3]. Thus we
have:

Corollary 5 All transpositions that create two adjacencies are preserving.

7 Conclusion

We have introduced a new similarity measure for permutations, based on the concept of
conserved intervals. Conserved intervals have very interesting properties with respect to
preserving the usual genome rearrangement operations. We believe that conserved intervals
are a fundamental concept of rearrangement theory. They provide the unifying grounds to
understand the variety of operations that are used to model genome evolution. Supported
by recent results on the expected size of rearranged genome segments, one could go as far
and claim that any rearrangement scenario that breaks conserved intervals is mathematical
rambling without connection to evolutionary reality.

References

[1] Y. Ajana, J.-F. Lefebvre, E. R. M. Tillier, and N. El-Mabrouk. Exploring the set
of all minimal sequences of reversals – An application to test the replication-directed
reversal hypothesis. In Proceedings of WABI 2002, volume 2452 of LNCS, pages 300–
315. Springer Verlag, 2002.

[2] D. A. Bader, B. M. E. Moret, and M. Yan. A linear-time algorithm for computing in-
version distance between signed permutations with an experimental study. J. Comput.
Biol., 8(5):483–492, 2001.

[3] V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM J. Disc. Math.,
11(2):224–240, 1998.

[4] A. Bergeron, S. Heber, and J. Stoye. Common intervals and sorting by reversals: A
marriage of necessity. Bioinformatics, 18(Suppl. 2):S54–S63, 2002. (Proceedings of
ECCB 2002).

16

[5] M. Blanchette, T. Kunisawa, and D. Sankoff. Gene order breakpoint evidence in
animal mitochondrial phylogeny. J. Mol. Evol., 49(2):193–203, 1999.

[6] J. L. Boore. Mitochondrial gene arrangement source guide. www.jgi.doe.gov/

programs/comparative/Mito_top_level.html.

[7] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, inter-
val graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci.,
13(3):335–379, 1976.

[8] G. Bourque and P. A. Pevzner. Genome-scale evolution: Reconstructing gene orders
in the ancestral species. Genome Res., 12(1):26–36, 2002.

[9] D. A. Christie. Genome Rearrangement Problems. PhD thesis, The University of
Glasgow, 1998.

[10] S. Hannenhalli and P. A. Pevzner. Transforming men into mice (polynomial algorithm
for genomic distance problem). In Proceedings of FOCS 1995, pages 581–592. IEEE
Press, 1995.

[11] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial
algorithm for sorting signed permutations by reversals. J. ACM, 46(1):1–27, 1999.

[12] S. Heber and J. Stoye. Finding all common intervals of k permutations. In Proceedings
of CPM 2001, volume 2089 of LNCS, pages 207–218. Springer Verlag, 2001.

[13] H. Kaplan, R. Shamir, and R. E. Tarjan. A faster and simpler algorithm for sorting
signed permutations by reversals. SIAM J. Computing, 29(3):880–892, 1999.

[14] J. D. Kececioglu and D. Sankoff. Efficient bounds for oriented chromosome inversion
distance. In Proceedings of CPM 1994, volume 807 of LNCS, pages 307–325. Springer
Verlag, 1994.

[15] B. Larget, J. Kadane, and D. Simon. A Markov chain Monte Carlo approach to
reconstructing ancestral genome rearrangements. Technical report, Carnegie Mellon
University, Pittsburgh, 2002.

[16] B. M. E. Moret, A. C. Siepel, J. Tang, and T. Liu. Inversion medians outperform
breakpoint medians in phylogeny reconstruction from gene-order data. In Proceedings
of WABI 2002, volume 2452 of LNCS, pages 521–536. Springer Verlag, 2002.

[17] M. Ozery-Flato and R. Shamir. Two notes on genome rearrangements. Manuscript,
2002.

[18] D. Sankoff. Short inversions and conserved gene clusters. Bioinformatics, 18(10):1305–
1308, 2002.

17

[19] A. Siepel. An algorithm to find all sorting reversals. In Proceedings of RECOMB
2002, pages 281–290. ACM Press, 2002.

[20] G. Tesler. Efficient algorithms for multichromosomal genome rearrangement. J. Com-
put. Syst. Sci., 65(3):587–609, 2002.

[21] T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica, 26(2):290–309, 2000.

18

Bisher erschienene Reports an der Technischen Fakultät
Stand: 2003-02-05

94-01 Modular Properties of Composable Term Rewriting Systems
(Enno Ohlebusch)

94-02 Analysis and Applications of the Direct Cascade Architecture
(Enno Littmann, Helge Ritter)

94-03 From Ukkonen to McCreight and Weiner: A Unifying View of Linear-Time Suffix
Tree Construction
(Robert Giegerich, Stefan Kurtz)

94-04 Die Verwendung unscharfer Maße zur Korrespondenzanalyse in Stereo
Farbbildern
(André Wolfram, Alois Knoll)

94-05 Searching Correspondences in Colour Stereo Images – Recent Results Using the
Fuzzy Integral
(André Wolfram, Alois Knoll)

94-06 A Basic Semantics for Computer Arithmetic
(Markus Freericks, A. Fauth, Alois Knoll)

94-07 Reverse Restructuring: Another Method of Solving Algebraic Equations
(Bernd Bütow, Stephan Thesing)

95-01 PaNaMa User Manual V1.3
(Bernd Bütow, Stephan Thesing)

95-02 Computer Based Training-Software: ein interaktiver Sequenzierkurs
(Frank Meier, Garrit Skrock, Robert Giegerich)

95-03 Fundamental Algorithms for a Declarative Pattern Matching System
(Stefan Kurtz)

95-04 On the Equivalence of E-Pattern Languages
(Enno Ohlebusch, Esko Ukkonen)

96-01 Static and Dynamic Filtering Methods for Approximate String Matching
(Robert Giegerich, Frank Hischke, Stefan Kurtz, Enno Ohlebusch)

96-02 Instructing Cooperating Assembly Robots through Situated Dialogues in Natural
Language
(Alois Knoll, Bernd Hildebrand, Jianwei Zhang)

96-03 Correctness in System Engineering
(Peter Ladkin)

96-04 An Algebraic Approach to General Boolean Constraint Problems
(Hans-Werner Güsgen, Peter Ladkin)

96-05 Future University Computing Resources
(Peter Ladkin)

96-06 Lazy Cache Implements Complete Cache
(Peter Ladkin)

96-07 Formal but Lively Buffers in TLA+
(Peter Ladkin)

96-08 The X-31 and A320 Warsaw Crashes: Whodunnit?
(Peter Ladkin)

96-09 Reasons and Causes
(Peter Ladkin)

96-10 Comments on Confusing Conversation at Cali
(Dafydd Gibbon, Peter Ladkin)

96-11 On Needing Models
(Peter Ladkin)

96-12 Formalism Helps in Describing Accidents
(Peter Ladkin)

96-13 Explaining Failure with Tense Logic
(Peter Ladkin)

96-14 Some Dubious Theses in the Tense Logic of Accidents
(Peter Ladkin)

96-15 A Note on a Note on a Lemma of Ladkin
(Peter Ladkin)

96-16 News and Comment on the AeroPeru B757 Accident
(Peter Ladkin)

97-01 Analysing the Cali Accident With a WB-Graph
(Peter Ladkin)

97-02 Divide-and-Conquer Multiple Sequence Alignment
(Jens Stoye)

97-03 A System for the Content-Based Retrieval of Textual and Non-Textual
Documents Based on Natural Language Queries
(Alois Knoll, Ingo Glöckner, Hermann Helbig, Sven Hartrumpf)

97-04 Rose: Generating Sequence Families
(Jens Stoye, Dirk Evers, Folker Meyer)

97-05 Fuzzy Quantifiers for Processing Natural Language Queries in Content-Based
Multimedia Retrieval Systems
(Ingo Glöckner, Alois Knoll)

97-06 DFS – An Axiomatic Approach to Fuzzy Quantification
(Ingo Glöckner)

98-01 Kognitive Aspekte bei der Realisierung eines robusten Robotersystems für
Konstruktionsaufgaben
(Alois Knoll, Bernd Hildebrandt)

98-02 A Declarative Approach to the Development of Dynamic Programming
Algorithms, applied to RNA Folding
(Robert Giegerich)

98-03 Reducing the Space Requirement of Suffix Trees
(Stefan Kurtz)

99-01 Entscheidungskalküle
(Axel Saalbach, Christian Lange, Sascha Wendt, Mathias Katzer, Guillaume
Dubois, Michael Höhl, Oliver Kuhn, Sven Wachsmuth, Gerhard Sagerer)

99-02 Transforming Conditional Rewrite Systems with Extra Variables into
Unconditional Systems
(Enno Ohlebusch)

99-03 A Framework for Evaluating Approaches to Fuzzy Quantification
(Ingo Glöckner)

99-04 Towards Evaluation of Docking Hypotheses using elastic Matching
(Steffen Neumann, Stefan Posch, Gerhard Sagerer)

99-05 A Systematic Approach to Dynamic Programming in Bioinformatics. Part 1 and
2: Sequence Comparison and RNA Folding
(Robert Giegerich)

99-06 Autonomie für situierte Robotersysteme – Stand und Entwicklungslinien
(Alois Knoll)

2000-01 Advances in DFS Theory
(Ingo Glöckner)

2000-02 A Broad Class of DFS Models
(Ingo Glöckner)

2000-03 An Axiomatic Theory of Fuzzy Quantifiers in Natural Languages
(Ingo Glöckner)

2000-04 Affix Trees
(Jens Stoye)

2000-05 Computergestützte Auswertung von Spektren organischer Verbindungen
(Annika Büscher, Michaela Hohenner, Sascha Wendt, Markus Wiesecke, Frank
Zöllner, Arne Wegener, Frank Bettenworth, Thorsten Twellmann, Jan
Kleinlützum, Mathias Katzer, Sven Wachsmuth, Gerhard Sagerer)

2000-06 The Syntax and Semantics of a Language for Describing Complex Patterns in
Biological Sequences
(Dirk Strothmann, Stefan Kurtz, Stefan Gräf, Gerhard Steger)

2000-07 Systematic Dynamic Programming in Bioinformatics (ISMB 2000 Tutorial Notes)
(Dirk J. Evers, Robert Giegerich)

2000-08 Difficulties when Aligning Structure Based RNAs with the Standard Edit Distance
Method
(Christian Büschking)

2001-01 Standard Models of Fuzzy Quantification
(Ingo Glöckner)

2001-02 Causal System Analysis
(Peter B. Ladkin)

2001-03 A Rotamer Library for Protein-Protein Docking Using Energy Calculations and
Statistics
(Kerstin Koch, Frank Zöllner, Gerhard Sagerer)

2001-04 Eine asynchrone Implementierung eines Microprozessors auf einem FPGA
(Marco Balke, Thomas Dettbarn, Robert Homann, Sebastian Jaenicke, Tim
Köhler, Henning Mersch, Holger Weiss)

2001-05 Hierarchical Termination Revisited
(Enno Ohlebusch)

2002-01 Persistent Objects with O2DBI
(Jörn Clausen)

2002-02 Simulation von Phasenübergängen in Proteinmonoschichten
(Johanna Alichniewicz, Gabriele Holzschneider, Morris Michael, Ulf Schiller, Jan
Stallkamp)

2002-03 Lecture Notes on Algebraic Dynamic Programming 2002
(Robert Giegerich)

2002-04 Side chain flexibility for 1:n protein-protein docking
(Kerstin Koch, Steffen Neumann, Frank Zöllner, Gerhard Sagerer)

2002-05 ElMaR: A Protein Docking System using Flexibility Information
(Frank Zöllner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

2002-06 Calculating Residue Flexibility Information from Statistics and Energy based
Prediction
(Frank Zöllner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

2002-07 Fundamentals of Fuzzy Quantification: Plausible Models, Constructive
Principles, and Efficient Implementation
(Ingo Glöckner)

2002-08 Branching of Fuzzy Quantifiers and Multiple Variable Binding: An Extension of
DFS Theory
(Ingo Glöckner)

