
	

WebSphere	Application	Server	Performance
Cookbook
Introduction
The	IBM®	WebSphere®	Application	Server	Performance	Cookbook	covers	performance	tuning	for
WebSphere	Application	Server	traditional,	WebSphere	Liberty,	Java™,	and	other	topics.	Review	the	notices
for	terms	of	use.

Start	with	the	recipes	and	review	details	in	supporting	chapters	as	needed.

	

Recipes
General	Recipes
Operating	System	Recipes
Java	Recipes
WebSphere	Application	Server	traditional	Recipes
WebSphere	Liberty	Recipes
Web	Server	Recipes
Container	Recipes
Caching	Recipes
Troubleshooting	Recipes

	

General	Performance	Recipes
1.	 Performance	tuning	is	usually	about	focusing	on	a	few	key	variables.	The	recipes	will	highlight	the

most	common	variables	that	often	improve	the	speed	of	the	average	application	by	100%	or	more
relative	to	the	default	configuration.	Additional	tuning	should	be	guided	by	evidence	using	the
scientific	method.	Gather	data,	analyze	it	and	create	hypotheses.	Then	test	and	evaluate	your
hypotheses.	Repeat.

2.	 There	is	a	seemingly	daunting	number	of	tuning	knobs.	We	try	to	document	everything	in	detail	in	case
you	hit	a	problem	in	that	area;	however,	unless	you	are	trying	to	squeeze	out	every	last	drop	of
performance,	we	do	not	recommend	a	close	study	of	every	point.

3.	 In	general,	we	advocate	a	bottom-up	and	integrated	approach.	Bottom-up	means,	for	example,	start
with	the	operating	system,	then	Java,	then	WebSphere,	then	the	application,	etc.	Integrated	means
gather	data	on	all	layers	at	the	same	time,	if	possible.

4.	 One	of	the	most	difficult	aspects	of	performance	tuning	is	understanding	whether	or	not	the
architecture	of	the	system,	or	even	the	test	itself,	is	valid	and/or	optimal.

5.	 Meticulously	describe	and	track	the	investigation,	each	test	and	its	results.
6.	 Use	statistics	(minimums,	maximums,	averages,	medians,	and	standard	deviations)	instead	of	spot

observations.
7.	 When	benchmarking,	use	a	repeatable	test	that	accurately	models	production	behavior,	and	avoid	short

term	benchmarks	which	may	not	have	time	to	warm	up.
8.	 To	investigate	bottlenecks,	consider	the	key	variables	including	request	arrivals,	concurrent	threads,

and	response	times.
9.	 Take	the	time	to	automate	as	much	as	possible:	not	just	the	testing	itself,	but	also	data	gathering	and

analysis.	This	will	help	you	iterate	and	test	more	hypotheses.

10.	 Make	sure	you	are	using	the	latest	version	of	every	component	because	there	are	often	performance	or
tooling	improvements	available.

11.	 When	researching	issues,	you	can	either	analyze	or	isolate	them.	Analyzing	means	taking	particular
symptoms	and	generating	hypotheses	on	how	to	change	those	symptoms.	Isolating	means	finding	an
issue	through	the	process	of	elimination.	In	general,	we	have	found	through	experience	that	analysis	is
preferable	to	isolation.

12.	 Review	the	full	end-to-end	architecture.	Certain	internal	or	external	products,	devices,	content	delivery
networks,	etc.	may	artificially	limit	performance	(e.g.	Denial	of	Service	protection),	periodically	mark
services	down	(e.g.	network	load	balancers,	WAS	plugin,	etc.),	or	become	bottlenecks	themselves	(e.g.
CPU	on	load	balancers,	etc.).

For	details,	see	the	General	chapter.

	

Operating	System	Recipes
Linux	Recipes
AIX	Recipes
z/OS	Recipes
IBM	i	Recipes
Windows	Recipes
Solaris	Recipes
HP-UX	Recipes
macOS	Recipes

	

Linux	Recipes
1.	 Generally,	all	CPU	cores	should	not	be	consistently	saturated.	Check	CPU	100	-	idle%	with	tools

such	as	vmstat,	top,	nmon,	etc.
2.	 Review	snapshots	of	process	activity	using	tools	such	as	top,	nmon,	etc.,	and	for	the	largest	users	of

resources,	review	per	thread	activity	using	tools	such	as	top	-H	-p	$PID.
3.	 Generally,	swapping	of	program	memory	from	RAM	to	disk	should	rarely	happen.	Check	that	current

swapping	is	0	with	vmstat	so/si	columns	and	use	tools	such	as	vmstat	or	top	and	check	if	swap
amount	is	greater	than	0	(i.e.	swapping	occurred	in	the	past).

4.	 Consider	using	TuneD	and	applying	the	latency-performance,	network-latency,	throughput-
performance,	or	network-throughput	profile.

5.	 Unless	power	consumption	is	important,	change	the	CPU	speed	governors	to	performance.
6.	 Unless	power	consumption	is	important,	ensure	processor	boosting	is	enabled	in	the	BIOS.
7.	 Monitor	TCP	retransmissions	with	nstat	-saz	*Retrans*.	Ideally,	for	LAN	traffic,	they	should	be	0.
8.	 Monitor	network	interface	packet	drops,	errors,	and	buffer	overruns.	Ideally,	for	LAN	traffic,	they

should	be	0.
9.	 For	systems	with	low	expected	usage	of	file	I/O,	set	vm.swappiness=0	to	reduce	the	probability	of	file

cache	driving	program	memory	swapping.
10.	 If	there	is	extra	network	capacity	and	a	node	has	extra	CPU	capacity,	test	permanently	disabling	TCP

delayed	acknowledgments	using	quickack	1.
11.	 Review	saturation,	response	time,	and	errors	of	input/output	interfaces	such	as	network	cards	and	disks.
12.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.	Review	CPU	steal	time	in	tools	such	as	vmstat,	top,	etc.
13.	 Check	if	CPU	is	being	throttled:	grep	nr_throttled	/sys/fs/cgroup/cpu.stat
14.	 Consider	testing	explicitly	tuned	TCP/IP	network	buffer	sizes.
15.	 Review	CPU	instructions	per	cycle	and	tune	appropriately.
16.	 For	hosts	with	incoming	LAN	network	traffic	from	clients	using	persistent	TCP	connection	pools	(e.g.	a

reverse	HTTP	proxy	to	an	application	server	such	as	IHS/httpd	to	WAS),	set
net.ipv4.tcp_slow_start_after_idle=0	to	disable	reducing	the	TCP	congestion	window	for	idle

https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt

connections.
17.	 General	operating	system	statistics	and	process	(and	thread)	statistics	should	be	periodically	monitored

and	saved	for	historical	analysis.
18.	 Review	sysctl	-a	for	any	uncommon	kernel	settings.
19.	 If	there	are	firewall	idle	timeouts	between	two	hosts	on	a	LAN	utilizing	a	connection	pool	(e.g.

between	WAS	and	a	database),	consider	tuning	TCP	keep-alive	parameters.
20.	 Linux	on	IBM	Power	CPUs:

1.	 Test	with	the	IBM	Java	parameter	-Xnodfpbd
2.	 Test	with	hardware	prefetching	disabled
3.	 Test	with	idle	power	saver	disabled
4.	 Test	with	adaptive	frequency	boost	enabled
5.	 Test	with	dynamic	power	saver	mode	enabled
6.	 Use	64-bit	DMA	adapter	slots	for	network	adapters

21.	 Linux	on	IBM	System	z	CPUs:
1.	 Use	QUICKDSP	for	production	guests

For	details,	see	the	Linux	chapter.

	

AIX	Recipes
1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Unless	energy	saving	features	are	required,	ensure	 Power	Management	is	set	to	Maximum

Performance	mode.
3.	 Generally,	physical	memory	should	never	be	saturated	with	computational	memory	and	the	operating

system	should	not	page	computational	memory	out	to	disk.
4.	 If	you're	not	tight	on	RAM,	tune	Virtual	Ethernet	Adapter	minimum	and	maximum	buffers	on	all	AIX

LPARs	(including	VIO)	to	maximum	possible	values	to	avoid	TCP	retransmits.
5.	 Test	disabling	TCP	delayed	ACKs
6.	 Monitor	for	TCP	retransmissions	and	test	tuning	TCP/IP	network	buffer	sizes.
7.	 Use	netstat	-v	to	ensure	that	network	switches	are	not	sending	PAUSE	frames.
8.	 In	some	situations,	enabling	network	dog	threads	on	multi-processor	nodes	may	avoid	a	network

processing	bottleneck	with	the	default	single-CPU	interrupt	processing	model.
9.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
10.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
11.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
12.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
13.	 If	there	are	firewall	idle	timeouts	between	two	hosts	on	a	LAN	utilizing	a	connection	pool	(e.g.

between	WAS	and	a	database),	consider	tuning	TCP	keep-alive	parameters.
14.	 Bind	your	processes	properly	based	on	system	topology.
15.	 Use	MCM	memory	affinity	where	appropriate.
16.	 Find	the	optimal	SMT	configuration	for	the	machine.
17.	 Find	the	optimal	hardware	prefetching	setting	for	your	workload.
18.	 Apply	recommended	tuning	for	Java	applications.
19.	 For	large	multi-threaded	apps,	use	profiling	to	make	sure	that	work	is	allocated	equally	amongst

threads.
20.	 For	apps	that	use	a	lot	of	network	I/O,	tune	networking	parameters.
21.	 For	apps	that	make	heavy	use	of	native	memory,	experiment	with	and	use	the	optimal	malloc

algorithm.
22.	 Use	profiling	to	evaluate	the	effects	of	tuning	other	parameters.

For	details,	see	the	AIX	chapter.

	

https://www.ibm.com/docs/en/power10?topic=operations-power-management

z/OS	Recipes
1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Generally,	physical	memory	should	never	be	saturated	and	the	operating	system	should	not	page

memory	out	to	disk.
3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have

poor	response	times.
4.	 TCP/IP	and	network	tuning,	whilst	sometimes	complicated	to	investigate,	may	have	dramatic	effects

on	performance.
5.	 Consider	tuning	TCP/IP	network	buffer	sizes.
6.	 Collect	and	archive	various	RMF/SMF	records	on	10	or	15	minute	intervals:

1.	 SMF	30	records
2.	 SMF	70-78	records
3.	 SMF	113	subtype	1	(counters)	records
4.	 With	recent	versions	of	z/OS,	Correlator	SMF	98.1	records
5.	 SMF	99	subtype	6	records
6.	 If	not	active,	activate	HIS	and	collect	hardware	counters:

7.	 Review	ps	-p	$PID	-m 	and	D	OMVS,PID=$PID	output	over	time	for	processes	of	interest.
8.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
9.	 Review	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.

10.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
11.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
12.	 Use	the	Workload	Activity	Report	to	review	performance.
13.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP

keepalive	timer	(TCPCONFIG	INTERVAL)	from	2	hours	to	a	value	less	than	intermediate	device	idle
timeouts	(e.g.	firewalls).

14.	 Review	SYS1.PARMLIB	(and	SYS1.IPLPARM	if	used)
15.	 Test	disabling	delayed	ACKs

For	details,	see	the	z/OS	and	WAS	traditional	on	z/OS	chapters.

	

IBM	i	Recipes
1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Generally,	physical	memory	should	never	be	saturated	and	the	operating	system	should	not	page

memory	out	to	disk.
3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have

poor	response	times.
4.	 TCP/IP	and	network	tuning,	whilst	sometimes	complicated	to	investigate,	may	have	dramatic	effects

on	performance.
5.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
6.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
7.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
8.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
9.	 Enable	Collection	Services	for	performance	data.

10.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP
keepalive	timer	(CHGTCPA	TCPKEEPALV)	from	2	hours	to	a	value	less	than	intermediate	device
idle	timeouts	(e.g.	firewalls).

11.	 Test	disabling	delayed	ACKs

For	details,	see	the	IBM	i	chapter.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.halz001/tcpconfigstatement.htm

	

Windows	Recipes
1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Generally,	physical	memory	should	never	be	saturated	and	the	operating	system	should	not	page

memory	out	to	disk.
3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have

poor	response	times.
4.	 TCP/IP	and	network	tuning,	whilst	sometimes	complicated	to	investigate,	may	have	dramatic	effects

on	performance.
5.	 Consider	changing	Processor	Performance	Management	(PPM)	to	the	"High	Performance"	setting	or

disabling	it.
6.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
7.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
8.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
9.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
10.	 Use	Perfmon	to	review	performance	activity.
11.	 Use	the	Windows	Performance	Toolkit	to	review	sampled	native	processor	usage.
12.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP

keepalive	timer	(HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\KeepAliveTime)	from
2	hours	to	a	value	less	than	intermediate	device	idle	timeouts	(e.g.	firewalls).

13.	 Test	disabling	delayed	ACKs

For	details,	see	the	Windows	chapter.

	

Solaris	Recipes
1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Program	memory	should	not	page	out	of	RAM.
3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have

poor	response	times.
4.	 TCP/IP	and	network	tuning,	whilst	sometimes	complicated	to	investigate,	may	have	dramatic	effects

on	performance.
5.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
6.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
7.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
8.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
9.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP

keepalive	timer	(tcp_keepalive_interval)	from	2	hours	to	a	value	less	than	intermediate	device	idle
timeouts	(e.g.	firewalls).

10.	 Test	disabling	delayed	ACKs

For	details,	see	the	Solaris	chapter.

	

HP-UX	Recipes
1.	 CPU	core(s)	should	not	be	consistently	saturated.

2.	 Generally,	physical	memory	should	never	be	saturated	and	the	operating	system	should	not	page
memory	out	to	disk.

3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have
poor	response	times.

4.	 TCP/IP	and	network	tuning,	whilst	sometimes	complicated	to	investigate,	may	have	dramatic	effects
on	performance.

5.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically
monitored	and	saved	for	historical	analysis.

6.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
7.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
8.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
9.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP

keepalive	timer	(tcp_keepalive_interval)	from	2	hours	to	a	value	less	than	intermediate	device	idle
timeouts	(e.g.	firewalls).

10.	 Test	disabling	delayed	ACKs

For	details,	see	the	HP-UX	chapter.

	

macOS	Recipe
1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Generally,	physical	memory	should	never	be	saturated	and	the	operating	system	should	not	page

memory	out	to	disk.
3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have

poor	response	times.
4.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
5.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
6.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
7.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP

keepalive	timer	(tcp_keepalive_time)	from	2	hours	to	a	value	less	than	intermediate	device	idle
timeouts	(e.g.	firewalls).

8.	 Test	disabling	delayed	ACKs

For	details,	see	the	macOS	Chapter.

	

Java	Recipes
1.	 Review	the	Operating	System	recipe	for	your	OS.
2.	 Tune	the	maximum	Java	heap	size	(-Xmx	or	-XX:MaxRAMPercentage):

1.	 Ensure	that	verbose	garbage	collection	is	enabled	(which	it	is	by	default	in	recent	versions	of
Liberty	and	tWAS)	which	generally	has	an	overhead	less	than	0.5%	and	then	use	a	tool	such	as
the	IBM	Garbage	Collection	and	Memory	Visualizer	(GCMV)	and	ensure	that	the	proportion	of
time	spent	in	garbage	collection	versus	application	processing	time	is	less	than	5%	and	ideally
less	than	1%.

2.	 In	general,	a	place	to	start	is	to	set	the	maximum	size	to	43%	larger	than	the	maximum
occupancy	of	the	application,	although	the	latter	is	largely	a	function	of	workload	and	thread
pool	size,	so	this	is	just	a	heuristic.

3.	 Consider	testing	different	garbage	collector	for	the	OpenJ9/IBM	JVM	and	HotSpot	JVM.
4.	 Consider	testing	an	increased	maximum	nursery	size	for	generational	collectors.
5.	 Ensure	there	is	no	memory	leak	after	global	garbage	collections	with	long	running	tests	by	reviewing

verbosegc.

6.	 If	using	a	generational	collector	(which	most	modern	default	collectors	are):
1.	 Ensure	tests	run	through	full/tenured	collections	and	ensure	those	pause	times	are	not	too	long.
2.	 Ensure	that	there	is	a	sawtooth	pattern	in	the	heap	usage	after	collection.	Otherwise,	the	heap

size	may	be	too	small	or	the	nursery	too	big.
7.	 Consider	monitoring	for	pause	times	over	one	second	and	tune	GC	if	found.	Sometimes	high	pause

times	are	acceptable.
8.	 Use	a	profiler	such	as	IBM	Java	Health	Center	or	OpenJDK	Mission	Control	with	a	particular	focus	on

the	profiling	and	lock	contention	analysis;	otherwise,	use	periodic	thread	dumps	to	review	JVM
activity	with	the	IBM	Thread	and	Monitor	Dump	Analyzer	tool.

9.	 Object	allocation	failures	for	objects	greater	than	5MB	should	generally	be	investigated.	Sometimes
high	allocation	sizes	are	acceptable.

10.	 If	the	node	only	uses	IPv4	and	does	not	use	IPv6,	then	add	the	JVM	parameters	-
Djava.net.preferIPv4Stack=true	-Djava.net.preferIPv6Addresses=false

11.	 Consider	taking	a	system	dump	or	HPROF	heapdump	during	peak	activity	in	a	test	environment	and
review	it	with	the	Eclipse	Memory	Analyzer	Tool	to	see	if	there	are	any	areas	in	the	heap	for
optimization.

12.	 Review	the	stderr	and	stdout	logs	for	any	errors,	warnings,	or	high	volumes	of	messages	(e.g.
OutOfMemoryErrors,	etc.).

13.	 If	running	multiple	JVMs	on	the	same	machine,	consider	pinning	JVMs	to	sets	of	processor	cores	and
tuning	-Xgcthreads/-XcompilationThreads	(IBM/OpenJ9	JVM)	or	-XX:ParallelGCThreads	(HotSpot
JVM).

14.	 In	general,	if	memory	usage	is	very	flat	and	consistent,	it	may	be	optimal	to	fix	-Xms	=	-Xmx.	For
widely	varying	heap	usage,	-Xms	<	-Xmx	is	generally	recommended.

15.	 If	heavily	using	XML,	consider	explicitly	configuring	JAXP	ServiceLoader	properties	to	avoid
unnecessary	classloading	activity.

For	details,	see	the	Java	chapter	and	the	chapter	for	your	particular	JVM.

	

OpenJ9	and	IBM	J9	JVMs	Recipe

1.	 In	most	cases,	the	default	-Xgcpolicy:gencon	garbage	collection	policy	works	best,	with	the	key
tuning	being	the	maximum	heap	size	(-Xmx	or	-XX:MaxRAMPercentage)	and	maximum	nursery	size	(-
Xmn).

2.	 Upgrade	to	the	latest	version	and	fixpack	as	there	is	a	history	of	making	performance	improvements
and	fixing	issues	or	regressions	over	time.

3.	 Take	a	javacore	and	review	the	Java	arguments	(UserArgs)	and	Environment	Variables	sections	and
remove	any	unnecessary	debug	options.

4.	 Take	a	javacore	and	review	if	the	JIT	code	cache	is	full	or	nearly	full;	if	so,	and	there's	available
physical	memory,	test	increasing	it	with	-Xcodecachetotal384m	-Xcodecache32m

5.	 Take	a	javacore	and	review	if	the	shared	class	cache	is	full	or	nearly	full;	if	so,	and	there's	available
physical	memory,	consider	increasing	-Xscmx

6.	 If	using	-Xgcpolicy:gencon	and	you	want	to	reduce	average	nursery	pause	times	at	some	throughput
and	CPU	cost,	consider	concurrent	scavenge.

7.	 Consider	setting	-XX:+CompactStrings	where	available,	applicable,	and	not	already	the	default.
8.	 Review	the	performance	tuning	topics	in	the	OpenJ9	or	IBM	Java	documentation.
9.	 When	running	benchmarks	or	comparing	performance	to	other	JVMs,	consider	testing	various

benchmark	ideas.
10.	 If	using	IBM	Semeru	Runtimes:

1.	 If	JIT	CPU	or	memory	usage	are	a	concern,	consider	using	the	remote	JITServer	on	available
platforms.

2.	 For	AIX	and	Linux,	ensure	OpenSSL	is	on	the	system	path	for	maximum	security	performance.
3.	 On	z/OS,	consider	enabling	IBM	Java	Health	Center	(-Xhealthcenter:level=headless)	for

post-mortem	CPU	and	lock	profiling	data,	although	this	has	an	overhead	of	about	2%.
4.	 On	z/OS,	consider	using	the	"pauseless"	garbage	collection	option	-Xgc:concurrentScavenge

if	using	gencon	and	on	recent	software	and	hardware.
11.	 If	using	IBM	Java	(does	not	apply	to	IBM	Semeru	Runtimes):

https://www.ibm.com/support/pages/slow-performance-or-hang-hostname-lookup
https://eclipse.dev/openj9/docs/xxcompactstrings/
https://www.eclipse.org/openj9/docs/introduction/#performance-tuning
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.80.doc/performance.html
https://www.ibm.com/support/pages/pause-less-garbage-collection-java-ibm-z

1.	 Consider	setting	-XX:MaxDirectMemorySize	to	avoid	some	unnecessary	full	garbage
collections.

2.	 Consider	using	the	IBMJCEPlus	security	provider	that	may	offer	large	performance
improvements	in	encryption.	This	is	now	the	default	except	on	z/OS	since	8.0.7.0.

3.	 If	the	node	is	using	a	static	IP	address	that	won't	be	changed	while	the	JVM	is	running,	use	the
JVM	option	-Dcom.ibm.cacheLocalHost=true.

4.	 Consider	enabling	IBM	Java	Health	Center	(-Xhealthcenter:level=headless)	for	post-
mortem	CPU	and	lock	profiling	data,	although	this	has	an	overhead	of	about	2%.

For	details,	see	the	OpenJ9	and	IBM	J9	JVMs	chapter.

	

HotSpot	JVM	Recipe

1.	 In	most	cases,	the	default	-XX:+UseG1GC	or	-XX:+UseParallelOldGC	garbage	collection	policies
(depending	on	version)	work	best,	with	the	key	tuning	being	the	maximum	heap	size	(-Xmx).

2.	 Set	-XX:+HeapDumpOnOutOfMemoryError.
3.	 Enable	verbose	garbage	collection	and	use	a	tool	such	as	the	Garbage	Collection	and	Memory

Visualizer	to	confirm	the	proportion	of	time	in	stop-the-world	garbage	collection	pauses	is	less	than
~10%	and	ideally	less	than	1%.

1.	 Check	for	long	individual	pause	times	(e.g.	greater	than	400ms	or	whatever	response	time
expectations	are)

2.	 For	G1GC,	check	for	humongous	allocations.
3.	 Review	the	latest	garbage	collection	tuning	guidance.

For	details,	see	the	HotSpot	JVM	chapter.

	

Java	Profilers	Recipe

1.	 In	most	cases,	sampling	profilers	are	used	first	and	tracing	profilers	are	only	used	for	fine	grained
tuning	or	deep	dive	analysis.

2.	 Analyze	any	methods	that	use	more	than	1%	of	the	reported	time	in	themselves.
3.	 Analyze	any	methods	that	use	more	than	10%	of	the	reported	time	in	themselves	and	their	children.
4.	 Analyze	any	locks	that	have	large	contention	rates,	particularly	those	with	long	average	hold	times.

Enabling	profilers:

J9	Health	Center	Enable	at	Startup
J9	Health	Center	Enable	at	Startup	of	Limited	Duration
J9	Health	Center	Enable	at	Runtime
J9	Health	Center	Enable	at	Runtime	of	Limited	Duration
J9	Health	Center	Enable	at	Runtime	of	Limited	Duration	on	z/OS
HotSpot	Mission	Control	Enable	at	Startup

	

J9	Health	Center	Enable	at	Startup
The	Health	Center	agent	is	shipped	with	IBM	Java	and	IBM	Semeru	Runtimes	on	z/OS	(though	not	z/Linux),
but	it	is	not	currently	shipped	with	IBM	Semeru	Runtimes	on	other	platforms,	though	there	are	some
unsupported	workarounds.	The	Health	Center	agent	neither	ships	with	nor	works	with	HotSpot	JVMs.

1.	 Stop	the	JVM
2.	 Append	the	following	JVM	options:

WebSphere	Liberty	jvm.options:

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=providers-enabling-ibmjceplus-ibmjceplusfips
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=wn-service-refresh-7
https://www.ibm.com/docs/en/was/9.0.5?topic=jvm-java-virtual-machine-custom-properties#com.ibm.cacheLocalHost
https://docs.oracle.com/en/java/javase/17/gctuning/hotspot-virtual-machine-garbage-collection-tuning-guide.pdf
https://github.com/eclipse-openj9/openj9/issues/1538#issuecomment-1282651705
https://openliberty.io/docs/20.0.0.9/reference/config/server-configuration-overview.html#jvm-options

-Xhealthcenter:level=headless

WAS	traditional	generic	JVM	arguments:

-Xhealthcenter:level=headless

3.	 Start	the	JVM
4.	 Reproduce	the	issue	(at	least	5	minutes	worth	because	Health	Center	is	a	sampling	profiler)
5.	 Gracefully	stop	the	JVM	(i.e.	don't	kill	it)
6.	 Gather	*.hcd	files	from	the	working	directory	of	the	process.	By	default:

WebSphere	Liberty:	$LIBERTY/usr/servers/$SERVER/
WAS	traditional:	$TWAS/profiles/$PROFILE/

Warnings	and	notes:

1.	 Sometimes	HCDs	gathered	during	startup	may	fail	performing	method	address	to	method	name
lookups	due	to	JVMTI_ERROR_CLASS_NOT_PREPARED	(22).	On	subsequent	HCDs,	healthcenter	should
find	all	those	methods,	so,	if	the	user	is	not	interested	in	profiling	startup,	then	they	can	delay	starting
the	first	HCD	until	the	JVM	has	loaded	all	(or	at	least	most)	of	its	classes	with	-
Dcom.ibm.java.diagnostics.healthcenter.headless.delay.start=$MINUTES.	Alternatively,
append	later	HCDs	into	the	Health	Center	client	that	have	the	method	name	mappings.

2.	 If	the	JVM	could	not	be	stopped	gracefully,	gather	the	temporary	files	from	a	subdirectory	of	the
output	called
tmp_${STARTDAY}${STARTMONTH}${STARTYEAR}_${STARTHOUR}${STARTMINUTES}${STARTSECONDS}_

3.	 Use	the	additional	JVM	option	-
Dcom.ibm.java.diagnostics.healthcenter.headless.output.directory=$DIR	to	redirect	Health
Center	files	to	a	different	directory	instead	of	the	working	directory.

4.	 If	using	Liberty	and	you	specify	-Xtrace:buffers={2m,dynamic}	to	minimize	Health	Center	method
metadata	loss,	since	Liberty	defaults	to	an	unlimited	maximum	thread	pool	designed	to	maximize
throughput,	consider	capping	this	with	<executor	maxThreads="N"	/>	based	on	available	native
memory	to	avoid	native	memory	exhaustion,	or	use	a	smaller	-Xtrace	buffer	size	such	as	-
Xtrace:buffers={128k,dynamic}	(or	lower).

5.	 We	have	observed	that	some	monitoring	agents	cause	problems	with	Health	Center.	Consider
removing	other	monitoring	agents	that	use	-agentpath	while	using	HealthCenter,	engage	IBM	and	the
agent	company	support	teams	to	investigate,	or	use	-Xbootclasspath/p	to	healthcenter.jar	and	-
agentpath	to	libhealthcenter.so.

For	details,	see	the	Health	Center	chapter.

	

J9	Health	Center	Enable	at	Startup	of	Limited	Duration
The	Health	Center	agent	is	shipped	with	IBM	Java	and	IBM	Semeru	Runtimes	on	z/OS	(though	not	z/Linux),
but	it	is	not	currently	shipped	with	IBM	Semeru	Runtimes	on	other	platforms,	though	there	are	some
unsupported	workarounds.	The	Health	Center	agent	neither	ships	with	nor	works	with	HotSpot	JVMs.

1.	 Stop	the	JVM
2.	 Append	the	following	JVM	options	and	change	the	number	of	minutes	after	which	Health	Center	will

stop	(two	runs	so	multiply	duration	times	2	for	total	gathering	time;	see	notes	below	for	why	2	runs	are
suggested):

WebSphere	Liberty	jvm.options:

-Xhealthcenter:level=headless
-Dcom.ibm.java.diagnostics.healthcenter.headless.run.number.of.runs=2
-Dcom.ibm.java.diagnostics.healthcenter.headless.run.duration=15

WAS	traditional	generic	JVM	arguments:

https://www.ibm.com/support/pages/setting-generic-jvm-arguments-websphere-application-server
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xtrace/index.html#buffers
https://github.com/eclipse-openj9/openj9/issues/1538#issuecomment-1282651705
https://openliberty.io/docs/20.0.0.9/reference/config/server-configuration-overview.html#jvm-options
https://www.ibm.com/support/pages/setting-generic-jvm-arguments-websphere-application-server

-Xhealthcenter:level=headless	-Dcom.ibm.java.diagnostics.healthcenter.headless.run.number.of.runs=2	-Dcom.ibm.java.diagnostics.healthcenter.headless.run.duration=15

3.	 Start	the	JVM
4.	 After	the	number	of	minutes	specified,	gather	*.hcd	files	from	the	working	directory	of	the	process.

By	default:
WebSphere	Liberty:	$LIBERTY/usr/servers/$SERVER/
WAS	traditional:	$TWAS/profiles/$PROFILE/

Warnings	and	notes:

1.	 Sometimes	HCDs	gathered	during	startup	may	fail	performing	method	address	to	method	name
lookups	due	to	JVMTI_ERROR_CLASS_NOT_PREPARED	(22).	All	method	name	mappings	are	re-gathered
at	the	start	of	each	new	HCD.	For	this	reason,	the	above	example	uses	two	runs	and	then	the	second
HCD	may	be	appended	in	the	client	to	evaluate	all	methods.

2.	 If	the	JVM	could	not	be	stopped	gracefully,	gather	the	temporary	files	from	a	subdirectory	of	the
output	called
tmp_${STARTDAY}${STARTMONTH}${STARTYEAR}_${STARTHOUR}${STARTMINUTES}${STARTSECONDS}_

3.	 Use	the	additional	JVM	option	-
Dcom.ibm.java.diagnostics.healthcenter.headless.output.directory=$DIR	to	redirect	Health
Center	files	to	a	different	directory	instead	of	the	working	directory.

4.	 If	using	Liberty	and	you	specify	-Xtrace:buffers={2m,dynamic}	to	minimize	Health	Center	method
metadata	loss,	since	Liberty	defaults	to	an	unlimited	maximum	thread	pool	designed	to	maximize
throughput,	consider	capping	this	with	<executor	maxThreads="N"	/>	based	on	available	native
memory	to	avoid	native	memory	exhaustion,	or	use	a	smaller	-Xtrace	buffer	size	such	as	-
Xtrace:buffers={128k,dynamic}	(or	lower).

5.	 We	have	observed	that	some	monitoring	agents	cause	problems	with	Health	Center.	Consider
removing	other	monitoring	agents	that	use	-agentpath	while	using	HealthCenter,	engage	IBM	and	the
agent	company	support	teams	to	investigate,	or	use	-Xbootclasspath/p	to	healthcenter.jar	and	-
agentpath	to	libhealthcenter.so.

For	details,	see	the	Health	Center	chapter.

	

J9	Health	Center	Enable	at	Runtime
The	Health	Center	agent	is	shipped	with	IBM	Java	and	IBM	Semeru	Runtimes	on	z/OS	(though	not	z/Linux),
but	it	is	not	currently	shipped	with	IBM	Semeru	Runtimes	on	other	platforms,	though	there	are	some
unsupported	workarounds.	The	Health	Center	agent	neither	ships	with	nor	works	with	HotSpot	JVMs.

1.	 On	z/OS	(though	not	z/Linux),	the	JVM	must	have	late	attach	explicitly	enabled	with	-
Dcom.ibm.tools.attach.enable=yes	(restart	required).	On	other	operating	systems,	late	attach	is
enabled	by	default,	but	check	if	it	has	been	explicitly	disabled	with	-
Dcom.ibm.tools.attach.enable=no

2.	 Log	on	as	the	same	user	that's	running	the	JVM
3.	 Execute	the	following,	replacing	$JAVA_HOME	twice,	and	$PID	with	the	process	ID:

$JAVA_HOME/bin/java	-jar	$JAVA_HOME/jre/lib/ext/healthcenter.jar	ID=$PID	level=headless

4.	 Reproduce	the	issue	(at	least	5	minutes	worth	because	Health	Center	is	a	sampling	profiler)
5.	 Gracefully	stop	the	JVM	(i.e.	don't	kill	it)
6.	 Gather	*.hcd	files	from	the	working	directory	of	the	process.	By	default:

WebSphere	Liberty:	$LIBERTY/usr/servers/$SERVER/
WAS	traditional:	$TWAS/profiles/$PROFILE/

Warnings	and	notes:

1.	 Every	time	a	new	HCD	collection	is	started,	the	agent	starts	to	look	up	method	address	to	method
name	mappings	for	all	loaded	methods	at	the	start	of	the	HCD.	By	default,	the	agent	queries	up	to

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xtrace/index.html#buffers
https://github.com/eclipse-openj9/openj9/issues/1538#issuecomment-1282651705

3,000	unresolved	method	name	mappings	every	5	seconds.	Therefore,	for	proper	profiled	method
name	evaluation,	the	minimum	duration	per-HCD	should	be	specified	based	on	the	number	of	loaded
methods.	It	is	common	for	an	enterprise	application	to	load	hundreds	of	thousands	of	methods,	so	a
minimum	of	5-10	minutes	is	a	good	start.	Tracing	to	show	this	behavior	and	the	number	of	methods	is
-Dcom.ibm.diagnostics.healthcenter.logging.methodlookup=debug	-
Dcom.ibm.diagnostics.healthcenter.logging.MethodLookupProvider=debug	and	search	for
com.ibm.diagnostics.healthcenter.methodlookup.debug	DEBUG:	N	methods	to	lookup .
Methods	created	during	the	HCD	interval	are	captured	seperately.

2.	 If	the	JVM	could	not	be	stopped	gracefully,	gather	the	temporary	files	from	a	subdirectory	of	the
output	called
tmp_${STARTDAY}${STARTMONTH}${STARTYEAR}_${STARTHOUR}${STARTMINUTES}${STARTSECONDS}_

3.	 Use	the	additional	JVM	option	-
Dcom.ibm.java.diagnostics.healthcenter.headless.output.directory=$DIR	to	redirect	Health
Center	files	to	a	different	directory	instead	of	the	working	directory.

4.	 Note	that	this	does	not	work	with	Liberty	if	some	jndi-1.0-related	features	are	loaded	and	there	is	a
request	for	enhancement.

5.	 If	using	Liberty	and	you	specify	-Xtrace:buffers={Xm,dynamic}	to	minimize	Health	Center	method
metadata	loss,	since	Liberty	defaults	to	an	unlimited	maximum	thread	pool	designed	to	maximize
throughput,	consider	capping	this	with	<executor	maxThreads="N"	/>	based	on	available	native
memory	to	avoid	native	memory	exhaustion,	or	use	a	smaller	-Xtrace	buffer	size	such	as	-
Xtrace:buffers={128k,dynamic}	(or	lower).

6.	 We	have	observed	that	some	monitoring	agents	cause	problems	with	Health	Center.	Consider
removing	other	monitoring	agents	that	use	-agentpath	while	using	HealthCenter,	engage	IBM	and	the
agent	company	support	teams	to	investigate,	or	use	-Xbootclasspath/p	to	healthcenter.jar	and	-
agentpath	to	libhealthcenter.so.

For	details,	see	the	Health	Center	chapter.

	

J9	Health	Center	Enable	at	Runtime	of	Limited	Duration
The	Health	Center	agent	is	shipped	with	IBM	Java	and	IBM	Semeru	Runtimes	on	z/OS	(though	not	z/Linux),
but	it	is	not	currently	shipped	with	IBM	Semeru	Runtimes	on	other	platforms,	though	there	are	some
unsupported	workarounds.	The	Health	Center	agent	neither	ships	with	nor	works	with	HotSpot	JVMs.

The	following	instructions	are	for	non-z/OS	platforms	(in	this	context,	z/Linux	is	considered	non-z/OS).	For
z/OS,	see	alternate	instructions.

1.	 By	default,	late	attach	is	enabled	but	double	check	that	the	following	option	has	not	been	set	to	disable
it:	-Dcom.ibm.tools.attach.enable=no

2.	 Log	on	as	the	same	user	that	the	JVM	is	running	under.
3.	 Execute	the	following,	replacing	$JAVA_HOME	twice,	$PID	with	the	process	ID,	and	change	30	to	the

number	of	minutes	to	run	(see	notes	below	on	duration	considerations):

$JAVA_HOME/bin/java	-jar	$JAVA_HOME/jre/lib/ext/healthcenter.jar	ID=$PID	level=headless	-Dcom.ibm.java.diagnostics.healthcenter.headless.run.number.of.runs=1	-Dcom.ibm.java.diagnostics.healthcenter.headless.run.duration=30

4.	 After	the	number	of	minutes	elapses,	gather	the	*.hcd	file	from	the	current	working	directory	of	the
process.	By	default:

WebSphere	Liberty:	$LIBERTY/usr/servers/$SERVER/
WAS	traditional:	$TWAS/profiles/$PROFILE/

Warnings	and	notes:

1.	 Every	time	a	new	HCD	collection	is	started,	the	agent	starts	to	look	up	method	address	to	method
name	mappings	for	all	loaded	methods	at	the	start	of	the	HCD.	By	default,	the	agent	queries	up	to
3,000	unresolved	method	name	mappings	every	5	seconds.	Therefore,	for	proper	profiled	method
name	evaluation,	the	minimum	duration	per-HCD	should	be	specified	based	on	the	number	of	loaded

https://cloud-platform.ideas.ibm.com/ideas/TWAS-I-190
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xtrace/index.html#buffers
https://github.com/eclipse-openj9/openj9/issues/1538#issuecomment-1282651705

methods.	It	is	common	for	an	enterprise	application	to	load	hundreds	of	thousands	of	methods,	so	a
minimum	of	5-10	minutes	is	a	good	start.	Tracing	to	show	this	behavior	and	the	number	of	methods	is
-Dcom.ibm.diagnostics.healthcenter.logging.methodlookup=debug	-
Dcom.ibm.diagnostics.healthcenter.logging.MethodLookupProvider=debug	and	search	for
com.ibm.diagnostics.healthcenter.methodlookup.debug	DEBUG:	N	methods	to	lookup .
Methods	created	during	the	HCD	interval	are	captured	seperately.

2.	 If	the	JVM	could	not	be	stopped	gracefully,	gather	the	temporary	files	from	a	subdirectory	of	the
output	called
tmp_${STARTDAY}${STARTMONTH}${STARTYEAR}_${STARTHOUR}${STARTMINUTES}${STARTSECONDS}_

3.	 Use	the	additional	JVM	option	-
Dcom.ibm.java.diagnostics.healthcenter.headless.output.directory=$DIR	to	redirect	Health
Center	files	to	a	different	directory	instead	of	the	working	directory.

4.	 Note	that	this	does	not	work	with	Liberty	if	some	jndi-1.0-related	features	are	loaded	and	there	is	a
request	for	enhancement.

5.	 If	using	Liberty	and	you	specify	-Xtrace:buffers={2m,dynamic}	to	minimize	Health	Center	method
metadata	loss,	since	Liberty	defaults	to	an	unlimited	maximum	thread	pool	designed	to	maximize
throughput,	consider	capping	this	with	<executor	maxThreads="N"	/>	based	on	available	native
memory	to	avoid	native	memory	exhaustion,	or	use	a	smaller	-Xtrace	buffer	size	such	as	-
Xtrace:buffers={128k,dynamic}	(or	lower).

6.	 We	have	observed	that	some	monitoring	agents	cause	problems	with	Health	Center.	Consider
removing	other	monitoring	agents	that	use	-agentpath	while	using	HealthCenter,	engage	IBM	and	the
agent	company	support	teams	to	investigate,	or	use	-Xbootclasspath/p	to	healthcenter.jar	and	-
agentpath	to	libhealthcenter.so.

For	details,	see	the	Health	Center	chapter.

	

J9	Health	Center	Enable	at	Runtime	of	Limited	Duration	on	z/OS
The	Health	Center	agent	is	shipped	with	IBM	Java	and	IBM	Semeru	Runtimes	on	z/OS.

The	following	instructions	are	for	z/OS	(in	this	context,	z/Linux	is	not	considered	z/OS).	For	non-z/OS
platforms,	see	alternate	instructions.

1.	 By	default,	late	attach	is	disabled.	Restart	the	target	process	with	the	additional	generic	JVM	argument
-Dcom.ibm.tools.attach.enable=yes

2.	 Find	the	decimal	PID	of	the	target	JVM.	WebSphere	traditional	shows	the	PID	in	SYSPRINT	in	the
BBOJ0051I	message.	In	the	following	example,	it	is	16843066:

	Trace:	2024/01/04	16:18:54.968	02	t=7E5E78	c=UNK	key=P8	tag=	(13007004)								
			SourceId:	com.ibm.ws390.orb.CommonBridge																																					
			ExtendedMessage:	BBOJ0051I:	PROCESS	INFORMATION:	STC00089/BBOS001S,	ASID=76(0x4c),	PID=16843066(0x101013a)

3.	 Find	the	path	to	Java	of	the	target	JVM.	WebSphere	traditional	shows	this	path	in	SYSPRINT	in	a
BBOJ0077I	message	for	java.home.	In	the	following	example,	it	is
/WebSphere/ND/AppServer/java64:

	Trace:	2024/01/04	16:18:54.972	02	t=7E5E78	c=UNK	key=P8	tag=	(13007004)								
			SourceId:	com.ibm.ws390.orb.CommonBridge.printProperties																					
			ExtendedMessage:	BBOJ0077I:															java.home	=	/WebSphere/ND/AppServer/java64

4.	 Find	the	owner	of	the	started	task	of	the	target	JVM.	In	the	following	example	in	D.DA,	it	is	ASSR1:

	NP			JOBNAME		StepName	ProcStep	JobID				Owner				C	Pos	DP	Real	Paging				SIO		
						BBOS001S	BBOS001S	BBOPASR		STC00089	ASSR1						IN		C9		93T			0.00		35.64		

5.	 Create	the	following	JCL,	replacing	USER_REPLACEME	with	the	owner	of	the	started	task,	both	instances
of	JAVAPATH_REPLACEME	with	the	path	to	Java,	PID_REPLACEME	with	the	PID,	and	30	with	the	number
of	minutes	to	run	(see	notes	below	on	duration	considerations).	Ensure	CAPS	OFF	when	editing	and	that

https://cloud-platform.ideas.ibm.com/ideas/TWAS-I-190
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xtrace/index.html#buffers

every	line	of	the	STDPARM	excluding	the	last	line	ends	with	a	space	().

//SHLLJOB1	JOB	(ACCOUNT),NOTIFY=&SYSUID,REGION=0M,CLASS=A,MSGCLASS=H,
//	MSGLEVEL=(1,1),USER=USER_REPLACEME
//SHLLSTEP	EXEC	PGM=BPXBATCH
//BPXPRINT	DD	SYSOUT=*
//STDOUT			DD	SYSOUT=*
//STDERR			DD	SYSOUT=*
//STDPARM		DD	*
SH	/JAVAPATH_REPLACEME/bin/java	
-jar	
/JAVAPATH_REPLACEME/lib/ext/healthcenter.jar	
ID=PID_REPLACEME	
level=headless	
-Dcom.ibm.java.diagnostics.healthcenter.headless.run.number.of.runs=1	
-Dcom.ibm.java.diagnostics.healthcenter.headless.run.duration=30
/*

6.	 Submit	the	job.
1.	 If	you	receive	the	error,	LOGON/JOB	INITIATION	-	SUBMITTER	IS	NOT	AUTHORIZED	BY	USER ,

then	consider	allowing	surrogate	job	submission;	for	example:

RDEFINE	SURROGAT	ASSR1.SUBMIT	UACC(NONE)	OWNER(ASSR1)
PERMIT	ASSR1.SUBMIT	CLASS(SURROGAT)	ID(MSTONE1)	ACCESS(READ)
SETROPTS	RACLIST(SURROGAT)	REFRESH

7.	 Confirm	in	D.ST	in	the	SHLLJOB1	job	that	the	output	at	the	bottom	looks	similar	to	the	following,
specifically	the	Successfully	enabled	Health	Center	agent 	line:

IEF033I		JOB/SHLLJOB1/STOP		2024004.1259																																								
								CPU:					0	HR		00	MIN		00.00	SEC				SRB:					0	HR		00	MIN		00.00	SEC				
Successfully	enabled	Health	Center	agent	in	VM:	16843066																								
Health	Center	properties	used	by	agent	in	target	VM:																												
--	listing	properties	--																																																								
com.ibm.java.diagnostics.healthcenter.agent.port=1972																											
com.ibm.java.diagnostics.healthcenter.data.collection.level=HEADLESS												

8.	 Confirm	in	D.DA	of	the	target	JVM	in	SYSOUT	that	Health	Center	has	started.	For	example:

[Thu	Jan		4	17:59:09	2024]	com.ibm.diagnostics.healthcenter.headless	INFO:	4.0.7
[Thu	Jan		4	17:59:09	2024]	com.ibm.diagnostics.healthcenter.headless	INFO:	Headless	data	collection	has	started
[Thu	Jan		4	17:59:09	2024]	com.ibm.diagnostics.healthcenter.headless	INFO:	Each	data	collection	run	will	last	for	30	minutes	
[Thu	Jan		4	17:59:09	2024]	com.ibm.diagnostics.healthcenter.headless	INFO:	Agent	will	run	for	1	collections
[Thu	Jan		4	17:59:09	2024]	com.ibm.diagnostics.healthcenter.headless	INFO:	Agent	will	keep	last	5	hcd	files
[Thu	Jan		4	17:59:09	2024]	com.ibm.diagnostics.healthcenter.headless	INFO:	Headless	collection	output	directory	is	/SY1/var/WebSphere/home/WSSR1

9.	 After	the	time	has	elapsed,	refresh	the	JVM's	SYSOUT	to	confirm	that	the	HCD	file	was	created.	For
example:

[Thu	Jan		4	18:29:09	2024]	com.ibm.diagnostics.healthcenter.headless	INFO:	Creating	hcd	import	file	/SY1/var/WebSphere/home/WSSR1/healthcenter040124_175909_16843066_1.hcd
[Thu	Jan		4	18:29:09	2024]	com.ibm.diagnostics.healthcenter.headless	INFO:	hcd	import	file	/SY1/var/WebSphere/home/WSSR1/healthcenter040124_175909_16843066_1.hcd	created

10.	 FTP	the	HCD	file(s)	in	BIN	mode.

Warnings	and	notes:

1.	 Every	time	a	new	HCD	collection	is	started,	the	agent	starts	to	look	up	method	address	to	method
name	mappings	for	all	loaded	methods	at	the	start	of	the	HCD.	By	default,	the	agent	queries	up	to
3,000	unresolved	method	name	mappings	every	5	seconds.	Therefore,	for	proper	profiled	method
name	evaluation,	the	minimum	duration	per-HCD	should	be	specified	based	on	the	number	of	loaded
methods.	It	is	common	for	an	enterprise	application	to	load	hundreds	of	thousands	of	methods,	so	a
minimum	of	5-10	minutes	is	a	good	start.	Tracing	to	show	this	behavior	and	the	number	of	methods	is
-Dcom.ibm.diagnostics.healthcenter.logging.methodlookup=debug	-
Dcom.ibm.diagnostics.healthcenter.logging.MethodLookupProvider=debug	and	search	for
com.ibm.diagnostics.healthcenter.methodlookup.debug	DEBUG:	N	methods	to	lookup .
Methods	created	during	the	HCD	interval	are	captured	seperately.

https://www.ibm.com/docs/en/zos/3.1.0?topic=submitted-allowing-surrogate-job-submission

2.	 If	the	JVM	could	not	be	stopped	gracefully,	gather	the	temporary	files	from	a	subdirectory	of	the
output	called
tmp_${STARTDAY}${STARTMONTH}${STARTYEAR}_${STARTHOUR}${STARTMINUTES}${STARTSECONDS}_

3.	 Use	the	additional	JVM	option	-
Dcom.ibm.java.diagnostics.healthcenter.headless.output.directory=$DIR	to	redirect	Health
Center	files	to	a	different	directory	instead	of	the	working	directory.

4.	 Note	that	this	does	not	work	with	Liberty	if	some	jndi-1.0-related	features	are	loaded	and	there	is	a
request	for	enhancement.

5.	 If	using	Liberty	and	you	specify	-Xtrace:buffers={2m,dynamic}	to	minimize	Health	Center	method
metadata	loss,	since	Liberty	defaults	to	an	unlimited	maximum	thread	pool	designed	to	maximize
throughput,	consider	capping	this	with	<executor	maxThreads="N"	/>	based	on	available	native
memory	to	avoid	native	memory	exhaustion,	or	use	a	smaller	-Xtrace	buffer	size	such	as	-
Xtrace:buffers={128k,dynamic}	(or	lower).

6.	 We	have	observed	that	some	monitoring	agents	cause	problems	with	Health	Center.	Consider
removing	other	monitoring	agents	that	use	-agentpath	while	using	HealthCenter,	engage	IBM	and	the
agent	company	support	teams	to	investigate,	or	use	-Xbootclasspath/p	to	healthcenter.jar	and	-
agentpath	to	libhealthcenter.so.

For	details,	see	the	Health	Center	chapter.

	

HotSpot	Mission	Control	Enable	at	Startup
The	Java	Flight	Recorder	(JFR)	agent	is	shipped	with	many	recent	distributions	of	HotSpot	Java.	JFR	neither
ships	with	nor	works	with	IBM	Java	nor	IBM	Semeru	Runtimes.

1.	 Stop	the	JVM
2.	 Append	the	following	JVM	options:

WebSphere	Liberty	jvm.options:

-XX:+FlightRecorder
-XX:StartFlightRecording=name=jfr,filename=recording.jfr,settings=profile
-XX:FlightRecorderOptions=defaultrecording=true,dumponexit=true,dumponexitpath=path

WAS	traditional	generic	JVM	arguments:

-XX:+FlightRecorder	-XX:StartFlightRecording=name=jfr,filename=recording.jfr,settings=profile	-XX:FlightRecorderOptions=defaultrecording=true,dumponexit=true,dumponexitpath=path

3.	 Start	the	JVM
4.	 Reproduce	the	issue	(at	least	5	minutes	worth	because	Mission	Control	is	a	sampling	profiler)
5.	 Gracefully	stop	the	JVM	(i.e.	don't	kill	it)
6.	 Gather	*.jfr	files	from	the	working	directory	of	the	process.	By	default:

WebSphere	Liberty:	$LIBERTY/usr/servers/$SERVER/
WAS	traditional:	$TWAS/profiles/$PROFILE/

For	details,	see	the	Mission	Control	chapter.

	

WAS	traditional	Recipes
1.	 Review	the	Operating	System	recipe	for	your	OS.	The	highlights	are	to	ensure	CPU,	RAM,	network,

and	disk	are	not	consistently	saturated.
2.	 Review	the	Java	recipe	for	your	JVM.	The	highlights	are	to	tune	the	maximum	heap	size	(-Xmx),	the

maximum	nursery	size	(-Xmn)	and	enable	verbose	garbage	collection	and	review	its	output	with	the
GCMV	tool.

3.	 Ensure	that	the	application	thread	pools	are	not	consistently	saturated:	HTTP	=	WebContainer,	EJB	=
ORB.thread.pool,	JMS	activation	specifications	over	MQ	=	WMQJCAResourceAdapter,	JMS	over

https://cloud-platform.ideas.ibm.com/ideas/TWAS-I-190
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xtrace/index.html#buffers
https://openliberty.io/docs/20.0.0.9/reference/config/server-configuration-overview.html#jvm-options
https://www.ibm.com/support/pages/setting-generic-jvm-arguments-websphere-application-server

SIBus	=	SIBJMSRAThreadPool,	z/OS	=	ORB	workload	profile	setting,	etc.
4.	 Consider	reducing	the	default	Hung	Thread	Detection	threshold	and	interval	which	will	print	a

warning	and	stack	trace	when	requests	exceed	a	time	threshold.
5.	 If	receiving	HTTP(S)	requests:

1.	 For	HTTP/1.0	and	HTTP/1.1,	avoid	client	keepalive	socket	churn	by	setting	Unlimited
persistent	requests	per	connection.

2.	 For	servers	with	incoming	LAN	HTTP	traffic	from	clients	using	persistent	TCP	connection	pools
with	keep	alive	(e.g.	a	reverse	proxy	like	IHS/httpd	or	web	service	client),	consider	increasing
the	Persistent	timeout	to	reduce	keepalive	socket	churn.

3.	 For	HTTP/1.0	and	HTTP/1.1,	minimize	the	number	of	application	responses	with	HTTP	codes
400,	402-417,	or	500-505	to	reduce	keepalive	socket	churn.

4.	 If	using	HTTP	session	database	persistence,	tune	the	write	frequency.
5.	 For	increased	resiliency,	if	using	HTTPS,	set	-DtimeoutValueInSSLClosingHandshake=1.
6.	 If	possible,	configure	and	use	servlet	caching/Dynacache	for	HTTP	response	caching.
7.	 Consider	enabling	the	HTTP	NCSA	access	log	with	response	times	for	post-mortem	traffic

analysis.
8.	 If	the	applications	don't	use	resources	in	META-INF/resources	directories	of	embedded	JAR

files,	then	set	com.ibm.ws.webcontainer.SkipMetaInfResourcesProcessing	=	true.
9.	 Consider	reducing	each	TCP	Transport's	Maximum	open	connections	to	the	hundreds	range	to

avoid	excessive	request	queuing	under	stress	and	test	with	a	saturation	test.
6.	 If	using	databases	(JDBC):

1.	 Connection	pools	should	not	be	consistently	saturated.	Tune	each	pool's	Maximum	connections.
2.	 Consider	tuning	each	data	source's	statement	cache	size	and	isolation	level.
3.	 Consider	disabling	idle	and	age	connection	timeouts	by	setting	reap	time	to	0	(and	tune	any

firewalls,	TCP	keep-alive,	and/or	database	connection	timeouts,	if	needed).
4.	 Compare	relative	results	of	globalConnectionTypeOverride=unshared.

7.	 If	using	JMS	MDBs	without	a	message	ordering	requirement,	tune	activation	specifications'	maximum
concurrency	to	control	the	maximum	concurrent	MDB	invocations	and	maximum	batch	size	to	control
message	batch	delivery	size.

8.	 If	using	authentication:
1.	 Consider	tuning	the	authentication	cache	and	LDAP	sizes.
2.	 Test	the	relative	performance	of	disabling	horizontal	security	attribute	propagation.

9.	 If	using	EJBs,	consider	tuning	the	ORB	such	as	-Dcom.ibm.CORBA.ConnectionMultiplicity,	-
Dcom.ibm.CORBA.FragmentSize,	and	-Dcom.ibm.CORBA.MaxOpenConnections.

10.	 If	none	of	the	Intelligent	Management	or	Intelligent	Management	for	Web	Server	features	are	used	nor
planned	to	be	used,	set	LargeTopologyOptimization=false	to	reduce	unnecessary	CPU	usage	and
PMI	overhead.

11.	 Review	logs	for	any	errors,	warnings,	or	high	volumes	of	messages,	and	use	-
Dcom.ibm.ejs.ras.disablerasnotifications=true	if	you're	not	listening	to	JMX	log	notifications.

12.	 Monitor,	at	minimum,	response	times,	number	of	requests,	thread	pools,	connection	pools,	and	CPU
and	Java	heap	usage	using	TPV/PMI	and/or	a	third	party	monitoring	program.

13.	 Upgrade	to	the	latest	version	and	fixpack	of	WAS	and	Java	as	there	is	a	history	of	making	performance
improvements	over	time.

14.	 Consider	running	with	a	sampling	profiler	such	as	Health	Center	for	post-mortem	troubleshooting.
15.	 If	using	Dynacache	replication:

1.	 If	using	memory-to-memory	HTTP	session	replication,	weigh	whether	the	costs	and	complexity
are	better	than	simple	sticky	sessions	with	re-login,	or	consider	using	a	linearly	scalable	external
cache	provider,	or	the	Dynacache	client/server	replication	model.

2.	 Install	and	use	the	Cache	Monitor	sample	application	to	watch	cache	hit	rates	and	cache
exhaustion.

3.	 If	using	SHARED_PUSH	replication,	consider	using	SHARED_PUSH_PULL	to	reduce	replication
volume.

16.	 If	the	application	writes	a	lot	to	SystemOut.log,	consider	switching	to	binary	HPEL	for	improved
performance.

17.	 Review	the	performance	tuning	topic	in	the	WAS	traditional	documentation.

For	details,	see	the	WAS	traditional	chapter.

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=chains-tcp-transport-channel-settings
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/udat_jdbcdatasorprops
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cdat_isolevel
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tdat_conpoolman
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=management-intelligent-overview
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=in-intelligent-management-web-servers-overview
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=cells-cell-custom-properties#LargeTopologyOptimization
https://www.ibm.com/support/pages/latest-fix-packs-websphere-application-server
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cprs_m2m_cs
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cdyn_cachemonitor
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=90-tuning-performance

	

Additional	Recipes

General	WAS	traditional	Performance	Problem
Large	Topologies	Recipe
Request	Metrics	Recipe
Tune	a	Thread	Pool
HTTP	Sessions	Recipe
Security	Recipe
Connection	Pool	Hangs	in	createOrWaitForConnection
Threads	in	socketRead0	in	JDBC	calls
Threads	in	java.io.FileOutputStream.writeBytes
Logging	PMI	Data
Logging	Custom	PMI	Data	with	Dynacache

	

General	WAS	traditional	Performance	Problem
1.	 Make	sure	the	logs	are	capturing	as	much	as	possible:

1.	 Administrative	Console	}	Troubleshooting	}	Logs	and	Trace	}	server	name	}	JVM	Logs.	These
can	also	be	changed	dynamically	on	the	Runtime	tab.

2.	 For	example,	Maximum	size	=	100MB	and	Maximum	Number	of	Historical	Log	Files	=	5
2.	 Ensure	verbose	garbage	collection	is	enabled.	This	may	be	enabled	at	runtime.	Otherwise,	you	will

need	to	restart	to	apply	the	change.
3.	 Ensure	that	PMI	is	enabled	either	with	the	"Basic"	level	(this	is	the	default)	or	with	a	"Custom"	level

(see	WAS	chapter	on	which	counters	are	recommended)
4.	 Enable	PMI	logging	to	files,	either	with	a	monitoring	product	or	with	the	built-in	TPV	logger:

1.	 Important	note:	all	of	these	steps	must	be	done	after	every	application	server	restart.	This	can
be	automated	with	a	wsadmin	script

2.	 Login	to	the	Administrative	Console	and	go	to:	Monitoring	and	Tuning	}	Performance	Viewer	}
View	Logs

3.	 Select	all	relevant	application	servers	and	click	"Start	Monitoring"
4.	 Click	each	application	server
5.	 Click	on	server	}	Settings	}	Log
6.	 Duration	=	300000

Maximum	File	Size	=	50
Maximum	Number	of	Historical	Files	=	5
Log	Output	Format	=	XML

7.	 Click	Apply
8.	 Click	server	}	Summary	Reports	}	Servlets
9.	 Click	"Start	Logging"

5.	 For	IBM	Java,	enable	IBM	Health	Center	in	headless	mode:
1.	 Choose	one	of	these	methods	to	start	Health	Center:

1.	 Restart	the	JVM	adding	the	following	generic	JVM	arguments:

-Xhealthcenter:level=headless	-Dcom.ibm.java.diagnostics.healthcenter.headless.files.max.size=104857600	-Dcom.ibm.java.diagnostics.healthcenter.headless.files.to.keep=10

2.	 Start	it	dynamically:

$WEBSPHERE/java/bin/java	-jar	$WEBSPHERE/java/jre/lib/ext/healthcenter.jar	ID=$PID	-Dcom.ibm.java.diagnostics.healthcenter.data.collection.level=headless	-Dcom.ibm.java.diagnostics.healthcenter.headless.files.max.size=104857600	-Dcom.ibm.java.diagnostics.healthcenter.headless.files.to.keep=10

6.	 If	there	is	a	web	server	in	front	of	WAS,	see	the	Web	Server	recipes.
7.	 Archive	and	truncate	any	existing	logs	for	each	server	in

$WEBSPHERE/profiles/$PROFILE/logs/$SERVER/*
8.	 Reproduce	the	problem.
9.	 Gather	the	Performance,	Hang,	or	High	CPU	issue	MustGather	for	your	operating	system:

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=logs-java-virtual-machine-jvm-log-settings
https://www.ibm.com/support/pages/enabling-verbose-garbage-collection-verbosegc-websphere-application-server
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=collection-enabling-pmi-using-administrative-console
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=viewer-logging-performance-data-tivoli-performance
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/was/tpvlogging.py

1.	 Linux
2.	 AIX
3.	 Windows
4.	 z/OS
5.	 Solaris
6.	 HP-UX

10.	 After	the	problem	has	been	reproduced,	gracefully	stop	the	application	servers	(to	produce	Health
Center	HCD	files).

11.	 Gather:
1.	 Server	logs	under	$WEBSPHERE/profiles/$PROFILE/logs/$SERVER/:	SystemOut*.log

SystemErr*.log	native_stderr.log	native_stdout.log
2.	 FFDC	logs	under	$WEBSPHERE/profiles/$PROFILE/logs/ffdc/*
3.	 Javacores,	heapdumps,	and	system	dumps,	if	any:	$WEBSPHERE/profiles/$PROFILE/javacore*

$WEBSPHERE/profiles/$PROFILE/heapdump*	$WEBSPHERE/profiles/$PROFILE/core*
4.	 PMI	logs:	$WEBSPHERE/profiles/$PROFILE/logs/tpv/*
5.	 Health	Center	logs,	if	any:	$WEBSPHERE/profiles/$PROFILE/*.hcd
6.	 server.xml	for	each	server:

$WEBSPHERE/profiles/$PROFILE/config/cells/$CELL/nodes/$NODE/servers/$SERVER/server.xml
7.	 The	output	of	the	Performance	MustGather

	

Reviewing	the	data

1.	 Review	all	WAS	logs	for	any	errors,	warnings,	etc.
2.	 Review	verbosegc	for	garbage	collection	overhead.
3.	 Review	thread	dumps

1.	 Review	patterns	and	check	for	deadlocks	and	monitor	contention	(e.g.	the	TMDA	tool).
4.	 Review	operating	system	data	for	WAS	and	IHS	nodes

1.	 If	CPU	time	is	high,	review	if	it's	user	or	system.
1.	 Review	per-process	and	per-thread	CPU	data	for	details.

2.	 Check	virtualization	steal	time
3.	 Check	run	queue	length	and	any	blocked	threads
4.	 Check	for	memory	swap-ins

1.	 If	high,	check	memory	statistics	such	as	file	cache,	free	memory,	etc.
5.	 Review	PMI	data	for	the	key	performance	indicators	such	as	the	WebContainer	thread	pool

ActiveCount,	database	connection	pool	usage,	servlet	response	times,	etc.	(see	WAS	-	PMI).	Try	to
isolate	the	problem	to	particular	requests,	database	queries,	etc	(duration	or	volume).

1.	 If	using	a	database,	review	the	response	times	in	the	connection	pool.	Try	to	isolate	the	problem
to	particular	queries	(duration	or	volume).

6.	 Review	Health	Center	data
7.	 If	using	web	servers,	review	IHS	messages	in	access_log,	error_log,	and	the	plugin	log	to	see	if

requests	are	coming	in	and	if	there	are	errors	(i.e.	HTTP	response	codes).	Also	review	mpmstats	in
error_log	to	see	what	the	threads	are	doing.

	

Large	Topologies	Recipe
1.	 Use	clusters	to	scale	horizontally	and	vertically,	and	to	support	failover	and	easier	administration.	If

using	WAS	>=	8.5,	consider	using	dynamic	clusters.
Very	large	topologies	also	employ	multiple	cells	for	the	same	application(s).	This	allows	for
deployment	of	new	application	versions	or	configurations	to	only	one	of	the	cells;	if	the	change
breaks,	it	affects	only	that	cell.	Multiple	cells	can	be	problematic	if	significant	database	schema
changes	are	made.

2.	 If	using	the	High	Availability	Manager	or	any	functions	that	require	it	(e.g.	EJB	WLM,	SIB,	etc.):
1.	 Processes	such	as	application	servers	and	node	agents	must	be	in	the	same	core	group,	or	part	of

https://www.ibm.com/support/pages/mustgather-performance-hang-or-high-cpu-issues-websphere-application-server-linux
https://www.ibm.com/support/pages/mustgather-performance-hang-or-high-cpu-issues-websphere-application-server-aix
https://www.ibm.com/support/pages/mustgather-performance-hang-or-high-cpu-issues-windows
https://www.ibm.com/support/pages/mustgather-gathering-data-hang-or-performance-problem-zos
https://www.ibm.com/support/pages/mustgather-performance-hang-or-high-cpu-issues-solaris
https://www.ibm.com/support/pages/mustgather-performance-hang-or-high-cpu-issues-hp-ux

bridged	core	groups.
2.	 In	general,	the	number	of	processes	in	a	single	core	group	should	not	exceed	200.	Practically,

this	number	is	limited	by	the	CPU	usage,	heartbeat	intervals,	and	number	of	available	sockets.
3.	 The	members	of	a	core	group	should	be	on	the	same	LAN.
4.	 The	members	of	a	cell	should	not	communicate	with	one	another	across	firewalls	as	that

provides	no	meaningful	additional	security	and	complicates	administration.
5.	 Create	dedicated	preferred	coordinators	for	a	core	group	with	a	large	default	maximum	heap	size

(e.g.	-Xmx1g).
6.	 If	using	core	group	bridges,	create	dedicated	bridge	servers	with	a	large	default	maximum	heap

size	(e.g.	-Xmx1g).
7.	 Start	or	stop	groups	of	processes	at	the	same	time	to	reduce	the	effects	of	view	changes.
8.	 Change	the	HAM	protocols	to	the	latest	versions:	IBM_CS_WIRE_FORMAT_VERSION	and

IBM_CS_HAM_PROTOCOL_VERSION
3.	 If	you	are	not	using	the	High	Availability	Manager,	it	is	not	recommended	to	disable	it,	but	instead	to

create	multiple	cells	or	bridged	core	groups.

For	details,	see	the	Scaling	and	Large	Topologies	section	of	the	WAS	traditional	Profile	chapter.

	

Request	Metrics	Recipe

1.	 In	addition	to	the	General	WAS	traditional	Performance	Problem	recipe,	enable	WAS	Request	Metrics
to	standard	logs.	This	will	have	a	significant	performance	overhead.

2.	 WebSphere	Administrative	Console	>	Monitoring	and	Tuning	>	Request	Metrics
3.	 Ensure	"Prepare	Servers	for	Request	metrics	collection"	is	checked	(by	default,	it	is).
4.	 Under	"Components	to	be	instrumented,"	select	"All"
5.	 Under	"Trace	level,"	select	"Performance_Debug"
6.	 Under	"Request	Metrics	Destination,"	check	"Standard	Logs"
7.	 Click	"OK,"	save	and	synchronize.	If	"Prepare	Servers	for	Request	metrics	collection"	was	already

checked	(the	default),	then	the	application	server	does	not	need	to	be	restarted.

	

Tune	a	Thread	Pool

Tuning	a	thread	pool	is	one	of	the	most	important	performance	exercises.	The	optimal	maximum	thread	pool
size	is	the	point	at	which	throughput	is	maximized	and	resource	utilizations	(such	as	CPU)	are	at	comfortable
levels.	The	key	thing	to	remember	is	that	you	can	only	conclude	anything	when	observing	a	thread	pool
running	at	its	maximum	concurrency	(i.e.	nothing	can	be	concluded	if	there	is	a	lesser	load	than	that	which
fills	up	the	thread	pool	coming	in),	and	when	the	mix	of	work	is	representative	of	normal	user	behavior.

1.	 Start	at	a	maximum	thread	pool	size	of	X.
2.	 Observe	the	system	running	with	X	concurrent	threads	and	gather	diagnostics	such	as	throughput,

response	times,	processor	usage,	monitor	contention,	and	any	other	relevant	resource	usage.
3.	 If	one	of	the	resources	exceeds	(or	is	significantly	below)	a	comfortable	utilization	level	(for	example,

average	CPU	more	than	90%	utilized,	or	it	is	only	5%),	then	perform	a	binary	search	on	X.

For	example,	let's	say	we	start	at	50	WebContainer	threads	and	load	the	system	to	50	concurrent	threads.
Let's	say	we're	focused	on	CPU	and	we	want	it	to	be	no	more	than	90%	in	the	worst	case.	We	run	a	test	and
CPU	is	100%,	so	we	take	half	and	go	to	25	maximum	threads.	We	run	another	test	and	CPU	is	still	100%,	so
we	go	to	12.	With	12,	CPU	is	50%	which	is	no	longer	saturated	but	now	it's	not	utilizing	the	CPU	as	much	as
we'd	like,	so	we	increase	by	half	the	difference:	CEILING(12	+	(25-12)/2)	=	19.	With	19,	CPU	is	95%,	so
we	subtract	half	the	difference	again:	CEILING(18	-	(18-12)/2)	=	15.	With	15,	CPU	is	90%	and	we're	done.

Here	is	some	pseudo	code	showing	the	algorithm:

#	Target	and	TargetWindow	are	in	terms	of	the	Measurement,	e.g.	CPU	%

https://en.wikipedia.org/wiki/Binary_search_algorithm

#	Minimum,	Maximum,	and	X	are	in	terms	of	the	thread	pool	size
Target	=	T
TargetWindow	=	W
Minimum	=	N
Maximum	=	M
Measurement	=	PerformTest(X)
loop	{
		if	(Measurement	<	(T	-	W))	{
				N	=	X
				X	=	CEILING((M	-	X)	/	2)
		}	else	if	(Measurement	>	(T	+	W))	{
				M	=	X
				X	=	CEILING((X	-	N)	/	2)
		}	else	{
				Target	met.	Print	X,	Measurement
				BreakLoop()
		}
		Measurement	=	PerformTest(X)
}

	

HTTP	Sessions

1.	 Consider	reducing	the	session	timeout	(default	30	minutes)	and	average	session	size	to	reduce	memory
and	processing	pressures.

2.	 Consider	if	session	failover	is	required	as	it	increases	complexity	and	decreases	performance.	The
alternative	is	to	affinitize	requests	and	surgically	store	any	critical	state	into	a	database.

3.	 Use	session	persistence	(database)	or	WebSphere	eXtreme	Scale	over	memory-to-memory	replication.
4.	 Consider	using	timed	updates	to	save	session	state.

For	more	information,	see	the	HTTP	section	of	the	WAS	traditional	Profile	chapter.

	

Security	Recipe

1.	 Consider	disabling	Java	2	security	if	you	can	guarantee,	to	a	high	confidence,	that	you	know	what	code
is	being	put	on	the	server	and	who	has	access.

2.	 If	end-to-end	encryption	is	not	required,	consider	eliminating	secure	communications	on	an	already
secure	part	of	the	LAN.	For	example,	if	a	web	server	is	in	the	DMZ,	the	connection	to	the	application
servers	may	be	secured,	but	all	other	connections	behind	the	DMZ	may	be	unsecured.

3.	 Monitor	the	utilization	of	the	authentication	cache	and	increase	its	size	if	it's	full	and	there's	heap	space
available.	Also	consider	increasing	the	cache	timeout.

4.	 Consider	changing	administrative	connectors	from	SOAP	to	RMI	to	utilize	persistent	connections.
5.	 If	using	LDAP:

1.	 Select	the	reuse	connection	option.

For	more	details,	see	the	Security	section	of	the	WAS	traditional	Profile	chapter.

	

Connection	Pool	Hangs	in	createOrWaitForConnection

This	recipe	provides	3	possible	strategies	for	dealing	with	connection	pool	hangs.

	

Strategy	1:	Increase	connection	pool	size	maximum	to	2x+1	(x	=	thread	pool	size	maximum)

When	an	application	is	using	multiple,	simultaneous	connections	in	the	same	thread,	ensure	the	connection

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=data-tuning-connection-pools

pool	size	is	at	least	one	more	than	the	maximum	number	of	threads	so	that	the	threads	should	never	run	out
of	available	connections	in	the	pool.

If	the	application	opens	3	or	more	simultaneous	connections	you	may	have	to	experiment	and	try	3x+1	or
4x+1	as	necessary.

	

Monitor

From	the	command	line	execute	the	above	command	periodically	to	capture	the	number	of	open	connections
to	the	database	port	number	on	the	same	node	the	application	server(s)	are	running	on.

netstat	-an	|	grep	ESTABLISHED	|	grep	<port#>	|	wc	-l

	

Caveat

This	increases	the	number	of	overall	database	connections	from	each	individual	application	server.	Make
sure	the	database	is	configured	and	capable	of	handling	the	total	number	of	connections	for	the	sum	of	all
JVMs.

	

Strategy	2:	Disable	"shareable"	connections

Test	setting	globalConnectionTypeOverride=unshared	to	disable	shareable	connections.

	

Monitor

Check	application	and	SystemOut.logs	to	see	if	any	unexpected	exceptions	or	logic	errors	occur.

Caveat

This	will	cause	application	problems	for	applications	using	container	managed	EJBs.	Typically	this	strategy
works	for	Web	Container	applications	accessing	databases	directly	through	JDBC.

	

Strategy	3:	Fix	the	application	code

The	previous	two	strategies	are	operational	-	run	time	changes	to	try	to	deal	with	an	application	that	uses
multiple	simultaneous	connections	in	the	same	thread	request	execution.	The	previous	two	strategies	may	not
be	operationally	possible	due	to	resource	limitations	in	the	environment.	In	this	case	the	only	way	to	fix	the
problem	is	to	fix	the	application	code	to	never	have	more	than	one	connection	open	at	a	time	within	the	same
thread	request	execution.

	

Monitor

Javacore	files	to	ensure	that	there	are	no	threads	stuck	in	createOrWaitForConnection.

Caveat

This	may	require	extensive	re-design	of	the	application	code	and	can	be	a	time	consuming	fix.

	

Threads	in	socketRead0	in	JDBC	calls

JDBC	calls	can	sometimes	get	stuck	on	socket	read	calls	to	the	database	if	some	rather	nasty	network
problems	exist	or	if	there	is	a	firewall,	between	the	application	server	and	the	database,	that	aggressively
closes	long-lived	connections	(some	organizations	have	security	reasons	to	prevent	long-lived	connections).

The	way	to	determine	if	network	problems	exist	is	to	use	tcpdump	(AIX,	Linux)	or	snoop	(Solaris)	to	capture
the	packets	into	files.	One	can	then	use	Wireshark	to	read	the	capture	files.	If	you	see	issues	like
"unreassembled	packets",	"lost	segments"	or	"duplicate	ACK"	errors	then	most	likely	the	network	is
experiencing	serious	difficulties	affecting	the	server.

WebSphere	Application	Server	is	reporting	hung	threads	in	the	SystemOut.log	and	a	hung	thread	message	as
follows:

[1/2/12	1:23:45:678	EDT]	0000001c	ThreadMonitor	W	WSVR0605W:	Thread	"WebContainer	:	15"	(00000045)	has	been	active	for	722010	milliseconds	and	may	be	hung.	There	is/are	1	thread(s)	in	total	in	the	server	that	may	be	hung.
		at	java.net.SocketInputStream.socketRead0(Native	Method)
		at	java.net.SocketInputStream.read(SocketInputStream.java:141)
		at	com.ibm.db2.jcc.t4.z.b(z.java:199)
		at	com.ibm.db2.jcc.am.nn.executeQuery(nn.java:698)	[...]

There	exists	no	deadlock	or	timeout	recorded	in	the	logs,	even	when	there	are	lock	timeout
(LOCKTIMEOUT)	and	deadlock	check	time	(DLCHKTIME)	settings	defined	that	are	greater	than	0.

	

Strategy	1:	Apply	socketRead	timeouts

If	threads	hang	on	socketRead0	calls	that	never	seem	to	get	a	response	then	the	only	way	to	deal	with	them
is	by	applying	timeouts.

IBM	DB2:	blockingReadConnectionTimeout
Oracle:	oracle.jdbc.ReadTimeout

Set	the	timeout	to	a	reasonable	value.	The	actual	value	depends	on	how	long	is	the	longest	running
transaction	for	the	particular	application	connected	to	a	specific	database.	If	the	longest	transaction	is,	for
example,	10	seconds	then	a	reasonable	value	for	the	timeout	could	be	12	seconds.

	

Monitor

Watch	the	SystemOut.log	file	and	ensure	that	hung	thread	messages	do	not	appear	again.

Caveats

If	the	timeout	is	set	too	low	for	the	longest	running	transactions	then	those	transactions	will	fail.

	

Slow	or	Hung	Application

The	SystemOut.log	contains	entries	of:

WSVR0605W:	Thread	<threadname>	has	been	active	for	<time>	and	may	be	hung.	There	are	<totalthreads>	in	total	in	the	server	that	may	be	hung.

	

Recommendations

Review	the	WSVR0605W	stacks

The	WSVR0605W	stacks	are	good	hints	of	where	the	issue	might	be.

	

Automatically	generate	thread	dumps

Enable	javacore	thread	dumps	to	be	generated	when	a	hung	thread	has	been	detected.

	

Open	a	Support	Case

Analyzing	thread	dumps	requires	a	certain	level	of	proficiency	with	tooling.	If	no	one	at	the	organization
knows	how	to	analyze	the	thread	dump	open	a	support	case	with	IBM	Support	who	can	provide	the	data
analysis	necessary	to	help	pinpoint	where	the	hang	occurred,	although	note	that	you	are	only	entitled	to
product	defect	search	rather	than	general	troubleshooting	or	performance	tuning.

	

Strategy	1:	Ran	out	of	disk	space	OR	Slow	file	system	I/O	OR	Anti-Virus	Protection	OR	Active
backup

A	thread	dump	(javacore)	shows	a	lot	of	threads	in	a	stack	that	looks	like

"WebContainer	:	89"	daemon	prio=10	tid=0x01683c58	runnable	(0x73f7d000..0x73f7faf0)
		at	java.io.FileOutputStream.writeBytes(Native	Method)
		at	java.io.FileOutputStream.write(FileOutputStream.java:260)
		at	com.ibm.ejs.ras.WrappingFileOutputStream.write(WrappingFileOutputStream.java:364)
		-	locked	(0x97ff0230)	(a	com.ibm.ejs.ras.WrappingFileOutputStream)
		at	java.io.PrintStream.write(PrintStream.java:412)

Threads	in	java.io.FileOutputStream.writeBytes

	

Strategy	2:	JDBC	Connection	Pool	hang

Connection	Pool	Hangs	in	createOrWaitForConnection.
Threads	in	socketRead0	in	JDBC	calls.

	

Strategy	3:	Check	trace	levels

It	is	not	unusual	for	someone	to	enable	trace,	then	not	turn	it	off.

Strategy	4:	Check	PMI	levels

It	is	not	unusual	for	someone	to	enable	all	PMI	counters	which	can	severely	degrade	performance.	Enable
only	the	PMI	metrics	necessary	to	gauge	the	health	of	the	system.

https://www.ibm.com/support/pages/configuring-websphere-application-server-hung-thread-detector-automatically-produce-javacore-or-thread-dump-wsvr0605w-message

	

Threads	in	java.io.FileOutputStream.writeBytes

A	thread	dump	(javacore)	shows	a	lot	of	threads	in	a	stack	that	looks	like

"WebContainer	:	89"	daemon	prio=10	tid=0x01683c58	runnable	(0x73f7d000..0x73f7faf0)
		at	java.io.FileOutputStream.writeBytes(Native	Method)
		at	java.io.FileOutputStream.write(FileOutputStream.java:260)
		at	com.ibm.ejs.ras.WrappingFileOutputStream.write(WrappingFileOutputStream.java:364)
		-	locked	(0x97ff0230)	(a	com.ibm.ejs.ras.WrappingFileOutputStream)
		at	java.io.PrintStream.write(PrintStream.java:412)

	

Strategy	1:	Ran	out	of	disk	space	OR	Slow	file	system	I/O	OR	Anti-Virus	Protection	OR	Active
backup

Can	be	due	to	either	running	out	of	disk	space	on	the	file	system	or	the	file	system	I/O	is	slow	(i.e.	high
latency	connection	to	a	SAN).

Check	if	the	file	system	is	full.	If	the	file	system	is	full	then	archive	and	delete	unnecessary	files.
If	the	file	system	is	slow	then	change	the	application	configuration	to	point	to	a	more	robust	file
system.
Anti-Virus	protection	may	be	aggressively	scanning	the	file	system	providing	limited	access	to	all
other	applications	to	the	file	system.
Active	backup	that	is	aggressively	accessing	the	file	system	providing	limited	access	to	all	other
applications	to	the	file	system.

	

Monitor

If	the	disk	is	highly	utilized	(for	example,	80%),	notify	the	appropriate	system	administrators.
File	system	performance.	If	aggressive	disk	usage	is	detected	above	your	threshold,	notify	the
appropriate	system	administrators.

Investigate	re-architecting	the	environment	so	that	not	all	the	applications	are	pointed	to	the
same	file	system.
If	the	problem	is	related	to	local	disk	speed	replace	local	disks	with	faster	disks.

If	this	is	due	to	too	many	vertically	deployed	application	servers	consider	expanding	the
infrastructure	horizontally.

If	Anti-Virus	protection	is	aggressively	accessing	the	file	system	then	reconfigure	the	process	not	to
aggressively	access	the	file	system.
If	a	backup	is	aggressively	accessing	the	file	system	then	either	reconfigure	the	process	not	to
aggressively	access	the	file	system	or	investigate	using	other	disk	replication	techniques.

	

Caveats

May	require	restarting	the	application	servers	which	may	require	an	outage.

Some	of	the	recommended	re-architecture/infrastructure	can	be	quite	extensive	and	time/labor	consuming.
Plan	appropriately.

	

Logging	PMI	Data

1.	 Configure	any	PMI	data	that	is	required	for	each	server.	PMI	Basic	is	enabled	by	default	and	it's	a
good	place	to	start.

2.	 Administrative	Console	}	Monitoring	and	Tuning	}	Performance	Viewer	}	Current	Activity
3.	 Select	all	application	servers	you	want	to	log	and	click	"Start	Monitoring"
4.	 Click	each	monitored	application	server	link	and:

1.	 Click	on	server	}	Settings	}	Log
1.	 Duration	=	999999
2.	 Maximum	File	Size	=	50
3.	 Maximum	Number	of	Historical	Files	=	5
4.	 Log	Output	Format	=	XML
5.	 Click	Apply

2.	 Click	server	}	Summary	Reports	}	Servlets
3.	 Click	"Start	Logging"

5.	 Reproduce	the	problem
6.	 Click	"Stop	Logging"
7.	 The	TPV	files	are	in	$WAS/profiles/$PROFILE/logs/tpv/

Notes:

1.	 The	PMI	component	must	be	enabled	for	the	above	steps	to	work.	It	is	enabled	by	default	and
configured	with	PMI	Basic.	To	check	if	it	has	been	disabled,	double	check	if	"Enable	Performance
Monitoring	Infrastructure	(PMI)"	is	checked.

2.	 There	is	no	way	to	automatically	start	PMI	logging	when	a	JVM	is	restarted.	Logging	must	be
manually	restarted	after	a	JVM	restart	either	through	the	steps	above	or	through	wsadmin	scripts.

3.	 For	details	on	metrics	and	analysis,	see	the	Performance	Monitoring	chapter.

	

Logging	Custom	PMI	Data	with	Dynacache
1.	 Administrative	Console	}	Servers	}	Server	types	}	WebSphere	Application	Servers
2.	 For	each	server	you	will	monitor:	$SERVER	}	Performance	}	Peformance	Monitoring	Infrastructure

(PMI)
1.	 Click	the	Runtime	tab
2.	 Click	the	Custom	link
3.	 Click	the	Dynamic	Caching	link
4.	 All	Dynacache	counters	are	considered	low	overhead,	so	select	all	checkboxes	and	click	Enable

(there's	a	little	box	at	the	top	that	selects	all	checkboxes)
3.	 Administrative	Console	}	Monitoring	and	Tuning	}	Performance	Viewer	}	Current	Activity
4.	 Select	all	application	servers	you	want	to	log	and	click	"Start	Monitoring"
5.	 Click	each	monitored	application	server	link	and:

1.	 Click	on	server	}	Settings	}	Log
1.	 Duration	=	300000
2.	 Maximum	File	Size	=	50
3.	 Maximum	Number	of	Historical	Files	=	5
4.	 Log	Output	Format	=	XML
5.	 Click	Apply

2.	 Click	server	}	Summary	Reports	}	Servlets
3.	 Click	"Start	Logging"

6.	 Reproduce	the	problem
7.	 To	stop	logging,	either	stop/restart	the	application	servers	or	go	back	into	the	links	above	and	click

"Stop	Logging"
8.	 The	TPV	files	are	in	$WAS/profiles/$PROFILE/logs/tpv/

Notes:

1.	 The	PMI	component	must	be	enabled	for	the	above	steps	to	work.	It	is	enabled	by	default	and
configured	with	PMI	Basic.	To	check	if	it	has	been	disabled,	double	check	if	"Enable	Performance

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=health-enabling-pmi-data-collection
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=console-performance-monitoring-infrastructure-settings
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=collection-enabling-pmi-using-administrative-console
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/was/tpvlogging.py
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_datacounter14.html
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_prfstartadmin.html

Monitoring	Infrastructure	(PMI)"	is	checked.	By	changing	the	configuration	at	runtime,	this	will
enable	PMI	Basic	statistics	plus	the	other	statistics	explicitly	enabled	above.

2.	 There	is	no	way	to	automatically	start	PMI	logging	when	a	JVM	is	restarted.	Logging	must	be
manually	restarted	after	a	JVM	restart	either	through	the	steps	above	or	through	wsadmin	scripts.

3.	 For	details	on	metrics	and	analysis,	see	the	Performance	Monitoring	chapter.

		

WebSphere	Liberty	Recipes
1.	 Review	the	Operating	System	recipe	for	your	OS.	The	highlights	are	to	ensure	CPU,	RAM,	network,

and	disk	are	not	consistently	saturated.
2.	 Review	the	Java	recipe	for	your	JVM.	The	highlights	are	to	tune	the	maximum	heap	size	(-Xmx),	the

maximum	nursery	size	(-Xmn)	and	enable	verbose	garbage	collection	and	review	its	output	with	the
GCMV	tool.

3.	 Liberty	has	a	single	thread	pool	where	most	application	work	occurs	and	this	pool	is	auto-tuned	based
on	throughput.	In	general,	it	is	not	recommended	to	tune	nor	specify	this	element;	however,	if	there	is	a
throughput	problem	or	there	are	physical	or	virtual	memory	constraints,	test	with	<executor
maxThreads="X"	/>.	If	an	explicit	value	is	better,	consider	opening	a	support	case	to	investigate	why
the	auto-tuning	is	not	optimal.

4.	 If	receiving	HTTP(S)	requests:
1.	 If	using	the	servlet	feature	less	than	version	4,	then	consider	explicitly	enabling	HTTP/2	with

protocolVersion="http/2".
2.	 For	HTTP/1.0	and	HTTP/1.1,	avoid	client	keepalive	socket	churn	by	setting

maxKeepAliveRequests="-1".	This	is	the	new	default	as	of	Liberty	21.0.0.6.
3.	 For	servers	with	incoming	LAN	HTTP	traffic	from	clients	using	persistent	TCP	connection

pools	with	keep	alive	(e.g.	a	reverse	proxy	like	IHS/httpd	or	web	service	client),	consider
increasing	persistTimeout	to	reduce	keepalive	socket	churn.

4.	 For	HTTP/1.0	and	HTTP/1.1,	minimize	the	number	of	application	responses	with	HTTP	codes
400,	402-417,	or	500-505	to	reduce	keepalive	socket	churn	or	use	HTTP/2.

5.	 If	using	HTTP	session	database	persistence,	tune	the	<httpSessionDatabase	/>	element.
6.	 If	possible,	configure	and	use	HTTP	response	caching.
7.	 If	using	TLS,	set	-DtimeoutValueInSSLClosingHandshake=1.
8.	 Consider	enabling	the	HTTP	NCSA	access	log	with	response	times	for	post-mortem	traffic

analysis.
9.	 If	there	is	available	CPU,	test	enabling	HTTP	response	compression.

10.	 If	the	applications	don't	use	resources	in	META-INF/resources	directories	of	embedded	JAR
files,	then	set	<webContainer	skipMetaInfResourcesProcessing="true"	/>.

11.	 Consider	reducing	each	HTTP	endpoint's	tcpOptions	maxOpenConnections	to	the	hundreds
range	to	avoid	excessive	request	queuing	under	stress	and	test	with	a	saturation	test.

5.	 If	using	databases	(JDBC):
1.	 Connection	pools	generally	should	not	be	consistently	saturated.	Tune	<connectionManager

maxPoolSize="X"	/>.
2.	 Consider	tuning	each	connectionManager's	numConnectionsPerThreadLocal	and	purgePolicy,

and	each	dataSource's	statementCacheSize	and	isolationLevel.
3.	 Consider	disabling	idle	and	aged	connection	timeouts	(and	tune	any	firewalls,	TCP	keep-alive,

and/or	database	connection	timeouts,	if	needed).
6.	 If	using	JMS	MDBs	without	a	message	ordering	requirement,	tune	activation	specifications'

maxConcurrency	to	control	the	maximum	concurrent	MDB	invocations	and	maxBatchSize	to	control
message	batch	delivery	size.

7.	 If	using	EJBs:
1.	 If	using	non-@Asynchronous	remote	EJB	interfaces	in	the	application	for	EJBs	available	within

the	same	JVM,	consider	using	local	interface	or	no-interface	equivalents	instead	to	avoid	extra
processing	and	thread	usage.

2.	 If	an	EJB	is	only	needed	to	be	accessed	locally	within	the	same	server,	then	use	local	interfaces
(pass-by-reference)	instead	of	remote	interfaces	(pass-by-value)	which	avoids	serialization.

8.	 If	using	security,	consider	tuning	the	authentication	cache	and	LDAP	sizes.

https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/was/tpvlogging.py
https://openliberty.io/docs/latest/reference/config/httpEndpoint.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_tun.html
https://www.ibm.com/docs/en/was-liberty/core?topic=configuration-httpendpoint#tcpOptions

9.	 Use	the	minimal	feature	set	needed	to	run	your	application	to	reduce	startup	time	and	footprint.
10.	 Upgrade	to	the	latest	version	and	fixpack	as	there	is	a	history	of	making	performance	improvements

and	fixing	issues	or	regressions	over	time.
11.	 Consider	enabling	request	timing	which	will	print	a	warning	and	stack	trace	when	requests	exceed	a

time	threshold.
12.	 Review	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
13.	 Monitor,	at	minimum,	response	times,	number	of	requests,	thread	pools,	connection	pools,	and	CPU

and	Java	heap	usage	using	mpMetrics-2.3,	monitor-1.0,	JAX-RS	Distributed	Tracing,	and/or	a	third
party	monitoring	program.

14.	 Consider	enabling	event	logging	which	will	print	a	message	when	request	components	exceed	a	time
threshold.

15.	 Consider	running	with	a	sampling	profiler	such	as	Health	Center	or	Mission	Control	for	post-mortem
troubleshooting.

16.	 Disable	automatic	configuration	and	application	update	checking	if	such	changes	are	unexpected.
17.	 If	the	application	writes	a	lot	to	messages.log,	consider	switching	to	binary	logging	for	improved

performance.
18.	 Review	the	performance	tuning	topics	in	the	OpenLiberty	and	WebSphere	Liberty	documentation.
19.	 If	running	on	z/OS:

1.	 Consider	enabling	SMF	120	records.
2.	 Consider	WLM	classification:	zosWlm-1.0
3.	 Enable	hardware	cryptography	for	Java	8,	Java	11,	or	Java	17

For	details,	see	the	WebSphere	Liberty	chapter.

	

Web	Servers	Recipes
1.	 The	maximum	concurrency	variables	(e.g.	MaxClients	for	IHS)	are	the	key	tuning	variables.	Ensure

such	variables	are	not	saturated	through	tools	such	as	mpmstats	or	mod_status,	while	at	the	same	time
ensuring	that	the	backend	server	resources	(e.g.	CPU,	network)	are	not	saturated	(this	can	be	done	by
scaling	up	the	backend,	sizing	thread	pools	to	queue,	optimizing	the	backend	to	be	faster,	or	limiting
maximum	concurrent	incoming	connections	and	the	listen	backlog).

2.	 Clusters	of	web	servers	are	often	used	with	IP	sprayers	or	caching	proxies	balancing	to	the	web
servers.	Ensure	that	such	IP	sprayers	are	doing	"sticky	SSL"	balancing	so	that	SSL	Session	ID	reuse
percentage	is	higher.

3.	 Load	should	be	balanced	evenly	into	the	web	servers	and	back	out	to	the	application	servers.	Compare
access	log	hit	rates	for	the	former,	and	use	WAS	plugin	STATS	trace	to	verify	the	latter.

4.	 Review	snapshots	of	thread	activity	to	find	any	bottlenecks.	For	example,	in	IHS,	increase	the
frequency	of	mpmstats	and	review	the	state	of	the	largest	number	of	threads.

5.	 Review	the	keep	alive	timeout.	The	ideal	value	is	where	server	resources	(e.g.	CPU,	network)	are	not
saturated,	maximum	concurrency	is	not	saturated,	and	the	average	number	of	keepalive	requests	has
peaked	(in	IHS,	review	with	mpmstats	or	mod_status).

6.	 Check	the	access	logs	for	HTTP	response	codes	(e.g.	%s	for	IHS)	>=	400.
7.	 Check	the	access	logs	for	long	response	times	(e.g.	%D	for	IHS).
8.	 For	the	WebSphere	Plugin,	consider	setting	ServerIOTimeoutRetry="0"	to	avoid	retrying	requests

that	time	out	due	to	ServerIOTimeout	(unless	ServerIOTimeout	is	very	short).
9.	 Enable	mod_logio	and	add	%^FB	to	LogFormat	for	time	until	first	bytes	of	the	response

10.	 Review	access	and	error	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
11.	 Check	http_plugin.log	for	ERROR:	ws_server:	serverSetFailoverStatus:	Marking	.*	down
12.	 Use	WAS	plugin	DEBUG	or	TRACE	logging	to	dive	deeper	into	unusual	requests	such	as	slow	requests,

requests	with	errors,	etc.	Use	an	automated	script	for	this	analysis.

For	details,	see	the	Web	Servers	chapter.	Also	review	the	operating	systems	chapter.

	

https://openliberty.io/docs/latest/performance-tuning.html
https://www.ibm.com/docs/en/was-liberty/nd?topic=tuning-liberty
https://www.ibm.com/docs/en/was-liberty/nd?topic=zos-enabling-workload-management-liberty
https://www.ibm.com/support/pages/node/6209109
https://www.ibm.com/support/pages/node/6840291
https://www.ibm.com/support/pages/node/6840291
https://github.com/covener/plugin-tools/blob/master/scanplugin.pl

Additional	Recipes

IHS	and	WAS	Plugin	Performance
Some	Users	Reporting	Bad	Performance

	

IHS	&	WAS	Plugin	Performance

1.	 In	the	conf/httpd.conf	file,	find	the	section	for	mod_mpmstats.c	and	change	ReportInterval	to:

ReportInterval	30

2.	 In	the	conf/httpd.conf	file,	find	the	CustomLog	directive	for	your	access_log.	By	default	this	is:

CustomLog	logs/access_log	common

The	last	part	of	that	line,	in	this	example	"common"	is	the	name	of	the	LogFormat	to	use.	Find	this
LogFormat.	By	default,	this	may	be:

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common

Change	this	to,	for	example:

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	%D	\"%{WAS}e\"	%X	%I	%O	%^FB"	common

3.	 Archive	and	truncate	existing	access.log,	error.log,	and	http_plugin.log	files.
4.	 Save	httpd.conf	and	restart	the	IHS	servers	(either	gracefully	or	fully).
5.	 Reproduce	the	problem.
6.	 Gather

1.	 access.log
2.	 error.log
3.	 http_plugin.log
4.	 httpd.conf
5.	 plugin-cfg.xml

7.	 Review	all	logs	for	any	errors,	warnings,	etc.
8.	 Review	the	response	times.	Try	to	isolate	the	problem	to	particular	requests	(duration	or	volume).
9.	 Review	mpmstats.

10.	 Review	incoming	rate	and	distribution	of	requests	(see	Web	Servers).
11.	 Review	http_plugin.log:

1.	 scanplugin.pl	can	help	find	"interesting"	Plugin	requests	(timeouts,	bad	status	codes,	non-WAS
delays)

	

Some	Users	Reporting	Bad	Performance

This	recipe	provides	a	strategy	for	identifying	which	JVM	a	user	is	on	in	order	to	track	down	performance
issues	reported	by	that	user.

	

Strategy	1:	Add	Logging	of	JSESSIONID	in	IHS	to	Identify	the	clone-id	of	the	JVM	the	user	is	on

1.	 In	the	conf/httpd.conf	file,	find	the	CustomLog	directive	for	your	access_log.	By	default	this	is:

CustomLog	logs/access_log	common

The	last	part	of	that	line,	in	this	example	"common"	is	the	name	of	the	LogFormat	to	use.	Find	this
LogFormat.	By	default,	this	may	be:

https://github.com/covener/plugin-tools/blob/master/scanplugin.pl

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	%D	\"%{WAS}e\"	%X	%I	%O	%^FB"	common

Change	this	to,	for	example:

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	%D	\"%{WAS}e\"	%X	%I	%O	%^FB	JSESSIONID=\"%{JSESSIONID}C\""	common

2.	 Save	httpd.conf	and	restart	the	IHS	servers	(either	gracefully	or	fully).

This	will	print	out	the	cookie	due	to	JSESSIONID=\"%{JSESSIONID}C\".	This	is	helpful	because	the
JSESSIONID	string	contains	the	clone/JVM	the	user	has	established	their	session	with.	This	way	if	a	user	is
having	problems	the	administrator	will	know	which	clone	the	user	was	pinned	to.	This	helps	immensely	with
troubleshooting	because	the	administrator	knows	which	log	file	they	need	to	look	at	when	the	error	occurs.
Test	this	out	in	the	test	environment	first.	Then	in	production	make	sure	disk	space	is	monitored	to	ensure
that	the	disk	does	not	run	out	of	space	because	of	the	additional	logging	data.

	

Monitor

access.log	on	the	IHS	server.	Use	the	clone-id	in	the	JSESSIONID	cookie	to	identify	the	JVM.	Conduct
appropriate	troubleshooting	steps	on	that	JVM	to	understand	the	users'	performance	problems.

	

Caveat

Whilst	the	JSESSIONID	is	only	an	identifier,	the	administrators	need	to	ensure	that	file	system	security	is
locked	down	so	that	other	users	on	the	node	do	not	have	access	to	the	IHS	logs.

	

Container	Recipes
Java	in	Containers	Recipes
Liberty	in	Containers	Recipe
WebSphere	Application	Server	traditional	in	Containers	Recipe

	

Java	in	Containers	Recipes

IBM	and	Semeru	Java	in	Containers	Recipe

1.	 Review	and	test	different	CPU	limits.	Steady	state	requirements	may	be	different	from	startup
requirements,	particularly	due	to	JIT	compilation	(unless	using	JITServer).

2.	 In	general,	tune	-XX:MaxRAMPercentage	and	-XX:InitialRAMPercentage	instead	of	-Xmx	and	-Xms,
respectively,	to	allow	for	more	flexibility	with	sizing	of	containers	at	the	host	level.	Default	values
depend	on	any	container	memory	limit.

3.	 Consider	using	-XX:+ClassRelationshipVerifier	to	improve	start-up	time.
4.	 If	using	Semeru	Java	>=	11	and	memory	in	the	pod	is	limited,	consider	using	the	remote	JITServer	on

available	platforms	to	avoid	potential	throughput	issues.

For	details,	see	the	Java	J9	in	Containers	chapter.

	

Liberty	in	Containers	Recipe

https://www.eclipse.org/openj9/docs/xxusecontainersupport/
https://blog.openj9.org/2021/06/15/innovations-for-java-running-in-containers/
https://blog.openj9.org/2021/06/15/innovations-for-java-running-in-containers/

1.	 Review	the	Java	in	Containers	recipes
2.	 Execute	configure.sh	as	the	last	step	in	your	Containerfile	to	make	it	fit-for-purpose	and	initialize	the

shared	class	cache.
3.	 Review	the	Configuring	Security	best	practices
4.	 If	using	IBM	or	Semeru	Java,	mount	a	shared	volume	for	the	shared	class	cache	in

${WLP_OUTPUT_DIR}/.classCache
5.	 Consider	logging	in	JSON	format	for	consumption	by	centralized	logging.
6.	 If	using	IBM	or	Semeru	Java	and	startup	time	is	highly	variable,	review	the	potential	impact	of	the

maximum	heap	size	on	the	shared	class	cache.
7.	 OpenShift:

1.	 Review	the	Application	Monitoring	options.
8.	 Review	the	Liberty	recipe
9.	 Review	the	Java	recipes

10.	 Review	the	Operating	System	Recipes

For	details,	see	the	Liberty	in	Containers	chapter.

	

WebSphere	Application	Server	traditional	in	Containers	Recipe
1.	 Review	the	Java	in	Containers	recipes
2.	 Execute	/work/configure.sh	as	the	last	step	in	your	Containerfile
3.	 Review	the	WAS	traditional	recipes
4.	 Review	the	Java	recipe
5.	 Review	the	Operating	System	Recipes

For	details,	see	the	WebSphere	Application	Server	traditional	in	Containers	chapter.

	

Caching	Recipes
The	costs	and	benefits	of	caching	are	discussed	in	the	Caching	chapter.	This	recipe	is	a	checklist	of	caching
to	review	in	a	typical	WAS	installation:

1.	 If	available,	enable	the	Java	shared	class	and	ahead-of-time	compilation	caches.	WAS	enables	this	by
default,	but	you	can	increase	the	size	if	you	have	available	memory.	See	the	Java	chapter.

2.	 Pre-compile	Java	Server	Pages	(JSPs).	See	the	WAS	chapter.
3.	 If	possible,	utilize	the	WAS	Dynacache	feature	to	cache	servlet	responses.	See	the	HTTP	section	in	the

WAS	chapter.
4.	 The	application	should	set	standardized	response	headers	that	indicate	caching	(e.g.	Cache-Control	in

HTTP).
1.	 An	alternative	is	to	use	a	web	server	such	as	IHS	to	apply	cache	headers	to	responses	based	on

rules.	See	the	Web	Servers	chapter.
5.	 If	possible,	use	the	WebSphere	eXtreme	Scale	(WXS)	product	to	maximize	data	caching	(see	below).
6.	 Consider	using	an	edge	cache	such	as	the	WebSphere	Caching	Proxy.	See	the	Web	Servers	chapter.
7.	 If	using	WebSphere	Commerce,	set	Dynacache	caches'	sharing	modes	to	NOT_SHARED.

	

Troubleshooting	Recipes
Troubleshooting	Operating	System	Recipes
Troubleshooting	Java	Recipes
Troubleshooting	WAS	traditional	Recipes

https://github.com/WASdev/ci.docker#building-an-application-image
https://github.com/OpenLiberty/ci.docker/blob/master/SECURITY.md#configuring-security
https://github.com/WASdev/ci.docker#logging
https://github.com/OpenLiberty/open-liberty-operator/blob/master/doc/observability-deployment-rhocp4.2-4.5.adoc#how-to-deploy-kibana-dashboards-to-monitor-open-liberty-logging-events
https://github.com/WASdev/ci.docker#openj9-shared-class-cache-scc
https://github.com/OpenLiberty/open-liberty-operator/blob/main/doc/openshift-monitoring.adoc
https://github.com/WASdev/ci.docker.websphere-traditional#best-practices

Troubleshooting	WebSphere	Liberty	Recipes
Troubleshooting	Web	Servers	Recipes
Troubleshooting	OpenShift	Recipes

	

Troubleshooting	Operating	System	Recipes
Troubleshooting	Linux	Recipes
Troubleshooting	AIX	Recipes
Troubleshooting	Windows	Recipes

	

Additional	Recipes

Process	Crash	Recipe
Looping	Shell	Script	Recipe

	

Process	Crash	Recipe

1.	 On	POSIX-based	operating	systems:
1.	 Ensure	the	process	was	started	with	unlimited	core	and	file	ulimits.

2.	 On	Linux:
1.	 Ensure	core	piping	is	configured	properly	or	disabled.
2.	 Review	the	system	log	(e.g.	journalctl)	to	see	if	the	crash	was	caused	by	the	Linux	OOM

killer.
3.	 Load	the	core	dump	in	the	operating	system	debugger	and	review	the	stack	trace	of	the	crashing

thread.
4.	 Check	if	the	RAM	is	non-ECC	RAM	in	which	case	the	cause	may	have	been	due	to	atmospheric

radiation.	Non-ECC	RAM	is	more	common	in	consumer	hardware	rather	than	production	hardware.
5.	 Review	the	possibility	of	mercurial	CPU	cores.

	

Looping	Shell	Script	Recipe

1.	 Change	directory	to	where	you	would	like	to	store	the	script	output.
2.	 Create	a	file	named	diagscript.sh	with	contents	based	on	the	following:

#!/bin/sh
set	-e
outputfile="diag_ps_$(date	+"%Y%m%d_%H%M%S").log"
while	true;	do
		date	>>	"${outputfile}"	2>&1
		#	Change	the	command	here,	update	'_ps_'	in	the	file	name	above	to	match,	and	update	the	example	in	the	next	step:
		ps	-elfyww	>>	"${outputfile}"	2>&1
		#	Change	the	sleep	time	(in	seconds)	as	needed:
		sleep	30
done

3.	 Manually	confirm	the	looped	command	works	(as	some	distributions	support	different	flags).	For
example:

ps	-elfyww

4.	 Make	the	script	executable:

https://doi.org/10.1145/3458336.3465297

chmod	+x	diagscript.sh

5.	 Execute	the	script	with	nohup	so	that	it's	not	interrupted	if	the	user	that	started	the	script	logs	out	(on
some	versions	of	Linux,	you	may	need	systemd-run	instead),	and	send	to	the	background	with	&:

nohup	./diagscript.sh	&

6.	 After	the	script	starts	in	the	background,	press	ENTER	to	continue	with	the	shell.	If	you'd	like	to	watch
the	script	output,	you	may	tail	it:

tail	-f	diag*log

7.	 When	you	are	ready	to	stop	the	script,	kill	it	by	finding	the	process	ID	and	then	using	that:

kill	${PID}

Alternatively,	on	Linux,	use	pkill:

pkill	-f	diagscript.sh

8.	 Upload	diag*log

	

Looping	Batch	Script	Recipe

1.	 Create	a	file	named	diagscript.bat	with	contents	based	on	the	following.	Add	your	desired
commands	between	the	echo	...	Iteration	and	the	timeout	lines.

@echo	off
SETLOCAL	ENABLEDELAYEDEXPANSION

:loop

echo	[%date%	%time%]	Iteration

timeout	/t	30	>	NUL

goto	loop

2.	 Open	a	command	prompt	and	change	directory	to	where	you	would	like	to	store	the	script	output:

cd	C:\

3.	 Execute	the	script	and	redirect	output	to	a	file:

C:\diagscript.bat	>	diagstdlogs.txt	2>&1

4.	 When	you	are	ready	to	stop	the	script,	kill	it	by	typing	Ctrl^C	in	the	command	prompt	window.
5.	 Upload	diagstdlogs.txt	and	any	other	relevant	logs.

	

Troubleshooting	Linux	Recipes
Linux	General	Recipe
Linux	tcpdump	Recipe
Linux	tcpdump	on	a	port	Recipe
Linux	vmstat	Recipe
Linux	nmon	Recipe
Linux	perf	Recipe
Linux	netstat	Recipe
Linux	basics	Recipe
Linux	X11	Forwarding

Linux	Override	Core	Dump	Processing

	

Linux	General	Recipe

1.	 Print	error	messages	since	last	boot:

journalctl	-b	-p	err

	

Linux	tcpdump	Recipe

1.	 Review	the	security	and	performance	implications	of	network	trace.
2.	 Install	tcpdump	if	it's	not	already	installed.
3.	 As	root,	run	the	following	command,	replacing	$INTERFACE	with	the	target	network	interface	(e.g.	an

explicit	interface	such	as	eth0	or	any	for	all	interfaces;	preferably,	the	former):

sh	-c	"date	>>	nohup.out	&&	(nohup	tcpdump	-nn	-v	-i	$INTERFACE	-B	4096	-s	80	-C	100	-W	10	-Z	root	-w	diag_capture_$(hostname)_$(date	+%Y%m%d_%H%M%S).pcap	&)	&&	sleep	1	&&	cat	nohup.out"

1.	 This	captures	up	to	10	files	of	100MB	each	of	up	to	80	bytes	per	packet.	Change	-s	to	0	if	you
want	to	capture	full	packets	although	this	has	a	higher	overhead.

4.	 Check	for	any	errors	running	the	above	commands	in	your	terminal.
5.	 Reproduce	the	problem.
6.	 Stop	the	capture:

pkill	-INT	tcpdump

7.	 Upload	diag_capture*pcap*,	a	list	of	IP	addresses	that	are	relevant	to	the	captured	conversations	and
what	each	IP	address	represents	(e.g.	web	server,	WebSphere,	database,	etc.),	and	nohup.out

For	background,	see	Linux	tcpdump.

	

Linux	tcpdump	on	a	port	Recipe

1.	 Review	the	security	and	performance	implications	of	network	trace.
2.	 Install	tcpdump	if	it's	not	already	installed.
3.	 As	root,	run	the	following	command,	replacing	$PORT	with	the	port	of	interest	and	$INTERFACE	with

the	target	network	interface	(e.g.	an	explicit	interface	such	as	eth0	or	any	for	all	interfaces;	preferably,
the	former):

sh	-c	"date	>>	nohup.out	&&	(nohup	tcpdump	-nn	-v	-i	$INTERFACE	-B	4096	-s	80	-C	100	-W	10	-Z	root	-w	diag_capture_$(hostname)_$(date	+%Y%m%d_%H%M%S).pcap	'port	$PORT'	&)	&&	sleep	1	&&	cat	nohup.out"

1.	 This	captures	up	to	10	files	of	100MB	each	of	up	to	80	bytes	per	packet.	Change	-s	to	0	if	you
want	to	capture	full	packets	although	this	has	a	higher	overhead.

4.	 Check	for	any	errors	running	the	above	commands	in	your	terminal.
5.	 Reproduce	the	problem.
6.	 As	root,	stop	the	capture:

pkill	-INT	tcpdump

7.	 Upload	diag_capture*pcap*,	a	list	of	IP	addresses	that	are	relevant	to	the	captured	conversations	and
what	each	IP	address	represents	(e.g.	web	server,	WebSphere,	database,	etc.),	and	nohup.out

For	background,	see	Linux	tcpdump.

	

https://www.ibm.com/support/pages/capture-network-trace
https://www.ibm.com/support/pages/capture-network-trace

Linux	vmstat	Recipe

1.	 Run	vmstat	in	the	background	with	a	5	second	interval:

sh	-c	"date	>>	nohup.out	&&	(nohup	vmstat	-tn	5	>	diag_vmstat_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt	&);	sleep	1;	cat	nohup.out"

2.	 Check	for	any	errors	running	the	above	commands	in	your	terminal.	Some	versions	of	Linux	do	not
support	the	-t	flag	so	the	above	command	will	give	an	error.	If	so,	change	to	-n.

3.	 Reproduce	the	problem.
4.	 To	stop	collection,	kill	the	vmstat	process.	For	example:

pkill	-f	vmstat

5.	 Upload	diag_vmstat_*	and	nohup.out

For	background,	see	Linux	vmstat.

	

Linux	nmon	Recipe

1.	 Install	nmon	if	it's	not	installed.
2.	 Run	nmon	in	the	background	with	a	60	second	interval:

sh	-c	"date	>>	nohup.out	&&	nohup	nmon	-fT	-s	60	-c	1000000	-t	&&	sleep	1	&&	cat	nohup.out"

3.	 Check	for	any	errors	running	the	above	commands	in	your	terminal
4.	 Reproduce	the	problem.
5.	 To	stop	collection,	kill	the	nmon	process.	For	example:

pkill	-USR2	nmon

6.	 Upload	*.nmon	and	nohup.out

For	background,	see	Linux	nmon.

	

Linux	perf	Recipe

1.	 Install	perf	if	it's	not	installed.
2.	 Prepare	the	Java	process:

1.	 For	IBM	Java	>=	8.0.7.20	or	Semeru	>=	v8.0.352	/	11.0.17.0	/	17.0.5.0,	restart	the	Java	process
with	-XX:+PerfTool

2.	 For	older	versions	of	IBM	Java	and	Semeru,	restart	the	Java	process	with	-Xjit:perfTool	while
making	sure	to	combine	with	commas	with	any	pre-existing	-Xjit	options

3.	 For	a	HotSpot	JVM,	restart	the	Java	process	with	-XX:+PreserveFramePointer	and	perf-map-
agent	or,	for	Java	>=	16,	restart	with	-XX:+DumpPerfMapAtExit	to	create	/tmp/perf-$PID.map
on	graceful	JVM	exit.

3.	 During	the	performance	problem,	run	one	of	the	following	commands	as	root.	Change	60	to	the
number	of	seconds	you	want	to	gather	data	for:

1.	 For	IBM	Java/Semeru	running	on	top	of	an	Intel	processor	that	is	Haswell	or	later	(see	cat
/proc/cpuinfo	and	reference	Intel.com),	use	the	following,	although	note	that	LBR	has	a
limited	stack	depth,	so	use	the	next	option	if	you	need	longer	stacks:

date	+'%Y-%m-%d	%H:%M:%S.%N	%Z'	&>>	diag_starttimes_$(hostname).log;	cat	/proc/uptime	&>>	diag_starttimes_$(hostname).log;	perf	record	--call-graph	lbr	-F	99	-a	-g	--	sleep	60

2.	 For	IBM	Java/Semeru	running	on	any	other	processor	or	if	you're	not	sure	what	the	processor	is:

date	+'%Y-%m-%d	%H:%M:%S.%N	%Z'	&>>	diag_starttimes_$(hostname).log;	cat	/proc/uptime	&>>	diag_starttimes_$(hostname).log;	perf	record	--call-graph	dwarf,65528	-F	99	-a	-g	--	sleep	60

3.	 For	a	HotSpot	JVM:

https://github.com/jvm-profiling-tools/perf-map-agent

date	+'%Y-%m-%d	%H:%M:%S.%N	%Z'	&>>	diag_starttimes_$(hostname).log;	cat	/proc/uptime	&>>	diag_starttimes_$(hostname).log;	perf	record	--call-graph	fp	-F	99	-a	-g	--	sleep	60

4.	 After	the	above	completes,	run	the	following	command:

perf	script	>	diag_perfscript_$(hostname)_$(date	+%Y%m%d_%H%M%S_%N).txt

5.	 After	the	above	completes,	gather	a	thread	dump	so	that	thread	IDs	may	be	mapped	to	thread	names.
This	is	very	low	overhead	with	the	process	pausing	for	generally	about	10ms	to	100ms.

kill	-3	$PID

6.	 Similarly,	gather	an	operating	sytem	core	dump	of	the	process	if	the	security,	disk	and	performance
risks	are	acceptable	(the	process	may	pause	for	up	to	30	seconds	or	more)	and	the	process	and
operating	system	are	configured	for	it	(e.g.	core	and	file	ulimits,	kernel.core_pattern	truncation
settings,	etc.)	using	one	of	various	mechanisms	and	then	run	jextract	(IBM	Java)	or	jpackcore
(Semeru)	on	it;	for	example:

$JAVA/bin/jextract	core*.dmp

7.	 As	root	(needed	to	access	/proc/kallsyms),	run	the	following	commands	to	archive	the	perf	data;
replace	$THREAD_DUMPS_DIR	with	the	location	where	thread	dumps	were	produced,	and	include	the
packed	operating	system	core	dump	if	produced:

#	perf	archive
#	tar	czvf	diag_perf_$(hostname)_$(date	+%Y%m%d_%H%M%S).tar.gz	perf.data*	diag_perfscript*	diag_perfscript*	perf.data.tar.bz2	/proc/kallsyms	/boot/System.map-$(uname	-r)	/tmp/perf*map	$THREAD_DUMPS_DIR/javacore*.txt	$OS_CORE_DUMPS_DIR/core*.dmp.zip

8.	 Upload	diag_perf_*.tar.gz	and	any	Java/WAS	logs,	particularly	verbosegc	if	enabled

If	you	want	to	do	basic	analysis	of	the	perf	output	yourself:

1.	 Top	10	CPU-using	stack	frames:

cat	diag_perfscript*txt	|	awk	'go	{	go=0;	print;	}	/cpu-clock:/	||	/cycles:/	{	go=1;	}'	|	sort	|	uniq	-c	|	sort	-nr	|	head

2.	 Create	FlameGraphs:
1.	 git	clone	https://github.com/brendangregg/FlameGraph
2.	 cd	FlameGraph
3.	 cat	diag_perfscript*txt	|	./stackcollapse-perf.pl	>	out.perf-folded
4.	 ./flamegraph.pl	--width	1024	out.perf-folded	>	perf.svg
5.	 ./flamegraph.pl	--reverse	--width	1024	out.perf-folded	>	perf-reverse.svg
6.	 Open	perf.svg	and	perf-reverse.svg	in	your	browser

Notes:

If	not	all	symbols	are	resolved,	try	again	with	the	additional	option	-Xlp:codecache:pagesize=4k

For	background,	see	Linux	perf.

	

Linux	netstat	Recipe

1.	 Create	diag_netstat.sh:

#!/bin/sh
OUTPUTFILE="diag_netstat_$(hostname)_$(date	+"%Y%m%d_%H%M%S").log"
INTERVAL="${1:-30}"	#	First	argument	or	a	default	of	30	seconds
while	true;	do
		echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	iteration"	>>	"${OUTPUTFILE}"	2>&1
		netstat	-antop	>>	"${OUTPUTFILE}"	2>&1
		sleep	${INTERVAL}
done

2.	 Make	it	executable:

chmod	+x	diag_netstat.sh

3.	 Start	it	(default	interval	of	30	seconds	or	specify	an	alternate	interval	as	the	first	argument):

nohup	./diag_netstat.sh	&

4.	 Reproduce	the	problem
1.	 If	at	any	point	you	need	to	reduce	this	disk	usage	of	the	output	file	during	the	test,	truncate	the

file:

cat	/dev/null	>	diag_netstat*log

5.	 Stop	the	script:

pkill	-f	diag_netstat

6.	 Upload	diag_netstat_*	and	nohup.out

	

Linux	basics	Recipe

1.	 Execute	the	following:
cat	/proc/cpuinfo	&>>	diag_linux_$(hostname).txt;	cat	/proc/meminfo	&>>
diag_linux_$(hostname).txt;	sysctl	-a	&>>	diag_linux_$(hostname).txt;	netstat	-i	&>>
diag_linux_$(hostname).txt;	netstat	-s	&>>	diag_linux_$(hostname).txt;	journalctl	-p
warning	-n	500	&>>	diag_linux_$(hostname).txt

2.	 Upload	diag_linux_*

	

Linux	X11	Forwarding	Recipe

1.	 Client:
1.	 macOS:

1.	 (First	time)	Install	XQuartz:

brew	install	--cask	xquartz

2.	 Start	XQuartz:

open	-a	XQuartz.app

2.	 Server:
1.	 Ubuntu:

1.	 ssh	normally	into	the	server:

ssh	root@host

2.	 Make	sure	X11	apps	are	installed:

apt-get	update	&&	DEBIAN_FRONTEND=noninteractive	TZ=${TZ:-UTC}	apt-get	-y	install	x11-apps

3.	 Update	the	sshd	config	to	allow	remote	X11:

sed	-i	's/.*X11Forwarding	no/X11Forwarding	yes/g'	/etc/ssh/sshd_config	&&	sed	-i	's/.*X11UseLocalhost	yes/X11UseLocalhost	no/g'	/etc/ssh/sshd_config

4.	 Update	the	sshd	runtime	configuration:

kill	-HUP	$(cat	/var/run/sshd.pid)

5.	 exit	the	ssh	session
6.	 ssh	again	with	X11	forwarding:

ssh	-Y	root@host

7.	 Test	some	X11	app

xclock

	

Linux	Override	Core	Dump	Processing

If	you	are	facing	troubles	configuring	a	Linux	core	dump	processing	program,	temporarily	use	the	following
technique	to	use	a	shell	script	as	the	core	dump	processing	program	which	simply	writes	the	core	dump	to	a
target	directory.

1.	 Create	writecore.sh.	In	general,	well	known	executable	directories	are	recommended	in	case	of
SELinux	restrictions.	In	the	following	example,	/usr/local/bin	is	used	but	change	as	needed.	Also
change	the	destination	directory	of	/tmp/	to	where	you	want	to	write	the	cores	and	the	log.	Ensure	the
target	directory	has	sufficient	disk	space.

cat	>	/usr/local/bin/writecore.sh	<<"EOF"
#!/bin/sh
/usr/bin/echo	"[$(/usr/bin/date)]	Asked	to	create	core	for	${1}.${2}.${3}"	>>/tmp/writecore.log
/usr/bin/cat	-	>	/tmp/core.${1}.${2}.${3}.dmp	2>>/tmp/writecore.log
/usr/bin/echo	"[$(/usr/bin/date)]	Finished	writing	core	for	${1}.${2}.${3}"	>>/tmp/writecore.log
EOF

2.	 Make	the	script	executable:

chmod	+x	/usr/local/bin/writecore.sh

3.	 If	SELinux	is	in	use,	change	the	security	context.	For	example:

chcon	--reference=/usr/bin/cat	/usr/local/bin/writecore.sh

4.	 Print	the	current	core_pattern	for	later	reversion:

sysctl	kernel.core_pattern

5.	 Update	the	core_pattern:

sysctl	-w	"kernel.core_pattern=|/usr/local/bin/writecore.sh	%p	%P	%t"

6.	 Now	core	dumps	should	be	processed	through	writecore.sh	and	written	to	the	destination	directory.
7.	 Reproduce	the	issue	and	find	the	core	dumps	in	/tmp/.
8.	 Revert	to	the	old	core_pattern	from	step	4	above.

Potential	issues:

1.	 Potential	issues	may	be	seen	in	the	kernel	logs	such	as	journalctl	-f.
1.	 In	the	following	example,	SELinux	denied	executing	writecore.sh

Sep	06	10:41:52	localhost.localdomain	audit[4985]:	AVC	avc:		denied		{	map	}	for		pid=4985	comm="writecore.sh"	path="/usr/bin/bash"	dev="vda4"				ino=201689627	scontext=system_u:system_r:kernel_generic_helper_t:s0	tcontext=system_u:object_r:shell_exec_t:s0	tclass=file	permissive=0
Sep	06	10:41:52	localhost.localdomain	kernel:	audit:	type=1400	audit(1694014912.395:806):	avc:		denied		{	map	}	for		pid=4985	comm="writecore.sh"	path="/			usr/bin/bash"	dev="vda4"	ino=201689627	scontext=system_u:system_r:kernel_generic_helper_t:s0	tcontext=system_u:object_r:shell_exec_t:s0	tclass=file				permissive=0
Sep	06	10:41:52	localhost.localdomain	kernel:	Core	dump	to	|/usr/local/bin/writecore.sh	pipe	failed

A	rule	could	be	added	with	a	tool	such	as	semanage	or	SELinux	may	be	temporarily	disabled:

setenforce	Permissive

	

Troubleshooting	AIX	Recipes
AIX	nmon	Recipe
AIX	perfpmr	Recipe
AIX	iptrace	Recipe

AIX	iptrace	on	a	port	Recipe
AIX	vmstat	Recipe
WAS	traditional	on	AIX	Recipe

	

AIX	nmon	Recipe

1.	 Run	nmon	in	the	background	with	a	60	second	interval:

nohup	nmon	-fT	-s	60	-c	1000000	&&	sleep	1	&&	cat	nohup.out

2.	 Check	for	any	errors	running	the	above	commands	in	your	terminal.
3.	 Reproduce	the	problem.
4.	 To	stop	collection,	kill	the	nmon	process.	For	example:

ps	-elf	|	grep	nmon	|	grep	-v	grep	|	awk	'{print	$4}'	|	xargs	kill	-USR2

5.	 Upload	$HOST_$STARTDAY_$STARTTIME.nmon	and	nohup.out

For	background,	see	AIX	nmon.

	

AIX	perfpmr	Recipe

1.	 Download	perfpmr	to	the	node(s)
2.	 Extract	it	somewhere:

zcat	perf72.tar.Z	|	tar	-xvf	-

3.	 As	root,	execute	perfpmr	in	a	directory	with	at	least	(45MB	*	$LOGICAL_CPUs)	of	disk	space:

perfpmr.sh	600

Note:	this	executes	for	about	30	minutes.	Alternatively,	the	minimum	execution	is	10	minutes
with	the	argument	60	instead	of	600.

4.	 Reproduce	the	problem.
5.	 Collect	the	data:

pax	-xpax	-vw	perfdata	|	gzip	-c	>	perfpmr_collection.pax.gz

6.	 Upload	perfpmr_collection.pax.gz

For	background,	see	AIX	perfpmr.

	

AIX	iptrace	Recipe

1.	 Review	the	security	and	performance	implications	of	network	trace.
2.	 As	root,	start	the	capture:

startsrc	-s	iptrace	"-a	-b	-B	-L	2147483648	-S	80	aixiptrace.bin"

1.	 This	captures	up	to	2	files	of	2GB	each	of	up	to	80	bytes	per	packet.	Set	-S	1500	if	you	want	to
capture	full	packets	although	this	has	a	higher	overhead.

3.	 Check	for	any	errors	running	the	above	commands	in	your	terminal.
4.	 Reproduce	the	problem.
5.	 Stop	the	capture:

stopsrc	-s	iptrace

https://public.dhe.ibm.com/aix/tools/perftools/perfpmr/
https://www.ibm.com/support/pages/capture-network-trace

6.	 Upload	aixiptrace*.bin*

For	background,	see	AIX	iptrace.

	

AIX	iptrace	on	a	port	Recipe

1.	 Review	the	security	and	performance	implications	of	network	trace.
2.	 As	root,	start	the	capture	and	replace	$PORT:

startsrc	-s	iptrace	"-a	-b	-B	-p	$PORT	-L	2147483648	-S	80	aixiptrace.bin"

1.	 This	captures	up	to	2	files	of	2GB	each	of	up	to	80	bytes	per	packet.	Set	-S	1500	if	you	want	to
capture	full	packets	although	this	has	a	higher	overhead.

3.	 Check	for	any	errors	running	the	above	commands	in	your	terminal.
4.	 Reproduce	the	problem.
5.	 Stop	the	capture:

stopsrc	-s	iptrace

6.	 Upload	aixiptrace*.bin*

For	background,	see	AIX	iptrace.

	

AIX	vmstat	Recipe

1.	 Run	vmstat	in	the	background	with	a	5	second	interval:

sh	-c	"date	>>	nohup.out	&&	(nohup	vmstat	-t	5	>	diag_vmstat_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt	&);	sleep	1;	cat	nohup.out"

2.	 Check	for	any	errors	running	the	above	commands	in	your	terminal.
3.	 Reproduce	the	problem.
4.	 To	stop	collection,	kill	the	vmstat	process.	For	example:

ps	-elf	|	grep	vmstat	|	grep	-v	grep	|	awk	'{print	$4}'	|	xargs	kill

5.	 Upload	diag_vmstat_*	and	nohup.out

For	background,	see	AIX	vmstat.

	

WAS	traditional	on	AIX	Recipe

1.	 Download	aixperf.sh
2.	 Edit	aixperf.sh	then	change	SCRIPT_SPAN	to	greater	than	or	equal	to	the	duration	of	the	test.	Also

ensure	JAVACORE_INTERVAL	is	changed	so	that	SCRIPT_SPAN	is	evenly	divisible	by	it.	For	example:

SCRIPT_SPAN=43200		
JAVACORE_INTERVAL=60

3.	 Find	the	process	IDs	(PIDs)	of	each	application	server:	ps	-elf	|	grep	java
4.	 Start	aixperf.sh	as	root:

#	su		
#	cd	/var/tmp/		
#	nohup	./aixperf.sh	${WASPIDS}	&

5.	 Reproduce	the	problem
6.	 The	aixperf.sh	script	will	gather	a	tprof	sample	just	once	when	it	first	starts.	Also	gather	a	tprof

https://www.ibm.com/support/pages/capture-network-trace
https://www.ibm.com/support/pages/system/files/inline-files/$FILE/aixperf.sh

sample	at	the	peak	of	the	problem:

#	su		
#	cd	/var/tmp/		
#	LDR_CNTRL=MAXDATA=0x80000000	tprof	-Rskex	sleep	60	>>	tprof.out	2>&1

7.	 Once	the	reproduction	is	complete:
8.	 If	aixperf.sh	hasn't	completed,	you	can	manually	stop	it:

1.	 ps	-elf	|	grep	$(ps	-elf	|	grep	aixperf	|	grep	-v	grep)	|	awk	'{print	$4}'	|
xargs	kill

2.	 Gather	any	javacore*txt	files	produced	in	each	WAS	JVM's	profile	directory.
9.	 Gather	/var/tmp/aixperf/*	and	/var/tmp/tprof/*

	

Troubleshooting	Windows	Recipes
Windows	pktmon	Recipe
Windows	pktmon	on	a	port	Recipe
Windows	11	perfmon	Recipe

	

Windows	pktmon	Recipe

1.	 Review	the	security	and	performance	implications	of	network	trace.
2.	 Right-click	Command	Prompt	}	Run	as	Administrator
3.	 Start	the	capture:

pktmon	start	--capture	--pkt-size	80	--file-size	2048	--log-mode	circular

1.	 This	command	captures	up	to	2GB	of	total	data.	Change	file-size	in	MB	as	needed.
2.	 It	also	captures	up	to	80	bytes	per	packet.	Set	--pkt-size	0	if	you	want	to	capture	full	packets

although	this	has	a	higher	overhead.
3.	 If	you	receive	the	error,	"Packet	monitor	is	already	started,"	then	first	run	pktmon	stop	and	then

re-run	the	command.
4.	 Check	for	any	errors	running	the	previous	commands	in	your	terminal.
5.	 Reproduce	the	problem.
6.	 Stop	the	capture:

pktmon	stop

7.	 Convert	the	capture	to	pcapng	format:

pktmon	etl2pcap	PktMon.etl

8.	 Upload	PktMon.etl	and	PktMon.pcapng

	

Windows	pktmon	on	a	port	Recipe

1.	 Review	the	security	and	performance	implications	of	network	trace.
2.	 Right-click	Command	Prompt	}	Run	as	Administrator
3.	 Configure	the	filtered	port;	replace	%PORT%	with	the	target	port	(for	example,	80,	443,	and	so	on):

pktmon	filter	add	-t	tcp	-p	%PORT%

4.	 Start	the	capture:

pktmon	start	--capture	--pkt-size	80	--file-size	2048	--log-mode	circular

https://www.ibm.com/support/pages/capture-network-trace
https://www.ibm.com/support/pages/capture-network-trace

1.	 This	command	captures	up	to	2GB	of	total	data.	Change	file-size	in	MB	as	needed.
2.	 It	also	captures	up	to	80	bytes	per	packet.	Set	--pkt-size	0	if	you	want	to	capture	full	packets

although	this	has	a	higher	overhead.
3.	 If	you	receive	the	error,	"Packet	monitor	is	already	started,"	then	first	run	pktmon	stop	and	then

re-run	the	command.
5.	 Check	for	any	errors	running	the	previous	commands	in	your	terminal.
6.	 Reproduce	the	problem.
7.	 Stop	the	capture:

pktmon	stop

8.	 Convert	the	capture	to	pcapng	format:

pktmon	etl2pcap	PktMon.etl

9.	 Upload	PktMon.etl	and	PktMon.pcapng

	

Windows	11	perfmon	Recipe

1.	 Start	}	Run	}	perfmon	(a.k.a.	Performance	Monitor)
2.	 Expand	Performance	}	Data	Collector	Sets	}	System
3.	 Right	click	System	Performance	}	Start
4.	 This	runs	for	60	seconds.
5.	 Upload	the	output	files	noted	on	the	right	pane.	For	example,

c:\PerfLogs\System\Performance*\Performance	Counter.blg

Notes:

1.	 If	you	would	like	to	change	the	duration	from	60	seconds	or	otherwise	customize	the	collector,	then:
1.	 Expand	Performance	}	Data	Collector	Sets
2.	 Right	click	User	Defined	}	New	}	Data	Collector	Set
3.	 Next
4.	 Select	System	Performance
5.	 Click	Next	until	finished
6.	 Right	click	on	the	new	data	collector	}	Properties
7.	 Change	properties	such	as	the	Stop	Condition	Overall	duration

	

Troubleshooting	OpenJ9	and	IBM	J9	Recipes
1.	 Write	verbosegc	to	rotating	log	files;	for	example,	-

Xverbosegclog:verbosegc.%Y%m%d.%H%M%S.%pid.log,5,51200
2.	 On	recent	versions	of	IBM	Java,	enable	Health	Center	to	write	to	rotating	log	files;	for	example,	-

Xhealthcenter:level=headless	-
Dcom.ibm.java.diagnostics.healthcenter.headless.files.max.size=268435456	-
Dcom.ibm.java.diagnostics.healthcenter.headless.files.to.keep=4

3.	 Periodically	monitor	stderr	(native_stderr.log	in	WAS	Classic,	console.log	in	WebSphere	Liberty)	for
"JVM"	messages,	including	those	noting	the	production	of	javacores,	heapdumps,	core	dumps,	and
snap	dumps.

4.	 Create	a	dedicated	filesystem	for	JVM	artifacts	such	as	javacores,	heapdumps,	Snaps,	and	core	dumps
(so	that	if	it	fills	up,	the	program	directories	are	not	affected)	and	use	the	-Xdump	directory	option	to
change	the	default	directory	of	these	artifacts;	for	example,	-
Xdump:directory=${SOME_DIRECTORY}	and	also	set	-Xdump:nofailover	if	there	is	any	concern
about	filling	up	the	temporary	directory.

5.	 In	recent	versions,	a	core	dump	is	produced	on	the	first	OutOfMemoryError.	Assuming	core	dumps
are	configured	correctly	to	be	untruncated	(see	the	Troubleshooting	Operating	System	Recipes),	then

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.60_26/vm626/J9/RAS/dumpagents_syntax.html?lang=en

the	core	dump	is	sufficient	to	investigate	OutOfMemoryErrors	(a	PHD	may	always	be	extracted	from	a
core)	and	you	should	disable	heapdumps	with	-Xdump:heap:none

6.	 Enable	large	object	allocation	tracking	and	monitor	stderr	for	JVMDUMP039I	messages;	for	example,
-Xdump:stack:events=allocation,filter=#10m

7.	 Consider	setting	the	excessive	garbage	collection	threshold	(at	which	point	the	JVM	is	considered	to
be	out	of	Java	memory)	to	something	more	aggressive;	for	example,	-Xgc:excessiveGCratio=80

8.	 A	well-tuned	JVM	is	a	better-behaving	JVM,	so	also	review	the	 Java	tuning	recipes.
9.	 Review	the	Troubleshooting	Operating	System	Recipes.

	

Java	OutOfMemoryError	(OOM)

1.	 If	you	have	verbosegc	enabled	(you	should),	then	review	the	verbosegc	log:
1.	 Review	the	allocation	failure	right	before	the	OOM	to	see	its	size.	The	cause	of	the	OOM	may

be	an	abnormally	large	allocation	request.
2.	 Review	the	pattern	of	heap	usage	to	see	if	there	are	signs	of	a	leak.

2.	 By	default,	an	OutOfMemoryError	should	produce	a	javacore.txt	file.	Review	the	javacore:
1.	 Review	the	reason	code	for	the	OutOfMemoryError	at	the	top	of	the	javacore.	For	example:

1TISIGINFO	Dump	Event	"systhrow"	(00040000)	Detail	"java/lang/OutOfMemoryError"	"Java
heap	space"	received

2.	 Review	the	maximum	heap	size	in	the	javacore.	In	general,	if	-Xmx	is	<=	512M,	a	sizing
exercise	may	not	have	been	done.	For	example:
2CIUSERARG	-Xmx3800m

3.	 Search	for	the	word	"deadlock."	If	you	find	"Deadlock	detected	!!!"	then	investigate	the	cause
of	the	deadlock.	A	deadlock	often	indirectly	causes	an	OutOfMemory	because	the	deadlocked
threads	and	any	threads	waiting	for	a	monitor	owned	by	the	deadlocked	threads	are	hung
indefinitely	and	this	may	hold	a	lot	of	memory	on	those	threads	or	impede	other	processing	that
cleans	up	memory.

4.	 In	some	cases,	the	thread	that	proximately	causes	the	OOM	is	reported	as	the	"Current	thread."
Review	the	stack	for	anything	abnormal.	For	example:
1XMCURTHDINFO	Current	thread

3.	 Review	the	coredump	or	heapdump	in	the	Eclipse	Memory	Analyzer	Tool.

	

Additional	Recipes

J9	Native	OutOfMemoryError	Recipe
J9	Java	Dump	Recipe
J9	System	Dump	Recipe
Javacore	Overhead
Sizing	OpenJ9	Native	Memory

	

J9	Native	OutOfMemoryError	Recipe

In	the	most	common	cases	of	IBM	Java	and	Semeru/OpenJ9	JVMs,	compressed	references	are	enabled	by
default	for	-Xmx	less	than	57GB	in	recent	versions	of	Java.	When	compressed	references	are	enabled,	native
structures	backing	classes,	classloaders,	threads,	and	monitors	(CTM)	must	be	allocated	in	the	0-4GB	virtual
address	space	range	(or	0-2GB	on	z/OS).	For	the	purposes	of	this	discussion,	we	will	call	this	space	"below
the	bar".	If	there	is	insufficient	space	below	the	bar	for	a	new	CTM	due	to	excessive	usage	of	these
structures,	competition	with	other	native	memory	allocations,	or	native	memory	fragmentation,	then	a	native
OutOfMemoryError	(NOOM)	is	thrown	even	if	there	is	available	physical	and	virtual	memory	for	the
process.

1.	 Confirm	from	the	javacore.txt	file	produced	by	the	OutOfMemoryError	that	it	is	a	non-Java	heap

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xenableexcessivegc.html
https://www.eclipse.org/openj9/docs/allocation/#compressed-references

OOM	by	observing	text	after	Detail	"java/lang/OutOfMemoryError".	Examples	of	NOOMs	are	the
following	although	note	that	such	issues	may	also	be	caused	by	physical	memory	exhaustion,	virtual
memory	exhaustion,	ulimit	settings	or	other	causes	unrelated	to	compressed	references:

1.	 1TISIGINFO	Dump	Event	"systhrow"	(00040000)	Detail	"java/lang/OutOfMemoryError"
"native	memory	exhausted"

2.	 1TISIGINFO	Dump	Event	"systhrow"	(00040000)	Detail	"java/lang/OutOfMemoryError"
"Failed	to	create	a	thread:	retVal	-1073741830,	errno	112	(0x70),	errno2
0xb510292"	received

2.	 Confirm	in	the	javacore.txt	file	that	compressed	references	are	enabled	by	checking	that
1CIOMRVERSION	or	1CIGCVERSION	contains	CMPRSS	(or	check	for	"Compressed	References"
in	!coreinfo	in	jdmpview	for	a	system	dump).

3.	 On	non-z/OS	platforms,	review	the	1STHEAPTYPE	Object	Memory	section	in	the	javacore.txt	file	to
confirm	that	all	Java	heap	region	start	column	values	are	0x1_0000_0000	or	above	(or	0x8000_0000
on	z/OS).	If	they	aren't,	use	-Xgc:preferredHeapBase=0x100000000	although	this	will	have	a	slight
performance	impact.

1STHEAPTYPE				Object	Memory
NULL											id																	start														end																size															space/region
1STHEAPSPACE			0x000000501B4EA810									--																	--																	--									Generational	
1STHEAPREGION		0x000000501B4EAB40	0x0000000100000000	0x000000017C000000	0x00000000FC000000	Generational/Tenured	Region	
1STHEAPREGION		0x000000501B4EAA30	0x0000000230000000	0x00000002AC000000	0x000000007C000000	Generational/Nursery	Region	
1STHEAPREGION		0x000000501B4EA920	0x00000002AC000000	0x00000002C0000000	0x0000000014000000	Generational/Nursery	Region	

4.	 If	you	have	a	system	dump,	you	can	get	the	most	accurate	understanding	of	below	the	bar	storage	by
walking	the	J9HeapWrapper	linked	list	rooted	in	j9javavm	}	portLibrary	}	omrPortLibrary	}
portGlobals	}	platformGlobals	}	subAllocHeapMem32	}	firstHeapWrapper.	Consider	the	an	example
!belowthebar	command	to	do	this.

5.	 Otherwise,	review	the	NATIVEMEMINFO	section	of	the	javacore.txt	file	and	focus	on	the	following	lines
(or	run	the	!nativememinfo	command	in	jdmpview	on	a	core	dump):

3MEMUSER	|	+--Classes:	1,223,940,328	bytes	/	162364	allocations
A	subset	of	these	data	structures	are	below	the	bar.	Use	get_memory_use.pl	and	observe
Class	Memory	in	256MB	segments	less	than	0x10.	For	example:

Virtual	Address	Segments	(split	0x10000000/256.00	MB)
==
0x2	=	Class	Memory	(RAM)	(182.71	MB),	Segment	Total	(191588400)
0x3	=	Class	Memory	(RAM)	(5.51	MB),	Segment	Total	(5774504)
0x4	=	Class	Memory	(RAM)	(64.07	MB),	Segment	Total	(67182008)
0x5	=	Class	Memory	(RAM)	(8.02	KB),	Segment	Total	(8208)

If	this	usage	is	excessive,	check	for	class	or	classloader	leaks	or	excessive	class	usage.	Use	-
Dsun.reflect.inflationThreshold=0	if	there	are	a	large	number	of
sun/reflect/DelegatingClassLoader	instances.
4MEMUSER	|	|	+--Java	Stack:	17,656,576	bytes	/	345	allocations

These	are	thread	stacks	below	the	bar	(the	"Native	Stacks"	line	are	allocated	by	the
operating	system	and	are	usually	high	in	the	address	space).	Important	note:	these	are
allocated	from	the	J9	segments	even	though	they	are	not	printed	in	the	1STSEGMENT
lines.	If	there	are	many,	try	to	reduce	the	number	of	threads	or	check	for	thread	leaks,	and
check	for	any	excessively	large	stack	size	(-Xss).

4MEMUSER	|	|	+--Unused	<32bit	allocation	regions:	73,580,197	bytes	/	19
allocations

This	is	free	segment	memory	below	the	bar	although	some	of	it	may	be	fragmented.
5MEMUSER	|	|	|	+--Direct	Byte	Buffers:	7,945,600	bytes	/	562	allocations

On	non-z/OS	platforms,	these	might	compete	with	CTM	or	drive	fragmentation.	If	there
are	many,	try	to	reduce	them,	search	for	leaks,	or	drive	more	frequent	cleanup	of	their
PhantomReferences	with	GC	tuning	(or	-XX:MaxDirectMemorySize).	On	WAS
traditional,	try	channelwritetype=sync.

Run	get_memory_use.pl	and	observe	any	other	usage	in	256MB	segments	less	than	0x10.
6.	 If	using	a	type	2	JDBC	driver	which	uses	native	memory	that	may	compete	with	CTM	(and	must

compete	with	CTM	with	the	type	2	DB2	on	z/OS	driver),	consider	switching	to	the	type	4	driver.
7.	 On	Windows,	consider	setting	HKLM\System\CurrentControlSet\Control\Session

https://www.ibm.com/support/pages/insufficient-ulimit-value-causes-native-outofmemory
https://github.com/kgibm/CustomDDRCommands/blob/main/src/main/java/com/example/BelowTheBar.java
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/java/j9/get_memory_use.pl
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/java/j9/get_memory_use.pl

Manager\Memory	Management\AllocationPreference=0x100000	(REG_DWORD)	to	avoid	any
tendency	of	allocating	non-CTM	native	memory	below	the	bar.

8.	 Check	that	the	operating	system	has	sufficient	free	physical	memory	at	the	time	of	the	NOOM.
9.	 If	the	NOOM	might	be	related	to	competition	from	non-CTM	source,	consider	increasing	-Xmcrs.

10.	 Set	-Dcom.ibm.dbgmalloc=true	and	review	4MEMUSER	Zip,	4MEMUSER	Wrappers,	and
5MEMUSER	Malloc	usage	in	NATIVEMEMINFO	which	may	compete	with	CTM	or	drive
fragmentation.	If	there	are	many,	try	to	reduce	them	or	search	for	leaks.

11.	 If	native	memory	usage	below	the	bar	cannot	be	accounted	for	using	the	above	items,	then	review	any
other	native	memory	users	by	reviewing	-agentpath,	-agentlib,	and	-Xrun	libraries,	any	other
loaded	shared	objects	as	seen	in	native	operating	system	core	debuggers,	or	run	a	native	leak	tracker
such	as	eBPF,	LinuxNativeTracker,	etc.

12.	 If	a	temporary	workaround	is	needed,	test	using	-Xnocompressedrefs	although	this	may	have	a
performance	impact	of	up	to	10-20%	and	increase	Java	heap	usage	significantly.

For	background,	see	J9	Compressed	References.

	

J9	Java	Dump	Recipe

A	J9	Java	Dump	is	a	text	file	that	includes	a	thread	dump	and	other	useful	information	about	a	running	Java
process.	A	Java	Dump	is	often	called	a	javacore	because	its	name	defaults	to	javacore*.txt	although
javacores	should	not	be	confused	with	operating	system	process	core	dumps	(OS	cores)	which	are	large	and
heavy.

In	general,	javacores	have	a	low	overhead	and	pause	the	proceess	for	less	than	a	few	hundred	milliseconds,
although	there	are	pathological	exceptions	of	~20	second	pauses	that	are	potential	risks	to	be	aware	of.	In
general,	javacores	are	less	than	a	few	MB	each	although	they	can	reach	dozens	of	MBs	if	there	are	a	lot	of
loaded	classes.

1.	 On	non-Windows	operating	systems,	unless	default	-Xdump...events=user	settings	have	been
changed,	replace	$PID	with	the	process	ID	in	the	following	(despite	the	signal	name	"QUIT",	by
default,	unless	-Xrs	is	specified,	the	JVM	gracefully	handles	this	signal	and	continues	without
quitting):

kill	-QUIT	$PID

2.	 For	Semeru	Java,	replace	$JAVA_HOME	with	the	path	to	Java,	and	$PID	with	the	process	ID	in	(if
running	under	a	Windows	Service,	use	a	technique	to	run	the	command	as	the	SYSTEM	user):

$JAVA_HOME/bin/jcmd	$PID	Dump.java

3.	 For	IBM	Java	>=	8.0.6.25	that	is	a	JDK,	replace	$JAVA_HOME	with	the	path	to	Java,	and	$PID	with	the
process	ID	in	(if	running	under	a	Windows	Service,	use	a	technique	to	run	the	command	as	the
SYSTEM	user):

java	-Xbootclasspath/a:$JAVA_HOME/lib/tools.jar	openj9.tools.attach.diagnostics.tools.Jcmd	$PID	Dump.java

4.	 With	WebSphere	Application	Server	traditional:
1.	 Administrative	Console	}	Troubleshooting	}	Java	dumps	and	cores	}	Check	the	server(s)	}	Java

core
2.	 $WEBSPHERE/bin/wsadmin	-lang	jython	and	the	command

AdminControl.invoke(AdminControl.completeObjectName("type=JVM,process=$SERVER,*"),
"dumpThreads")

3.	 On	z/OS,	MODIFY	$JOB,JAVACORE
4.	 On	IBM	i,	use	WRKJVMJOB
5.	 Install	the	twasdiag	application	and	execute	the	/IBMJavaDump	servlet.

5.	 With	WebSphere	Liberty:
1.	 Using	the	server	utility:

$LIBERTY/bin/server	javadump	$SERVER

https://learn.microsoft.com/en-us/windows/win32/memory/4-gigabyte-tuning
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=dumps-java-dump
https://github.com/eclipse-openj9/openj9/issues/19322#issuecomment-2057164884
https://github.com/eclipse-openj9/openj9/issues/19322#issuecomment-2057164884
https://github.com/IBM/twasdiag

2.	 Install	the	libertydiag	application	and	execute	the	/servlet/ThreadDump	servlet.
6.	 For	IBM	Java	>=	8.0.7.20	and	IBM	Semeru	Runtimes	>=	11.0.17.0	on	non-Windows	platforms,	restart

with:

-Xdump:java:events=user2,request=exclusive+prepwalk

Then	request	the	javacore	with:

kill	-USR2	$PID

7.	 For	IBM	Java,	use	Java	Surgery:

java	-jar	surgery.jar	-pid	$PID	-command	JavaDump

8.	 Use	code	within	the	JVM	that	executes
com.ibm.jvm.Dump.triggerDump("java:request=exclusive+prepwalk")	using	reflection

9.	 The	IBM	Java	java	Dump	Agent	can	take	a	javacore	on	various	events.	For	example,	the	following
will	create	a	javacore	when	the	Example.bad	method	throws	a	NullPointerException:

-Xdump:java:events=throw,range=1..1,request=exclusive+prepwalk,filter=java/lang/NullPointerException#com/ibm/example/Example.bad

10.	 The	trace	engine	may	be	used	to	request	a	javacore	on	method	entry	and/or	exit.	The	following
example	JVM	argument	produces	a	javacore	when	the	Example.trigger()	method	is	called:

-Xtrace:maximal=mt,trigger=method{com/ibm/example/Example.trigger,javadump,,,1}

	

J9	System	Dump	Recipe

The	following	are	instructions	to	gather	a	reliable	operating	system	(OS)	process	core	dump	of	an	OpenJ9
JVM	(IBM	Java,	IBM	Semeru	Runtimes,	etc.).	Although	the	instructions	are	long	and	complicated,	OS	core
dumps	are	one	of	those	most	powerful	diagnostics	and	they	are	worth	the	time	to	understand	and	properly
gather.

Note	that	an	OS	process	core	dump	is	referred	to	as	a	"system	dump"	in	J9	documentation	but	this	is	the
same	as	an	operating	system	core	dump	of	a	single	process	(despite	"system"	being	in	the	name).	These
names	may	be	used	interchangeably.

Also,	an	OS	core	dump	should	not	be	confused	with	a	javacore	despite	both	having	"core"	in	the	name.	In
contrast	to	an	OS	core	dump,	a	javacore	is	lightweight	and	small	whereas	an	OS	core	dump	is	heavyweight
and	big	and	they	serve	different	purposes.

Always	gather	a	system	dump	using	a	mechanism	that	uses	the	JVM	system	dump	API	with
request=exclusive+prepwalk	as	shown	below.	Gathering	a	system	dump	using	operating	system	utilities	is
not	reliable	(e.g.	gcore,	gencore,	Windows	Task	Manager,	z/OS	manual	console	dump,	etc.).	For	example,	if
you	get	unlucky	and	happen	to	grab	it	during	a	garbage	collection,	it	will	likely	be	essentially	useless	for	Java
heap	analysis.	Even	if	it's	not	taken	during	such	a	critical	event,	some	thread	stacks	may	not	be	walkable.

Before	gathering	an	operating	sytem	core	dump,	review	the	security,	disk	and	performance	risks	and	ensure
that	the	process	and	operating	system	are	configured	for	it	(e.g.	Unix	core	and	file	ulimits,	Linux
kernel.core_pattern	truncation	settings,	etc.).

After	gathering	a	core	dump,	if	it	will	be	used	for	Java	heap	analysis	with	the	Eclipse	Memory	Analyzer
Tool,	then	no	post-processing	is	needed	(just	ensure	it's	extracted	and	ends	with	the	.dmp	extension).	If	it	will
be	used	for	native	memory	or	crash	analysis,	run	$JAVA/bin/jextract	on	it	for	IBM	Java	and
$JAVA/bin/jpackcore	for	Semeru	Java.

Examples	requesting	a	system	dump	using	the	JVM	system	dump	API	with	request=exclusive+prepwalk:

1.	 For	Semeru	Java,	replace	$JAVA_HOME	with	the	path	to	Java,	and	$PID	with	the	process	ID	in	(if
running	under	a	Windows	Service,	use	a	technique	to	run	the	command	as	the	SYSTEM	user):

https://github.com/IBM/libertydiag
https://www.ibm.com/support/pages/ibm-runtime-diagnostic-code-injection-java-platform-java-surgery
https://www.ibm.com/docs/api/v1/content/SSYKE2_8.0.0/openj9/api/jdk8/platform/jvm/com/ibm/jvm/Dump.html#JavaDump--
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xdump#dump-agents
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xtrace#trigger
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=dumps-system-dump
https://www.ibm.com/support/pages/eclipse-memory-analyzer-tool-dtfj-and-ibm-extensions
https://github.com/eclipse-openj9/openj9/issues/19322#issuecomment-2057164884

$JAVA_HOME/bin/jcmd	$PID	Dump.system

2.	 For	IBM	Java	>=	8.0.6.25	that	is	a	JDK,	replace	$JAVA_HOME	twice	with	the	path	to	Java,	and	$PID
with	the	process	ID	in	(if	running	under	a	Windows	Service,	use	a	technique	to	run	the	command	as	the
SYSTEM	user):

$JAVA_HOME/bin/java	-Xbootclasspath/a:$JAVA_HOME/lib/tools.jar	openj9.tools.attach.diagnostics.tools.Jcmd	$PID	Dump.system

3.	 Starting	with	WebSphere	Application	Server	traditional	8.5.5.17	and	9.0.5.2:
1.	 Administrative	Console	}	Troubleshooting	}	Java	dumps	and	cores	}	Check	the	server(s)	}

System	dump
2.	 $WEBSPHERE/bin/wsadmin	-lang	jython	and	the	command

AdminControl.invoke(AdminControl.completeObjectName("type=JVM,process=$SERVER,*"),
"generateSystemDump")

3.	 On	z/OS,	MODIFY	$JOB,JAVATDUMP
4.	 On	IBM	i,	WRKJVMJOB	with	Type=SYSTEM

4.	 Starting	with	WebSphere	Liberty	20.0.0.2:

$LIBERTY/bin/server	javadump	$SERVER	--include=system

5.	 For	IBM	Java	>=	8.0.7.20	and	Semeru	>=	11.0.17.0	on	non-Windows	platforms,	restart	with:

-Xdump:system:events=user2,request=exclusive+prepwalk

Then	request	the	system	dump	with:

kill	-USR2	$PID

6.	 For	IBM	Java,	use	Java	Surgery:

java	-jar	surgery.jar	-pid	$PID	-command	SystemDump

7.	 Use	code	within	the	JVM	that	executes
com.ibm.jvm.Dump.triggerDump("system:request=exclusive+prepwalk")	using	reflection

8.	 Use	-Xdump:java+system:events=user,request=exclusive+prepwalk	to	take	one	on	kill	-
3/Ctrl+Break.	Note	that	we	do	not	recommend	running	with	this	option	permanently	because	the
default	handler	only	produces	javacores	which	are	often	used	for	performance	investigations	whereas	a
system	dump	causes	its	own	significant	performance	overhead.

9.	 Use	-Xdump:system:defaults:request=exclusive+prepwalk	to	change	the	system	dump	default	to
request	exclusive+prepwalk	and	then	use	some	mechanism	that	requests	a	system	dump	within	the
JVM.	Note	that	we	do	not	recommend	running	with	this	option	permanently	because	then	investigating
JVM	crashes	may	be	problematic.

10.	 Use	-Xdump:tool:events=user,request=exclusive+prepwalk,exec="gcore	%pid"	to	execute	a
program	(e.g.	gcore)	that	requests	the	core	dump	on	kill	-3/Ctrl+Break.	Note	that	we	do	not
recommend	running	with	this	option	permanently	because	the	default	handler	only	produces	javacores
which	are	often	used	for	performance	investigations	whereas	a	system	dump	causes	its	own	significant
performance	overhead.

11.	 The	IBM	Java	system	Dump	Agent	can	take	a	system	dump	on	various	events.	For	example,	the
following	will	create	a	system	dump	when	the	Example.bad	method	throws	a	NullPointerException:

-Xdump:system:events=throw,range=1..1,request=exclusive+prepwalk,filter=java/lang/NullPointerException#com/ibm/example/Example.bad

12.	 The	trace	engine	may	be	used	to	request	a	system	dump	on	method	entry	and/or	exit.	The	following
example	JVM	argument	produces	a	system	dump	when	the	Example.trigger()	method	is	called:

-Xtrace:maximal=mt,trigger=method{com/ibm/example/Example.trigger,sysdump,,,1}

	

Javacore	Overhead

By	default,	when	a	Java	Dump	(javacore*.txt)	is	requested	under	normal	conditions	(unless	something	else
already	has	exclusive	access),	the	Java	Dump	waits	for	exclusive	access	meaning	that	all	threads	have

https://github.com/eclipse-openj9/openj9/issues/19322#issuecomment-2057164884
https://www.ibm.com/support/pages/apar/PH16983
https://github.com/OpenLiberty/open-liberty/commit/c7eb966ce5c995875cc116342e3e375dbcd07fa8
https://www.ibm.com/support/pages/ibm-runtime-diagnostic-code-injection-java-platform-java-surgery
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xdump#dump-agents
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xtrace#trigger
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=dumps-java-dump
https://github.com/eclipse-openj9/openj9/issues/9256

paused	themselves.	Therefore,	the	javacore	pauses	the	JVM	for	this	time	plus	the	time	to	produce	the
javacore	itself	and	thus	has	a	direct	impact	on	performance.	In	general,	the	duration	of	this	pause	is	less	than
a	few	hundred	milliseconds.

Starting	with	OpenJ9	0.36.0	on	non-Windows	operating	systems	(IBM	Java	8.0.8.0,	IBM	Semeru	Runtimes
11.0.18.0	&	17.0.6.0)	and	OpenJ9	0.40.0	on	Windows	(IBM	Java	8.0.8.10,	IBM	Semeru	Runtimes	11.0.20.0
&	17.0.8.0),	a	line	at	the	end	of	the	javacore	shows	how	long	the	JVM	was	paused.	For	example:

1TIDMPDURATION	Approximate	time	to	produce	this	dump:	X	ms

The	overhead	of	javacores	may	be	gauged	in	a	performance	test	environment	by	adding	up	these
1TIDMPDURATION	values	and	dividing	by	the	sum	of	intervals	between	javacores.

There	have	been	rare	observed	cases	on	Linux	of	javacores	causing	20	second	pauses	with	high
system/kernel	CPU	time	during	the	first	10	seconds.	As	observed	with	Linux	perf	On-CPU	sampling	with
wall-clock	times,	the	Signal	Reporter	thread	consumes	most	of	that	CPU	(with	stack	frames	in	various
places	such	as	_raw_spin_unlock_irqrestore,	system_call_after_swapgs,	__sigqueue,
do_send_sig_info,	__sched_yield,	and	__GI___getuid).	There	is	a	timeout	of	20	seconds	waiting	for
threads	to	quiesce	and	observed	cases	of	unreliable	Linux	sigqueue.	If	you	observe	this	behavior,	please
open	a	support	case	to	help	us	understand	this	issue.

There	have	been	similar	observed	cases	of	javacores	taking	about	20	seconds	to	produce	although	with	low
system/kernel	CPU	time.	Again,	if	you	observe	this	behavior,	please	open	a	support	case	to	help	us
understand	this	issue.

A	workaround	for	these	long	pauses	may	be	to	remove	the	request=preempt	option	from	the	javacore
agents	which	will	avoid	trying	to	gather	native	stack	traces	where	this	signal	processing	is	done:

-Xdump:java:defaults:request=exclusive

	

Sizing	OpenJ9	Native	Memory

If	running	in	a	memory-constrained	environment,	review	the	following	diagnostic	and	sizing	guidance	for
OpenJ9	native	memory.

It's	not	uncommon	for	a	heavy	application	to	use	500MB	or	more	of	native	memory	outside	the	Java	heap.	In
such	cases,	this	can	be	reduced	as	discussed	below	but	that	may	come	at	a	performance	cost.

	

Diagnostics

1.	 On	Linux,	consider	limiting	arenas	with	the	environment	variable	MALLOC_ARENA_MAX=1	and	restart.
2.	 If	using	IBM	Java	8	and	there's	an	opportunity	to	restart	the	JVM,	restart	with	the	following	option	for

additional	"Standard	Class	Libraries"	native	memory	accounting	in	javacores	(minimal	performance
overhead):

-Dcom.ibm.dbgmalloc=true

3.	 Gather	operating	system	statistics	on	resident	process	memory	usage.	A	single	snapshot	at	peak
workload	is	an	okay	start	but	periodic	snapshots	over	time	using	a	script	provide	a	better	picture.

1.	 Linux	examples:
1.	 With	/proc:

$	PID=...
$	grep	VmRSS	/proc/$PID/status
VmRSS:					201936	kB

2.	 With	ps	(in	KB):

https://github.com/eclipse-openj9/openj9/blob/openj9-0.40.0/runtime/rasdump/javadump.cpp#L2232-L2234
https://github.com/eclipse/omr/commit/48f32afff5422748352f958cd2d4145cf6610d0f
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xdump#requestrequests

$	PID=...
$	ps	-p	$PID	-o	rss
		RSS
201936

3.	 With	top	and	review	the	RES	column	in	KB	(change	-d	for	the	interval	been	outputs	in
seconds	and	-n	for	the	number	of	intervals):

$	PID=...
$	top	-b	-d	1	-n	1	-p	$PID
top	-	19:10:46	up		5:43,		0	users,		load	average:	0.01,	0.05,	0.02
Tasks:			1	total,			0	running,			1	sleeping,			0	stopped,			0	zombie
%Cpu(s):		0.0	us,		0.0	sy,		0.0	ni,100.0	id,		0.0	wa,		0.0	hi,		0.0	si,		0.0	st
MiB	Mem	:		15950.9	total,		13429.6	free,				473.5	used,			2047.8	buff/cache
MiB	Swap:						0.0	total,						0.0	free,						0.0	used.		15239.3	avail	Mem	

				PID	USER						PR		NI				VIRT				RES				SHR	S		%CPU		%MEM					TIME+	COMMAND
						1	default			20			0	7832760	201936		55304	S			6.2			1.2			0:06.86	java

4.	 Gather	javacores	of	the	process.	A	single	javacore	at	peak	workload	is	an	okay	start	but	periodic
javacores	over	time	using	a	script	provide	a	better	picture.

1.	 Linux	examples:
1.	 Use	kill	-QUIT	(assuming	default	settings	that	only	produce	a	javacore):

$	PID=...
$	kill	-QUIT	$PID

5.	 Gather	detailed	per-process	memory	mappings.	A	single	snapshot	at	peak	workload	is	an	okay	start	but
periodic	snapshots	over	time	using	a	script	provide	a	better	picture.

1.	 Linux	example:

$	PID=...
$	cat	/proc/$PID/smaps

6.	 If	possible,	ensure	verbose	garbage	collection	is	enabled;	for	example:

-Xverbosegclog:verbosegc.%seq.log,20,50000

	

Review	and	Sizing

1.	 Review	the	NATIVEMEMINFO	section	in	the	javacores.	Note	that	these	are	virtual	memory	allocations
and	not	necessarily	resident.	Review	all	of	them	with	a	particular	focus	on:

1.	 Java	Heap:	The	native	allocation(s)	for	the	Java	heap	itself	(-Xmx/-XX:MaxRAMPercentage).
Even	if	-Xms	(or	-XX:InitialRAMPercentage)	is	less	than	-Xmx/-XX:MaxRAMPercentage	and
heap	usage	is	less	than	-Xmx/-XX:MaxRAMPercentage,	you	should	always	assume	the	entire	-
Xmx/-XX:MaxRAMPercentage	native	memory	will	be	touched	(and	thus	resident)	at	some	point
because	even	if	application	workload	never	reaches	that	amount	of	live	Java	heap	usage,	most
modern	garbage	collectors	are	generational	which	almost	always	means	trash	will	accumulate	in
the	tenured	region	until	a	full	GC,	and	thus	most	or	all	of	the	Java	heap	is	likely	to	become
resident	given	enough	time.

2.	 Classes:	This	is	the	native	backing	of	classes	loaded	in	the	Java	heap.	If	this	is	excessively
large,	gather	a	system	dump	of	the	process	and	check	for	classloader	memory	leaks	with	the
Eclipse	Memory	Analyzer	Tool.

3.	 Threads:	Each	thread	has	two	stacks	both	of	which	live	in	native	memory.	In	some	cases,	very
large	stacks	and/or	a	customized	maximum	stack	size	(-Xss)	can	inflate	this	number,	but	more
often	a	large	value	here	simply	reflects	a	large	number	of	threads	that	can	be	reduced	or	may	be
due	to	a	thread	leak.	Review	threads	and	thread	stacks	in	the	javacore	and	consider	reducing
thread	pool	maximums.	To	investigate	a	thread	leak,	gather	a	system	dump	of	the	process	and
review	with	the	Eclipse	Memory	Analyzer	Tool).

4.	 JIT:	Some	growth	in	this	is	expected	over	time	but	should	level	out	at	the	maximum	specified	by
-Xcodecachetotal,	-Xjit:dataTotal	and	-Xjit:scratchSpaceLimit	(see	below).	Note	that

defaults	in	recent	versions	are	relatively	large	(upwards	of	550MB	or	more	at	peak,	primarily
driven	by	the	code	cache	and	spikes	in	JIT	compilation).

5.	 Direct	Byte	Buffers:	These	are	native	memory	allocations	driven	by	Java	code	and	may	have
different	drivers.	To	investigate	what's	holding	on	to	DirectByteBuffers,	gather	a	system	dump	of
the	process,	review	with	the	Eclipse	Memory	Analyzer	Tool)	and	run	the	query,	IBM	Extensions
}	Java	SE	Runtime	}	DirectByteBuffers.

6.	 Unused	<32bit	allocation	regions :	Available	space	within	the	-Xmcrs	value	(for
compressed	references)

2.	 Review	the	1STSEGMENT	lines	in	the	javacores	using	get_memory_use.pl	to	break	down	some	the
resident	amounts	of	some	of	the	above	virtual	amounts.

3.	 Review	verbose	garbage	collection	for	a	lot	of	phantom	reference	processing	which	may	be	a	symptom
of	spikes	in	DirectByteBuffers.	Even	if	Direct	Byte	Buffer	usage	in	NATIVEMEMINFO	above	is	relatively
low,	there	may	have	been	a	spike	in	DirectByteBuffer	memory	usage	which,	in	general,	will	only	be
returned	to	libc	free	lists	rather	than	going	back	to	the	operating	system.

4.	 Check	the	javacore	and	per-process	memory	mappings	for	non-standard	native	libraries	(e.g.	loaded
with	-agentpath,	-agentlib,	and	-Xrun)	and	consider	testing	without	each	library.

5.	 Consider	tuning	the	following	options:
1.	 Maximum	Java	heap	size:	-Xmx_m	or	-XX:MaxRAMPercentage=_
2.	 Maximum	size	of	threads	and	thread	pools	(e.g.	<executor	coreThreads="_"	/>	for	Liberty	or

maximum	thread	pool	sizes	for	WebSphere	Application	Server	traditional)
3.	 Maximum	JIT	code	cache:	-XX:codecachetotalMaxRAMPercentage=X	or	-Xcodecachetotal_m

(default	256MB)
4.	 Maximum	JIT	data	size	(in	KB):	-Xjit:dataTotal=_
5.	 JIT	scratch	space	limit	(in	KB):	-Xjit:scratchSpaceLimit=_	(default	256MB)
6.	 Maximum	shared	class	cache	size	(though	it	must	be	destroyed	first	to	reduce	an	existing	one):	-

Xscmx_m
7.	 Number	of	garbage	collection	helper	threads:	-Xgcthreads_
8.	 Number	of	JIT	compilation	threads:	-XcompilationThreads_
9.	 Maximum	stack	size:	-Xss_k

6.	 Consider	using	a	JITServer	(a.k.a.	IBM	Semeru	Cloud	Compiler)	to	move	most	JIT	compilation
memory	demands	to	another	process.

	

Detailed	Diagnostics

1.	 If	you	suspect	a	leak,	monitor	unfreed	native	memory	allocations:
1.	 Linux	>=	4.1:	eBPF	memleak.py
2.	 IBM	Java	8	LinuxNativeTracker

1.	 For	IBM	Semeru	Runtimes,	open	a	support	case	to	ask	for	a	custom	build	of
LinuxNativeTracker.

2.	 If	unaccounted	memory	remains,	gather	all	of	the	same	information	above	as	well	as	a	system	dump	of
the	process	and	cross-reference	per-process	memory	maps	to	known	JVM	virtual	memory	allocations
to	find	unaccounted	for	memory.

1.	 Note	that	NATIVEMEMINFO	may	be	dumped	from	a	system	dump	using	the	!nativememinfo
command	in	jdmpview.

2.	 Fragmentation	in	C	libraries	is	also	possible.	Use	a	native	debugger	script	(e.g.	for	Linux	glibc)
to	walk	the	in-use	and	free	lists	and	search	for	holes	in	memory.

	

Troubleshooting	HotSpot	Recipes
HotSpot	Native	Memory	Usage	Recipe

	

https://github.com/kgibm/problemdetermination/blob/master/scripts/java/j9/get_memory_use.pl
https://eclipse.dev/openj9/docs/xcodecachetotal/
https://github.com/eclipse/omr/blob/c766c4155b02214afd2db4abf5db93a36017e01c/compiler/control/OMROptions.hpp#L1180
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xshareclasses#destroy-cache-utility
https://eclipse.dev/openj9/docs/jitserver/
https://www.ibm.com/docs/en/was-liberty/core?topic=operator-semeru-cloud-compiler
https://www.ibm.com/support/pages/ibm-java-linux-howto-tracking-native-memory-java-8-linux

HotSpot	Native	Memory	Usage	Recipe

HotSpot	Native	Memory	Tracking	has	an	overhead	of	~5-10%.

1.	 Ideally,	restart	with	verbosegc	(e.g.	WebSphere	Liberty)
2.	 Restart	with	-XX:NativeMemoryTracking=detail
3.	 Let	the	JVM	warm-up	for	some	time	(ideally,	at	least	some	number	of	hours	and	taking	significant

workload).	This	is	because	it's	normal	for	significant	memory	usage	increase	as	the	JIT	code	cache
warms	up.

4.	 Register	a	native	memory	baseline	(replace	$PID	with	the	target	process	ID):

jcmd	$PID	VM.native_memory	baseline

5.	 If	the	overhead	is	acceptable,	gather	an	HPROF	heapdump	(replace	$PID	with	the	target	process	ID):

jcmd	$PID	GC.heap_dump	dump1_$(hostname)_$(date	+%Y%m%d_%H%M%S).hprof

6.	 Let	the	JVM	increase	native	memory	significantly	(at	least	a	few	hundred	MB	and	ideally	1GB	or
more).

7.	 Register	a	native	memory	baseline	(replace	$PID	with	the	target	process	ID):

jcmd	$PID	VM.native_memory	detail.diff	>	diag_nmt2_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt

8.	 If	the	overhead	is	acceptable,	gather	an	HPROF	heapdump	(replace	$PID	with	the	target	process	ID):

jcmd	$PID	GC.heap_dump	dump2_$(hostname)_$(date	+%Y%m%d_%H%M%S).hprof

9.	 Restart	the	JVM	and	remove	-XX:NativeMemoryTracking	or	stop	the	native	tracker	at	runtime	with
(replace	$PID	with	the	target	process	ID):

jcmd	$PID	VM.native_memory	shutdown

10.	 Upload	diag_nmt*.txt,	both	*.hprof	files	if	taken,	and	any	other	JVM	logs	(e.g.	stdout/stderr	logs,
verbosegc	if	captured,	application	logs,	etc.).

Notes:

1.	 Overhead	may	be	reduced	(with	less	effective	diagnostics)	by	switching	detail	to	summary	in	steps	1
and	7.

2.	 There	are	orthogonal,	OS-specific	tools	that	can	augment	or	replace	the	above	steps	(e.g.	eBPF	on
Linux,	etc.).

	

Troubleshooting	Memory	Leaks
1.	 Analyze	verbosegc	in	GCMV.	If	there	is	a	positive	slope	in	the	plot	"Used	heap	(after	global

collection)",	then	there	may	be	a	leak.
1.	 The	default	plot	of	"Used	heap	(after	collection)"	for	generational	collectors	may	sometimes

look	like	a	leak	if	there	hasn't	been	a	global	collection	recently,	thus	why	it's	best	to	only	look	at
heap	usage	after	global	collections.

2.	 There	are	cases	where	a	positive	slope	after	global	collections	is	not	a	leak	such	as
SoftReference	caches

3.	 Consider	the	magnitude	of	the	heap	growth	relative	to	the	heap	size.	Small	relative	growths	may
be	reasonable.	Caches	may	need	to	be	populated	up	to	some	limit	before	they	stabilize.

2.	 If	there's	evidence	of	a	leak,	take	an	OS	core	dump	(IBM	Java)	or	HPROF	dump	(HotSpot	Java)	and
load	into	the	Eclipse	Memory	Analyzer	Tool.	Things	to	consider:

1.	 Review	the	largest	objects	(e.g.	a	leak	in	some	cache)
2.	 Run	the	leak	suspect	report
3.	 Run	the	IBM	Extensions	for	Memory	Analyzer	Classloader	Leak	Detection	under	WAS	}

ClassLoaders

https://docs.oracle.com/en/java/javase/21/vm/native-memory-tracking.html#GUID-710CAEA1-7C6D-4D80-AB0C-B0958E329407
https://help.eclipse.org/latest/index.jsp?topic=%252Forg.eclipse.mat.ui.help%252Fgettingstarted%252Fbasictutorial.html
https://help.eclipse.org/latest/index.jsp?topic=%252Forg.eclipse.mat.ui.help%252Fgettingstarted%252Fbasictutorial.html

4.	 Perform	a	general	review	of	the	dump	(class	histogram,	top	consumers,	etc.)
3.	 If	a	single	core	dump	is	inconclusive,	take	two	or	more	OS	core	dumps	(IBM	Java)	or	HPROF	dumps

(HotSpot	Java)	from	the	same	process	and	compare	them	in	MAT	to	find	the	growth(s).	The	more	time
between	dumps	the	better	to	make	finding	the	growth(s)	easier.	Ideally,	use	a	monitoring	tool	to	track
heap	usage	after	full	GC	and	take	the	second	dump	after	a	relative	growth	of	>	10%.

4.	 The	most	common	leaks	are:
1.	 Large	objects	(byte	arrays,	etc.)
2.	 Java	collections	such	as	Maps	and	Lists,	often	a	bug	removing	items	or	a	cache.	One	technique

the	tool	uses	in	the	leak	suspect	report,	but	which	can	also	be	run	manually	under	Leak
Identification	>	Big	Drops	in	Dominator	Tree,	is	to	find	a	large	difference	between	the	retained
heap	of	an	object	and	its	largest	retained	reference.	For	example,	imagine	a	HashMap	that	retains
1GB	and	the	leak	is	due	to	a	bug	removing	objects	so	objects	continue	to	be	added	to	the
HashMap.	It	is	common	in	such	a	case	for	every	individual	object	to	be	small.

5.	 Proactive:
1.	 Use	a	monitoring	tool	to	track	heap	usage	after	full	GC	and	alert	if	heap	usage	is	above	70%	and

gather	dumps.
2.	 If	using	WAS	traditional,	Memory	Leak	and	Excessive	Memory	Usage	Health	Condition
3.	 If	using	Java	ODR,	Configure	Memory	Overload	Protection	and	put	a	server	into	maintenance

mode	to	investigate
4.	 If	using	WAS	traditional,	Application	ClassLoader	Leak	Detection

	

Troubleshooting	WAS	traditional	Recipes
1.	 Periodically	monitor	WAS	logs	for	warning	and	error	messages.
2.	 Set	the	maximum	size	of	JVM	logs	to	256MB	and	maximum	number	of	historical	files	to	4.
3.	 Set	the	maximum	size	of	diagnostic	trace	to	256MB	and	maximum	number	of	historical	files	to	4.
4.	 Change	the	hung	thread	detection	threshold	and	interval	to	something	smaller	that	is	reasonable	for	the

application,	and	enable	a	limited	number	of	thread	dumps	when	these	events	occur.	For	example:
1.	 com.ibm.websphere.threadmonitor.threshold=30
2.	 com.ibm.websphere.threadmonitor.interval=1
3.	 com.ibm.websphere.threadmonitor.dump.java=15
4.	 com.ibm.websphere.threadmonitor.dump.java.track=3

5.	 Enable	periodic	thread	pool	statistics	logging	with	the	diagnostic	trace
*=info:Runtime.ThreadMonitorHeartbeat=detail

6.	 Monitor	for	increases	in	the	Count	column	in	the	FFDC	summary	file	(${SERVER}_exception.log)
for	each	server,	because	only	the	first	FFDC	will	print	a	warning	to	the	logs.

7.	 Review	relevant	timeout	values	such	as	JDBC,	HTTP,	etc.
8.	 A	well-tuned	WAS	is	a	better-behaving	WAS,	so	also	review	the	 WAS	tradtional	tuning	recipes.
9.	 Review	the	Troubleshooting	Operating	System	Recipes	and	Troubleshooting	Java	Recipes.

10.	 Review	all	warnings	and	errors	in	System*.log	(or	using	logViewer	if	HPEL	is	enabled)	before	and
during	the	problem.	A	regular	expression	search	is	"	[W|E]	".	One	common	type	of	warning	is	an
FFDC	warning	which	points	to	a	matching	file	in	the	FFDC	logs	directory.

1.	 If	you're	on	Linux	or	use	cygwin,	use	the	following	command:

find	.	-name	"*System*"	-exec	grep	"	[W|E]	"	{}	\\;	|	grep	-v	-e	known_error

11.	 Review	all	JVM	messages	in	native_stderr.log	before	and	during	the	problem.	This	may	include
things	such	as	OutOfMemoryErrors.	The	filename	of	such	artifacts	includes	a	timestamp	of	the	form
YYYYMMDD.

12.	 Review	any	strange	messages	in	native_stdout.log	before	and	during	the	problem.
13.	 If	verbose	garbage	collection	is	enabled,	review	verbosegc	in	native_stderr.log	(IBM	Java),

native_stdout.log	(HotSpot	Java),	or	any	verbosegc.log	files	(if	using	-Xverbosegclog	or	-
Xloggc)	in	the	IBM	Garbage	Collection	and	Memory	Visualizer	Tool	and	ensure	that	the	proportion	of
time	in	garbage	collection	for	a	relevant	period	before	and	during	the	problem	is	less	than	10%

14.	 Review	any	javacore*.txt	files	in	the	IBM	Thread	and	Monitor	Dump	Analyzer	tool.	Review	the
causes	of	the	thread	dump	(e.g.	user-generated,	OutOfMemoryError,	etc.)	and	review	threads	with

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=management-health
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=manager-memory-overload-protection
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=tools-configuring-memory-leak-policy
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=logs-java-virtual-machine-jvm-log-settings
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=trace-diagnostic-service-settings

large	stacks	and	any	monitor	contention.
15.	 Review	any	heapdump*.phd	and	core*.dmp	files	in	the	Eclipse	Memory	Analyzer	Tool

	

Troubleshooting	WAS	traditional	on	z/OS

1.	 Increase	the	value	of	server_region_stalled_thread_threshold_percent	so	that	a	servant	is	only
abended	when	a	large	percentage	of	threads	are	taking	a	long	time.	Philosophies	on	this	differ,	but
consider	a	value	of	10.

2.	 Set	control_region_timeout_delay	to	give	some	time	for	work	to	finish	before	the	servant	is
abended;	for	example,	5.

3.	 Set	control_region_timeout_dump_action	to	gather	useful	diagnostics	when	a	servant	is	abended;
for	example,	IEATDUMP

4.	 Reduce	the	control_region_$PROTOCOL_queue_timeout_percent	values	so	that	requests	time	out
earlier	if	they	queue	for	a	long	time;	for	example,	10.

5.	 If	necessary,	apply	granular	timeouts	to	particular	requests
6.	 Run	listTimeoutsV85.py	to	review	and	tune	timeouts.

	

Additional	Recipes

WAS	traditional	Dynamic	Diagnostic	Trace	Recipe
WAS	traditional	Diagnostic	Trace	from	Startup	Recipe
WAS	traditional	Hung	Thread	Detection	Recipe
WAS	traditional	HTTP	Access	Log	Recipe
WAS	traditional	Dynamic	verbosegc	Recipe
WAS	traditional	verbosegc	from	Startup	Recipe
WAS	traditional	Common	Diagnostic	Files	Recipe
WAS	traditional	collector	Recipe
WAS	traditional	runtime	diagnostic	trace	script

	

WAS	traditional	Dynamic	Diagnostic	Trace	Recipe

1.	 WAS	Administrative	Console	}	Troubleshooting	}	Logs	and	Trace	}	$SERVER	}	Diagnostic	Trace
2.	 Click	the	Runtime	tab
3.	 Set	Maximum	File	Size	and	Maximum	Number	of	Historical	Files 	as	large	as	the	disk	allows

(multiply	the	two	for	maximum	usage).	At	leat	500MB	is	desirable.
1.	 If	these	values	were	changed,	click	Apply

4.	 Click	Change	log	detail	levels
5.	 Replace	*=info	with	the	desired	diagnostic	trace	(or	set	it	to	*=info	to	disable	trace)
6.	 Click	OK
7.	 Reproduce	the	problem
8.	 Upload	the	following	files:

1.	 WAS/profiles/PROFILE/logs/trace*.log
2.	 WAS/profiles/PROFILE/logs/System*.log
3.	 WAS/profiles/PROFILE/logs/native*.log
4.	 WAS/profiles/PROFILE/ffdc/*

	

WAS	traditional	Diagnostic	Trace	from	Startup	Recipe

1.	 WAS	Administrative	Console	}	Troubleshooting	}	Logs	and	Trace	}	$SERVER	}	Diagnostic	Trace

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=variables-application-server-custom-properties-zos
https://www.ibm.com/support/pages/websphere-application-server-zos-timeout-management
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=variables-application-server-custom-properties-zos
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=variables-application-server-custom-properties-zos
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=variables-application-server-custom-properties-zos
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=erlrasrg-ras-granularity-http-iiop-mdb-optimized-local-adapter-requests
https://www.ibm.com/support/pages/websphere-application-server-zos-timeout-management

2.	 Set	Maximum	File	Size	and	Maximum	Number	of	Historical	Files 	as	large	as	the	disk	allows
(multiply	the	two	for	maximum	usage).	At	leat	500MB	is	desirable.

1.	 If	these	values	were	changed,	click	Apply
3.	 Click	Change	log	detail	levels
4.	 Replace	*=info	with	the	desired	diagnostic	trace	(or	set	it	to	*=info	to	disable	trace)
5.	 Click	OK
6.	 Save	configuration	changes
7.	 Synchronize	nodes
8.	 Restart	the	JVM
9.	 Reproduce	the	problem

10.	 Upload	the	following	files:
1.	 WAS/profiles/PROFILE/logs/trace*.log
2.	 WAS/profiles/PROFILE/logs/System*.log
3.	 WAS/profiles/PROFILE/logs/native*.log
4.	 WAS/profiles/PROFILE/ffdc/*

	

WAS	traditional	Hung	Thread	Detection	Recipe

1.	 Decide	on	your	hung	thread	detection	interval	and	threshold.	In	general,	the	interval	is	performant
even	at	1	second.	In	general,	the	threshold	should	be	set	to	your	maximum	expected	response	time	plus
20%.

2.	 WAS	Administrative	Console	}	Servers	}	Server	Types	}	Websphere	application	servers	}	$SERVER	}
Server	Infrastructure	}	Administration	}	Custom	Properties

3.	 Click	New...
1.	 Name	=	com.ibm.websphere.threadmonitor.interval
2.	 Value	=	$SECONDS_INTERVAL
3.	 Click	OK

4.	 Click	New...
1.	 Name	=	com.ibm.websphere.threadmonitor.threshold
2.	 Value	=	$SECONDS_THRESHOLD
3.	 Click	OK

5.	 Save	configuration
6.	 Synchronize	nodes
7.	 Restart
8.	 Monitor	SystemOut*log	for	WSVR0605W	messages	and	review	the	stack	to	understand	what	the	threads

were	doing	at	the	time	the	threshold	was	exceeded.	Ensure	you	review	garbage	collection	and
operating	system	statistics	as	well.

Notes:

1.	 If	many	requests	exceed	the	threshold	at	the	same	time,	this	can	introduce	its	own	overhead	in
acquiring	and	printing	the	stack	traces.	By	default,
com.ibm.websphere.threadmonitor.false.alarm.threshold	is	the	threshold	for	an	exponential
backoff	that	occurs	every	100	breaches,	but	if	there	is	a	concern	about	such	a	potential	overhead,	then
reduce	com.ibm.websphere.threadmonitor.false.alarm.threshold.

	

WAS	traditional	HTTP	Access	Log	Recipe

In	general,	the	WAS	traditional	HTTP	access	log	has	a	low	overhead	of	less	than	1-2%.

There	was	a	regression	in	8.5.5.24,	9.0.5.16,	and	9.0.5.17	that	caused	timestamp	display	issues	when	using
accessLogFormat	and	it	was	fixed	in	APAR	PH56229	and	subsequent	fixpacks.

1.	 WAS	Administrative	Console	}	Servers	}	Server	Types	}	Websphere	application	servers	}	$SERVER	}

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=tools-configuring-hang-detection-policy
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rrun_chain_httpcustom.html#accesslogformat

Web	Container	Settings	}	Web	container	transport	chains
2.	 Click	on	each	entry	that	is	handling	the	traffic	of	interest	(most	commonly,	WCInbound	and/or

WCInboundSecure)	and	perform	the	following	steps.
1.	 HTTP	inbound	channel
2.	 Check	"Enable	logging"
3.	 Expand	"NCSA	Access	logging"

1.	 Check	"Use	chain-specific	logging"
2.	 Access	log	file	path	=	${SERVER_LOG_ROOT}/http_access.log
3.	 Access	log	maximum	size	=	500
4.	 Maximum	Number	of	historical	files	=	2
5.	 NCSA	access	log	format	=	Common

4.	 Expand	"Error	logging"
1.	 Check	"Use	chain-specific	logging"
2.	 Error	log	file	path	=	${SERVER_LOG_ROOT}/http_error.log
3.	 Error	log	maximum	size	=	500
4.	 Maximum	Number	of	historical	files	=	2

5.	 Click	Apply
6.	 Click	"Custom	properties"
7.	 Click	New...

1.	 Name	=	accessLogFormat
2.	 Value	=

1.	 WAS	9	or	WAS	>=	8.5.5.6:

%h	%u	%t	"%r"	%s	%b	%D	%{R}W

2.	 WAS	<	8.5.5.6:

%h	%u	%t	"%r"	%s	%b	%D

3.	 Click	OK
3.	 Save	configuration	changes
4.	 Synchronize	nodes
5.	 Restart	the	JVM
6.	 Reproduce	the	problem
7.	 Upload	the	following	files:

1.	 $WAS/profiles/$PROFILE/logs/http*.log
2.	 $WAS/profiles/$PROFILE/logs/System*.log
3.	 $WAS/profiles/$PROFILE/logs/native*.log
4.	 $WAS/profiles/$PROFILE/ffdc/*

For	background,	see	WAS	traditional	HTTP	Access	Log.

	

WAS	traditional	Dynamic	verbosegc	Recipe

1.	 WAS	Administrative	Console	}	Servers	}	Server	Types	}	Websphere	application	servers	}	$SERVER	}
Server	Infrastructure	}	Java	and	Process	Management	}	Process	definition	}	Java	Virtual	Machine

2.	 Click	the	Runtime	tab
3.	 Check	Verbose	garbage	collection
4.	 Click	OK
5.	 Reproduce	the	problem
6.	 Upload	the	following	files:

1.	 $WAS/profiles/$PROFILE/logs/System*.log
2.	 $WAS/profiles/$PROFILE/logs/native*.log
3.	 $WAS/profiles/$PROFILE/ffdc/*

	

WAS	traditional	verbosegc	from	Startup	Recipe

1.	 WAS	Administrative	Console	}	Servers	}	Server	Types	}	Websphere	application	servers	}	$SERVER	}
Server	Infrastructure	}	Java	and	Process	Management	}	Process	definition	}	Java	Virtual	Machine

2.	 Add	a	space	to	the	end	of	Generic	JVM	arguments	and	append	the	following:

-Xverbosegclog:${SERVER_LOG_ROOT}/verbosegc.%seq.log,20,50000

3.	 Click	OK
4.	 Save	configuration	changes
5.	 Synchronize	nodes
6.	 Restart	the	JVM
7.	 Reproduce	the	problem
8.	 Upload	the	following	files:

1.	 $WAS/profiles/$PROFILE/logs/$SERVER/verbosegc*.log
2.	 $WAS/profiles/$PROFILE/logs/$SERVER/System*.log
3.	 $WAS/profiles/$PROFILE/logs/$SERVER/native*.log
4.	 $WAS/profiles/$PROFILE/logs/ffdc/*

	

WAS	traditional	Common	Diagnostic	Files	Recipe

1.	 Upload	the	following	files:
1.	 $WAS/profiles/$PROFILE/logs/$SERVER/System*.log
2.	 $WAS/profiles/$PROFILE/logs/$SERVER/native*.log
3.	 $WAS/profiles/$PROFILE/logs/$SERVER/verbosegc*.log
4.	 $WAS/profiles/$PROFILE/logs/$SERVER/trace*.log
5.	 $WAS/profiles/$PROFILE/logs/$SERVER/http*.log
6.	 $WAS/profiles/$PROFILE/logs/ffdc/*
7.	 $WAS/profiles/$PROFILE/logs/tpv/*
8.	 $WAS/profiles/$PROFILE/javacore*txt
9.	 $WAS/profiles/$PROFILE/heapdump*phd

10.	 $WAS/profiles/$PROFILE/core*dmp

	

WAS	traditional	collector	Recipe

1.	 On	the	deployment	manager	node,	remote	in	and	ensure	you're	the	user	that	runs	WAS	or	root.
2.	 Change	directory	to	somewhere	outside	the	WAS	directory	that	has	a	few	hundred	MB	free.	For

example:

cd	/tmp/

3.	 Use	an	environment	variable	to	increase	the	heap	size	of	the	collector.	For	example:

export	IBM_JAVA_OPTIONS="-Xmx1g"

4.	 Execute	collector.sh	by	specifying	the	full	path	to	it.	For	example,	replace	the	path	to	WebSphere
and	$PROFILE	with	the	deployment	manager	profile	name:

/opt/IBM/WebSphere/AppServer/profiles/$PROFILE/bin/collector.sh	>	diag_collector.txt	2>&1

5.	 Once	it	completes,	quickly	review	the	end	of	the	diag_collector.txt	file	for	any	obvious	errors
running	the	collector.	A	healthy	collection	ends	with	Return	code:	0.

6.	 Upload	*WASenv.jar	and	diag_collector.txt

For	details,	see	the	collector.sh	documentation.

https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_runct.html

	

WAS	traditional	runtime	diagnostic	trace	script

1.	 Download	diagnostictrace.py	to	your	deployment	manager
2.	 Review	the	runtime	Maximum	File	Size	and	Maximum	Number	of	Historical	Files 	settings	for	the

target	JVMs	to	ensure	sufficient	trace	will	be	captured.
3.	 Execute	diagnostictrace.py	to	set	runtime	diagnostic	trace	using	one	of	the	following	options.

Replace	*=info	with	the	desired	trace	string:
1.	 Option	1:	Set	diagnostic	trace	on	all	alive	and	reachable	JVMs	excluding	dmgr	and	nodeagents:

bin/wsadmin.sh	-lang	jython	-f	diagnostictrace.py	--action	set	--trace	"*=info"	--serverType	APPLICATION_SERVER	|	tee	-a	diag_wastrace.txt

2.	 Option	2:	Set	diagnostic	trace	on	all	alive	and	reachable	JVMs	including	dmgr	and	nodeagents:

bin/wsadmin.sh	-lang	jython	-f	diagnostictrace.py	--action	set	--trace	"*=info"	|	tee	-a	diag_wastrace.txt

4.	 Reproduce	the	problem.
5.	 Disable	runtime	tracing	by	using	the	same	step	above	to	reset	the	runtime	trace	to	*=info.
6.	 Upload	the	following:

1.	 diag_wastrace.txt
2.	 For	each	JVM:

1.	 $WAS/profiles/$PROFILE/logs/$SERVER/System*.log
2.	 $WAS/profiles/$PROFILE/logs/$SERVER/native*.log
3.	 $WAS/profiles/$PROFILE/logs/$SERVER/verbosegc*.log
4.	 $WAS/profiles/$PROFILE/logs/$SERVER/trace*.log
5.	 $WAS/profiles/$PROFILE/logs/$SERVER/http*.log
6.	 $WAS/profiles/$PROFILE/logs/ffdc/*
7.	 $WAS/profiles/$PROFILE/logs/tpv/*
8.	 $WAS/profiles/$PROFILE/javacore*txt
9.	 $WAS/profiles/$PROFILE/heapdump*phd

10.	 $WAS/profiles/$PROFILE/core*dmp

		

Troubleshooting	WebSphere	Liberty	Recipes
1.	 Review	all	warnings	and	errors	in	messages.log	(or	using	binaryLog	if	binary	logging	is	enabled)

before	and	during	the	problem.	A	regular	expression	search	is	"	[W|E]	".	One	common	type	of
warning	is	an	FFDC	warning	which	points	to	a	matching	file	in	the	FFDC	logs	directory.

1.	 If	you're	on	Linux	or	use	cygwin,	use	the	following	command:

find	.	-name	"*messages*"	-exec	grep	"	[W|E]	"	{}	\;	|	grep	-v	-e	known_error

2.	 Review	all	JVM	messages	in	console.log	before	and	during	the	problem.	This	may	include	things	such
as	OutOfMemoryErrors.	The	filename	of	such	artifacts	includes	a	timestamp	of	the	form	YYYYMMDD.
Review	any	other	strange	messages	in	console.log	before	and	during	the	problem.

3.	 If	verbose	garbage	collection	is	enabled,	review	verbosegc	in	console.log,	or	any	verbosegc.log
files	(if	using	-Xverbosegclog	or	-Xloggc)	in	the	IBM	Garbage	Collection	and	Memory	Visualizer
Tool	and	ensure	that	the	proportion	of	time	in	garbage	collection	for	a	relevant	period	before	and
during	the	problem	is	less	than	10%.

4.	 Review	any	javacore*.txt	files	in	the	IBM	Thread	and	Monitor	Dump	Analyzer	tool.	Review	the
causes	of	the	thread	dump	(e.g.	user-generated,	OutOfMemoryError,	etc.)	and	review	threads	with
large	stacks	and	any	monitor	contention.

5.	 Review	any	heapdump*.phd	and	core*.dmp	files	in	the	Eclipse	Memory	Analyzer	Tool.

	

Additional	Recipes

https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/was/diagnostictrace.py

WebSphere	Liberty	verbosegc	from	Startup	Recipe
WebSphere	Liberty	HTTP	Access	Log	Recipe
WebSphere	Liberty	requestTiming	Recipe

		

WebSphere	Liberty	HTTP	Access	Log	Recipe

In	general,	the	WebSphere	Liberty	HTTP	access	log	has	a	low	overhead	of	less	than	1-2%.

1.	 Edit	the	httpEndpoint	element	in	server.xml	(or	other	included	XML	configuration	file	that	has	this
element)	to	add	an	accessLogging	element.	For	example:

<httpEndpoint	id="defaultHttpEndpoint"	host="*"	httpPort="9080"	httpsPort="9443">
		<accessLogging	filepath="${server.output.dir}/logs/http_access.log"	maxFileSize="100"	maxFiles="4"	logFormat="%h	%u	%t	"%r"	%s	%b	%D	%{R}W	%{remote}p	%p"	/>
</httpEndpoint>

Note:	It	may	be	that	your	httpEndpoint	element	is	self-closing	(i.e.	<httpEndpoint	...	/>)	in
which	case	you	have	to	remove	the	/	and	add	</httpEndpoint>	(see	above).

2.	 A	restart	is	not	required	and	the	change	will	apply	as	soon	as	the	file	is	saved.
3.	 Reproduce	the	problem
4.	 Upload	the	following	files:

1.	 logs/http_access*log
2.	 logs/messages*log
3.	 logs/traces*log
4.	 logs/ffdc/*

For	background,	see	WebSphere	Liberty	HTTP	Access	Log.

			

WebSphere	Liberty	verbosegc	from	Startup	Recipe

Consider	enabling	Java	verbose	garbage	collection	on	all	JVMs,	including	production.	This	will	help	with
performance	analysis,	OutOfMemoryErrors,	and	other	post-mortem	troubleshooting.	Benchmarks	on	OpenJ9
show	an	overhead	of	less	than	1%	and	usually	less	than	0.5%.

Add	the	following	to	jvm.options	(or	equivalent)	and	restart	the	JVM:

OpenJ9	JVM	(IBM	Java	or	IBM	Semeru	Runtimes	Java):

-Xverbosegclog:logs/verbosegc.%seq.log,20,50000

HotSpot	JVM	(OpenJDK	Runtime	Environment,	Oracle	Java,	and	similar):
Java	>=	9:

-Xlog:safepoint=info,gc:file=logs/verbosegc.log:time,level,tags:filecount=5,filesize=20M

Java	8:

-Xloggc:logs/verbosegc.log
-XX:+UseGCLogFileRotation
-XX:NumberOfGCLogFiles=5
-XX:GCLogFileSize=20M
-XX:+PrintGCDateStamps
-XX:+PrintGCDetails

Review	logs/verbosegc*log	and	monitor	for	high	pause	times	and	that	the	proportion	of	time	in	GC	pauses
is	less	than	~5-10%	using	the	GCMV	tool.

			

https://openliberty.io/docs/latest/access-logging.html#_http_access_log_format

WebSphere	Liberty	requestTiming	Recipe

WebSphere	Liberty	requestTiming	gathers	details	on	HTTP	requests	exceeding	a	configured	threshold	and
generally	has	an	overhead	of	less	than	4%.

1.	 The	requestTiming-1.0	feature	must	be	installed.	Verify	with	productInfo;	for	example:

$	wlp/bin/productInfo	featureInfo	|	grep	requestTiming
requestTiming-1.0

If	it's	not	installed,	you	may	install	it	with	installUtility	and	then	restart	Liberty;	for
example:

wlp/bin/installUtility	install	requestTiming-1.0

2.	 Add	the	requestTiming-1.0	feature	and	a	requestTiming	element	to	server.xml	(or	a
configDropin	override)	and	change	the	attributes	as	needed.	For	example:

<featureManager><feature>requestTiming-1.0</feature></featureManager>
<requestTiming	slowRequestThreshold="10s"	hungRequestThreshold="10m"	sampleRate="1"	/>

1.	 slowRequestThreshold	is	the	main	setting	and	should	generally	be	set	to	your	maximum
expected	response	time.

2.	 hungRequestThreshold	is	not	required	and	defaults	to	10	minutes.	It	additionally	gathers	thread
dumps	when	exceeded.

3.	 Ideally,	performance	test	requestTiming	and	increase	sampleRate	if	testing	shows	an
unacceptable	overhead	though	this	may	cause	missing	some	slow	requests.

3.	 If	dynamic	configuration	updates	are	enabled	(the	default),	then	saving	the	configuration	will	enable
requestTiming;	otherwise,	restart	Liberty.

4.	 Reproduce	the	problem	and	confirm	the	presence	of	TRAS0112W	messages.
5.	 Upload	the	following	files:

1.	 logs/messages*log
2.	 logs/console.log
3.	 logs/ffdc/*

For	background,	see	WebSphere	Liberty	Request	Timing.

	

Troubleshooting	Web	Servers	Recipes
1.	 IBM	HTTP	Server:

1.	 Review	the	error_log	for	any	strange	errors	before	and	during	the	problem,	including
mpmstats.

2.	 Review	the	access_log	for	any	status	codes	>=	400	and	long	response	times	before	and	during
the	problem.

3.	 Review	the	http_plugin.log	file	for	any	strange	errors	before	and	during	the	problem.

	

Troubleshooting	Kubernetes	Recipes
Kubernetes	Basics	Recipe
Kubernetes	etcd	Issues	Recipe
Kubernetes	Modify	Container	Command

	

Kubernetes	Basics	Recipe

https://www.ibm.com/docs/en/was-liberty/core?topic=liberty-slow-hung-request-detection
https://www.ibm.com/docs/en/was-liberty/core?topic=liberty-slow-hung-request-detection
https://www.ibm.com/docs/en/was-liberty/core?topic=installation-productinfo-command
https://www.ibm.com/docs/en/was-liberty/core?topic=command-installutility
https://www.ibm.com/docs/en/was-liberty/core?topic=files-using-configuration-dropins-folder-specify-server-configuration
https://www.ibm.com/docs/en/was-liberty/core?topic=configuration-requesttiming
https://www.ibm.com/docs/en/was-liberty/core?topic=manually-controlling-dynamic-updates

1.	 List	the	cluster	information.	For	example:

$	kubectl	cluster-info
Kubernetes	master	is	running	at	https://kubernetes.docker.internal:6443
KubeDNS	is	running	at	https://kubernetes.docker.internal:6443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy
To	further	debug	and	diagnose	cluster	problems,	use	'kubectl	cluster-info	dump'.

2.	 List	recent	events	in	all	namespaces	and	look	for	warnings	and	errors	such	as	the	following.	Note	that	a
Killing	event	is	considered	Normal:

$	kubectl	get	events	--all-namespaces
NAMESPACE														LAST	SEEN			TYPE						REASON														OBJECT																																												MESSAGE
kube-system												6m1s								Warning			Unhealthy											pod/metrics-server-6b5c979cf8-t8496															Readiness	probe	failed:	HTTP	probe	failed	with	statuscode:	500
kube-system												6m8s								Warning			Unhealthy											pod/metrics-server-6b5c979cf8-t8496															Liveness	probe	failed:	HTTP	probe	failed	with	statuscode:	500
kube-system												6m8s								Normal				Killing													pod/metrics-server-6b5c979cf8-t8496															Container	metrics-server	failed	liveness	probe,	will	be	restarted

3.	 If	metrics-server	is	running,	list	total	node	resource	usage.	For	example:

$	kubectl	top	node
NAME													CPU(cores)			CPU%			MEMORY(bytes)			MEMORY%			
docker-desktop			207m									3%					1830Mi										18%

4.	 List	all	pods.	For	example:

$	kubectl	get	pods	-o	wide	--all-namespaces
NAMESPACE														NAME																																									READY			STATUS				RESTARTS			AGE			IP													NODE													NOMINATED	NODE			READINESS	GATES
kube-system												coredns-f9fd979d6-6hb96																						1/1					Running			1										30h			10.1.0.7							docker-desktop			<none>											<none>
kube-system												coredns-f9fd979d6-x7dhk																						1/1					Running			1										30h			10.1.0.6							docker-desktop			<none>											<none>
kube-system												etcd-docker-desktop																										1/1					Running			1										30h			192.168.65.4			docker-desktop			<none>											<none>
kube-system												kube-apiserver-docker-desktop																1/1					Running			1										30h			192.168.65.4			docker-desktop			<none>											<none>
kube-system												kube-controller-manager-docker-desktop							1/1					Running			1										30h			192.168.65.4			docker-desktop			<none>											<none>
kube-system												kube-proxy-fm942																													1/1					Running			1										30h			192.168.65.4			docker-desktop			<none>											<none>
kube-system												kube-scheduler-docker-desktop																1/1					Running			1										30h			192.168.65.4			docker-desktop			<none>											<none>
kube-system												metrics-server-7f68754c9c-xkb2h														1/1					Running			0										16m			10.1.0.13						docker-desktop			<none>											<none>
kube-system												storage-provisioner																										1/1					Running			2										30h			10.1.0.8							docker-desktop			<none>											<none>
kube-system												vpnkit-controller																												1/1					Running			1										30h			10.1.0.9							docker-desktop			<none>											<none>
kubernetes-dashboard			dashboard-metrics-scraper-79c5968bdc-4kpl2			1/1					Running			0										38m			10.1.0.11						docker-desktop			<none>											<none>
kubernetes-dashboard			kubernetes-dashboard-9f9799597-x694s									1/1					Running			0										38m			10.1.0.10						docker-desktop			<none>											<none>

5.	 Prints	logs	for	a	particular	pod.	For	example:

$	kubectl	logs	metrics-server-7f68754c9c-xkb2h	-n	kube-system
I0428	21:16:26.210289							1	serving.go:325]	Generated	self-signed	cert	(/tmp/apiserver.crt,	/tmp/apiserver.key)
[...]

	

Kubernetes	etcd	Issues	Recipe

1.	 Search	etcd	logs	(/var/logs/pods/*etcd*/etcd/*):
1.	 leader	failed	to	send	out	heartbeat	on	time;	took	too	long,	leader	is

overloaded	likely	from	slow	disk
2.	 Compactions	greater	than	100ms

grep	-r	"finished	scheduled	compaction"	/var/log/pods/*etcd*/etcd/*	|	awk	-F\"	'$(NF-1)	~	/[0-9]s/	||	$(NF-1)	~	/[1-9][0-9][0-9]/	{print	$(NF-1);}'	|	sort	-nr	|	head

2.	 Consider	if	defragmentation	is	necessary	which	may	reduce	memory	usage	of	kube-apiserver	and
etcd:

1.	 Kubernetes	defragmentation	documentation
2.	 OpenShift	defragmentation	documentation

	

Kubernetes	Modify	Container	Command

1.	 Edit	the	pod	spec	(e.g.	in	a	deployment)	and	add/modify	the	command	and	args.	For	example:

https://access.redhat.com/articles/6271341
https://etcd.io/docs/latest/op-guide/maintenance/
https://docs.openshift.com/container-platform/latest/post_installation_configuration/cluster-tasks.html#manual-defrag-etcd-data_post-install-cluster-tasks

spec:
		containers:
		-	name:	...
				command:	["/bin/sh"]
				args:	["-c",	"sleep	300"]

	

Troubleshooting	OpenShift	Recipes
OpenShift	Login	Recipe
OpenShift	General	Troubleshooting	Recipe
OpenShift	Use	Image	Registry	Recipe
OpenShift	Remote	into	Container	Recipe
OpenShift	Analyze	a	Pod	Recipe
OpenShift	Analyze	a	Node	Recipe
OpenShift	Investigate	ImagePullBackOff	Recipe
OpenShift	Review	Logs	Recipe
OpenShift	Download	Container	Files	Recipe
OpenShift	Investigate	Source	of	Signal
Liberty	in	OpenShift	Get	Javacore	Recipe
Liberty	in	OpenShift	Get	Heapdump	Recipe
Liberty	in	OpenShift	Get	System	Dump	Recipe
Replace	Container	Directory	in	OpenShift
Execute	a	Script	in	a	Container	on	Startup	in	OpenShift

	

OpenShift	Login	Recipe

1.	 Access	the	OpenShift	web	console	at	https://console-openshift-
console.${CLUSTER_DOMAIN_NAME}/.

2.	 In	the	top	right,	click	on	your	name	}	Copy	Login	Command	}	Display	Token	}	Copy	the	oc	login
command

3.	 Download	the	oc	executable	from	your	cluster	at	https://downloads-openshift-
console.${CLUSTER_DOMAIN_NAME}/	or	from	the	internet:

1.	 x86_64/amd64:
1.	 Windows
2.	 macOS
3.	 Linux

2.	 ARMv8/AArch64/M1:
1.	 macOS
2.	 Linux
3.	 Windows

4.	 Open	a	terminal	and	change	directory	to	where	oc	is.
5.	 Paste	and	run	the	oc	login	command	from	step	2	above.

https:/
https:/
https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/ocp/stable/openshift-client-windows.zip
https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/ocp/stable/openshift-client-mac.tar.gz
https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/ocp/stable/openshift-client-linux.tar.gz
https://mirror.openshift.com/pub/openshift-v4/aarch64/clients/ocp/stable/openshift-client-mac.tar.gz
https://mirror.openshift.com/pub/openshift-v4/aarch64/clients/ocp/stable/openshift-client-linux.tar.gz
https://mirror.openshift.com/pub/openshift-v4/aarch64/clients/ocp/stable/openshift-client-windows.zip

6.	 Run	oc	whoami	--show-console 	to	confirm	everything	works.

	

OpenShift	General	Troubleshooting	Recipe

From	a	browser

1.	 Review	overall	status:	Administrator	}	Home	}	Overview	}	Status

2.	 Review	node	resource	usage:	Administrator	}	Home	}	Overview	}	Cluster	Utilization

Click	on	the	utilization	number	and	use	the	dropdown	to	get	different	views,	e.g.	By	Node

3.	 Review	critical	and	warning	alerts:	Administrator	}	Observe	(or	Monitoring)	}	Alerting	}	Click
"Filter",	and	check	"Critical"	and	"Warning"

4.	 Review	recent	warning	and	error	events:	Administrator	}	Home	}	Events	}	Change	"All	types"	to
"Warning"

5.	 Review	deep	dive	utilization:	Administrator	}	Observe	(or	Monitoring)	}	Dashboards	}	Node	Exporter
/	USE	Method	/	Cluster

	

From	the	command	line

1.	 Ensure	you're	logged	in	with	oc
2.	 Review	the	overall	cluster	status:

$	oc	get	clusterversion
NAME						VERSION			AVAILABLE			PROGRESSING			SINCE			STATUS
version			4.10.10			True								False									87d					Error	while	reconciling	4.10.10:	an	unknown	error	has	occurred:	MultipleErrors

1.	 If	status	includes	"MultipleErrors",	display	all	errors	with:

oc	get	clusterversion	-o	'jsonpath={.items[].status.conditions}'

3.	 Review	the	status	of	nodes:

$	oc	get	nodes																																																																								
NAME										STATUS					ROLES				AGE				VERSION
master0							Ready						master			201d			v1.20.0+df9c838
master1							Ready						master			201d			v1.20.0+df9c838
master2							Ready						master			201d			v1.20.0+df9c838
worker0							Ready						worker			201d			v1.20.0+df9c838
worker1							NotReady			worker			11d				v1.20.0+df9c838

worker2							Ready						worker			201d			v1.20.0+df9c838

1.	 Describe	any	that	are	Status=NotReady	and	search	for	Conditions:

$	oc	describe	node	worker1
Name:															worker1
[...]
Conditions:
		Type											Status		LastHeartbeatTime															LastTransitionTime														Reason												Message
		----											------		-----------------															------------------														------												-------
		MemoryPressure	Unknown	Fri,	03	Dec	2021	18:07:43	-0600	Tue,	11	Jan	2022	16:12:38	-0600	NodeStatusUnknown	Kubelet	stopped	posting	node	status.
		DiskPressure			Unknown	Fri,	03	Dec	2021	18:07:43	-0600	Tue,	11	Jan	2022	16:12:38	-0600	NodeStatusUnknown	Kubelet	stopped	posting	node	status.
		PIDPressure				Unknown	Fri,	03	Dec	2021	18:07:43	-0600	Tue,	11	Jan	2022	16:12:38	-0600	NodeStatusUnknown	Kubelet	stopped	posting	node	status.
		Ready										Unknown	Fri,	03	Dec	2021	18:07:43	-0600	Tue,	11	Jan	2022	16:12:38	-0600	NodeStatusUnknown	Kubelet	stopped	posting	node	status.

If	no	issues	are	obvious,	debug	the	node	in	more	depth.
4.	 Review	node	resource	usage:

$	oc	adm	top	nodes
NAME						CPU(cores)			CPU%			MEMORY(bytes)			MEMORY%					
master0			1990m								26%				13070Mi									89%									
master1			1614m								21%				10982Mi									75%									
master2			1016m								13%				10138Mi									69%									
worker0			4986m								32%				17360Mi									57%									
worker1			4986m								32%				17360Mi									57%									
worker2			2634m								16%				16352Mi									54%									

1.	 Describe	any	that	have	high	usage	of	CPU	and/or	memory:

$	oc	describe	node	master0
Name:															master0
[...]
Allocatable:
		cpu:																7500m
		ephemeral-storage:		95069439022
		memory:													14871872Ki
		pods:															250
[...]
Non-terminated	Pods:																						(32	in	total)
		Namespace																		Name																				CPU	Requests		CPU	Limits		Memory	Requests		Memory	Limits		AGE
		---------																		----																				------------		----------		---------------		-------------		---
		openshift-kube-apiserver			kube-apiserver-master0		290m	(3%)					0	(0%)						1224Mi	(8%)						0	(0%)									7d16h
[...]
Allocated	resources:
		(Total	limits	may	be	over	100	percent,	i.e.,	overcommitted.)
		Resource											Requests						Limits
		--------											--------						------
		cpu																1595m	(21%)			0	(0%)
		memory													5241Mi	(36%)		0	(0%)

If	no	CPU	or	memory	culprits	are	obvious,	debug	the	node	in	more	depth.
5.	 Review	critical	and	warning	alerts:

1.	 Critical:

curl	-k	-H	"Authorization:	Bearer	$(oc	-n	openshift-monitoring	sa	get-token	prometheus-k8s)”	https://$(oc	-n	openshift-monitoring	get	route	alertmanager-main	-o	jsonpath='{.spec.host}')/api/v1/alerts?filter=severity=critical

2.	 Warning:

curl	-k	-H	"Authorization:	Bearer	$(oc	-n	openshift-monitoring	sa	get-token	prometheus-k8s)"	https://$(oc	-n	openshift-monitoring	get	route	alertmanager-main	-o	jsonpath='{.spec.host}')/api/v1/alerts?filter=severity=warning

6.	 Review	recent	warning	and	error	events:

oc	get	events	--sort-by='.lastTimestamp'	--all-namespaces	--field-selector	type=Warning	|	tail	-10

7.	 Review	top	pod	resource	usage	by	CPU:

$	oc	adm	top	pod	--all-namespaces	--sort-by=cpu	|	head
NAMESPACE																														NAME																																									CPU(cores)			MEMORY(bytes)			
openshift-kube-apiserver															kube-apiserver-master0																							940m									6526Mi										

openshift-operators																				service-binding-operator-c4896b966-js9t9					547m									662Mi											
openshift-etcd																									etcd-master1																																	480m									2185Mi										
openshift-kube-apiserver															kube-apiserver-master1																							304m									4751Mi										
openshift-kube-apiserver															kube-apiserver-master2																							284m									4787Mi										
openshift-operator-lifecycle-manager			olm-operator-64fbc79dbc-47mvq																261m									1507Mi										
openshift-monitoring																			prometheus-k8s-1																													243m									2355Mi										
openshift-etcd																									etcd-master0																																	243m									1902Mi										
openshift-monitoring																			prometheus-k8s-0																													237m									2249Mi										

8.	 Review	top	pod	resource	usage	by	memory:

$	oc	adm	top	pod	--all-namespaces	--sort-by=memory	|	head
NAMESPACE																	NAME																				CPU(cores)			MEMORY(bytes)			
openshift-kube-apiserver		kube-apiserver-master0		1220m								6396Mi										
openshift-kube-apiserver		kube-apiserver-master2		351m									4828Mi										
openshift-kube-apiserver		kube-apiserver-master1		276m									4763Mi										
rook-ceph																	csi-rbdplugin-htblh					1m											2464Mi										
openshift-monitoring						prometheus-k8s-1								359m									2355Mi										
openshift-monitoring						prometheus-k8s-0								373m									2265Mi										
openshift-etcd												etcd-master1												331m									2195Mi										
openshift-etcd												etcd-master0												119m									1943Mi										
openshift-etcd												etcd-master2												252m									1759Mi										

9.	 Get	the	status	of	cluster	operators:

$	oc	get	clusteroperators
NAME								VERSION			AVAILABLE			PROGRESSING			DEGRADED			SINCE
dns									4.7.13				True								False									True							2d19h

1.	 Describe	any	that	are	Degraded=True:

$	oc	describe	clusteroperators	dns
Name:									dns
[...]
Status:
		Conditions:
				Last	Transition	Time:		2022-02-09T06:40:54Z
				Message:															DNS	default	is	degraded
				Reason:																DNSDegraded
				Status:																True
				Type:																		Degraded

10.	 Check	for	overcommit	issues	on	worker	nodes:
1.	 oc	get	nodes
2.	 oc	debug	node/$NODE	-t
3.	 chroot	/host	journalctl	--grep="Killed"
4.	 Overcommit	ratios	may	be	tuned.	Alternatively,	disable	overcommit	by	setting	all	pods'

request=limit.

	

Troubleshooting	Tips

1.	 Troubleshoot	Networking
2.	 For	a	pod	status	of	pending,	review	oc	describe	pod	$POD
3.	 The	horizontal	pod	autoscaler	initially	has	a	value	of	<unknown>	and	might	take	~5	minutes	to	update.

A	persistent	value	of	<unknown>	might	indicate	that	the	deployment	does	not	define	resource	requests
for	the	metric	and	the	autoscaler	will	not	activate.

4.	 Investigate	pod	errors	due	to	permissions:

oc	get	pod/$POD	-o	yaml	|	oc	adm	policy	scc-subject-review	-f	-

	

OpenShift	Use	Image	Registry	Recipe

https://docs.openshift.com/container-platform/latest/nodes/clusters/nodes-cluster-overcommit.html
https://cloud.redhat.com/blog/troubleshooting-openshift-internal-networking
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/administrator-cli-commands.html#oc-adm-policy-scc-subject-review

1.	 Ensure	you're	logged	in	with	oc
2.	 By	default,	a	registry	does	not	have	an	external	route;	if	this	is	required,	the	registry	must	be	exposed:

1.	 Follow	the	instructions	to	expose	the	registry	for	your	cluster	version.
2.	 Then,	allow	a	user	to	push	to	the	registry

oc	policy	add-role-to-user	registry-editor	$(oc	whoami)

3.	 Finally,	allow	a	user	to	pull	from	the	registry:

oc	policy	add-role-to-user	registry-viewer	$(oc	whoami)

3.	 Get	the	registry	route	and	save	to	a	variable:

REGISTRY=$(oc	get	route	default-route	-n	openshift-image-registry	--template='{{	.spec.host	}}')

4.	 Make	sure	it	looks	okay:

echo	${REGISTRY}

5.	 Log	into	the	registry:

podman	login	-u	$(oc	whoami)	-p	$(oc	whoami	-t)	${REGISTRY}

For	self-signed	certificates,	add	--tls-verify=false	to	podman	login
6.	 After	you've	built	some	local	container,	list	that	image:

$	podman	images
REPOSITORY				TAG							IMAGE	ID							CREATED									SIZE
<none>								<none>				0263a6f15fdf			2	minutes	ago			771MB

7.	 Tag	the	image	for	pushing	to	your	registry	(replace	$IMAGEID,	$PROJECT,	and	$IMAGE)

podman	tag	$IMAGEID	$REGISTRY/$PROJECT/$IMAGE

8.	 Push	the	image	to	your	registry:

podman	push	$REGISTRY/$PROJECT/$IMAGE

9.	 List	the	image	stream	within	the	cluster	(an	image	stream	is	an	indirect	pointer	to	an	image	that	allows
updating	the	pointer	without	re-building):

oc	get	imagestreams	$IMAGE	-n	$PROJECT

10.	 The	image	may	now	be	referenced	internally	with	image-registry.openshift-image-
registry.svc:5000/$PROJECT/$IMAGE

	

OpenShift	Remote	into	Container	Recipe

From	a	browser

1.	 Web	console	}	Administrator	}	Workloads	}	Pods	}	$PODNAME	}	Terminal

https://docs.openshift.com/container-platform/latest/registry/securing-exposing-registry.html

	

From	the	command	line

1.	 Ensure	you're	logged	in	with	oc
2.	 Find	the	relevant	pod(s):

$	oc	get	pods	--namespace	$NAMESPACE
NAME																												READY			STATUS				RESTARTS			AGE
mypod-7d57d6599f-tq7vt										1/1					Running			0										12m

3.	 Remote	into	the	pod	(if	it	has	more	than	one	container,	specify	the	container	with	-c	$CONTAINER):

$	oc	rsh	--namespace	$NAMESPACE	-t	$PODNAME
sh-4.4$	

	

OpenShift	Analyze	a	Pod	Recipe

1.	 Ensure	you're	logged	in	with	oc
2.	 Find	the	relevant	pod(s):

$	oc	get	pods	-o	wide	-n	$PROJECT
NAME			READY			STATUS				RESTARTS			AGE					IP				NODE			NOMINATED	NODE			READINESS	GATES
$POD			1/1					Running			0										4m46s						<none>											<none>

3.	 Display	CPU	and	memory	statistics:

$	oc	adm	top	pods	$POD	-n	$PROJECT
NAME			CPU(cores)			MEMORY(bytes)			
$POD			5m											186Mi

https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/administrator-cli-commands.html#top

4.	 Display	events	in	the	pod	(as	well	as	the	node	it's	on,	labels,	etc.):

$	oc	describe	pod	$POD	-n	$PROJECT
Name:									...
Namespace:				...
Priority:					0
Node:									.../...
Start	Time:			Mon,	15	Feb	2021	12:36:57	-0800
Labels:							deployment=...
														pod-template-hash=7d57d6599f
[...]
Events:
Type				Reason										Age			From															Message
----				------										----		----															-------
Normal		Scheduled							21m			default-scheduler		Successfully	assigned	...	to	...
Normal		AddedInterface		21m			multus													Add	eth0	[...]
Normal		Pulling									21m			kubelet												Pulling	image	"image-registry.openshift-image-registry.svc:5000/..."
Normal		Pulled										21m			kubelet												Successfully	pulled	image	"image-registry.openshift-image-registry.svc:5000/..."
Normal		Created									21m			kubelet												Created	container	...
Normal		Started									21m			kubelet												Started	container	...

5.	 Display	the	pod's	stdout	logs:

$	oc	logs	$POD	-n	$PROJECT	
Launching	defaultServer	(Open	Liberty	21.0.0.1/wlp-1.0.48.cl210120210113-1459)	on	Eclipse	OpenJ9	VM,	version	1.8.0_282-b08	(en_US)
[...]

6.	 If	needed,	remote	into	the	pod
7.	 If	required	diagnostic	utilities	aren't	available	within	a	container,	you	may	build	and	run	a	debug	pod

on	the	node	with	those	utilities.

	

OpenShift	Analyze	a	Node	Recipe

From	a	browser

1.	 Administrator	}	Compute	}	Nodes	}	$NODENAME	}	Terminal

	

From	the	command	line

1.	 Ensure	you're	logged	in	with	oc
2.	 Find	the	relevant	node(s):

$	oc	get	nodes	-o	wide
NAME		STATUS		ROLES										AGE			VERSION										INTERNAL-IP		EXTERNAL-IP		OS-IMAGE		KERNEL-VERSION														CONTAINER-RUNTIME
...1		Ready			master,worker		105d		v1.18.3+2fbd7c7		...1									...4									Red	Hat			3.10.0-1160.2.2.el7.x86_64		cri-o://1.18.3-19.rhaos4.5.git9264b4f.el7
...2		Ready			master,worker		105d		v1.18.3+2fbd7c7		...2									...2									Red	Hat			3.10.0-1160.2.2.el7.x86_64		cri-o://1.18.3-19.rhaos4.5.git9264b4f.el7
...4		Ready			master,worker		105d		v1.18.3+2fbd7c7		...4									...0									Red	Hat			3.10.0-1160.2.2.el7.x86_64		cri-o://1.18.3-19.rhaos4.5.git9264b4f.el7

3.	 If	needed,	review	node	resource	usage:

$	oc	adm	top	nodes
NAME			CPU(cores)			CPU%			MEMORY(bytes)			MEMORY%			
...1			592m									3%					8344Mi										29%							
...2			958m									6%					8675Mi										30%							
...4			1139m								7%					9523Mi										33%

4.	 Remote	into	a	node:

$	oc	debug	node/$NODENAME	-t

5.	 The	debug	container	is	its	own	container	running	on	the	node	but	usually	you	want	to	act	as	if	you're
remote'd	into	the	actual	node	by	running	chroot:

sh-4.2#	chroot	/host
sh-4.2#	whoami
root

6.	 If	you	need	to	run	utilities	that	aren't	installed	on	the	node,	then	you	can	package	those	utilities	into	an
image	and	then	run	that	image	on	the	node.	Note	that	the	image	stream	is	in	a	particular	project	so	-n
must	be	specified,	and	note	that	in	this	use	case,	you	probably	do	not	want	to	run	chroot	since	the
relevant	binaries	are	in	the	container	rather	than	the	node.	For	example:

$	oc	debug	node/$NODENAME	-t	--image=image-registry.openshift-image-registry.svc:5000/$PROJECT/$IMAGE	-n	$PROJECT
sh-5.0#	gcore
usage:		gcore	[-a]	[-o	prefix]	pid1	[pid2...pidN]

	

Map	container	PID	to	node	PID

1.	 Either	first	chroot	/host	(in	which	case	you'll	lose	access	to	your	debug	pod's	binaries),	or	add	--
root	/host/run/runc	after	runc.

2.	 Find	the	PIDs	that	might	be	interesting.	For	example,	if	we're	searching	for	a	Java	PID:

#	pgrep	-f	java
73138
77182
84890
100958

3.	 Use	runc	list	to	find	the	container	IDs	for	those	PIDs	that	are	in	containers.	For	example:

#	for	pid	in	$(pgrep	-f	java);	do	runc	list	|	grep	$pid;	done	|	awk	'{print	$1}'
76d7cbc64b8411fc04390c940fe14c797d4a996a00a56d1014312a7aa7b6d260
1a4a983095d84776603b8d77ff625ace91bb492db12fbee42666145d05324dee
ef77108b440d2ca5631a3781f0bb440e904d86f818457381c0fb820d8f6aa3fd

4.	 Use	runc	state	to	get	details	about	a	container.	For	example	(some	output	removed):

#	runc	state	76d7cbc64b8411fc04390c940fe14c797d4a996a00a56d1014312a7aa7b6d260
{
		"id":	"76d7cbc64b8411fc04390c940fe14c797d4a996a00a56d1014312a7aa7b6d260",
		"pid":	73138,
		"status":	"running",
		"bundle":	"/var/data/crioruntimestorage/overlay-containers/76d7cbc64b8411fc04390c940fe14c797d4a996a00a56d1014312a7aa7b6d260/userdata",
		"rootfs":	"/var/data/criorootstorage/overlay/a83cefbb7952694e724af131870657c6b13043f9fc847b7c4757457224a308da/merged",
		"created":	"2021-02-15T20:36:59.080374202Z",
		"annotations":	{
					"io.container.manager":	"cri-o",
					"io.kubernetes.container.hash":	"6e7830a0",
					"io.kubernetes.container.name":	"...",
					"io.kubernetes.container.ports":	"[{\"containerPort\":9443,\"protocol\":\"TCP\"},{\"containerPort\":9080,\"protocol\":\"TCP\"}]",
					"io.kubernetes.container.restartCount":	"0",
					"io.kubernetes.cri-o.Image":	"...",
					"io.kubernetes.cri-o.Name":	"k8s_...-7d57d6599f-5qq7z_..._722d428b-d0ac-4b1e-b4f5-503b1b76c1e4_0",
					"io.kubernetes.pod.name":	"...-7d57d6599f-5qq7z",
					"io.kubernetes.pod.namespace":	"...",
		},
}

5.	 If	needed,	go	to	the	rootfs	directory	for	access	to	the	container's	filesystem.	For	example:

#	head	/var/data/criorootstorage/overlay/a83cefbb7952694e724af131870657c6b13043f9fc847b7c4757457224a308da/merged/logs/messages.log
**
product	=	Open	Liberty	21.0.0.1	(wlp-1.0.48.cl210120210113-1459)

https://github.com/opencontainers/runc/blob/master/man/runc-list.8.md
https://github.com/opencontainers/runc/blob/master/man/runc-state.8.md

	

OpenShift	Investigate	ImagePullBackOff	Recipe

ImagePullBackOff	occurs	when	an	image	can't	be	pulled.	This	may	have	many	causes	such	as	insufficient
authorization,	pulling	from	the	context	of	one	project	but	the	ImageStream	is	in	another	project,	network
issues	or	protections,	etc.

1.	 Ensure	you're	logged	in	with	oc
2.	 Run	the	command	that	causes	the	issue	and	note	the	date	and	time	(in	UTC).	For	example:

$	TZ=UTC	date
Tue	Feb	16	18:36:10	UTC	2021
$	oc	debug	node/$NODE	-t	--image=image-registry.openshift-image-registry.svc:5000/$PROJECT/$IMAGE								
Creating	debug	namespace/openshift-debug-node-9jmxs	...
Starting	pod/...-debug	...
To	use	host	binaries,	run	`chroot	/host`

Removing	debug	pod	...
Removing	debug	namespace/openshift-debug-node-9jmxs	...
error:	Back-off	pulling	image	"image-registry.openshift-image-registry.svc:5000/$PROJECT/$IMAGE"

3.	 Review	the	logs	of	the	image	registry	at	approximately	the	date	and	time	of	the	issue.	For	example:

$	oc	logs	deployments/image-registry	-n	openshift-image-registry	|	grep	-v	-e	probe	-e	metrics
[...]
time="2021-02-16T18:36:18.148593608Z"	level=warning	msg="error	authorizing	context:	authorization	header	required"	go.version=go1.13.15	http.request.host="image-registry.openshift-image-registry.svc:5000"	http.request.id=17430d0b-49ec-4ba9-8161-32456ca2f29f	http.request.method=GET	http.request.remoteaddr="...:50939"	http.request.uri=/v2/	http.request.useragent="cri-o/1.18.3-19.rhaos4.5.git9264b4f.el7	go/go1.13.15	os/linux	arch/amd64"

4.	 In	the	above	example,	the	image	pull	back-off	occurred	because	of	an	authorization	issue.	In	this	case,
it	is	because	we	forgot	to	specify	-n	$PROJECT	on	the	oc	debug	command	which	was	run	in	the
context	of	another	project.

	

OpenShift	Review	Logs	Recipe

From	the	command	line

1.	 Ensure	you're	logged	in	with	oc
2.	 Change	REPLACEME	to	your	project	name:

PROJECT=REPLACEME;	echo	"Processing	project	${PROJECT}";	for	pod	in	$(oc	get	pods	-n	$PROJECT	-o	jsonpath='{.items[*].metadata.name}');	do	echo	"Processing	pod	${pod}";	for	container	in	$(oc	get	pod	$pod	-n	$PROJECT	-o	jsonpath="{.spec.containers[*].name}");	do	oc	logs	$pod	-c	$container	-n	$PROJECT	&>	diag_podlogs_${PROJECT}_${pod}_${container}_$(date	+%Y%m%d_%H%M%S).txt;	oc	logs	--previous	$pod	-c	$container	-n	$PROJECT	&>	diag_lastpodlogs_${PROJECT}_${pod}_${container}_$(date	+%Y%m%d_%H%M%S).txt;	done;	done

3.	 Upload	diag*.txt

	

From	a	browser

1.	 Web	console	}	Administrator	}	Workloads	}	Pods	}	$PODNAME	}	Logs	}	Download

	

OpenShift	Download	Container	Files	Recipe

From	the	command	line

1.	 Ensure	you're	logged	in	with	oc
2.	 Find	the	relevant	pod(s):

$	oc	get	pods	--namespace	$NAMESPACE
NAME																												READY			STATUS				RESTARTS			AGE
mypod-7d57d6599f-tq7vt										1/1					Running			0										12m

3.	 Download	files	from	the	pod	(requires	the	container	has	the	tar	binary	installed;	if	there	is	more	than
one	container,	specify	the	container	with	-c	$CONTAINER):

$	oc	cp	--namespace	$NAMESPACE	$PODNAME:/logs/messages.log	messages.log
tar:	Removing	leading	`/'	from	member	names

	

OpenShift	Investigate	Source	of	Signal

This	procedure	helps	find	the	source	of	a	kill	signal	such	as	SIGQUIT:

1.	 Ensure	you're	logged	in	with	oc	with	cluster-admin	permissions
2.	 Find	the	relevant	pod	receiving	the	signal:

$	oc	get	pods	--namespace	$NAMESPACE
NAME																												READY			STATUS				RESTARTS			AGE
mypod-7d57d6599f-tq7vt										1/1					Running			0										12m

3.	 Find	the	worker	node	of	the	pod:

oc	get	pod	--namespace	$NAMESPACE	--output	"jsonpath={.spec.nodeName}{'\n'}"	$PODNAME

4.	 Start	a	debug	pod	on	the	worker	node	with	the	containerdiag	image:

oc	debug	node/$NODE	-t	--image=quay.io/ibm/containerdiag

5.	 Find	the	worker	node	PID	of	the	pod	container	(we'll	use	this	later);	for	example:

$	podinfo.sh	-p	mypod-7d57d6599f-tq7vt
3636617

6.	 Change	to	the	root	filesystem:

chroot	/host

7.	 Run	this	command	to	append	to	the	audit	rules	file:

cat	>>	/etc/audit/rules.d/audit.rules

8.	 Paste	this	line	and	press	ENTER:

-a	always,exit	-F	arch=b64	-S	kill	-k	watchkill

9.	 Type	Ctrl^D	to	finish	the	append.
10.	 Confirm	the	line	is	there:

$	tail	-1	/etc/audit/rules.d/audit.rules
-a	always,exit	-F	arch=b64	-S	kill	-k	watchkill

11.	 Regenerate	the	audit	rules:

augenrules	--load

12.	 Kill	auditd	(there	is	no	graceful	way	of	doing	this):

systemctl	kill	auditd

13.	 Start	auditd:

systemctl	start	auditd

14.	 Double	check	the	status	and	make	sure	it's	running	(active	(running)):

$	systemctl	status	auditd
●	auditd.service	-	Security	Auditing	Service
			Loaded:	loaded	(/usr/lib/systemd/system/auditd.service;	enabled;	vendor	preset:	enabled)
			Active:	active	(running)	since	Wed	2022-10-05	13:26:04	UTC;	9min	ago	[...]

15.	 Wait	for	the	signal	to	occur.
16.	 After	the	issue	is	reproduced,	search	for	the	signal	in	the	audit	logs	(replace	SIGQUIT	with	the	signal

name):

ausearch	-k	watchkill	-i	|	grep	-A	5	-B	5	--group-separator=========	SIGQUIT

17.	 Find	the	relevant	audit	event;	for	example:

type=PROCTITLE	msg=audit(10/05/22	08:47:31.523:278210)	:	proctitle=java	-Dsdjagent.loadjnilibrary=false	-Dsun.jvmstat.perdata.syncWaitMs=5000	-Dsdjagent.managementAgentConnectDelayMs=0	-jar	/tmp/
type=OBJ_PID	msg=audit(10/05/22	08:47:31.523:278210)	:	opid=230677	oauid=unset	ouid=unknown(1000680000)	oses=-1	obj=system_u:system_r:container_t:s0:c15,c26	ocomm=java
type=SYSCALL	msg=audit(10/05/22	08:47:31.523:278210)	:	arch=x86_64	syscall=kill	success=yes	exit=0	a0=0x1	a1=SIGQUIT	a2=0x1	a3=0x7	items=0	ppid=149339	pid=218261	auid=unset	uid=unknown(1000680000)	gid=root	euid=unknown(1000680000)	suid=unknown(1000680000)	fsuid=unknown(1000680000)	egid=root	sgid=root	fsgid=root	tty=(none)	ses=unset	comm=main	exe=/opt/java/openjdk/jre/bin/java	subj=system_u:system_r:spc_t:s0	key=watchkill

18.	 In	the	OBJ_PID	line,	the	opid=	is	the	PID	of	the	program	receiving	the	signal.	Confirm	this	matches	the
worker	node	PID	of	the	pod	container	from	step	5	above.

19.	 In	the	PROCTITLE	line,	the	proctitle=	is	the	command	line	of	the	program	sending	the	signal.	In	the
SYSCALL	line,	the	pid=	is	the	PID	of	the	program	sending	the	signal	and	the	ppid=	is	the	parent	PID	of
that	program.

20.	 Search	for	the	pid=	in	ps;	for	example:

https://www.ibm.com/support/pages/mustgather-performance-hang-or-high-cpu-issues-websphere-application-server-linux-containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/auditing-the-system_security-hardening

ps	-elf	|	grep	218261

21.	 If	nothing	is	found	(i.e.	the	process	sending	the	signal	quickly	went	away),	search	for	the	 ppid=	in	ps;
for	example:

$	ps	-elf	|	grep	149339
0	S	root					149339	146443		0		80			0	-	642951	futex_	Sep21	?							01:23:32	java	-Xmx256m	-Djava.library.path=/opt/draios/lib	-Dsun.rmi.transport.connectionTimeout=2000	-Dsun.rmi.transport.tcp.handshakeTimeout=2000	-Dsun.rmi.transport.tcp.responseTimeout=2000	-Dsun.rmi.transport.tcp.readTimeout=2000	-jar	/opt/draios/share/sdjagent.jar

22.	 This	process	will	most	likely	be	driven	by	some	container.	The	parent	PID	is	the	5th	column,	so	just
keep	running	ps	-elf	up	that	chain	until	you	find	conmon;	for	example:

$	ps	-elf	|	grep	146441	|	grep	-v	grep
4	S	root					146441	146404		0		80			0	-		2977	do_wai	Sep21	?								00:00:00	/bin/bash	/var/tmp/sclXDwWEb
4	S	root					146443	146441		0		80			0	-	15984	hrtime	Sep21	?								00:01:14	/opt/draios/bin/dragent	--noipcns
$	ps	-elf	|	grep	146404	|	grep	-v	grep
4	S	root					146404	146391		0		80			0	-	13837	do_wai	Sep21	?								00:00:00	/usr/bin/scl	enable	llvm-toolset-7.0	--	/docker-entrypoint.sh
4	S	root					146441	146404		0		80			0	-		2977	do_wai	Sep21	?								00:00:00	/bin/bash	/var/tmp/sclXDwWEb
$	ps	-elf	|	grep	146391	|	grep	-v	grep
1	S	root					146391						1		0		80			0	-	30958	poll_s	Sep21	?								00:05:20	/usr/bin/conmon	-b	/var/data/crioruntimestorage/overlay-containers/681b13596d8c31f8e60e8b0a0973382fe73094f37ec13ff2fa32918996af06e7/userdata	[...]
4	S	root					146404	146391		0		80			0	-	13837	do_wai	Sep21	?								00:00:00	/usr/bin/scl	enable	llvm-toolset-7.0	--	/docker-entrypoint.sh

23.	 Take	the	hexadecimal	string	in	the	conmon	command	line	to	get	container	information;	for	example:

$	runc	state	681b13596d8c31f8e60e8b0a0973382fe73094f37ec13ff2fa32918996af06e7
	[...]
	"io.kubernetes.container.name":	"sysdig-agent",
	"io.kubernetes.pod.name":	"sysdig-agent-l49j6",
	"io.kubernetes.pod.namespace":	"ibm-observe",
	[...]

24.	 Therefore,	the	ultimate	cause	of	this	signal	was	the	sysdig-agent	container	in	the	sysdig-agent-
l49j6	pod	in	the	ibm-observe	namespace.

25.	 If	the	signal	audit	rule	is	no	longer	needed,	remove	it	from	/etc/audit/rules.d/audit.rules,	re-
generate	the	rules,	and	restart	auditd.

	

Liberty	in	OpenShift	Get	Javacore	Recipe

1.	 Ensure	you're	logged	in	with	oc
2.	 Find	the	relevant	pod(s):

$	oc	get	pods	--namespace	$NAMESPACE
NAME																												READY			STATUS				RESTARTS			AGE
mypod-7d57d6599f-tq7vt										1/1					Running			0										12m

3.	 Remote	into	the	pod	(if	it	has	more	than	one	container,	specify	the	container	with	-c	$CONTAINER):

$	oc	rsh	--namespace	$NAMESPACE	-t	$PODNAME
sh-4.4$	

4.	 Execute	server	javadump.	The	$WLP	path	is	usually	either	/opt/ibm/wlp	or	/opt/ol/wlp	depending
on	whether	it's	WebSphere	Liberty	or	OpenLiberty,	respectively:

$WLP/bin/server	javadump

5.	 Exit	the	remote	shell:

exit

6.	 Download	the	output	directory	that	has	the	javacore	(replace	$WLP	as	in	step	4):

oc	cp	--namespace	$NAMESPACE	$PODNAME:$WLP/output/defaultServer	libertyoutput

7.	 Zip	and	upload	the	libertyoutput	directory

	

Liberty	in	OpenShift	Get	Heapdump	Recipe

1.	 Ensure	you're	logged	in	with	oc
2.	 Find	the	relevant	pod(s):

$	oc	get	pods	--namespace	$NAMESPACE
NAME																												READY			STATUS				RESTARTS			AGE
mypod-7d57d6599f-tq7vt										1/1					Running			0										12m

3.	 Remote	into	the	pod	(if	it	has	more	than	one	container,	specify	the	container	with	-c	$CONTAINER):

$	oc	rsh	--namespace	$NAMESPACE	-t	$PODNAME
sh-4.4$	

4.	 Execute	server	javadump	with	the	heapdump	option.	The	$WLP	path	is	usually	either	/opt/ibm/wlp
or	/opt/ol/wlp	depending	on	whether	it's	WebSphere	Liberty	or	OpenLiberty,	respectively:

$WLP/bin/server	javadump	--include=heap

5.	 Exit	the	remote	shell:

exit

6.	 Download	the	output	directory	that	has	the	heapdump	(replace	$WLP	as	in	step	4):

oc	cp	--namespace	$NAMESPACE	$PODNAME:$WLP/output/defaultServer	libertyoutput

7.	 Zip	and	upload	the	libertyoutput	directory

	

Liberty	in	OpenShift	Get	System	Dump	Recipe

1.	 This	procedure	requires	logging	into	oc	with	a	user	with	cluster-admin	superuser	privileges
1.	 Ensure	you're	logged	in	with	oc

2.	 Find	the	relevant	pod(s):

$	oc	get	pods	--namespace	$NAMESPACE
NAME																												READY			STATUS				RESTARTS			AGE
mypod-7d57d6599f-tq7vt										1/1					Running			0										12m

3.	 Remote	into	the	pod	(if	it	has	more	than	one	container,	specify	the	container	with	-c	$CONTAINER):

$	oc	rsh	--namespace	$NAMESPACE	-t	$PODNAME
sh-4.4$	

4.	 Execute	the	following	command	to	determine	the	core_pattern:

cat	/proc/sys/kernel/core_pattern

5.	 If	core_pattern	starts	with	a	|,	then	it	will	be	sent	to	the	worker	node.	Otherwise,	ensure	the
specified	directory	exists	in	the	container.

6.	 Execute	server	javadump	with	the	system	dump	option.	The	$WLP	path	is	usually	either
/opt/ibm/wlp	or	/opt/ol/wlp	depending	on	whether	it's	WebSphere	Liberty	or	OpenLiberty,
respectively:

$WLP/bin/server	javadump	--include=system

It	is	a	common	and	expected	error	that	the	core	dump	is	not	found	since	it	goes	to	the	worker	node;	for
example:

The	core	file	created	by	child	process	with	pid	=	$PID	was	not	found

7.	 If	core_pattern	did	not	start	with	a	|,	retrieve	the	core	dump	from	the	core_pattern	directory	inside
the	container.	Otherwise,	continue	to	the	next	steps.

8.	 Exit	the	remote	shell:

exit

9.	 Find	the	worker	node	of	the	pod:

oc	get	pod	--namespace	$NAMESPACE	--output	"jsonpath={.spec.nodeName}{'\n'}"	$PODNAME

10.	 Start	a	debug	pod	on	the	worker	node:

oc	debug	node/$NODE	-t

11.	 If	core_pattern	ends	with	systemd-coredump,	dumps	should	be	in	/var/lib/systemd/coredump/.	If
it	ends	with	apport,	dumps	should	be	in	/var/crash/	or	/var/lib/apport/coredump/.	If	it	ends	with
rdp,	review	/opt/dynatrace/oneagent/agent/conf/original_core_pattern.

12.	 List	the	directory	from	the	last	step	with:

chroot	/host/$DUMPSDIRECTORY

13.	 Now	we'll	use	this	debug	pod	to	download	the	file.	First	start	a	looping	output	so	that	the	debug	pod
doesn't	timeout	by	executing:

while	true;	do	echo	'Sleeping';	sleep	8;	done

14.	 Next,	open	a	new	terminal	and	find	the	debug	pod	and	namespace:

$	oc	get	pods	--field-selector=status.phase==Running	--all-namespaces	|	grep	debug
openshift-debug-node-pwcn42r47f							worker3-debug							1/1					Running												0																		3m38s

15.	 Use	the	above	namespace	(first	column)	and	pod	name	(second	column)	to	download	the	core	dump
from	the	worker	node	from	the	Storage	location	above,	making	sure	to	prefix	the	Storage	location	with
/host/;	for	example:

oc	cp	--namespace	openshift-debug-node-pwcn42r47f	worker3-debug:/host/var/lib/systemd/coredump/core.kernel-command-.1000650000.08b9e28f46b348f3aabdffc6896838e0.2923161.1659552745000000.lz4	core.dmp.lz4

16.	 After	the	download	completes,	in	the	previous	terminal	window,	type	Ctrl^C	to	exit	the	loop	and	then
type	exit	to	end	the	debug	pod

17.	 Upload	core.dmp.lz4

	

Replace	Container	Directory	in	OpenShift

A	directory	inside	a	container	may	be	replaced	without	re-building	an	image	by	mounting	a	volume	on	the
target	directory	and	populating	that	volume	within	an	initContainer.

1.	 Determine	the	directory	you	want	to	replace.	If	needed,	oc	exec	into	the	container	and	find	the	target
directory.

2.	 Edit	the	pod	or	deployment	YAML.	For	example:

oc	edit	deployment	deployment1

3.	 Add	a	shared,	ephemeral	volume	to	the	pod.	For	example:

spec:
		volumes:
		-	name:	shared-data
				emptyDir:	{}

4.	 Add	an	initContainer	that	mounts	the	shared	volume	and	sleeps	for	enough	time	to	upload	the
directory	to	it.	For	example:

spec:
		initContainers:
		-	name:	initcontainer
				image:	fedora

				command:	["/bin/sh",	"-c",	"sleep	180"]
				volumeMounts:
				-	mountPath:	/tmp/mounted
						name:	shared-data

5.	 Add	the	shared	volume	to	the	target	container	at	the	target	directory.	For	example:

spec:
		containers:
		-	name:	...
				volumeMounts:
				-	mountPath:	/opt/java/openjdk
						name:	shared-data

6.	 Save	the	YAML	and	the	pod/deployment	will	restart
7.	 Wait	for	the	pod	to	restart	and	show	in	an	Init	state.	For	example:

$	oc	get	pods
NAME																										READY			STATUS					RESTARTS			AGE
liberty1-b86b797cb-d42nd						0/1					Init:0/1			0										3s

8.	 Copy	the	files	for	the	destination	directory	into	the	init	container.	For	example:

oc	cp	-c	initcontainer	JDKdebugbuild.tar.gz	liberty1-b86b797cb-d42nd:/tmp/

9.	 Remote	into	the	init	container	and	organize	the	target	directory	under	/tmp/mounted	as	needed.	For
example:

$	oc	exec	-it	liberty1-b86b797cb-d42nd	-c	initcontainer	--	bash
		$	cd	/tmp
		$	tar	xzf	JDKdebugbuild.tar.gz
		$	mv	jdk/*	/tmp/mounted/

10.	 Wait	for	the	sleep	time	of	the	init	container	to	elapse	and	the	target	container	will	start.
11.	 If	required,	remote	into	the	target	container	and	confirm	the	target	directory	has	been	updated	properly.

For	example:

$	oc	exec	-it	liberty1-b86b797cb-d42nd	--	bash
		$	/opt/java/openjdk/bin/java	-version
		OpenJDK	Runtime	Environment	(build	11.0.21-internal+0-adhoc..BuildJDK11x86-64linuxPersonal)
		[...]

	

Execute	a	Script	in	a	Container	on	Startup	in	OpenShift

1.	 Confirm	the	process	ID	(PID)	of	the	target	process	in	a	running	container.	It	is	common,	though	not
required,	that	Liberty	is	PID	1.

2.	 Edit	the	pod	or	deployment	YAML.	For	example:

oc	edit	deployment	deployment1

3.	 Add	a	lifecycle.postStart.exec.command	element	to	the	target	container	that	executes	a	diagnostic
script.	For	example,	the	following	sleeps	5	seconds	and	then	gathers	5	javacores	10	seconds	apart
(change	PID	as	required):

spec:
		containers:
		-	name:	...
				lifecycle:
						postStart:
								exec:
										command:	["/bin/sh",	"-c",	"echo	'sleep	5;	PID=1;	i=0;	while	[$i	-le	5];	do	kill	-3	$PID;	sleep	10;	i=$((i	+	1));	done'	>	/tmp/diag.sh;	chmod	+x	/tmp/diag.sh;	/tmp/diag.sh	&"]

4.	 Save	the	YAML	and	the	pod/deployment	will	restart

Notes:

1.	 The	script	is	run	in	the	background	because	Kubernetes	won't	set	the	container	to	RUNNING	until	the
postStart	script	"completes".

	

Troubleshooting	Java	Recipes
1.	 Troubleshooting	OpenJ9	and	IBM	J9	Recipes

	

Troubleshooting	IBM	Java	Recipes
This	chapter	has	been	renamed	to	Troubleshooting	OpenJ9	and	IBM	J9	Recipes.

	

General
Theory
Methodology
Statistics
Testing

	

Theory

Aspects	of	Performance	Tuning
	

Why	does	performance	matter?

Gallino,	Karacaoglu,	&	Moreno	(2018)	found	that	"a	10	percent	decrease	in	website	performance	leads	to	a
2.6	percent	decrease	in	retailers'	revenue	and	a	decrease	of	0.05	percentage	points	in	conversion,	after
controlling	for	traffic	and	a	battery	of	fixed	effects.	[...]	Delays	of	100	milliseconds	have	a	significant	impact
on	customer	abandonment."

A	typical	performance	exercise	can	yield	a	throughput	improvement	of	about	200%	relative	to	default	tuning
parameters.

Indirect	benefits	of	improved	performance	include	reduced	hardware	needs	and	reduced	costs,	reduced
maintenance,	reduced	power	consumption,	knowing	your	breaking	points,	accurate	system	sizing,	etc.

Increased	performance	may	involve	sacrificing	a	certain	level	of	feature	or	function	in	the	application	or	the
application	server.	The	tradeoff	between	performance	and	feature	must	be	weighed	carefully	when
evaluating	performance	tuning	changes.

	

Basic	Definitions

In	general,	the	goal	of	performance	tuning	is	to	increase	throughput,	reduce	response	times,	and/or	increase

https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/#discussion
http://dx.doi.org/10.2139/ssrn.3260203

the	capacity	for	concurrent	requests,	all	balanced	against	costs.

A	response	time	is	the	time	taken	to	complete	a	unit	of	work.	For	example,	the	time	taken	to	complete
an	HTTP	response.
The	number	of	concurrent	requests	is	the	count	of	requests	processing	at	the	same	time	over	some
fixed	time	interval	(e.g.	per	second).	For	example,	the	number	of	HTTP	requests	concurrently	being
processed	per	second.	A	single	user	may	send	multiple	concurrent	requests.
Throughput	is	the	number	of	responses	over	some	fixed	time	interval	(e.g.	per	second).	For	example,
successful	HTTP	responses	per	second.
A	hypothesis	is	a	testable	idea.	It	is	not	believed	to	be	true	nor	false.
A	theory	is	the	result	of	testing	a	hypothesis	using	evidence	and	getting	a	positive	result.	It	is	believed
to	be	true.

	

Common	Throughput	Curve

A	common	throughput	curve	includes	a	saturation	point	and	may	include	a	buckle	zone:

In	the	heavy	load	zone	or	Section	B,	as	the	concurrent	client	load	increases,	throughput	remains
relatively	constant.	However,	the	response	time	increases	proportionally	to	the	user	load.	That
is,	if	the	user	load	is	doubled	in	the	heavy	load	zone,	the	response	time	doubles.	At	some	point,
represented	by	Section	C,	the	buckle	zone,	one	of	the	system	components	becomes	exhausted.
At	this	point,	throughput	starts	to	degrade.	For	example,	the	system	might	enter	the	buckle	zone
when	the	network	connections	at	the	web	server	exhaust	the	limits	of	the	network	adapter	or	if
the	requests	exceed	operating	system	limits	for	file	handles.

	

Response	Time	vs.	Latency

Some	define	latency	as	a	synonym	for	the	response	time	(the	time	between	a	stimulus	and	a	response),	or	as	a
subset	or	superset	of	the	response	time.	Others	define	latency	along	a	more	strict	and	classical	definition
"concealed	or	inactive";	i.e.,	external	to	queue	processing	time	(most	commonly	understood	as	transit	or
network	time).	This	book	prefers	the	latter	definition	(as	detailed	in	practical	queuing	theory);	although,	in
general,	we	try	to	avoid	the	word	latency	due	to	this	ambiguity.

	

Architecture/Clustering

It	is	always	important	to	consider	what	happens	when	some	part	of	a	cluster	crashes.	Will	the	rest	of	the

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=network-queue-configuration-best-practices
https://en.wiktionary.org/wiki/latent#English

cluster	handle	it	gracefully?	Does	the	heap	size	have	enough	head	room?	Is	there	enough	CPU	to	handle
extra	load,	etc.?	If	there	is	more	traffic	than	the	cluster	can	handle,	will	it	queue	and	timeout	gracefully?

	

Methodology
There	are	various	theoretical	methodologies	such	as	the	USE	Method	and	others	which	are	useful	to	review.

Begin	by	understanding	that	one	cannot	solve	all	problems	immediately.	We	recommend	prioritizing	work
into	short	term	(high),	3	months	(medium)	and	long	term	(low).	How	the	work	is	prioritized	depends	on	the
business	requirements	and	where	the	most	pain	is	being	felt.

Guide	yourself	primarily	with	tools	and	methodologies.	Gather	data,	analyze	it,	create	hypotheses,	and	test
your	hypotheses.	Rinse	and	repeat.	In	general,	we	advocate	a	bottom-up	approach.	For	example,	with	a
typical	WebSphere	Application	Server	application,	start	with	the	operating	system,	then	Java,	then	WAS,
then	the	application,	etc.	(ideally,	investigate	all	at	the	same	time).

The	following	are	some	example	scenarios	and	approaches.	They	are	specific	to	particular	products	and
symptoms	and	they	are	just	a	taste	of	how	to	do	performance	tuning.	Later	chapters	will	go	through	the
details.

Poor	performance	occurs	with	only	a	single	user:	Focus	on	the	component	accounting	for	the	most
time.	Check	for	resource	consumption,	including	frequency	of	garbage	collections.	You	might	need
code	profiling	tools	to	isolate	the	problem	to	a	specific	method.
Poor	performance	only	occurs	with	multiple	users:	Check	to	determine	if	any	systems	have	high	CPU,
network	or	disk	utilization	and	address	those.	For	clustered	configurations,	check	for	uneven	loading
across	cluster	members.
None	of	the	systems	seems	to	have	a	CPU,	memory,	network,	or	disk	constraint	but	performance
problems	occur	with	multiple	users:

Check	that	work	is	reaching	the	system	under	test.	Ensure	that	some	external	device	does	not
limit	the	amount	of	work	reaching	the	system.
A	thread	dump	might	reveal	a	bottleneck	at	a	synchronized	method	or	a	large	number	of	threads
waiting	for	a	resource.
Make	sure	that	enough	threads	are	available	to	process	the	work	both	in	IBM	HTTP	Server,
database,	and	the	application	servers.	Conversely,	too	many	threads	can	increase	resource
contention	and	reduce	throughput.
Monitor	garbage	collections	or	the	verbosegc	option	of	your	Java	virtual	machine.	Excessive
garbage	collection	can	limit	throughput.

Other	useful	links:

If	you	need	tuning	assistance,	IBM	Services	provides	professional	consultants	to	help.
On	Designing	and	Deploying	Internet-Scale	Services

	

Methodology	Best	Practices

1.	 Methodically	capture	data	and	logs	for	each	test	and	record	results	in	a	spreadsheet.	In	general,	it	is
best	to	change	one	varaible	at	a	time.	Example	test	matrix:

Test
#

Start
Time

Ramped
Up End	Time ConcurrentUsers

Average
Throughput
(Responses	per

Second)

Average
Response
Time	(ms)

Average
WAS
CPU%

Average
Database
CPU%

https://queue.acm.org/detail.cfm?id=2413037
https://www.youtube.com/watch?v=abLan0aXJkw&t=326s
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=performance-troubleshooting-problems
https://www.ibm.com/services
https://www.usenix.org/legacy/event/lisa07/tech/full_papers/hamilton/hamilton_html/index.html

1

2020-01-
01
14:00:00
UTC

2020-01-
01
14:30:00
UTC

2020-01-
01
16:00:00
UTC

10 50 100 25 25

Test
#

Start
Time

Ramped
Up End	Time ConcurrentUsers

Average
Throughput
(Responses	per

Second)

Average
Response
Time	(ms)

Average
WAS
CPU%

Average
Database
CPU%

2.	 Use	a	flow	chart	that	everyone	agrees	to.	Otherwise,	alpha	personalities	or	haphazard	and	random
testing	are	likely	to	prevail,	and	these	are	less	likely	to	succeed.	The	following	is	just	an	example.

Depth	first	means	first	"fill	in"	application	server	JVMs	within	a	node	before	scaling	across	multiple
nodes.	The	following	are	example	hypotheses	that	are	covered	in	more	detail	in	each	product	chapter.
They	are	summarized	here	just	for	illustration	of	hypotheses:

CPU	is	low,	so	we	can	increase	threads.
CPU	is	low,	so	there	is	lock	contention	(gather	monitor	contention	data	through	a	sampling
profiler	such	as	IBM	Java	Health	Center).
CPU	is	high,	so	we	can	decrease	threads	or	investigate	possible	code	issues	(gather	profiling	data
through	a	sampling	profiler	such	as	IBM	Java	Health	Center).
Garbage	collection	overhead	is	high,	so	we	can	tune	it.
Connection	pool	wait	times	are	high,	so	we	can	increase	the	size	of	the	connection	pool	(if	the
total	number	of	connections	do	not	exceed	the	limits	in	the	database).
Database	response	times	are	high	(also	identified	in	thread	dumps	with	many	threads	stuck	in
SQL	calls),	so	we	can	investigate	the	database.

3.	 Deeply	understand	the	logical,	physical,	and	network	layout	of	the	systems.	Create	a	rough	diagram	of
the	relevant	components	and	important	details.	For	example,	how	are	the	various	systems	connected
and	do	they	share	any	resources	(potential	bottlenecks)	such	as	networks,	buses,	etc?	Are	the	operating

systems	virtualized?	It's	also	useful	to	understand	the	processor	layout	and	in	particular,	the	L2/L3
cache	(and	NUMA)	layouts	as	you	may	want	to	"carve	out"	processor	sets	along	these	boundaries.

4.	 Most,	if	not	all,	benchmarks	have	a	target	maximum	concurrent	user	count.	This	is	usually	the	best
place	to	start	when	tuning	the	various	queue	sizes,	thread	pools,	etc.

5.	 Averages	should	be	used	instead	of	spot	observations.	For	important	statistics	such	as	throughput,
getting	standard	deviations	would	be	ideal.

6.	 Each	test	should	have	a	sufficient	"ramp	up"	period	before	data	collection	starts.	Applications	may
take	time	to	cache	certain	content	and	the	Java	JIT	will	take	time	to	optimally	compile	hot	methods.

7.	 Monitor	all	parts	of	the	end-to-end	system.

8.	 Consider	starting	with	an	extremely	simplified	application	to	ensure	that	the	desired	throughput	can	be
achieved.	Incrementally	exercise	each	component:	for	example,	a	Hello	World	servlet,	followed	by	a
servlet	that	does	a	simple	select	from	a	database,	etc.	This	lets	you	confirm	that	end-to-end	"basics"
work,	including	the	load	testing	apparatus.

9.	 Run	a	saturation	test	where	everything	is	pushed	to	the	maximum	(may	be	difficult	due	to	lack	of	test
data	or	test	machines).	Make	sure	things	don't	crash	or	break.

	

Is	changing	one	variable	at	a	time	always	correct?

It's	common	wisdom	that	one	should	always	change	one	variable	at	a	time	when	investigating	problems,
performance	testing,	etc.	The	idea	is	that	if	you	change	more	than	one	variable	at	a	time,	and	the	problem
goes	away,	then	you	don't	know	which	one	solved	it.	For	example,	let's	say	one	changes	the	garbage
collection	policy,	maximum	heap	size,	and	some	of	the	application	code,	and	performance	improves,	then
one	doesn't	know	what	helped.

The	premise	underlying	this	wisdom	is	that	all	variables	are	independent,	which	is	sometimes	(maybe
usually,	to	different	degrees)	not	the	case.	In	the	example	above,	the	garbage	collection	policy	and	maximum
heap	size	are	intimately	related.	For	example,	if	you	change	the	GC	policy	to	gencon	but	don't	increase	the
maximum	heap	size,	it	may	not	be	a	fair	comparison	to	a	non-gencon	GC	policy,	because	the	design	of
gencon	means	that	some	proportion	of	the	heap	is	no	longer	available	relative	to	non-gencon	policies	(due	to
the	survivor	space	in	the	nursery,	based	on	the	tilt	ratio).

What's	even	more	complicated	is	that	it's	often	difficult	to	reason	about	variable	independence.	For	example,
most	variables	have	indirect	effects	on	processor	usage	or	other	shared	resources,	and	these	can	have	subtle
effects	on	other	variables.	The	best	example	is	removing	a	bottleneck	at	one	tier	overloads	another	tier	and
indirectly	affects	the	first	tier	(or	exercises	a	new,	worse	bottleneck).

So	what	should	one	do?	To	start,	accept	that	changing	one	variable	at	a	time	is	not	always	correct;	however,
it's	often	a	good	starting	point.	Unlesss	there's	a	reason	to	believe	that	changing	multiple,	dependent	variables
makes	sense	(for	example,	comparing	gencon	to	non-gencon	GC	policies),	then	it's	fair	to	assume	initially
that,	even	if	variables	may	not	be	truly	independent,	the	impact	of	one	variable	commonly	drowns	out	other
variables.

Just	remember	that	ideally	you	would	test	all	combinations	of	the	variables.	Unfortunately,	as	the	number	of
variables	increases,	the	number	of	tests	increases	exponentially.	Specifically,	for	N	variables,	there	are	(2N	-
1)	combinations.	For	example,	for	two	variables	A	and	B,	you	would	test	A	by	itself,	B	by	itself,	and	then	A
and	B	together	(22	-	1	=	3).	However,	by	just	adding	two	more	variables	to	make	the	total	four	variables,	it
goes	up	to	15	different	tests.

There	are	three	reasons	to	consider	this	question:

First,	it's	an	oversimplification	to	think	that	one	should	always	change	one	variable	at	a	time,	and	it's
important	to	keep	in	the	back	of	one's	head	that	if	changing	one	variable	at	a	time	doesn't	work,	then
changing	multiple	variables	at	a	time	might	(of	course,	they	might	also	just	be	wrong	or	inconsequential
variables).

Second,	particularly	for	performance	testing,	even	if	changing	a	single	variable	improves	performance,	it's
possible	that	changing	some	combination	of	variables	will	improve	performance	even	more.	Which	is	to	say
that	changing	a	single	variable	at	a	time	is	non-exhaustive.

Finally,	it's	not	unreasonable	to	try	the	alternative,	scattershot	approach	first	of	changing	all	relevant
variables	at	the	same	time,	and	if	there	are	benefits,	removing	variables	until	the	key	ones	are	isolated.	This
is	more	risky	because	there	could	be	one	variable	that	makes	an	improvement	and	another	that	cancels	that
improvement	out,	and	one	may	conclude	too	much	from	this	test.	However,	one	can	also	get	lucky	by
observing	some	interesting	behavior	from	the	results	and	then	deducing	what	the	important	variable(s)	are.
This	is	sometimes	helpful	when	one	doesn't	have	much	time	and	is	feeling	lucky	(or	has	some	gut	feelings	to
support	this	approach).

So	what's	the	answer	to	the	question,	"Is	changing	one	variable	at	a	time	always	correct?"

No,	it's	not	always	correct.	Moreover,	it's	not	even	optimal,	because	it's	non-exhaustive.	But	it	usually	works.

	

Keep	a	Playbook

When	a	naval	ship	declares	"battle	stations"	there	is	an	operations	manual	that	every	sailor	on	the	ship	is
familiar	with,	knows	where	they	need	to	go	and	what	they	need	to	do.	Much	like	any	navy	when	a	problem
occurs	that	negatively	affects	the	runtime	environment	it	is	helpful	for	everyone	to	know	where	they	need	to
be	and	who	does	what.

Each	issue	that	occurs	is	an	educational	experience.	Effective	organizations	have	someone	on	the	team
taking	notes.	This	way	when	history	repeats	itself	the	team	can	react	more	efficiently.	Even	if	a	problem	does
not	reappear	the	recorded	knowledge	will	live	on.	Organizations	are	not	static.	People	move	on	to	new
projects	and	roles.	The	newly	incoming	operations	team	members	can	inherit	the	documentation	to	see	how
previous	problems	were	solved.

For	each	problem,	consider	recording	each	of	the	following	points:

1.	 Symptom(s)	of	the	problem	-	brief	title
2.	 More	detailed	summary	of	the	problem.

1.	 Who	reported	the	problem?
2.	 What	exactly	is	the	problem?

3.	 Summary	of	all	the	people	that	were	involved	in	troubleshooting	and	what	was	their	role?	The	role	is
important	because	it	will	help	the	new	team	understand	what	roles	need	to	exist.

4.	 Details	of
1.	 What	data	was	collected?
2.	 Who	looked	at	the	data?
3.	 The	result	of	their	analysis
4.	 What	recommendations	were	made
5.	 Did	the	recommendations	work	(i.e.	fix	the	problem)?

	

Statistics

Basic	statistics

Average/Mean	(μ):	An	average	is	most	commonly	an	arithmetic	mean	of	a	set	of	values,	calculated	as

the	sum	of	a	set	of	values,	divided	by	the	count	of	values:	μ	=	(x1	+	x2	+	...	+	xN)/N.	For	example,	to
calculate	the	average	of	the	set	of	values	(10,	3,	3,	1,	99),	sum	the	values	(116),	and	divide	by	the
count,	5	(μ=23.2).
Median:	A	median	is	the	middle	value	of	a	sorted	set	of	values.	For	example,	to	calculate	the	median
of	the	set	of	values	(10,	3,	3,	1,	99),	sort	the	values	(1,	3,	3,	10,	99),	and	take	the	midpoint	value	(3).	If
the	count	of	values	is	even,	then	the	median	is	the	average	of	the	middle	two	values.
Mode:	A	mode	is	the	value	that	occurs	most	frequently.	For	example,	to	calculate	the	mode	of	the	set
of	values	(10,	3,	3,	1,	99),	find	the	value	that	occurs	the	most	times	(3).	If	multiple	values	share	this
property,	then	the	set	is	multi-modal.
Standard	Deviation	(σ):	A	standard	deviation	is	a	measure	of	how	far	a	set	of	values	are	spread	out
relative	to	the	mean,	with	a	standard	deviation	of	zero	meaning	all	values	are	equal,	and	more
generally,	the	smaller	the	standard	deviation,	the	more	the	values	are	closer	to	the	mean.	If	the	set	of
values	is	the	entire	population	of	values,	then	the	population	standard	deviation	is	calculated	as	the
square	root	of	the	average	of	the	squared	differences	from	the	mean:	σ	=	√(((x1	-	μ)2	+	(x2	-	μ)2	+	...
+	(xN	-	μ)2)	/	N).	If	the	set	of	values	is	a	sample	from	the	entire	population,	then	the	sample	standard
deviation	uses	the	division	(N	-	1)	instead	of	N.
Confidence	Interval:	A	confidence	interval	describes	the	range	of	values	in	which	the	true	mean	has	a
high	likelihood	of	falling	(usually	95%),	assuming	that	the	original	random	variable	is	normally
distributed,	and	the	samples	are	independent.	If	two	confidence	intervals	do	not	overlap,	then	it	can	be
concluded	that	there	is	a	difference	at	the	specified	level	of	confidence	in	performance	between	two
sets	of	tests.
Relative	change:	The	ratio	of	the	difference	of	a	new	quantity	(B)	minus	an	old	quantity	(A)	to	the	old
quantity:	(B-A)/A.	Multiply	by	100	to	get	the	percent	change.	If	A	is	a	"reference	value"	(e.g.
theoretical,	expected,	optimal,	starting,	etc.),	then	relative/percent	change	is	relative/percent	difference.

Small	sample	sizes	(N)	and	large	variability	(σ)	decrease	the	likelihood	of	correct	interpretations	of	test
results.

Here	is	R	code	that	shows	each	of	these	calculations	(the	R	project	is	covered	under	the	Major	Tools
chapter):

>	values=c(10,	3,	3,	1,	99)
>	mean(values)
[1]	23.2
>	median(values)
[1]	3
>	summary(values)	#	A	quick	way	to	do	the	above
			Min.	1st	Qu.		Median				Mean	3rd	Qu.				Max.
				1.0					3.0					3.0				23.2				10.0				99.0
>	mode	=	function(x)	{	ux	=	unique(x);	ux[which.max(tabulate(match(x,	ux)))]	}
>	mode(values)
[1]	3
>	sd(values)	#	Sample	Standard	Deviation
[1]	42.51118
>	error	=	qt(0.975,df=length(values)-1)*(sd(values)/sqrt(length(values)))
>	ci	=	c(mean(values)	-	error,	mean(values)	+	error)
>	ci	#	Confidence	Interval	at	95%
[1]	-29.5846		75.9846

	

Amdahl's	Law

Amdahl's	Law	states	that	the	maximum	expected	improvement	to	a	system	when	adding	more	parallelism
(e.g.	more	CPUs	of	the	same	speed)	is	limited	by	the	time	needed	for	the	serialized	portions	of	work.	The
general	formula	is	not	practically	calculable	for	common	workloads	because	they	usually	include
independent	units	of	work;	however,	the	result	of	Amdahl's	Law	for	common	workloads	is	that	there	are
fundamental	limits	of	parallelization	for	system	improvement	as	a	function	of	serialized	execution	times.

In	general,	because	no	current	computer	system	avoids	serialization	completely,	Amdahl's	Law	shows	that,

all	other	things	equal,	the	throughput	curve	of	a	computer	system	will	approach	an	asymptote	(which	is
limited	by	the	bottlenecks	of	the	system)	as	number	of	concurrent	users	increases:

Relatedly,	response	times	follow	a	hockey	stick	pattern	once	saturation	occurs:

Fig.	3	shows	the	canonical	system	response	time	characteristic	R	(the	dark	curve).	This	shape	is
often	referred	to	as	the	response	hockey	stick.	It	is	the	kind	of	curve	that	would	be	generated	by
taking	time-averaged	delay	measurements	in	steady	state	at	successive	client	loads.	The	dashed
lines	in	Fig.	3	also	represent	bounds	on	the	response	time	characteristic.	The	horizontal	dashed
line	is	the	floor	of	the	achievable	response	time	Rmin.	It	represents	the	shortest	possible	time	for
a	request	to	get	though	the	system	in	the	absence	of	any	contention.	The	sloping	dashed	line
shows	the	worst	case	response	time	once	saturation	has	set	in.

	

https://arxiv.org/pdf/cs/0404043v1.pdf

Queuing	Theory

Queuing	theory	is	a	branch	of	mathematics	that	may	help	model,	analyze,	and	predict	the	behavior	of	queues
when	requests	(e.g.	HTTP	requests)	flow	through	a	set	of	servers	(e.g.	application	threads)	or	a	network	of
queues.	The	models	are	approximations	with	various	assumptions	that	may	or	may	not	be	applicable	in	real
world	situations.	There	are	a	few	key	things	to	remember:

A	server	is	the	thing	that	actually	processes	a	request	(e.g.	an	application	thread).
A	queue	is	a	buffer	in	front	of	the	servers	that	holds	requests	until	a	server	is	ready	to	process	them
(e.g.	a	socket	backlog,	or	a	thread	waiting	for	a	connection	from	a	pool).
The	arrival	rate	(λ)	is	the	rate	at	which	requests	enter	a	queue.	It	is	often	assumed	to	have	the
characteristics	of	a	random/stochastic/Markovian	distribution	such	as	the	Poisson	distribution.
The	service	time	(µ)	is	the	average	response	time	of	servers	at	a	queue.	Similar	to	the	arrival	rate,	it	is
often	assumed	to	have	the	characteristics	of	a	Markovian	distribution	such	as	the	Exponential
distribution.
Queues	are	described	using	Kendall's	notation:	A/S/c

A	is	the	distribution	of	arrivals,	which	is	normally	M	for	Markovian	(e.g.	Poisson),
S	is	the	distribution	of	service	times,	which	is	normally	M	for	Markovian	(e.g.	Expontential),
c	is	the	number	of	concurrent	servers	(e.g.	threads).

Therefore,	the	most	common	type	of	a	queue	we	will	deal	with	is	an	M/M/c	queue.

For	example,	we	will	model	a	typical	three	tier	architecture	with	a	web	server	(e.g.	IHS),	application	server
(e.g.	WAS),	and	a	database:

This	is	a	queuing	network	of	three	multi-server	queues	in	series.	Steady	state	analysis	can	be	done	by
analyzing	each	tier	independently	as	a	multi-server	M/M/c	queue.	This	is	so	because	it	was	proved	that	in	a
network	where	multi-server	queues	are	arranged	in	series,	the	steady	state	departure	processes	of	each	queue
are	the	same	as	the	arrival	process	of	the	next	queue.	That	is,	if	the	arrival	process	in	the	first	multi-server
queue	is	Poisson	with	parameter	λ	then	the	steady	state	departure	process	of	the	same	queue	will	also	be
Poisson	with	rate	λ,	which	means	the	steady	state	arrival	and	departure	processes	of	the	2nd	multi-server
queue	will	also	be	Poisson	with	rate	λ.	This	in	turn	means	that	the	steady	state	arrival	and	departure	processes

https://en.wikipedia.org/wiki/Queueing_theory
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Kendall%2527s_notation

of	the	3rd	multi-server	queue	will	also	be	Poisson	with	rate	λ.

Assumptions:

The	arrival	process	is	Poisson	with	rate	λ.	That	is,	the	inter-arrival	time	T1	between	arrivals	of	two
successive	requests	(customers)	is	exponentially	distributed	with	parameter	λ.	This	means:

The	service	rate	of	each	server	is	exponentially	distributed	with	parameter	µ,	that	is	the	distribution	of
the	service	time	is:

1.	Stability	Condition:	The	arrival	rate	has	to	be	less	than	the	service	rate	of	m	servers	together.	That	is:

2.	State	Occupancy	Probability:

pi	=	Probability	that	there	are	i	customers	(requests)	in	the	system	(at	service)

pm+k	=	Probability	that	there	are	m+k	customers	(requests)	in	the	system	(m	at	service	and	k	waiting	in	the
queue)

3.	Probability	that	a	Customer	(Request)	has	to	Wait:

4.	Expected	number	of	Busy	Servers:

5.	Expected	number	of	Waiting	Requests:

6.	Expected	Waiting	Time	in	the	Queue:

7.	Expected	Waiting	Time	in	the	Queue:

8.	Expected	Waiting	Time	in	the	System:

To	obtain	performance	measures	of	the	Web	Server,	Application	Server	and	Database	Server,	we	replace	m
in	the	above	given	formulae	by	NWS,	NAS	and	NDS,	respectively	and	replace	µ	by	1/TWS,	1/TAS	and	1/TDS,
respectively.	As	an	example,	the	performance	measures	for	the	Web	Server	are	given	below.	The
performance	measures	for	App	Server	and	the	DB	Server	can	be	obtained	in	the	same	way.

1W.	Stability	Condition	for	Web	Server	Queue:

2W.	Web	Server	State	Occupancy	Probability:

pi	=	Probability	that	there	are	i	customers	(requests)	in	the	system	(at	service)

pNws+k=	Probability	that	there	are	NWS+k	customers	(requests)	in	the	system	(NWS	at	service	and	k	waiting
in	the	queue)

3W.	Probability	that	a	Customer	(Request)	has	to	Wait	at	the	Web	Server:

4W.	Expected	number	of	Busy	Web	Servers:

5W.	Expected	number	of	Requests	Waiting	at	the	Web	Server	Queue:

6W.	Expected	Waiting	Time	in	the	Web	Server	Queue:

7W.	Expected	number	of	Requests	in	the	Web	Server:

8W.	Expected	Waiting	Time	in	the	Web	Server:

		

Little's	Law

Little's	Law	states	that	the	long-term	average	number	of	requests	in	a	stable	system	(L)	is	equal	to	the	long-
term	average	effective	arrival	rate,	λ,	multiplied	by	the	(Palm-)average	time	a	customer	spends	in	the	system,
W;	or	expressed	algebraically:	L	=	λW.

	

Practical	Queuing	Theory

The	key	takeaways	from	above	are	that	queues	are	largely	a	function	of	three	variables:	arrival	rate,	number
of	threads,	and	service	time	which	may	be	visualized	with	the	following	key	performance	indicators	(KPIs):

There	are	seven	key	things	that	ideally	should	be	monitored	at	as	many	layers	as	possible,	both	for
diagnosing	performance	problems	and	planning	for	scalability:

1.	 Service	Time:	the	average	time	it	takes	to	complete	a	request	by	a	server	thread.	Think	of	a	cashier	at	a
supermarket	and	the	average	time	it	takes	a	cashier	to	check	out	a	customer.

2.	 Utilization:	the	total	number	of	available	server	threads	and	the	average	percentage	used.	Think	of	the
number	of	cashiers	at	a	supermarket	and	the	average	percentage	actively	processing	a	customer.

https://en.wikipedia.org/wiki/Little%2527s_law

3.	 Arrival	Rate:	the	rate	at	which	work	arrives	at	the	queue.	Think	of	the	rate	at	which	customers	arrive
at	a	supermarket	checkout	line.

4.	 Response	Time:	the	average	time	it	takes	to	wait	in	the	queue	plus	the	service	time.	Think	of	the
average	time	it	takes	a	customer	to	stand	in	line	at	a	checkout	line	plus	the	average	time	it	takes	a
cashier	to	check	out	a	customer.

5.	 Queue	Depth:	the	average	size	of	the	waiting	queue.	Think	of	the	average	number	of	customers	at	a
supermarket	waiting	in	a	queue	of	a	checkout	line.

6.	 Error	Rate:	the	rate	of	errors	processing	requests.	Think	of	the	rate	at	which	customers	at	a
supermarket	fail	to	complete	a	check	out	and	leave	the	store	(on	the	internet,	they	might	immediately
come	back	by	refreshing).

7.	 Latency:	The	time	spent	in	transit	to	the	queue.

The	above	six	statistics	will	be	called	Key	Queue	Statistics	(and	OS	CPU,	memory,	disk,	and	network	can	be
included	as	well).	For	this	infrastructure,	an	ideal	interval	at	which	to	capture	these	statistics	seems	to	be
every	10	seconds	(this	may	need	to	be	increased	for	certain	components	to	reduce	the	performance	impact).

Throughput	is	simply	the	number	of	completed	requests	for	some	unit	of	time.	Throughput	may	drop	if
service	time	increases,	the	total	number	of	available	server	threads	decreases,	and/or	the	arrival	rate
decreases	(when	server	thread	utilization	is	less	than	100%).

For	performance	analysis,	a	computer	infrastructure	may	be	thought	of	as	a	network	of	queues	(there's	no
supermarket	analogy	because	you	don't	check	out	of	one	line	and	queue	into	another	check	out	line).	The	IHS
queue	feeds	the	WAS	queue	which	feeds	the	DB2	queue	and	so	on.	Roughly	speaking,	the	throughput	of	an
upstream	queue	is	usually	proportional	to	the	arrival	rate	of	the	downstream	queue.

Each	one	of	these	queues	may	be	broken	down	into	sub-queues	all	the	way	down	to	each	CPU	or	disk	being
a	queue;	however,	in	general,	this	isn't	needed	and	only	the	overall	products	can	be	considered.	From	the	end-
user	point	of	view,	there's	just	a	single	queue:	they	make	an	HTTP	request	and	get	a	response;	however,	to
find	bottlenecks	and	scale,	we	need	to	break	down	this	one	big	queue	into	a	queuing	network.

It	is	common	for	throughput	tests	to	drive	enough	load	to	bring	a	node	to	CPU	saturation.	Strictly	speaking,
if	the	CPU	run	queue	is	consistently	greater	than	the	number	of	CPU	threads,	since	CPUs	are	not	like	a
classical	FIFO	queue	but	instead	context	switch	threads	in	and	out,	then	throughput	may	drop	as	service	time
increases	due	to	these	context	switches,	reduced	memory	cache	hits,	etc.	In	general,	the	relative	drop	tends	to
be	small;	however,	an	ideal	throughput	test	would	saturate	the	CPUs	without	creating	CPU	run	queues	longer
than	the	number	of	CPU	threads.

	

Response	Times	and	Throughput

Response	times	impact	throughput	directly	but	they	may	also	impact	throughput	indirectly	if	arrivals	are	not
independent	(e.g.	per-user	requests	are	temporally	dependent)	as	is	often	the	case	for	human-based
workloads	such	as	websites.

As	a	demonstration,	imagine	that	two	concurrent	users	arrive	at	time	00:00:00	(User1	&	User2)	and	two
concurrent	users	arrive	at	time	00:00:01	(User3	&	User4).	Suppose	that	each	user	will	make	three	total
requests	denoted	(1),	(2)	and	(3).	Suppose	that	(2)	is	temporally	dependent	on	(1)	in	the	sense	that	(2)	will
only	be	submitted	after	(1)	completes.	Suppose	that	(3)	is	temporally	dependent	on	(2)	in	the	sense	that	(3)
will	only	be	submitted	after	(2)	completes.	For	simplicity,	suppose	that	the	users	have	zero	think	time	(so
they	submit	subsequent	requests	immediately	after	a	response).	Then	suppose	two	scenarios:	average
response	time	=	1	second	(columns	2	and	3)	and	average	response	time	=	2	seconds	(columns	4	and	5):

Request				Arrived	(μ=1s)		Completed	(μ=1s)				Arrived	(μ=2s)		Completed	(μ=2s)
User1(1)			00:00:00								00:00:01												00:00:00								00:00:02
User1(2)			00:00:01								00:00:02												00:00:02								00:00:04
User1(3)			00:00:02								00:00:03												00:00:04								00:00:06
User2(1)			00:00:00								00:00:01												00:00:00								00:00:02
User2(2)			00:00:01								00:00:02												00:00:02								00:00:04

User2(3)			00:00:02								00:00:03												00:00:04								00:00:06
User3(1)			00:00:01								00:00:02												00:00:01								00:00:03
User3(2)			00:00:02								00:00:03												00:00:03								00:00:05
User3(3)			00:00:03								00:00:04												00:00:05								00:00:07
User4(1)			00:00:01								00:00:02												00:00:01								00:00:03
User4(2)			00:00:02								00:00:03												00:00:03								00:00:05
User4(3)			00:00:03								00:00:04												00:00:05								00:00:07

The	throughput	will	be	as	follows:

Time																							Throughput/s	(μ=1s)																	Throughput/s	(μ=2s)
00:00:01																			2																																			0
00:00:02																			4																																			2
00:00:03																			4																																			2
[...]

Note	that	in	the	above	example,	we	are	assuming	that	the	thread	pool	is	not	saturated.	If	the	thread	pool	is
saturated	then	there	will	be	queuing	and	throughput	will	be	bottlenecked	further.

Of	course,	ceteris	paribus,	total	throughput	is	the	same	over	the	entire	time	period	(if	we	summed	over	all
seconds	through	00:00:07);	however,	peak	throughput	for	any	particular	second	will	be	higher	for	the	lower
response	time	(4	vs.	2).	In	addition,	ceteris	paribus	often	will	not	hold	true	because	user	behavior	tends	to
change	based	on	increased	response	times	(e.g.	fewer	requests	due	to	frustration	[in	which	case	total
throughput	may	drop];	or,	more	retry	requests	due	to	frustration	[in	which	case	error	throughput	may
increase]).

	

Tuning	Timeouts

1.	 For	On-Line	Transaction	Processing	(OLTP)	systems,	human	perception	may	be	assumed	to	take	at
least	400ms;	therefore,	an	ideal	timeout	for	such	systems	is	about	500ms.

2.	 One	common	approach	to	setting	timeouts	based	on	historical	data	is	to	calculate	the	99th	percentile
response	time	from	historical	data	from	healthy	days.	An	alternative	is	to	use	the	maximum	response
time	plus	20%.	Note	that	both	of	these	approaches	often	capture	problematic	responses	which	should
not	be	considered	healthy;	instead,	consider	plotting	the	distribution	of	response	times	and	take	into
account	expectations	of	the	system	and	business	requirements.

3.	 Timeouts	should	be	set	with	all	stakeholders	involved	as	there	may	be	known	times	(e.g.	once	per
month	or	per	year)	that	are	expected	to	be	high.

4.	 If	systems	allow	it	(e.g.	IBM	HTTP	Server	with	websphere-serveriotimeout),	consider	setting	an
aggressive	global	timeout	and	then	override	with	longer	timeouts	for	particular	components	that	are
known	to	take	longer	(e.g.	report	generation).

5.	 In	general,	timeouts	should	follow	a	"funnel	model"	with	the	largest	timeouts	nearer	to	the	user	(e.g.
web	server)	and	lower	timeouts	in	the	application/database/etc.

	

Determining	Bottlenecks

There	are	three	key	variables	in	evaluating	bottlenecks	at	each	layer	of	a	queuing	network:

1.	 Arrival	rate
2.	 Concurrency
3.	 Response	time

These	are	also	indirectly	affected	by	many	variables.	For	example,	CPU	saturation	will	impact	response
times	and,	with	sufficient	queuing,	concurrency	as	a	thread	pool	saturates;	TCP	retransmits	or	network
saturation	will	impact	arrival	rate	and	response	times,	etc.

Common	tools	to	investigate	arrival	rates	and	response	times	include	access	logs	and	averaged	monitoring

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829156/pdf/pbio.1002433.pdf

statistics.	Common	tools	to	investigate	concurrency	and	excessive	response	times	are	averaged	monitoring
statistics	and	thread	dumps.

	

Testing

Use	Cases	to	Test	Cases

Applications	are	typically	designed	with	specific	end	user	scenarios	documented	as	use	cases	(for	example,
see	the	book	Writing	Effective	Use	Cases	by	Alistair	Cockburn).	Use	cases	drive	the	test	cases	that	are
created	for	load	testing.

	

100%	vs	80/20	rule?

A	common	perception	in	IT	is	performance	testing	can	be	accommodated	by	what	is	know	as	the	80/20	rule:
We	will	test	what	80%	of	actions	the	users	do	and	ignore	the	20%	they	do	not	as	frequently.	However,	what
is	not	addressed	are	the	20%	that	can	induce	a	negative	performance	event	causing	serious	performance
degradation	to	the	other	80%.	Performance	testing	should	always	test	100%	of	the	documented	use	cases.

The	80/20	rule	also	applies	to	how	far	you	should	tune.	You	can	increase	performance	by	disabling	things
such	as	performance	metrics	(PMI)	and	logging,	but	this	may	sacrifice	serviceability	and	maintenance.
Unless	you're	actually	benchmarking	for	top	speed,	then	we	do	not	recommend	applying	such	tuning.

	

Load	Testing

General	testing	guidelines:

Begin	by	choosing	a	benchmark,	a	standard	set	of	operations	to	run.	This	benchmark	exercises
those	application	functions	experiencing	performance	problems.	Complex	systems	frequently
need	a	warm-up	period	to	cache	objects,	optimize	code	paths,	and	so	on.	System	performance
during	the	warm-up	period	is	usually	much	slower	than	after	the	warm-up	period.	The
benchmark	must	be	able	to	generate	work	that	warms	up	the	system	prior	to	recording	the
measurements	that	are	used	for	performance	analysis.	Depending	on	the	system	complexity,	a
warm-up	period	can	range	from	a	few	thousand	transactions	to	longer	than	30	minutes.

Another	key	requirement	is	that	the	benchmark	must	be	able	to	produce	repeatable	results.	If	the
results	vary	more	than	a	few	percent	from	one	run	to	another,	consider	the	possibility	that	the
initial	state	of	the	system	might	not	be	the	same	for	each	run,	or	the	measurements	are	made
during	the	warm-up	period,	or	that	the	system	is	running	additional	workloads.

Several	tools	facilitate	benchmark	development.	The	tools	range	from	tools	that	simply	invoke	a
URL	to	script-based	products	that	can	interact	with	dynamic	data	generated	by	the	application.
IBM	Rational	has	tools	that	can	generate	complex	interactions	with	the	system	under	test	and
simulate	thousands	of	users.	Producing	a	useful	benchmark	requires	effort	and	needs	to	be	part
of	the	development	process.	Do	not	wait	until	an	application	goes	into	production	to	determine
how	to	measure	performance.

The	benchmark	records	throughput	and	response	time	results	in	a	form	to	allow	graphing	and
other	analysis	techniques.

Reset	as	many	variables	possible	on	each	test.	This	is	most	important	for	tests	involving	databases	which
tend	to	accumulate	data	and	can	negatively	impact	performance.	If	possible,	data	should	be	truncated	&

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=performance-troubleshooting-problems

reloaded	on	each	test.

	

Stress	Testing	Tool

There	are	various	commercial	products	such	as	IBM	Rational	Performance	Tester.	If	such	a	tool	is	not
available,	there	are	various	open	source	alternatives	such	as	Apache	Bench,	Apache	JMeter,	Siege,	and
OpenSTA.	The	Apache	JMeter	tool	is	covered	in	more	detail	in	the	Major	Tools	chapter	and	it	is	a	generally
recommended	tool.

	

Apache	Bench

Apache	Bench	is	a	binary	distributed	in	the	"bin"	folder	of	the	httpd	package	(and	therefore	with	IBM	HTTP
Server	as	well).	It	can	do	very	simple	benchmarking	of	a	single	URL,	specifying	the	total	number	of	requests
(-n)	and	the	concurrency	at	which	to	send	the	requests	(-c):

	$./ab	-n	100	-c	5	http://ibm.com/
	This	is	ApacheBench,	Version	2.0.40-dev	<$Revision:	30701	$>	apache-2.0
	Copyright	(c)	1996	Adam	Twiss,	Zeus	Technology	Ltd
	Copyright	(c)	1998-2002	The	Apache	Software	Foundation
	
	Benchmarking	ibm.com	(be	patient).....done
	
	Server	Software:								
	Server	Hostname:								ibm.com
	Server	Port:												80
	
	Document	Path:										/
	Document	Length:								227	bytes
	
	Concurrency	Level:						5
	Time	taken	for	tests:			2.402058	seconds
	Complete	requests:						100
	Failed	requests:								0
	Write	errors:											0
	Non-2xx	responses:						100
	Total	transferred:						49900	bytes
	HTML	transferred:							22700	bytes
	Requests	per	second:				41.63	[#/sec]	(mean)
	Time	per	request:							120.103	[ms]	(mean)
	Time	per	request:							24.021	[ms]	(mean,	across	all	concurrent	requests)
	Transfer	rate:										19.98	[Kbytes/sec]	received
	
	Connection	Times	(ms)
															min		mean[+/-sd]	median			max
	Connect:							44			56			8.1					55						85
	Processing:				51			61			6.9					60						79
	Waiting:							51			60			6.8					59						79
	Total:									97		117		12.1				115					149
	
	Percentage	of	the	requests	served	within	a	certain	time	(ms)
			50%				115
			66%				124
			75%				126
			80%				128
			90%				132
			95%				141
			98%				149
			99%				149
		100%				149	(longest	request)

	

https://www.ibm.com/products/ibm-rational-performance-tester

Common	Benchmarks

DayTrader

DayTrader	is	a	commonly	used	benchmark	application	for	Java	Enterprise	Edition.	It	simulates	an	online
stock	trading	system	and	exercises	servlets,	JSPs,	JDBC,	JTA	transactions,	EJBs,	MDBs,	and	more.

There	are	open	source	versions	of	DayTrader	for	Java	EE	7	and	Java	EE	8.

DayTrader	provides	three	different	implementations	of	the	business	services:

1.	 TradeDirect	(default):	The	TradeDirect	class	performs	CRUD	(create,	read,	update,	and
delete)	operations	directly	agaist	the	supporting	database	using	custom	JDBC	code.
Database	connections,	commits,	and	rollbacks	are	managed	manually	in	the	code.	JTA
user	transactions	are	used	to	coordinate	2-phase	commmits.

2.	 TradeJDBC:	The	TradeJDBC	stateless	session	bean	serves	as	a	wrapper	for	TradeDirect.
The	session	bean	assumes	control	of	all	transaction	management	while	TradeDirect
remains	responsible	for	handleing	the	JDBC	operations	and	connections.	This
implementation	reflects	the	most	commonly	used	JavaEE	application	design	pattern.

3.	 TradeBean:	The	TradeBean	stateless	session	bean	uses	Caontainer	Managed	Persistence
(CMP)	entity	beans	to	represent	the	business	objects.	The	state	of	these	objects	is
completely	managed	by	the	application	servers	EJB	container.

	

IBMStockTrader

IBMStockTrader	is	an	open	source	sample	application	that	simulates	an	online	stock	trading	system.	It
exercises	MicroServices,	OpenShift	operators	and	more.

	

Acme	Air

Acme	Air	is	an	open	source	benchmark	application	for	Java	MicroServices.	It	simulates	a	fictitious	airline
called	Acme	Air	which	handles	flight	bookings.

Acme	Air	is	available	as	part	of	multiple	repositories	with	the	mainservice	holding	installation	instructions:

acmeair-mainservice-java
acmeair-authservice-java
acmeair-bookingservice-java
acmeair-customerservice-java
acmeair-flightservice-java

There	is	a	monolithic	version	of	the	application:

acmeair-monolithic-java

There	are	SprintBoot	versions	of	the	microservices	as	well:

acmeair-mainservice-springboot
acmeair-authservice-springboot
acmeair-bookingservice-springboot
acmeair-customerservice-springboot
acmeair-flightservice-springboot

Notes:

https://geronimo.apache.org/GMOxDOC20/daytrader.html
https://github.com/WASdev/sample.daytrader7/
https://github.com/OpenLiberty/sample.daytrader8
https://github.com/IBMStockTrader/
https://developer.ibm.com/components/ibm-power/tutorials/deploy-acme-air-on-openshift-on-power/
https://github.com/blueperf/acmeair-mainservice-java
https://github.com/blueperf/acmeair-authservice-java
https://github.com/blueperf/acmeair-bookingservice-java
https://github.com/blueperf/acmeair-customerservice-java
https://github.com/blueperf/acmeair-flightservice-java
https://github.com/blueperf/acmeair-monolithic-java
https://github.com/blueperf/acmeair-mainservice-springboot
https://github.com/blueperf/acmeair-authservice-springboot
https://github.com/blueperf/acmeair-bookingservice-springboot
https://github.com/blueperf/acmeair-customerservice-springboot
https://github.com/blueperf/acmeair-flightservice-springboot

Additional	JMeter	scripts
Use	the	environment	variable	SECURE_SERVICE_CALLS=false	to	disable	authentication.

	

Think	Times

Think	time	is	defined	to	be	the	amount	of	time	a	user	spends	between	requests.	The	amount	of	time	a	user
spends	on	the	page	depends	on	how	complex	the	page	is	and	how	long	it	takes	for	the	user	to	find	the	next
action	to	take.	The	less	complex	the	page	the	less	time	it	will	take	for	the	user	to	take	the	next	action.
However,	no	two	users	are	the	same	so	there	is	some	variability	between	users.	Therefore	think	time	is
generally	defined	as	a	time	range,	such	as	4-15	seconds,	and	the	load	test	tool	will	attempt	to	drive	load
within	the	parameters	of	think	time.	Testing	that	incorporates	think	time	is	attempting	to	simulate	live
production	work	load	in	order	to	attempt	to	tune	the	application	for	optimal	performance.

There	is	also	a	"stress"	test	where	think	time	is	turned	down	to	zero.	Stress	testing	is	typically	used	to
simulate	a	negative	production	event	where	some	of	the	application	servers	may	have	gone	off	line	and	are
putting	undue	load	on	those	remaining.	Stress	testing	helps	to	understand	how	the	application	will	perform
during	such	a	negative	event	in	order	to	help	the	operations	team	understand	what	to	expect.	Stress	testing
also	typically	breaks	the	application	in	ways	not	encountered	with	normal	think	time	testing.	Therefore,
stress	testing	is	a	great	way	to	both:

Break	the	application	and	have	an	attempt	to	fix	it	before	being	placed	in	production,	and
Providing	the	operations	staff	with	information	about	what	production	will	look	like	during	a	negative
event.

	

Operating	Systems
Additionally,	see	the	chapter	for	your	particular	operating	system:

Linux
AIX
z/OS
IBM	i
Windows
macOS
Solaris
HP-UX

	

Central	Processing	Unit	(CPU)
A	processor	is	an	integrated	circuit	(also	known	as	a	socket	or	die)	with	one	or	more	central	processing	unit
(CPU)	cores.	A	CPU	core	executes	program	instructions	such	as	arithmetic,	logic,	and	input/output
operations.	CPU	utilization	is	the	percentage	of	time	that	programs	or	the	operating	system	execute	as
opposed	to	idle	time.	A	CPU	core	may	support	simultaneous	multithreading	(also	known	as	hardware	threads
or	hyperthreads)	which	appears	to	the	operating	system	as	additional	logical	CPU	cores.	Be	aware	that
simple	CPU	utilization	numbers	may	be	unintuitive	in	the	context	of	advanced	processor	features.	Examples:

Intel:

The	current	implementation	of	[CPU	utilization]	[...]	shows	the	portion	of	time	slots	that
the	CPU	scheduler	in	the	OS	could	assign	to	execution	of	running	programs	or	the	OS

https://github.com/blueperf/acmeair-driver
https://www.intel.com/content/www/us/en/developer/articles/technical/performance-counter-monitor.html

itself;	the	rest	of	the	time	is	idle	[...]	The	advances	in	computer	architecture	made	this
algorithm	an	unreliable	metric	because	of	introduction	of	multi	core	and	multi	CPU
systems,	multi-level	caches,	non-uniform	memory,	simultaneous	multithreading	(SMT),
pipelining,	out-of-order	execution,	etc.

A	prominent	example	is	the	non-linear	CPU	utilization	on	processors	with	Intel®	Hyper-
Threading	Technology	(Intel®	HT	Technology).	Intel®	HT	technology	is	a	great
performance	feature	that	can	boost	performance	by	up	to	30%.	However,	HT-unaware	end
users	get	easily	confused	by	the	reported	CPU	utilization:	Consider	an	application	that
runs	a	single	thread	on	each	physical	core.	Then,	the	reported	CPU	utilization	is	50%	even
though	the	application	can	use	up	to	70%-100%	of	the	execution	units.
(https://software.intel.com/en-us/articles/intel-performance-counter-monitor)

AIX:

Although	it	might	be	somewhat	counterintuitive,	simultaneous	multithreading	performs
best	when	the	performance	of	the	cache	is	at	its	worst.

IBM	Senior	Technical	Staff:

Use	care	when	partitioning	[CPU	cores]	[...]	it's	important	to	recognize	that	[CPU	core]
partitioning	doesn't	create	more	resources,	it	simply	enables	you	to	divide	and	allocate	the
[CPU	core]	capacity	[...]	At	the	end	of	the	day,	there	still	needs	to	be	adequate	underlying
physical	CPU	capacity	to	meet	response	time	and	throughput	requirements	when
partitioning	[CPU	cores].	Otherwise,	poor	performance	will	result.

It	is	not	necessarily	problematic	for	a	machine	to	have	many	more	program	threads	than	processor	cores.
This	is	common	with	Java	and	WAS	processes	that	come	with	many	different	threads	and	thread	pools	by
default	that	may	not	be	used	often.	Even	if	the	main	application	thread	pool	(or	the	sum	of	these	across
processes)	exceeds	the	number	of	processor	cores,	this	is	only	concerning	if	the	average	unit	of	work	uses
the	processor	heavily.	For	example,	if	threads	are	mostly	I/O	bound	to	a	database,	then	it	may	not	be	a
problem	to	have	many	more	threads	than	cores.	There	are	potential	costs	to	threads	even	if	they	are	usually
sleeping,	but	these	may	be	acceptable.	The	danger	is	when	the	concurrent	workload	on	available	threads
exceeds	processor	capacity.	There	are	cases	where	thread	pools	are	excessively	large	but	there	has	not	been	a
condition	where	they	have	all	filled	up	(whether	due	to	workload	or	a	front-end	bottleneck).	It	is	very
important	that	stress	tests	saturate	all	commonly	used	thread	pools	to	observe	worst	case	behavior.

Depending	on	the	environment,	number	of	processes,	redundancy,	continuous	availability	and/or	high
availability	requirements,	the	threshold	for	%CPU	utilization	varies.	For	high	availability	and	continuous
availability	environments,	the	threshold	can	be	as	low	as	50%	CPU	utilization.	For	non-critical	applications,
the	threshold	could	be	as	high	as	95%.	Analyze	both	the	non-functional	requirements	and	service	level
agreements	of	the	application	in	order	to	determine	appropriate	thresholds	to	indicate	a	potential	health	issue.

It	is	common	for	some	modern	processors	(including	server	class)	and	operating	systems	to	enable	processor
scaling	by	default.	The	purpose	of	processor	scaling	is	primarily	to	reduce	power	consumption.	Processor
scaling	dynamically	changes	the	frequency	of	the	processor(s),	and	therefore	may	impact	performance.	In
general,	processor	scaling	should	not	kick	in	during	periods	of	high	use;	however,	it	does	introduce	an	extra
performance	variable.	Weigh	the	energy	saving	benefits	versus	disabling	processor	scaling	and	simply
running	the	processors	at	maximum	speed	at	all	times	(usually	done	in	the	BIOS).

Test	affinitizing	processes	to	processor	sets	(operating	system	specific	configuration).	In	general,	affinitize
within	processor	boundaries.	Also,	start	each	JVM	with	-XgcthreadsN	(IBM	Java)	or	-
XX:ParallelGCThreads=N	(Oracle/HotSpot	Java)	where	N	equals	the	number	of	processor	core	threads	in
the	processor	set.

It	is	sometimes	worth	understanding	the	physical	architecture	of	the	central	processing	units	(CPUs).	Clock
speed	and	number	of	cores/hyperthreading	are	the	most	obviously	important	metrics,	but	CPU	memory
locality,	bus	speeds,	and	L2/L3	cache	sizes	are	sometimes	worth	considering.	One	strategy	for	deciding	on
the	number	of	JVMs	is	to	create	one	JVM	per	processor	chip	(i.e.	socket)	and	bind	it	to	that	chip.

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://www.ibm.com/docs/en/aix/7.3?topic=concepts-simultaneous-multithreading

It's	common	for	operating	systems	to	dedicate	some	subset	of	CPU	cores	for	interrupt	processing	and	this
may	distort	other	workloads	running	on	those	cores.

Different	types	of	CPU	issues	(Old	Java	Diagnostic	Guide):

Inefficient	or	looping	code	is	running.	A	specific	thread	or	a	group	of	threads	is	taking	all	the	CPU
time.
Points	of	contention	or	delay	exist.	CPU	usage	is	spread	across	most	threads,	but	overall	CPU	usage	is
low.
A	deadlock	is	present.	No	CPU	is	being	used.

	

How	many	CPUs	per	node?

IBM	Senior	Technical	Staff:

As	a	starting	point,	I	plan	on	having	at	least	one	CPU	[core]	per	application	server	JVM;	that
way	I	have	likely	minimized	the	number	of	times	that	a	context	switch	will	occur	--	at	least	as
far	as	using	up	a	time	slice	is	concerned	(although,	as	mentioned,	there	are	other	factors	that	can
result	in	a	context	switch).	Unless	you	run	all	your	servers	at	100%	CPU,	more	than	likely	there
are	CPU	cycles	available	as	application	requests	arrive	at	an	application	server,	which	in	turn	are
translated	into	requests	for	operating	system	resources.	Therefore,	we	can	probably	run	more
application	servers	than	CPUs.

Arriving	at	the	precise	number	that	you	can	run	in	your	environment,	however,	brings	us	back	to
it	depends.	This	is	because	that	number	will	in	fact	depend	on	the	load,	application,	throughput,
and	response	time	requirements,	and	so	on,	and	the	only	way	to	determine	a	precise	number	is	to
run	tests	in	your	environment.

	

How	many	application	processes	per	node?

IBM	Senior	Technical	Staff:

In	general	one	should	tune	a	single	instance	of	an	application	server	for	throughput	and
performance,	then	incrementally	add	[processes]	testing	performance	and	throughput	as	each
[process]	is	added.	By	proceeding	in	this	manner	one	can	determine	what	number	of	[processes]
provide	the	optimal	throughput	and	performance	for	their	environment.	In	general	once	CPU
utilization	reaches	75%	little,	if	any,	improvement	in	throughput	will	be	realized	by	adding
additional	[processes].

	

Registers

CPUs	execute	instructions	(e.g.	add,	subtract,	etc.)	from	a	computer	program,	also	known	as	an	application,
executable,	binary,	shared	library,	etc.	CPUs	have	a	fixed	number	of	registers	used	to	perform	these
instructions.	These	registers	have	variable	contents	updated	by	programs	as	they	execute	a	set	of	instructions.

	

Assembly	Language

Assembly	language	(asm)	is	a	low-level	programming	language	with	CPU	instructions	(and	other	things	like
constants	and	comments).	It	is	compiled	by	an	assembler	into	machine	code	which	is	executed.	In	the
following	example,	the	first	instruction	of	the	main	function	is	to	push	a	register	onto	the	stack,	the	second

instruction	is	to	copy	(mov)	one	register	into	another,	and	so	on:

0000000000401126	<main>:
		401126:							55																						push			%rbp
		401127:							48	89	e5																mov				%rsp,%rbp
		40112a:							48	83	ec	10													sub				$0x10,%rsp
		40112e:							89	7d	fc																mov				%edi,-0x4(%rbp)
		401131:							48	89	75	f0													mov				%rsi,-0x10(%rbp)
		401135:							bf	10	20	40	00										mov				$0x402010,%edi
		40113a:							e8	f1	fe	ff	ff										call			401030	<puts@plt>
		40113f:							b8	00	00	00	00										mov				$0x0,%eax
		401144:							c9																						leave		
		401145:							c3																						ret				

	

Assembly	Syntax

The	most	common	forms	of	syntax	for	assembly	are	AT&T	and	Intel	syntax.	There	are	confusing	differences
between	the	two.	For	example,	in	AT&T	syntax,	the	source	of	a	mov	instruction	is	first	followed	by	the
destination:

mov	esp,	ebp

Whereas,	in	Intel	syntax,	the	destination	of	mov	instruction	is	first	followed	by	the	destination:

mov	ebp,	esp

	

Instruction	Pointer

CPUs	may	have	a	register	that	points	to	the	address	of	the	current	execution	context	of	a	program.	This
register	is	called	the	instruction	pointer	(IP),	program	counter	(PC),	extended	instruction	pointer	(EIP),
instruction	address	register	(IAR),	relative	instruction	pointer	(RIP),	or	other	names.	Depending	on	the	phase
in	the	CPU's	execution,	this	register	may	be	pointing	at	the	currently	executing	instruction,	or	one	of	the
instructions	that	will	be	subsequently	executed.

	

Program	Stack

A	program	is	usually	made	of	functions	which	are	logical	groups	of	instructions	with	inputs	and	outputs.	In
the	following	example,	the	program	starts	in	the	main	function	and	calls	the	getCubeColume	function.	The
getCubeVolume	function	calculates	the	volume	and	returns	it	to	the	main	function	which	then	prints	the
calculation	along	with	some	text:

#include	<stdio.h>

int	getCubeVolume(int	length)	{
		return	length	*	length	*	length;
}

int	main(int	argc,	char	**argv)	{
		printf("The	volume	of	a	3x3x3	cube	is:	%d\n",	getCubeVolume(3));
		return	0;
}

When	getCubeVolume	is	ready	to	return	its	result,	it	needs	to	know	how	to	go	back	to	the	main	function	at
the	point	where	getCubeVolume	was	called.	A	program	stack	is	used	to	manage	this	relationship	of	function
executions.	A	stack	is	a	data	structure	in	computer	science	that	has	push	and	pop	operations.	Pushing
something	onto	a	stack	puts	an	item	on	top	of	all	existing	items	in	the	stack.	Popping	something	off	of	a	stack

removes	the	top	item	in	the	stack.

A	real	world	example	is	a	stack	of	dishes.	As	dishes	are	ready	to	be	washed,	they	could	be	pushed	on	top	of	a
stack	of	dishes,	and	a	dishwasher	could	iteratively	pops	dishes	off	the	top	of	the	stack	to	wash	them.	The
order	in	which	the	dishes	are	washed	is	not	necessarily	the	order	in	which	they	were	used.	It	might	take	a
while	for	the	dishwasher	to	get	to	the	bottom	plate	as	long	as	new	dirty	plates	are	constantly	added.	In	this
analogy,	the	dishwasher	is	the	CPU	and	this	is	why	the	main	function	is	always	in	the	stack	as	long	as	the
program	is	executing.	Only	after	all	program	instructions	have	completed	will	main	be	able	to	complete.

Similarly,	a	program	stack	is	made	of	stack	frames.	Each	stack	frame	represents	an	executing	program
method.	In	the	above	example,	if	we	paused	the	program	during	the	getCubeVolume	call,	the	program	stack
would	be	made	of	two	frames:	the	main	function	would	be	the	stack	frame	at	the	bottom	of	the	stack,	and	the
getCubeVolume	function	would	the	the	stack	frame	at	the	top	of	the	stack.

Programs	execute	in	a	logical	structure	called	a	process	which	manages	memory	access,	security,	and	other
aspects	of	a	program.	Programs	have	one	or	more	threads	which	are	logical	structures	that	manage	what	is
executing	on	CPUs.	Each	thread	has	a	program	stack	which	is	an	area	of	memory	used	to	manage	function
calls.	The	program	stack	may	also	be	used	for	other	purposes	such	as	managing	temporary	variable	memory
within	a	function	("local",	"stack	frame	local",	or	"automatic"	variables).

Confusingly,	the	program	stack	commonly	grows	downward	in	memory.	For	example,	let's	say	a	thread	has	a
stack	that	is	allocated	in	the	memory	range	0x100	to	0x200.	When	the	main	function	starts	executing,	let's
say	after	some	housekeeping,	the	stack	starts	at	0x180.	As	main	calls	getCubeVolume,	the	stack	will	"grow"
downward	into,	for	example,	0x150	so	that	getCubeVolume	uses	the	memory	range	0x150	-	0x180	for	itself.
When	the	getCubeVolume	finishes,	the	stack	"pops"	by	going	back	from	0x150	to	0x180.

	

Stack	Pointer

CPUs	may	have	a	register	that	points	to	the	top	of	the	program	stack	for	the	currently	executing	thread.	This
register	is	called	the	stack	pointer	(SP),	extended	stack	pointer	(ESP),	register	stack	pointer	(RSP),	or	other
names.

	

Frame	Pointer

CPUs	may	have	a	register	that	points	to	the	bottom	of	the	currently	executing	stack	frame	where	local
variables	for	that	function	start.	This	register	is	called	the	frame	pointer	(FP),	base	pointer	(BP),	extended
base	pointer	(EBP),	register	base	pointer	(RBP),	or	other	names.	Originally,	this	was	used	because	the	only
other	relative	address	available	is	the	stack	pointer	which	may	be	constantly	moving	as	local	variables	are
added	and	removed.	Thus,	if	a	function	needed	access	to	a	local	variable	passed	into	the	function,	it	could
just	use	a	constant	offset	from	the	frame	pointer.

Compilers	may	perform	an	optimization	called	frame	pointer	omission	(FPO)	(e.g.	with	gcc	with	-O	or	-
fomit-frame-pointer,	or	by	default	since	GCC	4.6)	that	uses	the	frame	pointer	register	as	a	general	purpose
register	instead	and	embeds	the	necessary	offsets	into	the	program	using	the	stack	pointer	to	avoid	the	need
for	frame	pointer	offsets.

In	the	unoptimized	case	(e.g.	without	-O	or	with	-fno-omit-frame-pointer	with	gcc),	a	common	calling
convention	is	for	each	function	to	first	push	the	previous	function's	frame	pointer	onto	its	stack,	copy	the
current	value	of	the	stack	pointer	into	the	frame	pointer,	and	then	allocate	some	space	for	the	function's	local
variables	(Intel	Syntax):

push	ebp
mov	ebp,	esp
sub	esp,	$LOCALS

http://gcc.gnu.org/onlinedocs/gcc-4.6.4/gcc/Optimize-Options.html#index-fomit_002dframe_002dpointer-692

When	the	function	returns,	it	will	remove	all	the	local	stack	space	it	used,	pop	the	frame	pointer	to	the	parent
function's	value,	and	return	to	the	previous	function	as	well	as	release	the	amount	of	stack	used	for	incoming
parameters	into	this	function;	for	example	(Intel	Syntax):

mov	esp,	ebp
pop	ebp
ret	$INCOMING_PARAMETERS_SIZE

When	a	function	calls	another	function,	any	parameters	are	pushed	onto	the	stack,	then	the	instruction	pointer
plus	the	size	of	two	instructions	is	pushed	onto	the	stack,	and	then	a	jump	instruction	starts	executing	the
new	function.	When	the	called	function	returns,	it	continues	executing	at	two	instructions	after	the	call
statement;	for	example	(Intel	Syntax):

push	1
push	2
push	3
push	eip	+	2
jmp	getCubeVolume

	

Call	Stack	Walking

For	diagnostic	tools	to	walk	a	call	stack	("unwind"	the	stack),	in	the	unoptimized	case	where	the	frame
pointer	is	used	to	hold	the	start	of	the	stack	frame,	the	tool	simply	has	to	start	from	the	frame	pointer	which
will	allow	it	to	find	the	pushed	frame	pointer	of	the	previous	function	on	the	stack,	and	the	tool	can	walk	this
linked	list.

If	a	program	is	optimized	to	use	frame	pointer	omission	(FPO),	then	diagnostic	tools	generally	cannot	walk
the	stack	since	the	frame	pointer	register	is	used	for	general	purpose	computation:

In	some	systems,	where	binaries	are	built	with	gcc	--fomit-frame-pointer,	using	the	"fp"	method
will	produce	bogus	call	graphs

As	an	alternative,	if	programs	are	compiled	with	debugging	information	in	the	form	of	standards	such	as	the
DWARF	standard	and	specification	that	describe	detailed	information	of	the	program	in	instances	of	a
Debugging	Information	Entry	(DIE)	and	particularly	the	Call	Frame	Information,	then	some	tools	may	be
able	to	unwind	the	stack	using	this	information	(e.g.	using	libdw	and	libunwind):

Every	processor	has	a	certain	way	of	calling	functions	and	passing	arguments,	usually	defined	in
the	ABI.	In	the	simplest	case,	this	is	the	same	for	each	function	and	the	debugger	knows	exactly
how	to	find	the	argument	values	and	the	return	address	for	the	function.

For	some	processors,	there	may	be	different	calling	sequences	depending	on	how	the	function	is
written,	for	example,	if	there	are	more	than	a	certain	number	of	arguments.	There	may	be
different	calling	sequences	depending	on	operating	systems.	Compilers	will	try	to	optimize	the
calling	sequence	to	make	code	both	smaller	and	faster.	One	common	optimization	is	when	there
is	a	simple	function	which	doesn't	call	any	others	(a	leaf	function)	to	use	its	caller	stack	frame
instead	of	creating	its	own.	Another	optimization	may	be	to	eliminate	a	register	which	points	to
the	current	call	frame.	Some	registers	may	be	preserved	across	the	call	while	others	are	not.

While	it	may	be	possible	for	the	debugger	to	puzzle	out	all	the	possible	permutations	in	calling
sequence	or	optimizations,	it	is	both	tedious	and	error	prone.	A	small	change	in	the
optimizations	and	the	debugger	may	no	longer	be	able	to	walk	the	stack	to	the	calling	function.

The	DWARF	Call	Frame	Information	(CFI)	provides	the	debugger	with	enough	information
about	how	a	function	is	called	so	that	it	can	locate	each	of	the	arguments	to	the	function,	locate
the	current	call	frame,	and	locate	the	call	frame	for	the	calling	function.	This	information	is	used
by	the	debugger	to	"unwind	the	stack,"	locating	the	previous	function,	the	location	where	the
function	was	called,	and	the	values	passed.

https://www.kernel.org/doc/man-pages/online/pages/man1/perf-record.1.html
https://dwarfstd.org/doc/Debugging%20using%20DWARF.pdf
https://dwarfstd.org/doc/DWARF5.pdf
https://sourceware.org/elfutils/
https://www.nongnu.org/libunwind/

Like	the	line	number	table,	the	CFI	is	encoded	as	a	sequence	of	instructions	that	are	interpreted
to	generate	a	table.	There	is	one	row	in	this	table	for	each	address	that	contains	code.	The	first
column	contains	the	machine	address	while	the	subsequent	columns	contain	the	values	of	the
machine	registers	when	the	instruction	at	that	address	is	executed.	Like	the	line	number	table,	if
this	table	were	actually	created	it	would	be	huge.	Luckily,	very	little	changes	between	two
machine	instructions,	so	the	CFI	encoding	is	quite	compact.

Example	usage	includes	perf	record	--call-graph	dwarf,65528 .

Programs	such	as	dwarfdump	may	be	used	to	print	embedded	DWARF	information	in	binaries.	These	are
embedded	in	ELF	sections	such	as	.eh_frame,	.debug_frame,	eh_frame_hdr,	etc.

	

Non-Volatile	Registers

Non-volatile	registers	are	generally	required	to	be	saved	on	the	stack	before	calling	a	function,	and	popped
off	the	stack	when	a	function	returns	thus	allowing	them	to	be	predictable	values	within	the	context	of	any
function	call.	Such	registers	may	include	EBX,	EDI,	ESI,	and	EBP.

	

Approximate	Overhead	of	System	Calls	(syscalls)

Although	there	are	some	historical	measurements	of	system	call	times	(e.g.	DOI:10.1145/269005.266660,
DOI:10.1145/224057.224075),	the	overhead	of	system	calls	depends	on	the	CPU	and	kernel	and	should	be
benchmarked,	for	example,	with	getpid.

	

Random	Access	Memory	(RAM),	Physical	Memory
Random	access	memory	(RAM)	is	a	high	speed,	ephemeral	data	storage	circuit	located	near	CPU	cores.
RAM	is	often	referred	to	as	physical	memory	to	contrast	it	to	virtual	memory.	Physical	memory	comprises
the	physical	storage	units	which	support	memory	usage	in	a	computer	(apart	from	CPU	core	memory
registers),	whereas	virtual	memory	is	a	logical	feature	that	an	operating	system	provides	for	isolating	and
simplifying	access	to	physical	memory.	Strictly	speaking,	physical	memory	and	RAM	are	not	synonymous
because	physical	memory	includes	paging	space,	and	paging	space	is	not	RAM.

	

Virtual	memory

Modern	operating	systems	are	based	on	the	concept	of	multi-user,	time-sharing	systems.	Operating	systems
use	three	key	features	to	isolate	users	and	processes	from	each	other:	user	mode,	virtual	address	spaces,	and
process/resource	limits.	Before	these	innovations,	it	was	much	easier	for	users	and	processes	to	affect	each
other,	whether	maliciously	or	not.

User	mode	forces	processes	to	use	system	calls	provided	by	the	kernel	instead	of	directly	interacting	with
memory,	devices,	etc.	This	feature	is	ultimately	enforced	by	the	processor	itself.	Operating	system	kernel
code	runs	in	a	trusted,	unrestricted	mode,	allowing	it	to	do	certain	things	that	a	user-mode	process	cannot	do.
A	user-mode	process	can	make	a	system	call	into	the	kernel	to	request	such	functions	and	this	allows	the
kernel	to	enforce	constraints	and	share	limited	resources.

Virtual	address	spaces	allow	each	process	to	have	its	own	memory	space	instead	of	managing	and	sharing
direct	memory	accesses.	The	processor	and	kernel	act	in	concert	to	allocate	physical	memory	and	paging
space	and	translate	virtual	addresses	to	physical	addresses	at	runtime.	This	provides	the	ability	to	restrict

https://doi.org/10.1145/269005.266660
https://doi.org/10.1145/224057.224075
https://www.kernel.org/doc/man-pages/online/pages/man2/getpid.2.html

which	memory	a	process	can	access	and	in	what	way.

	

File/Page	Cache

The	file	or	page	cache	is	an	area	of	RAM	that	is	used	as	a	write-behind	or	write-through	cache	for	some
virtual	file	system	operations.	If	a	file	is	created,	written	to,	or	read	from,	the	operating	system	may	try	to
perform	some	or	all	of	these	operations	through	physical	memory	and	then	asynchronously	flush	any
changes	to	disk.	This	dramatically	improves	performance	of	file	I/O	at	the	risk	of	losing	file	updates	if	a
machine	crashes	before	the	data	is	flushed	to	disk.

	

Memory	Corruption

RAM	bits	may	be	intermittently	and	unexpectedly	flipped	by	atmospheric	radiation	such	as	neutrons.	This
may	lead	to	strange	application	behavior	and	kernel	crashes	due	to	unexpected	state.	Some	RAM	chips	have
error-correcting	code	(ECC)	or	parity	logic	to	handle	one	or	two	invalid	bit	flips;	however,	depending	on	the
features	of	such	ECC	RAM,	and	the	number	of	bits	flipped	(e.g.	a	lot	of	radiation),	memory	corruption	is	still
possible.	Most	consumer-grade	personal	computers	do	not	offer	ECC	RAM	and,	depending	on	altitude	and
other	factors,	memory	corruption	rates	with	non-ECC	RAM	may	reach	up	to	1	bit	error	per	GB	of	RAM	per
1.8	hours.

You	may	check	if	you	are	using	ECC	RAM	with:

Linux	dmidecode
Windows	MemoryErrorCorrection:	wmic	memphysical	get	memoryerrorcorrection

	

Paging,	Swapping

Paging	space	is	a	subset	of	physical	memory,	often	disk	storage	or	a	solid	state	drive	(SSD),	which	the
operating	system	uses	as	a	"spillover"	when	demands	for	physical	memory	exceed	available	RAM.
Historically,	swapping	referred	to	paging	in	or	out	an	entire	process;	however,	many	use	paging	and
swapping	interchangeably	today,	and	both	address	page-sized	units	of	memory	(e.g.	4KB).

	

Overcommitting	Memory

Overcommitting	memory	occurs	when	less	RAM	is	available	than	the	peak	in-use	memory	demand.	This	is
either	done	accidentally	(undersizing)	or	consciously	with	the	premise	that	it	is	unlikely	that	all	required
memory	will	be	accessed	at	once.	Overcommitting	is	dangerous	because	the	process	of	paging	in	and	out
may	be	time	consuming.	RAM	operates	at	over	10s	of	GB/s,	whereas	even	the	fastest	SSDs	operate	at	a
maximum	of	a	few	GB/s	(often	the	bottleneck	is	the	interface	to	the	SSD,	e.g.	SATA,	etc.).	Overcommitting
memory	is	particularly	dangerous	with	Java	because	some	types	of	garbage	collections	will	need	to	read
most	of	the	whole	virtual	address	space	for	a	process	in	a	short	period	of	time.	When	paging	is	very	heavy,
this	is	called	memory	thrashing,	and	usually	this	will	result	in	a	total	performance	degradation	of	the	system
of	multiple	magnitudes.

	

Sizing	Paging	Space

Some	people	recommend	sizing	the	paging	files	to	some	multiple	of	RAM;	however,	this	recommendation	is

https://doi.org/10.1109/23.556861
https://doi.org/10.1145/2492101.1555372
https://doi.org/10.1109/SC.2012.13
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-e7-family-ras-server-paper.pdf
https://doi.org/10.1145/2492101.1555372
https://unix.stackexchange.com/questions/139319/how-to-tell-whether-ram-ecc-is-working/139526#139526
https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-physicalmemoryarray

a	rule	of	thumb	that	may	not	be	applicable	to	many	workloads.	Some	people	argue	that	paging	is	worse	than
crashing	because	a	system	can	enter	a	zombie-like	state	and	the	effect	can	last	hours	before	an	administrator
is	alerted	and	investigates	the	issue.	Investigation	itself	may	be	difficult	because	connecting	to	the	system
may	be	slow	or	impossible	while	it	is	thrashing.	Therefore,	some	decide	to	dramatically	reduce	paging	space
(e.g.	10	MB)	or	remove	the	paging	space	completely	which	will	force	the	operating	system	to	crash
processes	that	are	using	too	much	memory.	This	creates	clear	and	immediate	symptoms	and	allows	the
system	to	potentially	restart	the	processes	and	recover.	A	tiny	paging	space	is	probably	preferable	to	no
paging	space	in	case	the	operating	system	decides	to	do	some	benign	paging.	A	tiny	paging	space	can	also
be	monitored	as	a	symptom	of	problems.

Some	workloads	may	benefit	from	a	decently	sized	paging	space.	For	example,	infrequently	used	pages	may
be	paged	out	to	make	room	for	filecache,	etc.

"Although	most	do	it,	basing	page	file	size	as	a	function	of	RAM	makes	no	sense	because	the	more	memory
you	have,	the	less	likely	you	are	to	need	to	page	data	out."	(Russinovich	&	Solomon)

	

Non-uniform	Memory	Access	(NUMA)

Non-uniform	Memory	Access	(NUMA)	is	a	design	in	which	RAM	is	partitioned	so	that	subsets	of	RAM
(called	NUMA	nodes)	are	"local"	to	certain	processors.	Consider	affinitizing	processes	to	particular	NUMA
nodes.

	

32-bit	vs	64-bit

Whether	32-bit	or	64-bit	will	be	faster	depends	on	the	application,	workload,	physical	hardware,	and	other
variables.	All	else	being	equal,	in	general,	32-bit	will	be	faster	than	64-bit	because	64-bit	doubles	the	pointer
size,	therefore	creating	more	memory	pressure	(lower	CPU	cache	hits,	TLB,	etc.).	However,	all	things	are
rarely	equal.	For	example,	64-bit	often	provides	more	CPU	registers	than	32-bit	(this	is	not	always	the	case,
such	as	Power),	and	in	some	cases,	the	benefits	of	more	registers	outweigh	the	memory	pressure	costs.	There
are	other	cases	such	as	some	mathematical	operations	where	64-bit	will	be	faster	due	to	instruction
availability	(and	this	may	apply	with	some	TLS	usage,	not	just	obscure	mathematical	applications).	Java
significantly	reduces	the	impact	of	the	larger	64-bit	pointers	within	the	Java	heap	by	using	compressed
references.	With	all	of	that	said,	in	general,	the	industry	is	moving	towards	64-bit	and	the	performance
difference	for	most	applications	is	in	the	5%	range.

	

Large	Page	Support

Several	platforms	support	using	memory	pages	that	are	larger	than	the	default	memory	page	size.	Depending
on	the	platform,	large	memory	page	sizes	can	range	from	4	MB	(Windows)	to	16	MB	(AIX)	and	up	to	1GB
versus	the	default	page	size	of	4KB.	Many	applications	(including	Java-based	applications)	often	benefit
from	large	pages	due	to	a	reduction	in	CPU	overhead	associated	with	managing	smaller	numbers	of	large
pages.

Large	pages	may	cause	a	small	throughput	improvement	(in	one	benchmark,	about	2%).

Some	recent	benchmarks	on	very	modern	hardware	have	found	little	benefit	to	large	pages,	although	no
negative	consequences	so	they're	still	a	best	practice	in	most	cases.

	

Input/Output	(I/O)

Disk

Many	problems	are	caused	by	exhausted	disk	space.	It	is	critical	that	disk	space	is	monitored	and	alerts	are
created	when	usage	is	very	high.

Disk	speed	may	be	an	important	factor	in	some	types	of	workloads.	Some	operating	systems	support
mounting	physical	memory	as	disk	partitions	(sometimes	called	RAMdisks),	allowing	you	to	target	certain
disk	operations	that	have	recreatable	contents	to	physical	memory	instead	of	slower	disks.

	

Network	Interface	Cards	(NICs)	and	Switches
Ensure	that	NICs	and	switches	are	configured	to	use	their	top	speeds	and	full	duplex	mode.	Sometimes	this
needs	to	be	explicitly	done,	so	you	should	not	assume	that	this	is	the	case	by	default.	In	fact,	it	has	been
observed	that	when	the	NIC	is	configured	for	auto-negotiate,	sometimes	the	NIC	and	the	switch	can	auto-
negotiate	very	slow	speeds	and	half	duplex.	This	is	why	setting	explicit	values	is	recommended.

If	the	network	components	support	Jumbo	Frames,	consider	enabling	it	across	the	relevant	parts	of	the
network

Check	network	performance	between	two	hosts.	For	example,	make	a	1	GB	file	(various	operating	system
commands	like	dd	or	mkfile).	Then	test	the	network	throughput	by	copying	it	using	FTP,	SCP,	etc.

Monitor	ping	latency	between	hosts,	particularly	any	periodic	large	deviations.

It	is	common	to	have	separate	NICs	for	incoming	traffic	(e.g.	HTTP	requests)	and	for	backend	traffic	(e.g.
database).	In	some	cases	and	particularly	on	some	operating	systems,	this	setup	may	perform	worse	than	a
single	NIC	(as	long	as	it	doesn't	saturate)	probably	due	to	interrupts	and	L2/L3	cache	utilization	side-effects.

	

TCP/IP
TCP/IP	is	used	for	most	network	communications	such	as	HTTP,	so	understanding	and	optimizing	the
operating	system	TCP/IP	stack	can	have	dramatic	upstream	effects	on	your	application.

TCP/IP	is	normally	used	in	a	fully	duplexed	mode	meaning	that	communication	can	occur	asynchronously	in
both	directions.	In	such	a	mode,	a	distinction	between	"client"	and	"server"	is	arbitrary	and	sometimes	can
confuse	investigations	(for	example,	if	a	web	browser	is	uploading	a	large	HTTP	POST	body,	it	is	first	the
"server"	and	then	becomes	the	"client"	when	accepting	the	response).	You	should	always	think	of	a	set	of
two	sender	and	receiver	channels	for	each	TCP	connection.

TCP/IP	is	a	connection	oriented	protocol,	unlike	UDP,	and	so	it	requires	handshakes	(sets	of	packets)	to	start
and	close	connections.	The	establishing	handshake	starts	with	a	SYN	packet	from	sender	IP	address	A	on	an
ephemeral	local	port	X	to	receiver	IP	address	B	on	a	port	Y	(every	TCP	connection	is	uniquely	identified	by
this	4-tuple).	If	the	connection	is	accepted	by	B,	then	B	sends	back	an	acknowledgment	(ACK)	packet	as
well	as	its	own	SYN	packet	to	establish	the	fully	duplexed	connection	(SYN/ACK).	Finally,	A	sends	a	final
ACK	packet	to	acknowledge	the	established	connection.	This	handshake	is	commonly	referred	to	as	SYN,
SYN/ACK,	ACK.

A	TCP/IPv4	packet	has	a	40	byte	header	(20	for	TCP	and	20	for	IPv4).

	

Bandwidth	Delay	Product

The	Bandwidth-Delay	Product	(BDP)	is	the	maximum	bandwidth	times	the	round	trip	time:

A	fundamental	concept	in	any	window-controlled	transport	protocol:	the	Bandwidth-Delay
Product	(BDP).	Specifically,	suppose	that	the	bottleneck	link	of	a	path	has	a	transmission
capacity	(‘bandwidth’)	of	C	bps	and	the	path	between	the	sender	and	the	receiver	has	a	Round-
Trip	Time	(RTT)	of	T	sec.	The	connection	will	be	able	to	saturate	the	path,	achieving	the
maximum	possible	throughput	C,	if	its	effective	window	is	C*T.	This	product	is	historically
referred	to	as	BDP.	For	the	effective	window	to	be	C*T,	however,	the	smaller	of	the	two	socket
buffers	should	be	equally	large.	If	the	size	of	that	socket	buffer	is	less	than	C*T,	the	connection
will	underutilize	the	path.	If	it	is	more	than	C*T,	the	connection	will	overload	the	path,	and
depending	on	the	amount	of	network	buffering,	it	will	cause	congestion,	packet	losses,	window
reductions,	and	possibly	throughput	drops.

	

Flow	Control	&	Receive/Send	Buffers

TCP	congestion	control	(or	flow	control)	is	a	part	of	the	TCP	specifications	that	governs	how	much	data	is
sent	before	receiving	acknowledgments	for	outstanding	packets.	Flow	control	tries	to	ensure	that	a	sender
does	not	send	data	faster	than	a	receiver	can	handle.	There	are	two	main	components	to	flow	control:

Advertised	receiver	window	size	(rwnd):	The	receiver	advertises	a	"window	size"	in	each
acknowledgment	packet	which	tells	the	sender	how	much	buffer	room	the	receiver	has	for	future
packets.	The	maximum	throughput	based	on	the	receiver	window	is	rwnd/RTT.	If	the	window	size	is
0,	the	sender	should	stop	sending	packets	until	it	receives	a	TCP	Window	Update	packet	or	an	internal
retry	timer	fires.	If	the	window	size	is	non-zero,	but	it	is	too	small,	then	the	sender	may	spend
unnecessary	time	waiting	for	acknowledgments.	The	window	sizes	are	directly	affected	by	the	rate	at
which	the	application	can	produce	and	consume	packets	(for	example,	if	CPU	is	100%	then	a	program
may	be	very	slow	at	producing	and	consuming	packets)	as	well	as	operating	system	TCP	sending	and
receiving	buffer	size	limits.	The	buffers	are	chunks	of	memory	allocated	and	managed	by	the	operating
system	to	support	TCP/IP	flow	control.	It	is	generally	advisable	to	increase	these	buffer	size	limits	as
much	as	operating	system	configuration,	physical	memory	and	the	network	architecture	can	support.	In
general,	the	maximum	socket	receive	and	send	buffer	sizes	should	be	greater	than	the	average
bandwidth	delay	product.
Sender	congestion	window	size	(cwnd):	A	throttle	that	controls	the	maximum,	concurrent,
unacknowledged,	outstanding	sent	bytes.	The	operating	system	chooses	an	initial	congestion	window
size	and	then	resizes	it	dynamically	based	on	rwnd	and	other	conditions.	By	default,	the	initial
congestion	window	size	is	based	on	the	maximum	segment	size	and	starts	small	as	part	of	the	slow
start	component	of	the	specifications	and	then	grows	relatively	quickly.	This	is	one	reason	why	using
persistent	connections	is	valuable	(although	idle	connections	may	have	their	congestion	windows	reset
after	a	period	of	inactivity	which	may	be	tuned	on	some	operating	systems).	There	are	many
congestion	window	resize	algorithms	(reno,	cubic,	hybla,	etc.)	that	an	operating	system	may	use	and
some	operating	systems	allow	changing	the	algorithm.

Therefore,	one	dimension	of	socket	throttling	is	the	instananeous	minimum	value	of	rwnd	and	cwnd.	An
example	symptom	of	congestion	control	limiting	throughput	is	when	a	sender	has	queued	X	bytes	to	the
network,	the	current	receive	window	is	greater	than	X,	but	less	than	X	bytes	are	sent	before	waiting	for
ACKs	from	the	receiver.

	

CLOSE_WAIT

If	a	socket	is	ESTABLISHED,	and	one	side	(let's	call	it	side	X)	calls	close,	then	X	sends	a	FIN	packet	to	the
other	side	(let's	call	it	side	Y)	and	X	enters	the	FIN_WAIT_1	state.	At	this	point,	X	can	no	longer	write	bytes
to	Y;	however,	Y	may	still	write	bytes	to	X	(each	TCP	socket	has	two	pipes).

When	Y	receives	the	FIN,	it	sends	an	ACK	back	and	Y	enters	the	CLOSE_WAIT	state.	When	X	receives	the

http://hdl.handle.net/1853/5920
https://tools.ietf.org/html/rfc5681
https://tools.ietf.org/html/rfc5681#section-3.1

ACK,	it	enters	the	FIN_WAIT_2	state.	Y's	CLOSE_WAIT	state	may	be	read	as	"Y	is	waiting	for	the
application	inside	Y	to	call	close	on	its	write	pipe	to	X."	At	this	point,	the	socket	could	stay	in	this	condition
indefinitely	with	Y	writing	bytes	to	X.	Although	this	is	a	valid	TCP	use	case	to	have	a	half-opened	socket,	it
is	an	uncommon	use	case	(except	for	use	cases	such	as	Server-Sent	Events),	so	sockets	in	CLOSE_WAIT
state	are	more	commonly	simply	waiting	for	Y	to	close	its	half	of	the	socket.	If	the	number	of	sockets	in
CLOSE_WAIT	are	high	or	increasing	over	time,	this	may	be	caused	by	a	leak	of	the	socket	object	in	Y,	lack
of	resources,	missing	or	incorrect	logic	to	close	the	socket,	etc.	If	sockets	in	CLOSE_WAIT	continuously
increase,	at	some	point	the	process	may	receive	file	descriptor	exhaustion	or	other	socket	errors	and	the	only
resolutions	are	either	to	restart	the	process	or	induce	a	RST	packet.

When	Y	closes	its	half	of	the	socket	by	sending	a	FIN	to	X,	then	Y	enters	LAST_ACK.	When	X	responds
with	an	ACK	on	the	FIN,	then	the	Y	socket	is	completely	closed,	and	X	enters	the	TIME_WAIT	state	for	a
certain	period	of	time.

The	above	is	a	normal	close;	however,	it	is	also	possible	that	RST	packets	are	used	to	close	sockets.

	

TIME_WAIT

TCP	sockets	pass	through	various	states	such	as	LISTENING,	ESTABLISHED,	CLOSED,	etc.	One
particularly	misunderstood	state	is	the	TIME_WAIT	state	which	can	sometimes	cause	scalability	issues.	A
full	duplex	close	occurs	when	sender	A	sends	a	FIN	packet	to	B	to	initiate	an	active	close	(A	enters
FIN_WAIT_1	state).	When	B	receives	the	FIN,	it	enters	CLOSE_WAIT	state	and	responds	with	an	ACK.
When	A	receives	the	ACK,	A	enters	FIN_WAIT_2	state.	Strictly	speaking,	B	does	not	have	to	immediately
close	its	channel	(if	it	wanted	to	continue	sending	packets	to	A);	however,	in	most	cases	it	will	initiate	its
own	close	by	sending	a	FIN	packet	to	A	(B	now	goes	into	LAST_ACK	state).	When	A	receives	the	FIN,	it
enters	TIME_WAIT	and	sends	an	ACK	to	B.	The	reason	for	the	TIME_WAIT	state	is	that	there	is	no	way
for	A	to	know	that	B	received	the	ACK.	The	TCP	specification	defines	the	maximum	segment	lifetime
(MSL)	to	be	2	minutes	(this	is	the	maximum	time	a	packet	can	wander	the	net	and	stay	valid).	The	operating
system	should	ideally	wait	2	times	MSL	to	ensure	that	a	retransmitted	packet	for	the	FIN/ACK	doesn't
collide	with	a	newly	established	socket	on	the	same	port	(for	instance,	if	the	port	had	been	immediately
reused	without	a	TIME_WAIT	and	if	other	conditions	such	as	total	amount	transferred	on	the	packet,
sequence	number	wrap,	and	retransmissions	occur).

This	behavior	may	cause	scalability	issues:

Because	of	TIME-WAIT	state,	a	client	program	should	choose	a	new	local	port	number	(i.e.,	a
different	connection)	for	each	successive	transaction.	However,	the	TCP	port	field	of	16	bits
(less	the	"well-known"	port	space)	provides	only	64512	available	user	ports.	This	limits	the	total
rate	of	transactions	between	any	pair	of	hosts	to	a	maximum	of	64512/240	=	268	per	second.

Most	operating	systems	do	not	use	4	minutes	as	the	default	TIME_WAIT	duration	because	of	the	low
probability	of	the	wandering	packet	problem	and	other	mitigating	factors.	Nevertheless,	if	you	observe
socket	failures	accompanied	with	large	numbers	of	sockets	in	TIME_WAIT	state,	then	you	should	reduce	the
TIME_WAIT	duration	further.	On	some	operating	systems,	it	is	impossible	to	change	the	TIME_WAIT
duration	except	by	recompiling	the	kernel.	Conversely,	if	you	observe	very	strange	behavior	when	new
sockets	are	created	that	can't	be	otherwise	explained,	you	should	use	4	minutes	as	a	test	to	ensure	this	is	not	a
problem.

Finally,	it's	worth	noting	that	some	connections	will	not	follow	the	FIN/ACK,	FIN/ACK	procedure,	but	may
instead	use	FIN,	FIN/ACK,	ACK,	or	even	just	a	RST	packet	(abortive	close).

	

Nagle's	Algorithm	(RFC	896,	TCP_NODELAY)

RFC	896:

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://tools.ietf.org/pdf/rfc1379.pdf
https://tools.ietf.org/html/rfc896

There	is	a	special	problem	associated	with	small	packets.	When	TCP	is	used	for	the	transmission
of	single-character	messages	originating	at	a	keyboard,	the	typical	result	is	that	41	byte	packets
(one	byte	of	data,	40	bytes	of	header)	are	transmitted	for	each	byte	of	useful	data.	This	4000%
overhead	is	annoying	but	tolerable	on	lightly	loaded	networks.	On	heavily	loaded	networks,
however,	the	congestion	resulting	from	this	overhead	can	result	in	lost	datagrams	and
retransmissions,	as	well	as	excessive	propagation	time	caused	by	congestion	in	switching	nodes
and	gateways.

The	solution	is	to	inhibit	the	sending	of	new	TCP	segments	when	new	outgoing	data	arrives
from	the	user	if	any	previously	transmitted	data	on	the	connection	remains	unacknowledged.

In	practice,	enabling	Nagle's	algorithm	(which	is	usually	enabled	by	default)	means	that	TCP	will	not	send	a
new	packet	if	another	previous	sent	packet	is	still	unacknowledged,	unless	it	has	"enough"	coalesced	data	for
a	larger	packet.

The	native	setsockopt	option	to	disable	Nagle's	algorithm	is	TCP_NODELAY

This	option	can	usually	be	set	globally	at	an	operating	system	level.

This	option	is	also	exposed	in	Java's	StandardSocketOptions.TCP_NODELAY	to	allow	for	setting	a
particular	Java	socket	option.

In	WebSphere	Application	Server,	TCP_NODELAY	is	explicitly	enabled	by	default	for	all	WAS	TCP	channel
sockets.	In	the	event	of	needing	to	enable	Nagle's	algorithm,	use	the	TCP	channel	custom	property
tcpNoDelay=0.

	

Delayed	Acknowledgments	(RFC	1122)

TCP	delayed	acknowledgments	was	designed	in	the	late	1980s	in	an	environment	of	baud	speed	modems.
Delaying	acknowledgments	was	a	tactic	used	when	communication	over	wide	area	networks	was	really	slow
and	the	delaying	would	allow	for	piggy-backing	acknowledgment	packets	to	responses	within	a	window	of	a
few	hundred	milliseconds.	In	modern	networks,	these	added	delays	may	cause	significant	latencies	in
network	communications.

Delayed	acknowledgments	is	a	completely	separate	function	from	Nagle's	algorithm	(TCP_NODELAY).	Both	act
to	delay	packets	in	certain	situations.	This	can	be	very	subtle;	for	example,	on	AIX,	the	option	for	the	former
is	tcp_nodelayack	and	the	option	for	the	latter	is	tcp_nodelay.

Delayed	ACKs	defines	the	default	behavior	to	delay	acknowledgments	up	to	500	milliseconds	(the	common
default	maximum	is	40	or	200	milliseconds)	from	when	a	packet	arrives	(but	no	more	than	every	second
segment)	to	reduce	the	number	of	ACK-only	packets	and	ACK	chatter	because	the	ACKs	may	piggy	back	on
a	response	packet.	It	may	be	the	case	that	disabling	delayed	ACKs,	while	increasing	network	chatter	and
utilization	(if	an	ACK	only	packet	is	sent	where	it	used	to	piggy	back	a	data	packet,	then	there	will	be	an
increase	in	total	bytes	sent	because	of	the	increase	in	the	number	of	packets	and	therefore	TCP	header	bytes),
may	improve	throughput	and	responsiveness.	However,	there	are	also	cases	where	delayed	ACKs	perform
better.	It	is	best	to	test	the	difference.

RFC	1122:

A	host	that	is	receiving	a	stream	of	TCP	data	segments	can	increase	efficiency	in	both	the
Internet	and	the	hosts	by	sending	fewer	than	one	ACK	(acknowledgment)	segment	per	data
segment	received;	this	is	known	as	a	"delayed	ACK"	[TCP:5].

A	TCP	SHOULD	implement	a	delayed	ACK,	but	an	ACK	should	not	be	excessively	delayed;	in
particular,	the	delay	MUST	be	less	than	0.5	seconds,	and	in	a	stream	of	full-sized	segments	there
SHOULD	be	an	ACK	for	at	least	every	second	segment.

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/netinet_tcp.h.html
https://docs.oracle.com/javase/8/docs/api/java/net/StandardSocketOptions.html#TCP_NODELAY
https://tools.ietf.org/html/rfc1122

A	delayed	ACK	gives	the	application	an	opportunity	to	update	the	window	and	perhaps	to	send
an	immediate	response.	In	particular,	in	the	case	of	character-mode	remote	login,	a	delayed	ACK
can	reduce	the	number	of	segments	sent	by	the	server	by	a	factor	of	3	(ACK,	window	update,
and	echo	character	all	combined	in	one	segment).

In	addition,	on	some	large	multi-user	hosts,	a	delayed	ACK	can	substantially	reduce	protocol
processing	overhead	by	reducing	the	total	number	of	packets	to	be	processed	[TCP:5].	However,
excessive	delays	on	ACK's	can	disturb	the	round-trip	timing	and	packet	"clocking"	algorithms
[TCP:7].

Delayed	acknowledgments	interacts	poorly	with	Nagle's	algorithm.	For	example,	if	A	sent	a	packet	to	B,	and
B	is	waiting	to	send	an	acknowledgment	to	A	until	B	has	some	data	to	send	(Delayed	Acknowledgments),
and	if	A	is	waiting	for	the	acknowledgment	(Nagle's	Algorithm),	then	a	delay	is	introduced.	To	find	if	this
may	be	the	case:

In	Wireshark,	you	can	look	for	the	"Time	delta	from	previous	packet"	entry	for	the	ACK	packet
to	determine	the	amount	of	time	elapsed	waiting	for	the	ACK...	Although	delayed
acknowledgment	may	adversely	affect	some	applications	[...],	it	can	improve	performance	for
other	network	connections.

The	pros	of	delayed	acknowledgments	are:

1.	 Reduce	network	chatter
2.	 Reduce	potential	network	congestion
3.	 Reduce	network	interrupt	processing	(CPU)

The	cons	of	delayed	acknowledgments	are:

1.	 Potentially	reduce	response	times	and	throughput

In	general,	if	two	hosts	are	communicating	on	a	LAN	and	there	is	sufficient	additional	network	capacity	and
there	is	sufficient	additional	CPU	interrupt	processing	capacity,	then	disabling	delayed	acknowledgments
will	tend	to	improve	performance	and	throughput.	However,	this	option	is	normally	set	at	an	operating
system	level,	so	if	there	are	any	sockets	on	the	box	that	may	go	out	to	a	WAN,	then	their	performance	and
throughput	may	potentially	be	affected	negatively.	Even	on	a	WAN,	for	95%	of	modern	internet	connections,
disabling	delayed	acknowledgments	may	prove	beneficial.	The	most	important	thing	to	do	is	to	test	the
change	with	real	world	traffic,	and	also	include	tests	emulating	users	with	very	slow	internet	connections	and
very	far	distances	to	the	customer	data	center	(e.g.	second	long	ping	times)	to	understand	any	impact.	The
other	potential	impact	of	disabling	delayed	acknowledgments	is	that	there	will	be	more	packets	which	just
have	the	acknowledgment	bit	set	but	still	have	the	TCP/IP	header	(40	or	more	bytes).	This	may	cause	higher
network	utilization	and	network	CPU	interrupts	(and	thus	CPU	usage).	These	two	factors	should	be
monitored	before	and	after	the	change.

John	Nagle	--	the	person	who	created	Nagle's	algorithm	--	generally	recommends	disabling	delayed	ACKs	by
default.

	

Selective	Acknowledgments	(SACK,	RFC	2018)

RFC	2018:

"With	the	limited	information	available	from	cumulative	acknowledgments,	a	TCP	sender	can	only	learn
about	a	single	lost	packet	per	round	trip	time...	[With	a]	Selective	Acknowledgment	(SACK)	mechanism...
the	receiving	TCP	sends	back	SACK	packets	to	the	sender	informing	the	sender	of	data	that	has	been
received.	The	sender	can	then	retransmit	only	the	missing	data	segments."

	

https://www.ibm.com/support/pages/enabling-tcpnodelayack-can-improve-network-performance-between-ibm-websphere-datapower-soa-appliance-and-applications-running-aix-including-websphere-mq-and-tivoli-access-manager
https://stackoverflow.com/questions/16306903/is-nagle-algorithm-and-delayed-ack-used-for-bulk-data/16663206#16663206
https://news.ycombinator.com/item?id=24798689
https://news.ycombinator.com/item?id=9050645
https://tools.ietf.org/html/rfc2018

Listen	Back	Log

The	listen	back	log	is	a	limited	size	queue	for	each	socket	that	holds	pending	sockets	that	have	completed	the
SYN	packet	but	that	the	process	has	not	yet	"accepted"	(therefore	they	are	not	yet	established).	This	back	log
is	used	as	an	overflow	for	sudden	spikes	of	connections.	If	the	listen	back	log	fills	up	any	new	connection
attempts	(SYN	packets)	will	be	rejected	by	the	operating	system	(i.e.	they'll	fail).	As	with	all	queues,	you
should	size	them	just	big	enough	to	handle	a	temporary	but	sudden	spike,	but	not	too	large	so	that	too	much
operating	system	resources	are	used	which	means	that	new	connection	attempts	will	fail	fast	when	there	is	a
backend	problem.	There	is	no	science	to	this,	but	511	is	a	common	value.

	

Keep-alive

RFC	1122	defines	a	"keep-alive"	mechanism	to	periodically	send	packets	for	idle	connections	to	make	sure
they're	still	alive:

A	"keep-alive"	mechanism	periodically	probes	the	other	end	of	a	connection	when	the
connection	is	otherwise	idle,	even	when	there	is	no	data	to	be	sent.	The	TCP	specification	does
not	include	a	keep-alive	mechanism	because	it	could:

1.	 cause	perfectly	good	connections	to	break	during	transient	Internet	failures;
2.	 consume	unnecessary	bandwidth	("if	no	one	is	using	the	connection,	who	cares	if	it	is	still

good?");	and
3.	 cost	money	for	an	Internet	path	that	charges	for	packets.

Some	TCP	implementations,	however,	have	included	a	keep-alive	mechanism.	To	confirm	that
an	idle	connection	is	still	active,	these	implementations	send	a	probe	segment	designed	to	elicit	a
response	from	the	peer	TCP.

By	default,	keep-alive	(SO_KEEPALIVE	in	POSIX)	is	disabled:

If	keep-alives	are	included,	the	application	MUST	be	able	to	turn	them	on	or	off	for	each	TCP
connection,	and	they	MUST	default	to	off.

Java	defaults	Keep-alive	to	off:

The	initial	value	of	this	socket	option	is	FALSE.

Major	products	such	as	WAS	traditional,	WebSphere	Liberty,	the	DB2	JDBC	driver,	etc.	enable	keep-alive
on	TCP	sockets	by	default.

	

Monitor	TCP	Retransmits

Monitor	the	number	of	TCP	retransmits	in	your	operating	system	and	be	aware	of	the	timeout	values.	The
reason:	they	may	explain	random	response	time	fluctuations	or	maximums	of	up	to	a	few	seconds.

The	concept	of	TCP	retransmission	is	one	of	the	fundamental	reasons	why	TCP	is	reliable.	After	a	packet	is
sent,	if	it's	not	ACKed	within	the	retransmission	timeout,	then	the	sender	assumes	there	was	a	problem	(e.g.
packet	loss,	OS	saturation,	etc.)	and	retransmits	the	packet.	From	TCP	RFC	793:

When	the	TCP	transmits	a	segment	containing	data,	it	puts	a	copy	on	a	retransmission	queue	and
starts	a	timer;	when	the	acknowledgment	for	that	data	is	received,	the	segment	is	deleted	from
the	queue.	If	the	acknowledgment	is	not	received	before	the	timer	runs	out,	the	segment	is
retransmitted.

https://tools.ietf.org/html/rfc1122#page-101
https://tools.ietf.org/html/rfc1122#page-101
https://docs.oracle.com/javase/8/docs/api/java/net/StandardSocketOptions.html#SO_KEEPALIVE
https://tools.ietf.org/html/rfc793

For	applications	such	as	Java/WAS,	retransmissions	occur	transparently	in	the	operating	system.
Retransmission	is	not	considered	an	error	condition	and	it	is	not	reported	up	through	libc.	So	a	Java
application	may	do	a	socket	write,	and	every	once	in	a	while,	a	packet	is	lost,	and	there	is	a	delay	during	the
retransmission.	Unless	you've	gathered	network	trace,	this	is	difficult	to	prove.	A	retransmission	may	also
cause	the	socket	to	switch	into	"slow	start"	mode	which	may	affect	subsequent	packet
performance/throughput.

Correlating	TCP	retransmit	increases	with	the	times	of	response	time	increases	is	much	easier	to	do	than	end-
to-end	network	trace	with	TCP	port	correlation	(which	often	doesn't	exist	in	low-overhead	tracing).

	

Domain	Name	Servers	(DNS)

Ensure	that	Domain	Name	Servers	(DNS)	are	very	responsive.

Consider	setting	high	Time	To	Live	(TTL)	values	for	hosts	that	are	unlikely	to	change.

If	performance	is	very	important	or	DNS	response	times	have	high	variability,	consider	adding	all	major
DNS	lookups	to	each	operating	system's	local	DNS	lookup	file	(e.g.	/etc/hosts).

	

Troubleshooting	Network	Issues

One	of	the	troubleshooting	steps	for	slow	response	time	issues	is	to	sniff	the	network	between	all	the	network
elements	(e.g.	HTTP	server,	application	server,	database,	etc.).	The	most	popular	tool	for	sniffing	and
analyzing	network	data	is	Wireshark	which	is	covered	in	the	Major	Tools	chapter.	Common	errors	are
frequent	retransmission	requests	(sometimes	due	to	a	bug	in	the	switch	or	bad	cabling).

	

The	Importance	of	Gathering	Network	Trace	on	Both	Sides

Here	is	an	example	where	it	turned	out	that	a	network	packet	was	truly	lost	in	transmission	(root	cause	not
determined,	but	probably	in	the	operating	system	or	some	security	software).	This	happened	between	IHS
and	WAS	and	it	caused	IHS	to	mark	the	WAS	server	down.	The	symptom	in	the	logs	was	a	connection	reset
error.	There	are	two	points	that	are	interesting	to	cover:	1)	If	the	customer	had	only	gathered	network	trace
from	the	IHS	side,	they	might	have	concluded	the	wrong	thing,	and	2)	It	may	be	interesting	to	look	at	the
MAC	address	of	a	RST	packet:

First,	some	background:	the	IHS	server	is	10.20.30.100	and	the	WAS	server	is	10.20.36.100.

Next,	if	we	look	at	just	the	IHS	packet	capture	and	narrow	down	to	the	suspect	stream:

663	...	10.20.30.100	10.20.36.100	TCP	76	38898	>	9086	[SYN]	Seq=0	Win=5840...
664	...	10.20.36.100	10.20.30.100	TCP	62	9086	>	38898	[SYN,	ACK]	Seq=0	Ack=1	Win=65535...
665	...	10.20.30.100	10.20.36.100	TCP	56	38898	>	9086	[ACK]	Seq=1	Ack=1	Win=5840	Len=0
666	...	10.20.30.100	10.20.36.100	TCP	534	[TCP	Previous	segment	lost]	38898	>	9086	[PSH,	ACK]	Seq=1381...
667	...	10.20.36.100	10.20.30.100	TCP	62	[TCP	Dup	ACK	664#1]	9086	>	38898	[ACK]	Seq=1...
678	...	10.20.36.100	10.20.30.100	TCP	56	9086	>	38898	[RST]	Seq=1	Win=123	Len=0
679	...	10.20.30.100	10.20.36.100	TCP	56	38898	>	9086	[RST]	Seq=1	Win=123	Len=0

So	663-665	are	just	a	normal	handshake,	but	then	666	where	we'd	expect	IHS	to	send	the	GET/POST	to
WAS	shows	TCP	Previous	Segment	lost.	A	few	packets	later,	we	see	what	appears	to	be	a	RST	packet
coming	from	WAS.	By	doing	Follow	TCP	Stream,	this	is	what	it	looks	like	from	the	WAS	application	point
of	view:

#	Wireshark:	tcp.stream	eq	52
[1380	bytes	missing	in	capture	file]i-Origin-Hop:	1

Via:	1.1	...
X-Forwarded-For:	...
True-Client-IP:	...
Host:	...
Pragma:	no-cache
Cache-Control:	no-cache,	max-age=0
$WSCS:	AES256-SHA
$WSIS:	true
$WSSC:	https
$WSPR:	HTTP/1.1
$WSRA:	...
$WSRH:	...
$WSSN:	...
$WSSP:	443
$WSSI:	...
Surrogate-Capability:	WS-ESI="ESI/1.0+"
_WS_HAPRT_WLMVERSION:	-1

So	of	course	the	request	failed	--	the	front	half	is	cut	off	(due	to	the	"previous	segment	lost")!

From	this	packet	trace	alone,	one	would	highly	suspect	that	it's	the	WAS	side	or	the	network	path	between
IHS	and	WAS	because	it's	the	one	sending	the	RST.	But,	let's	look	at	the	trace	from	the	WAS	server:

146	...	10.20.30.100	10.20.36.100	TCP	74	38898	>	9086	[SYN]	Seq=0...
147	...	10.20.36.100	10.20.30.100	TCP	58	9086	>	38898	[SYN,	ACK]	Seq=0...
148	...	10.20.30.100	10.20.36.100	TCP	60	38898	>	9086	[ACK]	Seq=1...
149	...	10.20.30.100	10.20.36.100	TCP	532	[TCP	Previous	segment	lost]	38898	>	90086	[PSH,	ACK]	Seq=1381...
150	...	10.20.36.100	10.20.30.100	TCP	54	[TCP	Dup	ACK	147#1]	9086	>	38898	[ACK]	Seq=1...
151	...	10.20.30.100	10.20.36.100	TCP	60	38898	>	9086	[RST]	Seq=1...

This	is	similar	--	the	first	segment	with	the	GET/POST	line	is	lost	--	but	we	only	see	one	RST,	coming	from
IHS.	It	doesn't	seem	like	the	WAS	box	sent	out	the	RST	packet	(#678	above).	This	points	back	to	the	IHS
side	and	highlights	the	fact	that	getting	simultaneous	packet	captures	from	both	sides	is	critical.	(Note:	The
RST	coming	from	IHS	is	just	IHS	closing	its	half	of	the	stream	in	packet	679)

One	final	point	that	we	found	looking	back	on	the	IHS	side	was	that	if	we	look	at	frame	664,	for	example,	in
the	handshake,	we	can	see	a	good	MAC	address	of	d8:3c:85:41:4e:95.	However,	in	the	suspect	RST	frame
#678,	the	MAC	address	is	blank.	This	is	what	helped	hone	the	investigation	into	the	IHS	OS	and	network
software.

	

Antivirus	/	Security	Products

We	have	seen	increasing	cases	of	antivirus	leading	to	significant	performance	problems.	Companies	are	more
likely	to	run	quite	intrusive	antivirus	even	on	critical,	production	machines.	The	antivirus	settings	are	usually
corporate-wide	and	may	be	inappropriate	or	insufficiently	tuned	for	particular	applications	or	workloads.	In
some	cases,	even	when	an	antivirus	administrator	states	that	antivirus	has	been	"disabled,"	there	may	still	be
kernel	level	modules	that	are	still	operational.	In	some	cases,	slowdowns	are	truly	difficult	to	understand;	for
example,	in	one	case	a	slowdown	occurred	because	of	a	network	issue	communicating	with	the	antivirus	hub,
but	this	occurred	at	a	kernel-level	driver	in	fully	native	code,	so	it	was	very	difficult	even	to	hypothesize	that
it	was	antivirus.	You	can	use	operating	system	level	tools	and	sampling	profilers	to	check	for	such	cases,	but
they	may	not	always	be	obvious.	Keep	a	watch	out	for	signs	of	antivirus	and	consider	running	a	benchmark
comparison	with	and	without	antivirus	(completely	disabled,	perhaps	even	uninstalled).

Another	class	of	products	that	are	somewhat	orthogonal	are	security	products	which	provide	integrity,
security,	and	data	scrubbing	capabilities	for	sensitive	data.	For	example,	they	will	hook	into	the	kernel	so
that	any	time	a	file	is	copied	onto	a	USB	key,	a	prompt	will	ask	whether	the	information	is	confidential	or	not
(and	if	so,	perform	encryption).	This	highlights	the	point	that	it	is	important	to	gather	data	on	which	kernel
modules	are	active	(e.g.	using	CPU	during	the	time	of	the	problem).

	

Clocks
To	ensure	that	all	clocks	are	synchronized	on	all	nodes	use	something	like	the	Network	Time	Protocol
(NTP).	This	helps	with	correlating	diagnostics	and	it's	required	for	certain	functions	in	products.

Consider	setting	one	standardized	time	zone	for	all	nodes,	regardless	of	their	physical	location.	Some
consider	it	easier	to	standardize	on	the	UTC/GMT/Zulu	time	zone.

	

POSIX
The	Portable	Operating	System	Interface	for	Unix	(POSIX)	is	the	public	standard	for	Unix-like	operating
systems,	including	things	like	APIs,	commands,	utilities,	threading	libraries,	etc.	It	is	implemented	in	part	or
in	full	by:	Linux,	AIX,	Solaris,	z/OS	USS,	HP/UX,	etc.

	

Process	limits	(Ulimits)
On	POSIX-based	operating	systems	such	as	Linux,	AIX,	etc.,	process	limits	(a.k.a.	ulimits,	or	user	limits)
are	operating	system	restrictions	on	what	a	process	may	do	with	certain	resources.	These	are	designed	to
protect	the	kernel,	protect	memory,	protect	users	from	consuming	an	entire	box,	and	reduce	the	risks	of
Denial-of-Service	(DoS)	attacks.	For	example,	a	file	descriptor	ulimit	restricts	the	maximum	number	of	open
file	descriptors	in	the	process	at	any	one	time.	Since	a	network	socket	is	represented	by	a	file	descriptor,	this
also	limits	the	maximum	number	of	open	network	sockets	at	any	one	time.

Process	limits	come	in	two	flavors:	soft	and	hard.	A	process	limit	starts	at	the	soft	limit	but	it	may	be
increased	up	to	the	hard	limit	at	runtime.

	

Choosing	ulimits

The	default	process	limits	are	somewhat	arbitrary	and	often	historical	artifacts.	Similarly,	deciding	what
ulimits	to	use	is	also	somewhat	arbitrary.	If	a	box	is	mostly	dedicated	to	running	a	particular	process,	some
people	use	the	philosophy	of	setting	everything	to	unlimited	for	those	processes.	As	always,	testing	(and	in
particular,	stress	testing)	the	ulimit	values	is	advised.

	

Setting	ulimits

Ulimits	are	most	commonly	modified	through	global,	operating	system	specific	configuration	files,	using	the
ulimit	command	in	the	shell	that	launches	a	process	(or	its	parent	process),	or	at	runtime	by	the	process
itself	(e.g.	through	setrlimit).

In	general,	we	recommend	using	operating	system	specific	configuration	files.

Processes	will	need	to	be	restarted	after	ulimit	settings	are	changed.

	

Maximum	number	of	open	file	descriptors

The	ulimit	for	the	maximum	number	of	open	file	descriptors	(a.k.a.	"maximum	number	of	open	files",	"max

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://www.ibm.com/support/pages/guidelines-setting-ulimits-websphere-application-server
https://pubs.opengroup.org/onlinepubs/009696699/basedefs/sys/resource.h.html
https://www.ibm.com/support/pages/guidelines-setting-ulimits-websphere-application-server

number	of	open	files",	"open	files",	ulimit	-n,	nofile,	or	RLIMIT_NOFILE)	limits	both	the	number	of	open
files	and	open	network	sockets.

For	example,	WebSphere	Application	Server	traditional	defaults	to	a	maximum	of	up	to	20,000	incoming
TCP	connections	and	Liberty	defaults	up	to	128,000.	In	addition,	Java	will	have	various	open	files	to	JARs,
and	applications	will	likely	drive	other	sockets	to	backend	connections	such	as	databases,	web	services,	and
so	on;	therefore,	if	such	load	may	be	reasonably	reached,	a	ulimit	-n	value	such	as	1048576	(or	more),	or
unlimited	may	be	considered.

	

Maximum	number	of	processes

The	ulimit	for	the	maximum	number	of	processes	(a.k.a.	"max	user	processes",	"max	number	of	processes",
ulimit	-u,	nproc,	or	RLIMIT_NPROC)	limits	the	maximum	number	of	threads	spawned	by	a	particular	user.
This	is	slightly	different	than	other	ulimits	which	apply	on	a	per-process	basis.	For	example,	on	Linux:

RLIMIT_NPROC	This	is	a	limit	on	the	number	of	extant	process	(or,	more	precisely	on	Linux,
threads)	for	the	real	user	ID	of	the	calling	process.

On	some	versions	of	Linux,	this	is	configured	globally	using	a	separate	mechanism	of
/etc/security/limits.d/90-nproc.conf.

It	is	common	for	a	Java	process	to	use	hunreds	or	thousands	of	threads.	In	addition,	given	that	this	limit	is
accounted	for	at	the	user-level	and	multiple	processes	may	run	under	the	same	user,	if	such	load	may	be
reasonably	reached,	a	ulimit	-u	value	such	as	131072	(or	more),	or	unlimited	may	be	considered.

	

Maximum	data	segment	size

The	ulimit	for	the	maximum	data	segment	size	(a.k.a.	"max	data	size",	"maximum	data	size",	"data	seg	size",
ulimit	-d,	or	RLIMIT_DATA)	limits	the	total	native	memory	requested	by	malloc,	and,	in	some	operating
systems	and	versions,	mmap	(for	example,	since	Linux	4.7).	In	general,	this	ulimit	should	be	unlimited.

	

How	do	you	confirm	that	ulimits	are	set	correctly?

Recent	versions	of	Linux:	cat	/proc/$PID/limits.
If	using	IBM	Java/Semeru/OpenJ9,	the	javacore	produced	with	kill	-3	$PID	includes	a	process
limits	section.	For	example:

1CIUSERLIMITS		User	Limits	(in	bytes	except	for	NOFILE	and	NPROC)
NULL											--
NULL											type																												soft	limit											hard	limit
2CIUSERLIMIT			RLIMIT_AS																								unlimited												unlimited
2CIUSERLIMIT			RLIMIT_CORE																						unlimited												unlimited
2CIUSERLIMIT			RLIMIT_CPU																							unlimited												unlimited
2CIUSERLIMIT			RLIMIT_DATA																						unlimited												unlimited
2CIUSERLIMIT			RLIMIT_FSIZE																					unlimited												unlimited
2CIUSERLIMIT			RLIMIT_LOCKS																					unlimited												unlimited
2CIUSERLIMIT			RLIMIT_MEMLOCK																			unlimited												unlimited
2CIUSERLIMIT			RLIMIT_NOFILE																						1048576														1048576
2CIUSERLIMIT			RLIMIT_NPROC																					unlimited												unlimited
2CIUSERLIMIT			RLIMIT_RSS																							unlimited												unlimited
2CIUSERLIMIT			RLIMIT_STACK																					unlimited												unlimited
2CIUSERLIMIT			RLIMIT_MSGQUEUE																					819200															819200
2CIUSERLIMIT			RLIMIT_NICE																														0																				0
2CIUSERLIMIT			RLIMIT_RTPRIO																												0																				0
2CIUSERLIMIT			RLIMIT_SIGPENDING																				47812																47812

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=chains-tcp-transport-channel-settings
https://openliberty.io/docs/latest/reference/config/tcpOptions.html
https://www.kernel.org/doc/man-pages/online/pages/man2/setrlimit.2.html
https://access.redhat.com/solutions/61334
https://www.kernel.org/doc/man-pages/online/pages/man2/getrlimit.2.html

	

Process	core	dumps
A	process	core	dump	is	a	file	that	represents	metadata	about	a	process	and	its	virtual	memory	at	a	particular
point	in	time.

	

Core	dump	security	implications

In	general,	a	process	core	dump	contains	most	of	the	virtual	memory	areas	of	a	process.	If	a	sensitive
operation	was	occurring	at	the	time	when	the	core	dump	was	produced	--	for	example,	a	user	completing	a
bank	transaction	--	then	it	is	possible	for	someone	with	access	to	the	core	dump	to	discover	sensitive
information	about	that	operation	--	for	example,	the	name	of	the	user	and	the	details	of	the	bank	transaction.
For	this	reason,	in	general	and	particularly	for	production	environments,	core	dumps	should	be	treated
sensitively.	This	is	normally	done	either	using	filesystem	permissions	to	restrict	who	can	read	the	core	dump
or	by	disabling	core	dumps	(e.g.	a	core	ulimit	of	0).

In	general,	we	do	not	recommend	disabling	core	dumps	because	then	it	may	be	very	difficult	or	impossible	to
understand	the	causes	of	crashes,	OutOfMemoryErrors,	and	other	production	problems.	Instead,	we
recommend	carefully	planning	out	how	core	dumps	are	produced,	stored,	and	shared.	For	example,	a	core
dump	may	be	encrypted	and	transferred	off	of	a	box	to	a	controlled	location,	and	even	if	the	sensitive
information	within	a	core	dump	restricts	the	core	dump	from	being	shared	to	IBM	Support,	as	long	as	the
core	dump	exists,	it's	possible	to	investigate	it	remotely	using	screen	sharing	or	iterative	debug	commands.

	

Core	dump	disk	implications

The	size	of	a	core	dump	is	approximately	the	virtual	size	of	the	process.	A	common	default	is	to	create	the
core	dump	in	the	current	working	directory	of	the	process.	Therefore,	if	a	process	has	requested	a	lot	of
memory	(e.g.	Java	with	a	large	maximum	heap	size),	then	the	core	dump	will	be	very	large.	If	a	process
automatically	restarts	after	a	crash,	then	it's	possible	it	will	create	continuous	core	dumps	if	the	crash
continues	to	be	exercised,	and	the	core	dumps	can	fill	up	disk	space	and	cause	application	issues	if	an
application	needs	disk	space	in	the	same	filesystem	(e.g.	transaction	log).

Some	operating	systems	provide	a	way	to	limit	this	impact	either	by	specifying	the	directory	where	core
dumps	go	(which	can	then	be	mounted	on	a	filesystem	dedicated	for	diagnostics	whose	exhaustion	does	not
impact	applications),	truncating	core	dumps	to	a	maximum	size,	and/or	limiting	the	total	disk	space	used	by
core	dumps	by	deleting	older	core	dumps	(e.g.	systemd-coredump	on	Linux).

You	can	determine	the	virtual	address	space	size	in	various	ways	(where	VSZ	is	normally	in	KB):

Linux:	ps	-o	pid,vsz	-p	PID
AIX:	ps	-o	pid,vsz	-L	PID
Solaris:	ps	-o	pid,vsz	-p	PID
HP-UX:	UNIX95=""	ps	-o	pid,vsz	-p	PID

	

Descructive	core	dumps

Process	core	dumps	are	most	often	associated	with	destructive	events	such	as	process	crashes	and	they're
used	to	find	the	cause	of	a	crash.	In	such	an	event,	after	the	core	dump	is	produced,	the	process	is	killed	by
the	operating	system.	The	core	dump	may	then	be	loaded	into	a	debugger	by	a	developer	to	inspect	the	cause
of	the	crash.

	

Non-destructive	core	dumps

Core	dumps	may	be	produced	non-destructively	as	a	diagnostic	aid	to	investigate	things	such	as	memory
usage	(e.g.	OutOfMemoryError)	or	something	happening	on	a	thread.	In	this	case,	a	diagnostic	tool	attaches
to	the	process,	pauses	the	process,	writes	out	the	core	dump,	and	then	detaches	and	the	process	continues
running.

IBM	Java/Semeru/OpenJ9	commonly	use	non-destructive	core	dumps	as	diagnostics	(confusingly,	these
artifacts	are	called	"System	dumps"	even	though	they	are	process	dumps).	A	non-destructive	core	dump	is
requested	on	the	first	OutOfMemoryError,	and	non-destructive	core	dumps	may	be	requested	on	various	Java
events,	method	entry/exit,	manually	dumping	memory	for	system	sizing,	and	so	on.

	

Performance	implications	of	non-destructive	core	dumps

Unlike	diagnostics	such	as	thread	dumps	which	are	generally	very	lightweight	in	the	range	of	10s	or	100s	of
milliseconds,	non-destructive	core	dumps	may	have	a	significant	performance	impact	in	the	range	of	dozens
of	seconds	during	which	the	process	is	completely	frozen.	In	general,	this	duration	is	proportional	to	the
virtual	size	of	the	process,	the	speed	of	CPUs	and	RAM	(to	read	all	of	the	virtual	memory),	the	speed	of	the
disk	where	the	core	dump	is	written,	and	the	free	RAM	at	the	time	of	the	core	dump	(since	some	operating
systems	will	write	the	core	dump	to	RAM	and	then	asynchronously	flush	that	to	disk).

These	performance	implications	generally	don't	matter	for	destructive	core	dumps	because	the	process	does
not	live	after	the	core	dump	is	produced,	and	the	core	dump	is	often	needed	to	find	the	cause	of	the	crash.

	

Core	dumps	and	ulimits

After	reviewing	the	security	and	disk	implications	of	core	dumps,	the	way	to	ensure	core	dumps	are
produced	and	not	truncated	starts	by	setting	core	(a.k.a.	"core	file	size",	ulimit	-c,	core,	or	RLIMIT_CORE)
and	file	size	(a.k.a.	"maximum	filesize",	ulimit	-f,	fsize,	or	RLIMIT_FSIZE)	ulimits	to	unlimited.

However,	such	configuration	may	not	be	sufficient	to	configure	core	dumps.	Further	operating-system
specific	changes	may	be	needed	such	as:

Linux:	If	using	a	core_pattern	that	pipes	the	core	dump	to	a	program	such	as	systemd-coredump,
that	program	must	be	configured	properly	or	disabled	(e.g.	systemd-coredump	defaults	to	truncating
core	dumps	at	2GB	so	ProcessSizeMax	and	ExternalSizeMax	should	be	increased).
AIX:	Enable	full	CORE	dump	that	is	not	a	pre-430	style	CORE	dump

	

Ulimit	Summary
Based	on	the	above	sections	on	ulimits	and	process	core	dumps,	a	summary	of	a	common	starting	point	for
customized	ulimits	may	be	something	like	the	following	(and	generally	best	applied	through	global,
operating	system	specific	configuration	instead	of	such	explicit	ulimit	commands):

ulimit	-c	unlimited
ulimit	-f	unlimited
ulimit	-u	131072
ulimit	-n	1048576
ulimit	-d	unlimited

https://www.eclipse.org/openj9/docs/dump_systemdump/
https://www.eclipse.org/openj9/docs/xdump/#default-dump-agents
https://www.eclipse.org/openj9/docs/xdump/#dump-events
https://www.eclipse.org/openj9/docs/xtrace/#actions
https://www.eclipse.org/openj9/docs/tool_jcmd/
https://www.eclipse.org/openj9/docs/dump_systemdump/#enabling-a-full-system-dump-aix-and-linux

If	using	the	unlimited	philosophy:

ulimit	-c	unlimited
ulimit	-f	unlimited
ulimit	-u	unlimited
ulimit	-n	unlimited
ulimit	-d	unlimited

Further	configuration	may	need	to	be	applied	such	as	for	process	core	dumps.

	

SSH	Keys
As	environments	continue	to	grow,	automation	becomes	more	important.	On	POSIX	operating	systems,	SSH
keys	may	be	used	to	automate	running	commands,	gathering	logs,	etc.	A	30	minute	investment	to	configure
SSH	keys	will	save	countless	hours	and	mistakes.

	

Step	#1:	Generate	an	"orchestrator"	SSH	key

1.	 Choose	one	of	the	machines	that	will	be	the	orchestrator	(or	a	Linux,	Mac,	or	Windows	cygwin
machine)

2.	 Ensure	the	SSH	key	directory	exists:

$	cd	~/.ssh/

If	this	directory	does	not	exist:

$	mkdir	~/.ssh	&&	chmod	700	~/.ssh	&&	cd	~/.ssh/

3.	 Generate	an	SSH	key:

$	ssh-keygen	-t	rsa	-b	4096	-f	~/.ssh/orchestrator

	

Step	#2:	Distribute	"orchestrator"	SSH	key	to	all	machines

If	using	Linux:

1.	 Run	the	following	command	for	each	machine:

$	ssh-copy-id	-i	~/.ssh/orchestrator	user@host

For	other	POSIX	operating	systems

1.	 Log	in	to	each	machine	as	a	user	that	has	access	to	all	logs	(e.g.	root):

$	ssh	user@host

2.	 Ensure	the	SSH	key	directory	exists:

$	cd	~/.ssh/

If	this	directory	does	not	exist:

$	mkdir	~/.ssh	&&	chmod	700	~/.ssh	&&	cd	~/.ssh/

3.	 If	the	file	~/.ssh/authorized_keys	does	not	exist:

$	touch	~/.ssh/authorized_keys	&&	chmod	700	~/.ssh/authorized_keys

4.	 Append	the	public	key	from	~/.ssh/orchestrator.pub	above	to	the	authorized_keys	file:

$	cat	>>	~/.ssh/authorized_keys
Paste	your	clipboard	and	press	ENTER
Ctrl+D	to	save

	

Step	#3:	Now	you	are	ready	to	automate	things

Go	back	to	the	orchestrator	machine	and	test	the	key:

1.	 Log	into	orchestrator	machine	and	try	to	run	a	simple	command	on	another	machine:

$	ssh	-i	~/.ssh/orchestrator	root@machine2	"hostname"

2.	 If	your	SSH	key	has	a	password,	then	you'll	want	to	use	ssh-agent	so	that	it's	cached	for	some	time:

$	ssh-add	~/.ssh/orchestrator

3.	 If	this	gives	an	error,	try	starting	ssh-agent:

$	ssh-agent

4.	 Now	try	the	command	again	and	it	should	give	you	a	result	without	password:

$	ssh	-i	~/.ssh/orchestrator	root@machine2	"hostname"

Now	we	can	create	scripts	on	the	orchestrator	machine	to	stop	servers,	clear	logs,	start	servers,	start
mustgathers,	gather	logs,	etc.

	

Example	Scripts

In	all	the	example	scripts	below,	we	basically	iterate	over	a	list	of	hosts	and	execute	commands	on	all	of
those	hosts.	Remember	that	if	the	orchestrator	machine	is	also	one	of	these	hosts,	that	it	should	be	included
in	the	list	(it	will	be	connecting	to	"itself").	You	will	need	to	modify	these	scripts	to	match	what	you	need.

	

Example	Script	to	Stop	Servers

#!/bin/sh
USER=root
for	i	in	ihs1hostname	ihs2hostname;	do
ssh	-i	~/.ssh/orchestrator	$USER@$i	"/opt/IBM/HTTPServer/bin/apachectl	-k	stop"
ssh	-i	~/.ssh/orchestrator	$USER@$i	"kill	-INT	`pgrep	tcpdump`"
done
for	i	in	wl1hostname	wl2hostname;	do
ssh	-i	~/.ssh/orchestrator	$USER@$i	"/opt/liberty/bin/server	stop	ProdSrv01"
ssh	-i	~/.ssh/orchestrator	$USER@$i	"kill	-INT	`pgrep	tcpdump`"
done

	

Example	Script	to	Clear	Logs

#!/bin/sh
USER=root
for	i	in	ihs1hostname	ihs2hostname;	do

ssh	-i	~/.ssh/orchestrator	$USER@$i	"rm	-rf	/opt/IBM/HTTPServer/logs/*"
ssh	-i	~/.ssh/orchestrator	$USER@$i	"rm	-rf	/opt/IBM/HTTPServer/Plugin/webserver1/logs/*"
ssh	-i	~/.ssh/orchestrator	$USER@$i	"nohup	tcpdump	-nn	-v	-i	any	-C	100	-W	10	-Z	root	-w	/tmp/capture`date	+"%Y%m%d_%H%M"`.pcap	&"
done
for	i	in	wl1hostname	wl2hostname;	do
ssh	-i	~/.ssh/orchestrator	$USER@$i	"rm	-rf	/opt/liberty/usr/servers/*/logs/*"
ssh	-i	~/.ssh/orchestrator	$USER@$i	"nohup	tcpdump	-nn	-v	-i	any	-C	100	-W	10	-Z	root	-w	/tmp/capture`date	+"%Y%m%d_%H%M"`.pcap	&"
done

	

Example	Script	to	Execute	perfmustgather

#!/bin/sh
USER=root
for	i	in	wl1hostname	wl2hostname;	do
ssh	-i	~/.ssh/orchestrator	$USER@$i	"nohup	/opt/perfMustGather.sh	--outputDir	/tmp/	--iters	6	`cat	/opt/liberty/usr/servers/.pid/*.pid`	&"
done

	

Example	Script	to	Gather	Logs

#!/bin/sh
USER=root
LOGS=logs`date	+"%Y%m%d_%H%M"`
mkdir	$LOGS
for	i	in	ihs1hostname	ihs2hostname;	do
mkdir	$LOGS/ihs/$i/
scp	-r	-i	~/.ssh/orchestrator	$USER@$i:/opt/IBM/HTTPServer/logs/*	$LOGS/ihs/$i/
scp	-r	-i	~/.ssh/orchestrator	$USER@$i:/opt/IBM/HTTPServer/conf/httpd.conf	$LOGS/ihs/$i/
scp	-r	-i	~/.ssh/orchestrator	$USER@$i:/opt/IBM/HTTPServer/plugings/config/*/plugin-cfg.xml	$LOGS/ihs/$i/
scp	-r	-i	~/.ssh/orchestrator	$USER@$i:/opt/IBM/HTTPServer/Plugin/webserver1/logs/*	$LOGS/ihs/$i/
scp	-r	-i	~/.ssh/orchestrator	$USER@$i:/tmp/capture*.pcap*	$LOGS/ihs/$i/
done
for	i	in	wl1hostname	wl2hostname;	do
mkdir	$LOGS/liberty/$i/
scp	-r	-i	~/.ssh/orchestrator	$USER@$i:/opt/liberty/usr/servers/*/logs/	$LOGS/liberty/$i/
scp	-r	-i	~/.ssh/orchestrator	$USER@$i:/opt/liberty/usr/servers/*/server.xml	$LOGS/liberty/$i/
scp	-r	-i	~/.ssh/orchestrator	$USER@$i:/tmp/capture*.pcap*	$LOGS/liberty/$i/
scp	-r	-i	~/.ssh/orchestrator	$USER@$i:/tmp/mustgather_RESULTS.tar.gz	$LOGS/liberty/$i/
done
tar	czvf	$LOGS.tar.gz	$LOGS

	

Linux

Linux	Recipe

1.	 Generally,	all	CPU	cores	should	not	be	consistently	saturated.	Check	CPU	100	-	idle%	with	tools
such	as	vmstat,	top,	nmon,	etc.

2.	 Review	snapshots	of	process	activity	using	tools	such	as	top,	nmon,	etc.,	and	for	the	largest	users	of
resources,	review	per	thread	activity	using	tools	such	as	top	-H	-p	$PID.

3.	 Generally,	swapping	of	program	memory	from	RAM	to	disk	should	rarely	happen.	Check	that	current
swapping	is	0	with	vmstat	so/si	columns	and	use	tools	such	as	vmstat	or	top	and	check	if	swap
amount	is	greater	than	0	(i.e.	swapping	occurred	in	the	past).

4.	 Consider	using	TuneD	and	applying	the	latency-performance,	network-latency,	throughput-
performance,	or	network-throughput	profile.

5.	 Unless	power	consumption	is	important,	change	the	CPU	speed	governors	to	performance.
6.	 Unless	power	consumption	is	important,	ensure	processor	boosting	is	enabled	in	the	BIOS.
7.	 Monitor	TCP	retransmissions	with	nstat	-saz	*Retrans*.	Ideally,	for	LAN	traffic,	they	should	be	0.
8.	 Monitor	network	interface	packet	drops,	errors,	and	buffer	overruns.	Ideally,	for	LAN	traffic,	they

should	be	0.
9.	 For	systems	with	low	expected	usage	of	file	I/O,	set	vm.swappiness=0	to	reduce	the	probability	of	file

cache	driving	program	memory	swapping.
10.	 If	there	is	extra	network	capacity	and	a	node	has	extra	CPU	capacity,	test	permanently	disabling	TCP

delayed	acknowledgments	using	quickack	1.
11.	 Review	saturation,	response	time,	and	errors	of	input/output	interfaces	such	as	network	cards	and	disks.
12.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.	Review	CPU	steal	time	in	tools	such	as	vmstat,	top,	etc.
13.	 Check	if	CPU	is	being	throttled:	grep	nr_throttled	/sys/fs/cgroup/cpu.stat
14.	 Consider	testing	explicitly	tuned	TCP/IP	network	buffer	sizes.
15.	 Review	CPU	instructions	per	cycle	and	tune	appropriately.
16.	 For	hosts	with	incoming	LAN	network	traffic	from	clients	using	persistent	TCP	connection	pools	(e.g.	a

reverse	HTTP	proxy	to	an	application	server	such	as	IHS/httpd	to	WAS),	set
net.ipv4.tcp_slow_start_after_idle=0	to	disable	reducing	the	TCP	congestion	window	for	idle
connections.

17.	 General	operating	system	statistics	and	process	(and	thread)	statistics	should	be	periodically	monitored
and	saved	for	historical	analysis.

18.	 Review	sysctl	-a	for	any	uncommon	kernel	settings.
19.	 If	there	are	firewall	idle	timeouts	between	two	hosts	on	a	LAN	utilizing	a	connection	pool	(e.g.

between	WAS	and	a	database),	consider	tuning	TCP	keep-alive	parameters.
20.	 Linux	on	IBM	Power	CPUs:

1.	 Test	with	the	IBM	Java	parameter	-Xnodfpbd
2.	 Test	with	hardware	prefetching	disabled
3.	 Test	with	idle	power	saver	disabled
4.	 Test	with	adaptive	frequency	boost	enabled
5.	 Test	with	dynamic	power	saver	mode	enabled
6.	 Use	64-bit	DMA	adapter	slots	for	network	adapters

21.	 Linux	on	IBM	System	z	CPUs:
1.	 Use	QUICKDSP	for	production	guests

Also	review	the	general	topics	in	the	Operating	Systems	chapter.

	

General

Query	the	help	manual	for	a	command:

$	man	vmstat	#	By	default,	contents	are	sent	to	less
$	man	-a	malloc	#	There	may	be	multiple	manuals	matching	the	name.	Use	-a	to	show	all	of	them.
$	man	-P	cat	vmstat	#	Use	-P	to	send	the	output	to	something	other	than	less.	Note,	if	you	pipe	the	output,	it	will	figure	that	out	and	send	things	to	stdout.
$	man	-K	vmstat	#	Search	all	manpages	for	a	keyword
$	info	libc	#	Some	GNU	programs	offer	more	detailed	documentation	using	the	info	command

	

Installing	Programs

Modern	Fedora/RHEL/CentOS/ubi/ubi-init:

dnf	install	-y	$PROGRAMS

Older	Fedora/RHEL/CentOS:

yum	install	-y	$PROGRAMS

Debian/Ubuntu:

apt-get	update	&&	sudo	DEBIAN_FRONTEND=noninteractive	TZ=${TZ:-UTC}	apt-get	-y	install	$PROGRAMS

Alpine:

https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt

apk	update	&&	apk	add	$PROGRAMS

Some	packages	are	available	in	non-default	repositories;	for	example:	apk	add	podman	--
repository=https://dl-cdn.alpinelinux.org/alpine/edge/community

SUSE:

zypper	install	$PROGRAMS

	

Kernel	Log

Check	the	kernel	log	for	any	warnings,	errors,	or	repeated	informational	messages.	The	location	or
mechanism	depends	on	the	distribution	and	software.	The	most	common	recent	Linux	log	management	is
done	through	journalctl.	Other	potentials	are	/var/log/messages,	/var/log/syslog,
/var/log/boot.log,	and	dmesg.

	

journalctl

Tail	the	journal:	journalctl	-f
Messages	since	last	boot:	journalctl	-b
List	logs	per	boot:	journalctl	--list-boots
Messages	for	a	particular	boot	period:	journalctl	-b	-0
Messages	that	are	warnings	and	errors:	journalctl	-p	warning
Messages	that	are	warnings	and	errors	(since	last	boot):	journalctl	-b	-p	warning
Messages	that	are	warnings	and	errors	(last	100):	journalctl	-p	warning	-n	100
Messages	that	are	errors:	journalctl	-p	err
Only	kernel	messages:	journalctl	-k
Messages	for	a	particular	systemd	unit:	journalctl	-u	low-memory-monitor
Messages	since	yesterday:	journalctl	-S	yesterday
Messages	in	a	date	range:	journalctl	-S	"2021-01-01	10:00"	-U	"2021-01-01	11:00"
Messages	with	microsecond	timestamps:	journalctl	-o	short-precise

	

Modifying	Kernel	Parameters

The	kernel	mounts	a	virtual	filesystem	in	/proc/sys	which	exposes	various	kernel	settings	through	pseudo
files	that	can	be	read	and	(sometimes)	written	to	get	and	set	each	value,	respectively.	For	example,	the
following	command	gets	the	current	value	of	the	kernel's	system	wide	limit	of	concurrently	running
threads/tasks:

$	sudo	cat	/proc/sys/kernel/threads-max
248744

Each	of	these	pseudo	files	is	documented	in	man	5	proc.

If	a	value	can	be	updated,	simply	echo	the	new	value	into	the	pseudo	file:

$	echo	248745	>	/proc/sys/kernel/threads-max
bash:	/proc/sys/kernel/threads-max:	Permission	denied
$	sudo	echo	248744	>	/proc/sys/kernel/threads-max
bash:	/proc/sys/kernel/threads-max:	Permission	denied

Notice	that	the	user	must	have	sufficient	permissions,	and	simply	prepending	sudo	is	also	not	enough.	The
reason	a	simple	"sudo	echo"	doesn't	work	is	that	this	runs	the	echo	command	as	root,	but	the	output
redirection	occurs	under	the	user's	context.	Therefore,	you	must	use	something	like	the	tee	command:

https://wiki.alpinelinux.org/wiki/Alpine_Linux_package_management
https://www.kernel.org/doc/man-pages/online/pages/man1/dmesg.1.html
https://www.kernel.org/doc/man-pages/online/pages/man5/proc.5.html

$	echo	248745	|	sudo	tee	/proc/sys/kernel/threads-max
248745

This	works	but	the	change	will	be	reverted	on	reboot.	To	make	permanent	changes,	edit	the	/etc/sysctl.conf
file	as	root.	This	lists	key	value	pairs	to	be	set	on	boot,	separated	by	an	equal	sign.	The	key	is	the	name	of	the
pseudo	file,	with	/proc/sys	removed,	and	all	slashes	replaced	with	periods.	For	example,	the	same	threads-
max	setting	above	would	be	added	to	/etc/sysctl.conf	as:

kernel.threads-max=248745

Sysctl	is	also	a	command	that	can	be	run	to	print	variables	in	a	similar	way	to	cat:

$	sudo	sysctl	kernel.threads-max
kernel.threads-max	=	248745

Or	to	temporarily	update	variables	similar	to	echo	above	and	similar	to	the	sysctl.conf	line:

$	sudo	sysctl	-w	kernel.threads-max=248746
kernel.threads-max	=	248746

To	list	all	current	values	from	the	system:

$	sudo	sysctl	-a	|	head
kernel.sched_child_runs_first	=	0
kernel.sched_min_granularity_ns	=	4000000
kernel.sched_latency_ns	=	20000000

Finally,	use	the	-p	command	to	update	kernel	settings	based	on	the	current	contents	of	/etc/sysctl.conf:

$	sudo	sysctl	-p
net.ipv4.ip_forward	=	0
net.ipv4.conf.all.rp_filter	=	1

The	recommended	way	to	edit	kernel	settings	is	to	edit	or	add	the	relevant	line	in	/etc/sysctl.conf	and	run
sysctl	-p.	This	will	not	only	set	the	currently	running	settings,	but	it	will	also	ensure	that	the	new	settings
are	picked	up	on	reboot.

	

Modifying	Kernel	Command	Line	Options

Kernel	command	line	options	may	be	set	depending	on	the	type	of	bootloader	used:

1.	 GRUB2	using	grubby:
List	kernels	and	options:	sudo	grubby	--info=ALL
Add	space-separated	options	example:	sudo	grubby	--update-kernel=ALL	--
args="cpufreq.default_governor=performance"
Remove	options	example:	sudo	grubby	--update-kernel=ALL	--remove-
args=cpufreq.default_governor

	

TuneD

TuneD	applies	tuning	configuration	using	tuning	templates	called	profiles	either	using	a	background	service
(default)	or	an	apply-and-exit	mode	using	daemon=0.

TuneD	was	originally	built	for	Fedora,	Red	Hat	Enterprise	Linux,	and	similar	but	it	is	also	available	on	other
distributions	with	similar	functionality.	TuneD	is	incompatible	with	the	cpupower	and	power-profiles-
daemon	programs	so	those	should	be	disabled	when	using	TuneD.

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://docs.fedoraproject.org/en-US/fedora/rawhide/system-administrators-guide/kernel-module-driver-configuration/Working_with_the_GRUB_2_Boot_Loader/
https://github.com/redhat-performance/tuned
https://github.com/redhat-performance/tuned#how-to-use-it
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance#tuned-no-daemon-mode_getting-started-with-tuned

	

TuneD	Profiles

Listing	TuneD	Profiles

List	the	currently	configured	profile:

$	tuned-adm	active

Current	active	profile:	throughput-performance

List	TuneD	profiles:

$	tuned-adm	list

Available	profiles:
-	accelerator-performance	-	Throughput	performance	based	tuning	with	disabled	higher	latency	STOP	states
-	balanced																-	General	non-specialized	TuneD	profile
-	desktop																	-	Optimize	for	the	desktop	use-case
-	latency-performance					-	Optimize	for	deterministic	performance	at	the	cost	of	increased	power	consumption
-	network-latency									-	Optimize	for	deterministic	performance	at	the	cost	of	increased	power	consumption,	focused	on	low	latency	network	performance
-	network-throughput						-	Optimize	for	streaming	network	throughput,	generally	only	necessary	on	older	CPUs	or	40G+	networks
-	powersave															-	Optimize	for	low	power	consumption
-	throughput-performance		-	Broadly	applicable	tuning	that	provides	excellent	performance	across	a	variety	of	common	server	workloads
-	virtual-guest											-	Optimize	for	running	inside	a	virtual	guest
-	virtual-host												-	Optimize	for	running	KVM	guests
Current	active	profile:	balanced

	

Select	a	TuneD	Profile

Select	a	TuneD	profile:

1.	 Ensure	TuneD	is	running
2.	 Select	the	profile.	Ideally,	stress	test	different	profiles.	In	general,	consider	latency-performance,

network-latency,	throughput-performance,	or	network-throughput:

sudo	tuned-adm	profile	$PROFILE

3.	 Some	settings	may	require	a	reboot	of	the	node	and	may	require	BIOS	changes.

	

Debug	Symbols

RedHat	Enterprise	Linux	(RHEL)

1.	 Configure	debuginfo	repositories
2.	 sudo	yum	install	-y	kernel-debuginfo	kernel-debuginfo-common	glibc-debuginfo

	

Fedora/CentOS

1.	 sudo	dnf	install	-y	dnf-plugins-core
2.	 sudo	dnf	debuginfo-install	-y	kernel	glibc

	

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance#listing-available-tuned-profiles_getting-started-with-tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance#setting-a-tuned-profile_getting-started-with-tuned
https://access.redhat.com/solutions/9907

Ubuntu

1.	 Perform	Getting	-dbgsym.ddeb	packages
2.	 sudo	apt-get	-y	install	linux-image-$(uname	-r)-dbgsym	libc6-dbg

	

SLES

1.	 Enable	debuginfo	repositories	depending	on	the	SLES	version	(list	repositories	with	zypper	lr).	For
example:

zypper	mr	-e	SLE-Module-Basesystem15-SP2-Debuginfo-Pool
zypper	mr	-e	SLE-Module-Basesystem15-SP2-Debuginfo-Updates

2.	 zypper	install	kernel-default-debuginfo	glibc-debuginfo

	

Processes

Query	basic	process	information:

$	ps	-elfyww	|	grep	java
S	UID								PID		PPID		C	PRI		NI				RSS						SZ	WCHAN		STIME	TTY							TIME			CMD
S	root					11386					1	17		80			0	357204	1244770	futex_	08:07	pts/2	00:00:30			java	...	server1

Normally	the	process	ID	(PID)	is	the	number	in	the	fourth	column,	but	the	-y	option	(which	adds	the	RSS
column)	changes	PID	to	the	third	column.	You	can	control	which	columns	are	printed	and	in	which	order
using	-o.

Note	that	even	with	the	-w	option	or	with	a	large	COLUMNS	envar,	the	kernel	before	~2015	limited	the
command	line	it	stored	to	4096	characters;	however,	this	has	since	been	fixed.

	

cgroups

cgroups	(or	Control	Groups)	are	a	way	to	group	processes	in	a	hierarchy	to	monitor	and/or	control	resource
usage	through	controllers	of,	for	examples,	CPU	and	memory.	There	are	two	versions	of	cgroups:	v1	and	v2.
While	v2	does	not	implement	all	controllers	as	v2,	it	is	possible	to	run	a	mix	of	v1	and	v2	controllers.

	

Central	Processing	Unit	(CPU)

Query	CPU	information	using	lscpu:

#	lscpu
Architecture:																				x86_64
CPU	op-mode(s):																		32-bit,	64-bit
Byte	Order:																						Little	Endian
Address	sizes:																			39	bits	physical,	48	bits	virtual
CPU(s):																										4
On-line	CPU(s)	list:													0-3
Thread(s)	per	core:														1
Core(s)	per	socket:														1
Socket(s):																							4
Vendor	ID:																							GenuineIntel
CPU	family:																						6
Model:																											158

https://wiki.ubuntu.com/Debug%20Symbol%20Packages#Getting_-dbgsym.ddeb_packages
https://www.suse.com/support/kb/doc/?id=000016952
http://stackoverflow.com/a/199199/1293660
https://github.com/torvalds/linux/commit/c2c0bb44620dece7ec97e28167e32c343da22867
https://www.kernel.org/doc/man-pages/online/pages/man7/cgroups.7.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/man-pages/online/pages/man1/lscpu.1.html

Model	name:																						Intel(R)	Core(TM)	i7-7820HQ	CPU	@	2.90GHz
Stepping:																								9
CPU	MHz:																									2900.000
BogoMIPS:																								5808.00
L1d	cache:																							128	KiB
L1i	cache:																							128	KiB
L2	cache:																								1	MiB
L3	cache:																								32	MiB

Query	physical	processor	layout:

$	cat	/proc/cpuinfo
processor				:	0
model	name				:	Intel(R)	Core(TM)	i7-3720QM	CPU	@	2.60GHz
cpu	cores				:	4...

Query	the	current	frequency	of	each	CPU	core	(in	Hz):

$	cat	/sys/devices/system/cpu/cpu*/cpufreq/scaling_cur_freq
1200000
1200000

	

CPU	Speed

The	CPU	scaling	governor	may	dynamically	change	the	CPU	frequency	to	reduce	power	consumption.

The	cpupower	program	may	be	installed	for	easier	querying	and	configuration	of	CPU	speed.

Display	the	maximum	frequency	of	each	CPU	core	(in	Hz):	sudo	cat
/sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq

Display	the	current	governors	for	each	CPU:

1.	 sudo	cpupower	frequency-info
2.	 sudo	cat	/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

Display	available	governors:

1.	 sudo	cpupower	frequency-info	--governors
2.	 sudo	ls	/lib/modules/$(uname	-r)/kernel/drivers/cpufreq/

For	maximum	performance,	set	the	scaling_governor	to	performance:

1.	 sudo	cpupower	frequency-set	-g	performance
2.	 Teeing	into	the	scaling_governor:	for	i	in

/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor;	do	echo	"performance"	|	sudo
tee	$i;	done

	

Permanently	Changing	CPU	Scaling	Governor

1.	 Since	Linux	5.9,	set	the	kernel	boot	option	cpufreq.default_governor=performance
2.	 Or,	if	using	systemd:

1.	 Install	cpupower:
Fedora/RHEL/CentOS:	sudo	dnf	install	kernel-tools
Debian/Ubuntu:	sudo	apt-get	install	-y	linux-tools-$(uname	-r)

2.	 Find	EnvironmentFile	in	cpupower.service:	sudo	grep	EnvironmentFile
/usr/lib/systemd/system/cpupower.service

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://manpages.ubuntu.com/manpages/latest/en/man1/cpupower.1.html
https://www.kernel.org/doc/Documentation/cpu-freq/user-guide.txt
https://manpages.ubuntu.com/manpages/latest/en/man1/cpupower.1.html

3.	 Edit	the	EnvironmentFile	(e.g.	/etc/sysconfig/cpupower,	/etc/default/cpupower,	etc.)
4.	 Change	the	governor	in	CPUPOWER_START_OPTS	to	performance
5.	 Start	the	cpupower	service:	sudo	systemctl	start	cpupower
6.	 Check	that	the	service	started	without	errors:	sudo	systemctl	status	cpupower
7.	 Enable	the	cpupower	service	on	restart:	sudo	systemctl	enable	cpupower

3.	 Otherwise,	use	a	configuration	in	modprobe.d

	

CPU	Boosting

Ensure	processor	boosting	is	enabled	in	the	BIOS	and	kernel.	Intel	calls	this	Turbo	Boost	and	AMD	calls	this
Turbo	Core.

Check	/sys/devices/system/cpu/cpufreq/boost	or
/sys/devices/system/cpu/intel_pstate/no_turbo	depending	on	your	processor.	Alternatively,	check	the
status	of	turbo	boost	using	cpupower	if	available:

cpupower	frequency-info

	

Kernel	Threads

Kernel	threads	may	be	isolated	to	particular	CPU	threads	with	isolcpus	or	tuna:

tuna	--cpus=1-2	--isolate

Verify:

tuna	-P

	

Hyperthreading

There	are	cases	in	which	hyperthreading	(or	Simultaneous	Multithreading	[SMT])	is	less	efficient	than	a
single	CPU	thread	per	CPU	core.	Hyperthreading	may	be	disabled	in	various	ways:

1.	 Through	BIOS

2.	 Using	kernel	parameter	nosmt

3.	 Disable	SMT	control:

$	echo	off	>	/sys/devices/system/cpu/smt/control
$	cat	/sys/devices/system/cpu/smt/active
0

4.	 Disable	sibling	CPU	threads	per	core	(see	lscpu	and	/proc/cpuinfo	for	topology);	for	example:

echo	0	|	sudo	tee	/sys/devices/system/cpu/cpu1/online

Confirm	this	with	lscpu	--extended;	for	example:

$	lscpu	--extended
[...]
On-line	CPU(s)	list:		0
Off-line	CPU(s)	list:	1-3

	

https://www.kernel.org/doc/Documentation/cpu-freq/boost.txt
https://www.kernel.org/doc/html/latest/admin-guide/kernel-per-CPU-kthreads.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html#smt-control
https://www.kernel.org/doc/html/latest/core-api/cpu_hotplug.html
https://www.kernel.org/doc/Documentation/cputopology.txt

CPU	in	cgroups

cgroups	v1:

cat	/sys/fs/cgroup/cpu/$SLICE/$SCOPE/cpu.stat

cgroups	v2:

cat	/sys/fs/cgroup/$SLICE/$SCOPE/cpu.stat

	

CPU	Pressure

Recent	versions	of	Linux	include	Pressure	Stall	Information	(PSI)	statistics	to	better	understand	CPU	pressure
and	constraints.	For	example,	in	/proc/pressure/cpu	(or	in	cpu.pressure	in	cgroups):

cat	/proc/pressure/cpu
some	avg10=0.00	avg60=2.12	avg300=5.65	total=33092333

The	"some"	line	indicates	the	share	of	time	in	which	at	least	some	tasks	are	stalled	on	a	given
resource.

The	ratios	(in	%)	are	tracked	as	recent	trends	over	ten,	sixty,	and	three	hundred	second	windows,
which	gives	insight	into	short	term	events	as	well	as	medium	and	long	term	trends.	The	total
absolute	stall	time	(in	us)	is	tracked	and	exported	as	well,	to	allow	detection	of	latency	spikes
which	wouldn't	necessarily	make	a	dent	in	the	time	averages,	or	to	average	trends	over	custom
time	frames.

	

nice

Consider	testing	increased	CPU	and	I/O	priority	of	important	programs	to	see	if	there	is	an	improvement:

nice
renice
ionice

Examples:

$	sudo	renice	-n	-20	-p	17	#	Set	the	fastest	scheduling	priority	for	PID	17
17	(process	ID)	old	priority	0,	new	priority	-20
$	ionice	-p	17	#	print	the	I/O	priority	of	PID	17
realtime:	prio	0
$	sudo	ionice	-c	1	-n	0	-p	17	#	Set	the	I/O	priority	of	PID	17	to	realtime	and	the	highest	priority	(in	this	example	it's	redundant)

	

vmstat

vmstat	is	a	command	to	query	general	operating	system	statistics.	For	example:

$	vmstat	-tn	-SM	5	2
procs	-----------memory----------	---swap--	-----io----	--system--	-----cpu------	---timestamp---
r		b			swpd			free			buff		cache			si			so				bi				bo			in			cs	us	sy	id	wa	st
0		0						0		10600				143			2271				0				0			114				24		150		623		3		1	93		3		0				2014-02-10	08:18:37	PST
0		0						0		10600				143			2271				0				0					2				24		679	1763		1		0	98		0		0				2014-02-10	08:18:42	PST

To	run	vmstat	in	the	background	with	a	5	second	interval:

https://www.kernel.org/doc/html/latest/accounting/psi.html
https://www.kernel.org/doc/man-pages/online/pages/man1/nice.1.html
https://www.kernel.org/doc/man-pages/online/pages/man1/renice.1.html
https://www.kernel.org/doc/man-pages/online/pages/man1/ionice.1.html
https://www.kernel.org/doc/man-pages/online/pages/man8/vmstat.8.html

sh	-c	"date	>>	nohup.out	&&	(nohup	vmstat	-tn	5	>	diag_vmstat_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt	&)	&&	sleep	1	&&	cat	nohup.out"

Some	versions	of	Linux	do	not	support	the	-t	flag	so	the	above	command	will	give	an	error.	If	so,	change	to
-n	and	use	the	date	in	the	filename	to	calculate	wall	clock	times.

To	stop	collection,	kill	the	vmstat	process.	For	example:

pkill	-f	vmstat

vmstat	notes:

The	first	line	is	an	average	since	reboot,	so	in	most	cases	you	should	disregard	it.
The	"r"	column	has	had	a	confusing	manual	page	in	older	releases.	The	newer	description	is	more
clear:	"The	"procs_running"	line	gives	the	total	number	of	threads	that	are	running	or	ready	to	run	(i.e.,
the	total	number	of	runnable	threads)."
b:	Average	number	of	uninterruptible,	blocked	threads	-	usually	I/O
free,	buff,	cache:	Equivalent	to	free	command.	"Total"	free	=	free	+	buff	+	cache
si/so:	Swap	in/out.	bi/bo:	Device	blocks	in/out
id:	Idle	-	Best	place	to	look	for	CPU	usage	-	substract	100	minus	this	column.
Us=user	CPU%,	sy=system	CPU%,	wa=%	waiting	on	I/O,	st=%	stolen	by	hypervisor

Ensure	there	are	no	errant	processes	using	non-trivial	amounts	of	CPU.

	

Per	Processor	Utilization

Query	per	processor	utilization:

$	mpstat	-A	5	2
Linux	2.6.32-358.11.1.el6.x86_64	(oc2613817758.ibm.com)					02/07/2014					_x86_64_				(8	CPU)

01:49:47	PM		CPU				%usr			%nice					%sys	%iowait				%irq			%soft				%steal		%guest			%idle
01:49:47	PM		all				1.08				0.00				0.60				0.23				0.00				0.00				0.00				0.00			98.09
01:49:47	PM				0				2.43				0.00				1.83				0.00				0.00				0.00				0.00				0.00			95.74
01:49:47	PM				1				1.62				0.00				1.21				0.00				0.00				0.00				0.00				0.00			97.17...

Some	processors	may	have	higher	interrupt	rates	due	to	network	card	bindings.

	

top

top	provides	processor	usage	for	the	overall	system	and	individual	processes.	Without	arguments,	it	will
periodically	update	the	screen	with	updated	information:

								top	-	15:46:52	up	178	days,		4:53,		2	users,		load	average:	0.31,	0.08,	0.02
								Tasks:		77	total,			2	running,		74	sleeping,			1	stopped,			0	zombie
								Cpu(s):	24.6%	us,		0.5%	sy,		0.0%	ni,	74.9%	id,		0.0%	wa,		0.0%	hi,		0.0%	si
								Mem:			5591016k	total,		5416896k	used,			174120k	free,		1196656k	buffers
								Swap:		2104472k	total,				17196k	used,		2087276k	free,		2594884k	cached

The	CPU(s)	row	in	this	header	section	shows	the	CPU	usage	in	terms	of	the	following:

us:	Percentage	of	CPU	time	spent	in	user	space.
sy:	Percentage	of	CPU	time	spent	in	kernel	space.
ni:	Percentage	of	CPU	time	spent	on	low	priority	processes.
id:	Percentage	of	CPU	time	spent	idle.
wa:	Percentage	of	CPU	time	spent	in	wait	(on	disk).
hi:	Percentage	of	CPU	time	spent	handling	hardware	interrupts.
si:	Percentage	of	CPU	time	spent	handling	software	interrupts.

https://access.redhat.com/solutions/1160343
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

										PID	USER						PR		NI		VIRT		RES		SHR	S	%CPU	%MEM				TIME+		COMMAND
									8502	user1					25			0		599m	466m	5212	R	99.9		8.5			0:23.92	java...

The	table	represents	the	Process	ID	(PID).	CPU	usage	percentage	(%CPU),	and	process	name
(COMMAND)	of	processes	using	the	most	CPU.	If	the	available	CPU	is	100%	utilized,	the
availability	to	the	Java	process	is	being	limited.	In	the	case	above,	the	Java	process	is	using	all
the	available	CPU	but	is	not	contending	with	any	other	process.	Therefore,	the	limiting
performance	factor	is	the	CPU	available	to	the	machine.

If	the	total	CPU	usage	is	100%	and	other	processes	are	using	large	amounts	of	CPU,	CPU
contention	is	occurring	between	the	processes,	which	is	limiting	the	performance	of	the	Java
process.

Old	Java	Diagnostic	Guide

Use	the	-b	flag	to	run	top	in	a	batch	mode	instead	of	redrawing	the	screen	every	iteration.	Use	-d	to	control
the	delay	between	iterations	and	-n	to	control	the	number	of	iterations.

The	following	command	may	be	used	to	gather	all	processes	sorted	by	CPU	usage	every	30	seconds:

nohup	sh	-c	"top	-b	-d	30	>>	diag_top_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt"	&

The	following	command	may	be	used	to	gather	the	top	processes	by	CPU	usage	every	30	seconds:

nohup	sh	-c	"top	-b	-d	30	|	grep	-A	10	'top	-	'	>>	diag_top_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt"	&

The	following	command	may	be	used	to	gather	the	top	processes	by	memory	usage	every	30	seconds:

nohup	sh	-c	"top	-b	-d	30	-o	%MEM	|	grep	-A	10	'top	-	'	>>	diag_top_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt"	&

	

Per-thread	CPU	Usage

The	output	of	top	-H	on	Linux	shows	the	breakdown	of	the	CPU	usage	on	the	machine	by
individual	threads.	The	top	output	has	the	following	sections	of	interest:

top	-	16:15:45	up	21	days,		2:27,		3	users,		load			average:	17.94,	12.30,	5.52			
						Tasks:	150	total,		26	running,	124	sleeping,			0			stopped,			0	zombie			
						Cpu(s):	87.3%	us,		1.2%	sy,		0.0%	ni,	27.6%	id,		0.0%			wa,		0.0%	hi,		0.0%	si			
						Mem:			4039848k	total,		3999776k	used,			40072k	free,				92824k	buffers			
						Swap:		2097144k	total,						224k	used,	2096920k	free,		1131652k	cached			
					
								PID	USER				PR		NI		VIRT		RES		SHR	S	%CPU			%MEM				TIME+		COMMAND			
						31253	user1			16			0	2112m	2.1g	1764	R	37.0			53.2			0:39.89	java			
						31249	user1			16			0	2112m	2.1g	1764	R	15.5			53.2			0:38.29	java			
						31244	user1			16			0	2112m	2.1g	1764	R	13.6			53.2			0:40.05	java...
						..

PID:	The	thread	ID.	This	can	be	converted	into	hexadecimal	and	used	to	correlate	to	the	"native
ID"	in	a	javacore.txt	file...

S:	The	state	of	the	thread.	This	can	be	one	of	the	following:

R:	Running
S:	Sleeping
D:	Uninterruptible	sleep
T:	Traced
Z:	Zombie

%CPU:	The	percentage	of	a	single	CPU	usage	by	the	thread...

TIME+:	The	amount	of	CPU	time	used	by	the	thread.

Note	that	the	"Cpu(s)"	line	in	the	header	of	the	output	shows	the	percentage	usage	across	all	of
the	available	CPUs,	whereas	the	%CPU	column	represents	the	percentage	usage	of	a	single
CPU.	For	example,	on	a	four-CPU	machine	the	Cpu(s)	row	will	total	100%	and	the	%CPU
column	will	total	400%.

In	the	per-thread	breakdown	of	the	CPU	usage	shown	above,	the	Java	process	is	taking
approximately	75%	of	the	CPU	usage.	This	value	is	found	by	totaling	the	%CPU	column	for	all
the	Java	threads	(not	all	threads	are	shown	above)	and	dividing	by	the	number	of	CPUs.	The
Java	process	is	not	limited	by	other	processes.	There	is	still	approximately	25%	of	the	CPU	idle.
You	can	also	see	that	the	CPU	usage	of	the	Java	process	is	spread	reasonably	evenly	over	all	of
the	threads	in	the	Java	process.	This	spread	implies	that	no	one	thread	has	a	particular	problem.
Although	the	application	is	allowed	to	use	most	of	the	available	CPU,	the	fact	that	25%	is	idle
means	that	some	points	of	contention	or	delay	in	the	Java	process	can	be	identified.	A	report
indicating	that	active	processes	are	using	a	small	percentage	of	CPU,	even	though	the	machine
appears	idle,	means	that	the	performance	of	the	application	is	probably	limited	by	points	of
contention	or	process	delay,	preventing	the	application	from	scaling	to	use	all	of	the	available
CPU.	If	a	deadlock	is	present,	the	reported	CPU	usage	for	the	Java	process	is	low	or	zero.	If
threads	are	looping,	the	Java	CPU	usage	approaches	100%,	but	a	small	number	of	the	threads
account	for	all	of	that	CPU	time.	Where	you	have	threads	of	interest,	note	the	PID	values
because	you	can	convert	them	to	a	hexadecimal	value	and	look	up	the	threads	in	the	javacore.txt
file	to	discover	if	the	thread	is	part	of	a	thread	pool.	In	this	way	you	gain	an	understanding	of	the
kind	of	work	that	the	thread	does	from	the	thread	stack	trace	in	the	javacore.txt	file.	For
example,	the	PID	31253	becomes	7A15	in	hexadecimal.	This	value	maps	to	the	"native	ID"
value	in	the	javacore.txt	file.

Old	Java	Diagnostic	Guide

You	can	convert	the	thread	ID	into	hexadecimal	and	search	for	it	in	a	matching	javacore.txt	file	on	the	IBM
JVM.	For	example,	if	the	TID	is	19511,	convert	19511	to	hexadecimal	=	0x4C37.	Search	in	javacore	for
native	ID:

"WebContainer	:	1"	(TID:0x0933CB00,	sys_thread_t:0x09EC4774,	state:CW,	native	ID:0x00004C37)	prio=5
java/text/FieldPosition$Delegate.formatted(FieldPosition.java:291(Compiled	Code))

Another	technique	to	monitor	per-thread	CPU	usage	is	to	monitor	the	accumulated	CPU	time	per	thread
(TIME+)	to	understand	which	threads	are	using	the	CPUs.

The	following	command	may	be	used	to	gather	the	top	threads	by	CPU	usage	every	30	seconds:

nohup	sh	-c	"top	-b	-d	30	-H	|	grep	-A	50	'top	-	'	>>	diag_top_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt"	&

Note	that	this	example	of	top	-H	may	consume	a	significant	amount	of	CPU	because	it	must	iterate	over	all
threads	in	the	system.

To	investigate	a	set	of	PIDs	more	directly,	a	command	like	the	following	may	be	useful,	replace	the	$PIDXs
with	your	process	IDs,	and	when	looking	at	the	top	output,	look	at	the	second	stanza:

$	while	true;	do	for	i	in	$PID1	$PID2	$PID3;	do	echo	"Gathering	data	for	PID	$i	at	$(date)";	top	-H	-p	$i	-b	-d	10	-n	2	>	diag_top_$(hostname)_$(date	+%Y%m%d_%H%M%S)_$i.txt;	kill	-3	$i;	done;	echo	"Sleeping	at	$(date)";	sleep	60;	done

	

pidstat

pidstat	provides	detailed,	per-process	information.	For	example:

pidstat
Linux	4.19.76-linuxkit	(fca32e320852)			09/09/20				_x86_64_				(4	CPU)

https://www.kernel.org/doc/man-pages/online/pages/man1/pidstat.1.html

20:09:39						UID							PID				%usr	%system		%guest			%wait				%CPU			CPU		Command
20:09:39								0									1				0.00				0.00				0.00				0.00				0.00					1		entrypoint.sh
20:09:39								0									7				0.00				0.00				0.00				0.00				0.00					0		supervisord
20:09:39								0								10				0.00				0.00				0.00				0.00				0.00					1		rsyslogd

	

Load	Average

Load	average	is	defined	as:

The	first	three	fields	in	[/proc/loadavg]	are	load	average	figures	giving	the	number	of	jobs	in	the
run	queue	(state	R)	or	waiting	for	disk	I/O	(state	D)	averaged	over	1,	5,	and	15	minutes.

A	load	average	is	reported	as	three	numbers	representing	1-minute,	5-minute,	and	15-minute	exponentially
damped/weighted	moving	averages	of	the	number	of	runnable	and	uninterruptible	threads	recalculated	every
5	seconds.	If	these	numbers	are	greater	than	the	number	of	CPU	cores,	then	there	may	be	cause	for	concern.

If	capturing	top	-H	during	a	time	of	a	high	load	average	does	not	show	high	CPU	usage,	then	it	is	more
likely	caused	by	uninterruptible	threads,	which	are	usually	waiting	on	I/O.	If	CPU	utilization	does	not
correlate	with	load	averages,	review	the	number	of	threads	in	the	"D"	(uninterruptible)	state.

	

atop

atop	is	an	ASCII	based	live	and	historical	system	monitor.

Run	without	any	options	to	do	live	monitoring:

$	atop

Includes	crontab	files	to	run	atop	in	the	background.	Read	a	historical	file:

#	atop	-r	/var/log/atop/atop_20140908.1

https://www.kernel.org/doc/man-pages/online/pages/man5/proc.5.html
https://www.linuxjournal.com/article/9001?page=0,1
https://man.archlinux.org/man/atop.1.en

Write	atop	data	with	a	10	second	interval	(Ctrl+C	to	stop):

atop	-w	atop.raw	10

Graph	CPU	usage	of	some	process	(replace	the	program	name	or	PID	in	the	first	grep):

atop	-PPRC	-r	atop.raw	|	grep	java.*y$	|	awk	'{if(NR>1)	{printf	"%s	%s,%d\n",	$4,$5,(($11+$12+$13)10)/$10}	else	print	"Time,CPU%"}'	|	\
gnuplot	-p	-e	"set	timefmt	'%Y/%m/%d	%H:%M:%S';	set	xtics	out;set	ytics	out;	set	xdata	time;	set	datafile	sep	',';	set	grid;	set	style	data	lines;	\
set	format	y	'%.0f';	set	format	x	'%H:%M:%S';	set	key	autotitle	columnhead;	plot	'/dev/stdin'	using	1:2;	pause	-1"

	

sar

sar	is	part	of	the	sysstat	package.	It	may	be	run	periodically	from	a	crontab	in	/etc/cron.d/sysstat	and	writes
files	to	/var/log/sa/.	You	can	report	sar	data	textually	on	the	system	using	the	"sar"	command:

$	sar	-A	|	head
Linux	2.6.32-431.30.1.el6.x86_64	(host)					09/09/2014					_x86_64_				(8	CPU)
12:00:01	AM					CPU						%usr					%nice						%sys			%iowait				%steal						%irq					%soft				%guest					%idle
12:10:01	AM					all						0.86						0.00						0.59					0.15						0.00						0.00					0.00						0.00					98.41...

Some	useful	things	to	look	at	in	sar:

runq-sz
plist-sz
kbmemused	-	kbbuffers	-	kbcached

You	can	also	visualize	sar	log	files	using	ksar:

https://www.kernel.org/doc/man-pages/online/pages/man1/sar.1.html
https://sourceforge.net/projects/ksar/

		

nmon

nmon	was	originally	developed	for	AIX	but	has	since	been	ported	to	Linux.

One	reason	to	use	nmon	on	Linux	is	that	the	Java	NMONVisualizer	tool	is	a	very	powerful	and	flexible
graphing	application	that	accepts	nmon	data.	For	details,	see	the	nmon	section	in	the	AIX	chapter.

Start	nmon	for	essentially	unlimited	collection	with	a	60	second	interval:

sudo	nohup	nmon	-fT	-s	60	-c	1000000	-t	&&	sleep	2	&&	sudo	cat	nohup.out	#	Confirm	no	errors	in	the	output

Executing	this	command	will	start	the	nmon	collector	in	the	background,	so	explicitly	putting	it	into	the
background	(&)	is	not	necessary.	This	will	create	a	file	with	the	name	$HOST_$STARTDAY_$STARTTIME.nmon

Note	that	any	errors	starting	nmon	(such	as	file	pemissions	writing	to	the	specified	directory)	will	go	to
nohup.out,	so	it	is	important	to	check	nohup.out	to	make	sure	it	started	correctly.	You	can	also	run	ps	-elfx
|	grep	nmon	to	make	sure	it	started.

When	you	want	to	stop	nmon,	run:

sudo	pkill	-USR2	nmon

	

collectl

collectl	is	a	comprehensive,	open	source,	Linux	monitoring	tool	created	by	RedHat.	It	is	often	used	on
RHEL	systems:

Collectl	is	a	comprehensive	performance	data	collection	utility	similar	to	sar.	It	is	fine	grained
with	low	overhead	and	holistically	collects	all	of	the	important	kernel	statistics	as	well	as
process	data.	Additionally,	it	is	a	very	simple	tool	to	collect	very	useful	performance	data.

https://manpages.debian.org/experimental/nmon/nmon.1.en.html
https://nmonvisualizer.github.io/nmonvisualizer/
https://linux.die.net/man/1/collectl
https://access.redhat.com/site/node/351143/

While	collectl	is	neither	shipped	nor	supported	by	Red	Hat	at	this	time,	it	is	a	useful	and	popular
utility	frequently	used	by	users	and	third	party	vendors.

	

uprobes

uprobes	are	a	Linux	kernel	mechanism	to	trace	user	program	function	calls.

	

uprobe	example

In	the	following	example,	there	is	a	function	entry	uprobe	(p)	called	probe_a/play	for	the
/home/user1/a.out	binary	for	the	play	function	at	offset	0x1156:

#	cat	/sys/kernel/debug/tracing/uprobe_events
p:probe_a/play	/home/user1/a.out:0x0000000000001156

Although	you	may	define	uprobes	manually,	perf	probe	is	often	easier	to	use.

Each	uprobe	has	a	corresponding	directory	entry	through	which	it	can	be	controlled:

#	cat	/sys/kernel/debug/tracing/events/probe_a/enable	
0

Once	an	event	is	enabled:

#	echo	1	>	/sys/kernel/debug/tracing/events/probe_a/enable

A	trace	will	be	printed	every	time	the	function	is	executed:

#	cat	/sys/kernel/debug/tracing/trace
#	tracer:	nop
#
#	entries-in-buffer/entries-written:	10/10			#P:6
#
#																																_-----=>	irqs-off
#																															/	_----=>	need-resched
#																														|	/	_---=>	hardirq/softirq
#																														||	/	_--=>	preempt-depth
#																														|||	/	_-=>	migrate-disable
#																														||||	/					delay
#											TASK-PID					CPU#		|||||		TIMESTAMP		FUNCTION
#														|	|									|			|||||					|									|
											a.out-3019				[005]		2378.367334:	play:	(0x401156)

	

perf	Profiler	Tool

perf	is	a	user	program	and	kernel	sampling	CPU	profiler	tool	available	since	Linux	2.6.

	

perf	record

perf	record	is	used	to	gather	sampled	CPU	activity	into	a	perf.data	file.

In	general,	perf	should	be	run	as	root	given	that	the	kernel.perf_event_paranoid	setting	defaults	to	2.	To
allow	non-root	usage,	this	may	be	overridden	with,	for	example,	sysctl	-w

https://www.kernel.org/doc/html/latest/trace/uprobetracer.html
https://www.kernel.org/doc/html/latest/trace/uprobetracer.html#usage-examples
https://www.kernel.org/doc/man-pages/online/pages/man1/perf.1.html
https://www.kernel.org/doc/man-pages/online/pages/man1/perf-record.1.html
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

kernel.perf_event_paranoid=-1	or	adding	kernel.perf_event_paranoid=-1	to	/etc/sysctl.conf	and
running	sysctl	-p.

Here	is	the	most	common	example	that	gathers	system-wide	(-a)	user	and	kernel	call	stack	samples	(-g)	at	a
~10.1ms	frequency	(-F	99	=	99	Hertz;	milliseconds=1000/F)	for	60	seconds	(sleep	60)	and	assumes
frame	pointer	omission	(--call-graph	dwarf,65528;	discussed	below):

perf	record	--call-graph	dwarf,65528	-F	99	-a	-g	--	sleep	60

The	next	most	common	example	gathers	process-specific	(-p)	call	stack	samples:

perf	record	--call-graph	dwarf,65528	-F	99	-g	-p	$PID	--	sleep	60

	

perf	call	stacks

By	default,	perf	walks	callstacks	using	the	frame	pointer	register	(--call-graph	fp);	however,	this	may
cause	truncated	stacks	if	a	sampled	binary	is	built	with	frame	pointer	ommission	(FPO):

In	some	systems,	where	binaries	are	built	with	gcc	--fomit-frame-pointer,	using	the	"fp"	method
will	produce	bogus	call	graphs,	using	"dwarf",	if	available	(perf	tools	linked	to	the	libunwind	or
libdw	library)	should	be	used	instead.	Using	the	"lbr"	method	doesn't	require	any	compiler
options.	It	will	produce	call	graphs	from	the	hardware	LBR	registers.	The	main	limitation	is	that
it	is	only	available	on	new	Intel	platforms,	such	as	Haswell.	It	can	only	get	user	call	chain.	It
doesn't	work	with	branch	stack	sampling	at	the	same	time.

When	"dwarf"	recording	is	used,	perf	also	records	(user)	stack	dump	when	sampled.	Default	size
of	the	stack	dump	is	8192	(bytes).	User	can	change	the	size	by	passing	the	size	after	comma	like
"--call-graph	dwarf,4096".

If	frame	pointer	omission	is	used	(such	as	it	is	on	IBM	Java/Semeru/OpenJ9),	you	should	use	--call-graph
dwarf,65528	with	perf	record	(values	larger	than	65528	don't	work).	For	example:

perf	record	--call-graph	dwarf,65528	-F	99	-a	-g	--	sleep	60

Note	that	DWARF	based	call	stack	walking	may	be	up	to	20%	or	much	more	slower	than	frame	pointer
based	call	stack	walking.

As	an	alternative,	when	running	on	Intel	Haswell	and	newer	CPUs,	test	using	--call-graph	lbr	which	uses
a	hardware	Last	Branch	Record	(LBR)	capability,	doesn't	require	a	frame	pointer,	and	is	generally	less
overhead	than	DWARF	(although	it	has	a	limited	maximum	depth):

perf	record	--call-graph	lbr	-F	99	-a	-g	--	sleep	60

	

perf	and	J9

IBM	Java	and	Semeru	have	options	that	resolve	JIT-compiled	top	stack	frames:

1.	 For	IBM	Java	>=	8.0.7.20	or	Semeru	>=	v8.0.352	/	11.0.17.0	/	17.0.5.0,	restart	the	Java	process	with	-
XX:+PerfTool

2.	 For	older	versions	of	IBM	Java	and	Semeru,	restart	the	Java	process	with	-Xjit:perfTool	while
making	sure	to	combine	with	commas	with	any	pre-existing	-Xjit	options.	Only	the	last	-Xjit	option
is	processed,	so	if	there	is	additional	JIT	tuning,	combine	the	perfTool	option	with	that	tuning;	for
example,	-Xjit:perfTool,exclude={com/example/generated/*}.

These	options	create	a	/tmp/perf-$PID.map	file	that	the	perf	tool	knows	to	read	to	try	to	resolve	unknown
symbols.	This	option	must	be	used	on	JVM	startup	and	cannot	be	enabled	dynamically.	If	not	all	symbols	are

https://www.kernel.org/doc/man-pages/online/pages/man1/perf-record.1.html
https://lore.kernel.org/all/1415285671-16894-1-git-send-email-kan.liang@intel.com/
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=767756

resolved,	try	adding	-Xlp:codecache:pagesize=4k.	Currently,	the	option	-XX:+PreserveFramePointer	to
allow	walking	JIT-compiled	method	stacks	is	not	supported	on	J9	(and,	in	any	case,	that	would	require	--
call-graph	fp	so	you	would	lose	native	JVM	callstack	walking).

An	example	perf	post-processing	script	is	provided	in	the	OpenJ9	repository:

1.	 chmod	a+x	perf-hottest
2.	 Restart	the	JVM	with	-Xjit:perfTool
3.	 When	the	issue	occurs:	perf	record	--call-graph	dwarf,65528	-F	99	-g	-p	$PID	--	sleep

60
4.	 perf	script	-G	-F	comm,tid,ip,sym,dso	|	./perf-hottest	sym	>

diag_perf_$(hostname)_$(date	+%Y%m%d_%H%M%S_%N).txt

	

perf	and	J9	with	assembly	annotated	profiling	of	JITted	code

perf	provides	a	JVMTI	agent	called	libperf-jvmti.so	that	provides	assembly	annotated	profiling	of	JITted
code.

Unfortunately,	this	requires	compiling	perf	itself	(although	this	can	be	done	on	any	similar	architecture
machine	and	the	libperf-jvmti.so	binary	copied	to	the	target	machine):

1.	 Compile	perf:
1.	 Debian/Ubuntu:

apt-get	update
DEBIAN_FRONTEND=noninteractive	TZ=${TZ:-UTC}	apt-get	-y	install	python	python3	build-essential	make	gcc	g++	default-jdk	libbabeltrace-dev	libbabeltrace-ctf-dev	flex	bison	libelf-dev	libdw-dev	libslang2-dev	libssl-dev	libiberty-dev	libunwind-dev	libbfd-dev	libcap-dev	libnuma-dev	libperl-dev	python-dev	libzstd-dev	git
git	clone	--depth	1	https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
cd	linux/tools/perf
make

2.	 Start	Java	with	the	path	to	the	compiled	libperf-jvmti.so	(replace	$DIR	with	the	path	to	the	root
perf	folder).	Note	that	-Xjit:perfTool	is	no	longer	needed.

-agentpath:$DIR/linux/tools/perf/libperf-jvmti.so

3.	 Run	perf	record:

perf	record	-k	1	--call-graph	dwarf,65528	-F	99	-a	-g	--	sleep	60

4.	 Create	a	new	perf	data	file	with	injected	JIT	data:

perf	inject	-i	perf.data	--jit	-o	perf.data.jitted

5.	 Process	the	perf	data	as	in	the	other	examples	in	this	chapter	except	use	-i	perf.data.jitted	to
read	the	new	perf	data	file.	For	examples:

1.	 Using	perf	report:
1.	 perf	report	-i	perf.data.jitted
2.	 Type	a	on	a	function	to	annotate	the	hot	assembly	instructions

2.	 Dump	the	stacks:

perf	script	-i	perf.data.jitted

Here's	an	example	performing	the	above	using	a	container	(if	using	podman	machine,	first	run	podman
system	connection	default	podman-machine-default-root):

podman	run	--privileged	-it	--rm	ibm-semeru-runtimes:open-17-jdk	sh	-c	'sysctl	-w	kernel.perf_event_paranoid=-1	&&	apt-get	update	&&	DEBIAN_FRONTEND=noninteractive	TZ=${TZ:-UTC}	apt-get	-y	install	python	python3	build-essential	make	gcc	g++	default-jdk	libbabeltrace-dev	libbabeltrace-ctf-dev	flex	bison	libelf-dev	libdw-dev	libslang2-dev	libssl-dev	libiberty-dev	libunwind-dev	libbfd-dev	libcap-dev	libnuma-dev	libperl-dev	python-dev	libzstd-dev	git	&&	git	clone	--depth	1	https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git	&&	cd	linux/tools/perf	&&	make	&&	echo	"public	class	main	{	public	static	void	main(String...	args)	{	for	(int	i	=	0;	i	<	50000;	i++)	{	byte[]	b	=	new	byte[(int)(Math.random()*10)*1048576];	}	}	}"	>	main.java	&&	javac	main.java	&&	./perf	record	-k	1	--call-graph	dwarf,65528	-F	99	-a	-g	--	java	-agentpath:/linux/tools/perf/libperf-jvmti.so	main	&&	./perf	inject	-i	perf.data	--jit	-o	perf.data.jitted	&&	./perf	script	-i	perf.data.jitted'

	

perf	report

https://github.com/eclipse-openj9/openj9/issues/3497
https://raw.githubusercontent.com/eclipse/openj9/master/runtime/runtimetools/perfscripts/perf-hottest
https://lore.kernel.org/all/1448874143-7269-1-git-send-email-eranian@google.com/

perf	report	may	be	used	to	post-process	a	perf.data	file	to	summarize	the	results.

In	the	default	mode,	an	ncurses-based	display	allows	for	graphical	exploration:

perf	report	-n	--show-cpu-utilization

The	second	column,	Self,	reports	the	percentage	of	samples	just	in	that	method.	The	first	column,	Children,
reports	Self	plus	the	Self	of	all	functions	that	this	method	calls,

[...]	so	that	it	can	show	the	total	overhead	of	the	higher	level	functions	even	if	they	don't	directly
execute	much".	[...]	It	might	be	confusing	that	the	sum	of	all	the	'children'	overhead	values
exceeds	100%	since	each	of	them	is	already	an	accumulation	of	'self'	overhead	of	its	child
functions.	But	with	this	enabled,	users	can	find	which	function	has	the	most	overhead	even	if
samples	are	spread	over	the	children.

To	only	report	Self	percentages,	use	--no-children:

perf	report	-n	--show-cpu-utilization	--no-children

To	automatically	multiply	the	percentages	down	the	graph,	use	-g	graph.	Stacks	may	be	coalesced	with	-g
folded.

Common	shortcuts:

+	to	expand/collapse	a	call	stack
a	to	annotate	the	hot	assembly	instructions

H	to	jump	to	the	hottest	instruction

To	print	in	text	form,	add	the	--stdio	option.	For	example:

perf	report	-n	--show-cpu-utilization	--stdio

With	detailed	symbol	information,	order	by	the	overhead	of	source	file	name	and	line	number:

perf	report	-s	srcline

	

perf	script

perf	script	may	be	used	to	post-process	a	perf.data	file	to	dump	results	in	raw	form	for	post-processing
scripts.

	

Useful	commands

Query	available	CPU	statistics:

#	perf	list

List	of	pre-defined	events	(to	be	used	in	-e):
		cpu-cycles	OR	cycles																															[Hardware	event]
		instructions																																							[Hardware	event]
		cache-references																																			[Hardware	event]
		cache-misses																																							[Hardware	event]...

Query	CPU	statistics	for	a	process	(use	sleep	X	for	some	duration	or	without	sleep	X	and	Ctrl+C	to	stop):

#	perf	stat	-B	-e	cycles,cache-misses	-p	11386	sleep	5
	Performance	counter	stats	for	process	id	'11386':

https://www.kernel.org/doc/man-pages/online/pages/man1/perf-report.1.html
https://perf.wiki.kernel.org/index.php/Tutorial#Overhead_calculation
https://www.kernel.org/doc/man-pages/online/pages/man1/perf-script.1.html

								20,810,324	cycles
											215,879	cache-misses
							5.000869037	seconds	time	elapsed

Sample	CPU	events	for	a	process	and	then	create	a	report:

perf	record	--call-graph	dwarf	-p	11386	sleep	5
perf	report

Query	CPU	statistics	periodically:

$	perf	top
Samples:	5K	of	event	'cycles',	Event	count	(approx.):	1581538113
	21.98%		perf																																								[.]	0x000000000004bd30
		4.28%		libc-2.12.so																																[.]	__strcmp_sse42

Application	deep-dive:

perf	stat	-e	task-clock,cycles,instructions,cache-references,cache-misses,branches,branch-misses,faults,minor-faults,cs,migrations	-r	5	nice	taskset	0x01	java	myapp

	

perf	Flame	Graphs

Flame	graphs	are	a	great	way	to	visualize	perf	activity:

git	clone	https://github.com/brendangregg/FlameGraph
cd	FlameGraph
perf	record	--call-graph	dwarf,65528	-F	99	-a	-g	--	sleep	60
perf	script	|	./stackcollapse-perf.pl	>	out.perf-folded
./flamegraph.pl	--width	600	out.perf-folded	>	perf-kernel.svg

		

Intel	Processor	Trace

magic-trace	uses	perf	to	analyze	CPU	activity	if	Intel	Processor	Trace	is	available,	rather	than	stack
sampling.

	

PerfSpect

Intel	PerfSpect	calculates	high	level	metrics	from	hardware	events.

Machine	clears	are	when	the	entire	pipeline	must	be	cleared.	One	cause	of	this	is	"false	sharing"	when	2
CPUs	read/write	to	unrelated	variables	that	happen	to	share	the	same	L1	cache	line.

	

perf	On-CPU	Stack	Sampling

The	$(perf	record)	command	may	be	used	to	capture	native	stack	traces	on	all	CPUs	at	some	frequency	for
some	period	of	time.	The	following	example	captures	all	On-CPU	stacks	every	50ms	for	60	seconds	and

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://github.com/janestreet/magic-trace
https://github.com/intel/PerfSpect
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/cpu-metrics-reference.html#id-d33822e1912

writes	the	data	to	a	file	called	perf.data:

nohup	sudo	sh	-c	"date	+'%Y-%m-%d	%H:%M:%S.%N	%Z'	>>	perfdata_starttimes.txt;	cat	/proc/uptime	>>	perfdata_starttimes.txt;	perf	record	--call-graph	dwarf,65528	-T	-F	99	-a	-g	--	sleep	60"	&

The	frequency	F	may	be	converted	to	milliseconds	(M)	with	the	equation	M=1000/F,	so	if	you	want	to
capture	at	a	different	millisecond	frequency,	use	the	equation	F=1000/M.	For	example,	to	capture	at	10ms
frequency,	F=1000/10,	so	the	argument	would	be	-F	100.	It's	generally	a	good	idea	to	substract	1	from	F
(e.g.	-F	99)	to	avoid	any	coincidental	sampling	of	application	activity	of	the	same	frequency.

There	is	no	way	to	change	the	output	file	name	to	something	other	than	perf.data.	If	the	file	perf.data	already
exists,	it	is	moved	to	perf.data.old	before	overwriting	the	existing	file.

The	reason	for	writing	the	date	with	millisecond	precision	into	a	separate	file	right	before	starting	$(perf
record)	is	that	uptime	may	have	drifted	from	wallclock	time;	therefore,	it	is	not	a	reliable	reflection	of
wallclock	time	(this	is	probably	why	the	$(uptime)	command	only	prints	a	relative	amount)	and	stack	tick
offsets	cannot	be	compared	to	the	wallclock	of	uptime	(e.g.	$(date	-d"1970-01-01	+	$(date	+%s)	sec	-	$(cut	-
d'	'	-f1	</proc/uptime)	sec"	+"%F	%T.%N	UTC"	>	uptime.txt;	date	>>	uptime.txt)).	When	the	$(perf)
command	reports	the	"captured	on"	wallclock	time,	it	is	simply	looking	at	the	creation	time	of	the	perf.data
file	(which	usually	occurs	at	the	completion	of	the	recording,	so	it's	usually	at	the	end	of	the	sleep)	which	is	a
time_t,	which	is	second	precision,	so	the	exact	start	time	with	millisecond	precision	is	unavailable.	This
means	that	the	only	way	to	get	millisecond	precision	wallclock	time	of	a	perf	stack	is	to	create	a	separate	file
that	notes	the	wallclock	time	with	millisecond	accuracy	right	before	starting	perf.

Before	recording,	ensure	that	you	have	installed	at	least	the	kernel	and	glibc	symbols	(these	are	only	used	by
the	diagnostic	tools	to	map	symbols,	so	they	do	not	change	the	function	of	the	OS	but	they	do	use	about	1GB
of	disk	space).	If	you	cannot	install	debug	symbols	for	any	reason,	then	gather	the	kernel	symbol	table	for
manual	cross-reference.

If	you	are	using	IBM	Java	>=	7.1,	then	restart	the	JVM	with	the	argument	-Xjit:perfTool.	The	JIT	will	then
write	a	file	to	/tmp/perf-${PID}.map	which	maps	JIT-compiled	method	addresses	to	human-readable	Java
method	names	for	the	$(perf	script)	tool	to	use.	For	IBM	Java	<	7.1,	use	perf-map-agent

After	the	$(perf	record)	script	has	completed,	process	the	data	to	human	readable	form:

sudo	chmod	a+rw	/tmp/perf-${PID}.map
sudo	chown	root:root	/tmp/perf-${PID}.map
sudo	perf	script	--header	-I	-f	-F	comm,cpu,pid,tid,time,event,ip,sym,dso,symoff	>	diag_perfdata_$(hostname)_$(date	+%Y%m%d_%H%M%S_%N).txt

The	perf	script	command	might	give	various	errors	and	warnings	and	they're	usually	about	missing	symbols
and	mapping	files,	which	is	generally	expected	(since	it's	sampling	all	processes	on	the	box).

The	time	field	is	the	number	of	seconds	since	boot	(with	microsecond	precision	after	the	decimal	point),	in
the	same	format	as	the	first	column	of	/proc/uptime.	The	top	of	the	perfdata	file	will	include	a	timestamp
when	the	$(perf	record)	command	started	writing	the	perf.data	file	(which	usually	occurs	at	the	completion
of	the	recording,	so	it's	usually	at	the	end	of	the	sleep).	For	example:

#	captured	on:	Tue	Nov	13	11:48:03	2018

Therefore,	one	can	approximate	the	wallclock	time	of	each	stack	by	taking	the	difference	between	the	first
stack's	time	field	and	the	target	stack's	time	field	and	adding	that	number	of	seconds	to	the	captured	time
minus	the	sleep	time.	Unfortunately,	this	only	gives	second	level	resolution	because	the	captured	time	only
provides	second	level	resolution.	Instead,	one	can	use	the	date	printed	into	perfdata_starttimes.txt	and	add	the
difference	in	seconds	to	that	date.

Example	stack:

main	10840/10841	[006]	17020.130034:	cycles:ppp:
												7f418d20727d	Loop.main([Ljava/lang/String;)V_hot+0x189	(/tmp/perf-10840.map)
												7f41a8010360	[unknown]	([unknown])
																							0	[unknown]	([unknown])

https://github.com/kgibm/perf-map-agent/tree/ibmjava6

The	columns	are:

1.	 Thread	name
2.	 PID/TID
3.	 CPUID
4.	 Timestamp
5.	 perf	event
6.	 Within	each	stack	frame:

1.	 Instruction	pointer
2.	 Method	name+Offset
3.	 Executable	or	shared	object	(or	mapping	file)

	

Calculating	CPU	statistics

Example	calculating	various	CPU	statistics	for	a	program	execution:

$	sudo	perf	stat	--	echo	"Hello	World"
Hello	World

		Performance	counter	stats	for	'echo	Hello	World':

															0.36	msec	task-clock																#				0.607	CPUs	utilized
																		0						context-switches										#				0.000	K/sec
																		0						cpu-migrations												#				0.000	K/sec
																	64						page-faults															#				0.177	M/sec
										1,253,194						cycles																				#				3.474	GHz
												902,044						instructions														#				0.72		insn	per	cycle
												189,611						branches																		#		525.656	M/sec
														7,573						branch-misses													#				3.99%	of	all	branches

								0.000594366	seconds	time	elapsed
								0.000652000	seconds	user
								0.000000000	seconds	sys

The	statistics	may	be	pruned	with	the	-e	flag:

$	sudo	perf	stat	-e	task-clock,cycles	--	echo	"Hello	World"
Hello	World

		Performance	counter	stats	for	'echo	Hello	World':

															0.60	msec	task-clock																#				0.014	CPUs	utilized
										1,557,975						cycles																				#				2.582	GHz

								0.043947354	seconds	time	elapsed
								0.000000000	seconds	user
								0.001175000	seconds	sys

The	-r	flag	runs	the	program	a	certain	number	of	times	and	calculates	average	statistics	for	all	of	the	runs:

$	sudo	perf	stat	-r	10	--	echo	"Hello	World"
Hello	World
Hello	World
Hello	World
Hello	World
Hello	World
Hello	World
Hello	World
Hello	World
Hello	World
Hello	World

		Performance	counter	stats	for	'echo	Hello	World'	(10	runs):

															0.33	msec	task-clock																#				0.661	CPUs	utilized												(+-		2.14%)
																		0						context-switches										#				0.302	K/sec																				(+-100.00%)
																		0						cpu-migrations												#				0.000	K/sec
																	63						page-faults															#				0.190	M/sec																				(+-		0.75%)
										1,148,795						cycles																				#				3.471	GHz																						(+-		2.09%)
												880,890						instructions														#				0.77		insn	per	cycle											(+-		0.56%)
												185,916						branches																		#		561.772	M/sec																				(+-		0.52%)
														7,365						branch-misses													#				3.96%	of	all	branches										(+-		1.45%)

										0.0005010	+-	0.0000212	seconds	time	elapsed		(+-		4.24%)

The	program	may	be	bound	to	particular	CPUs	to	check	the	impact	of	context	switches	and	other	kernel
tuning:

$	sudo	perf	stat	-e	context-switches,cpu-migrations	--	taskset	-c	0	echo	"Hello	World"
Hello	World

		Performance	counter	stats	for	'taskset	-c	0	echo	Hello	World':

																		1	context-switches
																		1	cpu-migrations

								0.001013727	seconds	time	elapsed

								0.000000000	seconds	user
								0.001057000	seconds	sys

	

Calculating	CPU	cycles

Example	calculating	the	total	number	of	CPU	cycles	used	by	a	program:

#	perf	stat	-e	task-clock,cycles	--	echo	"Hello	World"		
Hello	World

	Performance	counter	stats	for	'echo	Hello	World':

														0.97	msec	task-clock																#				0.222	CPUs	utilized
			<not	supported>						cycles

							0.004376900	seconds	time	elapsed

							0.000000000	seconds	user		
							0.000000000	seconds	sys

	

Instructions	per	cycle

Instructions	per	cycle	(IPC)	shows	approximately	how	many	instructions	were	completed	per	CPU	clock
cycle.	The	maximum	IPC	is	based	on	the	CPU	architecture	and	how	"wide"	it	is;	i.e.,	the	maximum	possible
instructions	a	CPU	can	complete	per	clock	cycle.	Some	recent	processors	are	commonly	4-	or	5-wide
meaning	a	maximum	IPC	of	4	or	5,	respectively.	A	useful	heuristic	is	that	an	IPC	less	than	1	suggests	the
CPU	is	memory-stalled	whereas	an	IPC	greater	than	1	suggests	the	CPU	is	instruction-stalled.

	

Kernel	timer	interrupt	frequency

perf	stat	-e	'irq_vectors:local_timer_entry'	-a	-A	--timeout	30000

perf	probe

https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html

perf	probe	is	used	to	configure	tracepoints	such	as	uprobes.

	

List	uprobes	for	a	binary

#	perf	probe	-F	-x	/home/user1/a.out
completed.0
data_start
deregister_tm_clones
frame_dummy
main
play
register_tm_clones

Example	searching	for	malloc:

#	perf	probe	-F	-x	/lib64/libc.so.6	|	grep	malloc
cache_malloced
malloc
malloc
malloc_consolidate
malloc_info
malloc_info
malloc_printerr
malloc_stats
malloc_stats
malloc_trim
malloc_trim
malloc_usable_size
malloc_usable_size
ptmalloc_init.part.0
sysmalloc

	

Enable	uprobe

#	perf	probe	-x	/home/user1/a.out	play
Added	new	event:
		probe_a:play									(on	play	in	/home/user1/a.out)

You	can	now	use	it	in	all	perf	tools,	such	as:

								perf	record	-e	probe_a:play	-aR	sleep	1

Example	tracing	callgraphs	of	malloc	calls	for	a	particular	process	for	30	seconds:

#	perf	record	-e	probe_libc:malloc	--call-graph	dwarf	-p	3019	--	sleep	30
[perf	record:	Woken	up	1	times	to	write	data]
[perf	record:	Captured	and	wrote	0.063	MB	perf.data	(6	samples)]
#	perf	report	|	head	-20
#	To	display	the	perf.data	header	info,	please	use	--header/--header-only	options.
#
#
#	Total	Lost	Samples:	0
#
#	Samples:	6		of	event	'probe_libc:malloc'
#	Event	count	(approx.):	6
#
#	Children						Self		Trace	output		
#
#
			100.00%			100.00%		(7fdd73052610)
												|
												---_start

https://www.kernel.org/doc/man-pages/online/pages/man1/perf-probe.1.html

															__libc_start_main_alias_2	(inlined)
															__libc_start_call_main
															main
															play

Or	for	all	processes:

#	perf	record	-e	probe_libc:malloc	--call-graph	dwarf	-a	--	sleep	30
[perf	record:	Woken	up	697	times	to	write	data]
Warning:
Processed	82896	events	and	lost	8	chunks!

Check	IO/CPU	overload!

Warning:
2	out	of	order	events	recorded.
[perf	record:	Captured	and	wrote	216.473	MB	perf.data	(25915	samples)]
#	perf	report	|	head	-20
Warning:
Processed	82896	events	and	lost	8	chunks!

Check	IO/CPU	overload!

Warning:
2	out	of	order	events	recorded.
#	To	display	the	perf.data	header	info,	please	use	--header/--header-only	options.
#
#
#	Total	Lost	Samples:	0
#
#	Samples:	25K	of	event	'probe_libc:malloc'
#	Event	count	(approx.):	25915
#
#	Children						Self		Command										Shared	Object																					Symbol																																																																																								
#
#
				43.30%				43.30%		konsole										libc.so.6																									[.]	malloc
												|										
												|--29.76%--0x55ea4b5f6af4
												|										__libc_start_main_alias_2	(inlined)
												|										__libc_start_call_main
												|										0x55ea4b5f6564
												|										QCoreApplication::exec
												|										QEventLoop::exec
												|										QEventDispatcherGlib::processEvents

	

List	enabled	uprobes

#	perf	probe	-l
		probe_a:play									(on	play@/home/user1/test.c	in	/home/user1/a.out)

Disable	uprobe

#	perf	probe	-d	probe_a:play
Removed	event:	probe_a:play

	

eBPF

Extended	BPF	(eBPF)	is	a	Linux	kernel	tracing	utility.	It's	based	on	the	Berkeley	Packet	Filter	(BPF)	which
was	originally	designed	for	efficient	filtering	of	network	packets,	but	eBPF	has	been	extended	into	a	broader
range	of	purposes	such	as	call	stack	sampling	for	performance	profiling.	Depending	on	usage,	there	are

https://www.kernel.org/doc/man-pages/online/pages/man2/bpf.2.html
https://www.kernel.org/doc/Documentation/networking/filter.txt

different	tools	that	are	front-ends	to	eBPF	such	as	BPF	Compiler	Collection	(BCC)	and	bpftrace.

	

eBPF	profiling

On	Linux	>=	4.8,	eBPF	is	generally	more	efficient	than	perf	in	gathering	call	stack	samples	because	some
things	can	be	done	more	efficiently	inside	the	kernel.	This	capability	is	available	in	the	profile	tool	in	bcc.
As	with	perf,	eBPF	generally	is	run	as	root.

However,	eBPF	does	not	support	DWARF-based	or	LBR-based	call	stack	walking	like	perf	record	does
with	--call-graph	dwarf.	Previous	attempts	at	integrating	DWARF	stack	walking	in	the	kernel	were
buggy.	Alternative	proposals	of	user-land	DWARF	stack	walking	integration	into	eBPF	have	been	proposed
but	not	yet	implemented.

Therefore,	for	programs	that	use	frame	pointer	omission	(such	as	IBM	Java/Semeru/OpenJ9),	call	stack
walking	with	eBPF	is	very	limited.

	

eBPF	profiling	example

$	git	clone	https://github.com/brendangregg/FlameGraph		#	or	download	it	from	github
$	apt-get	install	bpfcc-tools		#	might	be	called	bcc-tools
$	cd	FlameGraph
$	profile-bpfcc	-F	99	-adf	60	>	out.profile-folded		#	might	be	called	/usr/share/bcc/tools/profile
$./flamegraph.pl	out.profile-folded	>	profile.svg

	

bpftrace

bpftrace	is	a	command	line	interface	to	tracepoints	such	as	uprobes.

	

List	probes

bpftrace	-l

Probe	sleeping	processes

#	bpftrace	-e	'kprobe:do_nanosleep	{	printf("PID	%d	sleeping...\n",	pid);	}'
Attaching	1	probe...
PID	1668	sleeping...

	

Count	syscalls	by	process

#	bpftrace	-e	'tracepoint:raw_syscalls:sys_enter	{	@[comm]	=	count();	}'
Attaching	1	probe...
^C
@[a.out]:	4
[...]

	

Trace	uprobe

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc/blob/master/tools/profile.py
https://github.com/iovisor/bpftrace/issues/1006
https://lore.kernel.org/all/CA+55aFxgPXjGh0GSHaUGm6-Pfdjjk=PAP7HMuZHcFGE92VutUQ@mail.gmail.com/
https://github.com/danobi/bpf-dwarf-walk
https://bpftrace.org/

#	bpftrace	-e	'uprobe:/home/user1/a.out:play	{	printf("%llx\n",	reg("ip"));	}'
Attaching	1	probe...
401156
#	objdump	-d	/home/user1/a.out	|	grep	play
0000000000401156	<play>:

	

Histogram	of	read	call	times

#	bpftrace	-e	'tracepoint:syscalls:sys_enter_read	{	@start[tid]	=	nsecs;	}	tracepoint:syscalls:sys_exit_read	/	@start[tid]	/	{	@times	=	hist(nsecs	-	@start[tid]);	delete(@start[tid]);	}'
Attaching	2	probes...
^C

@start[25436]:	4171433620436
@start[1933]:	4171434103928
@times:	
[256,	512)													6	|@@@																																																	|
[512,	1K)													85	|@@|
[1K,	2K)														69	|@@										|
[2K,	4K)														45	|@@@@@@@@@@@@@@@@@@@@@@@@@@@																									|
[4K,	8K)														76	|@@						|
[8K,	16K)													37	|@@@@@@@@@@@@@@@@@@@@@@																														|
[16K,	32K)												36	|@@@@@@@@@@@@@@@@@@@@@@																														|
[32K,	64K)												12	|@@@@@@@																																													|
[64K,	128K)												3	|@																																																			|
[128K,	256K)											3	|@																																																			|
[256K,	512K)											3	|@																																																			|
[512K,	1M)													0	|																																																				|
[1M,	2M)															1	|																																																				|
[2M,	4M)															1	|																																																				|

	

htop

htop	is	similar	to	the	top	program.	For	example:

		1		[||																																								1.0%]			Tasks:	84,	537	thr;	1	running
		2		[||																																								1.0%]			Load	average:	0.26	0.60	0.35	
		3		[||																																								1.4%]			Uptime:	04:13:07
		4		[||																																								1.7%]
		Mem[||||||||||||||||||||||||||||||					2.09G/7.78G]
		Swp[0K/1024M]

		PID	USER						PRI		NI		VIRT			RES			SHR	S	CPU%	MEM%			TIME+		Command
			17	was								20			0	3167M		264M	78172	S		2.7		3.3		0:25.76	java	-javaagent:/opt/ibm/wlp/bin/tools/ws-javaagen
		172	was								20			0	4700M		206M	58896	S		1.3		2.6		0:19.88	java	-javaagent:/opt/ibm/wlp/bin/tools/ws-javaagen
	1517	was								20			0	4702M		428M		100M	S		1.0		5.4		0:41.35	/opt/IBM/WebSphere/AppServer/java/8.0/bin/java	-Do	[...]

	

dstat

dstat	provides	information	on	CPU,	disk,	memory,	and	network.	For	example:

You	did	not	select	any	stats,	using	-cdngy	by	default.
----total-usage----	-dsk/total-	-net/total-	---paging--	---system--
usr	sys	idl	wai	stl|	read		writ|	recv		send|		in			out	|	int			csw	
		0			0		98			0			0|			0					0	|			0					0	|			0					0	|	874		1142	
		0			0		99			0			0|			0					0	|			0					0	|			0					0	|	851		1076	
		0			0		98			0			0|			0			192k|			0					0	|			0					0	|	756			920	
		1			1		97			0			0|			0					0	|			0					0	|			0					0	|	831		1000	
		2			1		97			0			0|			0		4097B|			0					0	|			0					0	|	861		1025

	

https://www.kernel.org/doc/man-pages/online/pages/man1/htop.1.html
https://manpages.ubuntu.com/manpages/latest/en/man1/dstat.1.html

glances

glances	provides	various	information	in	one	glance:

fca32e320852	(Fedora	32	64bit	/	Linux	4.19.76-linuxkit)																																											Uptime:	4:19:43

CPU		[2.2%]			CPU							2.2%		nice:					0.0%		ctx_sw:			960			MEM					30.6%			SWAP						0.0%			LOAD				4-core
MEM		[30.6%]			user:					0.8%		irq:						0.0%		inter:				772			total:		7.78G			total:			1024M			1	min:				0.21
SWAP	[0.0%]			system:			0.7%		iowait:			0.0%		sw_int:			699			used:			2.38G			used:								0			5	min:				0.27
																idle:				98.6%		steal:				0.0%																		free:			5.40G			free:				1024M			15	min:			0.28

NETWORK							Rx/s			Tx/s			TASKS		82	(627	thr),	1	run,	81	slp,	0	oth	sorted	automatically	by	CPU	consumption
eth0												0b			192b
lo														0b					0b			CPU%			MEM%		VIRT		RES					PID	USER										TIME+	THR		NI	S		R/s	W/s		Command
																												2.6				0.4			177M		34.1M		3145	root											0:00	1					0	R				0	0				/usr/bin/pytho
TCP	CONNECTIONS													2.3				3.3			3.09G	263M					17	was												0:38	87				0	S				0	0				java	-javaagen
Listen																	34			0.7				2.5			4.59G	199M				172	was												0:22	49				0	S				0	0				java	-javaagen
Initiated															0			0.3				5.4			4.60G	430M			1517	was												0:45	151			0	S				0	0				/opt/IBM/WebSp
Established													2			0.0				9.0			1.99G	714M					59	root											0:00	4					0	S				0	0				/usr/sbin/slap
Terminated														0			0.0				1.0			1.46G	78.2M			286	mysql										0:01	30				0	S				0	0				/usr/libexec/m
Tracked										0/262144			0.0				0.9			680M		68.9M			600	was												0:01	9					0	S				0	0				/usr/bin/Xvnc
																												0.0				0.9			679M		68.6M			106	root											0:01	9					0	S				0	0				/usr/bin/Xvnc
DISK	I/O						R/s				W/s				0.0				0.7			875M		57.5M			795	was												0:00	11				0	S				0	0				xfce4-session
sr0														0						0			0.0				0.3			167M		21.7M			676	root											0:00	3					0	S				0	0				/usr/lib64/xfc
sr1														0						0			0.0				0.2			62.7M	19.7M			126	root											0:00	1					0	S				0	0				/opt/IBM/HTTPS
																												0.0				0.2			231M		16.7M			755	root											0:00	3					0	S				0	0				/usr/lib64/xfc
FILE	SYS						Used		Total			0.0				0.2			165M		13.9M			718	root											0:00	3					0	S				0	0				xfce4-power-ma
_c/hostname		43.7G		87.8G			0.0				0.1			2.05G	9.12M			324	nobody									0:00	102			0	S				0	0				/opt/IBM/HTTPS

	

System	Tap	(stap)

Systemtap	simplifies	creating	and	running	kernel	modules	based	on	kprobes.	See	installing	stap.

A	simple	"Hello	World"	script:

#!/usr/bin/stap
probe	begin	{	println("Hello	World")	exit	()	}

Execute	the	script:

#	stap	helloworld.stp

For	most	interesting	SystemTap	scripts,	the	kernel	development	package	and	kernel	symbols	must	be
installed.	See	example	scripts	at	the	main	repository	and	others	such	as	a	histogram	of	system	call	times.

Flame	graphs	are	a	great	way	to	visualize	CPU	activity:

#	stap	-s	32	-D	MAXBACKTRACE=100	-D	MAXSTRINGLEN=4096	-D	MAXMAPENTRIES=10240	\
				-D	MAXACTION=10000	-D	STP_OVERLOAD_THRESHOLD=5000000000	--all-modules	\
				-ve	'global	s;	probe	timer.profile	{	s[backtrace()]	<<<	1;	}
				probe	end	{	foreach	(i	in	s+)	{	print_stack(i);
				printf("\t%d\n",	@count(s[i]));	}	}	probe	timer.s(60)	{	exit();	}'	\
				>	out.stap-stacks
#	./stackcollapse-stap.pl	out.stap-stacks	>	out.stap-folded
#	cat	out.stap-folded	|	./flamegraph.pl	>	stap-kernel.svg

https://manpages.ubuntu.com/manpages/latest/en/man1/glances.1.html
https://sourceware.org/systemtap/documentation.html
https://www.sourceware.org/systemtap/SystemTap_Beginners_Guide/using-systemtap.html
https://sourceware.org/systemtap/examples/
https://github.com/majek/dump/blob/master/system-tap/histogram-kernel.stp
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

		

WAS	Performance,	Hang,	or	High	CPU	MustGather

The	WAS	Performance,	Hang,	or	High	CPU	MustGather	(linperf.sh)	is	normally	requested	by	IBM
support.

The	script	is	run	with	the	set	of	process	IDs	for	the	JVMs	as	parameters	and	requests	thread	dumps	through
kill	-3.

	

Intel	VTune	Profiler

Intel	VTune	Profiler	is	a	deep	profiler	for	Intel	CPUs.

Instructions	with	a	CPI	rate	of	>	~100	may	be	concerning	and	signs	of	stalls	(e.g.	cache	false	sharing,	etc.).

	

Intel	Performance	Counter	Monitor	(PCM)

The	Intel	Performance	Counter	Monitor	(PCM)	provides	access	to	performance	counters	on	Intel	processors:

$	make
$	sudo	./pcm.x
	EXEC		:	instructions	per	nominal	CPU	cycle
	IPC			:	instructions	per	CPU	cycle
	FREQ		:	relation	to	nominal	CPU	frequency='unhalted	clock	ticks'/'invariant	timer	ticks'	(includes	Intel	Turbo	Boost)
	AFREQ	:	relation	to	nominal	CPU	frequency	while	in	active	state	(not	in	power-saving	C	state)='unhalted	clock	ticks'/'invariant	timer	ticks	while	in	C0-state'		(includes	Intel	Turbo	Boost)
	L3MISS:	L3	cache	misses
	L2MISS:	L2	cache	misses	(including	other	core's	L2	cache	*hits*)
	L3HIT	:	L3	cache	hit	ratio	(0.00-1.00)
	L2HIT	:	L2	cache	hit	ratio	(0.00-1.00)
	L3CLK	:	ratio	of	CPU	cycles	lost	due	to	L3	cache	misses	(0.00-1.00),	in	some	cases	could	be	>1.0	due	to	a	higher	memory	latency
	L2CLK	:	ratio	of	CPU	cycles	lost	due	to	missing	L2	cache	but	still	hitting	L3	cache	(0.00-1.00)
	READ		:	bytes	read	from	memory	controller	(in	GBytes)
	WRITE	:	bytes	written	to	memory	controller	(in	GBytes)
	IO				:	bytes	read/written	due	to	IO	requests	to	memory	controller	(in	GBytes);	this	may	be	an	over	estimate	due	to	same-cache-line	partial	requests
	TEMP		:	Temperature	reading	in	1	degree	Celsius	relative	to	the	TjMax	temperature	(thermal	headroom):	0	corresponds	to	the	max	temperature

	Core	(SKT)	|	EXEC	|	IPC		|	FREQ		|	AFREQ	|	L3MISS	|	L2MISS	|	L3HIT	|	L2HIT	|	L3CLK	|	L2CLK		|	READ		|	WRITE	|		IO			|	TEMP

			0				0					0.01			0.32			0.04				0.54					456	K				649	K				0.30				0.25				0.84				0.07					N/A					N/A					N/A					65
			1				0					0.01			0.54			0.02				0.46					286	K				412	K				0.31				0.31				0.91				0.08					N/A					N/A					N/A					65
			2				0					0.00			0.45			0.01				0.47					106	K				119	K				0.11				0.06				1.29				0.03					N/A					N/A					N/A					60
			3				0					0.02			0.81			0.03				0.54					524	K				598	K				0.12				0.19				1.21				0.03					N/A					N/A					N/A					60
			4				0					0.01			0.67			0.02				0.46					229	K				264	K				0.13				0.20				0.98				0.03					N/A					N/A					N/A					60
			5				0					0.00			0.25			0.01				0.47					216	K				224	K				0.04				0.03				1.86				0.02					N/A					N/A					N/A					60
			6				0					0.00			0.15			0.00				0.46						18	K					19	K				0.02				0.03				1.42				0.01					N/A					N/A					N/A					60

https://www.ibm.com/support/pages/mustgather-performance-hang-or-high-cpu-issues-websphere-application-server-linux
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

			7				0					0.00			0.34			0.00				0.47						45	K					46	K				0.02				0.03				1.69				0.01					N/A					N/A					N/A					60

	SKT				0					0.01			0.53			0.02				0.50				1884	K			2334	K				0.19				0.21				1.07				0.05				0.18				0.02				0.04					60

	TOTAL		*					0.01			0.53			0.02				0.50				1884	K			2334	K				0.19				0.21				1.07				0.05				0.18				0.02				0.04					N/A

	Instructions	retired:		167	M	;	Active	cycles:		317	M	;	Time	(TSC):	2597	Mticks	;	C0	(active,non-halted)	core	residency:	3.03	%

	C1	core	residency:	4.92	%;	C3	core	residency:	1.98	%;	C6	core	residency:	0.09	%;	C7	core	residency:	89.97	%;
	C2	package	residency:	6.29	%;	C3	package	residency:	4.29	%;	C6	package	residency:	4.51	%;	C7	package	residency:	57.55	%;

	PHYSICAL	CORE	IPC																	:	1.06	=>	corresponds	to	26.41	%	utilization	for	cores	in	active	state
	Instructions	per	nominal	CPU	cycle:	0.02	=>	corresponds	to	0.40	%	core	utilization	over	time	interval

	

KUTrace

KUtrace	is	a	low-overhead	Linux	kernel	tracing	facility	for	observing	and	visualizing	all	the	execution	time
on	all	cores	of	a	multi-core	processor.

	

Physical	Memory	(RAM)

Query	memory	information:

$	cat	/proc/meminfo
MemTotal:							15943596	kB
MemFree:									4772348	kB
Buffers:										305280	kB
Cached:										8222008	kB
Slab:													369028	kB

https://github.com/dicksites/KUtrace
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

AnonPages:							5397004	kB...

On	newer	versions	of	Linux,	use	the	"Available"	statistics	to	determine	the	approximate	amount	of	RAM
that's	available	for	use	for	programs:

Many	load	balancing	and	workload	placing	programs	check	/proc/meminfo	to	estimate	how
much	free	memory	is	available.	They	generally	do	this	by	adding	up	"free"	and	"cached",	which
was	fine	ten	years	ago,	but	is	pretty	much	guaranteed	to	be	wrong	today.	It	is	wrong	because
Cached	includes	memory	that	is	not	freeable	as	page	cache,	for	example	shared	memory
segments,	tmpfs,	and	ramfs,	and	it	does	not	include	reclaimable	slab	memory,	which	can	take	up
a	large	fraction	of	system	memory	on	mostly	idle	systems	with	lots	of	files.	Currently,	the
amount	of	memory	that	is	available	for	a	new	workload,	without	pushing	the	system	into	swap,
can	be	estimated	from	MemFree,	Active(file),	Inactive(file),	and	SReclaimable,	as	well	as	the
"low"	watermarks	from	/proc/zoneinfo.	However,	this	may	change	in	the	future,	and	user	space
really	should	not	be	expected	to	know	kernel	internals	to	come	up	with	an	estimate	for	the
amount	of	free	memory.	It	is	more	convenient	to	provide	such	an	estimate	in	/proc/meminfo.	If
things	change	in	the	future,	we	only	have	to	change	it	in	one	place.

Notes:

Physical	memory	used	~=	MemTotal	-	MemFree	-	Buffers	-	Cached
AnonPages	~=	The	sum	total	of	virtual	memory	allocations	(e.g.	malloc,	mmap,	etc.)	by	currently
running	processes.	This	is	roughly	equivalent	to	summing	the	RSS	column	in	$(ps	-eww	-o	pid,rss)
(although	RSS	pages	reported	in	$(ps)	may	be	shared	across	processes):
$	ps	-eww	-o	pid,rss	|	tail	-n+2	|	awk	'{print	$2}'	|	paste	-sd+	|	bc

lsmem	provides	detailed	information	on	memory.	For	example:

lsmem
RANGE																																		SIZE		STATE	REMOVABLE	BLOCK
0x0000000000000000-0x0000000007ffffff		128M	online								no					0
0x0000000008000000-0x000000006fffffff		1.6G	online							yes		1-13
0x0000000070000000-0x0000000097ffffff		640M	online								no	14-18
0x0000000098000000-0x00000000a7ffffff		256M	online							yes	19-20
0x00000000a8000000-0x00000000bfffffff		384M	online								no	21-23
0x0000000100000000-0x00000001bfffffff				3G	online								no	32-55
0x00000001c0000000-0x00000001c7ffffff		128M	online							yes				56
0x00000001c8000000-0x00000001dfffffff		384M	online								no	57-59
0x00000001e0000000-0x00000001efffffff		256M	online							yes	60-61
0x00000001f0000000-0x000000023fffffff		1.3G	online								no	62-71

Memory	block	size:							128M
Total	online	memory:							8G
Total	offline	memory:						0B

	

Per-process	Memory	Usage

Use	the	ps	command	to	show	the	resident	and	virtual	sizes	of	a	process:

$	ps	-eww	-o	pid,rss,vsz,command
		PID			RSS				VSZ	COMMAND
32665	232404	4777744	java	...	server1

Resident	memory	pages	may	be	shared	across	processes.	The	file	/proc/$PID/smaps	includes	a	"Pss"	line	for
each	virtual	memory	area	which	is	the	proportional	set	size,	which	is	a	subset	of	RSS,	and	tries	to	take	into
account	shared	resident	pages.

	

tmpfs

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=34e431b0ae398fc54ea69ff85ec700722c9da773

Filesystems	mounted	with	tmpfs	consume	RAM	and/or	swap.	Use	df	to	view	size	and	usage.	For	example:

$	df	-ht	tmpfs
Filesystem						Size		Used	Avail	Use%	Mounted	on
tmpfs											2.0G					0		2.0G			0%	/dev/shm
tmpfs											785M		1.3M		784M			1%	/run
tmpfs											2.0G			16K		2.0G			1%	/tmp
tmpfs											393M		144K		393M			1%	/run/user/1000

Also	view	Shmem	in	/proc/meminfo.

Some	distributions	mount	/tmp	on	tmpfs	and	programs	using	a	lot	of	space	in	/tmp	may	drive	RAM	usage.	In
general,	such	applications	should	use	/var/tmp	instead.	A	common	way	to	disable	this	/tmp	tmpfs	mount	is
to	run	sudo	systemctl	mask	tmp.mount	and	reboot.

	

Memory	in	cgroups

cgroups	v1:

cat	/sys/fs/cgroup/cpu/$SLICE/$SCOPE/memory.stat

cgroups	v2:

cat	/sys/fs/cgroup/$SLICE/$SCOPE/memory.stat

	

Memory	Pressure

Recent	versions	of	Linux	include	Pressure	Stall	Information	(PSI)	statistics	to	better	understand	memory
pressure	and	constraints.	For	example,	in	/proc/pressure/memory	(or	memory.pressure	in	cgroups):

cat	/proc/pressure/memory
some	avg10=0.00	avg60=0.00	avg300=0.00	total=0
full	avg10=0.00	avg60=0.00	avg300=0.00	total=0

The	"some"	line	indicates	the	share	of	time	in	which	at	least	some	tasks	are	stalled	on	a	given
resource.

The	"full"	line	indicates	the	share	of	time	in	which	all	non-idle	tasks	are	stalled	on	a	given
resource	simultaneously.	In	this	state	actual	CPU	cycles	are	going	to	waste,	and	a	workload	that
spends	extended	time	in	this	state	is	considered	to	be	thrashing.	This	has	severe	impact	on
performance,	and	it's	useful	to	distinguish	this	situation	from	a	state	where	some	tasks	are	stalled
but	the	CPU	is	still	doing	productive	work.	As	such,	time	spent	in	this	subset	of	the	stall	state	is
tracked	separately	and	exported	in	the	"full"	averages.

The	ratios	(in	%)	are	tracked	as	recent	trends	over	ten,	sixty,	and	three	hundred	second	windows,
which	gives	insight	into	short	term	events	as	well	as	medium	and	long	term	trends.	The	total
absolute	stall	time	(in	us)	is	tracked	and	exported	as	well,	to	allow	detection	of	latency	spikes
which	wouldn't	necessarily	make	a	dent	in	the	time	averages,	or	to	average	trends	over	custom
time	frames.

	

free

Query	physical	memory	usage:

$	free	-m

https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html
https://fedoraproject.org/wiki/Features/tmp-on-tmpfs
https://fedoraproject.org/wiki/Features/tmp-on-tmpfs
https://www.kernel.org/doc/html/latest/accounting/psi.html

													total							used							free					shared				buffers					cached
Mem:									15569						10888							4681										0								298							8029
-/+	buffers/cache:							2561						13008
Swap:												0										0										0

In	general,	you	want	to	look	at	the	"-/+	buffers/cache"	line	because	buffers	and	cache	are	not	program
memory.

	

/proc/meminfo

/proc/meminfo	provides	information	about	memory.

Example	(only	showing	first	few	lines):

$	cat	/proc/meminfo
MemTotal:							10185492	kB
MemFree:									6849096	kB
MemAvailable:				9621568	kB
Buffers:												1980	kB
Cached:										2960552	kB
[...]

Review	the	MemAvailable	line	To	find	how	much	memory	is	available	if	needed:

	

Paging

When	the	physical	memory	is	full,	paging	(also	known	as	swapping)	occurs	to	provide	additional	memory.
Paging	consists	of	writing	the	contents	of	physical	memory	to	disk,	making	the	physical	memory	available
for	use	by	applications.	The	least	recently	used	information	is	moved	first.	Paging	is	expensive	in	terms	of
performance	because,	when	required	information	is	stored	on	disk	it	must	be	loaded	back	into	physical
memory,	which	is	a	slow	process.

Where	paging	occurs,	Java	applications	are	impacted	because	of	garbage	collection.	Garbage	collection
requires	every	part	of	the	Java	heap	to	be	read.	If	any	of	the	Java	heap	has	been	paged	out,	it	must	be	paged
back	when	garbage	collection	runs,	slowing	down	the	garbage	collection	process.

The	vmstat	output	shows	whether	paging	was	taking	place	when	the	problem	occurred.	vmstat	output	has	the
following	format:

procs	-----------memory----------		---swap--		-----io----	--system--	----cpu----
		r		b			swpd			free				buff			cache			si			so				bi				bo			in				cs	us	sy		id	wa
		0		0		17196	679860	1196656	2594884				0				0					1					4				0					0		0		0	100		0
		0		0		17196	679868	1196656	2594884				0				0					0				40	1012				43		0		0	100		0
		0		0		17196	679992	1196656	2594884				0				0					0					3	1004				43		0		0	100		0

The	columns	of	interest	are...	si	and	so	(swap	in	and	swap	out)	columns	for	Linux.	Nonzero	values	indicate
that	paging	is	taking	place.

	

What	is	swapped	out?

Search	for	largest	values:

$	free	-h	&>>	diag_swap_$(hostname)_$(date	+%Y%m%d).txt
$	for	pidfile	in	/proc/[0-9]*/status;	do	echo	$pidfile	&>>	diag_swap_$(hostname)_$(date	+%Y%m%d).txt;	awk	'/VmSwap|Name/'	$pidfile	&>>	diag_swap_$(hostname)_$(date	+%Y%m%d).txt;	done

https://www.kernel.org/doc/Documentation/filesystems/proc.txt

	

Shared	Memory

It	may	be	necessary	to	tune	the	kernel's	shared	memory	configuration	for	products	such	as	databases.

/proc/sys/kernel/shmall:	The	maximum	amount	of	shared	memory	for	the	kernel	to	allocate.
/proc/sys/kernel/shmmax:	The	maximum	size	of	any	one	shared	memory	segment.
/proc/sys/kernel/shmmni:	The	maximum	number	of	shared	memory	segments.

For	example,	set	kernel.shmmax=1073741824	in	/etc/sysctl.conf	and	apply	with	sysctl	-p.

	

Address	Space	Layout	Randomization

Address	space	layout	randomization	(ASLR)	is	a	feature	of	some	kernels	to	randomize	virtual	address	space
locations	of	various	program	allocations.	This	is	an	anti-hacking	security	feature	although	it	may	cause
unintuitive	and	random	performance	perturbations.	For	testing/benchmarking,	you	may	see	if	this	is	the	case
by	disabling	it	temporarily:

echo	0	|	sudo	tee	/proc/sys/kernel/randomize_va_space

Alternatively,	ASLR	may	be	disabled	on	a	per-process	basis	with	setarch	-R.

	

NUMA

NUMA	stands	for	Non-Uniform	Memory	Access	which	means	that	RAM	is	split	into	multiple	nodes,	each	of
which	is	local	to	particular	sets	of	CPUs	with	slower,	"remote"	access	for	other	CPUs.

The	numactl	command	provides	various	utilities	such	as	displaying	NUMA	layout:

$	numactl	--hardware
available:	1	nodes	(0)
node	0	cpus:	0	1	2	3	4	5	6	7
node	0	size:	16000	MB
node	0	free:	4306	MB
node	distances:
node			0
		0:		10

A	process	may	be	started	on	a	particular	NUMA	node	with	numactl	-m	$NODE	...	or	processes	may	be
pinned	to	the	CPUs	connected	to	that	node	with	taskset.

Display	the	current	NUMA	mappings	per	process	with	cat	/proc/$PID/numa_maps.	To	print	memory	usage
by	NUMA	node:

awk	'/N[0-9]+=[0-9]+/	{	for	(i=1;	i<=NF;	i++)	{	if	($i	~	/N[0-9]+=[0-9]+/)	{	split($i,	pieces,	/=/);	pages[pieces[1]]	+=	pieces[2];	}	}}	END	{	for	(node	in	pages)	{	printf("Node	%s	=	%d	bytes\n",	node,	pages[node]*1024);}	}'	numa_maps

The	numastat	command	(in	the	package	numactl)	shows	if	memory	was	allocated	to	foreign	nodes	despite	a
process	preferring	its	local	node.	This	isn't	exactly	remote	accesses	but	it	could	be	interesting.	You	can	just
run	this	once	for	the	whole	node	(numastat),	and	then	once	for	one	or	more	processes	(numstat	-p	$PID).

If	testing	can	be	done,	a	relatively	lower	IPC	when	processes	are	unpinned	to	nodes	suggests	slower,	remote
memory	access.

It	may	be	worth	testing	disabling	automatic	NUMA	balancing	and	page	migration	between	NUMA	nodes
(echo	0	>	/proc/sys/kernel/numa_balancing)	and	disable	numad	if	running.

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/man-pages/online/pages/man8/setarch.8.html
https://www.kernel.org/doc/html/latest/mm/numa.html
https://www.kernel.org/doc/man-pages/online/pages/man8/numactl.8.html
https://www.kernel.org/doc/man-pages/online/pages/man5/numa_maps.5.html
https://www.kernel.org/doc/man-pages/online/pages/man8/numastat.8.html
https://www.kernel.org/doc/man-pages/online/pages/man8/numactl.8.html
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#numa-balancing
https://www.kernel.org/doc/html/latest/vm/page_migration.html

On	Intel	CPUs,	Intel	provides	NumaTOP	to	investigate	NUMA	accesses.

On	Intel	CPUs,	Intel	provides	the	PCM	tool	suite	with	a	tool	called	pcm-numa	which	shows	remote	RAM
access	per	chip	(Remote	DRAM	Accesses).	For	example:

Update	every	1.0	seconds
Time	elapsed:	1004	ms
Core	|	IPC		|	Instructions	|	Cycles		|		Local	DRAM	accesses	|	Remote	DRAM	Accesses	
			0			0.60									45	M							75	M							188	K																			129	K
			1			0.66							7256	K							10	M						4724																						25	K
			2			0.26							1185	K					4647	K							288																				7177
[...]

Intel	also	provides	the	Memory	Latency	Checker	to	review	NUMA-related	latencies.

The	pmrep	tool	from	RedHat	shows	remote%	per	second	which	is	"where	the	processor	that	triggered	the
hinting	page	fault	and	the	memory	it	referred	to	are	on	different	NUMA	nodes".	Hinting	page	faults	aren't
directly	remote	memory	accesses;	instead,	they're	related	to	the	kernel's	monitoring	of	whether	or	not	to
migrate	memory	chunks,	so	it's	a	subset	of	memory	accesses,	but	if	remote%	spikes	during	issues,	that	could
be	a	good	hint.	This	might	only	work	if	NUMA	rebalancing	is	enabled.

	

GLIBC	malloc

In	recent	kernels,	the	text	is	at	the	bottom,	stack	at	the	top,	and	mmap/heap	sections	grow	towards	each	other
in	a	shared	space	(although	they	cannot	overlap).	By	default,	the	malloc	implementation	in	glibc	(which	was
based	on	ptmalloc,	which	in	turn	was	based	on	dlmalloc)	will	allocate	into	either	the	native	heap	(sbrk)	or
mmap	space,	based	on	various	heuristics	and	thresholds:	If	there's	enough	free	space	in	the	native	heap,
allocate	there.	Otherwise,	if	the	allocation	size	is	greater	than	some	threshold	(slides	between	128KB	and
32/64MB	based	on	various	factors),	allocate	a	private,	anonymous	mmap	instead	of	native	heap	(mmap	isn't
limited	by	ulimit	-d).

In	the	raw	call	of	sbrk	versus	mmap,	mmap	is	slower	because	it	must	zero	the	range	of	bytes.

	

MALLOC_ARENA_MAX

Starting	with	glibc	2.11	(for	example,	customers	upgrading	from	RHEL	5	to	RHEL	6),	by	default,	when
glibc	malloc	detects	mutex	contention	(i.e.	concurrent	mallocs),	then	the	native	malloc	heap	is	broken	up	into
sub-pools	called	arenas.	This	is	achieved	by	assigning	threads	their	own	memory	pools	and	by	avoiding
locking	in	some	situations.	The	amount	of	additional	memory	used	for	the	memory	pools	(if	any)	can	be
controlled	using	the	environment	variables	MALLOC_ARENA_TEST	and	MALLOC_ARENA_MAX.
MALLOC_ARENA_TEST	specifies	that	a	test	for	the	number	of	cores	is	performed	once	the	number	of	memory
pools	reaches	this	value.	MALLOC_ARENA_MAX	sets	the	maximum	number	of	memory	pools	used,	regardless	of
the	number	of	cores.

The	default	maximum	arena	size	is	1MB	on	32-bit	and	64MB	on	64-bit.	The	default	maximum	number	of
arenas	is	the	number	of	cores	multiplied	by	2	for	32-bit	and	8	for	64-bit.

This	can	increase	fragmentation	because	the	free	trees	are	separate.

In	principle,	the	net	performance	impact	should	be	positive	of	per	thread	arenas,	but	testing	different	arena
numbers	and	sizes	may	result	in	performance	improvements	depending	on	your	workload.

You	can	revert	the	arena	behavior	with	the	environment	variable	MALLOC_ARENA_MAX=1.

	

https://www.intel.com/content/www/us/en/developer/articles/technical/numatop-introduction.html
https://github.com/intel/pcm
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://access.redhat.com/articles/3373131
https://www.kernel.org/doc/man-pages/online/pages/man3/mallopt.3.html
https://sourceware.org/legacy-ml/libc-alpha/2006-03/msg00033.html

OOM	Killer

If	/proc/sys/vm/overcommit_memory	is	set	to	0	(the	default),	then	the	Linux	kernel	will	allow	 memory
overcommit.	If	RAM	and	swap	space	become	exhausted,	the	Linux	oom-killer	will	send	a	SIGKILL	(9)
signal	to	processes	until	sufficient	space	is	freed:

By	default,	Linux	follows	an	optimistic	memory	allocation	strategy.	This	means	that	when
malloc()	returns	non-NULL	there	is	no	guarantee	that	the	memory	really	is	available.	In	case	it
turns	out	that	the	system	is	out	of	memory,	one	or	more	processes	will	be	killed	by	the	OOM
killer.

The	SIGKILL	signal	cannot	be	caught,	blocked,	or	ignored	by	processes,	and	no	process	core	dump	is
produced.

If	/proc/sys/vm/panic_on_oom	is	set	to	1,	then	a	kernel	panic	will	be	produced	when	the	OOM	killer	is
triggered	and	the	system	is	rebooted.	Creating	a	dump	on	a	panic	requires	configuring	kdump.

The	kernel	decides	which	process	to	kill	based	on	various	heuristics	and	per-process	configuration	(section
3.1).	A	process	may	be	excluded	from	the	oom-killer	by	setting	its	oom_score_adj	to	-1000:

$	echo	-1000	>	/proc/${PID}/oom_score_adj

The	OOM	killer	may	be	disabled.	For	example,	set	vm.overcommit_memory=2	and
vm.overcommit_ratio=100	in	/etc/sysctl.conf	and	apply	with	sysctl	-p.	In	this	case,	malloc	will	return
NULL	when	there	is	no	memory	and	available.	Many	workloads	can't	support	such	configurations	because
of	high	virtual	memory	allocations.

	

OOM	Killer	Message

When	the	OOM	killer	is	invoked,	a	message	is	written	to	the	kernel	log.	For	example:

kernel:	Out	of	memory:	Kill	process	20502	(java)	score	296	or	sacrifice	child
kernel:	Killed	process	20502	(java),	UID	1006,	total-vm:14053620kB,	anon-rss:10256240kB,	file-rss:0kB,	shmem-rss:0kB

The	total	and	free	swap	usage	at	the	time	is	also	included.	For	example:

kernel:	Free	swap		=	0kB
kernel:	Total	swap	=	2001916kB

By	default	(vm.oom_dump_tasks	=	1),	a	list	of	all	tasks	and	their	memory	usage	is	included.	In	general,
resolve	the	OOM	issue	by	searching	for	the	processes	with	the	largest	RSS	values.	For	example:

kernel:	[pid]			uid		tgid	total_vm						rss	nr_ptes	swapents	oom_score_adj	name
kernel:	[16359]		1006	16359		3479474		2493182				5775				13455													0	java
kernel:	[20502]		1006	20502		3513405		2564060				6001					8788													0	java
kernel:	[25415]		1006	25415		3420281		2517763				5890				15640													0	java
kernel:	[1984]					0		1984		3512173			115259					908				81569													0	jsvc
[...]

In	the	process	list,	the	information	is	 retreived	through	each	PID's	task_struct	and	its	mm	field	(mm_struct).
The	important	statistic	in	the	task	dump	is	rss	(resident	set	size)	which	is	calculated	by	get_mm_rss	that
calls	get_mm_counter	through	the	rss_stat	(mm_rss_stat)	field	of	mm	for	MM_FILEPAGES,	MM_ANONPAGES,
and	MM_SHMEMPAGES	which	are	page	counts.

Therefore,	multiply	by	the	page	size	(getconf	PAGESIZE)	to	convert	rss	to	bytes.	The	page	size	is	CPU
architecture	specific.	A	common	PAGE_SIZE	is	4KB.

	

https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/man-pages/online/pages/man3/malloc.3.html
https://www.kernel.org/doc/man-pages/online/pages/man7/signal.7.html
https://www.kernel.org/doc/Documentation/kdump/kdump.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/man-pages/online/pages/man5/proc.5.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/mm/oom_kill.c?h=v5.16#n405
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/sched.h?h=v5.16#n723
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/mm_types.h?h=v5.16#n467
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/mm.h?h=v5.16#n2080
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/mm.h?h=v5.16#n2027
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/mm_types_task.h?h=v5.16#n60
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/mm_types_task.h?h=v5.16#n43
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/asm-generic/page.h?h=v5.16#n14

EarlyOOM

EarlyOOM	is	a	user-space	memory	watcher	tool	that	proactively	kills	memory-hungry	processes	when	the
system	is	dangerously	low	on	free	computational	memory	(unlike	the	kernel's	OOM	killer	which	only	kills
memory-hungry	processes	when	the	system	is	absolutely	exhausted).

EarlyOOM	is	enabled	by	default	starting	with	Fedora	33.

It	may	be	disabled	with	sudo	systemctl	stop	earlyoom.service	&&	sudo	systemctl	disable
earlyoom.service

	

File	cache

/proc/sys/vm/swappiness

The	default	value	of	/proc/sys/vm/swappiness	is	60:

This	control	is	used	to	define	how	aggressive	the	kernel	will	swap	memory	pages.	Higher	values
will	increase	aggressiveness,	lower	values	decrease	the	amount	of	swap.	The	default	value	is	60.

Recent	behavior:

swappiness,	is	a	parameter	which	sets	the	kernel's	balance	between	reclaiming	pages	from	the
page	cache	and	swapping	out	process	memory.	The	reclaim	code	works	(in	a	very	simplified
way)	by	calculating	a	few	numbers:

The	"distress"	value	is	a	measure	of	how	much	trouble	the	kernel	is	having	freeing
memory.	The	first	time	the	kernel	decides	it	needs	to	start	reclaiming	pages,	distress	will
be	zero;	if	more	attempts	are	required,	that	value	goes	up,	approaching	a	high	value	of
100.
mapped_ratio	is	an	approximate	percentage	of	how	much	of	the	system's	total	memory	is
mapped	(i.e.	is	part	of	a	process's	address	space)	within	a	given	memory	zone.
vm_swappiness	is	the	swappiness	parameter,	which	is	set	to	60	by	default.

With	those	numbers	in	hand,	the	kernel	calculates	its	"swap	tendency":

swap_tendency	=	mapped_ratio/2	+	distress	+	vm_swappiness;

If	swap_tendency	is	below	100,	the	kernel	will	only	reclaim	page	cache	pages.	Once	it	goes
above	that	value,	however,	pages	which	are	part	of	some	process's	address	space	will	also	be
considered	for	reclaim.	So,	if	life	is	easy,	swappiness	is	set	to	60,	and	distress	is	zero,	the	system
will	not	swap	process	memory	until	it	reaches	80%	of	the	total.	Users	who	would	like	to	never
see	application	memory	swapped	out	can	set	swappiness	to	zero;	that	setting	will	cause	the
kernel	to	ignore	process	memory	until	the	distress	value	gets	quite	high.

A	value	of	0	tells	the	kernel	to	avoid	paging	program	pages	to	disk	as	much	as	possible.	A	value	of	100
encourages	the	kernel	to	page	program	pages	to	disk	even	if	filecache	pages	could	be	removed	to	make
space.

Note	that	this	value	is	not	a	percentage	of	physical	memory,	but	as	the	above	example	notes,	it	is	a	variable	in
a	function.	If	distress	is	low	and	the	default	swappiness	of	60	is	set,	then	program	pages	may	start	to	be
paged	out	when	physical	memory	exceeds	80%	usage	(where	usage	is	defined	as	usage	by	program	pages).
Which	is	to	say,	by	default,	if	your	programs	use	more	than	80%	of	physical	memory,	the	least	used	pages	in
excess	of	that	will	be	paged	out.

This	may	be	adversely	affecting	you	if	you	see	page	outs	but	filecache	is	non-zero.	For	example,	in	vmstat,	if
the	"so"	column	is	non-zero	(you	are	paging	out)	and	the	"cache"	column	is	a	large	proportion	of	physical

https://github.com/rfjakob/earlyoom
https://fedoraproject.org/wiki/Changes/EnableEarlyoom
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://lwn.net/Articles/83588/

memory,	then	the	kernel	is	avoiding	pushing	those	filecache	pages	out	as	much	as	it	can	and	instead	paging
program	pages.	In	this	case,	either	reduce	the	swappiness	or	increase	the	physical	memory.	This	assumes	the
physical	memory	demands	are	expected	and	there	is	no	leak.

In	general,	for	Java-based	workloads	which	have	light	disk	file	I/O,	set	vm.swappiness=0	in	/etc/sysctl.conf
and	apply	with	sysctl	-p.

Note	that	recent	versions	of	the	Linux	kernel	(generally	>=	3.5)	have	made	vm.swappiness=0	more
aggressive	in	avoiding	swapping	out	anonymous	pages.	Some	prefer	to	use	vm.swappiness=1	to	retain	the	old
behavior	of	a	slight	preference	for	some	swapping	of	anonymous	pages	under	memory	pressure.	For	the
purposes	of	the	above	recommendations	for	Java-based	workloads	which	have	light	disk	file	I/O,	it's
preferable	to	set	vm.swappiness=0.

	

Kernel	memory	and	slab

In	addition	to	filecache	discussed	above,	the	kernel	may	have	other	caches	such	as	slab	(which	can	be	driven
by	application	behavior).	The	/proc/slabinfo	and	slabtop	program	may	be	used	to	investigate	slab	usage
as	well	as	per-cgroup	statistics	such	as	slab_reclaimable/slab_unreclaimable	in	memory.stat.

In	general,	it	is	not	necessary	to	tune	reclaimable	filecache	and	slab	buffers	on	Linux	as	they	can	be
reclaimed	automatically:

free	slab	objects	and	pagecache	[...]	are	automatically	reclaimed	by	the	kernel	when	memory	is
needed	elsewhere	on	the	system

It	is	by	design	that	Linux	aggressively	uses	free	RAM	for	caches	but	if	programs	demand	memory,	then	the
caches	can	be	quickly	dropped.

In	addition	to	vm.swappiness	for	filecache	discussed	in	the	previous	section,	additional	tuning	that	may	be
applied	includes	vm.vfs_cache_pressure,	vm.min_slab_ratio,	and	vm.min_free_kbytes.

Free	caches	may	be	manually	dropped	(for	example,	at	the	start	of	a	performance	test),	although	this	is
generally	not	recommended:

Flush	free	filecache:

sysctl	-w	vm.drop_caches=1

Flush	free	reclaimable	slab	(e.g.	inodes,	dentries):

sysctl	-w	vm.drop_caches=2

Flush	both	free	filecache	and	free	reclaimable	slab:

sysctl	-w	vm.drop_caches=3

To	investigate	the	drivers	of	slab,	use	eBPF	trace	on	t:kmem:kmem_cache_alloc.	For	example:

$	/usr/share/bcc/tools/trace	-K	't:kmem:kmem_cache_alloc'
PID					TID					COMM												FUNC													
9120				9120				kworker/0:2					kmem_cache_alloc	
								b'kmem_cache_alloc+0x1a8	[kernel]'
								b'kmem_cache_alloc+0x1a8	[kernel]'
								b'__d_alloc+0x22	[kernel]'	[...]

	

pdflush

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/commit/?id=fe35004fbf9eaf67482b074a2e032abb9c89b1dd
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://access.redhat.com/solutions/3897461

The	pdflush	process	writes	dirty	file	page	cache	entries	to	disk	asynchronously.

/proc/sys/vm/dirty_writeback_centisecs	controls	the	frequency	pdflush	awakes	and
/proc/sys/vm/dirty_expire_centiseconds	controls	the	threshold	at	which	a	dirty	page	is	judged	that	it	needs	to
be	written	by	a	run	of	pdflush	(or	if	memory	is	low,	judged	with	/proc/sys/vm/dirty_background_ratio).	If	the
total	size	of	dirty	pages	as	a	proportion	of	physical	memory	exceeds	/proc/sys/vm/dirty_ratio,	processes	write
to	disk	synchronously.

If	system	I/O	activity	is	heavy	but	bursty	and	this	causes	problems,	consider	reducing	the	above	variables,
first	starting	with	dirty_background_ratio	(e.g.	3),	followed	by	dirty_ratio	(e.g.	15),	followed	by
dirty_expire_centiseconds	(e.g.	500),	followed	by	dirty_writeback_centisecs	(e.g.	100).

For	example,	set	vm.dirty_background_ratio=3	in	/etc/sysctl.conf	and	apply	with	sysctl	-p

	

Zero	Swap	Space

While	there	is	considerable	philosophical	debate	about	swap,	consider	disabling	swap,	setting
vm.panic_on_oom=1,	and	configuring	kernel	vmcore	dumps	with	process-level	virtual	address	space
information	to	avoid	swap	thrashing	situations	and	reduce	downtime,	whilst	analyzing	post-mortem	vmcores
for	excessive	memory	usage,	leaks,	or	undersizing.

To	disable	swap,	use	$(swapoff	-a)	to	immediately	disable	swap	partitions,	and	then	remove	any	swap
partitions	from	/etc/fstab	for	future	reboots.

Example	of	configuring	kdump	on	RHEL:

1.	 Configure,	start,	and	enable	the	crash	kernel/kdump
1.	 Size	the	amount	of	RAM	for	the	crash	kernel
2.	 Change	/etc/kdump.conf	to	ensure	makedumpfile	uses	-d	23,31	so	that	process	virtual	address

space	information	is	dumped	for	each	user	process	(command	line	arguments,	virtual	memory,
etc.).

2.	 Set	vm.panic_on_oom=1	in	/etc/sysctl.conf
3.	 Install	the	kernel	and	glibc	symbols
4.	 Install	the	crash	utility

1.	 Test	it	out	(perhaps	with	kernel.sysrq=1	and	/proc/sysrq-trigger)	and	learn	how	to	use	it:

crash	/usr/lib/debug/lib/modules/*/vmlinux	/var/crash/*/vmcore

	

Kernel	Samepage	Merging

Test	disabling	kernel	samepage	merging:

echo	0	>	/sys/kernel/mm/ksm/run

	

Input/Output	(I/O)

Unless	tracking	file	and	directory	access	times	is	required,	use	the	noatime	and	nodiratime	flags	(or
consider	relatime)	when	mounting	filesystems	to	remove	unnecessary	disk	activity.

Query	disk	usage:

$	df	-h
Filesystem																							Size		Used	Avail	Use%	Mounted	on

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Crash_Dump_Guide/chap-introduction-to-kdump.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Crash_Dump_Guide/appe-supported-kdump-configurations-and-targets.html#sect-kdump-memory-requirements
https://github.com/crash-utility/crash
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/man-pages/online/pages/man8/mount.8.html

/dev/mapper/vg_lifeboat-lv_root		385G		352G			14G		97%	/
tmpfs																												7.7G		628K		7.7G			1%	/dev/shm
/dev/sda1																								485M			97M		363M		22%	/boot

Query	filesystem	information:

$	stat	-f	/
		File:	"/"
				ID:	2975a4f407cfa7e5	Namelen:	255					Type:	ext2/ext3
Block	size:	4096							Fundamental	block	size:	4096
Blocks:	Total:	100793308		Free:	8616265				Available:	3496265
Inodes:	Total:	25600000			Free:	20948943

Query	disk	utilization:

$	iostat	-xm	5	2
Linux	2.6.32-358.11.1.el6.x86_64	(oc2613817758.ibm.com)					02/07/2014					_x86_64_				(8	CPU)

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
											1.17				0.00				0.55				0.25				0.00			98.03

Device:									rrqm/s			wrqm/s					r/s					w/s				rMB/s				wMB/s	avgrq-sz	avgqu-sz			await		svctm		%util
sda															0.17				17.13				1.49				3.63					0.05					0.08				50.69					0.13			26.23			3.98			2.03
dm-0														0.00					0.00				1.48			20.74					0.05					0.08				11.59					7.46		335.73			0.92			2.05
dm-1														0.00					0.00				1.48			20.57					0.05					0.08				11.68					7.46		338.35			0.93			2.05...

Running	iostat	in	the	background:

nohup	iostat	-xmt	60	>	diag)iostat_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt	&

	

fatrace

If	you	have	high	I/O	wait	times,	fatrace	can	show	which	files	are	being	read	and	written.	This	could	also	be
done	with	something	like	eBPF	but	fatrace	is	much	simpler.	It	was	created	by	the	Ubuntu	team	but	is	also
available	in	other	Linux	distributions	(e.g.	Red	Hat).

Start:

nohup	sudo	fatrace	-t	-f	CROW	-o	diag_fatrace_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt	&

Stop:

sudo	pkill	-INT	fatrace

Example	output:

14:47:03.106836	java(1535):	O	/etc/hosts
14:47:03.106963	java(1535):	R	/etc/hosts

	

fuser

fuser	shows	processes	reading/writing	a	particular	path.	For	example:

#	/usr/sbin/fuser	-a	-v	-u	/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/logs/server1/SystemOut.log
																					USER								PID	ACCESS	COMMAND
/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/logs/server1/SystemOut.log:
																					was								1517	F....	(was)java
																					was								1674	f....	(was)tail

	

https://manpages.ubuntu.com/manpages/latest/en/man1/fatrace.1.html
https://bugzilla.redhat.com/show_bug.cgi?id=977023
https://www.kernel.org/doc/man-pages/online/pages/man1/fuser.1.html

iotop

iotop	is	a	top-like	tool	to	understand	file	I/O	by	PID.

The	command	may	be	run	in	interactive	mode	or	in	batch	mode	as	in	the	example	below.	Note	that	output	is
not	sorted	by	I/O	rates.

$	sudo	iotop	-bot	-d	10
				TIME				TID		PRIO		USER						DISK	READ		DISK	WRITE		SWAPIN						IO				COMMAND
06:50:41	Total	DISK	READ:								28.75	M/s	|	Total	DISK	WRITE:									8.19	M/s
06:50:41	Current	DISK	READ:						28.75	M/s	|	Current	DISK	WRITE:						10.97	M/s
				TIME				TID		PRIO		USER								DISK	READ		DISK	WRITE		SWAPIN						IO				COMMAND
b'06:50:41					130	be/4	root					1633.01	B/s			15.95	K/s		?unavailable?		[kworker/u12:1-btrfs-endio]'
b'06:50:41					147	be/4	root								0.00	B/s				9.57	K/s		?unavailable?		[kworker/u12:3-btrfs-endio-write]'
b'06:50:41					157	be/4	root								0.00	B/s				3.19	K/s		?unavailable?		[kworker/u12:6-btrfs-worker]'
b'06:50:41					477	be/4	root								0.00	B/s		400.28	K/s		?unavailable?		[btrfs-transacti]'
b'06:50:41				2562	be/4	root								4.78	K/s				7.75	M/s		?unavailable?		packagekitd	[PK-Backend]'
b'06:50:41				2333	be/4	root								3.19	K/s			13.56	K/s		?unavailable?		[kworker/u12:9-blkcg_punt_bio]'
b'06:50:41				2334	be/4	root								0.00	B/s	1633.01	B/s		?unavailable?		[kworker/u12:10-btrfs-endio-meta]'
b'06:50:41				2335	be/4	root								0.00	B/s				7.97	K/s		?unavailable?		[kworker/u12:11-btrfs-endio-write]'
b'06:50:41				2555	be/4	user1						28.74	M/s				0.00	B/s		?unavailable?		tar	czvf	/tmp/test.tar.gz	/'
06:50:51	Total	DISK	READ:								27.94	M/s	|	Total	DISK	WRITE:									6.66	M/s
06:50:51	Current	DISK	READ:						27.94	M/s	|	Current	DISK	WRITE:							5.42	M/s
				TIME				TID		PRIO		USER								DISK	READ		DISK	WRITE		SWAPIN						IO				COMMAND
b'06:50:51					130	be/4	root								0.00	B/s		242.81	K/s		?unavailable?		[kworker/u12:1-btrfs-endio-write]'
b'06:50:51					147	be/4	root								0.00	B/s			14.35	K/s		?unavailable?		[kworker/u12:3-btrfs-endio]'
b'06:50:51					157	be/4	root								0.00	B/s		140.35	K/s		?unavailable?		[kworker/u12:6-btrfs-endio-write]'
b'06:50:51					585	be/4	root								0.00	B/s			15.55	K/s		?unavailable?		systemd-journald'
b'06:50:51				2562	be/4	root					1224.83	B/s				6.09	M/s		?unavailable?		packagekitd	[PK-Backend]'
b'06:50:51				2333	be/4	root								0.00	B/s			46.65	K/s		?unavailable?		[kworker/u12:9-btrfs-endio]'
b'06:50:51				2334	be/4	root								0.00	B/s		114.83	K/s		?unavailable?		[kworker/u12:10-btrfs-endio-write]'
b'06:50:51				2335	be/4	root								0.00	B/s				7.97	K/s		?unavailable?		[kworker/u12:11-btrfs-endio-write]'
b'06:50:51				2555	be/4	user1						27.94	M/s				0.00	B/s		?unavailable?		tar	czvf	/tmp/test.tar.gz	/'

	

dstat

dstat	(covered	above)	may	be	used	to	monitor	I/O.	For	example:

$	dstat	-pcmrd

---procs---	----total-usage----	------memory-usage-----	--io/total-	-dsk/total-
run	blk	new|usr	sys	idl	wai	stl|	used		free		buf			cach|	read		writ|	read		writ
	32			0			0|	27		73			0			0			0|2232M		249G			61M		568M|11.1M				0	|		42G				0
	33			0			0|	27		73			0			0			0|2232M		249G			61M		568M|11.1M				0	|		42G				0

	

ioping

ioping	shows	diagnostics	for	a	particular	device.

	

Flushing	and	Writing	Statistics

The	amount	of	bytes	pending	to	be	written	to	all	devices	may	be	queried	with	Dirty	and	Writeback	in
/proc/meminfo;	for	example:

$	grep	-e	Dirty	-e	Writeback	/proc/meminfo
Dirty:																	8	kB
Writeback:													0	kB
WritebackTmp:										0	kB

https://www.kernel.org/doc/man-pages/online/pages/man8/iotop.8.html
https://manpages.ubuntu.com/manpages/latest/man1/ioping.1.html

A	tool	such	as	$(watch)	may	be	used	to	show	a	refreshing	screen.

Details	on	a	per-device	basis	may	be	queried	in	/sys/block/*/stat

For	example:

$	for	i	in	/sys/block/*/stat;	do	echo	$i;	awk	'{print	$9}'	$i;	done
/sys/block/sda/stat
0
/sys/block/sdb/stat
0

	

dd

dd	may	be	used	for	various	disk	tasks.

Create	a	ramdisk	with	a	testfile	for	subsequent	tests:

mkdir	/tmp/ramdisk
mount	-t	tmpfs	-o	size=1024m	tmpfs	/tmp/ramdisk
time	dd	if=/dev/urandom	of=/tmp/ramdisk/play	bs=1M	count=1024	status=progress

Test	write	speed	of	the	disk	at	/opt/disk1:

sudo	sync
time	dd	if=/tmp/ramdisk/play	of=/opt/disk1/play	bs=1M	count=1024	oflag=dsync	status=progress

Test	read	speed	of	the	disk	at	/opt/disk1:

echo	3	|	sudo	tee	/proc/sys/vm/drop_caches
dd	if=/opt/disk1/play	of=/dev/null	bs=1M	count=1024	status=progress

	

ncdu

ncdu	provides	a	recursive	tree	view	of	disk	usage.	For	example:

ncdu	1.15.1	~	Use	the	arrow	keys	to	navigate,	press	?	for	help
---	/opt/IBM/WebSphere/AppServer	-----------------------------
		532.3	MiB	[##########]	/profiles																												
		334.0	MiB	[######]	/runtimes
		265.6	MiB	[####]	/plugins
		238.9	MiB	[####]	/deploytool
		233.5	MiB	[####]	/java

	

hdparm

hdparm	may	be	used	to	benchmark	the	performance	of	a	disk.	For	example:

hdparm	-Tt	/dev/sda

Review	settings	such	as	readahead:	sudo	hdparm	/dev/nvme0n1
Change	settings	such	as	disabling	readahead:	sudo	hdparm	-a	0	/dev/nvme0n1

	

bonnie++

https://www.kernel.org/doc/Documentation/block/stat.txt
https://www.kernel.org/doc/man-pages/online/pages/man1/dd.1.html
https://manpages.ubuntu.com/manpages/latest/en/man1/ncdu.1.html
https://www.kernel.org/doc/man-pages/online/pages/man8/hdparm.8.html

bonnie++	may	be	used	to	benchmark	the	performance	of	a	disk.

	

parted

parted	lists	drive	partitions.	For	example:

parted	/dev	print	all

	

blkid

blkid	lists	partition	details.

	

blkid

lsblk	lists	partition	details.	For	example:

lsblk	-f	-m

	

fdisk

fdisk	lists	disk	devices.	For	example:

fdisk	-l

	

fio

fio	may	be	used	to	test	disk	I/O	performance.	For	example:

$	fio	--readonly	--name=onessd	\
						--filename=/dev/nvme0n1	\
						--filesize=100g	--rw=randread	--bs=4k	--direct=1	--overwrite=0	\
						--numjobs=3	--iodepth=32	--time_based=1	--runtime=3600	\
						--ioengine=io_uring	\
						--registerfiles	--fixedbufs	\
						--gtod_reduce=1	--group_reporting

	

I/O	schedulers

Show	current	scheduler:	grep	.	/sys/class/block/nvme*n1/queue/scheduler
Change	current	scheduler	(e.g.	Multi-Queue	deadline):	echo	mq-deadline	|	sudo	tee	-a
/sys/class/block/nvme0n1/queue/scheduler

	

Solid	State	Drives

Solid	State	Drives	(SSDs)	include	NVMe	(Non-Volatile	Memory	Express)	drives	over	PCI	Express.

https://linux.die.net/man/8/bonnie++
https://www.kernel.org/doc/man-pages/online/pages/man8/parted.8.html
https://www.kernel.org/doc/man-pages/online/pages/man8/blkid.8.html
https://www.kernel.org/doc/man-pages/online/pages/man8/lsblk.8.html
https://www.kernel.org/doc/man-pages/online/pages/man8/fdisk.8.html

	

NVMe

List	drives:	sudo	nvme	list
Ensure	PCIi	link	speed	is	set	to	the	maximum	in	BIOS
Show	maximum	link	speed:	sudo	lspci	-v	and	search	for	"Physical	Layer"

	

Networking

ip

ip	is	a	tool	to	query	and	modify	network	interfaces.

Common	sub-commands:

ip	address
ip	route
ip	link

Common	options:

ip	addr:	Display	network	interfaces
ip	route:	Routing	table
ip	route	get	10.20.30.100:	Get	the	next	hop	to	10.20.30.100
ip	-s	-h	link	show	eth0 :	General	interface	information
ip	-s	link:	Transfer	statistics

	

Permanent	network	interface	changes

NetworkManager	dispatcher	scripts

If	using	NetworkManager,	dispatcher	scripts	may	be	used	to	apply	changes	when	the	interface	comes	up .	For
example:

1.	 As	root,	create	/etc/NetworkManager/dispatcher.d/30-linkup:

#!/bin/sh
if	["$1"	==	"eth0"]	&&	["$2"	==	"up"];	then
		ip	route	change	[...]	quickack	1
elif	["$1"	==	"eth1"]	&&	["$2"	==	"up"];	then
		ip	route	change	[...]	quickack	1
fi

2.	 chmod	+x	/etc/NetworkManager/dispatcher.d/30-linkup
3.	 Reboot	and	check	ip	route	show

	

mtr

mtr	combines	the	functionality	of	ping	and	traceroute	to	provide	statistics	on	network	latency	and	potential
packet	loss.	For	example:

$	mtr	--report-wide	--show-ips	--aslookup	--report-cycles	30	example.com

https://www.kernel.org/doc/man-pages/online/pages/man8/ip.8.html
https://www.kernel.org/doc/man-pages/online/pages/man8/ip-address.8.html
https://www.kernel.org/doc/man-pages/online/pages/man8/ip-route.8.html
https://www.kernel.org/doc/man-pages/online/pages/man8/ip-link.8.html
https://developer.gnome.org/NetworkManager/stable/NetworkManager.html
https://access.redhat.com/solutions/2841131
https://github.com/traviscross/mtr

Start:	2024-02-13T09:22:51-0600
HOST:	kgibm																																																																Loss%			Snt			Last			Avg		Best		Wrst	StDev
		1.	AS???				dsldevice.attlocal.net	(192.168.1.254)																								0.0%				30				1.1			1.3			0.8			5.5			0.8
		2.	AS1234			a.example.com	(203.0.113.1)																																			0.0%				30				2.3			2.1			1.4			3.4			0.4
		3.	AS???				203.0.113.2																																																			0.0%				30				2.2			2.2			1.9			3.1			0.2
		4.	AS???				???																																																										100.0				30				0.0			0.0			0.0			0.0			0.0
		5.	AS???				203.0.113.3																																																			0.0%				30				7.5			7.6			6.9			8.4			0.3
		6.	AS1234			203.0.113.4																																																			0.0%				30			10.4		10.2			9.4		11.9			0.5
		7.	AS12345		b.example.com	(203.0.113.5)																																			0.0%				30			10.6		10.1			9.3		11.4			0.5
		8.	AS???				???																																																										100.0				30				0.0			0.0			0.0			0.0			0.0
		9.	AS12345		c.example.com	(203.0.113.6)																																		10.0%				30			10.5		10.4			9.9		12.2			0.5
	10.	AS123456	203.0.113.7																																																			0.0%				30			10.0		10.0			9.2		11.9			0.5

The	Avg,	Wrst,	and	StDev	are	useful	gauges	of	network	latencies.

Be	careful	interpreting	the	Loss%	column:

To	determine	if	the	loss	you’re	seeing	is	real	or	due	to	rate	limiting,	take	a	look	at	the
subsequent	hop.	If	that	hop	shows	a	loss	of	0.0%,	then	you	are	likely	seeing	ICMP	rate	limiting
and	not	actual	loss.	[...]	When	different	amounts	of	loss	are	reported,	always	trust	the	reports
from	later	hops.

In	the	above	example,	since	the	final	hop	has	a	Loss%	of	0.0%,	then	there	is	no	packet	loss	detected.

In	addition,	it's	important	to	gather	mtr	in	both	directions	at	the	same	time,	if	possible:

Some	loss	can	also	be	explained	by	problems	in	the	return	route.	Packets	will	reach	their
destination	without	error	but	have	a	hard	time	making	the	return	trip.	For	this	reason,	it	is	often
best	to	collect	MTR	reports	in	both	directions	when	you’re	experiencing	an	issue.

In	other	words,	if	you	are	running	mtr	targeting	example.com	from	some	workstation,	then,	if	possible,	you
should	remote	into	that	sever	(in	this	example,	example.com)	and	perform	the	same	mtr	command	at	the
same	time,	targeting	your	workstation	in	the	reverse	direction.	If	the	Loss%	of	the	last	hop	of	both	mtr
outputs	is	approximately	the	same,	then	the	packet	loss	could	simply	be	on	the	path	to	your	workstation
rather	than	the	target.

	

ping

ping	sends	ICMP	packets	to	a	destination	to	test	basic	speed.	For	example:

$	ping	-c	4	-n	10.20.30.1
PING	10.20.30.1	(10.20.30.1)	56(84)	bytes	of	data.
64	bytes	from	10.20.30.1:	icmp_seq=1	ttl=250	time=112	ms
64	bytes	from	10.20.30.1:	icmp_seq=2	ttl=250	time=136	ms
64	bytes	from	10.20.30.1:	icmp_seq=3	ttl=250	time=93.8	ms
64	bytes	from	10.20.30.1:	icmp_seq=4	ttl=250	time=91.6	ms

In	general,	and	particularly	for	LANs,	ping	times	should	be	less	than	a	few	hundred	milliseconds	with	little
standard	deviation.

	

dig

dig	tests	DNS	resolution	time.	Examples:

dig	-4	example.com:	Use	the	configured	resolvers
dig	-4	@1.1.1.1	example.com:	Use	a	specific	DNS	resolver
dig	-4	+dnssec	+multi	example.com :	Check	DNSSEC

https://www.linode.com/docs/guides/diagnosing-network-issues-with-mtr/#verify-packet-loss
https://www.linode.com/docs/guides/diagnosing-network-issues-with-mtr/#verify-packet-loss
https://www.kernel.org/doc/man-pages/online/pages/man8/ping.8.html
https://manpages.ubuntu.com/manpages/latest/en/man1/dig.1.html

	

ss

ss	is	a	tool	to	investigate	sockets.

	

ss	summary

The	summary	option	prints	statistics	about	sockets:

$	ss	--summary
Total:	559
TCP:			57	(estab	2,	closed	21,	orphaned	0,	timewait	0)

Transport	Total							IP								IPv6
RAW										0									0											0
UDP										0									0											0
TCP									36								31											5
INET								36								31											5
FRAG									0									0											0

	

ss	basic	usage

ss	with	-amponet	prints	details	about	each	socket	(simlar	to	the	obsolete	netstat	command	plus	more	details):

$	ss	-amponet
State	Recv-Q	Send-Q	Local	Address:Port	Peer	Address:Port
LISTEN	0	128	0.0.0.0:9080	0.0.0.0:*	users:(("java",pid=17,fd=159))	uid:1001	ino:6396895	sk:15a	<->	skmem:(r0,rb87380,t0,tb16384,f0,w0,o0,bl0,d0)
ESTAB	0	0	127.0.0.1:389	127.0.0.1:41116	timer:(keepalive,66min,0)	ino:6400030	sk:1	<->	skmem:(r0,rb1062000,t0,tb2626560,f0,w0,o0,bl0,d0)
ESTAB	0	0	127.0.0.1:41116	127.0.0.1:389	users:(("java",pid=17,fd=187))	uid:1001	ino:6395839	sk:2	<->	skmem:(r0,rb1061808,t0,tb2626560,f0,w0,o0,bl0,d0)

Add	the	-i	flag	to	print	detailed	kernel	statistics:

$	ss	-amponeti
State	Recv-Q	Send-Q	Local	Address:Port	Peer	Address:Port
LISTEN	0	128	0.0.0.0:9080	0.0.0.0:*	users:(("java",pid=17,fd=159))	uid:1001	ino:6396895	sk:15a	<->	skmem:(r0,rb87380,t0,tb16384,f0,w0,o0,bl0,d0)	cubic	rto:1000	mss:536	cwnd:10	lastsnd:1009912410	lastrcv:1009912410	lastack:1009912410
ESTAB	0	0	127.0.0.1:389	127.0.0.1:41116	timer:(keepalive,64min,0)	ino:6400030	sk:1	<->	skmem:(r0,rb1062000,t0,tb2626560,f0,w0,o0,bl0,d0)	ts	sack	cubic	wscale:7,7	rto:210	rtt:0.393/0.687	ato:40	mss:21888	pmtu:65535	rcvmss:536	advmss:65483	cwnd:10	bytes_acked:14	bytes_received:51	segs_out:2	segs_in:4	data_segs_out:1	data_segs_in:1	send	4455572519bps	lastsnd:3321860	lastrcv:3321860	lastack:3321860	pacing_rate	8902650136bps	delivery_rate	64376464bps	app_limited	rcv_space:43690	rcv_ssthresh:43690	minrtt:0.061
ESTAB	0	0	127.0.0.1:41116	127.0.0.1:389	users:(("java",pid=17,fd=187))	uid:1001	ino:6395839	sk:2	<->	skmem:(r0,rb1061808,t0,tb2626560,f0,w0,o0,bl0,d0)	ts	sack	cubic	wscale:7,7	rto:210	rtt:0.007/0.004	ato:40	mss:21888	pmtu:65535	rcvmss:536	advmss:65483	cwnd:10	bytes_acked:52	bytes_received:14	segs_out:4	segs_in:3	data_segs_out:1	data_segs_in:1	send	250148571429bps	lastsnd:3321860	lastrcv:3321860	lastack:3321860	delivery_rate	58368000000bps	app_limited	rcv_space:43690	rcv_ssthresh:43690	minrtt:0.003

Newer	versions	of	the	command	support	the	-O	flag	to	print	kernel	statistics	on	the	same	line	as	each	socket:

$	ss	-amponetOi

	

ss	filtering

ss	supports	filtering	on	things	such	as	TCP	state,	port,	etc.:

Only	established	sockets:	ss	-amponet	state	established
Only	time-wait	sockets:	ss	-amponet	state	established
Destination	port	filtering:	ss	-amponet	dst	:80
Source	port	filtering:	ss	-amponet	src	:12345

	

ss	notes

https://www.kernel.org/doc/man-pages/online/pages/man8/ss.8.html

1.	 timer:(persist)	means	the	socket	has	received	a	zero-window	update	and	is	waiting	for	the	peer	to
advertise	a	non-zero	window.

	

nstat

nstat	is	a	tool	for	monitoring	network	statistics	and	it's	a	proposed	successor	to	netstat.

By	default,	nstat	will	show	statistics	with	non-zero	values	since	the	last	time	nstat	was	run,	which	means	that
every	time	it	is	run,	statistics	are	reset	(not	in	the	kernel	itself,	but	in	a	user-based	history	file).	Example
output:

$	nstat
#kernel
IpInReceives																				508																0.0
IpInDelivers																				508																0.0
IpOutRequests																			268																0.0
TcpPassiveOpens																	1																		0.0
TcpInSegs																							508																0.0

If	nstat	has	not	been	run	recently,	it	may	reset	its	history	and	the	following	message	is	displayed:

nstat:	history	is	stale,	ignoring	it.

The	final	column	is	a	rate	column	which	is	only	calculated	if	the	nstat	daemon	is	started	(see	the	"nstat
daemon"	section	below).

Common	options:

-a:	Dump	absolute	statistics	instead	of	statistics	since	the	last	time	nstat	was	run.
-s:	Do	not	include	this	nstat	run	in	the	statistics	history	(i.e.	don't	reset	the	statistics	history).
-z:	Dump	all	zero	values	as	well	(useful	for	grepping/plotting).

	

nstat	common	usage

If	you	want	to	handle	differencing	the	absolute	values	yourself:

nstat	-saz

To	search	for	a	particular	statistic,	you	can	specify	it	at	the	end.	For	example:

nstat	-saz	TcpRetransSegs

If	you	want	nstat	to	handle	differencing	the	values	for	you:

nstat	-z

If	you	want	nstat	to	show	you	what	has	increased	since	last	running	nstat:

nstat

	

Common	nstat	statistics

TCP	retransmissions:	TcpRetransSegs,	TcpExtTCPSlowStartRetrans,	TcpExtTCPSynRetrans
TCP	delayed	acknowledgments:	TcpExtDelayedACKs

https://www.kernel.org/doc/man-pages/online/pages/man8/nstat.8.html

	

Running	nstat	in	the	background

The	following	will	run	nstat	every	60	seconds	and	write	the	output	to	diag_nstat_*.txt.	If	there	are	errors
running	the	commands	(e.g.	permissions),	the	script	will	exit	immediately	and	you	should	review	console
output	and	nohup.out:

nohup	sh	-c	"while	true;	do	date	>>	diag_nstat_$(hostname).txt	||	exit	1;	nstat	-saz	>>	diag_nstat_$(hostname).txt	||	exit	1;	sleep	60;	done"	&

Stop	the	collection:

pkill	-f	"nstat	-saz"

	

nstat	daemon

Execute	nstat	with	the	following	options	to	start	a	daemon,	where	the	first	number	is	the	period	of	collection
in	seconds	and	the	second	number	is	the	time	interval	in	seconds	to	use	for	the	rate	calculations:

nstat	-d	60	-t	60

Then	execute	nstat	again.	Example	output:

$	nstat
#45776.1804289383	sampling_interval=60	time_const=60
IpInReceives																				1166														45.4
IpInDelivers																				1166														45.4
IpOutRequests																			1025														31.7
TcpActiveOpens																		5																		0.4
TcpInSegs																							1152														44.9
TcpOutSegs																						1042														40.1
TcpOutRsts																						0																		0.1
UdpInDatagrams																		14																	0.5
UdpOutDatagrams																	14																	0.5
TcpExtTW																								13																	0.2
TcpExtDelayedACKs															39																	0.8
TcpExtTCPHPHits																	550															29.3
TcpExtTCPPureAcks															367																6.2
TcpExtTCPHPAcks																	121																5.7
TcpExtTCPRcvCoalesce												211															18.0
TcpExtTCPWantZeroWindowAdv						0																		0.1
TcpExtTCPOrigDataSent											227															17.3
TcpExtTCPKeepAlive														320																5.1
IpExtInOctets																			408933										31441.2
IpExtOutOctets																		144543										19947.3
IpExtInNoECTPkts																1166														45.4

Stopping	the	nstat	daemon:

pkill	nstat

	

TCP	Keep-Alive

TCP	Keep-Alive	periodically	sends	packets	on	idle	connections	to	make	sure	they're	still	alive.	This	feature
is	disabled	by	default	and	must	be	explicitly	enabled	on	a	per-socket	basis	(e.g.	using	setsockopt	with
SO_KEEPALIVE	or	a	higher-level	API	like	Socket.setKeepAlive).	TCP	keepalive	is	different	from	HTTP
KeepAlive.	Major	products	such	as	WAS	traditional,	WebSphere	Liberty,	the	DB2	JDBC	driver,	etc.	enable
keep-alive	on	most	TCP	sockets	by	default.

https://www.kernel.org/doc/man-pages/online/pages/man2/setsockopt.2.html
https://www.kernel.org/doc/man-pages/online/pages/man7/socket.7.html
https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html#setKeepAlive-boolean-

In	general,	the	purpose	of	enabling	and	tuning	TCP	keepalive	is	to	set	it	below	any	firewall	or	server	idle
timeouts	between	two	servers	on	a	LAN	using	connection	pools	between	them	(web	service	client,	DB,
LDAP,	etc.)	to	reduce	the	performance	overhead	of	connection	re-establishment.

If	TCP	Keep-Alive	is	enabled,	there	are	 three	kernel	parameters	to	tune	for	TCP	keep-alive:

1.	 tcp_keepalive_time:	The	number	of	seconds	after	which	a	socket	is	considered	idle	after	which	the
kernel	will	start	to	send	TCP	keepalive	probes	while	it's	idle.	This	defaults	to	7200	seconds	(2	hours)
and	is	the	major	TCP	keep-alive	tuning	knob.	In	general,	this	should	be	set	to	a	value	below	the
firewall	timeout.	This	may	also	be	set	with	setsockopt	with	TCP_KEEPIDLE.

2.	 tcp_keepalive_intvl:	The	number	of	seconds	to	wait	between	sending	each	TCP	keep-alive	probe.
This	defaults	to	75	seconds.	This	may	also	be	set	with	setsockopt	with	TCP_KEEPINTVL.

3.	 tcp_keepalive_probes:	The	maximum	number	of	probes	to	send	without	responses	before	giving	up
and	killing	the	connection.	This	defaults	to	9.	This	may	also	be	set	with	setsockopt	with
TCP_KEEPCNT.

These	parameters	are	normally	set	in	/etc/sysctl.conf	and	applied	with	sysctl	-p.	For	example,	with	a
firewall	idle	timeout	of	60	seconds:

net.ipv4.tcp_keepalive_time=45
net.ipv4.tcp_keepalive_intvl=5
net.ipv4.tcp_keepalive_probes=2

After	changing	these	values,	the	processes	must	be	restarted	to	pick	them	up.

	

TCP	Delayed	Acknowledgments

TCP	delayed	acknowledgments	(delayed	ACKs)	are	generally	recommended	to	be	disabled	if	there	is
sufficient	network	and	CPU	capacity	for	the	potential	added	ACK-only	packet	load.

To	see	if	a	node	is	delaying	ACKs,	review	the	second	column	of	nstat	for	TcpExtDelayedACKs;	for	example:

$	nstat	-saz	TcpExtDelayedACKs
#kernel
TcpExtDelayedACKs						14				0.0

Or	using	netstat:	netstat	-s	|	grep	"delayed	acks"

To	dynamically	disable	delayed	ACKs,	use	ip	route	to	set	quickack	to	1.	For	example,	to	dynamically
disable	on	all	routes:

$	ip	route	show	|	awk	'{	system("ip	route	change	"	$0	"	quickack	1");	}'

To	permanently	disable	delayed	ACKs,	add	a	script	to	make	permanent	network	interface	changes	and	apply
the	same	ip	route	change	commands	(explicitly;	not	using	the	awk	script	above).

	

netstat

netstat	is	an	obsolete	tool	for	monitoring	network	statistics	(for	alternatives,	see	the	ss,	ip,	and	nstat
commands	above).

Use	netstat	to	collect	a	snapshot	of	network	activity:	netstat	-antop.	Example:

$	netstat	-antop
Active	Internet	connections	(servers	and	established)
Proto	Recv-Q	Send-Q	Local	Address															Foreign	Address													State							PID/Program	name				Timer
tcp								0						0	0.0.0.0:6000																0.0.0.0:*																			LISTEN						3646/Xorg											off	(0.00/0/0)

https://www.kernel.org/doc/man-pages/online/pages/man7/tcp.7.html
https://www.kernel.org/doc/man-pages/online/pages/man2/setsockopt.2.html
https://www.kernel.org/doc/man-pages/online/pages/man7/socket.7.html
https://www.kernel.org/doc/man-pages/online/pages/man2/setsockopt.2.html
https://www.kernel.org/doc/man-pages/online/pages/man7/socket.7.html
https://www.kernel.org/doc/man-pages/online/pages/man2/setsockopt.2.html
https://www.kernel.org/doc/man-pages/online/pages/man7/socket.7.html
https://www.kernel.org/doc/man-pages/online/pages/man8/ip-route.8.html
https://www.kernel.org/doc/man-pages/online/pages/man8/netstat.8.html

tcp								0						0	10.20.117.232:46238									10.20.54.72:80														ESTABLISHED	4140/firefox								off	(0.00/0/0)
tcp								0						0	10.20.133.78:35370										10.20.253.174:443											TIME_WAIT			-																			timewait	(6.63/0/0)
tcp								0						0	10.20.133.78:52458										10.20.33.79:1352												ESTABLISHED	5441/notes										keepalive	(3542.42/0/0)
tcp								0						1	::ffff:10.20.133.78:49558			::ffff:10.20.52.206:52311			SYN_SENT				3502/BESClient						on	(7.65/4/0)

The	-o	parameter	adds	the	Timer	column	which	will	show	various	timers.	For	example,	the	first	number
before	the	slash	for	timewait	indicates	how	many	seconds	until	the	socket	will	be	cleared.

Query	network	interface	statistics:

$	netstat	-s
Ip:
				5033261	total	packets	received
				89926	forwarded
				0	incoming	packets	discarded
				4223478	incoming	packets	delivered
				4202714	requests	sent	out
				38	outgoing	packets	dropped
				2	dropped	because	of	missing	route
				26	reassemblies	required
				13	packets	reassembled	ok
Tcp:
				15008	active	connections	openings
				248	passive	connection	openings
				611	failed	connection	attempts
				160	connection	resets	received
				4	connections	established
				4211392	segments	received
				4093580	segments	send	out
				8286	segments	retransmited
				0	bad	segments	received.
				3855	resets	sent...

Since	kernel	2.6.18,	the	current	and	maximum	sizes	of	the	socket	backlog	on	a	connection	are	reported	in	the
Recv-Q	and	Send-Q	columns,	respectively,	for	listening	sockets:

Recv-Q	Established:	The	count	of	bytes	not	copied	by	the	user	program	connected	to	this	socket.

Listening:	Since	Kernel	2.6.18	this	column	contains	the	current	syn	backlog.

Send-Q	Established:	The	count	of	bytes	not	acknowledged	by	the	remote	host.

Listening:	Since	Kernel	2.6.18	this	column	contains	the	maximum	size	of	the	syn	backlog.

See	implementation	details	of	netstat	-s.	Some	are	described	in	RFCs	2011	and	2012.

	

Interface	packet	drops,	errors,	and	buffer	overruns

Check	if	the	RX-DRP,	RX-ERR,	RX-OVER,	TX-DRP,	TX-ERR,	and	TX-OVER	are	non-zero:

$	netstat	-i
Kernel	Interface	table
Iface							MTU	Met				RX-OK	RX-ERR	RX-DRP	RX-OVR				TX-OK	TX-ERR	TX-DRP	TX-OVR	Flg
eth0							1500			0								0						0						0						0								0						0						0						0	BMU
lo								16436			0		3162172						0						0						0		3162172						0						0						0	LRU
tun0							1362			0			149171						0						0						0			150329						0						0						0	MOPRU
virbr0					1500			0				43033						0						0						0				63937						0						0						0	BMRU
virbr1					1500			0								0						0						0						0						124						0						0						0	BMRU
wlan0						1500			0		1552613						0						0						0			704346						0						0						0	BMRU

Definitions:

ERR	-	damaged	(reason	unspecified,	but	on	receive	usually	means	a	frame	checksum

https://sourceforge.net/p/net-tools/code/ci/master/tree/statistics.c#l173
https://tools.ietf.org/html/rfc2011
https://tools.ietf.org/html/rfc2012
https://access.redhat.com/solutions/30575

error)
DRP	-	dropped	(reason	unspecified)
OVR	-	lost	because	of	DMA	overrun	(when	the	NIC	does	DMA	direct	between	memory
and	the	wire,	and	the	memory	could	not	keep	up	with	the	wire	speed)

	

lnstat

lnstat	is	a	tool	for	monitoring	various	kernel	network	statistics.

By	default,	lnstat	will	run	with	a	3	second	interval	until	Ctrl^C	is	pressed.	Example	output:

nf_connt|nf_connt|nf_connt|nf_connt|nf_connt|nf_connt|nf_connt|	[...]
	entries|searched|			found|					new|	invalid|		ignore|		delete|	[...]
							5|							0|							0|							0|							0|						32|							0|	[...]
							5|							0|							0|							0|							0|							0|							0|	[...]
							5|							0|							0|							0|							0|							0|							0|	[...]

The	interval	may	be	specified	in	seconds	with	-i.

	

Running	lnstat	in	the	background

The	following	will	run	lnstat	every	60	seconds	and	write	the	output	to	diag_lnstat_*.txt.	If	there	are	errors
running	the	commands	(e.g.	permissions),	the	script	will	exit	immediately	and	you	should	review	console
output	and	nohup.out:

nohup	lnstat	-i	60	>>	diag_lnstat_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt	&

Stop	the	collection:

pkill	lnstat

	

lsof

Running	lsof:

lsof

Running	lsof	if	only	interested	in	network	(some	of	the	flags	imply	not	showing	regular	files):

lsof	-Pnl

Last	command	but	grouping	by	TCP	socket	connection	states:

lsof	-Pnl	|	grep	"TCP	"	|	awk	'{print	$(NF)}'	|	sort	|	uniq	-c

	

Networked	Filesystems	(NFS)

NFS	may	be	monitored	with	tools	such	as	nfsiostat.	For	example:

nohup	stdbuf	--output=L	nfsiostat	300	>	diag_nfsiostat_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt	&

Note:	Without	using	stdbuf,	older	versions	of	nfsiostat	do	not	flush	output	when	stdout	is	redirected,	so

https://www.kernel.org/doc/man-pages/online/pages/man8/lnstat.8.html
https://www.kernel.org/doc/man-pages/online/pages/man8/nfsiostat.8.html

output	to	the	file	may	be	delayed.

For	example:

nfs.example.com:/path	mounted	on	/path:
			op/s					rpc	bklog
	189.86								0.00
read:													ops/s								kB/s							kB/op					retrans					avg	RTT	(ms)				avg	exe	(ms)
										3.755						60.772						16.186								4	(0.0%)						15.335					125.260
write:												ops/s								kB/s							kB/op					retrans					avg	RTT	(ms)				avg	exe	(ms)
								148.911					446.987							3.002							22	(0.0%)							3.249							5.660

	

ethtool

ethtool	may	be	used	to	query	network	driver	and	hardware	settings.

	

Ring	buffer

#	ethtool	-g	eth0
Ring	parameters	for	eth0:
Pre-set	maximums:
RX:													2040
RX	Mini:								0
RX	Jumbo:							8160
TX:													255
Current	hardware	settings:
RX:													255
RX	Mini:								0
RX	Jumbo:							0
TX:													255

	

All	statistics	(unstructured)

ethtool	-S	eth0

Speed	information

ethtool	eth0

	

Feature	flags

ethtool	-k	eth0

Transfer	statistics

ethtool	-S	eth0

	

Driver	information

ethtool	-i	eth0

https://www.kernel.org/doc/man-pages/online/pages/man8/ip.8.html

Socket	Buffers

Review	the	background	on	TCP	congestion	control.

The	default	receive	buffer	size	for	all	network	protocols	is	net.core.rmem_default.	The	default	receive
buffer	size	for	TCP	sockets	(for	both	IPv4	and	IPv6)	is	the	second	value	of	net.ipv4.tcp_rmem.	These
values	may	be	overridden	by	an	explicit	call	to	setsockopt(SO_RCVBUF)	which	will	set	the	receive	buffer
size	to	two	times	the	requested	value.	The	default	or	requested	receive	buffer	size	is	limited	by
net.core.rmem_max	and,	in	the	case	of	TCP,	the	third	value	(max)	in	net.ipv4.tcp_rmem.

Starting	with	Linux	2.4.17	and	2.6.7,	the	kernel	auto-tunes	the	TCP	receive	buffer	by	default.	This	is
controlled	with	the	property	tcp_moderate_rcvbuf.	If	auto-tuning	is	enabled,	the	kernel	will	start	the	buffer
at	the	default	and	modulate	the	size	between	the	first	(min)	and	third	(max)	values	of	net.ipv4.tcp_rmem,
depending	on	memory	availability.	In	general,	the	min	should	be	set	quite	low	to	handle	the	case	of	physical
memory	pressure	and	a	large	number	of	sockets.

The	default	send	buffer	size	for	all	network	protocols	is	net.core.wmem_default.	The	default	send	buffer
size	for	TCP	sockets	(for	both	IPv4	and	IPv6)	is	the	second	value	of	net.ipv4.tcp_wmem.	These	values	may
be	overridden	by	an	explicit	call	to	setsockopt(SO_SNDBUF)	which	will	set	the	send	buffer	size	to	two	times
the	requested	value.	The	default	or	requested	send	buffer	size	is	limited	by	net.core.wmem_max	and,	in	the
case	of	TCP,	the	third	value	(max)	in	net.ipv4.tcp_wmem.

Both	receive	and	send	TCP	buffers	(for	both	IPv4	and	IPv6)	are	regulated	by	net.ipv4.tcp_mem.	tcp_mem	is
a	set	of	three	numbers	-	low,	pressure,	and	high	-	measured	in	units	of	the	system	page	size	(getconf
PAGESIZE).	When	the	number	of	pages	allocated	by	receive	and	send	buffers	is	below	low,	TCP	does	not	try
to	reduce	its	buffers'	memory	usage.	When	the	number	of	pages	exceeds	pressure,	TCP	tries	to	reduce	its
buffers'	memory	usage.	The	total	buffers'	memory	usage	page	may	not	exceed	the	number	of	pages	specified
by	high.	In	general,	these	values	are	set	as	some	proportions	of	physical	memory,	taking	into	account
program/computational	demands.	By	default,	Linux	sets	these	to	proportions	of	RAM	on	boot.	Query	the
value	with	sysctl	and	multiply	the	middle	number	by	the	page	size	(getconf	PAGESIZE)	and	this	is	the
number	of	bytes	at	which	point	the	OS	may	start	to	trim	TCP	buffers.

For	example,	consider	setting	values	similar	to	the	following	in	/etc/sysctl.conf	and	running	sysctl	-p:

net.core.rmem_default=1048576
net.core.wmem_default=1048576
net.core.rmem_max=16777216
net.core.wmem_max=16777216
net.ipv4.tcp_rmem=4096	1048576	16777216
net.ipv4.tcp_wmem=4096	1048576	16777216

See	tuning	done	for	SPECj.

	

Congestion	Control	Algorithm

The	default	congestion	algorithm	is	cubic.	A	space-delimited	list	of	available	congestion	algorithms	may	be
printed	with:

$	sysctl	net.ipv4.tcp_available_congestion_control
net.ipv4.tcp_available_congestion_control	=	cubic	reno	htcp

Additional	congestion	control	algorithms,	often	shipped	but	not	enabled,	may	be	enabled	with	modprobe.	For
example,	to	enable	TCP	Hybla	for	high	RTT	links:

#	modprobe	tcp_hybla

The	current	congestion	control	algorithm	may	be	dynamically	updated	with:

https://www.kernel.org/doc/man-pages/online/pages/man7/socket.7.html
https://www.kernel.org/doc/man-pages/online/pages/man7/tcp.7.html
https://www.kernel.org/doc/man-pages/online/pages/man7/socket.7.html
https://www.kernel.org/doc/man-pages/online/pages/man7/tcp.7.html
https://www.kernel.org/doc/man-pages/online/pages/man7/socket.7.html
https://www.kernel.org/doc/man-pages/online/pages/man7/tcp.7.html
https://www.kernel.org/doc/man-pages/online/pages/man7/socket.7.html
https://www.kernel.org/doc/man-pages/online/pages/man7/tcp.7.html
http://www.spec.org/jEnterprise2010/results/res2013q2/jEnterprise2010-20130402-00042.html#JEE_AppServer_HW_0
https://doi.org/10.1002/sat.799

#	sysctl	-w	net.ipv4.tcp_congestion_control=hybla

Another	commonly	used	algorithm	is	htcp.

The	congestion	window	is	not	advertised	on	the	network	but	instead	lives	within	memory	on	the	sender.	To
query	the	congestion	window,	use	the	ss	command	and	search	for	the	cwnd	value.	For	example:

$	ss	-i
State						Recv-Q	Send-Q						Local	Address:Port										Peer	Address:Port			
ESTAB						0						0												10.20.30.254:47768								10.20.30.40:http				
					cubic	wscale:0,9	rto:266	rtt:66.25/25.25	ato:40	cwnd:10	send	1.7Mbps	rcv_space:14600

The	default	congestion	window	size	(initcwnd)	may	be	changed	by	querying	the	default	route	and	using	the
change	command	with	initcwnd	added.	For	example:

#	ip	route	show	|	grep	default
default	via	10.20.30.1	dev	wlan0		proto	static
#	ip	route	change	default	via	10.20.30.1	dev	wlan0		proto	static	initcwnd	10

The	default	receive	window	size	(initrwnd)	may	be	changed	in	a	similar	way.

	

Queuing	Discipline

The	queuing	discipline	controls	how	packets	are	queued	and	it's	configured	with	net.core.default_qdisc:

#	sysctl	net.core.default_qdisc
net.core.default_qdisc	=	pfifo_fast

Another	commonly	used	algorithm	is	fq	(fair	queuing).

	

Maximum	Flow	Rate

The	maximum	flow	rate	may	be	throttled	to	reduce	the	chances	of	overflowing	host	receive	buffers	or
intermediate	switch	buffers	in	response	to	packet	bursts.	For	example,	for	a	10G	card,	test	a	maximum	flow
rate	like	8G:

/sbin/tc	qdisc	add	dev	eth0	root	fq	maxrate	8gbit

	

Slow	Start	after	Idle

Starting	with	kernel	version	2.6.18,	by	default,	a	socket's	congestion	window	will	be	reduced	when	idle.	For
internal	network	communication	using	persistent	TCP	connection	pools	over	controlled,	LAN	networks	(e.g.
a	reverse	proxy	to	an	application	server	such	as	IHS	}	WAS	connections),	set
net.ipv4.tcp_slow_start_after_idle=0	in	/etc/sysctl.conf	and	run	sysctl	-p	to	disable	reducing
the	TCP	congestion	window	for	idle	connections:

net.ipv4.tcp_slow_start_after_idle=0

	

Emulating	Network	Behaviors

tc

https://www.kernel.org/doc/Documentation/sysctl/net.txt
https://www.kernel.org/doc/html/latest/networking/scaling.html
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

netem	is	a	network	emulation	component	of	the	traffic	control	(tc)	suite.	For	example,	to	emulate	a	100ms
delay	on	all	packets	on	an	interface:

sudo	tc	qdisc	add	dev	${INTERFACE}	root	netem	delay	100ms

Clear	induced	delay:

sudo	tc	qdisc	del	dev	${INTERFACE}	root

	

Monitor	TCP	Retransmits

For	an	overview	of	why	it's	important	to	monitor	TCP	retransmits,	see	the	Operating	Systems	chapter	section
on	Monitor	TCP	Retransmits.

On	Linux,	monitor	nstat	for	TcpRetransSegs,	TcpExtTCPSlowStartRetrans,	TcpExtTCPSynRetrans.	See	the
nstat	section	for	details.	For	example:

$	nstat	-asz	|	grep	-e	TcpRetransSegs	-e	TcpExtTCPSlowStartRetrans	-e	TcpExtTCPSynRetrans
TcpRetransSegs																		0																		0.0
TcpExtTCPSlowStartRetrans							0																		0.0
TcpExtTCPSynRetrans													0																		0.0

An	alternative	is	netstat	although	this	is	now	obsolete	in	favor	of	nstat:

$	netstat	-s	|	grep	-i	retrans
				283	segments	retransmited

If	a	TCP	implementation	enables	RFC	6298	support,	then	the	RTO	is	recommended	to	be	at	least	1	second:

Whenever	RTO	is	computed,	if	it	is	less	than	1	second,	then	the	RTO	SHOULD	be	rounded	up
to	1	second.	Traditionally,	TCP	implementations	use	coarse	grain	clocks	to	measure	the	RTT	and
trigger	the	RTO,	which	imposes	a	large	minimum	value	on	the	RTO.	Research	suggests	that	a
large	minimum	RTO	is	needed	to	keep	TCP	conservative	and	avoid	spurious	retransmissions
[AP99].	Therefore,	this	specification	requires	a	large	minimum	RTO	as	a	conservative	approach,
while	at	the	same	time	acknowledging	that	at	some	future	point,	research	may	show	that	a
smaller	minimum	RTO	is	acceptable	or	superior.

However,	this	is	not	a	"MUST"	and	Linux,	for	example,	uses	a	default	minimum	value	of	200ms,	although	it
may	be	dynamically	adjusted	upwards.

The	current	timeout	(called	retransmission	timeout	or	"rto")	can	be	queried	on	Linux	using	ss:

$	ss	-i
...
					cubic	rto:502	rtt:299/11.25	ato:59	cwnd:10	send	328.6Kbps	rcv_rtt:2883	rcv_space:57958

The	minimum	RTO	can	be	configured	using	the	ip	command	on	a	particular	route	and	setting	rto_min
(relatedly,	see	tcp_frto).

	

Monitor	TCP	State	Statistics

One	simple	and	very	useful	indicator	of	process	health	and	load	is	its	TCP	activity.	The	following	script
takes	a	set	of	ports	and	summarizes	how	many	TCP	sockets	are	established,	opening,	and	closing	for	each
port.	It	has	been	tested	on	Linux	and	AIX.	Example	output:

$	portstats.sh	80	443
PORT			ESTABLISHED		OPENING		CLOSING

http://tools.ietf.org/html/rfc6298
https://www.kernel.org/doc/man-pages/online/pages/man8/ip.8.html
https://www.kernel.org/doc/man-pages/online/pages/man7/tcp.7.html

80					3												0								0						
443				10											0								2						
====================================
Total		13											0								2						

portstats.sh:

#!/bin/sh

usage()	{
		echo	"usage:	portstats.sh	PORT_1	PORT_2	...	PORT_N"
		echo	"							Summarize	network	connection	statistics	coming	into	a	set	of	ports."
		echo	""
		echo	"							OPENING	represents	SYN_SENT	and	SYN_RECV	states."
		echo	"							CLOSING	represents	FIN_WAIT1,	FIN_WAIT2,	TIME_WAIT,	CLOSED,	CLOSE_WAIT,"
		echo	"																										LAST_ACK,	CLOSING,	and	UNKNOWN	states."
		echo	""
		exit;
}

NUM_PORTS=0
OS=`uname`

for	c	in	$*
do
		case	$c	in
		-help)
				usage;
				;;
		--help)
				usage;
				;;
		-usage)
				usage;
				;;
		--usage)
				usage;
				;;
		-h)
				usage;
				;;
		-?)
				usage;
				;;
		*)
				PORTS[$NUM_PORTS]=$c
				NUM_PORTS=$((NUM_PORTS	+	1));
				;;
		esac
done

if	["$NUM_PORTS"	-gt	"0"];	then
		date
		NETSTAT=`netstat	-an	|	grep	tcp`
		i=0
		for	PORT	in	${PORTS[@]}
		do
				if	["$OS"	=	"AIX"];	then
						PORT="\.$PORT\$"
				else
						PORT=":$PORT\$"
				fi
				ESTABLISHED[$i]=`echo	"$NETSTAT"	|	grep	ESTABLISHED	|	awk	'{print	$4}'	|	grep	"$PORT"	|	wc	-l`
				OPENING[$i]=`echo	"$NETSTAT"	|	grep	SYN_	|	awk	'{print	$4}'	|	grep	"$PORT"	|	wc	-l`
				WAITFORCLOSE[$i]=`echo	"$NETSTAT"	|	grep	WAIT	|	awk	'{print	$4}'	|	grep	"$PORT"	|	wc	-l`
				WAITFORCLOSE[$i]=$((${WAITFORCLOSE[$i]}	+	`echo	"$NETSTAT"	|	grep	CLOSED	|	awk	'{print	$4}'	|	grep	"$PORT"	|	wc	-l`));
				WAITFORCLOSE[$i]=$((${WAITFORCLOSE[$i]}	+	`echo	"$NETSTAT"	|	grep	CLOSING	|	awk	'{print	$4}'	|	grep	"$PORT"	|	wc	-l`));
				WAITFORCLOSE[$i]=$((${WAITFORCLOSE[$i]}	+	`echo	"$NETSTAT"	|	grep	LAST_ACK	|	awk	'{print	$4}'	|	grep	"$PORT"	|	wc	-l`));
				WAITFORCLOSE[$i]=$((${WAITFORCLOSE[$i]}	+	`echo	"$NETSTAT"	|	grep	UNKNOWN	|	awk	'{print	$4}'	|	grep	"$PORT"	|	wc	-l`));

				TOTESTABLISHED=0
				TOTOPENING=0
				TOTCLOSING=0
				i=$((i	+	1));
		done

		printf	'%-6s	%-12s	%-8s	%-8s\n'	PORT	ESTABLISHED	OPENING	CLOSING
		i=0
		for	PORT	in	${PORTS[@]}
		do
				printf	'%-6s	%-12s	%-8s	%-8s\n'	$PORT	${ESTABLISHED[$i]}	${OPENING[$i]}	${WAITFORCLOSE[$i]}
				TOTESTABLISHED=$(($TOTESTABLISHED	+	${ESTABLISHED[$i]}));
				TOTOPENING=$(($TOTOPENING	+	${OPENING[$i]}));
				TOTCLOSING=$(($TOTCLOSING	+	${WAITFORCLOSE[$i]}));
				i=$((i	+	1));
		done

		printf	'%36s\n'	|	tr	"	"	"="
		printf	'%-6s	%-12s	%-8s	%-8s\n'	Total	$TOTESTABLISHED	$TOTOPENING	$TOTCLOSING

else
		usage;
fi

	

TIME_WAIT

See	the	Operating	Systems	chapter	for	the	theory	of	TIME_WAIT.

Linux	has	a	compile-time	constant	of	60	seconds	for	a	TIME_WAIT	timeout.

net.ipv4.tcp_fin_timeout	is	not	for	TIME_WAIT	but	instead	for	the	FIN_WAIT_2	state.

	

Changing	the	MTU

If	all	components	in	a	network	path	support	larger	MTU	(sometimes	called	"jumbo	frames")	and	if	this
setting	is	enabled	on	these	devices,	then	an	MTU	line	may	be	added	to	/etc/sysconfig/network-scripts/ifcfg-
${INTERfACE}	and	the	network	service	restarted	to	utilize	the	larger	MTU.	For	example:

MTU=9000

	

TCP	Reordering

In	some	benchmarks,	changing	the	values	of	net.ipv4.tcp_reordering	and	net.ipv4.tcp_reordering
improved	network	performance.

	

Other	Network	Configuration

To	update	the	socket	listen	backlog,	set	net.core.somaxconn	in	/etc/sysctl.conf	and	apply	with	sysctl
-p.

To	update	the	maximum	incoming	packet	backlog,	set	net.core.netdev_max_backlog	in
/etc/sysctl.conf	and	apply	with	sysctl	-p.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/net/tcp.h?h=v5.6#n121
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=systems-tuning-linux
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=systems-tuning-linux

See	examples	for	high	bandwidth	networks.

Each	network	adapter	has	an	outbound	transmission	queue	which	limits	the	outbound	TCP	sending	rate.
Consider	increasing	this	by	running	ip	link	set	$DEVICE	txqueuelen	$PACKETS	on	each	relevant	device.
Test	values	such	as	4096.

	

tcpdump

tcpdump	details

Review	the	Wireshark	chapter	for	details	on	how	to	analyze	the	data.

If	the	traffic	in	question	occurs	on	a	single	interface,	it's	better	to	use	the	interface	name	rather	than	-i	any
as	this	has	less	of	a	chance	to	confuse	Wireshark	than	the	any	pseudo-interface.

If	-W	1	is	specified,	there	will	be	just	one	file	and	it	will	overwrite	at	the	beginning	when	rotating,	so	it's
usually	better	to	use	-W	2	with	half	the	desired	-C	to	ensure	having	some	history	(e.g.	if	the	problem	is
reproduced	right	after	a	rotation).	If	-W	is	not	specified,	the	behavior	is	unclear	with	some	testing	showing
strange	behavior,	so	it's	best	to	specify	-W.

Review	nohup.out	to	check	if	packets	dropped	by	kernel 	is	greater	than	0.	If	so,	consider	increasing	the
bufffers	with	-B	N	(where	N	is	in	KB):

Packets	that	arrive	for	a	capture	are	stored	in	a	buffer,	so	that	they	do	not	have	to	be	read	by	the
application	as	soon	as	they	arrive.	On	some	platforms,	the	buffer's	size	can	be	set;	a	size	that's
too	small	could	mean	that,	if	too	many	packets	are	being	captured	and	the	snapshot	length
doesn't	limit	the	amount	of	data	that's	buffered,	packets	could	be	dropped	if	the	buffer	fills	up
before	the	application	can	read	packets	from	it,	while	a	size	that's	too	large	could	use	more	non-
pageable	operating	system	memory	than	is	necessary	to	prevent	packets	from	being	dropped.

	

snarflen

The	-s	$X	snarflen	argument	specifies	up	to	how	many	bytes	to	capture	per	packet.	Use	-s	0	to	capture	all
packet	contents	although	this	may	cause	a	significant	overhead	if	there	is	a	lot	of	network	activity	which	isn't
filtered.	The	default	snarflen	depends	on	the	version	of	tcpdump,	so	it's	best	to	explicitly	specify	it.

	

Dumping	pcap	files	from	the	command	line

In	addition	to	using	Wireshark,	you	may	also	dump	the	tcpdump	on	any	Linux	machine	using	the	same
tcpdump	command.	For	example:

sudo	tcpdump	-A	-n	-nn	-l	-tttt	-r	capture.pcap

	

Capture	network	traffic	with	tcpdump

Review	capturing	network	trace	with	tcpdump	on	all	ports.

	

Capture	network	traffic	with	tcpdump	on	one	port

https://www.kernel.org/doc/ols/2009/ols2009-pages-169-184.pdf
https://www.kernel.org/doc/man-pages/online/pages/man8/ip-link.8.html
https://www.kernel.org/doc/man-pages/online/pages/man3/pcap.3pcap.html

Review	capturing	network	trace	with	tcpdump	on	a	specific	port.

	

Read	tcpdump

Wireshark	and	its	associated	tshark	are	generally	the	best	and	most	powerful	tools	to	analyze	tcpdumps;
however,	for	simplicity	or	convenience,	it	may	be	useful	to	read	tcpdumps	directly	using	tcpdump	-r.	For
example:

TZ=UTC	tcpdump	-nn	-r	*.pcap

	

Read	tcpdump	for	particular	host	and	port

TZ=UTC	tcpdump	-nn	-r	*.pcap	host	10.1.2.3	and	port	80

arping

Find	the	MAC	address	associated	with	an	IP	address:

arping	10.20.30.100

	

tcping

Send	a	TCP	packet	to	a	destnation	host	and	port	to	test	if	it's	available.	For	example:

$	tcping	ibm.com	443
ibm.com	port	443	open.
$	tcping	fakeibm.com	443
fakeibm.com	port	443	closed.

	

arp

Show	the	arp	table:

arp	-a	-v

	

arpwatch

arpwatch	shows	new	ARP	announcements:

arpwatch	-i	eth0

	

iptraf-ng

iptraf-ng	monitors	network	usage.	There	are	different	run	modes.	Some	work	on	all	interfaces	with	-i	all
and	some	only	work	for	a	named	interface.

IP	traffic	monitor:

https://www.kernel.org/doc/man-pages/online/pages/man8/tcpdump.8.html
https://www.kernel.org/doc/man-pages/online/pages/man8/iptraf-ng.8.html

$	sudo	iptraf-ng	-i	all
	iptraf-ng	1.1.4
┌	TCP	Connections	(Source	Host:Port)	─																																						Packets	─											Bytes	──	Flag	──	Iface	─								┐
│┌172.17.0.2:9080																																																									>							1																52				--A-				eth0											│
│└172.17.0.1:54608																																																								=							0																	0				----				eth0											│
│┌172.17.0.1:57244																																																								=							3															261				-PA-				eth0											│
│└172.17.0.2:9080																																																									=							3															516				-PA-				eth0											│
└	TCP:						2	entries	─																																																																																																	Active		┘
	Packets	captured:																																										28984							│		TCP	flow	rate:									0.00	kbps

LAN	station	monitor:

$	sudo	iptraf-ng	-l	all
	iptraf-ng	1.1.4
┌─444444	PktsIn	─									IP	In	──────	BytesIn	─							InRate	─────	PktsOut	─									IP	Out	─────	BytesOut	────	OutRate	─						┐
│	Ethernet	HW	addr:	02:42:ac:11:00:02	on	eth0																																																																																			│
│	└					17967											17967									1105652									1082.2									17961											17961									2212603								2165.1								│
│	Ethernet	HW	addr:	02:42:91:4a:2b:ba	on	eth0																																																																																			│
│	└					17961											17961									2212603									2165.1									17967											17967									1105652								1082.2								│

General	interface	statistics:

$	sudo	iptraf-ng	-g
	iptraf-ng	1.1.4
┌	Iface	─																		Total	─										IPv4	─										IPv6	─									NonIP	──────	BadIP	─											Activity	─												┐
│	lo																											0															0															0															0												0														0.00	kbps												│
│	eth0																					51173											51173															0															0												0											3244.22	kbps												│

Detailed	statistics	on	an	interface:

$	sudo	iptraf-ng	-d	eth0
	iptraf-ng	1.1.4
┌	Statistics	for	eth0	─																																																																																																									┐
│																																																																																																																															│
│															Total						Total				Incoming			Incoming				Outgoing			Outgoing																																																		│
│													Packets						Bytes					Packets						Bytes					Packets						Bytes																																																		│
│	Total:								25546				2359352							12775					786205							12771				1573147																																																		│
│	IPv4:									25546				2359352							12775					786205							12771				1573147																																																		│
│	IPv6:													0										0											0										0											0										0																																																		│
│	TCP:										25546				2359352							12775					786205							12771				1573147																																																		│
│	UDP:														0										0											0										0											0										0																																																		│
│	ICMP:													0										0											0										0											0										0																																																		│
│	Other	IP:									0										0											0										0											0										0																																																		│
│	Non-IP:											0										0											0										0											0										0																																																		│
│																																																																																																																															│
│																																																																																																																															│
│	Total	rates:							3164.82	kbps												Broadcast	packets:												0																																																				│
│																							4283	pps													Broadcast	bytes:														0																																																				│
│																																																																																																																															│
│	Incoming	rates:				1054.61	kbps																																																																																															│
│																							2142	pps																																																																																																│
│																																												IP	checksum	errors:											0																																																				│
│	Outgoing	rates:				2110.20	kbps																																																																																															│
│																							2141	pps																																																																																																│

Packet	size	counts	on	an	interface:

$	sudo	iptraf-ng	-z	eth0
	iptraf-ng	1.1.4
┌	Packet	Distribution	by	Size	─																																																																																																	┐
│																																																																																																																															│
│	Packet	size	brackets	for	interface	eth0																																																																																							│
│																																																																																																																															│
│																																																																																																																															│
│	Packet	Size	(bytes)						Count					Packet	Size	(bytes)					Count																																																														│
│					1	to			75:											14973						751	to		825:															0																																																														│
│				76	to		150:												4991						826	to		900:															0																																																														│
│			151	to		225:													998						901	to		975:															0																																																														│

│			226	to		300:															0						976	to	1050:															0																																																														│
│			301	to		375:															0					1051	to	1125:															0																																																														│
│			376	to		450:													998					1126	to	1200:															0																																																														│
│			451	to		525:															0					1201	to	1275:															0																																																														│
│			526	to		600:															0					1276	to	1350:															0																																																														│
│			601	to		675:															0					1351	to	1425:															0																																																														│
│			676	to		750:															0					1426	to	1500+:														0																																																														│
│																																																																																																																															│
│																																																																																																																															│
│	Interface	MTU	is	1500	bytes,	not	counting	the	data-link	header																																																																│
│	Maximum	packet	size	is	the	MTU	plus	the	data-link	header	length																																																															│
│	Packet	size	computations	include	data-link	headers,	if	any																																																																				│

	

nethogs

nethogs	monitors	network	usage	by	process.

Example:

$	sudo	nethogs	-a	-v	2	-d	5
NetHogs	version	0.8.5

				PID	USER					PROGRAM																												DEV								SENT						RECEIVED							
						?	root					172.17.0.2:9080-172.17.0.1:48446									7682253.000	4230555.000	B
						?	root					unknown	TCP																																				0.000							0.000	B

		TOTAL																																																			7682253.000	4230555.000	B				

The	various	view	modes	(-v)	are:

-v	:	view	mode	(0	=	KB/s,	1	=	total	KB,	2	=	total	B,	3	=	total	MB).	default	is	0.

	

iftop

iftop	monitors	network	usage.

Example:

$	sudo	iftop	-nN	-i	eth0
																									191Mb																					381Mb																				572Mb																					763Mb												954Mb
└────────────────────────┴─────────────────────────┴────────────────────────┴─────────────────────────┴─────────────────────────
172.17.0.2																																									=>	172.17.0.1																																									1.91Mb		1.49Mb		1.49Mb
																																																			<=																																																					979Kb			765Kb			765Kb
──
TX:													cum:			1.87MB			peak:				2.23Mb																																																		rates:			1.91Mb		1.49Mb		1.49Mb
RX:																					956KB												1.11Mb																																																												979Kb			765Kb			765Kb
TOTAL:																	2.80MB												3.35Mb																																																											2.87Mb		2.24Mb		2.24Mb

Add	-P	for	statistics	by	port	instead	of	aggregating	by	host.

	

jnettop

jnettop	monitors	network	usage.

Example:

$	sudo	jnettop	-n
run			0:00:07	device	eth0							pkt[f]ilter:	none																																																																																					.

https://manpages.debian.org/buster/nethogs/nethogs.8.en.html
https://manpages.debian.org/buster/iftop/iftop.8.en.html
https://manpages.debian.org/buster/jnettop/jnettop.8.en.html

[c]ntfilter:	on		[b]ps=bytes/s	[l]ocal	aggr.:	none	[r]emote	aggr.:	none
[q]uit	[h]elp	[s]orting	[p]ackets	[.]	pause	[0]-[9]	switch	device
LOCAL	<->	REMOTE																																																																																																	TXBPS			RXBPS	TOTALBPS
	(IP)																																									PORT		PROTO		(IP)																																									PORT							TX						RX				TOTAL
172.17.0.2	<->	172.17.0.1																																																																																							754b/s		415b/s		1.14k/s
	172.17.0.2																																			9080				TCP		172.17.0.1																																		45128				1.47k				831b				2.29k

172.17.0.2	<->	172.17.0.1																																																																																							754b/s		415b/s		1.14k/s
	172.17.0.2																																			9080				TCP		172.17.0.1																																		45130				1.47k				831b				2.29k

─LLL─
TOTAL																																																																																																											438k/s		241k/s			679k/s
																																																																																																																1.95m			1.08m				3.03m

	

trafshow

trafshow	monitors	network	usage.

Example:

$	sudo	trafshow	-n	-i	eth0
Source/24																															Destination/24																										Protocol								Size												CPS
─SS─
172.17.0.0,9080																									172.17.0.0																														6															37804K										281K										
172.17.0.0																														172.17.0.0,9080																									6															17927K										134K
172.17.0.0																														172.17.0.0																														6															3503K											26K
172.17.0.0,48050																								172.17.0.0																														6															617
172.17.0.0,49000																								172.17.0.0																														6															617

─SS─
eth0																																				10	Flows																																Total:										57M													441K

	

iperf3

iperf3	may	be	used	to	test	network	speed.	Start	a	server	endpoint	with	iperf3	-s	and	then	use	-c	$server
on	the	client.	Compare	both	directions.

	

nuttcp

nuttcp	may	be	used	to	test	network	speed.	See	examples.

	

speedtest-cli

speedtest-cli	may	be	used	to	test	internet	bandwidth	speeds	with	a	public	speedtest	provider.

Example:

$	speedtest-cli	--bytes	--simple
Ping:	22.146	ms
Download:	34.88	Mbyte/s
Upload:	3.77	Mbyte/s

	

https://manpages.debian.org/buster/netdiag/trafshow.1.en.html
https://manpages.debian.org/unstable/iperf3/iperf3.1.en.html
https://manpages.ubuntu.com/manpages/bionic/man8/nuttcp.8.html
https://nuttcp.net/nuttcp/latest/examples.txt
https://manpages.debian.org/buster/speedtest-cli/speedtest-cli.1.en.html

traceroute

Example:

traceroute	example.com
traceroute	to	example.com	(93.184.216.34),	30	hops	max,	60	byte	packets
	1		_gateway	(172.17.0.1)		1.511	ms		1.276	ms		1.189	ms
[...]
11		93.184.216.34	(93.184.216.34)		8.908	ms		7.252	ms		6.674	ms

	

mtr

Live	traceroute.	Example:

																																				My	traceroute		[v0.92]
fca32e320852	(172.17.0.2)																																												2020-09-09T21:04:08+0000
Keys:		Help			Display	mode			Restart	statistics			Order	of	fields			quit
																																																					Packets															Pings
	Host																																														Loss%			Snt			Last			Avg		Best		Wrst	StDev
	1.	_gateway																																								0.0%				14				0.1			0.1			0.1			0.2			0.0
[...]
10.	93.184.216.34																																			0.0%				13				6.4			7.4			6.4		12.5			2.2

	

nmap

nmap	-p	1-65535	-T4	-A	-v	$host :	Probe	all	TCP	ports	for	a	host.

	

Disable	IPv6	DHCP	Auto-negotiation

Add	the	following	to	/etc/sysctl.conf	and	apply	with	sysctl	-p:

net.ipv6.conf.all.autoconf=0
net.ipv6.conf.all.accept_ra=0

	

NetworkManager

Update	DNS	Servers

1.	 Show	active	connections:	nmcli	connection	show	--active
2.	 Show	current	DNS	servers:	nmcli	connection	show	$uuid	|	grep	-i	dns
3.	 Set	an	explicit	set	of	DNS	servers	for	IPv4	and	IPv6	examples:

1.	 CloudFlare:	nmcli	connection	modify	$uuid	ipv4.ignore-auto-dns	yes	ipv6.ignore-
auto-dns	yes	ipv4.dns	"1.1.1.1	1.0.0.1"	ipv6.dns	"2606:4700:4700::1111
2606:4700:4700::1001"

2.	 Google:	nmcli	connection	modify	$uuid	ipv4.ignore-auto-dns	yes	ipv6.ignore-auto-
dns	yes	ipv4.dns	"8.8.8.8	8.8.4.4"	ipv6.dns	"2001:4860:4860::8888
2001:4860:4860::8844"

3.	 Reset	to	DHCP:	nmcli	connection	modify	$uuid	ipv4.ignore-auto-dns	no	ipv6.ignore-
auto-dns	no	ipv4.dns	""	ipv6.dns	""	ipv4.dns-search	""

4.	 Reload	the	connection	or	restart	networking
1.	 nmcli	connection	up	$uuid
2.	 systemctl	restart	NetworkManager	(this	latter	option	may	be	more	useful	in	the	case	WiFi	is

https://developers.cloudflare.com/1.1.1.1/setting-up-1.1.1.1
https://developers.google.com/speed/public-dns/docs/using

being	used	and	keys	are	stored	in	a	wallet	rather	than	using	--ask	above)
5.	 Confirm	settings:

1.	 cat	/etc/resolv.conf
2.	 nmcli	connection	show	$uuid	|	grep	-i	dns

6.	 Test	DNS	lookup	time:	dig	example.com	|	grep	-A	1	-e	"ANSWER	SECTION"	-e	"Query	time"
7.	 Other	useful	commands:

1.	 Show	devices:	nmcli	device
2.	 Show	devices	with	details:	nmcli	device	show
3.	 Modify	host-name	lookup	search	list:	ipv4.dns-search	and	ipv6.dns-search
4.	 Add	a	DNS	server	instead	of	replacing:	nmcli	connection	modify	$uuid	+ipv4.dns	$ip
5.	 Disconnect	device:	nmcli	device	disconnect	$device
6.	 Connect	device:	nmcli	device	connect	$device

8.	 See	additional	background

	

resolvectl

resolvectl	is	a	utility	to	display	DNS	resolver	configuration.	For	example:

$	resolvectl	status
Link	3	(wlp3s0)
							Current	Scopes:	DNS	LLMNR/IPv4	LLMNR/IPv6
	DefaultRoute	setting:	yes
								LLMNR	setting:	yes
	MulticastDNS	setting:	no
			DNSOverTLS	setting:	no
							DNSSEC	setting:	no
					DNSSEC	supported:	no
			Current	DNS	Server:	1.1.1.1
										DNS	Servers:	1.1.1.1
																							1.0.0.1
											DNS	Domain:	~.

	

Kernel

Thread	Stacks

Output	/proc/pid/stack	and	/proc/pid/task/*/stack	to	review	all	kernel	stacks.

	

Process	Tracing

strace	may	be	used	to	trace	system	calls	that	a	process	makes,	and	ltrace	may	be	used	to	trace	library	calls
that	a	process	makes.	This	can	be	helpful	in	certain	situations	when	there	are	low	level	delays	such	as	writing
to	disk	(strace),	or	investigating	library	calls	such	as	libc	malloc	calls	(ltrace).	strace	and	ltrace	cannot	be	run
at	the	same	time	for	the	same	process.

	

strace

strace	traces	system	calls	(syscalls)	although	it	usually	has	an	extremely	large	overhead	even	if	filtering	is
used.

strace	usually	doesn't	come	pre-installed	and	it	must	be	installed	from	the	normal	repositories.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/sec-configuring_ip_networking_with_nmcli
https://www.kernel.org/doc/man-pages/online/pages/man1/resolvectl.1.html
https://www.kernel.org/doc/man-pages/online/pages/man1/strace.1.html

For	example,	to	dynamically	attach	to	a	process	and	trace	all	syscalls	of	a	process	and	all	its	threads	to	an
output	file:

$	strace	-f	-tt	-s	256	-o	outputfile.txt	-p	$PID
^C
$	cat	outputfile.txt
31113	11:43:15.724911	open("/home/user/somefile",	O_WRONLY|O_CREAT|O_TRUNC|O_LARGEFILE,	0666)	=	139
31113	11:43:15.725109	fstat64(139,	{st_mode=S_IFREG|0664,	st_size=0,	...})	=	0
31113	11:43:15.728881	write(139,	"<!DOCTYPE	html	PUBLIC	\"-//W3C//D"...,	8192	<unfinished	...>
31113	11:43:15.729004	<...	write	resumed>)	=	8192
31113	11:43:15.729385	close(139	<unfinished	...>
31113	11:43:15.731440	<...	close	resumed>)	=	0

The	-e	option	is	a	comma-delimited	list	of	which	syscalls	are	traced	(and	others	are	not	traced).	For	example:

strace	-f	-tt	-e	exit_group,write	-s	256	-o	outputfile.txt	-p	$PID

The	-k	option	on	newer	versions	of	strace	prints	the	stack	leading	to	the	syscall.	For	example:

$	strace	-f	-tt	-k	-e	mmap,write	-s	256	-o	outputfile.txt	-p	$PID
^C
$	cat	outputfile.txt
218			20:15:24.726282	mmap(NULL,	16777216,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0x150a02000000
	>	/usr/lib64/libc-2.30.so(__mmap+0x26)	[0xfc356]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9prt29.so(default_pageSize_reserve_memory+0xef)	[0x305bf]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9prt29.so(getMemoryInRangeForDefaultPages+0x44c)	[0x30d6c]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9prt29.so(omrvmem_reserve_memory_ex+0x333)	[0x31593]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9vm29.so(allocateFixedMemorySegmentInList+0x258)	[0xcb408]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9jit29.so(J9::SegmentAllocator::allocate(unsigned	long,	std::nothrow_t	const&)+0x38)	[0x155698]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9jit29.so(J9::SegmentAllocator::allocate(unsigned	long)+0xf)	[0x15573f]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9jit29.so(J9::J9SegmentCache::J9SegmentCache(unsigned	long,	J9::J9SegmentProvider&)+0x11f)	[0x155aaf]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9jit29.so(TR::CompilationInfoPerThread::initializeSegmentCache(J9::J9SegmentProvider&)+0x23)	[0x1337d3]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9jit29.so(TR::CompilationInfoPerThread::processEntries()+0x84)	[0x133994]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9jit29.so(TR::CompilationInfoPerThread::run()+0x29)	[0x134069]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9jit29.so(protectedCompilationThreadProc(J9PortLibrary*,	TR::CompilationInfoPerThread*)+0x79)	[0x134129]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9prt29.so(omrsig_protect+0x1e2)	[0x223d2]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9jit29.so(compilationThreadProc(void*)+0x203)	[0x134583]
	>	/opt/ibm/java/jre/lib/amd64/compressedrefs/libj9thr29.so(thread_wrapper+0x185)	[0xe335]
	>	/usr/lib64/libpthread-2.30.so(start_thread+0xe1)	[0x94e1]
	>	/usr/lib64/libc-2.30.so(__clone+0x42)	[0x101692]

More	advanced	example	to	track	signals:	sh	-c	"PID=$(pgrep	-o	java);	truncate	-s	0	nohup.out	&&
truncate	-s	0	diag_strace_$(hostname).txt	&&	date	&>>	nohup.out	&&	echo	PID=${PID}	&>>
diag_strace_$(hostname).txt	&&	ps	-L	-p	$PID	&>>	diag_strace_$(hostname).txt	&&	(nohup
strace	-f	-tt	-e	trace=rt_sigqueueinfo,rt_tgsigqueueinfo,rt_sigpending	-o
diag_strace_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt	-p	$PID	&)	&&	sleep	1	&&	cat
nohup.out"

	

mmap

Trace	mmap-related	memory	syscalls	(particularly	with	the	-k	stack	option,	this	may	have	a	significant
performance	overhead):

Start	(replace	$PID	with	the	process	ID):

nohup	strace	-f	-k	-tt	-e	trace=mmap,munmap,mremap,shmat,shmdt,brk	-qq	-o	diag_strace_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt	-p	$PID	&

Stop:

pkill	-INT	strace

Example	output:

216			17:03:26.915735	mmap(NULL,	16777216,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0x150a02000000
58466	17:03:27.099645	---	SIGRT_30	{si_signo=SIGRT_30,	si_code=SI_TKILL,	si_pid=22,	si_uid=1001}	---
58467	17:03:27.167435	---	SIGRT_30	{si_signo=SIGRT_30,	si_code=SI_TKILL,	si_pid=22,	si_uid=1001}	---
58470	17:03:27.172575	---	SIGRT_30	{si_signo=SIGRT_30,	si_code=SI_TKILL,	si_pid=22,	si_uid=1001}	---
58468	17:03:27.176465	---	SIGRT_30	{si_signo=SIGRT_30,	si_code=SI_TKILL,	si_pid=22,	si_uid=1001}	---
215			17:03:27.215293	mmap(NULL,	16777216,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0x150a01000000
218			17:03:27.258028	mmap(NULL,	16777216,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0x150a00000000
216			17:03:27.344185	mmap(NULL,	16777216,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0x1509ab000000
58472	17:03:27.384671	---	SIGRT_30	{si_signo=SIGRT_30,	si_code=SI_TKILL,	si_pid=22,	si_uid=1001}	---
216			17:03:27.497329	munmap(0x1509ab000000,	16777216)	=	0
216			17:03:27.798111	mmap(NULL,	16777216,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0x1509ab000000
216			17:03:27.953452	munmap(0x1509ab000000,	16777216)	=	0
215			17:03:27.963090	munmap(0x150a01000000,	16777216)	=	0

	

ltrace

ltrace	traces	library	calls	(e.g.	libc)	although	it	may	have	a	significant	overhead	even	if	filtering	is	used.

The	-w	N	option	on	newer	versions	of	ltrace	prints	the	stack	leading	to	the	call.	For	example:

218	20:19:53.651933	libj9prt29.so->malloc(128,	128,	0,	96	<unfinished	...>
218	20:19:53.675794	<...	malloc	resumed>)							=	0x150a2411d110
	>	libj9prt29.so(omrmem_allocate_memory+0x71)	[150a489ec3f1]
	>	libj9jit29.so(_ZN2J921SystemSegmentProvider21createSegmentFromAreaEmPv+0xfc)	[150a430542bc]
	>	libj9jit29.so(_ZN2J921SystemSegmentProvider18allocateNewSegmentEmN2TR17reference_wrapperI15J9MemorySegmentEE+0x33)	[150a430543b3]
	>	libj9jit29.so(_ZN2J921SystemSegmentProvider7requestEm+0x393)	[150a430549e3]
	>	libj9jit29.so(_ZN2TR6Region8allocateEmPv+0x2d)	[150a433253cd]
	>	libj9jit29.so(_ZN9TR_Memory18allocateHeapMemoryEmN13TR_MemoryBase10ObjectTypeE+0xe)	[150a4332557e]
	>	libj9jit29.so(_ZN3CS214heap_allocatorILm65536ELj12E17TRMemoryAllocatorIL17TR_AllocationKind1ELj12ELj28EEE8allocateEmPKc.constprop.216+0x265)	[150a435043c5]
	>	libj9jit29.so(_ZN3OMR9OptimizerC2EPN2TR11CompilationEPNS1_20ResolvedMethodSymbolEbPK20OptimizationStrategyt+0x15d)	[150a435045cd]
	>	libj9jit29.so(_ZN2J99OptimizerC1EPN2TR11CompilationEPNS1_20ResolvedMethodSymbolEbPK20OptimizationStrategyt+0x23)	[150a43228183]
	>	libj9jit29.so(_ZN3OMR9Optimizer15createOptimizerEPN2TR11CompilationEPNS1_20ResolvedMethodSymbolEb+0x13a)	[150a435022da]
	>	libj9jit29.so(_ZN3OMR20ResolvedMethodSymbol5genILEP11TR_FrontEndPN2TR11CompilationEPNS3_20SymbolReferenceTableERNS3_12IlGenRequestE+0x3ec)	[150a43354b4c]

	

malloc

Trace	malloc-related	memory	library	calls	(particularly	with	the	-w	stack	option,	this	may	have	a	significant
performance	overhead):

Start	(replace	$PID	with	the	process	ID):

nohup	ltrace	-f	-tt	-w	10	-e	malloc+free+calloc+realloc+alloca+malloc_trim+mallopt	-o	diag_ltrace_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt	-p	$PID	&

Stop:

pkill	-INT	ltrace

Example	output:

62080	17:25:58.500832	libdbgwrapper80.so->malloc(4377,	0x150a40e5ab96,	21,	0)	=	0x1509d4009b90
62080	17:25:58.504123	libdbgwrapper80.so->free(0x1509d4009b90,	0x150a40e5abb4,	1,	0x150a4a0943fb)	=	0
62080	17:25:58.509705	libdbgwrapper80.so->malloc(4377,	0x150a40e5ab96,	21,	0)	=	0x1509d4009b90
62080	17:25:58.514305	libdbgwrapper80.so->free(0x1509d4009b90,	0x150a40e5abb4,	1,	0x150a4a0943fb	<unfinished	...>
337	17:25:58.519176	<...	free	resumed>)									=	<void>
62080	17:25:58.519361	<...	free	resumed>)							=	0
62080	17:25:58.519845	libdbgwrapper80.so->malloc(4377,	0x150a40e5ab96,	21,	0	<unfinished	...>
337	17:25:58.525282	libj9prt29.so->malloc(88,	88,	0,	56	<unfinished	...>
62080	17:25:58.528285	<...	malloc	resumed>)					=	0x1509d4009b90
337	17:25:58.529248	<...	malloc	resumed>)							=	0x1509d40077d0

	

https://www.kernel.org/doc/man-pages/online/pages/man1/ltrace.1.html

Miscellaneous

Hardware

List	hardware	details:	lshw

List	kernel	modules:	lsmod

List	USB	information:	lsusb	and	usb-devices

Use	the	sensors	and	ipmitool	commands.

	

CPU

Show	frequencies:

cpupower	frequency-info

Show	idle	states

cpupower	idle-info

Show	per-core	information:

cpupower	monitor

For	dynamically	updating	information,	see	powertop.

Additional	CPU	information:

dmidecode	-t	4
dmidecode	--type	system	-q
dmidecode	-q	--type	processor
dmidecode	-q	--type	memory

	

Processor	Sets/Pinning

[A]	workload	can	get	better	performance	if	each	WebSphere	Application	Server	(WAS)
instance,	a	process	in	itself,	is	set	to	run	on	a	separate	subset	of	CPU	threads.	Keeping	a	process
on	a	set	of	CPU	threads,	and	keeping	other	processes	off	that	set	of	CPU	threads,	can	improve
performance	because	it	preserves	CPU	cache	warmth	and	NUMA	memory	locality.	In	this	setup,
with	8	WAS	instances	and	16	cores,	each	with	4	Simultaneous	Multi-Threading	(SMT)	threads,
each	WAS	instance	was	pinned	to	2	cores,	or	8	CPU	threads.

The	taskset	command	may	be	used	to	assign	the	CPUs	for	a	program	when	the	program	is
started.	For	example:

taskset	-c	0-7			/opt/WAS8.5/profiles/specjprofile1/bin/startServer.sh	server1		
taskset	-c	16-23	/opt/WAS8.5/profiles/specjprofile2/bin/startServer.sh	server1		
taskset	-c	32-39	/opt/WAS8.5/profiles/specjprofile3/bin/startServer.sh	server1		
taskset	-c	48-55	/opt/WAS8.5/profiles/specjprofile4/bin/startServer.sh	server1		
taskset	-c	8-15		/opt/WAS8.5/profiles/specjprofile5/bin/startServer.sh	server1		
taskset	-c	24-31	/opt/WAS8.5/profiles/specjprofile6/bin/startServer.sh	server1		
taskset	-c	40-47	/opt/WAS8.5/profiles/specjprofile7/bin/startServer.sh	server1		
taskset	-c	56-63	/opt/WAS8.5/profiles/specjprofile8/bin/startServer.sh	server1

	

Interrupt	Processing

Interrupt	polling:

Usually,	the	Linux	kernel	handles	network	devices	by	using	the	so	called	New	API	(NAPI),
which	uses	interrupt	mitigation	techniques,	in	order	to	reduce	the	overhead	of	context	switches:
On	low	traffic	network	devices	everything	works	as	expected,	the	CPU	is	interrupted	whenever	a
new	packet	arrives	at	the	network	interface.	This	gives	a	low	latency	in	the	processing	of
arriving	packets,	but	also	introduces	some	overhead,	because	the	CPU	has	to	switch	its	context
to	process	the	interrupt	handler.	Therefore,	if	a	certain	amount	of	packets	per	second	arrives	at	a
specific	network	device,	the	NAPI	switches	to	polling	mode	for	that	high	traffic	device.	In
polling	mode	the	interrupts	are	disabled	and	the	network	stack	polls	the	device	in	regular
intervals.	It	can	be	expected	that	new	packets	arrive	between	two	polls	on	a	high	traffic	network
interface.	Thus,	polling	for	new	data	is	more	efficient	than	having	the	CPU	interrupted	and
switching	its	context	on	every	arriving	packet.	Polling	a	network	device	does	not	provide	the
lowest	packet	processing	latency,	though,	but	is	throughput	optimized	and	runs	with	a
foreseeable	and	uniform	work	load.

	

IRQ	Pinning

When	processes	are	pinned	to	specific	sets	of	CPUs,	it	can	help	to	pin	any	interrupts	that	are	used	exclusively
(or	mostly)	by	those	processes	to	the	same	set	of	CPUs.	In	this	setup,	each	WAS	instance	was	configured
with	its	own	IP	address.	The	IP	address	was	configured	on	a	specific	Ethernet	device.	The	Ethernet	device
was	handled	by	one	or	more	interrupts	or	IRQs.	Pinning	the	IRQs	for	an	Ethernet	device	to	the	same	set	or
subset	of	CPUs	of	the	WebSphere	Application	Server	(WAS)	instance	that	has	its	IP	address	on	that	Ethernet
device	can	help	performance.

When	you	pin	IRQs	to	CPUs,	you	must	keep	the	irqbalance	service	from	setting	the	CPUs	for	those	IRQs.
The	irqbalance	daemon	periodically	assigns	the	IRQs	to	different	CPUs	depending	on	the	current	system
usage.	It	is	useful	for	many	system	workloads,	but	if	you	leave	irqbalance	running	it	can	undo	your	IRQ
CPU	pinnings.	The	heavy-handed	approach	is	to	simply	turn	off	the	irqbalance	service	and	keep	it	from
starting	on	boot	up.

#	service	irqbalance	stop
#	chkconfig	irqbalance	off

If	you	need	the	irqbalance	service	to	continue	to	balance	the	IRQs	that	you	don't	pin,	then	you	can
configure	irqbalance	not	to	change	the	CPU	pinnings	for	IRQs	you	pinned.	In	the
/etc/sysconfig/irqbalance	file,	set	the	IRQBALANCE_ARGS	parameter	to	ban	irqbalance	from	changing
the	CPU	pinnings	for	your	IRQs.

IRQBALANCE_ARGS="--banirq=34	--banirq=35	--banirq=36	--banirq=37	--banirq=38	--banirq=39	--banirq=40	--banirq=41"

You	must	restart	the	irqbalance	service	for	the	changes	to	take	effect.

To	pin	the	IRQs	for	an	Ethernet	device	to	a	CPU	or	set	of	CPUs,	first	you	need	to	find	the	IRQ	numbers	the
Ethernet	device	is	using.	They	can	be	found	in	the	/proc/interrupts	file.

The	first	column	in	the	file	lists	the	IRQs	currently	being	used	by	the	system,	each	IRQ	has	its	own
row
The	following	columns,	one	for	each	CPU	in	the	system,	list	how	many	times	the	IRQ	was	handled	on
a	specific	CPU.	In	the	example	below,	the	columns	for	CPUs	beyond	CPU1	have	been	deleted.	The
file	gets	very	wide	when	the	system	has	a	lot	of	CPUs.
The	last	column	lists	the	name	of	the	IRQ.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1067.8055&rep=rep1&type=pdf

In	the	example	that	follows,	you	can	see	that	Ethernet	device	eth0	has	IRQs	34,	35,	36,	and	37,	and	eth1	has
IRQs	38,	39,	40,	and	41.	It	is	best	to	read	the	rows	from	right	to	left.	Find	the	device	name	in	the	last	column,
then	look	at	the	beginning	of	the	row	to	determine	the	assigned	IRQ.

											CPU0											CPU1						<additional	CPU	columns	deleted>
	16:							3546										16486						...					IPI
	29:						17452														0						...					qla2xxx	(default)
	30:							4303														0						...					qla2xxx	(rsp_q)
	31:								133														0						...					qla2xxx	(default)
	32:										0														0						...					qla2xxx	(rsp_q)
	33:					417366														0						...					ipr
	34:				8568860														0						...					eth0-q0
	35:									16														0						...					eth0-q1
	36:										4														0						...					eth0-q2
	37:										5														0						...					eth0-q3
	38:								109														0						...					eth1-q0
	39:										0														0						...					eth1-q1
	40:										3														0						...					eth1-q2
	41:										0														0						...					eth1-q3

The	CPUs	an	IRQ	is	allowed	to	run	on	are	in	the	/proc/irq/<irq-number>/smp_affinity	file.	The	file
contains	a	hexadecimal	bit-mask	of	the	CPUs	on	which	the	IRQ	is	allowed	to	run.	The	low	order	bit	is	CPU
0.	Some	Linux	distributions	also	have	a	/proc/irq/<irq-number>/smp_affinity_list	file	that	has	the
CPU	list	in	human	readable	form.	These	files	are	writable;	you	can	set	the	CPUs	an	IRQ	is	allowed	to	run	on
by	writing	a	new	value	to	the	file.

Now,	let's	say	that	the	first	WAS	instance	is	pinned	to	CPUs	0-3	and	that	its	IP	address	is	on	eth0,	and	that
the	second	WAS	instance	is	pinned	to	CPUs	4-7	and	that	its	IP	address	is	on	eth1.	You	could	pin	each	of	the
four	IRQs	for	eth0	to	each	of	the	four	CPUs	to	which	the	first	WAS	instance	is	bound,	and	pin	each	of	the
four	IRQs	for	eth1	to	each	of	the	four	CPUs	to	which	the	second	WAS	instance	is	bound.

To	specify	the	CPU	numbers	with	a	hexadecimal	bit-mask,	you	would	write	to	the	smp_affinity	file.

#	echo	00000001	>	/proc/irq/34/smp_affinity
#	echo	00000002	>	/proc/irq/35/smp_affinity
#	echo	00000004	>	/proc/irq/36/smp_affinity
#	echo	00000008	>	/proc/irq/37/smp_affinity
#	echo	00000010	>	/proc/irq/38/smp_affinity
#	echo	00000020	>	/proc/irq/39/smp_affinity
#	echo	00000040	>	/proc/irq/40/smp_affinity
#	echo	00000080	>	/proc/irq/41/smp_affinity

Alternatively,	to	specify	the	CPU	numbers	in	a	human	readable	form,	you	would	write	to	the
smp_affinity_list	file.

#	echo	0	>	/proc/irq/34/smp_affinity_list
#	echo	1	>	/proc/irq/35/smp_affinity_list
#	echo	2	>	/proc/irq/36/smp_affinity_list
#	echo	3	>	/proc/irq/37/smp_affinity_list
#	echo	4	>	/proc/irq/38/smp_affinity_list
#	echo	5	>	/proc/irq/39/smp_affinity_list
#	echo	6	>	/proc/irq/40/smp_affinity_list
#	echo	7	>	/proc/irq/41/smp_affinity_list

However,	research	has	shown	that	the	performance	of	the	IRQ	handling	is	better	on	the	first	SMT	thread	of	a
core.	It	is	better	to	combine	IRQs	on	the	first	SMT	thread	than	to	spread	them	out	over	all	the	SMT	threads.
The	PowerLinux	systems	were	configured	with	SMT4	enabled.	The	first	SMT	thread	on	a	core	is	therefore
any	CPU	number	that	is	evenly	divisible	by	four.	So	in	this	example,	what	you	would	instead	want	to	do	is
pin	all	the	IRQs	for	eth0	to	CPU	0	and	pin	all	the	IRQs	for	eth1	to	CPU	4.

#	echo	00000001	>	/proc/irq/34/smp_affinity
#	echo	00000001	>	/proc/irq/35/smp_affinity
#	echo	00000001	>	/proc/irq/36/smp_affinity
#	echo	00000001	>	/proc/irq/37/smp_affinity
#	echo	00000010	>	/proc/irq/38/smp_affinity

#	echo	00000010	>	/proc/irq/39/smp_affinity
#	echo	00000010	>	/proc/irq/40/smp_affinity
#	echo	00000010	>	/proc/irq/41/smp_affinity

Or,	if	using	the	smp_affinity_list	file:

#	echo	0	>	/proc/irq/34/smp_affinity_list
#	echo	0	>	/proc/irq/35/smp_affinity_list
#	echo	0	>	/proc/irq/36/smp_affinity_list
#	echo	0	>	/proc/irq/37/smp_affinity_list
#	echo	4	>	/proc/irq/38/smp_affinity_list
#	echo	4	>	/proc/irq/39/smp_affinity_list
#	echo	4	>	/proc/irq/40/smp_affinity_list
#	echo	4	>	/proc/irq/41/smp_affinity_list

	

Interrupt	Coalescing

Most	modern	network	adapters	have	settings	for	coalescing	interrupts.	In	interrupt	coalescing,	the	adapter
collects	multiple	network	packets	and	then	delivers	the	packets	to	the	operating	system	on	a	single	interrupt.
The	advantage	of	interrupt	coalescing	is	that	it	decreases	CPU	utilization	since	the	CPU	does	not	have	to	run
the	entire	interrupt	code	path	for	every	network	packet.	The	disadvantage	of	interrupt	coalescing	is	that	it	can
delay	the	delivery	of	network	packets,	which	can	hurt	workloads	that	depend	on	low	network	latency.	The
SPECjEnterprise	workload	is	not	sensitive	to	network	latency.	For	SPECjEnterprise,	it	is	better	to	conserve
CPU	utilization,	freeing	it	up	for	the	applications	such	as	WebSphere	and	DB2.

On	some	network	adapters	the	coalescing	settings	are	command	line	parameters	specified	when	the	kernel
module	for	the	network	adapter	is	loaded.	On	the	Chelseo	and	Intel	adapters	used	in	this	setup,	the
coalescing	settings	are	changed	with	the	ethtool	utility.	To	see	the	coalescing	settings	for	an	Ethernet
device	run	ethtool	with	the	-c	option.

#	ethtool	-c	eth2
Coalesce	parameters	for	eth2:
Adaptive	RX:	off		TX:	off
stats-block-usecs:	0
sample-interval:	0
pkt-rate-low:	0
pkt-rate-high:	0

rx-usecs:	3
rx-frames:	0
rx-usecs-irq:	0
rx-frames-irq:	0

tx-usecs:	0
tx-frames:	0
tx-usecs-irq:	0
tx-frames-irq:	0

rx-usecs-low:	0
rx-frame-low:	0
tx-usecs-low:	0
tx-frame-low:	0

rx-usecs-high:	0
rx-frame-high:	0
tx-usecs-high:	0
tx-frame-high:	0

Many	modern	network	adapters	have	adaptive	coalescing	that	analyzes	the	network	frame	rate	and	frame
sizes	and	dynamically	sets	the	coalescing	parameters	based	on	the	current	load.	Sometimes	the	adaptive
coalescing	doesn't	do	what	is	optimal	for	the	current	workload	and	it	becomes	necessary	to	manually	set	the
coalescing	parameters.	Coalescing	parameters	are	set	in	one	of	two	basic	ways.	One	way	is	to	specify	a
timeout.	The	adapter	holds	network	frames	until	a	specified	timeout	and	then	delivers	all	the	frames	it

collected.	The	second	way	is	to	specify	a	number	of	frames.	The	adapter	holds	network	frames	until	it
collects	the	specified	number	of	frames	and	then	delivers	all	the	frames	it	collected.	A	combination	of	the
two	is	usually	used.

To	set	the	coalescing	settings	for	an	Ethernet	device,	use	the	-C	option	for	ethtool	and	specify	the	settings
you	want	to	change	and	their	new	values.	This	workload	benefited	from	setting	the	receive	timeout	on	the
WebSphere	server	to	200	microseconds,	the	maximum	allowed	by	the	Chelseo	driver,	and	disabling	the
frame	count	threshold.

ethtool	-C	eth4	rx-usecs	200	rx-frames	0
ethtool	-C	eth5	rx-usecs	200	rx-frames	0
ethtool	-C	eth6	rx-usecs	200	rx-frames	0
ethtool	-C	eth7	rx-usecs	200	rx-frames	0

On	the	database	server,	increasing	the	receive	timeout	to	100	microseconds	was	sufficient	to	gain	some
efficiency.	The	database	server	had	plenty	of	idle	CPU	time,	so	it	was	not	necessary	to	conserve	CPU
utilization.

ethtool	-C	eth2	rx-usecs	100
ethtool	-C	eth3	rx-usecs	100
ethtool	-C	eth4	rx-usecs	100
ethtool	-C	eth5	rx-usecs	100

	

Consider	Disabling	IPv6

If	IPv6	is	not	used,	consider	disabling	it	completely	for	a	potential	boost.	IPv6	support	can	be	disabled	in	the
Linux	kernel	by	adding	the	following	options	to	the	kernel	command	line	in	the	boot	loader	configuration.

ipv6.disable_ipv6=1	ipv6.disable=1

Disabling	IPv6	support	in	the	Linux	kernel	guarantees	that	no	IPv6	code	will	ever	be	run	as	long	as	the
system	is	booted.	That	may	be	too	heavy-handed.	A	lighter	touch	is	to	let	the	kernel	boot	with	IPv6	support
and	then	disable	it.	This	may	be	done	by	adding	net.ipv6.conf.all.disable_ipv6=1	to
/etc/sysctl.conf	and	running	sysctl	-p	and	rebooting.	Alternatively,	diable	IPv6	on	particular	interfaces
with	net.ipv6.conf.eth0.disable_ipv6=1.

	

Huge	Pages

The	default	page	size	is	4KB.	Large	pages	on	Linux	are	called	huge	pages,	and	they	are	commonly	2MB	or
1GB	(depending	on	the	processor).	In	general,	large	pages	perform	better	for	most	non-memory	constrained
workloads	because	of	fewer	and	faster	CPU	translation	lookaside	buffer	(TLB)	misses.	There	are	two	types
of	huge	pages:	the	newer	transparent	huge	pages	(AnonHugePages	in	/proc/meminfo)	and	the	older	hugetlb
(HugePages_Total	in	/proc/meminfo).	In	general,	transparent	huge	pages	are	preferred.

Note	that	there	are	some	potential	negatives	to	huge	pages:

huge	page	use	can	increase	memory	pressure,	add	latency	for	minor	pages	faults,	and	add
overhead	when	splitting	huge	pages	or	coalescing	normal	sized	pages	into	huge	pages

	

Transparent	Huge	Pages

In	recent	kernel	versions,	transparent	huge	pages	(THP)	support	is	enabled	by	default	and	automatically	tries
to	use	huge	pages.	The	status	of	THP	can	be	checked	with:

http://developerblog.redhat.com/2014/03/10/examining-huge-pages-or-transparent-huge-pages-performance/
https://www.kernel.org/doc/Documentation/vm/transhuge.txt

$	cat	/sys/kernel/mm/transparent_hugepage/enabled
[always]	never

The	number	of	anonymous	huge	pages	allocated	can	be	found	in	/proc/meminfo

$	grep	AnonHuge	/proc/meminfo
AnonHugePages:			1417216	kB

Transparent	huge	pages	use	the	khugepaged	daemon	to	periodically	defragment	memory	to	make	it	available
for	future	THP	allocations.	If	this	causes	problems	with	high	CPU	usage,	defrag	may	be	disabled,	at	the	cost
of	potentially	lower	usage	of	huge	pages:

It's	also	possible	to	limit	defragmentation	efforts	in	the	VM	to	generate	hugepages	in	case	they're	not
immediately	free	to	madvise	regions	or	to	never	try	to	defrag	memory	and	simply	fallback	to	regular	pages
unless	hugepages	are	immediately	available.	Clearly	if	we	spend	CPU	time	to	defrag	memory,	we	would
expect	to	gain	even	more	by	the	fact	we	use	hugepages	later	instead	of	regular	pages.	This	isn't	always
guaranteed,	but	it	may	be	more	likely	in	case	the	allocation	is	for	a	MADV_HUGEPAGE	region.

echo	always	>	/sys/kernel/mm/transparent_hugepage/defrag		
echo	madvise	>	/sys/kernel/mm/transparent_hugepage/defrag		
echo	never	>	/sys/kernel/mm/transparent_hugepage/defrag

AnonHugePages	is	a	subset	of	AnonPages.

You	can	check	for	transparent	huge	page	usage	by	process	in	/proc/PID/smaps	and	look	for	AnonHugePages.

Important	notes	about	THP:

[THP]	requires	no	modifications	for	applications	to	take	advantage	of	it.

An	application	may	mmap	a	large	region	but	only	touch	1	byte	of	it,	in	that	case	a	2M	page
might	be	allocated	instead	of	a	4k	page	for	no	good.	This	is	why	it's	possible	to	disable
hugepages	system-wide	and	to	only	have	them	inside	MADV_HUGEPAGE	madvise	regions.

The	amount	of	memory	dedicated	to	page	tables	can	be	found	with	grep	PageTables	/proc/meminfo

If	your	architecture	is	NUMA	and	kernel	is	>=	2.6.14,	the	huge	pages	are	per	NUMA	node	and	so	you	can
see	the	total	huge	pages	allocated	to	a	process	by	adding	the	"huge"	elements	across	nodes	in
/proc/PID/numa_maps.

Show	huge	page	layout	per	NUMA	node:

cat	/sys/devices/system/node/node*/meminfo

	

hugetlb

The	older	method	to	use	huge	pages	involves	libhugetlbfs	and	complex	administration.	Note:

Pages	that	are	used	as	huge	pages	are	reserved	inside	the	kernel	and	cannot	be	used	for	other
purposes.	Huge	pages	cannot	be	swapped	out	under	memory	pressure.

/proc/meminfo	contains	information	on	libhugetlbfs	usage:

HugePages_Total	is	the	size	of	the	pool	of	huge	pages.
HugePages_Free		is	the	number	of	huge	pages	in	the	pool	that	are	not	yet
																allocated.
HugePages_Rsvd		is	short	for	"reserved,"	and	is	the	number	of	huge	pages	for
																which	a	commitment	to	allocate	from	the	pool	has	been	made,
																but	no	allocation	has	yet	been	made.		Reserved	huge	pages
																guarantee	that	an	application	will	be	able	to	allocate	a

https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/man-pages/online/pages/man7/numa.7.html
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

																huge	page	from	the	pool	of	huge	pages	at	fault	time.
HugePages_Surp		is	short	for	"surplus,"	and	is	the	number	of	huge	pages	in
																the	pool	above	the	value	in	/proc/sys/vm/nr_hugepages.	The
																maximum	number	of	surplus	huge	pages	is	controlled	by
																/proc/sys/vm/nr_overcommit_hugepages.
Hugepagesize				is	the	size	of	each	huge	page.

The	number	of	hugetlb	pages	in	use	is:

HugePages_Total	-	HugePages_Free	+	HugePages_Reserved

For	example:

HugePages_Total:				8192
HugePages_Free:					1024
HugePages_Rsvd:					1024
HugePages_Surp:								0
Hugepagesize:							2048	kB

In	this	example,	there	are	no	hugetlb	pages	in	use,	although	1GB	is	reserved	by	some	processes.

See	additional	information.

Note	that	when	using	hugetlb,	RSS	for	the	process	is	not	accounted	for	properly	(this	is	not	true	of	THP;
THP	accounts	into	RSS	properly)	and	instead	is	accounted	for	in	/proc/meminfo:

"Shared_Hugetlb"	and	"Private_Hugetlb"	show	the	ammounts	of	memory	backed	by	hugetlbfs
page	which	is	*not*	counted	in	"RSS"	or	"PSS"	field	for	historical	reasons.	And	these	are	not
included	in	{Shared,Private}_{Clean,Dirty}	field.

	

Process	Limits

Review	the	operating	system	section	on	process	limits	which	is	generally	summarized	as:

ulimit	-c	unlimited
ulimit	-f	unlimited
ulimit	-u	unlimited
ulimit	-n	unlimited
ulimit	-d	unlimited

	

Kernel	Limits

The	maximum	number	of	processes	and	threads	is	controlled	by	/proc/sys/kernel/threads-max:	"This	file
specifies	the	system-wide	limit	on	the	number	of	threads	(tasks)	that	can	be	created	on	the	system."	Each
thread	also	has	a	maximum	stack	size,	so	virtual	and	physical	memory	must	support	your	requirements.

The	maximum	number	of	PIDs	is	controlled	by	/proc/sys/kernel/pid_max:	"This	file	specifies	the	value
at	which	PIDs	wrap	around	(i.e.,	the	value	in	this	file	is	one	greater	than	the	maximum	PID).	The	default
value	for	this	file,	32768,	results	in	the	same	range	of	PIDs	as	on	earlier	kernels.	On	32-bit	platforms,	32768
is	the	maximum	value	for	pid_max.	On	64-bit	systems,	pid_max	can	be	set	to	any	value	up	to	2^22
(PID_MAX_LIMIT,	approximately	4	million)."

	

Crontab

Review	all	users'	crontabs	and	the	processing	that	they	do.	Some	built-in	crontab	processing	such	as
monitoring	and	file	search	may	have	significant	performance	impacts.

https://lwn.net/Articles/374424/
https://bugzilla.redhat.com/show_bug.cgi?id=1758639
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/man-pages/online/pages/man5/proc.5.html
https://www.kernel.org/doc/man-pages/online/pages/man5/proc.5.html

	

Processor	Scheduling

The	Linux	Completely	Fair	Scheduler	(CFS)	may	affect	IBM	Java	performance:

The	Linux	Completely	Fair	Scheduler	(CFS)	first	appeared	in	the	2.6.23	release	of	the	Linux
kernel	in	October	2007.	The	algorithms	used	in	the	CFS	provide	efficient	scheduling	for	a	wide
variety	of	system	and	workloads.	However,	for	this	particular	workload	there	is	one	behavior	of
the	CFS	that	cost	a	few	percent	of	CPU	utilization.

In	the	CFS,	a	thread	that	submits	I/O,	blocks	and	then	is	notified	of	the	I/O	completion	preempts
the	currently	running	thread	and	is	run	instead.	This	behavior	is	great	for	applications	such	as
video	streaming	that	need	to	have	low	latency	for	handling	the	I/O,	but	it	can	actually	hurt
SPECjEnterprise	performance.	In	SPECjEnterprise,	when	a	thread	submits	I/O,	such	as	sending
a	response	out	on	the	network,	the	I/O	thread	is	in	no	hurry	to	handle	the	I/O	completion.	Upon
I/O	completion,	the	thread	is	simply	finished	with	its	work.	Moreover,	when	an	I/O	completion
thread	preempts	the	current	running	thread,	it	prevents	the	current	thread	from	making	progress.
And	when	it	preempts	the	current	thread	it	can	ruin	some	of	the	cache	warmth	that	the	thread
has	created.	Since	there	is	no	immediate	need	to	handle	the	I/O	completion,	the	current	thread
should	be	allowed	to	run.	The	I/O	completion	thread	should	be	scheduled	to	run	just	like	any
other	process.

The	CFS	has	a	list	of	scheduling	features	that	can	be	enabled	or	disabled.	The	setting	of	these
features	is	available	through	the	debugfs	file	system.	One	of	the	features	is
WAKEUP_PREEMPT.	It	tells	the	scheduler	that	an	I/O	thread	that	was	woken	up	should
preempt	the	currently	running	thread,	which	is	the	default	behavior	as	described	above.	To
disable	this	feature,	you	set	NO_WAKEUP_PREEMPT	(not	to	be	confused	with
NO_WAKEUP_PREEMPTION)	in	the	scheduler's	features.

mount	-t	debugfs	debugfs	/sys/kernel/debug
echo	NO_WAKEUP_PREEMPT	>	/sys/kernel/debug/sched_features
umount	/sys/kernel/debug

Unfortunately,	the	NO_WAKEUP_PREEMPT	scheduler	feature	was	removed	in	Linux	kernel
version	3.2.	It	is	and	will	be	available	in	the	RedHat	Enterprise	Linux	6	releases.	It	is	not
available	in	the	latest	SUSE	Linux	Enterprise	Server	11	Service	Pack	2.	There	are	some	other
scheduler	settings	that	can	achieve	close	to	the	same	behavior	as	NO_WAKEUP_PREEMPT.

You	can	use	the	sched_min_granularity_ns	parameter	to	disable	preemption.
sched_min_granularity_ns	is	the	number	of	nanoseconds	a	process	is	guaranteed	to	run	before
it	can	be	preempted.	Setting	the	parameter	to	one	half	of	the	value	of	the	sched_latency_ns
parameter	effectively	disables	preemption.	sched_latency_ns	is	the	period	over	which	CFS
tries	to	fairly	schedule	all	the	tasks	on	the	runqueue.	All	of	the	tasks	on	the	runqueue	are
guaranteed	to	be	scheduled	once	within	this	period.	So,	the	greatest	amount	of	time	a	task	can	be
given	to	run	is	inversely	correlated	with	the	number	of	tasks;	fewer	tasks	means	they	each	get	to
run	longer.	Since	the	smallest	number	of	tasks	needed	for	one	to	preempt	another	is	two,	setting
sched_min_granularity_ns	to	half	of	sched_latency_ns	means	the	second	task	will	not	be
allowed	to	preempt	the	first	task.

The	scheduling	parameters	are	located	in	the	/proc/sys/kernel/	directory.	Here	is	some
sample	bash	code	for	disabling	preemption.

#	LATENCY=$(cat	/proc/sys/kernel/sched_latency_ns)
#	echo	$((LATENCY/2))	>	/proc/sys/kernel/sched_min_granularity_ns

The	parameter	sched_wakeup_granularity_ns	is	similar	to	the	sched_min_granularity_ns
parameter.	The	documentation	is	a	little	fuzzy	on	how	this	parameter	actually	works.	It	controls

the	ability	of	tasks	being	woken	to	preempt	the	current	task.	The	smaller	the	value,	the	easier	it
is	for	the	task	to	force	the	preemption.	Setting	sched_wakeup_granularity_ns	to	one	half	of
sched_latency_ns	can	also	help	alleviate	the	scheduling	preemption	problem.

	

IBM	Java	on	Linux

In	some	cases,	-Xthr:noCfsYield	and	-Xthr:minimizeUserCPU	may	improve	performance.

	

systemd

systemd	Tips

1.	 systemd-analyze	blame	to	review	potential	causes	of	slow	boot	times

	

Example	service

1.	 Create	/etc/systemd/system/wlp.service	with	the	contents:

[Unit]
Description=wlp
Wants=network-online.target
After=network-online.target

[Service]
ExecStart=/opt/ibm/wlp/bin/server	start
ExecStop=/opt/ibm/wlp/bin/server	stop
User=someuser
Environment=JAVA_HOME=/opt/ibm/java
Type=forking
Restart=always
PIDFile=/opt/ibm/wlp/usr/servers/.pid/defaultServer.pid

[Install]
WantedBy=multi-user.target

2.	 Reload	systemd	configuration:

systemctl	daemon-reload

3.	 Start	the	service:

systemctl	start	wlp

4.	 If	you	want	to	start	the	service	after	reboot:

systemctl	enable	wlp

	

Showing	service	status

Example:

systemctl	--no-pager	status	wlp

	

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xthr

Other	Tips

Print	kernel	boot	parameters:

cat	/proc/cmdline

Print	current	kernel	log	levels:

cat	/proc/sys/kernel/printk

Change	kernel	log	level:

echo	5	>	/proc/sys/kernel/printk

	

Linux	on	Power

The	default	page	size	on	Linux	on	Power	is	64KB

Some	workloads	benefit	from	lower	SMT	hardware	thread	values.

Running	profile	on	Linux	on	Power.

	

-Xnodfpbd

Consider	testing	with	-Xnodfpbd	because	"The	hardware	instructions	can	be	slow."

	

Hardware	Prefetching

Consider	disabling	hardware	prefetching	because	Java	does	it	in	software.	"[Use]	the	ppc64_cpu	utility
(available	in	the	powerpc-utils	package)	to	set	the	pre-fetch	depth	to	1	(none)	in	the	DSCR."

#	ppc64_cpu	--dscr=1

	

Idle	Power	Saver

Idle	Power	Saver,	[which	is	enabled	by	default],	will	put	the	processor	into	a	power	saving	mode
when	it	detects	that	utilization	has	gone	below	a	certain	threshold	for	a	specified	amount	of	time.
Switching	the	processor	into	and	out	of	power	saving	mode	takes	time.	For	sustained	peak
performance	it	is	best	not	to	let	the	system	drop	into	power	saving	mode.	Idle	Power	Saver	can
be	disabled	by	using	the	web	interface	to	the	Advanced	System	Management	Interface	(ASMI)
console.	Navigate	to	System	Configuration	->	Power	Management	->	Idle	Power	Saver.	Set	the
Idle	Power	Saver	value	to	Disabled,	then	click	on	the	"Save	settings"	button	on	the	bottom	of	the
page.

	

Adaptive	Frequency	Boost

The	Adaptive	Frequency	Boost	feature	allows	the	system	to	increase	the	clock	speed	for	the
processors	beyond	their	nominal	speed	as	long	as	environmental	conditions	allow	it,	for
example,	the	processor	temperature	is	not	too	high.	Adaptive	Frequency	Boost	is	enabled	by

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
http://www-01.ibm.com/support/knowledgecenter/linuxonibm/liacf/oprofgetstart.htm

default.	The	setting	can	be	verified	(or	enabled	if	it	is	disabled)	by	using	the	web	interface	to	the
Advanced	System	Management	Interface	(ASMI)	console.	Navigate	to	Performance	Setup	->
Adaptive	Frequency	Boost.	Change	the	setting	to	Enabled,	then	click	on	the	"Save	settings"
button.

	

Dynamic	Power	Saver	(Favor	Performance)	Mode

The	PowerLinux	systems	have	a	feature	called	Dynamic	Power	Saver	that	will	dynamically
adjust	the	processor	frequencies	to	save	energy	based	on	the	current	processor	utilization.	The
Dynamic	Power	Saver	mode	can	be	set	to	favor	performance	by	using	the	web	interface	to	the
ASMI	console.	Navigate	to	System	Configuration	->	Power	Management	->	Power	Mode	Setup.
Select	Enable	Dynamic	Power	Saver	(favor	performance)	mode,	then	click	on	the	"Continue"
button.

	

64-bit	DMA	Adapter	Slots	for	Network	Adapters

The	64-bit	direct	memory	access	(DMA)	adapter	slots	are	a	feature	on	the	newer	IBM
POWER7+	systems.	64-bit	DMA	enables	a	faster	data	transfer	between	I/O	cards	and	the	system
by	using	a	larger	DMA	window,	possibly	covering	all	memory.	On	the	PowerLinux	7R2	system,
two	of	the	adapter	slots,	slots	2	and	5,	are	enabled	with	64-bit	DMA	support.	On	each	system	the
two	network	cards	were	installed	in	the	two	64-bit	DMA	slots.	Using	the	64-bit	DMA	slots
resulted	in	a	noticeable	improvement	in	network	performance	and	CPU	utilization.

	

Scaling	Up	or	Out

One	question	for	tuning	a	multi-threaded	workload	for	increased	capacity	is	whether	to	scale	up
by	adding	more	processor	cores	to	an	instance	of	an	application	or	to	scale	out	by	increasing	the
number	of	application	instances,	keeping	the	number	of	processor	cores	per	application	instance
the	same.

The	performance	analysis	for	this	workload	on	the	Power	architecture	has	shown	that	the
WebSphere	Application	Server	(WAS)	performs	best	with	two	processor	cores	and	their
attending	SMT	threads.	Therefore,	when	increasing	the	capacity	of	a	POWER	system	running
WAS	it	is	best	to	increase	the	number	of	WAS	instances,	giving	each	instance	two	processor
cores.	The	WAS	setup	for	SPECjEnterprise2010	ran	eight	WAS	instances.

...

[If]	the	WAS	instances	have	to	listen	on	the	same	port...	By	default,	a	WAS	instance	is
configured	with	multi-home	enabled,	which	means	it	listens	for	requests	on	its	port	on	all	of	the
IP	addresses	on	the	system.	If	multiple	WAS	instances	are	running,	they	cannot	all	be	allowed	to
listen	for	requests	on	all	the	IP	addresses.	They	would	end	up	stepping	on	each	other	and	would
not	function	correctly.	If	multiple	WAS	instances	are	running,	multi-home	must	be	disabled	and
each	WAS	instance	must	be	configured	to	listen	on	a	different	IP	address.	For	instructions	on
how	to	configure	an	application	server	to	use	a	single	network	interface,	see	Configuring	an
application	server	to	use	a	single	network	interface	[4]	in	the	WebSphere	Application	Server
Version	8.5	Information	Center.

...

Since	a	system	cannot	have	multiple	IP	addresses	on	the	same	subnet,	the	IP	address	of	each
WAS	instance	must	be	on	its	own	Ethernet	device.	This	can	easily	be	done	if	the	number	of

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/trun_multiplenic.html

Ethernet	devices	on	the	system	is	greater	than	or	equal	to	the	number	of	WAS	instances,	the	IP
addresses	for	the	WAS	instances	can	each	be	put	on	their	own	Ethernet	device.

If	the	system	has	fewer	Ethernet	devices	than	the	number	of	WAS	instances,	then	aliases	can	be
used	to	create	multiple	virtual	devices	on	a	single	physical	Ethernet	device.	See	section	9.2.8.
Alias	and	Clone	Files	[5]	of	the	Red	Hat	Enterprise	Linux	6	Deployment	Guide	for	details	on
how	to	configure	an	alias	interface.

	

Linux	on	System	z	(zLinux,	s390)

Test	setting	QUICKDSP:

In	general,	we	recommend	setting	QUICKDSP	on	for	production	guests	and	server	virtual
machines	that	perform	critical	system	functions.

You	can	get	a	sense	of	the	system	your	Linux	virtual	server	is	running	on	by	issuing	cat
/proc/sysinfo

The	zLinux	"architecture"	is	sometimes	referred	to	as	s390.

z/VM	has	three	storage	areas:	central	store	(cstore),	expanded	store	(xstore),	and	page	volumes.	The	first	two
are	RAM	and	the	last	is	disk.

	

Discontiguous	Saved	Segments	(DCSS)

Discontiguous	Saved	Segments	(DCSS)	may	be	mounted	in	zLinux	to	share	data	across	guests,	thus
potentially	reducing	physical	memory	usage.	DCSS	can	also	be	used	as	an	in-memory	filesystem.

	

AIX

AIX	Recipe

1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Unless	energy	saving	features	are	required,	ensure	 Power	Management	is	set	to	Maximum

Performance	mode.
3.	 Generally,	physical	memory	should	never	be	saturated	with	computational	memory	and	the	operating

system	should	not	page	computational	memory	out	to	disk.
4.	 If	you're	not	tight	on	RAM,	tune	Virtual	Ethernet	Adapter	minimum	and	maximum	buffers	on	all	AIX

LPARs	(including	VIO)	to	maximum	possible	values	to	avoid	TCP	retransmits.
5.	 Test	disabling	TCP	delayed	ACKs
6.	 Monitor	for	TCP	retransmissions	and	test	tuning	TCP/IP	network	buffer	sizes.
7.	 Use	netstat	-v	to	ensure	that	network	switches	are	not	sending	PAUSE	frames.
8.	 In	some	situations,	enabling	network	dog	threads	on	multi-processor	nodes	may	avoid	a	network

processing	bottleneck	with	the	default	single-CPU	interrupt	processing	model.
9.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
10.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
11.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
12.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
13.	 If	there	are	firewall	idle	timeouts	between	two	hosts	on	a	LAN	utilizing	a	connection	pool	(e.g.

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-networkscripts-interfaces-alias.html
https://www.vm.ibm.com/perf/tips/linuxper.html
https://www.vm.ibm.com/linux/dcss/dcsslarg.pdf
https://www.ibm.com/docs/en/power10?topic=operations-power-management

between	WAS	and	a	database),	consider	tuning	TCP	keep-alive	parameters.
14.	 Bind	your	processes	properly	based	on	system	topology.
15.	 Use	MCM	memory	affinity	where	appropriate.
16.	 Find	the	optimal	SMT	configuration	for	the	machine.
17.	 Find	the	optimal	hardware	prefetching	setting	for	your	workload.
18.	 Consider	AIX-specific	tuning	for	Java	applications.
19.	 For	large	multi-threaded	apps,	use	profiling	to	make	sure	that	work	is	allocated	equally	amongst

threads.
20.	 For	apps	that	use	a	lot	of	network	I/O,	tune	networking	parameters.
21.	 For	apps	that	make	heavy	use	of	native	memory,	experiment	with	and	use	the	optimal	malloc

algorithm.
22.	 Use	profiling	to	evaluate	the	effects	of	tuning	other	parameters.

Also	review	the	general	topics	in	the	Operating	Systems	chapter.

	

Documentation

https://www.ibm.com/docs/en/aix

	

General

Query	AIX	level:

$	oslevel
7.2.0.0

	

Kernel	Parameters

The	no	command	is	used	to	query	or	set	kernel	parameters.	To	display	all	current	values:

/usr/sbin/no	-a

To	update	a	value	until	the	next	reboot,	use	-o,	for	example:

/usr/sbin/no	-o	tcp_nodelayack=1

To	persist	the	change	across	reboots,	add	the	-r	flag:

/usr/sbin/no	-r	-o	tcp_nodelayack=1

Therefore,	generally,	both	commands	are	run	for	each	tunable	to	apply	to	the	running	system	and	for
subsequent	reboots.

Query	the	default	value	of	a	parameter	using	no	-L:

$	no	-L	tcp_nodelayack
--
NAME																						CUR				DEF				BOOT			MIN				MAX				UNIT							
--
tcp_nodelayack												0						0						0						0						1						boolean				
--

	

Central	Processing	Unit	(CPU)

https://www.ibm.com/docs/en/aix
https://www.ibm.com/docs/en/aix/7.3?topic=n-no-command

Query	physical	processor	information:

$	prtconf
System	Model:	IBM,9119-FHB
Processor	Type:	PowerPC_POWER7
Number	Of	Processors:	2
Processor	Clock	Speed:	4004	MHz	[...]

Use	the	lssrad	command	to	display	processor	and	memory	layout.	For	example:

$	lssrad	-av
REF1			SRAD								MEM						CPU
0
										0			94957.94						0-47

	

Simultaneous	Multithreading	(SMT)

The	smtctl	command	may	be	used	to	query	and	change	CPUs'	SMT	mode:

$	smtctl
This	system	supports	up	to	4	SMT	threads	per	processor.
SMT	is	currently	enabled...
proc0	has	4	SMT	threads...

It	is	important	to	experiment	and	use	the	most	optimal	SMT	setting	based	on	the	workload;	higher	value	do
not	always	improve	performance:

Workloads	that	see	the	greatest	simultaneous	multithreading	benefit	are	those	that	have	a	high
Cycles	Per	Instruction	(CPI)	count.	These	workloads	tend	to	use	processor	and	memory
resources	poorly.	Large	CPIs	are	usually	caused	by	high	cache-miss	rates	from	a	large	working
set.

Workloads	that	do	not	benefit	much	from	simultaneous	multithreading	are	those	in	which	the
majority	of	individual	software	threads	use	a	large	amount	of	any	resource	in	the	processor	or
memory.	For	example,	workloads	that	are	floating-point	intensive	are	likely	to	gain	little	from
simultaneous	multithreading	and	are	the	ones	most	likely	to	lose	performance.

In	addition,	consider	how	idling	with	SMT	works	and	whether	scaled	throughput	mode
(vpm_throughput_mode)	might	be	better:

When	a	single	logical	CPU	(SMT	thread)	of	a	virtual	processor	is	used	by	a	logical	partition,	the
rest	of	the	logical	CPUs	(SMT	threads)	of	this	virtual	processor	remain	free	and	ready	for	extra
workload	for	this	logical	partition.	Those	free	logical	CPUs	are	reflected	as	%idle	CPU	time
until	they	get	busy,	and	they	won't	be	available	at	that	time	for	other	logical	partitions.

	

CPU	Terminology

See	the	discussion	of	CPU	core(s)	as	background.

Physical	Processor:	An	IBM	Power	CPU	core.
Virtual	Processor:	The	logical	equivalent	of	a	Physical	Processor,	although	the	underlying	Physical
Processor	may	change	over	time	for	a	given	Virtual	Processor.
Logical	Processor:	If	SMT	is	disabled,	a	Virtual	Processor.	If	SMT	is	enabled,	an	SMT	thread	in	the
Virtual	Processor.

	

https://www.ibm.com/docs/en/aix/7.3?topic=l-lssrad-command
https://www.ibm.com/docs/en/aix/7.3?topic=s-smtctl-command
https://www.ibm.com/docs/en/aix/7.3?topic=concepts-simultaneous-multithreading
https://www.ibm.com/support/pages/high-idle-cpu-percentage

Micro-Partioning

The	LPAR	always	sees	the	number	of	CPUs	as	reported	by	"Online	Virtual	CPUs"	in	lparstat	-i:

$	lparstat	-i
Type																																							:	Shared-SMT-4
Mode																																							:	Uncapped
Entitled	Capacity																										:	0.20
Online	Virtual	CPUs																								:	2
[...]

We	generally	recommend	setting	(Virtual	CPUs)	/	(Physical	CPUs)	<=	3	for	Power7,	for	example,	ideally	1-
2.	Also	note	that	a	virtual	processor	may	be	a	CPU	core	thread	rather	than	a	CPU	core.	Review	the	Operating
Systems	chapter	for	background	on	CPU	allocation.

If	the	LPAR	is	capped,	it	can	only	use	up	to	its	entitlement,	spread	across	the	online	virtual	CPUs.	In	general,
if	using	capped	LPARs,	it's	recommended	to	set	entitlement	equal	to	online	virtual	CPUs.	If	the	LPAR	is
uncapped,	it	can	use	up	to	all	of	the	online	virtual	CPUs,	if	available.

Consider	the	overhead	of	micro-partitioning:

The	benefit	of	Micro-Partitioning	is	that	it	allows	for	increased	overall	utilization	of	system
resources	by	applying	only	the	required	amount	of	processor	resource	needed	by	each	partition.
But	due	to	the	overhead	associated	with	maintaining	online	virtual	processors,	consider	the
capacity	requirements	when	choosing	values	for	the	attributes.

For	optimal	performance,	ensure	that	you	create	the	minimal	amount	of	partitions,	which
decreases	the	overhead	of	scheduling	virtual	processors.

CPU-intensive	applications,	like	high	performance	computing	applications,	might	not	be	suitable
for	a	Micro-Partitioning	environment.	If	an	application	uses	most	of	its	entitled	processing
capacity	during	execution,	you	should	use	a	dedicated	processor	partition	to	handle	the	demands
of	the	application.

Even	if	using	uncapped,	entitled	capacity	should	generally	not	exceed	100%	because	the	lack	of	processor
affinity	may	cause	performance	problems.	Use	mpstat	to	review	processor	affinity.

For	PowerVM,	a	dedicated	partition	is	preferred	over	a	shared	partition	or	a	workload	partition	for	the	system
under	test.

	

Processor	folding

By	default,	CPU	folding	occurs	in	both	capped	and	uncapped	modes,	with	the	purpose	being	to	increase	CPU
cache	hits.	In	general,	CPU	folding	should	not	be	disabled,	but	low	values	of	CPU	folding	may	indicate	low
entitlement.	Consider	testing	with	folding	disabled	using	schedo:

schedo	-o	vpm_xvcpus=-1

	

vmstat

vmstat	may	be	used	to	query	processor	usage;	for	example:

$	vmstat	-tw	30	2
System	configuration:	lcpu=8	mem=8192MB	ent=0.20
		kthr										memory																									page																							faults																	cpu													time		
-------	---------------------	------------------------------------	------------------	-----------------------	--------
		r			b								avm								fre				re				pi				po				fr					sr				cy				in					sy				cs	us	sy	id	wa				pc				ec	hr	mi	se

https://www.ibm.com/docs/en/aix/7.3?topic=partitioning-micro-performance-implications
https://www.ibm.com/support/pages/assigning-appropriate-processor-entitled-capacity
https://www.ibm.com/docs/en/aix/7.3?topic=m-mpstat-command
https://www.ibm.com/docs/en/aix/7.3?topic=performance-virtual-processor-management-within-partition
https://www.ibm.com/docs/en/aix/7.3?topic=performance-virtual-processor-management-within-partition
https://www.ibm.com/docs/en/aix/7.3?topic=v-vmstat-command

		9			0					934618					485931					0					0					0					0						0					0				18			2497		1299		4	12	84		0		0.06		27.5	11:49:44
		6			0					934629					485919					0					0					0					0						0					0				21		13938		3162	56	11	32		0		0.29	142.9	11:50:14

Key	things	to	look	at:

The	"System	configuration"	line	will	report	the	number	of	logical	CPUs	(in	this	example,	8),	which
may	be	more	than	the	number	of	physical	CPUs	(due	to	SMT).
r:	This	is	the	run	queue	which	is	the	sum	of	the	number	of	threads	currently	running	on	the	CPUs	plus
the	number	of	threads	waiting	to	run	on	the	CPUs.	This	number	should	rarely	go	above	the	number	of
logical	CPUs.
b:	This	is	the	number	of	threads	which	are	blocked,	usually	waiting	for	I/O,	and	should	usually	be
zero.
pi/po:	Pages	in	and	pages	out,	respectively,	should	usually	be	zero	(pi	in	particular).
us/sy/id/wa:	These	report	the	processor	usage	in	different	dimensions.
pc:	This	reports	the	processor	usage	as	a	fraction	of	the	number	of	physical	CPUs.
ec:	This	reports	the	processor	usage	as	a	fraction	of	the	number	of	entitled	CPUs.

	

topas

topas	may	be	used	to	query	system	resource	usage.

	

nmon

nmon	may	be	used	to	query	system	resource	usage.

To	run	nmon	during	an	issue,	review	the	AIX	nmon	Recipe.

When	using	the	-f	option,	nmon	will	run	in	the	background	so	explicitly	putting	it	into	the	background	(using
&)	is	not	necessary.	This	will	create	a	file	with	the	name	$HOST_$STARTDAY_$STARTTIME.nmon

Consider	loading	nmon	files	into	the	NMONVisualizer	tool:

https://www.ibm.com/docs/en/aix/7.3?topic=t-topas-command
https://www.ibm.com/docs/en/aix/7.3?topic=n-nmon-command
https://nmonvisualizer.github.io/nmonvisualizer/

There	is	also	a	Microsoft	Excel	spreadsheet	visualizer	tool	named	Nmon-Analyser.

	

PoolIdle	0

If	nmon	shows	an	LPAR	PoolIdle	value	of	0,	then	the	POWER	HMC	"Allow	performance	information

http://nmon.sourceforge.net/pmwiki.php?n=Site.Nmon-Analyser

collection"	option	is	disabled.	Most	customers	have	this	enabled	in	production.	Enable	this	by	selecting
"Allow	performance	information	collection" .

	

tprof

tprof	may	be	used	as	a	lightweight,	native	CPU	sampling	profiler;	for	example:

LDR_CNTRL=MAXDATA=0x80000000	tprof	-Rskeuj	-x	sleep	60

Output	will	go	to	sleep.prof;	for	example:

Process																												FREQ		Total	Kernel			User	Shared		Other
=======																												====		=====	======			====	======		=====
wait																																		8		30387		30387						0						0						0
java																																	34		17533			9794						0			7277				462
/usr/sbin/syncd																							2					91					91						0						0						0
/usr/bin/tprof																								3						4						4						0						0						0
PID-1																																	1						2						2						0						0						0
/usr/bin/trcstop																						1						1						0						0						1						0
=======																												====		=====	======			====	======		=====
Total																																54		48023		40283						0			7278				462

The	Kernel	column	is	subset	of	the	total	samples	that	were	in	system	calls,	User	in	user	programs,	Shared	in
shared	libraries.	For	Java,	Shared	represents	the	JVM	itself	(e.g.	GC)	or	running	JNI	code,	and	Other
represents	Java	methods.	Total	sampled	CPU	usage	of	all	Java	processes	is	the	Total	column	of	the	java
processes	divided	by	the	Total	column	of	the	Total	row	(for	example,	(17533/48023)*100	=	36.5%).

By	default,	tprof	does	not	provide	method	names	for	Java	user	code	samples	(seen	as	hexadecimal
addresses	in	SEGMENT-N	sections).	AIX	ships	with	a	JVMTI	agent	(libjpa)	that	allows	tprof	to	see	method
names;	however,	if	you've	isolated	the	processor	usage	in	tprof	to	user	Java	code,	then	it	is	generally	better
to	use	a	profiler	such	as	Health	Center	instead.	Nevertheless,	to	use	the	AIX	Java	agent,	use	the	-
agentlib:jpa64	argument.

	

Per-thread	CPU	usage

tprof	output	also	has	a	per-thread	CPU	section;	for	example:

Process																	PID						TID		Total	Kernel			User	Shared		Other
=======																	===						===		=====	======			====	======		=====		
wait																		53274				61471			4262			4262						0						0						0		
wait																		61470				69667			3215			3215						0						0						0		
java																	413760			872459			1208				545						0				647					16		
java																	413760			925875				964						9						0				955						0		
java																	413760			790723				759					12						0				747						0		[...]

This	is	the	same	braekdown	as	for	the	previous	section	but	on	a	thread-based	(TID).	Review	whether
particular	threads	are	consuming	most	of	the	CPU	or	if	CPU	usage	is	spread	across	threads.	If	a	thread	dump
was	taken,	convert	the	TID	to	hexadecimal	and	search	for	it	in	the	javacore.

	

CPU	Utilization	Reporting	Tool	(curt)

The	curt	tool	converts	kernel	trace	data	into	exact	CPU	utilization	for	a	period	of	time.	First,	generate	curt
data	and	then	review	it.

	

https://www.ibm.com/docs/en/power8/8284-22A?topic=cramd-enabling-operating-system-logical-partition-collect-memory-performance-information
https://www.ibm.com/docs/en/aix/7.3?topic=t-tprof-command
https://www.ibm.com/docs/en/aix/7.3?topic=c-curt-command
https://www.ibm.com/docs/en/aix/7.3?topic=curt-examples-command
https://www.ibm.com/docs/en/aix/7.3?topic=command-default-report-generated-by-curt

perfpmr.sh

perfpmr	is	a	utility	used	by	AIX	support	for	AIX	performance	issues;	for	example:

perfpmr.sh	600

The	number	of	seconds	passed	(in	the	above	example,	600)	is	not	the	duration	for	the	entire	script,	but	the
maximum	for	parts	of	it	(e.g.	tcpdump,	filemon,	etc.).	For	the	generally	recommended	option	value	of	600,
the	total	duration	will	be	about	30	minutes;	for	the	minimum	option	value	of	60,	the	total	duration	of	the
script	will	be	about	10	minutes.

	

Review	processor	affinity

To	search	for	processor	affinity	statistics,	run:

curt	-i	trace.tr	-n	trace.syms	-est	-r	PURR	-o	curt.out

Then	review	curt.out.	The	report	is	split	up	into	system,	per-CPU,	and	per-thread	analysis.	For	each	thread
(section	starts	with	"Report	for	Thread	Id"),	find	the	"processor	affinity:"	line.

grep	"processor	affinity:"	curt.out

The	ideal	affinity	is	1.0	(meaning	that	the	virtual	processor	is	always	going	back	to	the	same	physical
processor,	thus	maximizing	cache	hits,	etc.)	and	the	worst	affinity	is	0.	Affinity	may	be	low	if	a	partition	is
above	its	entitlement	and	the	shared	processor	pool	does	not	have	extra	capacity	or	is	in	flux,	because	the
partition	will	constantly	have	to	take	cycles	from	other	processors.

Perform	this	before	the	performance	problem	occurs	(under	full	load)	and	during	the	problem	and	compare
the	affinities.	If	affinity	decreased	during	the	problem,	then	the	lack	of	entitlement	may	be	making	things
worse.	Be	careful	with	cause	and	effect	here:	it's	unlikely	(though	possible)	that	the	decreased	affinity	in	and
of	itself	caused	the	problem,	but	instead	was	a	secondary	symptom	that	made	things	worse.

Processor	affinity	may	be	worse	depending	on	the	"spread"	over	the	physical	processors	with	a	large	number
of	configured	virtual	processors.	Recent	versions	of	AIX	introduced	processor	folding	which	tries	to	optimize
the	use	of	the	least	number	of	virtual	processors	both	to	increase	affinity	and	to	decrease	processor
management	overhead.	Nevertheless,	it	may	help	to	have	the	number	of	virtual	processors	not	much	higher
than	the	entitled	capacity	or	the	effectively	used	capacity	(see	the	processor	folding	section	on	how	to
calculate	virtual	processors).

	

Process	system	trace

One	interesting	thing	to	do	is	process	the	system	trace:

perfpmr.sh	-x	trace.sh	-r

This	creates	a	file	name	trace.int;	then,	for	example,	find	all	file	system	system	calls:

grep	java	trace.int	|	grep	lookuppn

If	you	see	a	lot	of	activity	to	the	/dev/null	device;	for	example:

107		-6947396-						64		14288867						2.183578	lookuppn	exit:	'/dev/null'	=	vnode	F1000A03000D1130

Though	this	is	to	the	bit	bucket,	it	will	cause	the	inode	for	the	 /dev/null	device	to	be	update	its	access
times	and	modification	times.	To	make	this	more	efficient,	run	the	following	dynamic	command:

https://www.ibm.com/support/pages/perfpmr-tool

raso	-p	-o	devnull_lazytime=1

	

truss

truss	traces	system	calls;	however,	it	may	have	a	large	performance	overhead:

truss	-d	-i	-s\!all	-o	truss.out	-p	$PID

Example	to	trace	a	failing	telnet:

truss	-d	-a	-f	-l	-X	-o	truss_$(hostname)_$(date	+"%Y%m%d_%H%M%S").txt	telnet	$DESTINATION

	

Physical	Memory	(RAM)

lsps	may	be	used	to	query	page	spaces:

$	lsps	-a
Page	Space						Physical	Volume			Volume	Group				Size	%Used	Active		Auto		Type	Chksum
hd6													hdisk0												rootvg								1024MB					2				yes			yes				lv						0

Consider	testing	with	explicit	large	pages.

	

vmstat

When	the	physical	memory	is	full,	paging	(also	known	as	swapping)	occurs	to	provide	additional	memory.
Paging	consists	of	writing	the	contents	of	physical	memory	to	disk,	making	the	physical	memory	available
for	use	by	applications.	The	least	recently	used	information	is	moved	first.	Paging	is	expensive	in	terms	of
performance	because,	when	the	required	information	is	stored	on	disk	it	must	be	loaded	back	into	physical
memory,	which	is	a	slow	process.

Where	paging	occurs,	Java	applications	are	impacted	because	of	garbage	collection.	Garbage	collection
requires	every	part	of	the	Java	heap	to	be	read.	If	any	of	the	Java	heap	has	been	paged	out,	it	must	be	paged
back	when	garbage	collection	runs,	slowing	down	the	garbage	collection	process.

The	vmstat	output	shows	whether	paging	was	taking	place	when	the	problem	occurred.	vmstat	output	has	the
following	format:

kthr					memory													page														faults								cpu								time
-----	-----------	------------------------	------------	-----------	--------
r		b			avm			fre		re		pi		po		fr			sr		cy		in			sy		cs	us	sy	id	wa	hr	mi	se
0		0	45483			221			0			0			0			0				1			0	224		326	362	24		7	69		0	15:10:22
0		0	45483			220			0			0			0			0				0			0	159			83		53		1		1	98		0	15:10:23
2		0	45483			220			0			0			0			0				0			0	145		115		46		0		9	90		1	15:10:24

The	columns	of	interest	are	pi	and	po	(page	in	and	page	out)	for	AIX.	Non-zero	values	indicate	that	paging
is	taking	place.

	

svmon

svmon	may	be	used	to	review	memory	usage	in	detail.	Unless	otherwise	noted,	numbers	such	as	inuse	and
virtual	are	in	numbers	of	frames,	which	are	always	4KB	each,	even	if	there	are	differently	sized	pages
involved.

https://www.ibm.com/docs/en/aix/7.3?topic=t-truss-command
https://www.ibm.com/docs/en/aix/7.3?topic=l-lsps-command
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=systems-tuning-aix
https://www.ibm.com/docs/en/aix/7.3?topic=s-svmon-command

Example	output	for	global	statistics:

$	svmon	-G
															size						inuse							free								pin				virtual
memory							524288					297790					226498						63497					107144
pg	space					131072								257

															work							pers							clnt
pin											63497										0										0
in	use							107144					164988						25658

The	values	in	the	svmon	-G	output	have	the	following	meanings:

memory:	pages	of	physical	memory	(RAM)	in	the	system
pg	space:	pages	of	paging	space	(swap	space)	in	the	system
pin:	pages	which	can	only	be	stored	in	physical	memory	and	may	not	be	paged	to	disk
in	use:	pages	which	are	currently	backed	by	physical	memory

Columns

size:	the	total	size	of	the	resource
inuse:	the	number	of	pages	which	are	currently	being	used
free:	the	number	of	pages	which	are	currently	not	being	used
pin:	the	number	of	pages	which	are	currently	in	use	that	can	only	be	stored	in	physical	memory	and
may	not	be	stolen	by	lrud
virtual:	the	number	of	pages	that	have	been	allocated	in	the	process	virtual	space
work:	the	number	of	pages	being	used	for	application	data
pers:	the	number	of	pages	being	used	to	cache	local	files	(e.g.	JFS)
clnt:	the	number	of	pages	being	used	to	cache	NFS/JFS2/Veritas/etc.	files

Memory	inuse	on	the	first	row	is	the	physical	memory	being	used.	This	is	split	on	the	second	section
between	work	for	processes,	pers	for	file	cache	(e.g.	JFS)	and	clnt	for	NFS/JFS2/Veritas/etc.	file	cache.
Total	file	cache	size	can	be	determined	by	adding	pers	and	clnt	inuse	values.

If	the	memory	inuse	value	is	equal	to	the	memory	size	value,	then	all	the	physical	memory	is	being	used.
Some	of	this	memory	will	most	likely	be	used	to	cache	file	system	data	as	the	AIX	kernel	allows	file	caching
to	use	up	to	80%	of	the	physical	memory	by	default.	Whilst	file	caching	should	be	released	before	paging	out
application	data,	depending	on	system	demand	the	application	memory	pages	may	be	swapped	out.	This
maximum	usage	of	the	physical	memory	by	file	caching	can	be	configured	using	the	AIX	vmtune	command
along	with	the	the	minperm	and	maxperm	values.	In	addition,	it	is	recommended	that	you	set	strict_maxperm
to	1	in	order	to	prevent	AIX	from	overriding	the	maxperm	setting.

If	all	the	physical	memory	is	being	used,	and	all	or	the	majority	of	the	in	use	memory	shown	in	the	second
section	is	for	work	pages,	then	the	amount	of	physical	memory	should	be	increased.	It	is	suggested	that	the
rate	of	increase	be	similar	to	the	amount	of	paging	space	used	(see	pg	space	inuse	value).

Notes:

32-bit	processes	have	up	to	16	segments	of	256MB	each.
64-bit	processes	have	up	to	2^36	segments	of	256MB	each.
Physical	memory	pages	are	called	memory	frames.
The	VSID	is	a	system-wide	segment	ID.	If	two	processes	are	referencing	the	same	VSID,	then	they
are	sharing	the	same	memory.
The	ESID	(effective	segment	ID)	is	a	process	level	segment	ID.	A	typical	virtual	address,	e.g.
0xF1000600035A6C00,	starts	with	the	segment	and	the	last	7	hex	digits	are	the	page/offset.
Larger	page	sizes	may	reduce	page	faults	and	are	more	efficient	for	addressing,	but	may	increase
overall	process	size	due	to	memory	holes.
Dynamic	page	promotion	occurs	when	a	set	of	contiguous	pages	(e.g.	4K)	add	up	to	a	page	of	the	next
higher	size	(e.g.	16	4K	pages	=	one	64K	page).	This	is	done	by	psmd	(Page	Size	Management
Daemon).

mbuf	memory	is	network-related	memory	usage.

	

32-bit	Memory	Model

The	32-bit	AIX	virtual	memory	space	is	split	into	16,	256MB	segments	(0x0	-	0x15).	Segment	0x0	is	always
reserved	for	the	kernel.	Segment	0x1	is	always	reserved	for	the	executable	code	(e.g.	java).	The	rest	of	the
segments	may	be	laid	out	in	different	ways	depending	on	the	LDR_CNTRL=MAXDATA	environment	variable	or
the	maxdata	parameter	compiled	in	the	executable.

By	default,	IBM	Java	and	Semeru	Java	will	choose	a	generally	appropriate	MAXDATA	value	depending	on
-Xmx.	Potential	options:

-Xmx	>	3GB:	MAXDATA=0@DSA	=	3.5GB	user	space,	256MB	malloc,	3.25GB	mmap
2.25GB	<	-Xmx	<=	3GB:	MAXDATA=0XB0000000@DSA	=	3.25GB	user	space,	malloc	grows	up,	mmap
grows	down
-Xmx	<=	2.25GB:	MAXDATA=0XA0000000@DSA	=	2.75GB	user	space,	malloc	grows	up,	mmap	grows
down,	shared	libraries	in	0xD	and	0xF
MAXDATA=0@DSA	is	not	very	practical	because	it	only	leaves	a	single	segment	for	native	heap	(malloc)
which	is	usually	insufficient

If	you	need	more	native	memory	(i.e.	native	OOM	but	not	a	leak),	and	your	-Xmx	is	less	than	2.25GB,
explicitly	setting	0xB@DSA	may	be	useful	by	increasing	available	native	memory	by	approximately	400MB	to
600MB.	This	causes	the	shared/mapped	storage	to	start	at	0xF	and	grow	down.	The	cost	is	that	shared
libraries	are	loaded	privately	which	increases	system-wide	virtual	memory	load	(and	thus	potentially
physical	memory	requirements).	If	you	change	X	JVMs	on	one	machine	to	the	0xB@DSA	memory	model,	then
the	total	virtual	and	real	memory	usage	of	that	machine	may	increase	by	up	to	(N*(X-1))	MB,	where	N	is	the
size	of	the	shared	libraries'	code	and	data.	Typically,	for	stock	WebSphere	Application	Server,	N	is	about
50MB	to	100MB.	The	change	should	not	significantly	affect	performance,	assuming	you	have	enough
additional	physical	memory.

Another	effect	of	changing	to	the	0xB@DSA	memory	model	is	that	segment	0xE	is	no	longer	available	for
mmap/shmat,	but	instead	those	allocations	grow	down	in	the	same	way	as	the	Java	heap.	If	your	-Xmx	is	a
multiple	of	256MB	(1	segment),	and	your	process	uses	mmap/shmat	(e.g.	client	files),	then	you	will	have	one
less	segment	for	native	memory.	This	is	because	native	memory	allocations	(malloc)	cannot	share	segments
with	mmap/shmat	(Java	heap,	client	files,	etc.).	To	fully	maximize	this	last	segment	for	native	memory,	you
can	calculate	the	maximum	amount	of	memory	that	is	mmap'ped/shmat'ed	at	any	one	time	using	svmon	(find
mmap'ped	sources	other	than	the	Java	heap	and	clnt	files),	and	then	subtract	this	amount	from	-Xmx.	-Xmx	is
not	required	to	be	a	multiple	of	256MB,	and	making	room	available	in	the	final	segment	may	allow	the
mmap'ped/shmat'ted	allocations	to	be	shared	with	the	final	segment	of	the	Java	heap,	leaving	the	next	segment
for	native	memory.	This	only	works	if	said	mmaps/shmats	are	not	made	to	particular	addresses.

When	setting	MAXDATA	for	Java,	set	both	LDR_CNTRL	and	IBM_JVM_LDR_CNTRL_NEW_VALUE	envars.

	

Java

Consider	AIX	environment	variable	tuning	for	Java	applications:

AIXTHREAD_SCOPE=S
The	default	value	for	this	variable	is	S,	which	signifies	system-wide	contention	scope
(1:1).
AIXTHREAD_MUTEX_DEBUG=OFF
Maintains	a	list	of	active	mutexes	for	use	by	the	debugger.
AIXTHREAD_COND_DEBUG=OFF
Maintains	a	list	of	condition	variables	for	use	by	the	debugger.

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=only-automatic-ldr-cntrlmaxdata-values-32-bit
https://www.ibm.com/docs/en/aix/7.3?topic=monitoring-java-tuning-aix

AIXTHREAD_RWLOCK_DEBUG=OFF
Maintains	a	list	of	active	mutual	exclusion	locks,	condition	variables,	and	read-write	locks
for	use	by	the	debugger.	When	a	lock	is	initialized,	it	is	added	to	the	list	if	it	is	not	there
already.	This	list	is	implemented	as	a	linked	list,	so	searching	it	to	determine	if	a	lock	is
present	or	not	has	a	performance	implication	when	the	list	gets	large.	The	problem	is
compounded	by	the	fact	that	the	list	is	protected	by	a	lock,	which	is	held	for	the	duration
of	the	search	operation.	Other	calls	to	the	pthread_mutex_init()	subroutine	must	wait
while	the	search	is	completed.	For	optimal	performance,	you	should	set	the	value	of	this
thread-debug	option	to	OFF.	Their	default	is	ON.
SPINLOOPTIME=500
Number	of	times	that	a	process	can	spin	on	a	busy	lock	before	blocking.	This	value	is	set
to	40	by	default.	If	the	tprof	command	output	indicates	high	CPU	usage	for	the
check_lock	routine,	and	if	locks	are	usually	available	within	a	short	amount	of	time,	you
should	increase	the	spin	time	by	setting	the	value	to	500	or	higher.

	

Input/Output	(I/O)

Disk

Consider	mounting	with	noatime:

For	filesystems	with	a	high	rate	of	file	access,	performance	can	be	improved	by	disabling	the
update	of	the	access	time	stamp.	This	option	can	be	added	to	a	filesystem	by	using	the	"-o
noatime"	mount	option,	or	permanently	set	using	"chfs	-a	options=noatime."

	

iostat

Investigate	disk	performance	using	iostat.

Start	iostat:

nohup	iostat	-DRlT	10	>iostat.txt	2>&1	&

Stop	iostat:

kill	$(ps	-ef	|	grep	iostat	|	grep	-v	grep	|	awk	'{print	$2}')

Example	iostat	output:

System	configuration:	lcpu=56	drives=2	paths=8	vdisks=0

Disks:															xfers																																read																																write																																		queue																				time
--------	--------------------------------	------------------------------------	------------------------------------	--------------------------------------	---------
											%tm				bps			tps		bread		bwrtn			rps				avg				min				max	time	fail			wps				avg				min				max	time	fail				avg				min				max			avg			avg		serv
											act																																				serv			serv			serv	outs														serv			serv			serv	outs								time			time			time		wqsz		sqsz	qfull
hdisk0					0.1		86.4K			2.3			0.0			86.4K			0.0			0.0				0.0				0.0					0				0			2.3			0.5				0.3				1.2					0				0			0.0				0.0				0.0				0.0			0.0			0.0		03:54:59
hdisk1					0.0		86.4K			2.3			0.0			86.4K			0.0			0.0				0.0				0.0					0				0			2.3			0.4				0.3				0.8					0				0			0.0				0.0				0.0				0.0			0.0			0.0		03:54:59

Disks:															xfers																																read																																write																																		queue																				time
--------	--------------------------------	------------------------------------	------------------------------------	--------------------------------------	---------
											%tm				bps			tps		bread		bwrtn			rps				avg				min				max	time	fail			wps				avg				min				max	time	fail				avg				min				max			avg			avg		serv
											act																																				serv			serv			serv	outs														serv			serv			serv	outs								time			time			time		wqsz		sqsz	qfull
hdisk0					0.9	133.2K		21.3			0.0		133.2K			0.0			0.0				0.0				0.0					0				0		21.3			0.3				0.3				0.9					0				0			0.0				0.0				0.0				0.0			0.0			0.0		03:55:09
hdisk1					0.9	133.2K		21.3			0.0		133.2K			0.0			0.0				0.0				0.0					0				0		21.3			0.3				0.2				0.8					0				0			0.0				0.0				0.0				0.0			0.0			0.0		03:55:09

Review	how	to	interpret	iostat.	The	key	metric	is	%tm_act	which	reports	the	percent	of	time	spent	waiting
on	that	disk	for	that	period.

https://www.ibm.com/support/pages/file-times-aix
https://www.ibm.com/docs/en/aix/7.3?topic=i-iostat-command
https://www.ibm.com/docs/en/aix/7.3?topic=io-assessing-disk-performance-iostat-command
https://www.ibm.com/docs/en/aix/7.3?topic=io-wait-time-reporting

	

inode	cache

Here	are	considerations	about	the	inode	cache	from	an	AIX	expert:

The	ioo	settings	for	j2	inode	cache	and	meta	data	cache	sizes	need	to	be	evaluated	on	a	case	by
case	basis.	Determine	if	the	values	are	too	high	by	comparing	the	number	of	client	segments	in
the	svmon	-S	output	with	the	number	of	unused	segments.	Also	consider	the	absolute	number	of
client	segments.	As	files	are	opened,	we	expect	these	numbers	to	go	up.	Do	not	adjust	anything
unless	the	number	of	client	segments	exceeds	about	250,000	and	the	number	of	unused
segments	is	greater	than	about	95%.	In	most	cases,	reduce	them	to	100	each.

Such	a	change	may	be	done	with:

ioo	-p	-o	j2_inodeCacheSize=100	-o	j2_metadataCacheSize=100

	

Networking

Network	interfaces

Query	network	interfaces:

$	ifconfig	-a
en0:	flags=1e080863,480<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHECKSUM_OFFLOAD(ACTIVE),CHAIN>
								inet	10.20.30.10	netmask	0xffffff00	broadcast	10.20.30.1
								tcp_sendspace	262144	tcp_recvspace	262144	rfc1323	1

Query	the	Maximum	Transmission	Unit	(MTU)	of	a	network	adapter:

$	lsattr	-El	en0	|	grep	"^mtu"
mtu											1500									Maximum	IP	Packet	Size	for	This	Device					True

Review	common	kernel	tuning	based	on	the	interface	type	and	MTU	size	of	the	adapter.

If	dedicated	network	adapters	are	set	up	for	inter-LPAR	network	traffic,	recent	versions	of	AIX	support	super
jumbo	frames	up	to	65280	bytes:

chdev	-l	en1	-a	mtu=65280

	

Interface	speed

Query	the	maximum	speed	of	each	interface	with	entstat;	for	example:

$	entstat	-d	en0
Media	Speed	Selected:	Autonegotiate
Media	Speed	Running:	10000	Mbps	/	10	Gbps,	Full	Duplex

Also,	in	general,	review	that	auto	negotiation	of	duplex	mode	is	configured.

Also	consider	jumbo	frames	on	gigabit	ethernet	interfaces.

	

Interface	statistics

https://www.ibm.com/docs/en/aix/7.3?topic=tuning-tcp-streaming-workload
https://www.ibm.com/docs/en/aix/7.3?topic=e-entstat-command
https://www.ibm.com/docs/en/aix/7.3?topic=tuning-adapter-speed-duplex-mode-settings
https://www.ibm.com/docs/en/aix/7.3?topic=tuning-selecting-jumbo-frame-mode-gigabit-ethernet

Use	netstat	-I	to	show	per-interface	statistics;	for	example:

$	netstat	-I	en0
Name			Mtu			Network					Address								Ipkts					Ierrs								Opkts					Oerrs		Coll
en40			1500		link#2						10.20.30.1			4840798					0										9107485					0						0

An	additional	parameter	may	be	passed	as	the	number	of	seconds	to	update	the	statistics:

$	netstat	-I	en0	5
				input	(en0)							output											input			(Total)									output				
		packets		errs		packets		errs	colls			packets		errs				packets		errs	colls
158479802					0	21545659					0					0	178974399					0			42040363					0					0
						25						0								1					0					0								29					0										5					0					0
						20						0								4					0					0								22					0										6					0					0

	

Ethernet	statistics

Use	the	netstat	-v	command	to	check	for	Packets	Dropped:	0,	Hypervisor	Send	Failures,
Hypervisor	Receive	Failures,	and	Receive	Buffer;	for	example:

$	netstat	-v
[...]
Hypervisor	Send	Failures:	0
Hypervisor	Receive	Failures:	0
Packets	Dropped:	0
[...]
Receive	Information					
		Receive	Buffers								
				Buffer	Type														Tiny				Small			Medium				Large					Huge
				Min	Buffers															512						512						128							24							24
				Max	Buffers														2048					2048						256							64							64
				Allocated																	512						512						128							24							24
				Registered																512						512						128							24							24
				History													
						Max	Allocated											512					1138						128							24							24
						Lowest	Registered							506						502						128							24							24

If	Max	Allocated	for	a	column	is	greater	than	Min	Buffers	for	that	column,	this	may	cause	reduced
performance.	Increase	the	buffer	minimum	using,	for	example:

chdev	-P	-l	${INTERFACE}	-a	min_buf_small=2048

If	Max	Allocated	for	a	column	is	equal	to	Max	Buffers	for	that	column,	this	may	cause	dropped	packets.
Increase	the	buffer	maximum	using,	for	example:

chdev	-P	-l	${INTERFACE}	-a	max_buf_small=2048

It	is	necessary	to	bring	down	the	network	interface(s)	and	network	device(s)	changed	by	the	above
commands	and	then	restart	those	devices	and	interfaces.	Some	customers	prefer	to	simply	reboot	the	LPAR
after	running	the	command(s).

	

Kernel	network	buffers

The	netstat	-m	command	can	be	used	to	query	mbuf	kernel	network	buffers;	for	example:

$	netstat	-m
Kernel	malloc	statistics:
*******	CPU	0	*******
By	size											inuse					calls	failed			delayed				free			hiwat			freed
64																		778		16552907						0								13					182			10484							0

https://www.ibm.com/docs/en/aix/7.3?topic=n-netstat-command
https://www.ibm.com/docs/en/aix/7.3?topic=command-netstat-v
https://www.ibm.com/docs/en/aix/7.3?topic=performance-netstat-m-command-monitor-mbuf-pools

128																	521			1507449						0								16					183				5242							0	[...]

The	failed	and	delayed	columns	should	be	zero.

	

Hostname	resolution

For	hostname	resolution,	by	default,	DNS	is	tried	before	/etc/hosts,	unless	DNS	is	not	set	up	(no
/etc/resolv.conf	file).	If	you	would	like	to	optimize	DNS	lookup	by	placing	entries	into	/etc/hosts,	then
consider	changing	the	order	of	hostname	lookup,	either	through	/etc/irs.conf	or	the	environment	variable
NSORDER.

	

Test	network	throughput

Network	throughput	may	be	tested	with	FTP:

ftp>	put	"|dd	if=/dev/zero	bs=64k	count=100000"	/dev/null
200	PORT	command	successful.
150	Opening	data	connection	for	/dev/null.
100000+0	records	in.
100000+0	records	out.
226	Transfer	complete.
6553600000	bytes	sent	in	170.2	seconds	(3.761e+04	Kbytes/s)
local:	|dd	if=/dev/zero	bs=64k	count=100000	remote:	/dev/null

	

TCP	Delayed	Acknowledgments

TCP	delayed	acknowledgments	(delayed	ACKs)	are	generally	recommended	to	be	disabled	if	there	is
sufficient	network	and	CPU	capacity	for	the	potential	added	ACK-only	packet	load.

To	see	if	a	node	is	delaying	ACKs,	review	netstat	-s	for	the	"N	delayed"	value;	for	example:

$	netstat	-s	|	grep	"delayed)"
																13973067635	ack-only	packets	(340783	delayed)

To	dynamically	disable	delayed	ACKs	without	persisting	it	through	reboots:

/usr/sbin/no	-o	tcp_nodelayack=1

To	permanently	disable	delayed	ACKs	(and	also	apply	it	dynamically	immediately):

/usr/sbin/no	-p	-o	tcp_nodelayack=1

	

TCP	Congestion	Control

Monitor	for	TCP	retransmissions.	In	most	modern,	internal	(LAN)	networks,	a	healthy	network	should	not
have	any	TCP	retransmissions.	If	it	does,	you've	likely	got	a	problem.	Use	a	tool	like	netstat	to	watch	for
retransmissions.	For	example,	periodically	run	the	following	command	and	monitor	for	increases	in	the
values:

$	netstat	-s	-p	tcp	|	grep	retrans
								1583979	data	packets	(9088131222	bytes)	retransmitted
								15007	path	MTU	discovery	terminations	due	to	retransmits
								185201	retransmit	timeouts

https://www.ibm.com/docs/en/aix/7.3?topic=resolution-name
https://www.ibm.com/docs/en/aix/7.3?topic=n-netstat-command

								34466	fast	retransmits
								344489	newreno	retransmits
								7	times	avoided	false	fast	retransmits
								0	TCP	checksum	offload	disabled	during	retransmit

If	you	observe	retransmissions,	engage	your	network	team	and	AIX	support	(if	needed)	to	review	whether
the	retransmission	are	true	retransmissions	or	not	and	to	investigate	the	cause(s).	One	common	cause	is	a
saturation	of	AIX	OS	TCP	buffers	and	you	may	consider	testing	tuning	such	as	the	following	using	the	no
command;	for	example:

no	-o	tcp_sendspace=524176
no	-r	-o	tcp_sendspace=524176
no	-o	tcp_recvspace=524176
no	-r	-o	tcp_recvspace=524176
no	-o	sb_max=1048352
no	-r	-o	sb_max=1048352

Review	advanced	network	tuning.

	

Virtual	Ethernet	Adapter	(VEA)

View	VEA	Buffer	Sizes

Display	VEA	adapter	buffers	(min_buf*	and	max_buf*).	Example:

$	lsattr	-E	-l	ent0

alt_addr								0x000000000000	Alternate	Ethernet	Address																	True
buf_mode								min												Receive	Buffer	Mode																								True
chksum_offload		yes												Enable	Checksum	Offload	for	IPv4	packets			True
copy_buffs						32													Transmit	Copy	Buffers																						True
copy_bytes						65536										Transmit	Copy	Buffer	Size																		True
desired_mapmem		0														I/O	memory	entitlement	reserved	for	device	False
ipv6_offload				no													Enable	Checksum	Offload	for	IPv6	packets			True
max_buf_control	64													Maximum	Control	Buffers																				True
max_buf_huge				128												Maximum	Huge	Buffers																							True
max_buf_large			256												Maximum	Large	Buffers																						True
max_buf_medium		2048											Maximum	Medium	Buffers																					True
max_buf_small			4096											Maximum	Small	Buffers																						True
max_buf_tiny				4096											Maximum	Tiny	Buffers																							True
min_buf_control	24													Minimum	Control	Buffers																				True
min_buf_huge				128												Minimum	Huge	Buffers																							True
min_buf_large			256												Minimum	Large	Buffers																						True
min_buf_medium		2048											Minimum	Medium	Buffers																					True
min_buf_small			4096											Minimum	Small	Buffers																						True
min_buf_tiny				4096											Minimum	Tiny	Buffers																							True

	

Monitor	for	potential	VEA	buffer	size	issues

Hypervisor	send	and	receive	failures	record	various	types	of	errors	sending	and	receiving	TCP	packets	which
may	include	TCP	retransmissions	and	other	issues.	As	with	TCP	retransmissions,	they	should	generally	be	0
and	are	relatively	easy	to	monitor	using	netstat	(or	entstat):

$	netstat	-v	|	grep	"Hypervisor.*Failure"
Hypervisor	Send	Failures:	0
Hypervisor	Receive	Failures:	14616351

The	last	line	above	is	for	receiving	buffers	and	if	that	counter	increases	often,	then	it	may	be	due	to
insufficient	VEA	buffers.	These	buffers	are	given	to	the	hypervisor	by	the	VEA	driver	so	that	the	VIOS	or
other	LPARs	in	the	same	frame	can	send	packets	to	this	LPAR.

https://www.ibm.com/docs/en/aix/7.3?topic=tuning-tcp-streaming-workload
https://www.ibm.com/docs/en/aix/7.3?topic=n-no-command
https://www.ibm.com/docs/en/aix/7.3?topic=performance-tcp-udp-tuning
https://www.ibm.com/support/pages/causes-hypervisor-send-and-receive-failures

The	Send	Failures	is	when	sending	packets	out	of	ths	LPAR	to	the	remote	LPAR	(either	the	VIOS	or
another	LPAR	in	the	same	frame).	If	you	get	Receive	Failures	under	the	Send	Failures	section,	then	it's
the	other	LPAR	which	is	running	out.	If	you	get	Send	errors,	then	it's	something	going	on	with	this	local
LPAR.

These	are	often	caused	by	insufficient	Virtual	Ethernet	Adapter	(VEA)	buffers	so	you	may	consider	 tuning
them	to	their	maximum	values	as	there	is	little	downside	other	than	increased	memory	usage.

Insufficient	virtual	ethernet	adapter	buffers	may	cause	TCP	retransmits.	A	symptom	of	this	might	be	when	a
non-blocking	write	appears	to	block	with	low	CPU,	whereas	it	would	normally	block	in	poll.

	

Change	Virtual	Ethernet	Adapter	Buffers

The	min	values	specify	how	many	buffers	are	preallocated.	Max	is	the	upper	limit	on	buffers	that	can	be
allocated	dyamically	as	needed.	Once	not	needed	any	more,	they	are	freed.	However	in	bursty	situations,
AIX	may	not	be	able	to	dynamically	allocate	buffers	fast	enough	so	that	could	risk	dropping	packets,	so
many	tune	both	min	and	max	values	to	the	max	that	they	can	be.

There	is	little	downside	to	using	maximum	values	other	than	memory	usage.	Here	are	the	sizes	of	the	buffers
used	depending	on	the	packet	size:

Tiny:	512	bytes
Small:	2048	bytes
Medium:	16384	bytes
Large:	32768	bytes
Huge:	65536	bytes

If	the	smaller	buffers	run	out,	then	the	larger	buffers	can	be	borrowed	by	the	VEA	driver	temporarily.

Review	the	maximum	value	for	each	parameter.	For	example:

$	lsattr	-R	-l	ent0	-a	max_buf_small
512...4096	(+1)

Use	the	chdev	command	to	change	the	buffer	sizes.	For	example:

chdev	-P	-l	ent0	-a	max_buf_small=4096

Perform	this	for	the	following:

min_buf_tiny
max_buf_tiny
min_buf_small
max_buf_small
min_buf_medium
max_buf_medium
min_buf_large
max_buf_large
min_buf_huge
max_buf_huge

Changing	the	virtual	ethernet	adapter	buffers	requires	rebooting	the	node.

	

PAUSE	Frames

https://www.ibm.com/docs/en/aix/7.3?topic=c-chdev-command

If	ethernet	flow	control	is	enabled,	in	general,	a	healthy	network	should	show	no	increase	in	PAUSE	frames
(e.g.	from	network	switches).	Monitor	the	number	of	XOFF	counters	(PAUSE	ON	frame).	For	example:

$	netstat	-v	|	grep	-i	xoff	
								Number	of	XOFF	packets	transmitted:	0
								Number	of	XOFF	packets	received:	0
								Number	of	XOFF	packets	transmitted:	0
								Number	of	XOFF	packets	received:	0
								Number	of	XOFF	packets	transmitted:	0
								Number	of	XOFF	packets	received:	0
								Number	of	XOFF	packets	transmitted:	0
								Number	of	XOFF	packets	received:	0

This	is	also	available	in	netstat.int	in	a	perfpmr	collection	and	search	for	Number	of	Pause	ON	Frames .
For	example:

$	awk	'/Time	.*	run/	{	print;	}	/ETHERNET	STATISTICS/	{	interface=$3;	gsub(/\(|\)/,	"",	interface);	}	/Number	of	Pause	ON	Frames	Received/	{	print	interface	"	"	$0;	}'	netstat.int	
Time	before	run:			Sat	Nov	14	02:33:49	EST	2020
ent0				Number	of	Pause	ON	Frames	Received:	68491
ent4				Number	of	Pause	ON	Frames	Received:	48551
ent2				Number	of	Pause	ON	Frames	Received:	0
ent6				Number	of	Pause	ON	Frames	Received:	0
ent3				Number	of	Pause	ON	Frames	Received:	2945314679
ent5				Number	of	Pause	ON	Frames	Received:	278601624
Time	after	run	:			Sat	Nov	14	02:38:49	EST	2020
ent0				Number	of	Pause	ON	Frames	Received:	68491
ent4				Number	of	Pause	ON	Frames	Received:	48551
ent2				Number	of	Pause	ON	Frames	Received:	0
ent6				Number	of	Pause	ON	Frames	Received:	0
ent3				Number	of	Pause	ON	Frames	Received:	2945317182
ent5				Number	of	Pause	ON	Frames	Received:	278606502

	

Dog	threads

Enabling	dog	threads	on	a	multi-CPU	system	may	increase	network	processing	throughput	by	distributing
packet	processing	across	multiple	CPUs,	although	it	may	also	increase	latency.

Symptoms	that	dog	threads	are	worth	considering	include	CPU	saturation	of	the	default	single	processor
handling	the	interrupts	and/or	a	large	number	of	Hypervisor	Receive	Failures.	The	latter	may	also	be	caused
by	insufficient	Virtual	Ethernet	Adapter	buffers,	so	ensure	those	are	increased	before	investigating	dog
threads.

This	feature	should	be	tested	and	evaluated	carefully	as	it	has	some	potential	costs	as	discussed	in	the
documentation.

Example	enabling	dog	threads:

ifconfig	en0	thread

Example	specifying	the	number	of	CPUs	to	use:

no	-o	ndogthreads=1

In	general,	test	a	low	number	and	increase	it	as	needed.	Using	0	will	use	all	available	CPUs	up	to	a	maximum
of	256.

Review	the	processing	that	the	threads	are	doing	using	netstat	-s.	For	example:

$	netstat	-s|	grep	hread
352	packets	processed	by	threads
0	packets	dropped	by	threads

https://www.ibm.com/support/pages/node/6347116
https://www.ibm.com/docs/en/aix/7.3?topic=tuning-enabling-dog-thread-usage-lan-adapters
https://www.ibm.com/docs/en/aix/7.3?topic=tuning-enabling-dog-thread-usage-lan-adapters

	

ARP	Table

The	Address	Resolution	Protocol	(ARP)	table	is	a	fixed	size	table	for	ARP	entries.	If	it	shows	evidence	of
being	purged,	then	it	may	be	increased.

Use	netstat	-p	arp	to	check	if	ARP	entries	are	being	purged:

$	netstat	-p	arp
arp:
								1633	packets	sent
								0	packets	purged

The	buckets	may	be	displayed	with	arp	-a.	There	is	a	number	of	table	buckets	(arptab_nb;	default	149)	and
a	per-bucket	size	(arptab_bsiz;	default	7).	If	ARP	entries	are	being	purged,	test	increasing	the	size	of	the
bucket	with	no.

$	no	-o	arptab_bsiz=10
$	no	-r	-o	arptab_bsiz=10

	

TCP	Traffic	Regulation

Recent	versions	of	AIX	include	a	TCP	Traffic	Regulation	(TR)	feature	which	is	designed	to	protect	against
network	attacks.	By	default	it	is	off,	but	security	hardening	commands	such	as	aixpert	may	enable	it
indirectly.	If	you	are	experiencing	mysterious	connection	resets	at	high	load,	this	may	be	working	as
designed	and	you	can	tune	or	disable	this	function	using	the	tcptr	command.

	

Interrupt	coalescing

By	default,	multiple	arriving	packets	are	coalesced	into	a	fewer	number	of	interrupts	using	interrupt
coalescing/moderation	to	reduce	interrupt	overhead.	Under	light	loads,	this	may	introduce	latency.	Consider
testing	different	values	of	rx_int_delay	to	find	the	best	option.

	

TIME_WAIT

TIME_WAIT	is	a	normal	TCP	socket	state	after	a	socket	is	closed.	In	case	this	duration	becomes	a	bottleneck,
consider	reducing	the	wait	amount	(in	15-second	intervals;	i.e.	1	=	15	seconds):

$	no	-o	tcp_timewait=1
$	no	-r	-o	tcp_timewait=1

	

iptrace

Capture	network	packets	using	iptrace.

Note:	iptrace	may	have	a	significant	performance	overhead	(up	to	~50%)	unless	-S	is	used	to	limit	the
maximum	captured	bytes	per	packet.	In	general,	test	iptrace	overhead	under	load	before	long-term	use.	It's
also	important	that	the	file	name	is	always	the	last	argument	after	any	flags.

Start	capturing	all	traffic	with	no	limits:

https://www.ibm.com/docs/en/aix/7.3?topic=arp-command
https://www.ibm.com/docs/en/aix/7.3?topic=performance-arp-cache-tuning
https://www.ibm.com/docs/en/aix/7.3?topic=n-no-command
https://www.ibm.com/docs/en/aix/7.3?topic=t-tcptr-command
https://www.ibm.com/docs/en/aix/7.3?topic=options-interrupt-coalescing
https://www.ibm.com/docs/en/aix/7.3?topic=i-iptrace-daemon

startsrc	-s	iptrace	"-a	-b	-B	/tmp/aixiptrace.bin"

To	creating	rolling	output	files,	use	the	-L	$bytes	option	which	will	roll	to	a	single	historical	file.	For
example,	the	following	limits	to	2GB	per	file,	so	with	one	historical	file,	that's	up	to	4GB	total.	There	is	no
way	to	create	more	than	one	historical	file.

startsrc	-s	iptrace	"-a	-b	-B	-L	2147483648	/tmp/aixiptrace.bin"

To	limit	the	bytes	captured	per	packet	(and	thus	reduce	the	overhead	and	disk	usage	of	iptrace),	use	the	-S
$bytes	option	(-B	and	-i	are	needed	to	use	-S).	For	example,	the	following	limits	each	packet	to	80	bytes:

startsrc	-s	iptrace	"-a	-b	-B	-S	80	/tmp/aixiptrace.bin"

Therefore,	for	a	low-overhead,	rotating	iptrace	up	to	4GB	of	total	disk	space,	use:

startsrc	-s	iptrace	"-a	-b	-B	-L	2147483648	-S	80	/tmp/aixiptrace.bin"

Filter	to	only	capture	traffic	coming	into	or	going	out	of	port	80:

startsrc	-s	iptrace	"-a	-b	-B	-p	80	/tmp/aixiptrace.bin"

Stop	capturing	traffic:

stopsrc	-s	iptrace

Use	Wireshark	to	analyze.

	

tcpdump

In	general,	iptrace	is	used	instead	of	tcpdump;	nevertheless,	tcpdump	is	available.

For	example,	capture	all	traffic	in	files	of	size	100MB	and	up	to	10	historical	files	(-C	usually	requires	-Z):

(nohup	tcpdump	-n	-i	$INTERFACE	-s	0	-C	100	-Z	root	-w	capture$(hostname)_$(date	+"%Y%m%d_%H%M").dmp	&);	sleep	1;	cat	nohput.out

To	stop	the	capture:

ps	-elf	|	grep	tcpdump	|	grep	-v	grep	|	awk	'{print	$4}'	|	xargs	kill	-INT

Use	Wireshark	to	analyze.

	

TCP	Keep-Alive

TCP	Keep-Alive	periodically	sends	packets	on	idle	connections	to	make	sure	they're	still	alive.	This	feature
is	disabled	by	default	and	must	be	explicitly	enabled	on	a	per-socket	basis	(e.g.	using	setsockopt	with
SO_KEEPALIVE	or	a	higher-level	API	like	Socket.setKeepAlive).	TCP	keepalive	is	different	from	HTTP
KeepAlive.

In	general,	the	purpose	of	enabling	and	tuning	TCP	keepalive	is	to	set	it	below	any	firewall	idle	timeouts
between	two	servers	on	a	LAN	using	connection	pools	between	them	(web	service	client,	DB,	LDAP,	etc.)	to
reduce	the	performance	overhead	of	connection	re-establishment.

If	TCP	Keep-Alive	is	enabled,	there	are	 three	kernel	parameters	to	tune	for	TCP	keep-alive:

1.	 tcp_keepidle:	The	number	of	half-seconds	after	which	a	socket	is	considered	idle	after	which	the
kernel	will	start	to	send	TCP	keepalive	probes	while	it's	idle.	This	defaults	to	14400	half-seconds	(2
hours)	and	is	the	major	TCP	keep-alive	tuning	knob.	In	general,	this	should	be	set	to	a	value	below	the

https://www.ibm.com/docs/en/aix/7.3?topic=t-tcpdump-command
https://www.ibm.com/docs/en/aix/7.3?topic=s-setsockopt-subroutine
https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html#setKeepAlive-boolean-
https://www.ibm.com/docs/en/aix/7.3?topic=n-no-command

firewall	timeout.	This	may	also	be	set	with	setsockopt	with	TCP_KEEPIDLE.
2.	 tcp_keepintvl:	The	number	of	seconds	to	wait	between	sending	each	TCP	keep-alive	probe.	This

defaults	to	150	half-seconds.	This	may	also	be	set	with	setsockopt	with	TCP_KEEPINTVL.
3.	 tcp_keepcnt:	The	maximum	number	of	probes	to	send	without	responses	before	giving	up	and	killing

the	connection.	This	defaults	to	8.	This	may	also	be	set	with	setsockopt	with	TCP_KEEPCNT.

For	example,	with	a	firewall	idle	timeout	of	60	seconds:

no	-o	tcp_keepidle=90
no	-o	tcp_keepintvl=10
no	-o	tcp_keepcnt=2

	

Nagle's	Algorithm	(RFC	896,	TCP_NODELAY)

In	general,	Nagle's	algorithm	does	not	need	to	be	disabled	at	an	AIX	level	as	products	such	as	WebSphere
disable	it	on	a	per-socket	basis;	however,	it	may	be	disabled	globally	using	no:

$	no	-o	tcp_nagle_limit=0
$	no	-r	-o	tcp_nagle_limit=0

	

Other	Kernel	and	Process	Settings

Update	the	maximum	open	files	ulimit	by	adding	the	following	lines	to	/etc/security/limits;	for
example:

nofiles	=	50000		
nofiles_hard	=	50000

	

Processor	sets/pinning

The	AIX	scheduler	generally	does	a	good	job	coordinating	CPU	usage	amongst	threads	and	processes;
however,	manually	assigning	processes	to	CPUs	can	provide	more	stable,	predictable	behavior.	Binding
processes	to	particular	CPUs	is	especially	important	on	systems	with	multiple	processing	modules	and	non-
uniform	memory	access,	and	also	depending	on	how	various	levels	of	cache	are	shared	between	processors.
It	is	best	to	understand	the	system	topology	and	partition	resources	accordingly,	especially	when	multiple
CPU	intensive	processes	must	run	on	the	machine.	The	easiest	way	to	do	this	is	using	the	execrset
command	to	specify	a	list	of	CPUs	to	bind	a	command	(and	its	children)	to	(running	this	command	as	non-
root	requires	the	CAP_NUMA_ATTACH	property):

execrset	-c	$CPUs	-e	$COMMAND

For	example:

execrset	-c	0-3	-e	java	-Xmx1G	MemoryAccess

Note	that	on	SMT-enabled	machines	the	list	of	CPUs	will	represent	logical	CPUs.	For	example,	if	the
machine	was	booted	in	SMT4	mode,	CPUs	0-3	represent	the	4	hardware	threads	that	the	physical	CPU	0	can
support.

It	is	important	to	note	that	currently	the	J9	JVM	configures	itself	based	on	the	number	of	online	processors	in
the	system,	not	the	number	of	processors	it	is	bound	to	(which	can	technically	change	on	the	fly).	Therefore,
if	you	bind	the	JVM	to	a	subset	of	CPUs	you	should	adjust	certain	thread-related	options,	such	as	-
Xgcthreads,	which	by	default	is	set	to	the	number	of	online	processors.

	

https://www.ibm.com/docs/en/aix/7.3?topic=s-setsockopt-subroutine
https://www.ibm.com/docs/en/aix/7.3?topic=s-setsockopt-subroutine
https://www.ibm.com/docs/en/aix/7.3?topic=s-setsockopt-subroutine
https://www.ibm.com/docs/en/aix/7.3?topic=n-no-command
https://www.ibm.com/docs/en/aix/7.3?topic=files-limits-file
https://www.ibm.com/docs/en/aix/7.3?topic=e-execrset-command

attachrset

attachrset	is	an	alternative	to	execrset	above	and	dynamically	attaches	a	process	and	its	threads	to	a	CPU
set.	For	example:

attachrset	-F	-c	0-3	$PID

Use	the	lsrset	command	to	list	the	current	rset	of	a	process:

lsrset	-p	$PID

	

Memory	Affinity

Memory	affinity	can	be	an	important	consideration	when	dealing	with	large	systems	composed	of	multiple
processors	and	memory	modules.	POWER-based	SMP	systems	typically	contain	multiple	processor	modules,
each	module	housing	one	or	more	processors.	Each	processing	module	can	have	a	system	memory	chip
module	(MCM)	attached	to	it,	and	while	any	processors	can	access	all	memory	modules	on	the	system,	each
processor	has	faster	access	to	its	local	memory	module.	AIX	memory	affinity	support	allows	the	OS	to
allocate	memory	along	module	boundaries	and	is	enabled	by	default.	To	enable/disable	it	explicitly,	use	vmo
-o	memory_affinity=1/0.

If	memory	affinity	is	enabled,	the	default	memory	allocation	policy	is	a	round-robin	scheme	that	rotates
allocation	amongst	MCMs.	Using	the	environment	variable	MEMORY_AFFINITY=MCM	will	change	the	policy	to
allocate	memory	from	the	local	MCM	whenever	possible.	This	is	especially	important	if	a	process	has	been
bound	to	a	subset	of	processors,	using	execrset	for	example;	setting	MEMORY_AFFINITY=MCM	may	reduce	the
amount	of	memory	allocated	on	non-local	MCMs	and	improve	performance.

	

Disabling	Hardware	Prefetching

The	dscrctl	command	sets	the	hardware	prefetching	policy	for	the	system.	Hardware	prefetching	is	enabled
by	default	and	is	most	effective	when	memory	access	patterns	are	easily	predictable.	The	hardware
prefetcher	can	be	configured	with	various	schemes;	however,	most	transaction	oriented	Java	workloads	may
not	benefit	from	hardware	prefetching	so	you	may	see	improved	performance	by	disabling	it	using	dscrctl
-n	-s	1.	J9	Java	provides	the	-XXsetHWPrefetch	command-line	switch	to	set	the	hardware	prefetch	policy
for	its	process	only.	Use	-XXsetHWPrefetch:none	to	disable	prefetching	and	-XXsetHWPrefetch=N	to	enable
a	specific	prefetch	policy,	where	N	is	a	value	recognized	by	dscrctl.	Recent	versions	of	J9	Java	disable
hardware	prefetching	by	default,	so	consider	testing	-XXsetHWPrefetch:os-default	to	revert	to	the
previous	behavior	and	allow	the	JVM	process	to	use	the	policy	currently	set	with	dscrctl.	Also	test	the
option	-XnotlhPrefetch.

	

Native	Memory	Allocation	(malloc)	Algorithms

In	one	benchmark,	throughput	improved	by	50%	simply	by	restarting	with	the	AIX	environment	variable
MALLOCOPTIONS=multiheap.	This	is	particularly	valuable	where	there	is	heavy,	concurrent	malloc	usage;
however,	in	many	cases	of	WAS/Java,	this	is	not	the	case.	Also	consider	MALLOCOPTIONS=pool,buckets.

malloc	is	often	a	bottleneck	for	application	performance,	especially	under	AIX	[...]	By	default,
the	[AIX]	malloc	subsystem	uses	a	single	heap,	which	causes	lock	contention	for	internal	locks
that	are	used	by	malloc	in	case	of	multi-threaded	applications.	By	enabling	[the	multiheap]
option,	you	can	configure	the	number	of	parallel	heaps	to	be	used	by	allocators.	You	can	set	the
multiheap	by	exporting	MALLOCOPTIONS=multipheap[:n],	where	n	can	vary	between	1-32	and

https://www.ibm.com/docs/en/aix/7.3?topic=attachrset-command
https://www.ibm.com/docs/en/aix/7.3?topic=l-lsrset-command
https://www.ibm.com/docs/en/aix/7.3?topic=d-dscrctl-command
https://www.ibm.com/docs/en/aix/7.3?topic=subsystem-malloc-multiheap
https://www.redbooks.ibm.com/redbooks/pdfs/sg248079.pdf

32	is	the	default	if	n	is	not	specified.	Use	this	option	for	multi-threaded	applications,	as	it	can
improve	performance.

The	multiheap	option	does	have	costs,	particularly	increased	virtual	and	physical	memory	usage.	The
primary	reason	is	that	each	heap's	free	tree	is	independent,	so	fragmentation	is	more	likely.	There	is	also
some	additional	metadata	overhead.

Increasing	the	number	of	malloc	heaps	does	not	significantly	increase	the	virtual	memory	usage	directly
(there	are	some	slight	increases	because	each	heap	has	some	bookkeeping	that	it	has	to	do).	However,	while
each	heap's	free	tree	is	independent	of	others,	the	heap	areas	all	share	the	same	data	segment,	so	native
memory	fragmentation	becomes	more	likely,	and	thus	indirectly	virtual	and	physical	memory	usage	may
increase.	It	is	impossible	to	predict	by	how	much	because	it	depends	on	the	rate	of	allocations	and	frees,	sizes
of	allocations,	number	of	threads,	etc.	It	is	best	to	take	the	known	physical	and	virtual	memory	usage	of	a
process	before	the	change	(rss,	vsz)	at	peak	workload,	so	let's	call	this	X	GB	(for	example,	9	GB).	Then
apply	the	change	and	run	the	process	to	peak	workload	and	monitor.	The	additional	usage	will	normally	be
no	more	than	5%	of	X	(in	the	above	example,	~500MB).	As	long	as	there	is	that	much	additional	physical
memory	available,	then	things	should	be	okay.	It	is	advised	to	continue	to	monitor	rss/vsz	after	the	change,
especially	over	time	(fragmentation	has	a	tendency	to	build	up).

How	do	you	know	if	this	is	affecting	you?	Consider:

A	concentration	of	execution	time	in	the	pthreads	library	[...]	or	in	kernel	locking	[...]	routines
[...]	is	associated	with	a	locking	issue.	This	locking	might	ultimately	arise	at	the	system	level	(as
seen	with	malloc	locking	issues	on	AIX),	or	at	the	application	level	in	Java	code	(associated	with
synchronized	blocks	or	methods	in	Java	code).	The	source	of	locking	issues	is	not	always
immediately	apparent	from	a	profile.	For	example,	with	AIX	malloc	locking	issues,	the	time	that
is	spent	in	the	malloc	and	free	routines	might	be	quite	low,	with	almost	all	of	the	impact
appearing	in	kernel	locking	routines.

Here	is	an	example	tprof	that	shows	this	problem	using	tprof	-ujeskzl	-A	-I	-X	-E	-r	report	-x
sleep	60:

Process																										FREQ		Total	Kernel			User	Shared		Other			Java
=======																										====		=====	======			====	======		=====			====
/usr/java5/jre/bin/java											174		22557		11850						0			7473					86			3148

Shared	Object																																		Ticks				%				Address		Bytes
=============																																		=====	======		=======		=====
/usr/lib/libc.a[shr_64.o]																							3037			9.93	900000000000d00	331774
/usr/lib/libpthread.a[shr_xpg5_64.o]												1894			6.19	9000000007fe200		319a8

		Total	Ticks	For	All	Processes	(KERNEL)	=	15045
Subroutine																	Ticks				%			Source																Address		Bytes
==========																	=====	======	======																=======		=====
._check_lock																2103			6.88	low.s																				3420					40

		Total	Ticks	For	All	Processes	(/usr/lib/libc.a[shr_64.o])	=	3037
Subroutine																	Ticks				%			Source																Address		Bytes
==========																	=====	======	======																=======		=====
.malloc_y																				856			2.80	../../../../../../../src/bos/usr/ccs/lib/libc/malloc_y.c				41420				840
.free_y																						669			2.19	../../../../../../../src/bos/usr/ccs/lib/libc/malloc_y.c				3f980				9a0

		Total	Ticks	For	All	Processes	(/usr/lib/libpthread.a[shr_xpg5_64.o])	=	1894

Subroutine																	Ticks				%			Source																Address		Bytes
==========																	=====	======	======																=======		=====
.global_unlock_ppc_mp								634			2.07	pth_locks_ppc_mp.s						2d714					6c
._global_lock_common									552			1.81	../../../../../../../../src/bos/usr/ccs/lib/libpthreads/pth_spinlock.c					2180				5e0
.global_lock_ppc_mp_eh							321			1.05	pth_locks_ppc_mp_eh.s				2d694					6c

The	key	things	to	notice	are:

1.	 In	the	first	Process	section,	the	Kernel	time	is	high	(about	half	of	Total).	This	will	also	show	up	in

https://www.redbooks.ibm.com/redbooks/pdfs/sg248079.pdf

topas/vmstat/ps	as	high	system	CPU	time.
2.	 In	the	Shared	Object	list,	libc	and	libpthread	are	high.
3.	 In	the	KERNEL	section,	._check_lock	is	high.
4.	 In	the	libc.a	section,	.malloc_y	and	.free_y	are	high.
5.	 In	the	libpthread.a	section,	.global_unlock_ppc_mp	and	other	similarly	named	functions	are	high.

If	you	see	a	high	percentage	in	the	KERNEL	section	in	unlock_enable_mem,	this	is	usually	caused	by	calls	to
sync	1/sync	L/lwsync.	It	has	been	observed	in	some	cases	that	this	is	related	to	the	default,	single	threaded
malloc	heap.

AIX	also	offers	other	allocators	and	allocator	options	that	may	be	useful:

Buckets
This	suboption	is	similar	to	the	built-in	bucket	allocator	of	the	Watson	allocator.	However,
with	this	option,	you	can	have	fine-grained	control	over	the	number	of	buckets,	number	of
blocks	per	bucket,	and	the	size	of	each	bucket.	This	option	also	provides	a	way	to	view	the
usage	statistics	of	each	bucket,	which	be	used	to	refine	the	bucket	settings.	In	case	the
application	has	many	requests	of	the	same	size,	then	the	bucket	allocator	can	be
configured	to	preallocate	the	required	size	by	correctly	specifying	the	bucket	options.	The
block	size	can	go	beyond	512	bytes,	compared	to	the	Watson	allocator	or	malloc	pool
options.

You	can	enable	the	buckets	allocator	by	exporting	MALLOCOPTIONS=buckets.
Complete	details	about	the	buckets	options	for	fine-grained	control	are	available	1	.
Enabling	the	buckets	allocator	turns	off	the	built-in	bucket	component	if	the	Watson
allocator	is	used
malloc	pools
This	option	enables	a	high	performance	front	end	to	malloc	subsystem	for	managing
storage	objects	smaller	than	513	bytes.	This	suboption	is	similar	to	the	built-in	bucket
allocator	of	the	Watson	allocator.	However,	this	suboptions	maintains	the	bucket	for	each
thread,	providing	lock-free	allocation	and	deallocation	for	blocks	smaller	than	513	bytes.
This	suboption	improves	the	performance	for	multi-threaded	applications,	as	the	time
spent	on	locking	is	avoided	for	blocks	smaller	than	513	bytes.

The	pool	option	makes	small	memory	block	allocations	fast	(no	locking)	and	memory
efficient	(no	header	on	each	allocation	object).	The	pool	malloc	both	speeds	up	single
threaded	applications	and	improves	the	scalability	of	multi-threaded	applications.

	

Example	Automation	Script

Customize	paths	and	commands	as	needed.	Example	usage:	/opt/diag.sh	javacore	sleep10	javacore
sleep10	javacore	sleep10	collect	cleantmp

#!/bin/sh
#	usage:	diag.sh	cmd...
#	Version	history:
#	*	0.0.1:	First	version

myversion="0.0.1"
outputfile="diag_$(hostname)_$(date	+"%Y%m%d_%H%M%S").log"

msg()	{
		echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	${@}"	|	tee	-a	"${outputfile}"
}

severeError()	{
		echo	""
		echo	"*****	ERROR	*****"
		msg	"${@}"

https://www.ibm.com/docs/en/aix/7.3?topic=set-sync-synchronize-dcs-data-cache-synchronize-instruction
https://www.redbooks.ibm.com/redbooks/pdfs/sg248079.pdf

		echo	"*****	ERROR	*****"
		echo	""
		exit	1
}

msg	"Starting	diag	version	${myversion}	for	$(hostname)	to	${outputfile}"

defaultcommands="uptime	vmstat	lparstat	iostat	svmon	netstatan	netstatv	lparstati"

msg	"Running	commands:	${defaultcommands}	${@}"

for	cmd	in	${defaultcommands}	"${@}";	do

		msg	"Processing	command	${cmd}"

		if	["${cmd}"	=	"uptime"];	then

				msg	"Getting	uptime"
				uptime	2>&1	|	tee	-a	"${outputfile}"

		elif	["${cmd}"	=	"vmstat"];	then

				msg	"Getting	a	quick	vmstat"
				vmstat	1	2	2>&1	|	tee	-a	"${outputfile}"

		elif	["${cmd}"	=	"lparstat"];	then

				msg	"Getting	a	quick	lparstat"
				lparstat	1	2	2>&1	|	tee	-a	"${outputfile}"

		elif	["${cmd}"	=	"iostat"];	then

				msg	"Getting	a	quick	iostat"
				iostat	1	2	2>&1	|	tee	-a	"${outputfile}"

		elif	["${cmd}"	=	"svmon"];	then

				msg	"Getting	svmon	-G"
				svmon	-G	2>&1	|	tee	-a	"${outputfile}"

		elif	["${cmd}"	=	"netstatan"];	then

				msg	"Getting	netstat	-an"
				netstat	-an	>>	"${outputfile}"	2>&1

		elif	["${cmd}"	=	"netstatv"];	then

				msg	"Getting	netstat	-v"
				netstat	-v	>>	"${outputfile}"	2>&1

		elif	["${cmd}"	=	"lparstati"];	then

				msg	"Getting	lparstat	-i"
				lparstat	-i	>>	"${outputfile}"	2>&1

		elif	["${cmd}"	=	"sleep10"];	then

				msg	"Sleeping	for	10	seconds"
				sleep	10

		elif	["${cmd}"	=	"javacore"];	then

				pid="$(cat	/cmd/IBM/WebSphere/AppServer/profiles/AppSrv01/logs/server1/server1.pid)"
				msg	"Requesting	javacore	for	PID	${pid}"
				kill	-3	${pid}	2>&1	|	tee	-a	"${outputfile}"

		elif	["${cmd}"	=	"collect"];	then

				collectoutputfile="diag_$(hostname)_$(date	+"%Y%m%d_%H%M%S").tar"

				msg	"Collecting	all	logs	to	${collectoutputfile}"

				tar	cvf	"${collectoutputfile}"	"${outputfile}"	\
																																			"/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/logs/server1/"	\
																																			"/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/logs/ffdc/"	\
																																			"/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/javacore"*	\
																																			"/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/heapdump"*	\
																																			"/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/core."*	\
												2>&1	|	tee	-a	"${outputfile}"

				compress	"${collectoutputfile}"	2>&1	|	tee	-a	"${outputfile}"

				msg	"Wrote	${collectoutputfile}.Z"

		elif	["${cmd}"	=	"cleantmp"];	then

				msg	"Cleaning	any	temporary	files"

				rm	-e	"/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/javacore"*	"/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/heapdump"*	"/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/core."*	2>&1	|	tee	-a	"${outputfile}"

		else
				severeError	"Unknown	command	${cmd}"
		fi
done

msg	"Finished	diag.	Wrote	to	${outputfile}"

	

z/OS

z/OS	Recipe

1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Generally,	physical	memory	should	never	be	saturated	and	the	operating	system	should	not	page

memory	out	to	disk.
3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have

poor	response	times.
4.	 TCP/IP	and	network	tuning,	whilst	sometimes	complicated	to	investigate,	may	have	dramatic	effects

on	performance.
5.	 Consider	tuning	TCP/IP	network	buffer	sizes.
6.	 Collect	and	archive	various	RMF/SMF	records	on	10	or	15	minute	intervals:

1.	 SMF	30	records
2.	 SMF	70-78	records
3.	 SMF	113	subtype	1	(counters)	records
4.	 With	recent	versions	of	z/OS,	Correlator	SMF	98.1	records
5.	 SMF	99	subtype	6	records
6.	 If	not	active,	activate	HIS	and	collect	hardware	counters:

7.	 Review	ps	-p	$PID	-m 	and	D	OMVS,PID=$PID	output	over	time	for	processes	of	interest.
8.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
9.	 Review	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.

10.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
11.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
12.	 Use	the	Workload	Activity	Report	to	review	performance.
13.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP

keepalive	timer	(TCPCONFIG	INTERVAL)	from	2	hours	to	a	value	less	than	intermediate	device	idle
timeouts	(e.g.	firewalls).

14.	 Review	SYS1.PARMLIB	(and	SYS1.IPLPARM	if	used)
15.	 Test	disabling	delayed	ACKs

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.halz001/tcpconfigstatement.htm

Also	review	the	general	topics	in	the	Operating	Systems	chapter.

	

Documentation

z/OS	product	documentation
z/OS	basic	skills	education

	

General

z/OS	is	normally	accessed	through	3270	clients,	telnet,	SSH,	or	FTP.

z/OS	uses	the	EBCDIC	character	set	by	default	instead	of	ASCII/UTF;	however,	some	files	produced	by
Java	are	written	in	ASCII	or	UTF.	These	can	be	converted	using	the	iconv	USS	command	or	downloaded
through	FTP	in	BINARY	mode	to	an	ASCII/UTF	based	computer.

	

Unix	System	Services	(USS)	and	OMVS

ps

ps	may	be	used	to	display	address	space	information	and	CPU	utilization;	for	example,	to	list	all	processes
and	accumulated	CPU	time:

	

By	Process

ps	-A	-o	xasid,jobname,pid,ppid,thdcnt,vsz,vsz64,vszlmt64,time,args

Example	output:

ASID	JOBNAME									PID							PPID	THCNT					VSZ						VSZ64			VSZLMT64								TIME	COMMAND
	160	SSHD7						16916941			67248492					1			16192			13631488					16383P				00:00:00	/usr/sbin/sshd	-R
	175	KGRIGOR3			84025829			33693995				29		217448	1527775232					20480M				00:00:31	java	-Xmx1g	...
		fb	KGRIGOR8			50471447					139700					1					456			13631488					20480M				00:00:00	ps	-A	-o	xasid,jobname,pid,ppid,thdcnt,vsz,vsz64,vszlmt64,time,args

	

By	Thread

To	display	details	about	each	thread	of	a	process,	use	-p	$PID	and	-m;	for	example:

ps	-p	$PID	-m	-o	xasid,jobname,pid,ppid,xtid,xtcbaddr,vsz,vsz64,vszlmt64,time,semnum,lpid,lsyscall,syscall,state,args

Example	output	with	TIME	showing	accumulated	CPU	by	thread:

ASID	JOBNAME									PID							PPID														TID		TCBADDR					VSZ						VSZ64			VSZLMT64								TIME		SNUM							LPID	LASTSYSC													SYSC	S						COMMAND
	175	KGRIGOR3			84025829			33693995																-								-		217448	1513095168					20480M				00:01:38					-										-	-																				-				HR					java	-Xmx1g	...
			-	-																	-										-	1cc3300000000001			8ce048		217448										-										-				00:00:00					-										0	1NOP1NOP1NOP1NOP1NOP	1IPT	KU					-
			-	-																	-										-	1cc4b00000000002			8fb2f8		217448										-										-				00:01:16					-										0	1NOP1NOP1NOP1NOP1NOP	-				RJ					-
			-	-																	-										-	1cc4d80000000003			8bce78		217448										-										-				00:00:00					-										0	1NOP1NOP1NOP1NOP1NOP	-				RNJV			-

	

USS	Settings

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos-basic-skills?topic=zosbasics/com.ibm.zos.zbasics/homepage.html

Display	global	USS	settings:	/D	OMVS,O

BPXO043I	10.14.11	DISPLAY	OMVS	616
OMVS					000F	ACTIVE													OMVS=(S4)
CURRENT	UNIX	CONFIGURATION	SETTINGS:
MAXPROCSYS						=							1900				MAXPROCUSER					=								500
MAXFILEPROC					=						65535				MAXFILESIZE					=	NOLIMIT
MAXCPUTIME						=	2147483647				MAXUIDS									=								500
MAXPTYS									=								750
MAXMMAPAREA					=							128K				MAXASSIZE							=	2147483647
MAXTHREADS						=						50000				MAXTHREADTASKS		=							5000
MAXCORESIZE					=						7921K				MAXSHAREPAGES			=									4M...
MAXQUEUEDSIGS			=						10000				SHRLIBRGNSIZE			=			67108864...

	

opercmd

opercmd	may	be	an	available	command	to	execute	operator	commands	normally	run	through	a	3270	session,
though	it	requires	special	permission.	For	example:

opercmd	"D	OMVS,O"

	

Tips

1.	 A	dataset	may	be	copied	to	a	file	with:	cp	"//'cbc.sccnsam(ccnubrc)'"	ccnubrc.C
2.	 To	get	to	OMVS:	ISPF	}	6	COMMAND	}	omvs
3.	 OMVS	disable	autoscroll:	NOAUTO	}	F2
4.	 OMVS	enable	autoscroll:	AUTO	}	F2
5.	 Convert	file	from	ASCII	to	EBCDIC:	iconv	-fiso8859-1	-tibm-1047	server.xml	>

server.ebcdic

	

Language	Environment	(LE)

z/OS	provides	a	built-in	mechanism	to	recommend	fine	tuned	values	for	the	LE	heap.	Run	with	LE
RPTSTG(ON)	and	consult	the	resulting	output:
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_tunezleheap.html

Ensure	that	you	are	NOT	using	the	following	options	during	production:	RPTSTG(ON),
RPTOPTS(ON),	HEAPCHK(ON)

For	best	performance,	use	the	LPALSTxx	parmlib	member	to	ensure	that	LE	and	C++	runtimes
are	loaded	into	LPA.

Ensure	that	the	Language	Environment	data	sets,	SCEERUN	and	SCEERUN2,	are	authorized	to
enable	xplink...	For	best	performance,	compile	applications	that	use	JNI	services	with	xplink
enabled.

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezle.html

	

pax

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_tunezleheap.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezle.html

The	pax	command	may	be	used	to	create	or	unpack	compressed	or	uncompressed	archive	files	(similar	to
POSIX	tar	and	gzip/gunzip).

Create	with	compression:	pax	-wzvf	$FILE.pax.Z	$FILES_OR_DIRS
Create	without	compression:	pax	-wvf	$FILE.pax	$FILES_OR_DIRS
Unpack	(compression	autodetected):	pax	-ppx	-rf	$FILE.pax.Z

	

uncompress

The	uncompress	command	may	be	used	to	decompress	.Z	files:

uncommpress	$FILE.Z

	

3270	Clients

The	z/OS	graphical	user	interface	is	normally	accessed	through	a	3270	session.	Commonly	used	client
program	are	Personal	Communications,	Host	On-Demand,	x3270	(Linux),	and	c3270	(macOS).	Some	notes:

1.	 On	some	3270	client	keyboard	layouts,	the	right	"Ctrl"	key	is	used	as	the	"Enter"	key.
2.	 Function	keys	are	used	heavily.	In	general,	F3	goes	back	to	the	previous	screen.
3.	 Some	clients	such	as	Host	On-Demand	allow	showing	a	virtual	keyboard	(View	}	Keypad)	which	may

help	when	needing	obscure	keys.
4.	 If	you	receive	a	red	X	in	the	bottom	left,	then	you	probably	tried	to	press	a	key	when	your	cursor	was

not	in	an	input	area.	Press	the	SysReq	key	and	press	Enter	to	reset	the	screen.
5.	 On	some	screens,	you	may	move	your	cursor	to	any	point	(normally	the	top	line)	and	press	F2	to	split

the	screen.	Use	F9	to	switch	between	screens.
6.	 Usually,	page	up	with	F7	and	page	down	with	F8.	If	you	type	m	in	the	input	field	and	press	F7	or	F8,

then	you	will	scroll	to	the	top	or	bottom,	respectively.
7.	 Usually,	page	right	with	F11	and	page	left	with	F10.
8.	 Usually,	type	f	"SEARCH"	to	find	something	and	then	press	F5	to	find	the	next	occurrence.	Use	prev	to

search	backwards:	f	"SEARCH"	prev

	

z/OS	Version

Display	z/OS	version	with	/D	IPLINFO

Search	for	the	"RELEASE"	line:

IEE254I		13.06.07	IPLINFO	DISPLAY	033
			SYSTEM	IPLED	AT	09.38.57	ON	05/15/2018
			RELEASE	z/OS	02.02.00				LICENSE	=	z/OS
			USED	LOADRE	IN	SYS1.IPLPARM	ON	00340
			ARCHLVL	=	2			MTLSHARE	=	N
			IEASYM	LIST	=	(05,RE,L)
			IEASYS	LIST	=	(LF,KB)	(OP)
			IODF	DEVICE:	ORIGINAL(00340)	CURRENT(00340)
			IPL	DEVICE:	ORIGINAL(00980)	CURRENT(00980)	VOLUME(PDR22)

	

Interactive	System	Productivity	Facility	(ISPF)

After	logging	in	through	a	3270	session,	it	is	common	to	access	most	programs	by	typing	ISPF.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.bpxa500/r4paxsh.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.bpxa500/unc.htm

Typically,	if	available,	F7	is	page	up,	F8	is	page	down,	F10	is	page	left,	and	F11	is	page	right.	Typing	"m"
followed	by	F7	or	F8	pages	down	to	the	top	or	bottom,	respectively.

If	available,	type	"F	STRING"	to	find	the	first	occurrence	of	STRING,	and	F5	for	the	next	occurrences.

Normally,	F3	returns	to	the	parent	screen	(i.e.	exits	the	current	screen).

Command	(normally	type	6	in	ISPF)	allows	things	such	as	TSO	commands	or	going	into	Unix	System
Services	(USS).

Utilities	-	Data	Set	List	(normally	type	3.4	in	ISPF)	allows	browsing	data	sets.

	

Central	Processing	Unit	(CPU)

z/OS	offers	multiple	different	types	of	processors	that	may	have	different	costs.	The	most	general	processor
type	is	called	the	general	purpose	processor	or	central	processor	(CP	or	GCP).	There	are	also	z	Integrated
Information	Processor	(zIIPs/IFAs)	for	Java,	etc.	workloads,	z	Application	Assist	Processors	(zAAPs),
Integrated	Facility	for	Linux	processors	(IFLs)	for	Linux	on	z/VM,	and	others.

	

SMF	98.1

With	z/OS	2.2	and	above,	always	collect	and	archive	SMF	98.1	records	if	IBM	z/OS	Workload	Interaction
Correlator	is	entitled.	These	records	provide	"valuable	data	for	diagnosing	transient	performance	problems;
summary	activities	with	a	worst	offender	and	its	activity	every	5	seconds"	with	minimal	overhead:	"IBM
benchmarks	were	run	with	all	available	Correlator	SMF	records	being	captured	and	logged	and	could	not
detect	any	additional	CPU	cost	from	the	increased	data	collection".

Post-process	the	output	data	set	using	SMF_CORE.	To	get	statistics	on	the	average	CP,	zIIP,	and	zAAP
utilization	and	top	consumers	of	each:

java	-Xmx1g	"-Dcom.ibm.ws390.smf.dateTimeFormat=yyyy-MM-dd'T'HH:mm:ss.SSSZ"	-DPRINT_WRAPPER=false	-jar	smftools.jar	"INFILE(DATASET)"	"PLUGIN(com.ibm.smf.plugins.Type98CPU,STDOUT)"

Example	output:

DateTime,LPAR,AvgCpuBusyCP,AvgCpuBusyzAAP,Avg_CpuBusy_zIIP,AddressSpaceMostCPU_CP,AddressSpaceMostCPU_zAAP,AddressSpaceMostCPU_zIIP
2023-12-11T12:30:00.000+0000,DBOC,43,0,41,D2PDDIST,,D2PDDIST
2023-12-11T12:30:05.000+0000,DBOC,50,0,44,D2PDDIST,,D2PDDIST
[...]

	

Display	processors

Display	processors	with	/D	M=CPU;	for	example,	this	shows	four	general	purpose	processors	and	four	zAAP
processors:

D	M=CPU
IEE174I	15.45.46	DISPLAY	M	700
PROCESSOR	STATUS
ID		CPU																		SERIAL
00		+																					0C7B352817
01		+																					0C7B352817
02		+																					0C7B352817
03		+																					0C7B352817
04		+A																				0C7B352817
05		+A																				0C7B352817
06		+A																				0C7B352817

https://www.ibm.com/docs/en/zos-basic-skills?topic=interfaces-what-is-tso
https://www.ibm.com/docs/en/zos/2.5.0?topic=zos-terms-understand
https://www.ibm.com/docs/en/zos/2.5.0?topic=management-using-z-integrated-information-processor-ziip
https://www.ibm.com/downloads/cas/AE7VLK0V
https://www.ibm.com/docs/en/zos/2.5.0?topic=SSLTBW_2.5.0/com.ibm.zos.v2r5.ieaw100/ifa.htm
https://www.ibm.com/docs/en/zvm/7.2?topic=architectures-specialty-processors
https://www.ibm.com/docs/en/zos-basic-skills?topic=concepts-mainframe-hardware-processing-units
https://www.ibm.com/support/pages/system/files/inline-files/Correlator%20Flash%20d040522_v2.pdf#page=2
https://www.ibm.com/support/pages/node/6437547
https://www.ibm.com/downloads/cas/US-ENUS221-388-CA/name/US-ENUS221-388-CA.PDF#page=5
https://github.com/IBM/IBM-Z-zOS/tree/main/SMF-Tools/SMF_CORE

07		+A																				0C7B352817
+	ONLINE				-	OFFLINE				.	DOES	NOT	EXIST				W	WLM-MANAGED						N	NOT	AVAILABLE					A		APPLICATION	ASSIST	PROCESSOR	(zAAP)

	

Display	threads	in	an	address	space

Display	threads	in	an	address	space	and	the	accumulated	CPU	by	thread:	/D	OMVS,PID=XXX	(search	for	PID
in	the	joblogs	of	the	address	space).	This	output	includes	a	CT_SECS	field	which	shows	the	total	CPU	seconds
consumed	by	the	address	space.	Note	that	the	sum	of	all	the	ACC_TIME	in	the	report	will	not	equal	CT_SECS	or
the	address	CPU	as	reported	by	RMF	or	SDSF	because	some	threads	may	have	terminated.	The	ACC_TIME
and	CT_SECS	fields	wrap	after	11.5	days	and	will	contain	*****;	therefore,	the	/D	OMVS,PID=	display	is	less
useful	when	the	address	space	has	been	running	for	longer	than	that.

-RO	MVSA,D	OMVS,PID=67502479
BPXO040I	11.09.56	DISPLAY	OMVS	545
OMVS	000F	ACTIVE	OMVS=(00,FS,0A)
USER	JOBNAME	ASID	PID	PPID	STATE	START	CT_SECS
WSASRU	WSODRA	S	0190	67502479	1	HR----	23.01.38	13897.128	1
LATCHWAITPID=	0	CMD=BBOSR
THREAD_ID												TCB@				PRI_JOB	USERNAME	ACC_TIME	SC	STATE
2621F4D000000008	009C7938																							12.040	PTX	JY	V

All	the	threads/TCBs	are	listed	and	uniquely	identified	by	their	thread	ID	under	the	THREAD_ID	column.	The
accumulated	CPU	time	for	each	thread	is	under	the	ACC_TIME	column.	The	thread	ID	is	the	first	8
hexadecimal	characters	in	the	THREAD_ID	and	can	be	found	in	a	matching	javacore.txt	file.	In	the	example
above,	the	Java	thread	ID	is	2621F4D0.

The	threads	with	eye-catcher	WLM	are	those	from	the	ORB	thread	pool	which	are	the	threads	that	run	the
application	enclave	workload.	Be	careful	when	attempting	to	reconcile	these	CPU	times	with	CPU
accounting	from	RMF	and	SMF.	This	display	shows	all	the	threads	in	the	address	space,	but	remember	that
threads	that	are	WLM	managed	(e.g.	the	Async	Worker	threads	and	the	ORB	threads)	have	their	CPU	time
recorded	in	RMF/SMF	under	the	enclave	which	is	reported	in	the	RMF	report	class	that	is	associated	with
the	related	WLM	classification	rule	for	the	CB	workload	type.	The	other	threads	will	have	their	CPU	time
charged	to	the	address	space	itself	as	it	is	classified	in	WLM	under	the	STC	workload	type.

WebSphere	trace	entries	also	contain	the	TCB	address	of	the	thread	generating	those	entries.	For	example:

THREAD_ID	TCB§	PRI_JOB	USERNAME	ACC_TIME	SC	STATE
2707058000000078	009BDB58	178.389	STE	JY	V
Trace:	2009/03/19	08:28:35.069	01	t=9BDB58	c=UNK	key=P8	(0000000A)

The	SDSF.PS	display	provides	an	easy	way	to	issue	this	command	for	one	or	more	address	spaces.	Type	d
next	to	an	address	space	to	get	this	same	output.	Type	ULOG	to	see	the	full	output	or	view	in	SDSF.LOG.

Similar	information	can	be	found	from	USS:

$	ps	-p	$PID	-m	-o	xtid,xtcbaddr,tagdata,state=STATE	-o	atime=CPUTIME	-o	syscall
												TID	TCBADDR	STATE	CPUTIME	SYSC
																				-	-				HR	14:12	-
1e4e300000000000	8d0e00				YU		0:20
1e4e400000000001	8d07a8			YJV		0:00
1e4e500000000002	8d0588		YNJV		0:00
1e4e600000000003	8d0368			YJV		1:35
1e4e700000000004	8d0148			YJV		0:25

	

31-bit	vs	64-bit

z/OS	does	not	have	a	32-bit	architecture,	but	instead	only	has	a	31-bit	architecture:

https://www.ibm.com/docs/en/zos/3.1.0?topic=messages-bpxo040i

		

zIIP/zAAP	Processors

Review	zIIP	processors:

1.	 Type	/D	IPLINFO	and	search	for	LOADY2.
2.	 Go	to	the	data	set	list	and	type	the	name	from	 LOADY2	in	Dsname	level	and	press	enter	(e.g.

SYS4.IPLPARM).
3.	 Type	b	to	browse	the	data	set	members	and	search	for	PARMLIB.
4.	 Go	to	the	data	set	list	and	type	the	name	(e.g.	 USER.PARMLIB)	and	find	the	IEAOPT	member.

Inside	SYS1.PARMLIB(IEAOPTxx),	the	following	options	will	affect	how	the	zIIP	engines	process	work.

1.	 IFACrossOver	=	YES	/	NO
YES	-	work	can	run	on	both	zIIP	and	general	purpose	CPs
NO	-	work	will	run	only	on	zIIPs	unless	there	are	no	zIIPs

2.	 IFAHonorPriority	=	YES	/	NO
YES	-	WLM	manages	the	priority	of	zIIP	eligible	work	for	CPs
NO	-	zIIP	eligible	work	can	run	on	CPs	but	at	a	priority	lower	than	any	non-zIIP	work

	

Java	zIIP/zAAP	usage

Restart	with	-Xtrace:iprint=j9util.48	and	review	stderr	for	libraries	using	zIIP/zAAP	with	the
following	message:

validateLibrary	shared	library	[...]/lib/default/zip	flagged	as	zAAP	enabled

	

System	Display	and	Search	Facility	(SDSF)

SDSF	(normally	type	S	in	ISPF)	provides	a	system	overview.

	

SDSF.LOG

LOG	shows	the	system	log	and	it	is	the	most	common	place	to	execute	system	commands.	Enter	a	system
command	by	pressing	/,	press	enter,	and	then	type	the	command	and	press	enter.	Then	use	F8	or	press	enter
to	refresh	the	screen	to	see	the	command's	output.

Display	system	activity	summary:	/D	A

IEE114I	16.18.32	2011.250	ACTIVITY	733																																		
JOBS					M/S				TS	USERS				SYSAS				INITS			ACTIVE/MAX	VTAM					OAS			
00008				00034				00001						00035				00034				00001/00300							00019

Display	users	on	the	system:	/D	TS,L

IEE114I	16.51.50	2011.251	ACTIVITY	298
JOBS					M/S				TS	USERS				SYSAS				INITS			ACTIVE/MAX	VTAM					OAS
00008				00039				00002						00039				00034				00002/00300							00029
DOUGMAC		OWT						WITADM1	IN

Check	global	resource	contention	with	/D	GRS,C

	

SDSF.DA

SDSF.DA	shows	active	address	spaces.	CPU/L/Z	A/B/C	shows	current	CPU	use,	where	A=total,	B=LPAR
usage,	and	C=zAAP/zIIP	usage.

Type	PRE	*	to	show	all	address	spaces.

Type	SORT	X	to	sort,	e.g.	SORT	CPU%.

Page	right	to	see	useful	information	such	as	MEMLIMIT,	RPTCLASS,	WORKLOAD,	and	SRVCLASS.

In	the	NP	column,	type	S	next	to	an	address	space	to	get	all	of	its	output,	or	type	?	to	get	a	member	list	and
then	type	S	for	a	particular	member	(e.g.	SYSOUT,	SYSPRINT).

When	viewing	joblog	members	of	an	address	space	(?	in	SDSF.DA),	type	XDC	next	to	a	member	to	transfer	it
to	a	data	set.

SDSF.ST	is	similar	to	DA	and	includes	completed	jobs.

	

Physical	Memory	(RAM)

Use	/D	M=STOR	to	display	available	memory.	The	ONLINE	sections	show	available	memory.	For	example,	this
shows	64GB:

D	M=STOR
IEE174I	16.00.48	DISPLAY	M	238
REAL	STORAGE	STATUS
ONLINE-NOT	RECONFIGURABLE
		0M-64000M
ONLINE-RECONFIGURABLE
		NONE
PENDING	OFFLINE
		NONE
0M	IN	OFFLINE	STORAGE	ELEMENT(S)
0M	UNASSIGNED	STORAGE
STORAGE	INCREMENT	SIZE	IS	256M

Use	/D	ASM	to	display	paging	spaces.	The	FULL	columns	for	LOCAL	entries	should	never	be	greater	than	0%.
For	example:

https://www.ibm.com/docs/en/zos/2.5.0?topic=panels-display-active-users-panel-da

D	ASM
IEE200I	15.30.16	DISPLAY	ASM	205
TYPE			FULL	STAT		DEV	DATASET	NAME
PLPA				79%			OK	0414	SYS1.S12.PLPA
COMMON			0%			OK	0414	SYS1.S12.COMMON
LOCAL				0%			OK	0414	SYS1.S12.LOCAL1
LOCAL				0%			OK	0445	SYS1.S12.PAGE01

Display	total	virtual	storage:	/D	VIRTSTOR,HVSHARE

IAR019I		17.08.47	DISPLAY	VIRTSTOR	313
SOURCE	=	DEFAULT
TOTAL	SHARED	=	522240G
SHARED	RANGE	=	2048G-524288G
SHARED	ALLOCATED	=	262244M

Some	systems	display	free	memory	with	/F	AXR,IAXDMEM:

IAR049I	DISPLAY	MEMORY	V1.0	233											
PAGEABLE	1M	STATISTICS																				
			66.7GB	:	TOTAL	SIZE																				
			50.8GB	:	AVAILABLE	FOR	PAGEABLE	1M	PAGE
	2404.0MB	:	IN-USE	FOR	PAGEABLE	1M	PAGES		
	5238.0MB	:	MAX	IN-USE	FOR	PAGEABLE	1M	PAG
				0.0MB	:	FIXED	PAGEABLE	1M	FRAMES						
LFAREA	1M	STATISTICS	-	SOURCE	=	DEFAULT			
				0.0MB	:	TOTAL	SIZE																				
				0.0MB	:	AVAILABLE	FOR	FIXED	1M	PAGES		
				0.0MB	:	IN-USE	FOR	FIXED	1M	PAGES					
				0.0MB	:	MAX	IN-USE	FOR	FIXED	1M	PAGES
LFAREA	2G	STATISTICS	-	SOURCE	=	DEFAULT			
				0.0MB	:	TOTAL	SIZE	=	0																
				0.0MB	:	AVAILABLE	FOR	2G	PAGES	=	0				
				0.0MB	:	IN-USE	FOR	2G	PAGES	=	0							
				0.0MB	:	MAX	IN-USE	FOR	2G	PAGES	=	0		

	

Job	Entry	Subsystem	(JES)

Use	/$DSPOOL	to	list	spool	utilization.	For	example:

$HASP646			41.0450	PERCENT	SPOOL	UTILIZATION

	

Workload	Management	(WLM)

WLM	only	makes	noticeable	decisions	about	resources	when	resources	are	low.

WLM	performs	better	with	less	service	classes.

Service	Classes	-	goals	for	a	particular	type	of	work	-	you	can	have	as	many	of	these	as	you	want	but
from	a	performance	perspective	the	fewer	service	classes	the	better
Classification	Rules	-	classification	rules	tie	an	address	space	or	group	of	address	spaces	to	a	goal	or
service	class
Report	Classes	-	report	classes	have	nothing	to	do	with	classification	of	work	but	they	do	allow	you	to
show	reports	from	a	particular	perspective	for	problem	and	performance	diagnosis

Display	WLM	configuration:	/D	WLM

IWM025I		14.31.46		WLM	DISPLAY	214
ACTIVE	WORKLOAD	MANAGEMENT	SERVICE	POLICY	NAME:	CBPTILE
ACTIVATED:	2011/06/13		AT:	16:15:27		BY:	WITADM1			FROM:	S12

https://www.ibm.com/docs/en/zos/2.5.0?topic=reference-displaying-real-storage-memory-statistics

DESCRIPTION:	CB	trans	w/short	percentile	goal
RELATED	SERVICE	DEFINITION	NAME:	CBPTILE
INSTALLED:	2011/06/13		AT:	16:15:08		BY:	WITADM1			FROM:	S12

The	related	service	definition	name	is	the	currently	configured	WLM	definition.

Classify	location	service	daemons	and	controllers	as	SYSSTC	or	high	velocity.

Set	achievable	percentage	response	time	goals:	For	example,	a	goal	that	80%	of	the	work	will
complete	in	.25	seconds	is	a	typical	goal.	Velocity	goals	for	application	work	are	not	meaningful
and	should	be	avoided.

Make	your	goals	multi-period:	This	strategy	might	be	useful	if	you	have	distinctly	short	and	long
running	transactions	in	the	same	service	class.	On	the	other	hand,	it	is	usually	better	to	filter	this
work	into	a	different	service	class	if	you	can.	Being	in	a	different	service	class	will	place	the
work	in	a	different	servant	which	allows	WLM	much	more	latitude	in	managing	the	goals.

Define	unique	WLM	report	classes	for	servant	regions	and	for	applications	running	in	your
application	environment.	Defining	unique	WLM	report	classes	enables	the	resource
measurement	facility	(RMF)	to	report	performance	information	with	more	granularity.

Periodically	review	the	results	reported	in	the	RMF	Postprocessor	workload	activity	report:
Transactions	per	second	(not	always	the	same	as	client	tran	rate),	Average	response	times	(and
distribution	of	response	times),	CPU	time	used,	Percent	response	time	associated	with	various
delays

Watch	out	for	work	that	defaults	to	SYSOTHER.

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezwlm.html

Delay	monitoring:
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_wlmdm.html

Example:
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_RMFsamples.html

You	can	print	the	entire	WLM	definition	from	the	main	screen:

Within	the	Subsystem	types	section	you	will	find	the	classification	rules	that	tie	the	address	spaces	to	the
service	classes	and	report	classes.	You	can	also	find	this	by	paging	right	in	SDSF.DA.

So	what	is	the	Response	Time	Ratio	and	what	does	it	tell	us?	WLM	calculates	the	Response	Time	Ratio	by
dividing	the	actual	response	time	(enclave	create	to	enclave	delete)	by	the	GOAL	for	this	service	class	and
multiplying	by	100.	It	is,	basically,	a	percentage	of	the	goal.	Note	that	WLM	caps	the	value	at	1000	so	if	the
goal	is	badly	missed	you	might	see	some	big	numbers	but	they	will	never	exceed	1000.	(http://www-
03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/0c808594b1db5c6286257bb1006118ab/$FILE/ATTHSSAD.pdf/WP102311_SMF_Analysis.pdf

A	CPU	goal	uses	CPU	Service	Units	which	normalize	across	different	CPU	models:
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.iear100/calc.htm

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezwlm.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_wlmdm.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_RMFsamples.html
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/0c808594b1db5c6286257bb1006118ab/$FILE/ATTHSSAD.pdf/WP102311_SMF_Analysis.pdf
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.iear100/calc.htm

	

HTTP	Request	Distribution

When	multiple	servants	are	bound	to	the	same	service	class,	WLM	attempts	to	dispatch	the	new
requests	to	a	hot	servant.	A	hot	servant	has	a	recent	request	dispatched	to	it	and	has	threads
available.	If	the	hot	servant	has	a	backlog	of	work,	WLM	dispatches	the	work	to	another	servant.

Normally	running	this	hot	servant	strategy	is	good	because	the	hot	servant	likely	has	all	its
necessary	pages	in	storage,	has	the	just-in-time	(JIT)	compiled	application	methods	saved	close
by,	and	has	a	cache	full	of	data	for	fast	data	retrieval.	However,	this	strategy	presents	a	problem
in	the	following	situations:	[...]

https://www.ibm.com/support/knowledgecenter/SS7K4U_9.0.5/com.ibm.websphere.zseries.doc/ae/crun_wlm_sessionplacement.html

The	default	workload	distribution	strategy	uses	a	hot	servant	for	running	requests	that	create
HTTP	session	objects.	Consider	configuring	the	product	and	the	z/OS	Workload	Manager	to
distribute	your	HTTP	session	objects	in	a	round-robin	manner	in	the	following	conditions:

HTTP	session	objects	in	memory	are	used,	causing	dispatching	affinities.
The	HTTP	sessions	in	memory	last	for	many	hours	or	days.
A	large	number	of	clients	with	HTTP	session	objects	must	be	kept	in	memory.
The	loss	of	a	session	object	is	disruptive	to	the	client	or	server.
There	is	a	large	amount	of	time	between	requests	that	create	HTTP	sessions.

https://www.ibm.com/support/knowledgecenter/SS7K4U_9.0.5/com.ibm.websphere.zseries.doc/ae/trun_wlm_sessionplacement.html

	

Execution	Velocity

"The	execution	velocity	is	a	measure	of	how	fast	work	is	running	compared	to	ideal	conditions	without
delays."
(https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.erbb500/exvel.htm)

	

System	Management	Facilities	(SMF)

SMF	captures	operating	system	statistics	to	data	sets.

Display	what	SMF	is	currently	recording:	/D	SMF,O

IEE967I	08.21.08	SMF	PARAMETERS	439
MEMBER	=	SMFPRMT8...
SYS(DETAIL)	--	PARMLIB
SYS(TYPE(0,2:10,14,15,20,22:24,26,30,32:34,40,42,47:48,58,64,
70:83,84,88,89,90,100:103,110,120,127:134,148:151,161,199,225,
244,245,253))	--	PARMLIB...
INTVAL(30)	--	PARMLIB...
DSNAME(SYS1.S34.MAN2)	--	PARMLIB
DSNAME(SYS1.S34.MAN1)	--	PARMLIB
ACTIVE	--	PARMLIB

The	MEMBER	is	the	PARMLIB	member	holding	the	configuration.	The	SYS	line	shows	which	SMF	types
are	being	monitored.	INTVAL	is	the	recording	interval	(in	minutes).	The	DSNAME	members	are	the
working	data	sets	for	the	SMF	data.

Modify	the	recording	interval	dynamically:	/F	RMF,MODIFY	ZZ,SYNC(RMF,0),INTERVAL(15M)

https://www.ibm.com/support/knowledgecenter/SS7K4U_9.0.5/com.ibm.websphere.zseries.doc/ae/crun_wlm_sessionplacement.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_9.0.5/com.ibm.websphere.zseries.doc/ae/trun_wlm_sessionplacement.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.erbb500/exvel.htm

Display	SMF	data	set	usage:	/D	SMF

RESPONSE=S12																																																										
NAME																		VOLSER	SIZE(BLKS)	%FULL		STATUS							
P-SYS1.S12.MANC							SMF001				180000				79		ACTIVE								
S-SYS1.S12.MAND							SMF001				180000					0		ALTERNATE

When	the	active	volume	fills	up,	SMF	switches	to	the	alternative.	This	can	be	done	manually	with	/I	SMF

	

Example	JCL	to	Dump	SMF

//SMFD3	JOB	MSGCLASS=H,MSGLEVEL=(1,1),REGION=128M,TIME=5,
//		NOTIFY=&SYSUID		
//	SET	SMFIN=S25J.ZTESTB.S12.SMF.G0213V00
//*	OUTPUT	DATASET	NAME
//	SET	DUMPOUT=ZPER.WM0.SMFS12.D213
//*
//S0						EXEC	PGM=IFASMFDP,REGION=128M
//SYSPRINT	DD		SYSOUT=*
//DUMPIN1						DD	DISP=SHR,DSN=&SMFIN
//DUMPOUT						DD	DISP=(,CATLG,DELETE),UNIT=SYSDA,
//													SPACE=(CYL,(400,100),RLSE),
//													DSN=&DUMPOUT,
//													LRECL=32760,BLKSIZE=23467,RECFM=VBS
//SYSIN								DD	*
INDD(DUMPIN1,OPTIONS(DUMP))
OUTDD(DUMPOUT,TYPE(0:255))
/*

	

Example	JCL	to	Dump	Live	SMF	Data	Sets	into	a	Permanent	One

//SMFD3	JOB	MSGCLASS=H,MSGLEVEL=(1,1),REGION=128M,TIME=5,
//		NOTIFY=&SYSUID
//	SET	SMFIN=S25J.ZTESTG.S34.SMF.G1017V00
//*	OUTPUT	DATASET	NAME
//	SET	DUMPOUT=ZPER.S34.MEVERET.D092211.A
//*
//S0						EXEC	PGM=IFASMFDP,REGION=128M
//SYSPRINT	DD		SYSOUT=*
//DUMPIN1						DD	DISP=SHR,DSN=&SMFIN
//DUMPOUT						DD	DISP=(,CATLG,DELETE),UNIT=SYSDA,
//													SPACE=(CYL,(400,100),RLSE),
//													DSN=&DUMPOUT,
//													LRECL=32760,BLKSIZE=23467,RECFM=VBS
//SYSIN								DD	*
INDD(DUMPIN1,OPTIONS(DUMP))
OUTDD(DUMPOUT,TYPE(0:255))
/*

The	output	from	the	JCL	contains	the	types	of	records	and	number	of	records	in	the	raw	data:

IFA020I	DUMPOUT		--	ZPER.S34.MEVERET.D092211.A																																		
IFA020I	DUMPIN1		--	S25J.ZTESTG.S34.SMF.G1017V00																																
																																											SUMMARY	ACTIVITY	REPORT														
						START	DATE-TIME		09/22/2011-09:33:34																									END	DATE-TIME
						RECORD	RECORDS	PERCENT						AVG.	RECORD							MIN.	RECORD			MAX.
								TYPE					READ								OF	TOTAL											LENGTH												LENGTH																	
										2													1													.00	%																18.00																18							
										3													1													.00	%																18.00																18						
...
					TOTAL							42,572							100	%													1,233.27																18
					NUMBER	OF	RECORDS	IN	ERROR															0

	

Example	JCL	to	Dump	SMF

//SMFR1	JOB	MSGLEVEL=(1,1),MSGCLASS=H
//WKLD@PGP	EXEC	PGM=ERBRMFPP,REGION=0K
//MFPINPUT	DD			DSN=ZPER.WM0.SMFS12.D203,DISP=SHR
//PPXSRPTS	DD			SYSOUT=*,DCB=(RECFM=FBA,LRECL=133)
//MFPMSGDS	DD			SYSOUT=*
//SYSOUT			DD			SYSOUT=*
//SYSIN				DD			*
	ETOD(0000,2400)
	PTOD(0000,2400)
	RTOD(0000,2400)
	STOD(0000,2400)
	SYSRPTS(WLMGL(RCLASS(W*)))
				SYSOUT(H)
/*
	SYSRPTS(WLMGL(SCPER,RCLASS(WT7*)))
/*

See	also
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_capwar.html

	

Example	JCL	to	Clear	SMF

//SMFCLEAR	JOB	MSGLEVEL=(1,1)
//STEP1		EXEC	PGM=IFASMFDP
//DUMPIN			DD	DSN=SYS1.S12.MANC,DISP=SHR
//*
//*	SYS1.S34.MAN1
//*	SYS1.S34.MAN2
//*
//*DUMPIN			DD	DSN=SYS1.S12.MANC,DISP=SHR
//DUMPOUT	DD	DUMMY
//SYSPRINT	DD	SYSOUT=*
//SYSIN				DD	*
		INDD(DUMPIN,OPTIONS(CLEAR))
		OUTDD(DUMPOUT,TYPE(000:255))

	

Resource	Measurement	Facility	(RMF)

Display	if	RMF	ZZ	monitor	is	running:	/F	RMF,D	ZZ
Start	RMF	ZZ	monitor:	/F	RMF,S	ZZ
Start	RMFGAT:	/F	RMF,S	III

Monitoring	RMF	in	live	mode	can	be	very	useful	(navigate	through	ISPF).	F10	and	F11	page	backwards	and
forwards	through	time.

Use	RMF	Monitor	3	}	CPC	for	overall	CPU.	Execute	procu	for	detailed	CPU.	Execute	sysinfo	for	general
information.	Execute	syssum	for	a	sysplex	summary.

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_capwar.html

		

Workload	Activity	Report

The	JCL	to	produce	this	was	covered	above.

Example	snippet	output:

Important	values:

1.	 CPU	-	this	is	the	total	amount	of	processor	time	(excluding	SRB	time),	used	during	this	interval.	It
includes	time	spent	on	general	purpose	CPs,	zAAPs	and	zIIPs.

2.	 SRB	-	this	is	the	amount	of	processor	time	consumed	by	SRBs	during	the	interval.	An	SRB	is	a	special
unit	of	work	used	primarily	by	the	operating	system	to	schedule	functions	that	need	to	run	quickly	and
with	high	priority.

3.	 AAP	-	this	is	the	amount	of	time	work	was	running	on	zAAP	processors	during	the	interval.	The	IIP
field	is	exactly	the	same	as	AAP	except	it	reports	time	spent	on	zIIP	processors.	On	our	system	there
were	no	zIIP	processors	defined	so	it	will	be	ignored.

4.	 Ended	-	this	is	the	total	number	of	WebSphere	requests	that	completed	during	the	interval.
5.	 CP	-	this	value	represents	the	amount	of	time	spent	on	general	purpose	processor.	It	includes	the	CP

time	and	the	zAAP	time	that	is	reported	under	the	"SERVICE	TIME"	heading,	fields	CPU	and	SRB.
The	length	of	this	interval	is	5	minutes	or	300	seconds	so	using	the	CP	field	value	under	the	"APPL
%"	heading	the	amount	of	CP	time	is:

(CP	*	interval	length)	/	100	or	(0.20	*	300)	/	100	=	0.600	(rounding	error)
6.	 AAPCP	-	this	value	is	the	amount	of	zAAP	time	that	ran	on	a	CP	which	could	have	run	on	a	zAAP	had

a	zAAP	processor	been	available.	It	is	a	subset	of	the	CP	value.	The	system	must	be	configured	to
capture	this	value.	It	is	controlled	by	the	parmlib	option	xxxxxxxxxxxx.	Our	system	did	not	have	this
option	set.	To	convert	this	percentage	to	time	is	simple:
(AAPCP	*	interval	length)	/	100

7.	 IIPCP	-	same	as	AAPCP	except	for	zIIP	processors
8.	 AAP	-	this	is	the	amount	of	zAAP	time	consumed	during	the	interval.	It	reports	the	same	value	as	the

AAP	field	under	the	"SERVICE	TIME"	heading.
9.	 IIP	-	same	as	AAP	except	for	zIIP	processors.

The	APPL%	values	are	processor	times	reported	as	a	percentage.	They	are	reported	as	the	percentage	of	a
single	processor	so	it	is	common	to	see	values	greater	than	100%	on	multi-processor	systems.

Given	this	information,	calculating	the	amount	of	processor	time	used	during	the	interval	is	very
straightforward.	The	amount	of	zAAP	processor	time	is	simply	the	value	reported	in	the	AAP	field,	2.015
seconds.	Remember	the	CPU	field	contains	the	time	spent	on	zAAPs	so	if	we	want	to	calculate	the	total
amount	of	general	purpose	CP	time	we	must	subtract	the	AAP	value	from	the	total	of	the	CPU	and	SRB
values.

In	the	example	above,	which	is	a	report	class	that	defines	enclave	work,	the	SRB	field	will	always	be	zero	so
to	calculate	the	CP	time	we	simply	need	to	subtract	the	AAP	value	from	the	CPU	value	or	2.171	-	2.015	=
0.156.	So	in	this	example,	an	enclave	service	class,	the	total	amount	of	CP	and	zAAP	processor	time	spent	by
work	executing	under	this	report	class	is	simply	the	CPU	value.

Since	we	are	using	a	WebSphere	example	we	should	also	include	the	amount	of	processor	time	consumed	by
the	deployment	manager	address	spaces	(control	and	servant),	the	node	agent	address	space,	and	the
application	server	address	spaces	(control	and	servant)	(the	SRB	field	is	non-zero	so	remember	to	add	that
value	to	the	CPU	value	to	get	the	total	amount	of	CP	and	zAAP	time	consumed	during	the	interval.	Then	just
subtract	the	AAP	value	from	this	total	to	get	the	amount	of	CP	processor	time.)

	

Example	Analysis	of	Multi-Period	Discretionary	Delays

								z/OS	V2R3															SYSPLEX	AAAAAA													DATE	04/16/2020											INTERVAL	15.00.032			MODE	=	GOAL
																																RPT	VERSION	V2R3	RMF							TIME	16.00.00

POLICY=BBBBBBBB			WORKLOAD=CCCCCC					SERVICE	CLASS=DDDDDDDD					RESOURCE	GROUP=*NONE						PERIOD=2	IMPORTANCE=DISC
																																						CRITICAL					=NONE

-TRANSACTIONS--		TRANS-TIME	HHH.MM.SS.FFFFFF		TRANS-APPL%-----CP-IIPCP/AAPCP-IIP/AAP		---ENCLAVES---
AVG								1.48		ACTUAL	3.703426		TOTAL									0.11								0.05		225.28		AVG	ENC			1.48
MPL								1.48		EXECUTION										3.702356		MOBILE								0.00								0.00				0.00		REM	ENC			0.00
ENDED	494		QUEUED																	1069		CATEGORYA					0.00								0.00				0.00		MS	ENC				0.00
END/S						0.55		R/S	AFFIN																	0		CATEGORYB					0.00								0.00				0.00
#SWAPS								0		INELIGIBLE																0
EXCTD									0		CONVERSION																0
																	STD	DEV	10.163165

----SERVICE----			SERVICE	TIME		---APPL	%---		--PROMOTED--		--DASD	I/O---		----STORAGE----		-PAGE-IN	RATES-
IOC											0			CPU	2028.572		CP						0.11		BLK				0.000		SSCHRT				4.1		AVG								0.00		SINGLE						0.0
CPU							67902K		SRB				0.000		IIPCP			0.05		ENQ				0.006		RESP						0.6		TOTAL						0.00		BLOCK							0.0
MSO											0			RCT				0.000		IIP			100.47		CRM				0.000		CONN						0.1		SHARED					0.00		SHARED						0.0
SRB											0			IIT				0.000		AAPCP			0.00		LCK				0.134		DISC						0.4																			HSP									0.0
TOT							67902K		HST				0.000		AAP						N/A		SUP				0.000		Q+PEND				0.1
/SEC						75446			IIP		904.286																														IOSQ						0.0
ABSRPTN						51K		AAP						N/A
TRX	SERV					51K

GOAL:	DISCRETIONARY

									RESPONSE	TIME				EX			PERF		AVG			--EXEC	USING%--		--------------	EXEC	DELAYS	%	-----------		-USING%-		---	DELAY	%	---				%

SYSTEM																				VEL%	INDX	ADRSP		CPU	AAP	IIP	I/O		TOT	IIP	CPU																																CRY	CNT		UNK	IDL	CRY	CNT		QUI

*ALL								--N/A--							91.5								1.5		0.1	N/A		70	0.1		6.5	6.4	0.1																																0.1	0.0			23	0.0	0.0	0.0		0.0
EE01																						92.0								0.6		0.0	N/A		72	0.0		6.3	6.3	0.0																																0.1	0.0			21	0.0	0.0	0.0		0.0
EE02																						91.1								0.8		0.1	N/A		69	0.1		6.7	6.6	0.2																																0.1	0.0			24	0.0	0.0	0.0		0.0

This	is	saying	that	494	WAS	transaction	completed	in	this	15	minute	interval	ending	at	16:00:00	under	the
discretionary	period	2	goal,	their	average	execution	time	was	3.7	seconds,	the	execution	time	standard
deviation	was	10.1	seconds,	and	the	total	sampled	execution	delays	averaged	6.5%	(mostly	delayed	on
zIIPs).	For	detailed	descriptions	of	the	fields,	see
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.erbb500/wfields.htm

And,	"Set	achievable	percentage	response	time	goals.	Velocity	goals	for	application	work	are	not	meaningful
and	should	be	avoided.	[...]	Watch	out	for	work	that	[...]	has	a	discretionary	goal."

	

FTP

FTP	can	be	used	to	download	both	USS	files	as	well	as	data	sets.	To	download	a	data	set,	surround	the	data
set	name	with	apostrophes:

ftp>	ascii
200	Representation	type	is	Ascii	NonPrint
ftp>	get	'WITADM1.SPF1.LIST'
...

To	convert	character	sets	from	EBCDIC	to	ASCII,	use	FTP	ASCII	mode.	If	the	file	was	written	on	the	z/OS
system	with	an	ASCII	character	set,	then	download	the	file	using	FTP	BINARY	mode.

	

Input/Output	(I/O)

Ensure	that	DASD	are	of	the	fastest	speed,	striping,	etc.

	

Networking

To	discover	the	host	name,	run	the	system	command	/D	SYMBOLS	and	find	the	TCPIP	address	space
name.	In	the	TCPIP	address	space	joblogs	output,	find	the	TCPIP	profile	configuration	data	set:

PROFILE	DD	DISP=SHR,DSN=TCPIP.PROFILE(&SYSN.)...

In	3.4,	browse	this	dataset	and	this	will	show	the	host	name	and	IP	address	mapping.

Increase	MAXSOCKETS	and	MAXFILEPROC	to	64000
(http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunetcpip.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxb200/mxflprc.htm)

Consider	disabling	delayed	acknowledgments	(NODELAYACKS).	Warning:	This	option	may	or	may	not	be
better	depending	on	the	workload	(see	the	discussion	of	delayed	acknowledgments).
(http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunetcpip.html

Set	SOMAXCONN=511
(http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunetcpip.html

Monitoring	dispatch	requests:
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_monitor_dispatch_requests.html

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.erbb500/wfields.htm
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunetcpip.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxb200/mxflprc.htm
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunetcpip.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunetcpip.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_monitor_dispatch_requests.html

Type	HOMETEST	in	ISPF	COMMAND	to	get	the	IP	hostname	and	address.

	

DNS

By	default,	the	DNS	lookup	timeout	(which	Java	uses)	defaults	to	5	seconds.

	

TCP	Congestion	Control

Review	the	background	on	TCP	congestion	control.

Consider	tuning	TCP/IP	buffer	sizes	using	TCPCONFIG;	for	example:

TCPSENDBFRSIZE=131070
TCPRCVBUFRSIZE=131070

	

netstat

netstat	may	be	used	to	list	sockets	from	USS.	The	-A	flag	provides	details	such	as	send	and	receive	queues.
For	example:

$	netstat	-A	|	head	-50
MVS	TCP/IP	NETSTAT	CS	V2R4							TCPIP	Name:	TCPIP											17:14:53
Client	Name:	BBODMGR																		Client	Id:	0000043D
		Local	Socket:	::ffff:9.57.7.207..6001																													
		Foreign	Socket:	::ffff:9.57.7.207..1550																													
				BytesIn:												00000000000037507439
				BytesOut:											00000000000000240750
				SegmentsIn:									00000000000000001232
				SegmentsOut:								00000000000000001230
				StartDate:										01/20/2021							StartTime:										20:30:14
				Last	Touched:							21:10:34									State:														Establsh
				RcvNxt:													1627254963							SndNxt:													0500396862
				ClientRcvNxt:							1627254963							ClientSndNxt:							0500396862
				InitRcvSeqNum:						1589747523							InitSndSeqNum:						0500156111
				CongestionWindow:			0000130966							SlowStartThreshold:	0000065535
				IncomingWindowNum:		1627517107							OutgoingWindowNum:		0500659006
				SndWl1:													1627248788							SndWl2:													0500396862
				SndWnd:													0000262144							MaxSndWnd:										0000262144
				SndUna:													0500396862							rtt_seq:												0500156111
				MaximumSegmentSize:	0000065483							DSField:												00
				Round-trip	information:	
						Smooth	trip	time:	0.000												SmoothTripVariance:	0.000					
				ReXmt:														0000000000							ReXmtCount:									0000000000
				DupACKs:												0000000000							RcvWnd:													0000262144
				SockOpt:												8C00													TcpTimer:											00
				TcpSig:													05															TcpSel:													40
				TcpDet:													F8															TcpPol:													00
				TcpPrf:													81															TcpPrf2:												22
				TcpPrf3:												00
				DelayAck:											Yes				
				QOSPolicy:										No	
				RoutingPolicy:						No	
				ReceiveBufferSize:		0000262144							SendBufferSize:					0000262144
				ReceiveDataQueued:		0000000000
				SendDataQueued:					0000000000
				SendStalled:								No	
				Ancillary	Input	Queue:	N/A

https://www.ibm.com/docs/en/zos/2.5.0?topic=tcpipdata-resolvertimeout-statement
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_tunetcpip.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.halz001/tcpconfigstatement.htm
https://www.ibm.com/docs/en/zos/2.4.0?topic=examples-netstat-all-report

Client	Name:	BBODMGR																		Client	Id:	0000021D
		Local	Socket:	::..9809																																												
		Foreign	Socket:	::..0																																															
[...]

	

Resource	Recovery	Service	(RRS)

RRS	is	used	to	guarantee	transactional	support.

For	best	throughput,	use	coupling	facility	(CF)	logger	for	the	RRS	log.

Ensure	that	your	CF	logger	configuration	is	optimal	by	using	SMF	88	records.

Set	adequate	default	values	for	the	LOGR	policy.

If	you	don't	need	the	archive	log,	you	should	eliminate	it	since	it	can	introduce	extra	DASD
I/Os.	The	archive	log	contains	the	results	of	completed	transactions.	Normally,	the	archive	log	is
not	needed.

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezrrs.html

	

SVCDUMPs,	SYSTDUMPs

Issue	the	following	command	to	start	dump	processing:

/DUMP	COMM='Dump	Description'
83	IEE094D	SPECIFY	OPERAND(S)	FOR	DUMP	COMMAND

You	will	use	the	number	83	(WTOR)	in	this	case	to	reply	to	the	system	with	dump	parameters.

In	order	to	reply	to	the	system	with	the	appropriate	dump	parameters,	you	need	to	know	the	address	space	ID
of	the	address	space	you	want	to	dump.	There	are	other	options	for	dumping	address	spaces;	however,	we	are
going	to	stick	to	1	address	space	at	a	time	using	the	method	in	this	section.	To	find	the	ASIDX	go	to
SDSF.DA	(page	right	with	F11).

The	template	for	replying	to	a	dump	for	a	WebSphere	address	space:	[xx],ASID=([yy]),SDATA=
(RGN,TRT,CSA,NUC,PSA,GRSQ,LPA,SQA,SUM)

The	reply	to	dump	the	servant	ASIDX	16D	is	as	follows	(in	SDSF.LOG):

/R	83,ASID=([16D]),SDATA=(RGN,TRT,CSA,NUC,PSA,GRSQ,LPA,SQA,SUM)

After	2	minutes	or	so	the	following	appears:

IEF196I	IEF285I			SYS1.DUMP.D111011.T193242.S34.S00005									CATALOGED
IEF196I	IEF285I			VOL	SER	NOS=	XDUMP8.
IEA611I	COMPLETE	DUMP	ON	SYS1.DUMP.D111011.T193242.S34.S00005	646

The	"complete	dump	on"	dataset	can	be	downloaded	in	binary.

	

svcdump.jar

svcdump.jar	is	an	"AS	IS"	utility	that	can	process	SVCDUMPs	and	print	various	information:
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=diagjava

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezrrs.html
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=diagjava

Examples:

Print	threads:	java	-cp	svcdump.jar	com.ibm.zebedee.dtfj.PrintThreads	<dumpname>
Extract	PHD	heapdump:	java	-cp	svcdump.jar	com.ibm.zebedee.commands.Convert	-a	<asid>

	

Security

When	a	SAF	(RACF	or	equivalent)	class	is	active,	the	number	of	profiles	in	a	class	will	affect
the	overall	performance	of	the	check.	Placing	these	profiles	in	a	(RACLISTed)	memory	table
will	improve	the	performance	of	the	access	checks.	Audit	controls	on	access	checks	also	affect
performance.	Usually,	you	audit	failures	and	not	successes.

Use	a	minimum	number	of	EJBROLEs	on	methods.

If	using	Secure	Sockets	Layer	(SSL),	select	the	lowest	level	of	encryption	consistent	with	your
security	requirements.	WebSphere	Application	Server	enables	you	to	select	which	cipher	suites
you	use.	The	cipher	suites	dictate	the	encryption	strength	of	the	connection.	The	higher	the
encryption	strength,	the	greater	the	impact	on	performance.

Use	the	RACLIST	to	place	into	memory	those	items	that	can	improve	performance.	Specifically,
ensure	that	you	RACLIST	(if	used):	CBIND,	EJBROLE,	SERVER,	STARTED,	FACILITY,
SURROGAT

If	you	are	a	heavy	SSL	user,	ensure	that	you	have	appropriate	hardware,	such	as	PCI	crypto
cards,	to	speed	up	the	handshake	process.

Here's	how	you	define	the	BPX.SAFFASTPATH	facility	class	profile.	This	profile	allows	you	to
bypass	SAF	calls	which	can	be	used	to	audit	successful	shared	file	system	accesses.

Define	the	facility	class	profile	to	RACF.

RDEFINE	FACILITY	BPX.SAFFASTPATH	UACC(NONE)

Activate	this	change	by	doing	one	of	the	following:
re-IPL
invoke	the	SETOMVS	or	SET	OMVS	operator	commands.

Use	VLF	caching	of	the	UIDs	and	GIDs

Do	not	enable	global	audit	ALWAYS	on	the	RACF	(SAF)	classes	that	control	access	to	objects
in	the	UNIX	file	system.	If	audit	ALWAYS	is	specified	in	the	SETR	LOGOPTIONS	for	RACF
classes	DIRACC,	DIRSRCH,	FSOBJ	or	FSSEC,	severe	performance	degradation	occurs.	If
auditing	is	required,	audit	only	failures	using	SETR	LOGOPTIONS,	and	audit	successes	for	only
selected	objects	that	require	it.	After	changing	the	audit	level	on	these	classes,	always	verify	that
the	change	has	not	caused	an	unacceptable	impact	on	response	times	and/or	CPU	usage.

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezsec.html

	

Global	Resource	Serialization	(GRS)

Check	global	resource	contention:	/D	GRS,C

ISG343I	16.57.02	GRS	STATUS	300
NO	ENQ	RESOURCE	CONTENTION	EXISTS
NO	REQUESTS	PENDING	FOR	ISGLOCK	STRUCTURE
NO	LATCH	CONTENTION	EXISTS

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezsec.html

WebSphere	Application	Server	for	z/OS	uses	global	resource	serialization	(GRS)	to
communicate	information	between	servers	in	a	sysplex...	WebSphere	Application	Server	for
z/OS	uses	GRS	to	determine	where	the	transaction	is	running.

WebSphere	Application	Server	for	z/OS	uses	GRS	enqueues	in	the	following	situations:	Two-
phase	commit	transactions	involving	more	than	one	server,	HTTP	sessions	in	memory,	Stateful
EJBs,	"Sticky"	transactions	to	keep	track	of	pseudo-conversational	states.

If	you	are	not	in	a	sysplex,	you	should	configure	GRS=NONE,	or	if	you	are	in	a	sysplex,	you
should	configure	GRS=STAR.	This	requires	configuring	GRS	to	use	the	coupling	facility.

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_tunezgrs.html

	

z/VM

Enable	CP	Monitor	and	save	data	with	MONWRITE.
Performance	Toolkit:	http://www.vm.ibm.com/related/perfkit/

	

Memory	Overcommit

In	this	document,	we	will	define	[overcommit]	as	the	total	of	the	virtual	memory	of	the	started
(logged	on)	virtual	machines	to	the	total	real	memory	available	to	the	z/VM	system.

When	planning	whether	memory	can	be	overcommitted	in	a	z/VM	LPAR,	the	most	important
thing	is	to	understand	the	usage	pattern	and	characteristics	of	the	applications,	and	to	plan	for	the
peak	period	of	the	day.	This	will	allow	you	to	plan	the	most	effective	strategy	for	utilizing	your
z/VM	system's	ability	to	overcommit	memory	while	meeting	application-based	business
requirements.

For	z/VM	LPARs	where	all	started	guests	are	heavily-used	production	WAS	servers	that	are
constantly	active,	no	overcommitment	of	memory	should	be	attempted.

In	other	cases	where	started	guests	experience	some	idle	time,	overcommitment	of	memory	is
possible.

http://www.vm.ibm.com/perf/tips/memory.html

	

zLinux

Although	a	bit	old,	review	https://public.dhe.ibm.com/software/dw/linux390/perf/gm13-0635-00.pdf

	

Hardware	Counters

It	is	generally	recommended	to	activate	HIS	and	collect	hardware	counters:

S	HIS
MODIFY	HIS,BEGIN,CTR=HDWR,CNTFILE=NO,CTRONLY
F	HIS,B,TT=‘Text',CTRONLY,CTR=ALL,SI=SYNC,CNTFILE=NO
D	HIS

	

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_tunezgrs.html
https://www.ibm.com/docs/en/zvm/7.3?topic=performance-monitoring-using-cp-monitor
https://www.ibm.com/docs/en/zvm/7.3?topic=records-monwrite-program
http://www.vm.ibm.com/related/perfkit/
http://www.vm.ibm.com/perf/tips/memory.html
https://public.dhe.ibm.com/software/dw/linux390/perf/gm13-0635-00.pdf

IBM	i
IBM	i	product	documentation:	http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i/welcome

IBM	Java	on	IBM	i	runs	in	PASE	mode,	so	most	of	its	behavior	is	the	same	as	on	AIX:	http://www-
01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzalf/rzalfwhatispase.htm?lang=en

	

IBM	i	Recipe

1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Generally,	physical	memory	should	never	be	saturated	and	the	operating	system	should	not	page

memory	out	to	disk.
3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have

poor	response	times.
4.	 TCP/IP	and	network	tuning,	whilst	sometimes	complicated	to	investigate,	may	have	dramatic	effects

on	performance.
5.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
6.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
7.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
8.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
9.	 Enable	Collection	Services	for	performance	data.

10.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP
keepalive	timer	(CHGTCPA	TCPKEEPALV)	from	2	hours	to	a	value	less	than	intermediate	device
idle	timeouts	(e.g.	firewalls).

11.	 Test	disabling	delayed	ACKs

Also	review	the	general	topics	in	the	Operating	Systems	chapter.

	

Central	Processing	Unit	(CPU)

IBM	Systems	Workload	Estimator	and	processStats:	https://www-912.ibm.com/estimator

WRKSYSSTS:
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.iseries.doc/ae/tprf_tunehdwcap.html

Use	Collection	Services	performance	data	to	gather	detailed	performance	information:
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_collectionservices.html

	

IBM	iDoctor	for	IBM	i	PEX	Analyzer

Simplifies	the	collection	and	enhances	the	analysis	of	all	types	of	PEX	data,	which	includes,
PROFILE,	STATS	and	TRACE	data.
Provides	the	details	necessary	for	the	low-level	analysis	of	processor	utilization,	DASD	operations,
file	space	usage,	waits,	file	opens	and	much	more.

	

IBM	iDoctor	for	IBM	i	Job	Watcher

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i/welcome
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzalf/rzalfwhatispase.htm?lang=en
https://www-912.ibm.com/estimator
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.iseries.doc/ae/tprf_tunehdwcap.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_collectionservices.html

Provides	real-time,	non-intrusive,	detailed	and	summarized	views	of	job/thread/task	performance	data.
It's	the	step	to	take	to	avoid	a	system	wide	trace	or	to	ensure	that	a	trace	will	yield	useful	data.
It's	a	super	WRKSYSACT	that	displays	both	"running"	and	"waiting"	components	for	a	job.

More	information	on	CPU	and	call	stacks	can	be	found	using	the	iDoctor	tools	including	Performance
Explorer	and	Job	Watcher:	https://www-912.ibm.com/i_dir/idoctor.nsf	and	http://www-
01.ibm.com/support/docview.wss?uid=nas8N1012932

	

OS	CPU	Profiling

Profiling	the	CPU	on	the	IBM	i	can	be	done	on	a	global	or	individual	job	(JVM)	basis.	This	is	used	with	the
Performance	Explorer	(PEX)	tool.	The	process	to	gather	the	data	is	as	follows:

1.	Add	the	PEX	definition	with	the	*PMCO	events	(http://www-
01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaha/profperf.htm?lang=en):

ADDPEXDFN	DFN(JVMCPU)	TYPE(*TRACE)	JOB((*ALL/*ALL/JVMNAME	*ALL))	MAXSTG(1000000)	INTERVAL(1)	TRCTYPE(*SLTEVT)	SLTEVT(*YES)	BASEVT((*PMCO	*NONE	*FORMAT2))

2.	Gather	the	data	using	the	above	PEX	definition:

STRPEX	SSNID(TRACE1)	DFN(JVMCPU)

3.	Wait	5-10	minutes	while	the	JVM	is	using	high	CPU,	and	then	end	the	collection:

ENDPEX	SSNID(TRACE1)	DTALIB(QPEXDATA)

4.	Print	the	PEX	report,	first	by	program,	and	next	by	statement:

PRTPEXRPT	MBR(TRACE1)	LIB(QPEXDATA)	TYPE(*PROFILE)	PROFILEOPT(*SAMPLECOUNT	*PROGRAM)
PRTPEXRPT	MBR(TRACE1)	LIB(QPEXDATA)	TYPE(*PROFILE)	PROFILEOPT(*SAMPLECOUN	T	*STATEMENT)

5.	This	produces	two	spool	files	to	show	the	breakout	of	CPU.	Here	is	a	histogram	showing	the	breakdown:

All	Jobs/Tasks	CPU.	.	.	:						41212922											
Jobs	in	Collection	CPU		:						41212922											
Job	CPU	:						38813410				94.2	%
Task	CPU.	:							2399512					5.8	%

	Task	ID										Job/Task	Name																	Pool	Priority	Existence				Elapsed	Time	(us)													CPU	(us)				CPU	%		
00000000000008E1	WQLWI7					QWEBQRYADM	976015					2						171			Y				Y												211403580													37479915					90.94					

	Cnt				%					%																																													
																																																										-
16116		23.1		23.1			libj9jit23.so	MethodMetaData.c/getNextMap																																							
	4539			6.5		29.5			JITC/java/util/StringTokenizer.scanToken(I)I																									
	4081			5.8		35.4			libj9vm23.so	strsup.s/copyCharsToUnicode
	3226			4.6		40.0			libj9jit23.so	MethodMetaData.c/findMapsAtPC																																					
	2788			4.0		44.0			libj9jit23.so	MethodMetaData.c/matchingRange																																				
	1975			2.8		46.8			JITC/java/io/PrintWriter.println(Ljava/lang/String;)V																
	1740			2.5		49.3			JITC/java/lang/Throwable.printStackTrace(Ljava/io/PrintWriter;)V					
	1605			2.3		51.6			libj9jit23.so	ArrayCopy.s/__arrayCopy			
	1058			1.5		53.1			libj9gc23.so	ScavengerWriteBarrier.cpp/J9WriteBarrierStore																						
	1049			1.5		54.6			libpthreads.a(shr_xpg5.o)	pth_mutex.c/_mutex_lock																															
	1041			1.5		56.1			libj9vm23.so	strsup.s/convertCharsToString																																						
	1002			1.4		57.5			libj9gc23.so	j9memclr.c/J9ZeroMemory				
		996			1.4		59.0			JITC/ibi/webfoc/wfutil/WFTracestackLocation.vectorizeStringBuffer(LjZ)Ljava/util/Vector;
		904			1.3		60.2			libpthreads.a(shr_xpg5.o)	pth_locks_ppc_mp.s/global_unlock_ppc_mp															
		869			1.2		61.5			libj9vm23.so	optinfo.c/getLineNumberForROMClassFromROMMethod																				
		859			1.2		62.7			libj9gc23.so	MarkingScheme.cpp/scanObject__16MM_MarkingSchemeFP14MM_EnvironmentP8J9Object
		623			0.9		63.6			libj9vm23.so	segment.c/segmentSearchComparator																																		
		559			0.8		64.4			libpthreads.a(shr_xpg5.o)	pth_locks_ppc_mp.s/global_lock_ppc_mp																	
		553			0.8		65.2			libj9vm23.so	strsup.s/convertCharsToString																																						
		543			0.8		66.0			libj9vm23.so	findmethod.c/findROMClassInSegment																																	

https://www-912.ibm.com/i_dir/idoctor.nsf
http://www-01.ibm.com/support/docview.wss?uid=nas8N1012932
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaha/profperf.htm?lang=en

		522			0.7		66.7			libj9vm23.so	mthutil.s/nextROMMethod				
		515			0.7		67.5			libj9vm23.so	strsup.s/convertCharsToString			

	

Per	thread	CPU	usage

Gathering	per	thread	CPU	usage	can	be	done	in	a	variety	of	ways.	The	best	is	to	use	the	WRKJVMJOB
command.	Example:

1.	WRKJVMJOB

2.	Take	option	11	to	display	threads.	This	shows	the	total	CPU	(seconds)	for	each	thread.

		Job		:			TJH80EXP												PID		:			82839									
	User	:			QEJBSVR													JDK		:			1.6.0									
	Number	:			946396														Bits	:			32												
																																																																													
Type	options,	press	Enter.																																																				
	10=Display	call	stack																																																							
																																																			Total									Aux									
				Thread						Name														Status												CPU										I/O									
				00000087				P=704863:O=0:CT			THDW												10.336								8277									
				0000008A				JIT	Compilatio	>		THDW												76.830									809									
				0000008B				JIT	Compilatio	>		THDW												67.357											6									
				0000008C				JIT	Compilatio	>		THDW												42.743											3									
				0000008E				IProfiler									THDW													4.275											0									
				0000008F				Signal	Dispatc	>		THDW												64.984											0									
				00000091				Concurrent	Mar	>		THDW													7.643								2790									
				00000092				GC	Slave										THDW													3.263										44									
				00000093				GC	Slave										THDW													3.172										38									
				00000094				GC	Slave										THDW													3.665										46									
																																																																						More...

Another	option	would	be	to	take	option	13	instead	of	11.	This	produces	a	spool	file	that	can	be	displayed	and
sent	to	support.

	

Physical	Memory	(RAM)

Memory	Pool	Tuning	and	Faulting	Guidelines:	http://www-01.ibm.com/support/docview.wss?
uid=nas8N1014941

	

Input/Output	(I/O)

WRKDSKSTS	shows	the	status	of	the	disk	drives.	Look	for	"hot"	drives	indicating	high	%Busy.	Units
consistently	above	30%	busy	will	have	slow	IO	response	times.

																												Work	with	Disk	Status																					RCHM199B
																																																												09/09/13		12:27:05
Elapsed	time:			00:00:22																																																						
																																																																														
															Size				%					I/O			Request			Read		Write			Read		Write				%			
Unit		Type						(M)		Used				Rqs		Size	(K)				Rqs			Rqs					(K)			(K)			Busy		
			1		4327				61744		87.7					.0						4.0						.0					.0				4.0					.0					0		
			2		4327				61744		87.7					.3						4.5						.2					.0				4.0				6.0					0		
			3		4327				61744		87.7					.0						4.0						.0					.0					.0				4.0					0		
			4		4327				61744		87.7					.0						4.0						.0					.0					.0				4.0					0		
			5		4327				61744		87.7					.0						4.0						.0					.0					.0				4.0					0		
			6		4327				61744		87.7					.1						8.0						.0					.1					.0				8.0					0		
			7		4327				61744		87.7					.1						4.0						.0					.0				4.0				4.0					0		

http://www-01.ibm.com/support/docview.wss?uid=nas8N1014941

			8		4327				61744		87.7					.1						4.0						.0					.1				4.0				4.0					0		

F11	shows	another	view	and	the	current	status.	Look	for	DEGRADED	or	FAILED	units.	This	example
shows	they	are	all	ACTIVE.	No	issues.

											--Protection--																
Unit		ASP		Type		Status				Compression			
			1				1		DPY			ACTIVE																		
			2				1		DPY			ACTIVE																		
			3				1		DPY			ACTIVE																		
			4				1		DPY			ACTIVE																		
			5				1		DPY			ACTIVE																		
			6				1		DPY			ACTIVE																		
			7				1		DPY			ACTIVE																		
			8				1		DPY			ACTIVE																		

	

Networking

Tune	TCP/IP	buffer	sizes.	Use	CHGTCPA	to	tune	them	up	to	8096	KB:
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_tunetcpip.html

	

Using	Collection	Services	Performance	Data

WAS	provides	scripts	to	enable	collection	services	for	performance	data:	http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_collectionservices.html

	

Gathering	Javacores	using	WRKJVMJOB

Gathering	javacores,	core	dumps,	heap	dumps,	and	JVM	summary	data	is	very	simple	on	the	IBM	i.	The
WRKJVMJOB	utility	allows	you	to	do	all	of	this.

1.	Execute	WRKJVMJOB

2.	This	produces	a	list	of	all	the	JVMs	active	on	the	system

										Work	with	JVM	Jobs																						RCHM199B
																																																												09/09/13		12:11:42
Active	JVMs	on	system:			22																																																				
																																																																															
Type	options,	press	Enter.																																																					
		5=Work	with			7=Display	job	log			8=Work	with	spooled	files																		
		9=Display	GC	information										11=Display	threads			12=Dump			13=Print				
Opt		Job	Name				User								Number		Function										Status																		
					QSRVMON					QSYS								842707		JVM-ServiceMon					THDW																			
					QP0ZSPWT				HENDERAN				862730		JVM-WSPreLaunc					TIMW																			
					BENNIEDMGR		QEJBSVR					911766		PGM-jvmStartPa					THDW																			
					NODEAGENT			QEJBSVR					911778		PGM-jvmStartPa					THDW																			
					BENNIENODE		QEJBSVR					911779		PGM-jvmStartPa					THDW																			
					SHU85EONE			QEJBSVR					916849		PGM-jvmStartPa					THDW																			
					STIMSERVER		QEJBSVR					934284		PGM-jvmStartPa					THDW																			
					BENNIE						QEJBSVR					937798		PGM-jvmStartPa					THDW																			
					DMGR								QEJBSVR					941298		PGM-jvmStartPa					THDW																			
	12		TJH80EXP				QEJBSVR					946396		PGM-jvmStartPa					THDW								

3.	From	this	list,	you	can	select	option	12	to	dump.	By	default,	option	12	performs	a	javacore	dump.	To
produce	a	different	type	of	dump,	you	can	select	12	next	to	the	JVM,	then	hit	F4	to	prompt	the	command.
This	will	allow	you	to	change.	Note	the	type	of	dump.	(*JAVA	=	javacore,	*SYSTEM	=	Core	dump,	*HEAP

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_tunetcpip.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_collectionservices.html

=	heapdump.phd	file	is	produced)

			Generate	JVM	Dump	(GENJVMDMP)																
																																																																						
Type	choices,	press	Enter.																																												
																																																																						
Job	name	>	TJH80EXP						Name																	
		User	>			QEJBSVR					Name																	
		Number	>			946396						000000-999999								
Type			*JAVA									*JAVA,	*SYSTEM,	*HEAP
															+	for	more	values						

4.	The	dumps	produced	(javacore,	heapdump,	core	dump)	will	be	placed	in	the	JVMs	user	home	directory.
The	joblog	for	the	JVM	will	show	the	location	of	the	file.	For	example:

DSPJOBLOG	JOB(946396/QEJBSVR/TJH80EXP)
JVMDUMP010I	Java	dump	written	to	/QIBM/UserData/WebSphere/AppServer/V8/Express/profiles/tjh80exp/javacore.20130909.121650.82839.0001.txt

	

JVM	Monitoring

Viewing	the	Application	Server	JVM	can	be	done	through	WRKACTJOB.	This	command	shows	the	total
CPU	seconds,	CPU	%,	and	IO	for	the	job	based	on	the	elapsed	time:

																													Work	with	Active	Jobs																					RCHM199B
																																																													09/09/13		11:40:35
	CPU	%:					2.2					Elapsed	time:			00:00:10					Active	jobs:			339												
																																																																															
	Type	options,	press	Enter.																																																				
			2=Change			3=Hold			4=End			5=Work	with			6=Release			7=Display	message					
			8=Work	with	spooled	files			13=Disconnect	...																															
																																															--------Elapsed---------								
	Opt		Subsystem/Job		Type		Pool		Pty						CPU		Int				Rsp		AuxIO		CPU	%								
						QWAS8										SBS					2				0								.0																		0					.0								
								TJH80EXP					BCH					2			20				3454.9																		0					.0								

F11	shows	further	views,	including	number	of	threads,	status,	and	function.

	Opt		Subsystem/Job		User								Number		Type		CPU	%		Threads			
						QWAS8										QSYS								894103		SBS						.0								2			
								TJH80EXP					QEJBSVR					946396		BCH						.0							74			

																					Current																																									
	Opt		Subsystem/Job		User								Type		CPU	%		Function								Status
						QWAS8										QSYS								SBS						.0																			DEQW		
								TJH80EXP					QEJBSVR					BCH						.0		PGM-jvmStartPa			THDW	

WRKSYSSTS	shows	the	memory	pool	activity	for	the	JVM.	The	WRKACTJOB	above	shows	the
WebSphere	server	"TJH80EXP"	is	running	in	system	pool	2.	The	example	output	of	WRKSYSSTS	below
shows	system	pool	2	as	having	28,626MB	allocated.	The	page	faults	are	in	faults/second,	and	split	between
DB	and	Non-DB	faults.	This	is	based	on	elapsed	time.

WRKSYSSTS	ASTLVL(*ADVANCED)				

																											Work	with	System	Status																				RCHM199B
																																																												09/09/13		11:51:52
%	CPU	used	:								2.0				System	ASP	:				493.9	G
%	DB	capability		:									.0				%	system	ASP	used		.	.	.	:				87.7574
Elapsed	time	:			00:07:58				Total	aux	stg		:				493.9	G
Jobs	in	system	:							3211				Current	unprotect	used	.	:				15970	M
%	perm	addresses	:							.032				Maximum	unprotect		.	.	.	:				22252	M
%	temp	addresses	:							.569																																									
																																																																														
Sys						Pool			Reserved				Max		----DB-----		--Non-DB---		Act-			Wait-		Act-
Pool				Size	M			Size	M					Act		Fault	Pages		Fault	Pages		Wait			Inel			Inel

		1				1187.55				606.00		+++++					.0				.0					.0				.0			10.5					.0					.0
		2			28626.03					11.30				820					.0				.4					.0				.2		39221					.0					.0
		3			13319.48							.56			1140					.0				.0					.0				.0		558.7					.0					.0
		4								.25							.00						5					.0				.0					.0				.0					.0					.0					.0

The	above	shows	very	low	page	fault	rate	based	on	almost	8	minutes	elapsed	time.	Also	note	the	Wait-Inel
and	Act-Inel	counts	as	being	0.	A	higher	value	indicates	the	max	act	value	is	too	low	for	the	amount	of
threads	active	in	the	pool.	This	would	cause	performance	problems.

F11	again	shows	the	pool	names.	System	pool	2	is	the	*BASE	pool.	This	is	the	default	pool	for	IBM	i	batch
processes,	including	WebSphere

Sys						Pool			Reserved				Max																																						Paging
Pool				Size	M			Size	M					Act		Pool								Subsystem			Library					Option
		1				1187.55				606.00		+++++		*MACHINE																												*FIXED
		2			28626.03					11.30				820		*BASE																															*CALC
		3			13319.48							.56			1140		*INTERACT																											*CALC
		4								.25							.00						5		*SPOOL																														*FIXED

	

Windows

Windows	Recipe

1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Generally,	physical	memory	should	never	be	saturated	and	the	operating	system	should	not	page

memory	out	to	disk.
3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have

poor	response	times.
4.	 TCP/IP	and	network	tuning,	whilst	sometimes	complicated	to	investigate,	may	have	dramatic	effects

on	performance.
5.	 Consider	changing	Processor	Performance	Management	(PPM)	to	the	"High	Performance"	setting	or

disabling	it.
6.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
7.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
8.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
9.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
10.	 Use	Perfmon	to	review	performance	activity.
11.	 Use	the	Windows	Performance	Toolkit	to	review	sampled	native	processor	usage.
12.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP

keepalive	timer	(HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\KeepAliveTime)	from
2	hours	to	a	value	less	than	intermediate	device	idle	timeouts	(e.g.	firewalls).

13.	 Test	disabling	delayed	ACKs

Also	review	the	general	topics	in	the	Operating	Systems	chapter.

	

General

Check	the	Windows	Event	log	(eventvwr.exe)	for	any	warnings,	error	messages,	or	repeated	informational
messages.

Microsoft	performance	tuning	guidelines	by	server	version:	https://msdn.microsoft.com/en-
us/library/windows/hardware/dn529134

https://msdn.microsoft.com/en-us/library/windows/hardware/dn529134

	

Command	Prompt

Recursive	search	for	a	file	pattern:

>	@echo	off
>	for	/F	"usebackq"	%i	in	(`dir	/s	/b	*.pdb`)	do	echo	%i
>	@echo	on

	

Windows	Registry

Many	operating	system	settings	are	changed	in	the	Windows	registry.	To	open	the	registry,	execute
regedit.exe.

We	recommend	periodically	backing	up	the	registry,	particularly	before	any	significant	changes:

File	>	Export
Export	Range=All
Save	as	some	file.reg

	

Performance	Monitor	(Perfmon)

Perfmon	is	the	generally	recommended	tool	for	Windows	performance	analysis.

"Windows	Performance	Monitor	is	a	Microsoft	Management	Console	(MMC)	snap-in	that	provides	tools	for
analyzing	system	performance.	From	a	single	console,	you	can	monitor	application	and	hardware
performance	in	real	time,	customize	what	data	you	want	to	collect	in	logs,	define	thresholds	for	alerts	and
automatic	actions,	generate	reports,	and	view	past	performance	data	in	a	variety	of	ways."
(https://technet.microsoft.com/en-us/library/cc749154.aspx)

By	default,	counters	do	not	show	the	process	ID,	so	with	multiple	java	processes,	they	are	java_N,	and	if	one
process	ends,	all	counters	N+1	actually	change.	It	is	recommended	to	change	to	the	PID	format
(https://support.microsoft.com/kb/281884):

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\PerfProc\Performance
DWORD	ProcessNameFormat=2

No	restarts	of	the	machine	or	Java	are	required	-	just	restart	Perfmon	if	it	was	open.

	

View	Live	Data

In	the	left	pane,	select	Performance	>	Monitoring	Tools	>	Performance	Monitor.

This	will	show	a	live	graph	of	%	Processor	Time:

https://technet.microsoft.com/en-us/library/cc749154.aspx
https://support.microsoft.com/kb/281884

Some	useful	tips:

To	delete	a	counter,	select	the	row	in	the	bottom	table	and	click	Delete.
Click	the	pencil	toggle	button	to	highlight	the	currently	selected	counter.
By	default,	all	counter	values	are	scaled	between	0	and	100.	You	can	see	if	values	are	scaled	by
looking	at	the	Scale	column.
"Last"	is	the	last	sampled	value	("Minimum"	and	"Maximum"	are	also	useful).
"Average"	is	the	average	of	all	sampled	values.
"Duration"	is	the	amount	of	time	(rolling)	that	Perfmon	will	capture	and	display	data.	To	extend	this,
right	click	on	the	graph	>	Properties	>	General	>	Duration	=	X	seconds
There	are	more	options	in	the	properties	dialog	that	are	worth	exploring.

To	add	a	counter,	click	the	green	plus	icon:

Select	a	counter	and	the	instances	and	click	Add	>>.	In	general,	select	<All	instances>	to	ensure	you	get	all
the	data.	For	example,	if	you	select	Process	>	%	Processor	time	and	you	select	<All	instances>,	if	a	process
is	spawned	after	data	collection	starts,	it	will	be	captured.

The	instances	are	a	way	to	look	at	counters	in	a	more	granular	way.	For	example,	the	0	and	1	instances	above
correspond	to	the	two	processors	on	this	machine.	If	we	select	_Total,	we	will	get	the	average	of	both
processors.	If	we	select	<All	instances>,	this	is	a	convenience	and	it	is	equivalent	to	multi-selecting	_Total,
0,	and	1.

Check	"Show	description"	to	better	understand	each	counter.

	

Logging	Perfmon	Data	to	Files

For	historical	analysis	of	system	metrics,	configure	Microsoft	Perfmon	to	log	statistics	to	files:

1.	 Start	perfmon.exe
2.	 Performance	}	Monitoring	Tools	}	Right	Click	on	Performance	Monitor	}	New	}	Data	Collector	Set	or

Performance	}	Data	Collector	Sets	}	Right	Click	on	User	Defined	}	New	}	Data	Collector	Set
3.	 Specify	any	name,	select	"Create	manually	(Advanced)"	and	click	Next
4.	 Under	the	"Create	data	logs"	section,	select	the	Performance	counter	box,	and	click	Next.
5.	 In	the	"Performance	counters:"	section,	click	the	"Add"	button.	Select	each	of	the	following	counters:

1.	 Expand	Processor	}	%	Interrupt	Time,	%	Privileged	Time,	%	Processor	Time,	%	User	Time	}
All	instances	}	Add

2.	 Expand	Network	Interface	}	Bytes	Received/sec,	Bytes	Sent/sec,	Output	Queue	Length,	Packets

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/perfmon

Outbound	Discarded,	Packets	Outbound	Errors,	Packets	Received	Discarded,	Packets	Received
Errors	}	All	instances

3.	 Expand	Process	}	%	Privileged	Time,	%	Processor	Time,	%	User	Time,	IO	Data	Bytes/sec,	IO
Data	Operations/sec,	IO	Other	Bytes/sec,	IO	Other	Operations/sec	}	All	instances

4.	 Expand	Thread	}	%	Processor	Time,	ID	Process,	ID	Thread	}	All	instances
5.	 Expand	LogicalDisk	}	%	Disk	Read	Time,	%	Disk	Write	Time,	%	Free	Space,	%	Idle	Time,

Avg.	Disk	Bytes/Read,	Avg.	Disk	Bytes/Write,	Avg.	Disk	sec/Read,	Avg.	Disk	Read	Queue
Length,	Avg.	Disk	sec/Write,	Avg.	Disk	Write	Queue	Length,	Disk	Read	Bytes/sec,	Disk
Reads/sec,	Disk	Write	Bytes/sec,	Disk	Writes/sec	}	All	instances

6.	 Expand	Memory	}	Available	MBytes,	Cache	Bytes,	Cache	Faults/sec,	Committed	Bytes,	Free
System	Page	Table	Entries,	Page	Faults/sec,	Pages	Input/sec,	Pages	Output/sec,	Pool	Nonpaged
Bytes,	Pool	Pages	Bytes,	System	Cache	Resident	Bytes

7.	 Expand	Paging	File	}	%	Usage
8.	 Expand	System	}	File	Control	Bytes/sec,	File	Control	Operations/sec,	File	Data	Operations/sec,

File	Read	Bytes/sec,	File	Read	Operations/sec,	File	Write	Bytes/sec,	File	Write	Operations/sec,
Processor	Queue	Length,	System	Calls/sec

6.	 Change	the	"Sample	Interval"	to	30	seconds	and	click	Next.
7.	 In	the	"Where	would	you	like	the	data	to	be	saved?"	section,	change	the	path	for	the	Perfmon	files	if

you	would	like,	click	Next.
8.	 In	the	"Create	the	data	collector	set?"	section,	click	on	the	Finish	button.
9.	 Ensure	that	the	directory	where	the	Perfmon	files	will	be	written	has	sufficient	space.

10.	 Start	the	collection	by	right	clicking	and	clicking	Start.
11.	 After	the	test	is	complete,	click	Stop.
12.	 Gather	*.blg	from	the	output	directory

For	similar	instructions	and	screenshots,	see	https://www.ibm.com/support/pages/node/411769

	

Load	Existing	Logs	into	Perfmon

1.	 In	the	left	pane,	select	Performance	}	Monitoring	Tools	}	Performance	Monitor.
2.	 Select	the	icon	for	View	Log	Data.
3.	 Select	Log	files:	and	click	Add...	and	browse	to	the	location	of	the	Perfmon	blg	log	files.
4.	 Click	Add	to	select	from	the	available	counters	in	the	data.

	

typeperf

The	Windows	typeperf	command	allows	for	simple	access	to	performance	counters	from	the	command	line:
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/typeperf

	

Central	Processing	Unit	(CPU)

The	key	Perfmon	counters	are	Process	>	%	Interrupt	Time,	%	Privileged	Time,	%	Processor	Time,	%	User
Time	>	<All	instances>.	Note	that	the	processor	statistics	for	a	particular	process	are	in	terms	of	a	percentage
of	total	CPU	time,	so	if	a	process	is	using	2	CPUs	at	100%,	the	sampled	value	will	be	200.

"Where	the	"_Total"	line	reaches	100%,	the	Java	process	probably	became	constrained	on	CPU.	If	all	the
CPU	is	being	used	by	the	Java	process,	the	performance	is	being	limited	by	the	machine.	If	another	process
is	taking	large	amounts	of	CPU	at	those	points	in	time,	CPU	contention	is	limiting	the	performance	of	the
Java	process."	(Old	Java	Diagnostic	Guide)

	

https://www.ibm.com/support/pages/node/411769
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/typeperf

Per-Thread	CPU	Usage

With	the	Perfmon	Thread	counters,	identify	the	threads	that	are	using	high	CPU	and	convert	the	"ID	Thread"
value	to	hexadecimal.	On	IBM	Java,	if	a	thread	dump	was	taken	during	these	high	CPU	times,	search	the
javacore	file	for	the	hexadecimal	identifier	to	find	the	Java	stack:

The	reason	for	generating	per-thread	CPU	usage	information	about	the	Java	process	is	to
understand	what	is	happening	to	the	process.	The	Java	process	might	be	deadlocked	if	all	the
threads	are	taking	little	or	no	CPU	time.	Points	of	contention	or	delay	might	be	in	the	Java
process	if	it	does	not	take	all	the	available	CPU,	even	though	the	CPU	usage	is	spread	evenly
over	a	number	of	threads	in	the	process.	This	CPU	usage	pattern	might	also	indicate	a	scalability
issue.	Finally,	you	might	have	a	looping	problem	if	the	Java	CPU	usage	is	approaching	100%
and	a	small	number	of	the	threads	account	for	all	of	that	CPU	usage.	The	threads	using	the	most
process	time	might	be	looping.	When	you	find	some	threads	of	interest,	note	the	ID	Thread
values.	Convert	the	values	to	hexadecimal,	and	look	for	the	threads	in	the	thread	stack	trace	of
the	javacore.txt	file.	This	trace	helps	you	to	determine	if	the	thread	is	part	of	a	thread	pool	and	to
understand	what	kind	of	work	the	thread	performs.	For	example,	an	ID	thread	of	9244	becomes
241C	in	hexadecimal	and	is	found	in	the	"native	ID"	value	in	the	javacore.txt	file.

Perfmon	counters:	"%	Processor	Time",	"ID	Thread",	and	any	other	counters	in	which	you	are
interested	for	all	the	Java	thread	instances

Old	Java	Diagnostic	Guide

	

PsList

An	alternative	tool	is	pslist	which	is	part	of	pstools:	https://technet.microsoft.com/en-
us/sysinternals/bb896682.aspx.	See	also	http://www-01.ibm.com/support/docview.wss?uid=swg21304776

In	most	modes,	you	can	filter	the	results	by	passing	a	process	name	prefix	(such	as	java)	or	a	PID	at	the	end
of	the	command.

No	arguments	prints	the	accumulated	CPU	time	of	each	process	and	the	elapsed	time	each	process	has	been
running:

>	pslist.exe

Process	information	for	ADMINIB-I6CU78U:
	
Name																Pid	Pri	Thd		Hnd			Priv								CPU	Time				Elapsed	Time
Idle																		0			0			2				0						0				11:08:07.609					0:00:00.000
System																4			8		82	4062				108					0:01:36.500					5:41:15.690
smss																240		11			2			30				440					0:00:01.484					5:41:13.940
csrss															316		13			9		871			2324					0:00:02.312					5:40:51.518...

The	pslist	argument	-s	shows	an	auto-updating	view	similar	to	task	manager	(similar	to	the	top	command	on
Unix	platforms):

>	pslist	-s
2:24:04	PM	2/5/2014	Process	information	for	ADMINIB-I6CU78U:
	
Name																Pid	CPU	Thd		Hnd			Priv								CPU	Time				Elapsed	Time
Idle																		0		97			2				0						0				11:15:27.906					5:45:06.985
pslist													4348			3			2		155			2840					0:00:02.015					0:00:30.546
smss																240			0			2			30				440					0:00:01.484					5:45:05.23537.32
csrss															316			0			9		847			2324					0:00:02.312					5:44:42.813
csrss															364			0			8		403			2504					0:00:01.234					5:44:41.250
wininit													372			0			3			77			1472					0:00:00.234					5:44:41.250
winlogon												404			0			3		113			2728					0:00:00.265					5:44:41.188...

https://technet.microsoft.com/en-us/sysinternals/bb896682.aspx
http://www-01.ibm.com/support/docview.wss?uid=swg21304776

The	pslist	argument	-t	shows	a	tree	view	of	process	ownership:

>	pslist	-t
	
Process	information	for	ADMINIB-I6CU78U:
	
Name																													Pid	Pri	Thd		Hnd						VM						WS				Priv
Idle																															0			0			2				0							0						24							0
		System																											4			8		82	4030				3380					300					108
				smss																									240		11			2			30				4024				1100					440
java																												2684			8		87		989		816720		315196		294696
csrss																												316		13			9		853			50260				4780				2324
csrss																												364		13			8		406		210896			12332				2504
		conhost																							3484			8			2			79			77380				9916				4400
wininit																										372		13			3			77			49392				4452				1472
		services																							460			9			9		248			45168				9796				6204
				svchost																						580			8		10		362			46512				9492				3832
						WmiPrvSE																		2152			8			7		339			80312			16304				8368
						ProtectionUtilSurrogate			4036			8		10		289			98168			13184				4304...

The	pslist	argument	-d	prints	the	accumulated	CPU	times	of	each	thread	as	well	as	the	elapsed	times	the
threads	have	existed:

>	pslist	-d	java
	
Thread	detail	for	ADMINIB-I6CU78U:
	
java	2684:
	Tid	Pri				Cswtch												State					User	Time			Kernel	Time			Elapsed	Time
2688			9									6					Wait:UserReq		0:00:00.000			0:00:00.000				5:47:24.155
2696			9						8465					Wait:UserReq		0:00:07.515			0:00:06.906				5:47:24.155
2700			8								22					Wait:UserReq		0:00:00.000			0:00:00.000				5:47:24.155
2704		15						8401					Wait:UserReq		0:00:08.921			0:00:02.203				5:47:24.092
2716		15			1146663					Wait:UserReq		0:00:00.000			0:00:00.000				5:47:23.733
2720			9					33519					Wait:UserReq		0:00:00.578			0:00:00.468				5:47:23.733...

The	pslist	argument	-x	is	the	same	as	-d	but	also	prints	memory	information	about	the	process	(to	get
processes'	memory	without	threads,	use	-m):

>	pslist	-x	java
	
Process	and	thread	information	for	ADMINIB-I6CU78U:
	
Name																Pid						VM						WS				Priv	Priv	Pk			Faults			NonP	Page
java															2684		816720		315328		304244		313384			159552				633		257
	Tid	Pri				Cswtch												State					User	Time			Kernel	Time			Elapsed	Time
2688			9									6					Wait:UserReq		0:00:00.000			0:00:00.000				5:47:41.686
2696			9						8465					Wait:UserReq		0:00:07.515			0:00:06.906				5:47:41.686
2700			8								22					Wait:UserReq		0:00:00.000			0:00:00.000				5:47:41.686
2704		15						8402					Wait:UserReq		0:00:08.937			0:00:02.203				5:47:41.624
2716		15			1146681					Wait:UserReq		0:00:00.000			0:00:00.000				5:47:41.264...

	

Windows	Performance	Toolkit	(WPT)

The	Windows	Performance	Toolkit	is	a	free	tool	from	Microsoft	that	provides	various	dimensions	of
performance	analysis:	https://docs.microsoft.com/en-us/windows-hardware/test/wpt/

	

Installation

1.	 Download	Windows	Assessment	and	Deployment	Kit	(Windows	ADK)
2.	 On	the	"Select	the	features	you	want	to	install"	screen,	only	"Windows	Performance	Toolkit"	is

https://docs.microsoft.com/en-us/windows-hardware/test/wpt/

required.
3.	 On	64-bit	Windows	7	and	Windows	Server	2008	(but	not	newer	versions	such	as	Windows	8	and

Windows	Server	2012),	add	the	following	registry	entry	and	reboot:

REG	ADD	"HKLM\System\CurrentControlSet\Control\Session	Manager\Memory	Management"	-v	DisablePagingExecutive	-d	0x1	-t	REG_DWORD	-f

	

Collect	Data

There	are	two	main	ways	to	collect	data	(ETL	file):

1.	 GUI:
1.	 Start	C:\Program	Files*\Windows	Kits*\Windows	Performance	Toolkit\WPRUI.exe 	as

Administrator	(replace	with	the	correct	path	to	WPRUI.exe)
2.	 Leave	the	defaults	of	Performance	Scenario=General,	Detail	level=Verbose,	Logging

mode=Memory.	These	buffer	data	to	memory,	so	available	RAM	is	needed.	There	are	also
options	to	flush	to	files.

3.	 Check	Resource	Analysis	}	CPU	usage
4.	 Click	Start
5.	 Reproduce	the	problem	for	at	least	a	few	minutes
6.	 Click	Save	to	stop

2.	 Command	line:
1.	 Start	command	prompt	as	Administrator
2.	 Start	collection	(replace	with	the	correct	path):

"C:\Program	Files*\Windows	Kits*\Windows	Performance	Toolkit\xperf.exe"	-on	SysProf	-stackwalk	Profile	-BufferSize	1024	-MaxBuffers	320

3.	 These	options	buffer	data	to	memory,	so	available	RAM	is	needed.	There	are	also	options	to
flush	to	files.

4.	 Reproduce	the	problem	for	at	least	a	few	minutes
5.	 Stop	collection	(replace	with	the	correct	path	to	xperf.exe):

"C:\Program	Files*\Windows	Kits*\Windows	Performance	Toolkit\xperf.exe"	-d	callstacks.etl

By	default,	WPT	data	is	written	to	%HOMEPATH%\Documents\WPR	Files*.etl.	When	clicking	the	"Start"
button,	the	old	collection	files	are	not	overwritten.

Also	consider	UIforETW.

	

Analyze	Data

There	are	three	main	ways	to	view	an	ETL	file:

1.	 Windows	Performance	Analyzer	(WPA.exe	%ETL%)

2.	 Trace	>	Configure	Symbol	Paths
If	.NET	code	was	running	at	the	time	of	the	capture,	an	NGENPDB	folder	will	be	automatically
created	under	%HOMEPATH%\Documents\WPR	Files\	with	the	name	of	the	.etl	file.	If	it	may	be
necessary	to	investigate	.NET	code,	copy	this	path,	which	is	automatically	included	in	the	default
symbol	path	in	WPA,	and	add	to	the	end	of	the	final	symbol	path.

Example:
C:\work\WAS8554_20140924\java\jre\bin\;C:\work\WAS8554_20140924\java\jre\bin\compressedrefs\;C:\work\WAS8554_20140924\lib\native\win\x86_64\;srv*C:\Symbols*

3.	 Trace	>	Load	Symbols

	

https://github.com/google/UIforETW
http://msdl.microsoft.com/download/symbols

Absolute	Times

WPA	shows	all	data	in	relative	terms	(seconds).	Unfortunately,	there	doesn't	appear	to	be	an	option	to	use
absolute	timestamps.	To	determine	when	the	tracing	started:

1.	 Click	Trace	>	System	Configuration
2.	 Click	Traces
3.	 Review	Start	Time	(UTC)

The	default	ETL	file	name	will	include	the	date	and	time	in	local	format,	but	this	appears	to	be	roughly	the
time	the	trace	is	requested	to	be	stopped.

It	is	common	for	a	~200	second	delay	between	the	start	of	the	capture	and	availability	of	some	data
(presumably	while	the	kernel	is	initializing	tracing).

	

CPU	Analysis

1.	 Expand	Computation	>	CPU	Usage	(Sampled)	>	Utilization	by	Process,	Stack

Flamegraphs	can	also	be	generated:	https://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-
usage-with-flame-graphs/

https://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/

	

CPU	Usage	by	Thread

1.	 Expand	Computation	>	CPU	Usage	(Attributed)	>	Utilization	by	Process,	Thread,	Activity	*

	

Disk	Analysis

1.	 Expand	Storage	>	Disk	Usage	>	Service	Time	by	Process,	Path	Name,	Stack

2.	 The	disk	times	are	in	microseconds
(https://blogs.technet.microsoft.com/b/robertsmith/archive/2012/02/07/analyzing-storage-performance-
using-the-windows-performance-toolkit.aspx).

	

Analyzing	on	Another	Machine

1.	 Gather	the	etl	file	from	%HOMEPATH%\Documents\WPR	Files\
2.	 Gather	all	*.pdb	files	from	the	WebSphere	folder.
3.	 If	.NET	code	was	running	at	the	time	of	the	capture,	an	NGENPDB	folder	will	be	automatically

created	under	%HOMEPATH%\Documents\WPR	Files\	with	the	name	of	the	.etl	file.	If	it	may	be
necessary	to	investigate	.NET	code,	also	gather	this	folder.

	

TPROF

The	open	source	performance	inspector	suite	(originally	created	by	IBM)	includes	a	native	Windows
sampling	profiler	called	TPROF:	http://perfinsp.sourceforge.net/tprof.html

This	is	a	great	way	to	understand	which	native	modules	are	using	the	CPU	and	it	is	requested	as	part	of	the
IBM	Performance	MustGather	on	Windows:	http://www-01.ibm.com/support/docview.wss?
uid=swg21111364

The	reason	this	tool	is	so	useful	is	that	it	is	a	sampling	profiler	(see	the	 Java	Profilers	chapter	for	background
on	this	topic).	It	will	sample	the	native	stacks	of	the	processes	approximately	every	7	milliseconds.	This
tends	to	be	a	very	low	overhead	(less	than	a	few	percent)	way	to	get	insight	into	CPU	usage	without
dramatically	impacting	the	system.	In	general,	TPROF	can	be	used	in	production	environments,	although	you
should	fully	test	this	in	a	test	environment	first.

The	instructions	to	install	and	use	TPROF	are	quite	straightforward:	http://www-

https://blogs.technet.microsoft.com/b/robertsmith/archive/2012/02/07/analyzing-storage-performance-using-the-windows-performance-toolkit.aspx
http://perfinsp.sourceforge.net/tprof.html
http://www-01.ibm.com/support/docview.wss?uid=swg21111364
http://www-01.ibm.com/support/docview.wss?uid=swg21403450

01.ibm.com/support/docview.wss?uid=swg21403450

Currently,	TPROF	does	not	work	on	Windows	Server	>=	2012.

Install	with	tinstall.cmd

Run	with:

>	setrunenv.cmd
>	run.tprof.cmd
Press	ENTER	to	start	capturing	data
Reproduce	the	problem
Press	ENTER	again	to	stop	capturing	data
Open	tprof.out	to	analyze	the	results	(see	the	TechNote	above	for	a	description	of	the	various	sections)

For	example,	in	one	case	we	were	led	to	investigate	some	third	party	drivers	by	seeing	a	significant	amount
of	CPU	usage	in	the	kernel	(and	other	modules	that	are	not	shown	here	for	confidentiality):

PID	695	51.00	java.exe_0c8c
		MOD	320	20.46	C:\Windows\system32\ntoskrnl.exe

	

Processor	Performance	Management	(PPM)

Processor	Performance	Management	(PPM)	is	a	power	saving	feature.	It	may	be	changed	to	the	"High
Performance"	setting:	https://technet.microsoft.com/en-us/library/dd744398%28v=ws.10%29.aspx

A	common	symptom	in	profilers	such	as	TPROF	is	a	high	CPU	usage	in,	for	example,	the	intelppm.sys
driver:

			LAB				TKS			%%%					NAMES
				MOD	20448		7.13				C:\Windows\system32\DRIVERS\intelppm.sys

For	example,	the	intelppm	driver	may	be	disabled	with	the	following	command	followed	by	a	restart:

>	sc	config	intelppm	start=	disabled

	

Memory

Terms:

Memory	may	be	reserved	for	future	use	although	this	puts	no	demands	on	RAM	or	paging	spaces.
Reserved	memory	may	be	concurrently	or	subsequently	committed	which	ensures	there	is	virtual
space	in	RAM	or	paging	spaces	although	committed	memory	only	becomes	resident	in	RAM	once	it's
touched	(read/written).	Programs	such	as	Task	Manager	have	an	option	to	add	a	column	called	the
"Commit	Size"	which	is	the	total	committed.	Reserved	and	committed	memory	are	roughly	two
different	ways	of	looking	at	the	"virtual	size"	of	the	process	from	the	terms	of	other	operating	systems.
The	working	set	of	a	process	is	the	amount	of	memory	resident	in	RAM.	This	is	roughly	the	"resident
set	size"	of	the	process	from	the	terms	of	other	operating	systems.
The	commit	limit	of	a	Windows	node	is	the	size	of	RAM	plus	all	paging	spaces.	If	the	commit	charge
hits	the	commit	limit,	after	the	maximum	number	of	paging	space	auto-increases 	(when
"Automatically	manage	paging	file	size	for	all	drives"	is	checked),	a	request	to	commit	memory	will
fail	even	if	there	is	available	physical	RAM.	Unlike	Linux,	for	example,	Windows	does	not	allow
overcommit	of	virtual	memory	(other	then	reservations	without	commits):

The	system	commit	charge	is	the	total	committed	or	"promised"	memory	of	all	committed
virtual	memory	in	the	system.	If	the	system	commit	charge	reaches	the	system	commit
limit,	the	system	and	processes	might	not	get	committed	memory.	This	condition	can

https://technet.microsoft.com/en-us/library/dd744398%2528v=ws.10%2529.aspx
https://learn.microsoft.com/en-us/windows/win32/memory/page-state
https://learn.microsoft.com/en-us/windows/win32/memory/page-state
https://learn.microsoft.com/en-us/windows/win32/memory/working-set
https://learn.microsoft.com/en-us/troubleshoot/windows-client/performance/introduction-to-the-page-file
https://learn.microsoft.com/en-us/troubleshoot/windows-client/performance/how-to-determine-the-appropriate-page-file-size-for-64-bit-versions-of-windows#peak-system-commit-charge
https://learn.microsoft.com/en-us/troubleshoot/windows-client/performance/how-to-determine-the-appropriate-page-file-size-for-64-bit-versions-of-windows#system-managed-page-files
https://learn.microsoft.com/en-us/troubleshoot/windows-client/performance/slow-page-file-growth-memory-allocation-errors
https://learn.microsoft.com/en-us/windows/win32/memory/virtual-address-space-and-physical-storage

cause	freezing,	crashing,	and	other	malfunctions.	Therefore,	make	sure	that	you	set	the
system	commit	limit	high	enough	to	support	the	system	commit	charge	during	peak	usage.

	

Physical	Memory	(RAM)

Perfmon	counters	(https://technet.microsoft.com/en-us/library/2008.08.pulse.aspx):

Memory\Available	bytes	=	The	amount	of	free	physical	memory	available	for	running	processes.
Memory\Cache	bytes	=	The	amount	of	physical	memory	used	by	the	file	system	cache.
Memory\Free	System	Page	Table	Entries	=	The	number	of	free	PTEs.	Should	be	non-zero.
Memory\Pool	Non-Paged	Bytes	=	Memory	used	by	the	kernel	which	cannot	be	paged	out.
Memory\Pool	Paged	Bytes	=	Memory	used	by	the	kernel	which	can	be	paged	out.

See	also	https://learn.microsoft.com/en-us/troubleshoot/windows-client/performance/how-to-determine-the-
appropriate-page-file-size-for-64-bit-versions-of-windows#memorypagesec-and-other-hard-page-fault-
counters

	

Process	Memory	Usage

To	monitor	process	memory	usage	in	Perfmon,	check	Process\Virtual	Bytes	and	Process\Private	Bytes.

VMMap	is	a	useful	tool	to	get	a	detailed	breakdown	of	process	memory	usage:
https://technet.microsoft.com/en-us/sysinternals/dd535533.aspx

Windows	32-bit	uses	a	default	virtual	user	address	space	of	2GB
(http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/diagnosis/dw3gbswitch3.pdf):

This	can	be	changed	to	a	3GB	virtual	user	address	space:

The	OS	space	(Windows	kernel)	is	used	for	things	such	as	the	paged	and	non-paged	pools	(e.g.	network
buffers,	see	https://blogs.technet.microsoft.com/b/markrussinovich/archive/2009/03/26/3211216.aspx),	page
table	entries	(https://technet.microsoft.com/en-us/library/cc784475(v=WS.10).aspx	and
https://technet.microsoft.com/en-us/library/cc786709(WS.10).aspx),	and	drivers.

https://technet.microsoft.com/en-us/library/2008.08.pulse.aspx
https://learn.microsoft.com/en-us/troubleshoot/windows-client/performance/how-to-determine-the-appropriate-page-file-size-for-64-bit-versions-of-windows#memorypagesec-and-other-hard-page-fault-counters
https://technet.microsoft.com/en-us/sysinternals/dd535533.aspx
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/diagnosis/dw3gbswitch3.pdf
https://blogs.technet.microsoft.com/b/markrussinovich/archive/2009/03/26/3211216.aspx
https://technet.microsoft.com/en-us/library/cc784475(v=WS.10).aspx
https://technet.microsoft.com/en-us/library/cc786709(WS.10).aspx

On	older	versions	of	Windows,	you	enable	3GB	mode	with	a	/3GB	flag	in	boot.ini	and	reboot	the	box:
https://technet.microsoft.com/en-us/library/bb124810.aspx	and	https://msdn.microsoft.com/en-
us/library/bb613473(v=vs.85).aspx

On	newer	versions	of	Windows,	use	BCDEdit	/set	increaseuserva	3072	and	reboot	the	box:
https://msdn.microsoft.com/en-us/library/ff542202.aspx

In	3GB	mode,	some	libraries	are	still	based	at	the	2GB	boundary,	so	-Xmx	is	practically	limited	to	between	-
Xmx1408m	and	-Xmx1856m	because	it	is	a	single,	contiguous	allocation.	Library	rebasing	is	possible	but
then	shared	libraries	are	loaded	privately.

Starting	in	IBM	Java	6,	the	split	heap	option	may	be	used	which	forces	gencon	and	allows	you	to	straddle
nursery	and	tenured	regions	around	the	2GB	area.	For	example:	-Xgc:splitheap	-Xmx2800m	-Xmox1800m
(http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/diag/appendixes/cmdline/xgcsplitheap.html

A	program	must	be	linked	with	/LARGEADDRESSAWARE	to	utilize	a	system	configured	in	a	way	other
than	the	default	2GB	mode.	IBM	Java	is	linked	with	this	option.

"If	an	application	was	linked	with	/LARGEADDRESSAWARE,	DUMPBIN	/HEADERS	will	display
information	to	that	effect."
https://msdn.microsoft.com/en-us/library/wz223b1z.aspx

This	option	is	not	risk	free:	Third	party	JNI	libraries	with	pointer	arithmetic	may	have	unexpected	issues	or
crashes.	The	kernel	itself	may	also	run	into	issues,	particularly	with	exhausted	page	translation	table	entries
or	an	exhausted	non-paged	pool	when	there	is	a	lot	of	network	activity.

	

Input/Output	(I/O)

Useful	Perfmon	counters	for	disks	are	(https://technet.microsoft.com/en-us/library/cc722466.aspx):

LogicalDisk\Avg.	Disk	sec/Read:	Average	time,	in	seconds,	of	a	read	of	data	from	the	disk
LogicalDisk\Avg.	Disk	sec/Write:	Average	time,	in	seconds,	of	a	write	of	data	to	the	disk
LogicalDisk\Current	Disk	Queue	Length:	Indicates	the	number	of	disk	requests	that	are	currently
waiting	as	well	as	requests	currently	being	serviced.
LogicalDisk\%Idle	Time:	Reports	the	percentage	of	time	that	the	disk	system	was	not	processing
requests	and	no	work	was	queued.
LogicalDisk\Disk	Reads/sec
LogicalDisk\Disk	Writes/sec
LogicalDisk\Disk	Read	Bytes/sec
LogicalDisk\Disk	Write	Bytes/sec
Process\IO	Read	Bytes/sec
Process\IO	Write	Bytes/sec

	

Defragmentation

As	you	delete	files,	you	create	gaps	in	the	arrangement	of	the	contiguously	stored	files.	As	you
save	new	files	(and	this	is	especially	true	for	large	files),	the	file	system	uses	up	all	of	these	bits
of	free	space	-	resulting	in	the	new	files	being	scattered	all	over	the	disk	in	noncontiguous
pieces.	And	thus	we	end	up	with	fragmented	disks	and	system	performance	issues	because	the
disk	heads	have	to	spend	time	moving	from	cluster	to	cluster	before	they	can	read	or	write	the
data.

[The	Disk	Defragmenter]	utility	physically	rearranges	the	files	so	that	they	are	stored	(as	much
as	possible)	in	physically	contiguous	clusters.	In	addition	to	the	consolidation	of	files	and

https://technet.microsoft.com/en-us/library/bb124810.aspx
https://msdn.microsoft.com/en-us/library/bb613473(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ff542202.aspx
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/diag/appendixes/cmdline/xgcsplitheap.html
https://msdn.microsoft.com/en-us/library/wz223b1z.aspx
https://technet.microsoft.com/en-us/library/cc722466.aspx

folders,	the	Defragmenter	utility	also	consolidates	free	space	-	meaning	that	it	is	less	likely	for
new	files	to	be	fragmented	when	you	save	them.	For	operating	systems	prior	to	Windows	Vista,
you	had	to	manually	run	the	utility	or	schedule	automatic	defragmentation	via	a	scheduled	task.
On	Windows	Vista,	Disk	Defragmenter	runs	as	a	low-priority	background	task	that	is
automatically	run	on	a	weekly	basis	without	requiring	user	intervention.	On	Windows	Server
2008,	which	uses	the	same	Disk	Defragmenter,	the	automatic	defragmentation	is	not	enabled	by
default...	The	basic	operation	of	the	utility	involves	passing	it	a	driver	letter,	for	example:
defrag.exe	c:	would	perform	a	defragmentation	of	the	C:	drive.

>	defrag	c:	-a

https://blogs.technet.microsoft.com/b/askperf/archive/2008/03/14/disk-fragmentation-and-
system-performance.aspx

	

CIFS/SMB

The	most	common	protocols	for	a	networked	file	systems	on	Windows	are	Common	Internet	File	System
(CIFS)	and	Server	Message	Block	(SMB).	The	SMB	version	2	protocol	is	new	and	no	longer	synonymous
with	CIFS	(https://msdn.microsoft.com/en-us/library/ee441790.aspx).

The	versions	of	SMB2	are	2.002,	2.1,	3.0,	and	3.02	(https://msdn.microsoft.com/en-
us/library/cc246492.aspx).

If	acceptable	from	a	security	point	of	view,	consider	disabling	SMB	packet	signing:	"By	default,	client-side
SMB	signing	is	enabled	on	workstations,	servers,	and	domain	controllers...	Using	SMB	packet	signing	can
degrade	performance	up	to	15	percent	on	file	service	transactions"	(https://technet.microsoft.com/en-
us/library/cc731957.aspx)	and	"...	the	overhead	could	get	extremely	high-up	to	40	percent	in	some
situations"	(https://technet.microsoft.com/en-us/library/cc512612.aspx).	Disable	'Microsoft	network	client:
Digitally	sign	communications	(if	server	agrees)'	and	'Microsoft	network	client:	Digitally	sign
communications	(always)'.

SMB2.1	introduces	large	Maximum	Transmission	Unit	(MTU)	support	up	to	1MB
(https://technet.microsoft.com/en-us/library/ff625695(v=ws.10).aspx).	It	is	enabled	with
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\LanmanWorkstation\Parameters\DisableLargeMtu
=	0	followed	by	a	reboot	(http://download.microsoft.com/download/9/B/2/9B205446-37EE-4BB1-9A50-
E872565692F1/PerfTuningGuideServer2012R2.pdf).

The	Perfmon	counter	Network	Interface\Bytes	Total/sec	may	be	used	to	test	the	throughput	behavior	of
SMB:	https://blogs.technet.microsoft.com/b/josebda/archive/2008/11/11/file-server-performance-
improvements-with-the-smb2-protocol-in-windows-server-2008.aspx

Test	the	response	time	of	an	SMB	copy	using	a	large	file	by	creating	a	batch	file	such	as	largefilecopy.bat:

@echo	off
echo	%TIME%
xcopy	/J	/Y	%PATHTOLARGELOCALFILE%	\\%SMBPATH%
echo	%TIME%

One	technique	of	determining	what	proportion	of	time	a	process	spends	waiting	for	SMB	responses	is	to
gather	network	trace,	filter	to	the	times	spanning	a	particular	process	request,	add	a	Wireshark	column	for
smb2.time,	export	to	CSV,	sum	the	service	response	times,	and	compare	to	the	elapsed	time	of	the	process
request.

Some	people	suggest	disabling	"Domain	member:	Digitally	encrypt	secure	channel	data;"	however,	this
option	does	not	appear	to	be	related	to	SMB	traffic	(https://technet.microsoft.com/en-
us/library/jj852270(v=ws.10).aspx).

https://blogs.technet.microsoft.com/b/askperf/archive/2008/03/14/disk-fragmentation-and-system-performance.aspx
https://msdn.microsoft.com/en-us/library/ee441790.aspx
https://msdn.microsoft.com/en-us/library/cc246492.aspx
https://technet.microsoft.com/en-us/library/cc731957.aspx
https://technet.microsoft.com/en-us/library/cc512612.aspx
https://technet.microsoft.com/en-us/library/ff625695(v=ws.10).aspx
http://download.microsoft.com/download/9/B/2/9B205446-37EE-4BB1-9A50-E872565692F1/PerfTuningGuideServer2012R2.pdf
https://blogs.technet.microsoft.com/b/josebda/archive/2008/11/11/file-server-performance-improvements-with-the-smb2-protocol-in-windows-server-2008.aspx
https://technet.microsoft.com/en-us/library/jj852270(v=ws.10).aspx

	

Networking

Update	TIME_WAIT	timeout:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay
=	REG_DWORD	value	30
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunewindows.html

Update	maximum	ephemeral	local	port:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\MaxUserPort	=
REG_DWORD	value	65534
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunewindows.html

Consider	disabling	delayed	TCP	acknowledgments:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\TcpAckFrequency
=	REG_DWORD	value	1.	Warning:	This	option	may	or	may	not	be	better	depending	on	the	workload	(see
the	discussion	of	delayed	acknowledgments).
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunewindows.html
https://support.microsoft.com/kb/328890)

Consider	increasing	the	TCP	maximum	window	size.	For	example,	to	set	the	value	to	65535,
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\GlobalMaxTcpWindowSize
=	REG_DWORD	value	0xFFFF:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunetcpip.html

Consider	increasing	the	maximum	number	of	TCP/IP	control	blocks	(MaxFreeTcbs)	when	using	large
numbers	of	connections:	https://technet.microsoft.com/en-us/library/cc938178.aspx.	When	modifying
MaxFreeTcbs,	MaxHashTableSize	must	also	be	modified	proportionally:	https://technet.microsoft.com/en-
us/library/cc938176.aspx

Starting	with	Windows	Server	2008,	it	is	no	longer	applicable	to	modify
EnableDynamicBacklog/MinimumDynamicBacklog/MaximumDynamicBacklog/DynamicBacklogGrowthDelta
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunewindows.html
https://support.microsoft.com/kb/142641,	https://msdn.microsoft.com/en-us/library/ff648853.aspx,
https://blogs.technet.microsoft.com/b/nettracer/archive/2010/08/11/where-have-those-afd-driver-related-
registry-dynamicbackloggrowthdelta-enabledynamicbacklog-maximumdynamicbacklog-
minimumdynamicbacklog-keys-gone.aspx)

Increase	network	adapter	receive	buffers:	https://support.microsoft.com/kb/981482

It	appears	that	TCP/IP	in	Windows	2012	is	the	same	as	2008,	so	all	of	the	same	tuning	applies:	"In	Windows
Server	2012,	TCP/IP	-	including	both	Internet	Protocol	version	4	(IPv4)	and	IPv6	-	is	unchanged	from
TCP/IP	in	Windows	Server	2008	R2.	For	more	information,	see	TCP/IP	in	the	Windows	Server	2008	and
Windows	Server	2008	R2	Technical	Library."	(https://technet.microsoft.com/en-us/library/jj573587.aspx).

Ping	a	remote	host.	In	general,	and	particularly	for	LANs,	ping	times	should	be	less	than	a	few	hundred
milliseconds	with	little	standard	deviation.

>	ping	-t	10.20.30.1
	
Pinging	10.20.30.1	[10.20.30.1]	with	32	bytes	of	data:
Reply	from	10.20.30.1:	bytes=32	time=92ms	TTL=249
Reply	from	10.20.30.1:	bytes=32	time=89ms	TTL=249
Reply	from	10.20.30.1:	bytes=32	time=155ms	TTL=249
Reply	from	10.20.30.1:	bytes=32	time=89ms	TTL=249
	
Ping	statistics	for	
10.20.30.1				Packets:	Sent	=	4,	Received	=	4,	Lost	=	0	(0%	loss),
Approximate	round	trip	times	in	milli-seconds:

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunewindows.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunewindows.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunewindows.html
https://support.microsoft.com/kb/328890
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunetcpip.html
https://technet.microsoft.com/en-us/library/cc938178.aspx
https://technet.microsoft.com/en-us/library/cc938176.aspx
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunewindows.html
https://support.microsoft.com/kb/142641
https://msdn.microsoft.com/en-us/library/ff648853.aspx
https://blogs.technet.microsoft.com/b/nettracer/archive/2010/08/11/where-have-those-afd-driver-related-registry-dynamicbackloggrowthdelta-enabledynamicbacklog-maximumdynamicbacklog-minimumdynamicbacklog-keys-gone.aspx
https://support.microsoft.com/kb/981482
https://technet.microsoft.com/en-us/library/jj573587.aspx

				Minimum	=	89ms,	Maximum	=	155ms,	Average	=	106ms

	

TCP	Congestion	Control

Review	the	background	on	TCP	congestion	control.

Review	https://docs.microsoft.com/en-us/windows-server/networking/technologies/network-subsystem/net-
sub-performance-tuning-nics

	

Initial	Congestion	Window	Size

The	initial	congestion	window	size	may	be	changed	with	(https://support.microsoft.com/kb/2472264):

>	netsh	interface	tcp	set	supplemental	template=custom	icw=10

	

netstat

Create	a	snapshot	of	socket	information:

>	netstat	-a	-b	-n	-o
	
Active	Connections
	
		Proto		Local	Address										Foreign	Address								State											PID
		TCP				0.0.0.0:7278											0.0.0.0:0														LISTENING							2684
	[java.exe]
		TCP				0.0.0.0:8881											0.0.0.0:0														LISTENING							2684
	[java.exe]
		TCP				0.0.0.0:9045											0.0.0.0:0														LISTENING							2684
	[java.exe]...

Show	adapter	statistics:

C:\tprof\bin>netstat	-s
	
IPv4	Statistics
	
		Received	Header	Errors													=	0
		Received	Address	Errors												=	0
		Unknown	Protocols	Received									=	0
		Received	Packets	Discarded									=	9
		Routing	Discards																			=	0
		Discarded	Output	Packets											=	17
		Output	Packet	No	Route													=	0
		Reassembly	Required																=	0
		Reassembly	Failures																=	0
		Datagrams	Failing	Fragmentation				=	0...
	
TCP	Statistics	for	IPv4
	
		Failed	Connection	Attempts										=	445
		Reset	Connections																			=	149
		Segments	Retransmitted														=	921...

Show	ethernet	statistics:

>	netstat	-e
Interface	Statistics

https://docs.microsoft.com/en-us/windows-server/networking/technologies/network-subsystem/net-sub-performance-tuning-nics
https://support.microsoft.com/kb/2472264

	
																											Received												Sent
Bytes																					275244337								12757159...
Discards																										0															0
Errors																												0															0
Unknown	protocols																	0

	

Wireshark

Capture	network	packets	using	Wireshark	(covered	in	the	Major	Tools	chapter).

Start	the	capture:

1.	 Install	Wireshark:	https://www.wireshark.org/#download
2.	 Start	Wireshark	as	Administrator
3.	 Click	"Capture"	>	"Options"
4.	 Select	the	network	interface	in	the	"Input"	box
5.	 Click	the	"Output"	tab	and	enter	a	"File"	such	as	C:\wireshark.pcap
6.	 Click	the	"Options"	tab	and	uncheck	"Update	list	of	packets	in	realtime"	and	click	"Start"

Stop	the	capture:

1.	 Click	"Capture"	>	"Stop"

	

netsh

netsh	is	a	command	line	tool	to	help	configure	networking.

	

Disable	IPv6	DHCP	Auto-negotiation

netsh	interface	ipv6	set	interface	%INTERFACE%	routerdiscovery=disabled

	

Message	Analyzer

The	official	way	to	capture	network	packets	on	newer	versions	of	Microsoft	Windows	is	Microsoft	Message
Analyzer:	http://www.microsoft.com/en-us/download/details.aspx?id=44226

	

Network	Monitor

The	official	way	to	capture	network	packets	on	older	versions	of	Microsoft	Windows	is	Microsoft	Network
Monitor:	https://support.microsoft.com/kb/148942

	

Process	Monitor	(ProcMon.exe)

Microsoft	Process	Monitor	provides	detailed	information	on	file	system	activity,	registry	activity,	network
activity	and	process/thread	activity:	https://technet.microsoft.com/en-us/sysinternals/bb896645.	ProcMon
replaces	previous	tools	such	as	FileMon.

https://www.wireshark.org/#download
https://docs.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-contexts
http://www.microsoft.com/en-us/download/details.aspx?id=44226
https://support.microsoft.com/kb/148942
https://technet.microsoft.com/en-us/sysinternals/bb896645

1.	 Delete	any	existing	PML	files	from	previous	runs.
2.	 Command	Prompt>	ProcMon.exe	/NoConnect	(the	/NoConnect	option	avoids	immediately	starting

collection	so	that	you	can	configure	whatever's	needed)
3.	 File	>	Backing	Files	>	Select	"Use	file	named"	and	enter	a	path	such	as	C:\ProcMon.pml	and	click	OK.
4.	 Filter	>	Uncheck	"Drop	Filtered	Events"
5.	 Options	>	Configure	Symbols...	>	Ensure	DbgHelp.dll	points	to	an	existing	path	(install	Debugging

Tools	if	not),	and	set	symbol	paths	to	include	a	local	symbol	cache	directory,	such	as
srv*c:\symbols*http://msdl.microsoft.com/download/symbols

6.	 Options	>	Profiling	Events	>	Check	"Generate	thread	profiling	events"	and	select	"Every	100
milliseconds"

7.	 In	the	menu	bar	on	the	right,	uncheck	the	5	boxes	named	"Show	Registry	Activity,	"Show	File	System
Activity,"	etc.	so	that	only	the	backing	file	is	capturing	the	events	and	not	the	GUI	as	well.

8.	 File	>	Click	Capture	Events.
9.	 Reproduce	problem

10.	 File	>	Uncheck	"Capture	Events"	(or	run	ProcMon.exe	/terminate	from	another	command	prompt).
This	step	is	required;	otherwise,	you	may	receive	the	following	error	when	trying	to	open	the	PML
files:	"The	file	%FILE%	was	not	closed	cleanly	during	capture	and	is	corrupt."

11.	 Load	the	PML	File

	

Thread	Profiling	Analysis

Click	Tools	>	Stack	Summary...,	sort	by	Time	%,	and	expand	the	largest	stack	paths:

		

Large	Pages

The	-Xlp	option	requests	the	JVM	to	allocate	the	Java	heap	with	large	pages.	This	command	is	available	only
on	Windows	Server	2003,	Windows	Vista,	Windows	Server	2008,	and	above.	To	use	large	pages,	the	user
that	runs	Java	must	have	the	authority	to	"lock	pages	in	memory".

To	enable	this	authority,	as	administrator	go	to	Control	Panel	>	Administrative	Tools	>	Local	Security	Policy
and	then	find	Local	Policies	>	User	Rights	Assignment	>	Lock	pages	in	memory.	Add	the	user	who	runs	the
Java	process,	and	reboot	your	machine.	For	more	information,	see	these	websites:

https://msdn.microsoft.com/en-us/library/aa366720(VS.85).aspx
https://msdn.microsoft.com/en-us/library/aa366568(VS.85).aspx

Note:	On	Microsoft	Windows	Vista	and	Windows	2008,	use	of	large	pages	is	affected	by	the	User	Account
Control	(UAC)	feature.	When	UAC	is	enabled,	a	regular	user	(a	member	of	the	Users	group)	can	use	the	-Xlp
option	as	normal.	However,	an	administrative	user	(a	member	of	the	administrators	group)	must	run	the
application	as	an	administrator	to	gain	the	privileges	required	to	lock	pages	in	memory.	To	run	as
administrator,	right-click	the	application	and	select	Run	as	administrator.	If	the	user	does	not	have	the
necessary	privileges,	an	error	message	is	produced,	advising	that	the	System	configuration	does	not	support
option	'-Xlp'.

	

Solaris

http://msdl.microsoft.com/download/symbols
https://msdn.microsoft.com/en-us/library/aa366720(VS.85).aspx
https://msdn.microsoft.com/en-us/library/aa366568(VS.85).aspx

Solaris	Recipe

1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Program	memory	should	not	page	out	of	RAM.
3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have

poor	response	times.
4.	 TCP/IP	and	network	tuning,	whilst	sometimes	complicated	to	investigate,	may	have	dramatic	effects

on	performance.
5.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
6.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
7.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
8.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
9.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP

keepalive	timer	(tcp_keepalive_interval)	from	2	hours	to	a	value	less	than	intermediate	device	idle
timeouts	(e.g.	firewalls).

10.	 Test	disabling	delayed	ACKs

Also	review	the	general	topics	in	the	Operating	Systems	chapter.

	

General

Check	the	system	log	for	any	warnings,	errors,	or	repeated	informational	messages.

#	less	/var/adm/messages

Query	the	help	manual	for	a	command:

$	man	vmstat	#	By	default,	contents	are	sent	to	more
$	man	-a	malloc	#	There	may	be	multiple	manuals	matching	the	name.	Use	-a	to	show	all	of	them.

An	Analysis	of	Performance,	Scaling,	and	Best	Practices	for	IBM	WebSphere	Application	Server	on	Oracle's
SPARC	T	-Series	Servers:	http://www.oracle.com/technetwork/server-storage/sun-sparc-
enterprise/documentation/ibm-websphere-sparc-t5-2332327.pdf

Review	the	Solaris	tuning	in	the	latest	SPECjEnterprise	results	submitted	by	Oracle:

SPARC	T5
Sun	Server

The	Solaris	Management	Console	(smc)	is	no	longer	supported	in	recent	releases:
http://docs.oracle.com/cd/E26502_01/html/E29010/gltfb.html

	

Processes

Query	basic	process	information:

$	ps	-elf	|	grep	java
	F	S						UID			PID		PPID			C	PRI	NI					ADDR					SZ				WCHAN				STIME						TIME	CMD
	0	S	noaccess		1089					1			0		40	20								?		15250								?			Jan	28	?		339:02	/usr/java/bin/java	-server	-Xmx128m...

By	default,	the	process	ID	(PID)	is	the	number	in	the	fourth	column.	You	can	control	which	columns	are
printed	and	in	which	order	using	-o.

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/ibm-websphere-sparc-t5-2332327.pdf
http://www.spec.org/jEnterprise2010/results/res2013q3/jEnterprise2010-20130904-00045.html#Java_EE_AppServer_&_Database_Server_HW_0
http://www.spec.org/jEnterprise2010/results/res2013q3/jEnterprise2010-20130904-00046.html#Java_EE_AppServer_HW_0
http://docs.oracle.com/cd/E26502_01/html/E29010/gltfb.html

The	built-in	ps	command	may	not	show	the	entire	command	line.	An	alternative	ps	is	often	available:

$	/usr/ucb/ps	auxwww

	

Central	Processing	Unit	(CPU)

Query	physical	processor	layout:

#	psrinfo	-pv
The	physical	processor	has	16	cores	and	128	virtual	processors	(0-127)
The	core	has	8	virtual	processors	(0-7)...

#	prtdiag	-v
Memory	size:	2GB								
CPU		Freq						Size								Implementation									Mask				Status						Location
0				1503	MHz		1MB									SUNW,UltraSPARC-IIIi				3.4				on-line					MB/P0
1				1503	MHz		1MB									SUNW,UltraSPARC-IIIi				3.4				on-line					MB/P1...

Ensure	there	are	no	errant	processes	using	non-trivial	amounts	of	CPU.

	

vmstat

Query	processor	usage:

$	vmstat	5	2
	kthr						memory												page												disk										faults						cpu
	r	b	w			swap		free		re		mf	pi	po	fr	de	sr	s3	s5	s7	--			in			sy			cs	us	sy	id
	0	0	0	4415400	739680	77	859	5		3		4		0		8	-0		3	-1		0		325	1634		476		2		2	96
	0	0	0	4645936	1232224	3		5		0		0		0		0		0		0		0		0		0		285		349		274		0		1	99

The	documentation	on	the	first	line	of	vmstat	is	unclear:

Without	options,	vmstat	displays	a	one-line	summary	of	the	virtual	memory	activity	since	the
system	was	booted.	(http://docs.oracle.com/cd/E19683-01/816-0211/6m6nc67ac/index.html)

Experimentation	shows	that,	with	options	(such	as	interval	or	count),	the	first	line	also	displays	statistics
since	the	system	was	booted:

#	vmstat
	kthr						memory												page												disk										faults						cpu
	r	b	w			swap		free		re		mf	pi	po	fr	de	sr	s3	s5	s7	--			in			sy			cs	us	sy	id
	0	0	0	3932200	329624	79	857	1		1		1		0		2	-0		3	-0		0		351	1970		764		2		3	95
#	vmstat	5
	kthr						memory												page												disk										faults						cpu
	r	b	w			swap		free		re		mf	pi	po	fr	de	sr	s3	s5	s7	--			in			sy			cs	us	sy	id
	0	0	0	3932184	329616	79	857	1		1		1		0		2	-0		3	-0		0		351	1970		764		2		3	95
	0	0	0	3527808	70608	2780	25799	3	2	2	0		0		0		2		0		0		445	14699	2383	15	44	41
	0	0	0	3527784	70728	2803	26009	0	0	0	0		0		0		0		0		0		430	14772	2387	15	44	42

Example	to	capture	vmstat	in	the	background:

INTERVAL=1;	FILE=vmstat_`hostname`_`date	+"%Y%m%d_%H%M"`.txt;	date	>	${FILE}	&&	echo	"VMSTAT_INTERVAL	=	${INTERVAL}"	>>	$FILE	&&	nohup	vmstat	${INTERVAL}	>>	$FILE	&

	

Per	processor	utilization

Query	per-processor	utilization:

http://docs.oracle.com/cd/E19683-01/816-0211/6m6nc67ac/index.html

$	mpstat	5	2
CPU	minf	mjf	xcal		intr	ithr		csw	icsw	migr	smtx		srw	syscl		usr	sys		wt	idl
		0		425			0		115				34			26		202				7			51			14				0			838				2			2			0		96
		1		434			0			98			290		185		274				5			52			16				0			797				2			2			0		96
CPU	minf	mjf	xcal		intr	ithr		csw	icsw	migr	smtx		srw	syscl		usr	sys		wt	idl
		0				0			0				1				15				9			93				3			21				0				0			159				0			0			0	100
		1				2			0				3			280		175		181				2			22				0				0			172				0			0			0		99...

	

pgstat

pgstat:	http://docs.oracle.com/cd/E23824_01/html/821-1462/pgstat-1m.html

	

prstat

By	default,	prstat	prints	the	damped	average	%	CPU	statistics	for	processor	usage	by	individual	processes	or
threads.	Without	arguments,	prstat	will	periodically	update	the	screen	with	relatively	accurate	'average'
information	(this	may	be	at	variance	with	data	returned	from	vmstat	due	to	the	difference	in	how	it's
calculated):

$	prstat

Although	the	prstat	documentation	does	not	explicitly	mention	this,	by	default,	the	reported	CPU	usage	is
decayed	over	time.	This	can	be	confirmed	with	the	Java	program	at
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/java/ConsumeCPU.java.	For
example,	if	a	Java	program	uses	50%	CPU	from	time	T1	to	time	T2	(after	which	its	CPU	usage	goes	to
approximately	0),	and	you	start	to	take	prstat	at	time	T2,	the	first	iteration	will	report	about	50%,	and	the
second	iteration	may	report	a	decayed	value,	and	so	on	in	the	following	iterations.	Therefore,	prstat	may	not
show	the	"current"	processor	usage	of	processes	but	may	include	some	historical	processor	usage.

Use	the	-mv	options	to	gather	accurate	interval-based	statistics:

$	prstat	-mv

For	example,	use	prstat	in	micro-stat	mode	with	the	following	options	-mv	for	detailed,	interval-accurate
statistics,	-n	to	limit	the	number	of	processes	to	report,	and	an	interval	and	iteration	count	to	print	in	batch
mode:

$	prstat	-mvcn	${MAXPROCESSES}	${INTERVAL}	${ITERATIONS}
$	prstat	-mvcn	5	10	3
			PID	USERNAME	USR	SYS	TRP	TFL	DFL	LCK	SLP	LAT	VCX	ICX	SCL	SIG	PROCESS/NLWP		
	26649	root					5.9		17	1.0		12		45	0.0		19	0.1		2K		84	47K			0	prstat/1
	26237	root					0.3	0.1	0.0	0.7	1.3	0.0		98	0.0		72			5	493			0	sshd/1...

The	first	iteration	of	prstat	includes	CPU	data	from	before	the	start	of	prstat.	In	general,	for	"current"
processor	usage,	review	the	second	and	subsequent	iterations.

Be	careful	of	relying	upon	any	interpretation	of	prstat	without	it	operating	in	-m	'micro-stat'	mode,	since	there
is	no	accurate	timebase	to	the	intervals	against	which	percentage	calculations	can	ever	be	accurately
maintained.

	

Per-thread	CPU	usage

Use	the	-L	flag	along	with	-p	$PID	to	display	accumulated	CPU	time	and	CPU	usage	by	thread	(light-weight
process	[LWP]):

http://docs.oracle.com/cd/E23824_01/html/821-1462/pgstat-1m.html
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/java/ConsumeCPU.java

$	prstat	-mvcLn	${MAXTHREADS}	-p	${PID}	${INTERVAL}	${ITERATIONS}
$	prstat	-mvcLn	50	-p	1089	10	12
			PID	USERNAME		SIZE			RSS	STATE		PRI	NICE						TIME		CPU	PROCESS/LWPID						
		1089	noaccess		119M		100M	sleep			59				0			3:12:24	0.0%	java/14
		1089	noaccess		119M		100M	sleep			59				0			1:55:58	0.0%	java/35
		1089	noaccess		119M		100M	sleep			59				0			0:00:00	0.0%	java/38
		1089	noaccess		119M		100M	sleep			59				0			0:00:00	0.0%	java/36...

prstat	-L	for	threads	has	similar	behavior	to	prstat	for	processes.	Without	-mv,	it	reports	damped	average	%
CPU.	With	-mv,	the	first	iteration	includes	CPU	data	from	before	the	start	of	prstat.

	

CPU	Statistics

Query	available	CPU	statistics:

#	cpustat	-h
...
				event	specification	syntax:
				[picn=]<eventn>[,attr[n][=<val>]][,[picn=]<eventn>[,attr[n][=<val>]],...]

				event0:		Cycle_cnt	Instr_cnt	Dispatch0_IC_miss	IC_ref	DC_rd	DC_wr...
				event1:		Cycle_cnt	Instr_cnt	Dispatch0_mispred	EC_wb	EC_snp_cb...

Query	CPU	statistics:

#	cpustat	-c	EC_ref,EC_misses	5	2
			time	cpu	event						pic0						pic1
		5.011			0		tick			2037798					90010
		5.011			1		tick			1754067					85031
	10.011			1		tick			2367524				101481
	10.011			0		tick			4272952				195616
	10.011			2	total		10432341				472138

The	cputrack	command	is	basically	the	same	as	cpustat	but	works	on	a	per-process	level.

	

Interrupts

Interrupt	statistics	can	be	queried	with	intrstat:

$	intrstat	5	2

						device	|						cpu0	%tim						cpu1	%tim
-------------+------------------------------
							bge#0	|									0		0.0									4		0.0
							glm#0	|									3		0.0									0		0.0
						uata#0	|									0		0.0									0		0.0

						device	|						cpu0	%tim						cpu1	%tim
-------------+------------------------------
							bge#0	|									0		0.0									8		0.0
							glm#0	|								23		0.0									0		0.0
						uata#0	|									0		0.0									0		0.0...

Query	interrupts	per	device:

$	vmstat	-i
interrupt									total					rate

clock								3244127300						100

Total								3244127300						100

	

Hardware	Encryption

Recent	versions	of	the	IBM	SDK	that	run	on	Solaris	support	the	hardware	encryption	capabilities	of	the
Ultra-SPARC	T2	CMT	processor	through	the	IBMPKCS11Impl	security	provider	which	is	the	first	in	the
java.security	provider	list:

http://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-
component/pkcs11implDocs/supportedcards.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-
component/pkcs11implDocs/cardobservations.html

	

Physical	Memory	(RAM)

Program	memory	should	not	page	out	of	RAM.	This	can	be	monitored	with	the	api,	apo,	and	apf	columns	in
vmstat	-p.	For	example:

#	vmstat	-p	5	3
					memory											page										executable						anonymous						filesystem
			swap		free		re		mf		fr		de		sr		epi		epo		epf		api		apo		apf		fpi		fpo		fpf
	4902128	1116760	76	851	1			0			0				0				0				0				0				0				0				0				1				1
	4304784	931536	25	31			0			0			0				0				0				0				0				0				0				0				0				0
	4304560	931320	447	5117	0		0			0				0				0				0				0				0				0				0				2				0

The	first	line	of	output	is	a	set	of	statistics	from	boot	and	can	usually	be	discarded.

Monitoring	Swap	Resources:	http://docs.oracle.com/cd/E23824_01/html/821-1459/fsswap-52195.html

	

Input/Output	(I/O)

Query	disk	usage:

$	df	-h
Filesystem													size			used		avail	capacity		Mounted	on
/dev/dsk/c1t0d0s0							63G				60G			3.3G				95%				/
/devices																	0K					0K					0K					0%				/devices
ctfs																					0K					0K					0K					0%				/system/contract
proc																					0K					0K					0K					0%				/proc
mnttab																			0K					0K					0K					0%				/etc/mnttab
swap																			4.4G			1.6M			4.4G					1%				/etc/svc/volatile
fd																							0K					0K					0K					0%				/dev/fd
swap																			4.5G				49M			4.4G					2%				/tmp
swap																			4.4G				56K			4.4G					1%				/var/run...

When	encountering	"too	many	open	files"	ulimit	issues	use:

lsof	-p	<pid>

Use	iostat	for	basic	disk	monitoring.	For	example:

$	iostat	-xtcn	5	2
			tty									cpu
	tin	tout		us	sy	wt	id
			0				1			2		2		0	96
																				extended	device	statistics														
				r/s				w/s			kr/s			kw/s	wait	actv	wsvc_t	asvc_t		%w		%b	device
				0.0				0.0				0.0				0.0		0.0		0.0				0.0				1.1			0			0	c0t0d0

http://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/pkcs11implDocs/supportedcards.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/pkcs11implDocs/cardobservations.html
http://docs.oracle.com/cd/E23824_01/html/821-1459/fsswap-52195.html

				0.5				2.8				4.8				8.6		0.0		0.1				0.0			18.6			0			1	c1t0d0
				0.0				0.0				0.0				0.0		0.0		0.0				0.0				0.0			0			0	c1t1d0
				0.0				0.0				0.0				0.0		0.0		0.0				0.0				4.6			0			0	wassun1:vold(pid463)
			tty									cpu
	tin	tout		us	sy	wt	id
			0			98			0		0		0	99
																				extended	device	statistics														
				r/s				w/s			kr/s			kw/s	wait	actv	wsvc_t	asvc_t		%w		%b	device
				0.0				0.0				0.0				0.0		0.0		0.0				0.0				0.0			0			0	c0t0d0
				0.0				2.4				0.0				7.0		0.0		0.0				0.0			19.3			0			1	c1t0d0
				0.0				0.0				0.0				0.0		0.0		0.0				0.0				0.0			0			0	c1t1d0
				0.0				0.0				0.0				0.0		0.0		0.0				0.0				0.0			0			0	wassun1:vold(pid463)...

An	alternative	is	fsstat:

$	fsstat	-F
	new		name			name		attr		attr	lookup	rddir		read	read		write	write
	file	remov		chng			get			set				ops			ops			ops	bytes			ops	bytes
7.11M	3.03M		632K	45.6G	1.97M		35.9G	90.5M	3.97G	1.35T		906M		241G	ufs
				0					0					0	1.48G					0		1.43G	13.0M		723M		254G	46.9K	8.20M	proc
				0					0					0			255					0					25				22					0					0					0					0	nfs
				0					0					0					0					0						0					0					0					0					0					0	zfs
				0					0					0		785M					0						0					0					0					0					0					0	lofs
	239M	13.5M		225M		272M		105K			549M	23.9K		209K		362M		226M	91.6G	tmpfs
				0					0					0	10.3M					0						0					0				30	4.27K					0					0	mntfs
				0					0					0					0					0						0					0					0					0					0					0	nfs3
				0					0					0					0					0						0					0					0					0					0					0	nfs4
				0					0					0			488					0					28				19					0					0					0					0	autofs

Query	swap	usage:

$	swap	-s
total:	876400k	bytes	allocated	+	45488k	reserved	=	921888k	used,	4645872k	available

	

Zettabyte	File	System	(ZFS)

Consider	isolating	the	ZFS	intent	log	to	a	separate	disk.

	

Networking

Query	socket	information:

$	netstat	-an
TCP:	IPv4
			Local	Address						Remote	Address						Swind	Send-Q	Rwind	Recv-Q				State
--------------------	--------------------	-----	------	-----	------	-----------
						*.32772											*.*																0									0	49152						0				LISTEN
127.0.0.1.32833									127.0.0.1.32794			32768						0	32768						0	ESTABLISHED...

When	running	into	"too	many	open	files"	use

netstat	-an	|	grep	ESTA	|	wc	-l

Query	socket	statistics	periodically:

$	netstat	-i	5	2
				input			bge0						output							input		(Total)				output
packets			errs		packets	errs		colls		packets			errs		packets		errs		colls
122009930			0		7978053	0					0						152528566			0			38496689	0					0					
33										0									6	0					0						33										0			6								0					0					...

Starting	with	Solaris	11,	use	dlstat	for	network	utilization	(http://docs.oracle.com/cd/E23824_01/html/821-
1458/ggjew.html):

#	dlstat	-r	-i	1
			LINK			IPKTS		RBYTES			INTRS			POLLS			CH<10	CH10-50			CH>50
e1000g0	101.91K		32.86M		87.56K		14.35K			3.70K					205							5
		nxge1			9.61M		14.47G			5.79M			3.82M	379.98K		85.66K			1.64K
		vnic1							8					336							0							0							0							0							0
e1000g0							0							0							0							0							0							0							0
		nxge1		82.13K	123.69M		50.00K		32.13K			3.17K					724						24
		vnic1							0							0							0							0							0							0							0

#	dlstat	-t	-i	5
			LINK			OPKTS		OBYTES		BLKCNT	UBLKCNT
e1000g0		40.24K			4.37M							0							0
		nxge1			9.76M	644.14M							0							0
		vnic1							0							0							0							0
e1000g0							0							0							0							0
		nxge1		26.82K			1.77M							0							0
		vnic1							0							0							0							0

Query	detailed	socket	statistics:

#	netstat	-s
TCP				tcpRtoAlgorithm					=					4				tcpRtoMin											=			400
				tcpRtoMax											=	60000				tcpMaxConn										=				-1
				tcpActiveOpens						=	2162575				tcpPassiveOpens					=	349052
				tcpAttemptFails					=	1853162				tcpEstabResets						=	19061...

Ping	a	remote	host.	In	general,	and	particularly	for	LANs,	ping	times	should	be	less	than	a	few	hundred
milliseconds	with	little	standard	deviation.

$	ping	-ns	10.20.30.1
PING	10.20.30.1	:	56	data	bytes
64	bytes	from	10.20.30.1:	icmp_seq=0.	time=77.9	ms
64	bytes	from	10.20.30.1:	icmp_seq=1.	time=77.2	ms
64	bytes	from	10.20.30.1:	icmp_seq=2.	time=78.3	ms
64	bytes	from	10.20.30.1:	icmp_seq=3.	time=76.9	ms

	

snoop

Capture	network	packets	using	snoop	(http://www-01.ibm.com/support/docview.wss?uid=swg21175744,
http://docs.oracle.com/cd/E23823_01/html/816-5166/snoop-1m.html).

Capture	all	traffic:

$	su
#	nohup	snoop	-r	-o	capture`hostname`_`date	+"%Y%m%d_%H%M"`.snoop	-q	-d	${INTERFACE}	&
#	sleep	1	&&	cat	nohup.out	#	verify	no	errors	in	nohup.out

Use	Wireshark	to	analyze	the	network	packets	gathered	(covered	in	the	Major	Tools	chapter).

Use	-s	to	only	capture	part	of	the	packet.

snoop	does	not	have	built-in	support	for	log	rollover.

	

Kernel

List	available	kernel	statistics:

http://docs.oracle.com/cd/E23824_01/html/821-1458/ggjew.html
http://www-01.ibm.com/support/docview.wss?uid=swg21175744
http://docs.oracle.com/cd/E23823_01/html/816-5166/snoop-1m.html

#	kstat	-l
bge:0:bge0:brdcstrcv
bge:0:bge0:brdcstxmt...

Query	kernel	statistics:

#	kstat	-p	-m	cpu_stat	-s	'intr*'
cpu_stat:0:cpu_stat0:intr				1118178526
cpu_stat:0:cpu_stat0:intrblk				122410
cpu_stat:0:cpu_stat0:intrthread				828519759
cpu_stat:1:cpu_stat1:intr				823341771
cpu_stat:1:cpu_stat1:intrblk				1671216
cpu_stat:1:cpu_stat1:intrthread				1696737858

	

KSSL

On	older	versions	of	Solaris	and	older	programs	linked	with	older	libraries,	you	may	need	to	enable	the
KSSL	kernel	module,	if	available,	to	fully	utilize	hardware	encryption	(e.g.	TLS	performance):
http://docs.oracle.com/cd/E19253-01/816-5166/6mbb1kq5t/index.html

	

truss

Truss	can	be	used	to	attach	to	a	process	and	print	which	kernel/system	calls	are	being	made:

#	truss	-p	${PID}

Warning:	truss	can	have	a	large	performance	effect	when	used	without	filters.

	

Modifying	Kernel	Parameters

Some	kernel	parameters	can	be	set	by	modifying	the	/etc/system	file	and	rebooting
(http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter1-9.html).	For	example:

set	lim_fd_max	=	10000

Some	networking	parameters	can	be	set	using	the	ipadm	set-prop	command.	These	updates	are	persisted	on
reboot	(unless	the	-t	option	is	specified).	For	example:

#	ipadm	set-prop	-p	_time_wait_interval=15000	tcp

ipadm	command:	http://docs.oracle.com/cd/E26502_01/html/E29031/ipadm-1m.html

The	ipadm	command	replaces	the	"ndd"	command	in	recent	versions	of	Solaris:
http://docs.oracle.com/cd/E26502_01/html/E28987/gmafe.html

Note	that	Solaris	11	changed	the	names	of	some	of	the	network	tunable	parameters:
http://docs.oracle.com/cd/E26502_01/html/E29022/appendixa-28.html

	

Networking

Update	the	TIME_WAIT	timeout	to	15	seconds	by	running	#	ipadm	set-prop	-p	_time_wait_interval=15000
tcp

http://docs.oracle.com/cd/E19253-01/816-5166/6mbb1kq5t/index.html
http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter1-9.html
http://docs.oracle.com/cd/E26502_01/html/E29031/ipadm-1m.html
http://docs.oracle.com/cd/E26502_01/html/E28987/gmafe.html
http://docs.oracle.com/cd/E26502_01/html/E29022/appendixa-28.html

(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunesolaris.html

Update	the	FIN_WAIT_2	timeout	to	67.5	seconds	by	running	#	ipadm	set-prop	-p
tcp_fin_wait_2_flush_interval=67500	tcp
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunesolaris.html

Update	the	TCP	keepalive	interval	to	15	seconds	by	running	#	ipadm	set-prop	-p	_keepalive_interval=15000
tcp
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunesolaris.html
http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter4-31.html)

Update	the	TCP	listen	backlog	to	511	by	running	#	ipadm	set-prop	-p	_conn_req_max_q=511	tcp
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunesolaris.html

Update	the	maximum	send	and	receive	buffer	sizes	to	4MB	by	running	#	ipadm	set-prop	-p
max_buf=4194304	tcp	(http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter4-31.html)

Update	the	maximum	value	of	the	TCP	congestion	window	to	2MB	by	running	#	ipadm	set-prop	-p
_cwnd_max=2097152	tcp	(http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter4-31.html)

Update	the	default	send	window	size	to	1MB	by	running	#	ipadm	set-prop	-p	send_buf=1048576	tcp
(http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter4-31.html)

Update	the	default	receive	window	size	to	1MB	by	running	#	ipadm	set-prop	-p	recv_buf=1048576	tcp
(http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter4-31.html)

	

Process	Limits

Update	the	maximum	file	descriptors	to	10,000	by	updating	these	lines	in	/etc/system	and	rebooting
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunesolaris.html

set	lim_fd_max	=	10000
set	rlim_fd_cur	=	10000

	

dtrace

Dtrace	is	a	very	powerful,	dynamic	tracing	tool.	For	more	information,	see
http://www.solarisinternals.com/wiki/index.php/DTrace_Topics_Intro

Sample	5-level	user	stack	traces	for	Java	processes:

#	dtrace	-n	'profile-1001	/execname	==	"java"/	{	@[ustack(5)]	=	count();	}'

Print	a	stack	trace	any	time	a	function	is	called:

#	dtrace	-n	'syscall::read:entry	/execname	==	"bash"/	{	ustack();	}'

List	probes:

#	dtrace	-ln	'proc:::'

Useful	scripts:

Sample	user	and	kernel	CPU	stacks:
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/dtrace/stack_samples.d
Summarize	syscalls:

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunesolaris.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunesolaris.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunesolaris.html
http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter4-31.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunesolaris.html
http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter4-31.html
http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter4-31.html
http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter4-31.html
http://docs.oracle.com/cd/E23824_01/html/821-1450/chapter4-31.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunesolaris.html
http://www.solarisinternals.com/wiki/index.php/DTrace_Topics_Intro
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/dtrace/stack_samples.d

https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/dtrace/method_times_summary.d
Track	specific	syscall	times:
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/dtrace/method_times_tree.d

DTrace	scripts	sometimes	refer	to	time	in	Hertz.	To	convert:	secs	=	1/hertz

	

FlameGraphs

#	git	clone	https://github.com/brendangregg/FlameGraph
#	cd	FlameGraph
#	dtrace	-x	ustackframes=100	-n	'profile-99	/arg1/	{	@[ustack()]	=	count();	}	tick-60s	{	exit(0);	}'	-o	out.stacks
#	./stackcollapse.pl	out.stacks	>	out.folded
#	./flamegraph.pl	out.folded	>	out.svg

	

Logical	Domains,	Zones,	and	Processor	Sets/Pinning

Logical	domains,	or	LDOMs,	are	a	way	to	virtualize	the	physical	hardware	to	partition	it	into	multiple	guest
operating	system	instances.	List	domains:	ldm	list-bindings

Non-global	zones,	or	containers,	are	a	way	to	virtualize	an	operating	system	instance	further	while	sharing
the	base	operating	system	image	and	runtime	(the	parent	global	zone).

Zones	can	be	used	to	accomplish	processor	sets/pinning	using	resource	pools.	In	some	benchmarks,	one	JVM
per	zone	can	be	beneficial.

First,	stop	the	non-global	zone
List	zones:	zoneadm	list	-vi
Enable	resource	pools:	svcadm	enable	pools
Create	resource	pool:	poolcfg	-dc	'create	pool	pool1'
Create	processor	set:	poolcfg	-dc	'create	pset	pset1'
Set	the	maximum	CPUs	in	a	processor	set:	poolcfg	-dc	'modify	pset	pset1	(uint	pset.max=32)'
Add	virtual	CPU	to	a	processor	set:	poolcfg	-dc	"transfer	to	pset	pset1	(cpu	$X)"
Associate	a	resource	pool	with	a	processor	set:	poolcfg	-dc	'associate	pool	pool1	(pset	pset1)'
Set	the	resource	set	for	a	zone:	zonecfg	-z	zone1	set	pool=pool1
Restart	the	zone:	zoneadm	-z	zone1	boot
Save	to	/etc/pooladm.conf:	pooladm	-s
Display	processor	sets:	psrset
Show	the	processor	set	a	process	is	associated	with	(PSET	column):	ps	-e	-o	pid,pset,comm

	

HP-UX

HP-UX	Recipe

1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Generally,	physical	memory	should	never	be	saturated	and	the	operating	system	should	not	page

memory	out	to	disk.
3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have

poor	response	times.
4.	 TCP/IP	and	network	tuning,	whilst	sometimes	complicated	to	investigate,	may	have	dramatic	effects

on	performance.
5.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.

https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/dtrace/method_times_summary.d
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/dtrace/method_times_tree.d

6.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
7.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
8.	 If	the	operating	system	is	running	in	a	virtualized	guest,	review	the	configuration	and	whether	or	not

resource	allotments	are	changing	dynamically.
9.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP

keepalive	timer	(tcp_keepalive_interval)	from	2	hours	to	a	value	less	than	intermediate	device	idle
timeouts	(e.g.	firewalls).

10.	 Test	disabling	delayed	ACKs

Also	review	the	general	topics	in	the	Operating	Systems	chapter.

	

General

Review	some	of	the	tuning	recommendations	in	the	following	documentation	pages:

1.	 https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunehp.html
2.	 https://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.installation.nd.doc/info/ae/ae/tins_hpuxsetup.html
3.	 https://h20392.www2.hpe.com/portal/swdepot/displayProductInfo.do?productNumber=HPJCONFIG

Check	the	BIOS	to	ensure	highest	speed:

1.	 Power	Management	->	HP	Power	Profile	->	Maximum	Performance
2.	 Power	Management	->	HP	Power	Regulator	->	HP	Static	High	Performance	Mode
3.	 Advanced	Options	->	Advanced	Performance	Tuning	Options	->	Memory	Speed	with	2	DIMMS	per

channel	->	Maximum	MHz

Consider	installing	the	following	generally	useful	software:

gdb/wdb	-	debugger:	http://h20565.www2.hpe.com/hpsc/doc/public/display?
sp4ts.oid=5060273&docId=emr_na-c02670493&docLocale=en_US

Query	basic	system	information:

$	uname	-a;	model;	machinfo;	sysdef;	swlist	-l

	

Central	Processing	Unit	(CPU)

Check	if	hyperthreading	is	enabled	or	disabled	using	machinfo	and	consider	enabling/disabling	it,	if
applicable:

Hyperthreading	enabled:

$	machinfo
LCPU	attribute	is	enabled...

Hyperthreading	disabled:

$	machinfo
LCPU	attribute	is	disabled...

Use	the	general	performance	MustGather	(http://www-01.ibm.com/support/docview.wss?
uid=swg21127574&aid=1):

$	hpux_performance.sh	$PID

Use	the	top	and	vmstat	commands	for	basic	process	monitoring.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunehp.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.installation.nd.doc/info/ae/ae/tins_hpuxsetup.html
https://h20392.www2.hpe.com/portal/swdepot/displayProductInfo.do?productNumber=HPJCONFIG
http://h20565.www2.hpe.com/hpsc/doc/public/display?sp4ts.oid=5060273&docId=emr_na-c02670493&docLocale=en_US
http://www-01.ibm.com/support/docview.wss?uid=swg21127574&aid=1

Consider	enabling	sar	for	historical	data	(http://www.ibm.com/developerworks/aix/library/au-unix-
perfmonsar.html).

The	ptree	command	is	a	useful	way	to	visualize	the	process	tree.

For	custom	columns	in	ps:

UNIX95=	ps	-ef	-o	pid,pcpu,pri,pset

	

GlancePlus

GlancePlus	(license	required)	is	a	very	useful	tool.	To	run	it	for	a	few	minutes,	use	this	hpux_glance.sh
script:	http://www-01.ibm.com/support/docview.wss?uid=swg21127574&aid=3

	

caliper

The	caliper	tool	is	a	native	sampling	profiler	(http://h20566.www2.hpe.com/hpsc/doc/public/display?
sp4ts.oid=4268168&docId=emr_na-c04221975&docLocale=en_US).	The	simplest	report	is	the	flat	profile:

/opt/caliper/bin/caliper	fprof	--process=all	--attach	$PID	--duration	60	-o	fprof.txt

System	wide:

/opt/caliper/bin/caliper	fprof	-o	fprofsystem.txt	--ev	all	-w	-e	30

Or

/opt/caliper/bin/caliper	fprof	--scope=kernel	--duration=60	-o	kernelfprof.txt

	

HPjmeter

HPjmeter	is	a	powerful	Java	profiler:	https://h20392.www2.hpe.com/portal/swdepot/displayProductInfo.do?
productNumber=HPJMETER

$	/opt/hpjmeter/bin/javaGlanceAdviser.ksh	$PID

"If	you	also	collected	GC	information	using	the	-Xverbosegc	option,	you	can	append	the	Glance	data	to	the
GC	log	file	and	then	use	HPjmeter	to	read	the	combined	file."

	

jps

Use	the	jps	tool	to	map	Java	server	names	to	process	IDs.	Example:

$	/opt/IBM/WebSphere/AppServer/java/bin/jps	-m
9326	WSPreLauncher	-nosplash	-application	com.ibm.ws.bootstrap.WSLauncher	com.ibm.ws.runtime.WsServer	/opt/IBM/WebSphere/AppServer/profiles/node1/config	cell1	node1	nodeagent
7113	WSPreLauncher	-nosplash	-application	com.ibm.ws.bootstrap.WSLauncher	com.ibm.ws.runtime.WsServer	/opt/IBM/WebSphere/AppServer/profiles/dmgr1/config	cell1	dmgr1	dmgr
6283	WSPreLauncher	-nosplash	-application	com.ibm.ws.bootstrap.WSLauncher	com.ibm.ws.runtime.WsServer	/opt/IBM/WebSphere/AppServer/profiles/node1/config	cell1	node1	server1

Or	using	caliper	(on	Itanium	systems):

$	for	i	in	`ps	-elfx	|	grep	java	|	grep	-v	grep	|	awk	'{print	$4}'`;	\
do	echo	$i;	/opt/caliper/bin/caliper	fprof	--process=root	--attach	$i	--duration	1	|	grep	Invocation:	;done;

http://www.ibm.com/developerworks/aix/library/au-unix-perfmonsar.html
http://www-01.ibm.com/support/docview.wss?uid=swg21127574&aid=3
http://h20566.www2.hpe.com/hpsc/doc/public/display?sp4ts.oid=4268168&docId=emr_na-c04221975&docLocale=en_US
https://h20392.www2.hpe.com/portal/swdepot/displayProductInfo.do?productNumber=HPJMETER

	

Physical	Memory	(RAM)

swapinfo:	http://h20331.www2.hp.com/Hpsub/downloads/task_guide.pdf

	

Input/Output	(I/O)

Use	the	bdf	command	to	review	disk	utilization.

	

Networking

Update	the	TCP	listen	backlog	to	511	by	adding	"ndd	-set	/dev/tcp	tcp_conn_request_max	511"	to
/etc/rc.config.d/nddconf	and	running	"ndd	-c"
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunehp.html

Update	the	TCP	keepalive	interval	by	adding	"ndd	-set	/dev/tcp	tcp_keepalive_interval	7200000"	to
/etc/rc.config.d/nddconf	and	running	"ndd	-c"
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunehp.html

Update	the	TCP	keepalive	maximum	probes	by	adding	"ndd	-set	/dev/tcp	tcp_keepalives_kill	1"	to
/etc/rc.config.d/nddconf	and	running	"ndd	-c"
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunehp.html

Use	the	following	command	to	print	socket	details:	netstat	-anf	inet

Ping	a	remote	host.	In	general,	and	particularly	for	LANs,	ping	times	should	be	less	than	a	few	hundred
milliseconds	with	little	standard	deviation.

$	ping	-ns	10.20.30.1
PING	10.20.30.1	:	56	data	bytes
64	bytes	from	10.20.30.1:	icmp_seq=0.	time=77.9	ms
64	bytes	from	10.20.30.1:	icmp_seq=1.	time=77.2	ms
64	bytes	from	10.20.30.1:	icmp_seq=2.	time=78.3	ms
64	bytes	from	10.20.30.1:	icmp_seq=3.	time=76.9	ms

	

nettl

Capture	network	packets	using	nettl	(http://www-01.ibm.com/support/docview.wss?uid=swg21175744).

Start	capturing	all	traffic:

#	nettl	-tn	all	-e	all	-f	networktrace

Stop	capturing	all	traffic:

#	nettl	-tf	-e	all

	

Profiling

The	JVM	on	HP	supports	dynamically	enabling	and	disabling	low-overhead	sampling	profiling	using	the	kill
command:

http://h20331.www2.hp.com/Hpsub/downloads/task_guide.pdf
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunehp.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunehp.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunehp.html
http://www-01.ibm.com/support/docview.wss?uid=swg21175744

Enable	Profiling:
$	kill	-USR2	PID
Disable	Profiling:
$	kill	-USR2	PID

The	profiling	will	write	information	on	each	signal	to	native_stderr.log.	For	example:

First	signal

eprof:	starting	profiling	Tue	Nov	20	14:05:02	2012
eprof:	terminating	profiling
eprof:	cannot	measure	profiling	intrusion

Second	signal

eprof:	writing	profile	data	to	/opt/IBM/WebSphere/AppServer/profiles/node1/java10760_75806.eprof
eprof:	done.

	

Modifying	Kernel	Parameters

Review	the	following	instructions	to	modify	core	HP-UX	kernel	parameters:
http://www.ibm.com/support/knowledgecenter/SS7J6S_6.2.0/com.ibm.websphere.wesb620.doc/doc/tins_set_kernel_hpux.html

Running	ndd	-set	will	not	maintain	the	parameters	after	rebooting.	Instead,	it	is	recommended	to	update	the
parameters	in	/etc/rc.config.d/nddconf	and	run	"ndd	-c"	to	load	the	values	from	this	file	and	the	values	will
also	be	picked	up	on	reboot.

	

tusc

tusc	is	a	system	call	tracer.

$	/usr/local/bin/tusc	-f	-C	-o	tusc_counts.txt	$PID	&	sleep	30;	kill	-INT	$!
$	/usr/local/bin/tusc	-f	-l	-D	-R	-T	""	-o	tusc.txt	$PID	&	sleep	30;	kill	-INT	$!

	

Processor	Sets

"The	default	processor	set	(0)	always	exists	and	may	not	be	destroyed.	All	processes	and	processors	at	system
init	time	start	out	in	the	system	default	processor	set."

Therefore,	you	may	want	to	"reserve"	processor	set	0	for	background	processes	and	non-application	server
JVMs,	and	only	distribute	the	JVMs	across	the	other	processor	sets.	You	should	take	into	account	the	core,
hyperthread,	and	L3	layout	to	avoid	sharing	processors	from	pset	0	with	the	JVM	processor	sets.

List	CPU	IDs	and	which	processor	set	IDs	they're	bound	to:

$	/usr/sbin/psrset	-p
SPU			0										PSET		0
SPU			1										PSET		0
SPU			2										PSET		0
SPU			3										PSET		0

Create	a	processor	set	for	a	CPU	ID:

$	/usr/sbin/psrset	-c	1

http://www.ibm.com/support/knowledgecenter/SS7J6S_6.2.0/com.ibm.websphere.wesb620.doc/doc/tins_set_kernel_hpux.html

Bind	PID	to	processor	set	1:

$	/usr/sbin/psrset	-b	1	`cat	/opt/IBM/WebSphere/AppServer/profiles/node1/logs/server1/*.pid`

Query	processor	sets	for	PIDs:

$	/usr/sbin/psrset	-q	`cat	/opt/IBM/WebSphere/AppServer/profiles/node1/logs/server1/*.pid`	`cat	/opt/IBM/WebSphere/AppServer/profiles/node1/logs/server2/*.pid`
PID	28493	PSET	0
PID	25756	PSET	0

	

Automation

To	assign	processor	sets	automatically,	you	will	need	to	modify	the	Java	command	line.	This	means	that	you
will	not	be	able	to	use	the	administrative	console	to	start	servers	(you	can	still	use	it	to	stop	servers)

1.	 For	each	application	server	instance,	run	startServer.sh	$NAME	-script	to	generate	its	start	script.
2.	 Now	you	should	have	start_$JVMID.sh	script	for	each	JVM.
3.	 Edit	each	start_...sh	script	and	you	should	see	an	exec	java	line	at	the	bottom.	Update	to	redirect

output:
exec	"/opt/IBM/WebSphere/AppServer/java/bin/java"	$DEBUG	"-XX:...
Changes	to:
exec	"/opt/IBM/WebSphere/AppServer/java/bin/java"	$DEBUG	"-XX:...	>>
/opt/IBM/WebSphere/AppServer/profiles/node1/logs/dynamiccluster1_node1/native_stdout.log
2>>
/opt/IBM/WebSphere/AppServer/profiles/node1/logs/dynamiccluster1_node1/native_stderr.log
&

4.	 Start	the	JVM	in	the	processor	set	with	(each	Nth	JVM	will	have	_N	in	the	shell	script	name)	--	replace
1	with	the	processor	set	ID:
/usr/sbin/psrset	-e	1	./start_server1.sh

...

	

macOS

macOS	Recipe

1.	 CPU	core(s)	should	not	be	consistently	saturated.
2.	 Generally,	physical	memory	should	never	be	saturated	and	the	operating	system	should	not	page

memory	out	to	disk.
3.	 Input/Output	interfaces	such	as	network	cards	and	disks	should	not	be	saturated,	and	should	not	have

poor	response	times.
4.	 Operating	system	level	statistics	and	optionally	process	level	statistics	should	be	periodically

monitored	and	saved	for	historical	analysis.
5.	 Review	operating	system	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
6.	 Review	snapshots	of	process	activity,	and	for	the	largest	users	of	resources,	review	per	thread	activity.
7.	 If	there	is	sufficient	network	capacity	for	the	additional	packets,	consider	reducing	the	default	TCP

keepalive	timer	(tcp_keepalive_time)	from	2	hours	to	a	value	less	than	intermediate	device	idle
timeouts	(e.g.	firewalls).

8.	 Test	disabling	delayed	ACKs

Also	review	the	general	topics	in	the	Operating	Systems	chapter.

	

General

Overview	of	performance	analysis	tools:
https://developer.apple.com/library/content/documentation/Performance/Conceptual/PerformanceOverview/PerformanceTools/PerformanceTools.html#//apple_ref/doc/uid/TP40001410-
CH205-SW2

	

System	Information

Run	sysctl	-a	for	general	information	and	settings.

Software	information:

%	system_profiler	SPSoftwareDataType
Software:

				System	Software	Overview:

						System	Version:	macOS	12.0.1	(21A559)
						Kernel	Version:	Darwin	21.1.0
						Boot	Volume:	MainDisk
						Boot	Mode:	Normal
						Computer	Name:	[...]
						User	Name:	[...]
						Secure	Virtual	Memory:	Enabled
						System	Integrity	Protection:	Disabled
						Time	since	boot:	40	minutes

Hardware	information:

%	system_profiler	SPHardwareDataType
Hardware:

				Hardware	Overview:

						Model	Name:	MacBook	Pro
						Model	Identifier:	MacBookPro15,1
						Processor	Name:	6-Core	Intel	Core	i7
						Processor	Speed:	2.6	GHz
						Number	of	Processors:	1
						Total	Number	of	Cores:	6
						L2	Cache	(per	Core):	256	KB
						L3	Cache:	9	MB
						Hyper-Threading	Technology:	Enabled
						Memory:	16	GB
						System	Firmware	Version:	1554.140.20.0.0	(iBridge:	18.16.14759.0.1,0)
						Serial	Number	(system):	...
						Hardware	UUID:	...
						Provisioning	UDID:	...
						Activation	Lock	Status:	Enabled

Combing	the	commands	and	removing	potentially	sensitive	information:	system_profiler
SPSoftwareDataType	SPHardwareDataType	|	grep	-v	-e	UUID	-e	UDID	-e	'User	Name'	-e
'Computer	Name'	-e	Serial

	

log

The	log	command	prints	log	entries	to	the	terminal.	The	underlying	files	are	in	/var/log	and
~/Library/Logs/	and	~/Library/Logs/DiagnosticReports

https://developer.apple.com/library/content/documentation/Performance/Conceptual/PerformanceOverview/PerformanceTools/PerformanceTools.html#//apple_ref/doc/uid/TP40001410-CH205-SW2

log	show	to	print	the	logs.
log	stream	to	tail	the	logs.

Stream	a	particular	process	example:	log	stream	--predicate	'(process	==
"WindowServer")'	--debug

sudo	log	collect	to	create	a	logarchive	file.	This	file	may	be	opened	in	Console	(see	below).

%	sudo	log	collect
Password:
Archive	successfully	written	to	/Users/kevinaccount/system_logs.logarchive

Common	things	to	check

grep	crash	/var/log/system.log

	

Console

The	Console	app	shows	system	logs	and	events.	Click	Spotlight	Search,	type	Console	and	double	click.	The
underlying	files	are	in	/var/log	and	~/Library/Logs/

Click	thew	Now	button	to	pause	the	live	view.
If	XCode	Instruments	is	installed,	additional	pre-defined	instrumentation	profiles	are	available	under
Console	}	Services
Click	Action	}	Include	Info/Debug	Messages	for	additional	debugging
Open	a	logarchive	file	(see	above)	with	File	}	Open...

	

Activity	Monitor

Activity	Monitor	is	a	graphical	tool	to	look	at	CPU,	Memory,	and	more:	https://support.apple.com/en-
us/HT201464

https://support.apple.com/guide/console/find-log-messages-and-activities-cnslbf30b61a/mac
https://support.apple.com/en-us/HT201464

	

sysdiagnose

sysdiagnose	captures	various	system	logs	and	information:

1.	 Open	the	Activity	Monitor	application	(e.g.	Spotlight	Search	}	Activity	Monitor,	or	Finder	}
Applications	}	Activity	Monitor)

2.	 Click	View	}	Run	System	Diagnostics...
3.	 Click	OK
4.	 When	complete,	a	Finder	window	opens	pointing	to	a	sysdiagnose_${...}	folder	and

sysdiagnose_${...}.tar.gz	file.

Alternatively,	from	the	Terminal,	run	sudo	sysdiagnose.

File	highlights:

sysdiagnose.log	for	macOS	version,	e.g.	Mac	OS	X	10.15.6	(Build	19G73)
system_logs.logarchive	for	a	full	logarchive	(see	above)
ps.txt,	ps_thread.txt,	and	top.txt	for	process	and	thread	activity	statistics
spindump.txt	for	process	CPU	sampling
fs_usage.txt	for	I/O	activity

	

spindump

Spindump	captures	CPU	stack	samples	for	about	20	seconds:

1.	 Open	the	Activity	Monitor	application	(e.g.	Spotlight	Search	}	Activity	Monitor,	or	Finder	}
Applications	}	Activity	Monitor)

2.	 Click	View	}	Run	Spindump
3.	 When	complete,	a	window	opens	with	the	results
4.	 The	CPU	Time:	shows	how	much	CPU	time	was	consumed	by	each	process	during	the	spindump.

Review	the	subsequent	stack	samples	for	high	CPU	time	consumers.

	

Instruments

Instruments	is	bundled	with	XCode	and	provides	functions	such	as	a	CPU	sampling	profiler:
https://help.apple.com/instruments/mac/current/#/dev7b09c84f5

	

Capture	System-wide	CPU	Sampling	Profiler	Data

1.	 Install	XCode
2.	 After	installing,	click	Spotlight	Search,	type	Instruments	and	double	click.
3.	 Select	the	Time	Profiler	template	and	click	Choose.
4.	 In	the	top	left,	click	the	record	button.
5.	 Reproduce	the	problem.
6.	 In	the	top	left,	click	the	stop	button.
7.	 Click	File	}	Save	As	to	export	the	profile.	A	${name}.trace	file	is	exported.

	

Analyze	CPU	Sampling	Profiler	Data

https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://apps.apple.com/us/app/xcode/id497799835

Click	View	}	Utilities	}	Show	Run	Info	to	see	the	absolute	wall	clock	timestamp	of	the	start	of	the
profile.
Select	and	drag	to	zoom	in	on	a	time	period	of	interest.
Filters	at	the	top	allow	for	quickly	switching	between	thread/process	views,	per-process	stacks,	etc.
In	the	stack	view,	when	clicking	on	the	right	expand	arrow,	hold	down	⌥	as	you	click	to	recursively
expand	the	largest	path	automatically.

	

Memory

Roughly,	"available"	memory	is	Free	+	Inactive	+	Speculative	(if	Free	has	Speculative	subtracted	as	vm_stat
does)	+	File-backed	pages

$	vm_stat	|	awk	'/^Pages	free/	{x+=$NF;}	/^Pages	inactive/	{x+=$NF;}	/^Pages	speculative/	{x+=$NF;}	/^File-backed	pages/	{x+=$NF;}	END	{freebytes=(x*4096);	printf("%d	approximate	bytes	free\n%.2f	approximate	GB	free\n",	freebytes,	(freebytes/1024/1024/1024));}'
13006544896	approximate	bytes	free
12.11	approximate	GB	free

In	Activity	Monitor,	Cached	Files	is	defined	as	the	following,	and	experiments	show	this	is	approximated	by
"File-backed	pages"	in	vm_stat:

Cached	Files:	Memory	that	was	recently	used	by	apps	and	is	now	available	for	use	by	other	apps.	For
example,	if	you've	been	using	Mail	and	then	quit	Mail,	the	RAM	that	Mail	was	using	becomes	part	of	the
memory	used	by	cached	files,	which	then	becomes	available	to	other	apps.	If	you	open	Mail	again	before	its
cached-files	memory	is	used	(overwritten)	by	another	app,	Mail	opens	more	quickly	because	that	memory	is
quickly	converted	back	to	app	memory	without	having	to	load	its	contents	from	your	startup	drive.

https://support.apple.com/en-us/HT201464#memory

Detailed	memory	statistics:
https://developer.apple.com/library/content/documentation/Performance/Conceptual/ManagingMemory/Articles/VMPages.html#//apple_ref/doc/uid/20001985-
CJBJFIDD

	

Kernel	Memory

https://support.apple.com/en-us/HT201464#memory
https://developer.apple.com/library/content/documentation/Performance/Conceptual/ManagingMemory/Articles/VMPages.html#//apple_ref/doc/uid/20001985-CJBJFIDD

$	sudo	zprint
																												elem									cur									max								cur									max									cur		alloc		alloc				
zone	name																			size								size								size						#elts							#elts							inuse			size		count				

vm.permanent																			1									76K									76K						77824							77824							76486					4K			4096			
[...]
																																																															kmod										vm								peak															cur
wired	memory																																																					id									tag								size		waste							size

NDR_record																																																																			82																										816K
[...]
																																																																								largest								peak															cur
maps																																																											free								free								size														size

VM_KERN_COUNT_MANAGED																																																																															16113384K
VM_KERN_COUNT_MAP_KALLOC																																				481508K					460800K																							524288K
VM_KERN_COUNT_MAP_KERNEL																																	331566456K		264758024K																				538968056K
VM_KERN_COUNT_MAP_ZONE																																			133194176K			53549092K																				134217536K
VM_KERN_COUNT_WIRED																																																																																		2553936K
VM_KERN_COUNT_WIRED_BOOT																																																																														888096K
VM_KERN_COUNT_WIRED_MANAGED																																																																										2036552K
VM_KERN_COUNT_WIRED_STATIC_KERNELCACHE																																																																	18552K
[...]
																																																																																																										cur
zone	views																																																																																														inuse

data.kalloc.16[raw]																																																																																						700K
[...]

	

Page	Size

The	size	of	a	page	on	OS	X	is	4096	bytes.

Wired	memory	(also	called	resident	memory)	stores	kernel	code	and	data	structures	that	must
never	be	paged	out	to	disk.	Applications,	frameworks,	and	other	user-level	software	cannot
allocate	wired	memory.	However,	they	can	affect	how	much	wired	memory	exists	at	any	time.
For	example,	an	application	that	creates	threads	and	ports	implicitly	allocates	wired	memory	for
the	required	kernel	resources	that	are	associated	with	them.	[...]

Wired	memory	pages	are	not	immediately	moved	back	to	the	free	list	when	they	become	invalid.
Instead	they	are	"garbage	collected"	when	the	free-page	count	falls	below	the	threshold	that
triggers	page	out	events.	[...]

The	active	list	contains	pages	that	are	currently	mapped	into	memory	and	have	been	recently
accessed.

The	inactive	list	contains	pages	that	are	currently	resident	in	physical	memory	but	have	not	been
accessed	recently.	These	pages	contain	valid	data	but	may	be	removed	from	memory	at	any	time.

The	free	list	contains	pages	of	physical	memory	that	are	not	associated	with	any	address	space	of
VM	object.	These	pages	are	available	for	immediate	use	by	any	process	that	needs	them.

When	the	number	of	pages	on	the	free	list	falls	below	a	threshold	(determined	by	the	size	of
physical	memory),	the	pager	attempts	to	balance	the	queues.	It	does	this	by	pulling	pages	from
the	inactive	list.	If	a	page	has	been	accessed	recently,	it	is	reactivated	and	placed	on	the	end	of
the	active	list.	In	OS	X,	if	an	inactive	page	contains	data	that	has	not	been	written	to	the	backing
store	recently,	its	contents	must	be	paged	out	to	disk	before	it	can	be	placed	on	the	free	list.

https://developer.apple.com/library/content/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html

[O]n	Mac	OS	X	10.5	we	introduced	a	new,	fifth	category	of	memory,	speculative	memory,	used

https://developer.apple.com/library/content/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html

to	hold	pages	that	have	been	read	from	disk	speculatively.

https://lists.apple.com/archives/darwin-kernel/2008/Jun/msg00001.html

	

nmond

nmond	is	a	fork	of	the	AIX/Linux	nmon	tool:	https://github.com/stollcri/nmond

Install:

git	clone	https://github.com/stollcri/nmond
cd	nmond/nmond
make
sudo	make	install

Run:

NMOND=ctmdn	nmond

nmond	does	not	support	the	headless	logging	features	of	the	AIX/Linux	nmon,	so	it	is	only	useful	for	live
monitoring.

	

Tips

In	Finder's	Open	File	dialog,	type	/	(or	Shift+Command+G)	to	open	a	dialog	to	paste	a	direct	absolute	path	of
a	folder	to	open.

	

Network

Disable	delayed	ACKs:	Add	net.inet.tcp.delayed_ack=0	to	/etc/sysctl.conf	and	restart

	

File	I/O

fs_usage

fs_usage	traces	filesystem	syscalls:
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/FileSystem/Articles/FileSystemCalls.html#//apple_ref/doc/uid/20001989-
97106

Start:

nohup	sudo	fs_usage	-ew	-f	filesys	>	fsusage_$(hostname)_$(date	+"%Y%m%d_%H%M%S_%N").txt

Stop:

Ctrl^C

Example	output:

TIMESTAMP									CALL						FILE	DESCRIPTOR							BYTE	COUNT		PATHNAME			TIME	INTERVAL(W)			PROCESS	NAME
07:41:30.599158			open						F=12	(_WC_T_______)															test.txt			0.000113											java.1454892
07:41:30.599161			fstat64			F=12																																									0.000002											java.1454892

https://lists.apple.com/archives/darwin-kernel/2008/Jun/msg00001.html
https://github.com/stollcri/nmond
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/FileSystem/Articles/FileSystemCalls.html#//apple_ref/doc/uid/20001989-97106

07:41:30.599330			write					F=12																		B=0xc																		0.000043											java.1454892
07:41:30.599338			write					F=13																		B=0x171																0.000043											java.1454932
07:41:30.599566			close					F=12																																									0.000082											java.1454892

	

diskutil

List	disks	example:

$	diskutil	list
/dev/disk0	(internal,	physical):
			#:																							TYPE	NAME																				SIZE							IDENTIFIER
			0:						GUID_partition_scheme																								*500.3	GB			disk0
			1:																								EFI	EFI																					314.6	MB			disk0s1
			2:																	Apple_APFS	Container	disk1									500.0	GB			disk0s2

/dev/disk1	(synthesized):
			#:																							TYPE	NAME																				SIZE							IDENTIFIER
			0:						APFS	Container	Scheme	-																						+500.0	GB			disk1
																																	Physical	Store	disk0s2
			1:																APFS	Volume	Macintosh	HD	-	Data					465.4	GB			disk1s1
			2:																APFS	Volume	Preboot																	78.7	MB				disk1s2
			3:																APFS	Volume	Recovery																528.9	MB			disk1s3
			4:																APFS	Volume	VM																						2.1	GB					disk1s4
			5:																APFS	Volume	Macintosh	HD												11.4	GB				disk1s5

/dev/disk2	(external,	physical):
			#:																							TYPE	NAME																				SIZE							IDENTIFIER
			0:					FDisk_partition_scheme																								*30.8	GB				disk2
			1:													Windows_FAT_32	NO	NAME																	30.8	GB				disk2s1

Unmount	a	disk	example:

diskutil	unmountDisk	/dev/disk2

Eject	a	disk	example:

diskutil	eject	/dev/disk2

	

mds_stores

The	mds_stores	process	may	use	high	CPU	as	part	of	file	indexing.	If	you	do	not	need	file	indexing,	disable
it	with:

sudo	mdutil	-a	-i	off

To	show	the	indexing	status:

%	sudo	mdutil	-a	-s
/:
				Indexing	disabled.
/System/Volumes/Data:
				Indexing	disabled.

To	re-enable	indexing:

sudo	mdutil	-a	-i	on

If	you	do	need	file	indexing,	use	fs_usage	to	find	which	files	are	driving	the	indexing	and	consider	excluding
their	parent	directories:	System	Preferences	}	Spotlight	}	Privacy	}	Add	a	folder	or	disk	to	exclude

	

Java
	

Java	Recipe
1.	 Review	the	Operating	System	recipe	for	your	OS.
2.	 Tune	the	maximum	Java	heap	size	(-Xmx	or	-XX:MaxRAMPercentage):

1.	 Ensure	that	verbose	garbage	collection	is	enabled	(which	it	is	by	default	in	recent	versions	of
Liberty	and	tWAS)	which	generally	has	an	overhead	less	than	0.5%	and	then	use	a	tool	such	as
the	IBM	Garbage	Collection	and	Memory	Visualizer	(GCMV)	and	ensure	that	the	proportion	of
time	spent	in	garbage	collection	versus	application	processing	time	is	less	than	5%	and	ideally
less	than	1%.

2.	 In	general,	a	place	to	start	is	to	set	the	maximum	size	to	43%	larger	than	the	maximum
occupancy	of	the	application,	although	the	latter	is	largely	a	function	of	workload	and	thread
pool	size,	so	this	is	just	a	heuristic.

3.	 Consider	testing	different	garbage	collector	for	the	OpenJ9/IBM	JVM	and	HotSpot	JVM.
4.	 Consider	testing	an	increased	maximum	nursery	size	for	generational	collectors.
5.	 Ensure	there	is	no	memory	leak	after	global	garbage	collections	with	long	running	tests	by	reviewing

verbosegc.
6.	 If	using	a	generational	collector	(which	most	modern	default	collectors	are):

1.	 Ensure	tests	run	through	full/tenured	collections	and	ensure	those	pause	times	are	not	too	long.
2.	 Ensure	that	there	is	a	sawtooth	pattern	in	the	heap	usage	after	collection.	Otherwise,	the	heap

size	may	be	too	small	or	the	nursery	too	big.
7.	 Consider	monitoring	for	pause	times	over	one	second	and	tune	GC	if	found.	Sometimes	high	pause

times	are	acceptable.
8.	 Use	a	profiler	such	as	IBM	Java	Health	Center	or	OpenJDK	Mission	Control	with	a	particular	focus	on

the	profiling	and	lock	contention	analysis;	otherwise,	use	periodic	thread	dumps	to	review	JVM
activity	with	the	IBM	Thread	and	Monitor	Dump	Analyzer	tool.

9.	 Object	allocation	failures	for	objects	greater	than	5MB	should	generally	be	investigated.	Sometimes
high	allocation	sizes	are	acceptable.

10.	 If	the	node	only	uses	IPv4	and	does	not	use	IPv6,	then	add	the	JVM	parameters	-
Djava.net.preferIPv4Stack=true	-Djava.net.preferIPv6Addresses=false

11.	 Consider	taking	a	system	dump	or	HPROF	heapdump	during	peak	activity	in	a	test	environment	and
review	it	with	the	Eclipse	Memory	Analyzer	Tool	to	see	if	there	are	any	areas	in	the	heap	for
optimization.

12.	 Review	the	stderr	and	stdout	logs	for	any	errors,	warnings,	or	high	volumes	of	messages	(e.g.
OutOfMemoryErrors,	etc.).

13.	 If	running	multiple	JVMs	on	the	same	machine,	consider	pinning	JVMs	to	sets	of	processor	cores	and
tuning	-Xgcthreads/-XcompilationThreads	(IBM/OpenJ9	JVM)	or	-XX:ParallelGCThreads	(HotSpot
JVM).

14.	 In	general,	if	memory	usage	is	very	flat	and	consistent,	it	may	be	optimal	to	fix	-Xms	=	-Xmx.	For
widely	varying	heap	usage,	-Xms	<	-Xmx	is	generally	recommended.

15.	 If	heavily	using	XML,	consider	explicitly	configuring	JAXP	ServiceLoader	properties	to	avoid
unnecessary	classloading	activity.

	

General
A	Java	Virtual	Machine	(JVM)	provides	the	core	components	needed	to	run	a	Java	program	such	as	a	Virtual
Machine	(VM)	which	performs	core	functions	such	as	memory	management,	a	Garbage	Collector	(GC)
which	periodically	cleans	up	unused	memory,	and	a	Just-In-Time	Compiler	(JIT)	which	translates	heavily

https://www.ibm.com/support/pages/slow-performance-or-hang-hostname-lookup

used	Java	code	into	native	code	for	better	performance.

A	Java	Runtime	Environment	(JRE)	is	a	JVM	plus	a	Java	Standard	Edition	(SE)	Class	Library	(JCL).	A	JRE
provides	the	Java	executable	(e.g.	java,	javaw)	to	run	a	Java	program.	The	JCL	provides	the	implementation
of	core	Java	classes	from	some	version	of	the	Java	SE	specification	such	as	java.lang.String,	etc.

A	Java	Development	Kit	(JDK)	is	a	JRE	plus	Java	tools.	Java	tools	include	a	compiler	(javac),	archive	utility
(jar),	etc.

A	Software	Development	Kit	(SDK)	is	a	generic	term	for	a	collection	of	tools	and	a	runtime	environment	to
enable	the	development	and	running	of	code	for	any	language.	A	JDK	is	an	SDK	for	Java.

The	Java	landscape	is	quite	confusing.	Performance	tuning	and	diagnostics	depend	on	the	version	and	vendor
of	the	JDK.	This	chapter	covers	topics	that	span	all	JDKs;	however,	you	will	certainly	want	to	review	the
sub-chapters	specific	to	your	JDK.	Here	are	links	to	those	sub-chapters	along	with	a	bit	of	historical
background	to	hopefully	explain	the	complexity:

The	HotSpot	JVM	(sometimes	colloquially	called	the	Sun	JVM)	is	the	original	JVM	built	by	Sun
Microsystems	who	created	Java.	The	JCL	created	by	Sun	and	packaged	with	HotSpot	never	really	had
a	widely	used	name.	Oracle	purchased	Sun	and	continued	to	package	HotSpot	and	that	JCL	as	part	of
Oracle	Java.	HotSpot	and	that	JCL	were	also	open-sourced	by	Sun	as	OpenJDK.	There	was	a	period	of
some	divergence,	but	modern	versions	of	Oracle	Java	and	OpenJDK+HotSpot	are	largely	the	same.
Therefore,	if	you're	running	Oracle	Java	or	HotSpot	(e.g.	as	part	of	Adoptium,	IcedTea,	Amazon
Coretto,	GraalVM,	etc.),	the	JVM	sub-chapter	to	use	is	HotSpot	JVM	and	the	JCL	sub-chapter	to	use
is	OpenJDK	JCL	and	Tools.	Oracle	Java	is	shipped	at	https://www.java.com/,	and	one	popular	flavor
of	OpenJDK+HotSpot	is	shipped	at	https://adoptium.net/.
IBM	created	its	own	JVM	called	J9	(which	has	nothing	to	do	with	Java	9;	it	came	in	around	Java	1.4.2).
J9	is	packaged	as	part	of	IBM	Java.	J9	was	also	open-sourced	as	Eclipse	OpenJ9	and	it's	available	for
download	as	the	Semeru	Runtime	Open	or	Certified	Editions.	Therefore,	if	you're	using	IBM	Java	or
Semeru	(OpenJ9+OpenJDK),	the	JVM	sub-chapter	to	use	is	OpenJ9	and	IBM	J9	JVMs.	The	JDK	story
is	more	complicated;	IBM	licensed	the	Sun	JDK	and	made	some	changes	to	both	the	JCL	and	the	Java
tools.	If	you're	using	IBM	Java	<=	8,	the	JCL	sub-chapter	to	use	is	IBM	JCL	and	Tools,	although	some
of	the	OpenJDK	JCL	and	Tools	chapter	may	also	apply.	However,	if	you're	using	Semeru,	as	part	of
the	process	of	open-sourcing	J9,	IBM	mostly	abandoned	its	JCL	and	Java	tools	forks	and	ships	with
the	JCL	and	Java	tools	from	OpenJDK;	therefore,	if	you're	using	Semeru,	the	JCL	sub-chapter	is
OpenJDK	JCL	and	Tools.	This	change	is	particularly	important	if	you're	migrating	from	IBM	Java	<=
8	to	Semeru:	the	JVM	is	largely	the	same,	but	the	JCL	may	have	significant	changes	(e.g.	the
performance	characteristics	of	the	JAXP	XSLT	compiler	may	change	positively	or	negatively
depending	on	the	use	case).	IBM	Java	is	available	at	https://www.ibm.com/support/pages/java-sdk-
downloads	(and	shipped	as	part	of	various	stack	products)	and	Semeru	is	at
https://developer.ibm.com/languages/java/semeru-runtimes/downloads.	There	are	additional
differences	such	as	the	fact	that	Mission	Control	doesn't	work	on	J9;	if	available,	use	Health	Center
instead.

	

General	Tuning
If	only	using	IPv4,	set	the	generic	JVM	argument	-Djava.net.preferIPv4Stack=true

	

JAXP	ServiceLoader
By	default,	JAXP	factories	use	ServiceLoader	if	not	otherwise	configured	to	avoid	it,	and	ServiceLoader	may
heavily	drive	classloading.	For	example,	here	is	the	algorithm	for	DocumentBuilderFactory:

https://docs.oracle.com/javase/8/docs/api/
https://adoptium.net/
https://www.java.com/
https://adoptium.net/
https://www.eclipse.org/openj9/docs/
https://developer.ibm.com/languages/java/semeru-runtimes/downloads
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=migrating-from-earlier-releases-sdk-java-technology-edition
https://www.ibm.com/support/pages/java-sdk-downloads
https://developer.ibm.com/languages/java/semeru-runtimes/downloads
https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/parsers/DocumentBuilderFactory.html#newInstance--

1.	 Use	the	javax.xml.parsers.DocumentBuilderFactory	system	property.
2.	 Use	the	properties	file	"lib/jaxp.properties"	in	the	JRE	directory.	This	configuration	file	is

in	standard	java.util.Properties	format	and	contains	the	fully	qualified	name	of	the
implementation	class	with	the	key	being	the	system	property	defined	above.	The
jaxp.properties	file	is	read	only	once	by	the	JAXP	implementation	and	it's	values	are	then
cached	for	future	use.	If	the	file	does	not	exist	when	the	first	attempt	is	made	to	read	from
it,	no	further	attempts	are	made	to	check	for	its	existence.	It	is	not	possible	to	change	the
value	of	any	property	in	jaxp.properties	after	it	has	been	read	for	the	first	time.

3.	 Uses	the	service-provider	loading	facilities,	defined	by	the	ServiceLoader	class,	to	attempt
to	locate	and	load	an	implementation	of	the	service	using	the	default	loading	mechanism:
the	service-provider	loading	facility	will	use	the	current	thread's	context	class	loader	to
attempt	to	load	the	service.	If	the	context	class	loader	is	null,	the	system	class	loader	will
be	used.

4.	 Otherwise,	the	system-default	implementation	is	returned.

Therefore,	if	the	factory	isn't	specified	with	a	system	property	and	if	there	is	no	lib/jaxp.properties	file
with	an	uncommented	line	for	that	factory,	then	every	call	to	newInstance	drives	classloading.

This	applies	to	the	other	JAXP	factories	as	well:	SAXParserFactory,	TransformerFactory,	XPathFactory,
SchemaFactory,	and	DatatypeFactory.

You	may	explicitly	specify	the	factories	using	system	properties	depending	on	your	JDK.	For	example:

OpenJDK:

-Djavax.xml.transform.TransformerFactory=org.apache.xalan.processor.TransformerFactoryImpl
-Djavax.xml.xpath.XPathFactory=org.apache.xpath.jaxp.XPathFactoryImpl
-Djavax.xml.xpath.XPathFactory:http://java.sun.com/jaxp/xpath/dom=org.apache.xpath.jaxp.XPathFactoryImpl
-Djavax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParserFactoryImpl
-Djavax.xml.parsers.DocumentBuilderFactory=org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
-Djavax.xml.validation.SchemaFactory:http://www.w3.org/2001/XMLSchema=org.apache.xerces.jaxp.validation.XMLSchemaFactory
-Djavax.xml.datatype.DatatypeFactory=org.apache.xerces.jaxp.datatype.DatatypeFactoryImpl

IBM	Java:

-Djavax.xml.transform.TransformerFactory=com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl
-Djavax.xml.xpath.XPathFactory=org.apache.xpath.jaxp.XPathFactoryImpl
-Djavax.xml.xpath.XPathFactory:http://java.sun.com/jaxp/xpath/dom=org.apache.xpath.jaxp.XPathFactoryImpl
-Djavax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParserFactoryImpl
-Djavax.xml.parsers.DocumentBuilderFactory=org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
-Djavax.xml.validation.SchemaFactory:http://www.w3.org/2001/XMLSchema=org.apache.xerces.jaxp.validation.XMLSchemaFactory
-Djavax.xml.datatype.DatatypeFactory=org.apache.xerces.jaxp.datatype.DatatypeFactoryImpl

On	IBM	Java,	you	may	also	test	a	different	implementation	of	javax.xml.transform.TransformerFactory
with	-
Djavax.xml.transform.TransformerFactory=org.apache.xalan.processor.TransformerFactoryImpl

Alternatively	for	IBM	Java,	it	ships	a	jre/lib/jaxp.properties.sample	file	that	may	be	renamed	to
jre/lib/jaxp.properties	and	all	of	its	last	6	lines	uncommented	as	well	as	a
jre/lib/xerces.properties	whose	last	line	may	be	uncommented.

Note	that	starting	with	Java	8,	JAXP	is	upgraded	to	version	1.6	and	this	specifies	using	ServiceLoader
instead	of	the	lesser	defined	"Services	API"	in	previous	versions:

The	Java	SE	8	release	contains	Java	API	for	XML	Processing	(JAXP)	1.6,	which	requires	the
use	of	the	service	provider	loader	facility	defined	by	java.util.ServiceLoader	to	load	services
from	service	configuration	files.

	

Garbage	Collection

https://docs.oracle.com/javase/8/docs/api/javax/xml/parsers/SAXParserFactory.html#newInstance--
https://docs.oracle.com/javase/8/docs/api/javax/xml/transform/TransformerFactory.html#newInstance--
https://docs.oracle.com/javase/8/docs/api/javax/xml/xpath/XPathFactory.html#newInstance--
https://docs.oracle.com/javase/8/docs/api/javax/xml/validation/SchemaFactory.html#newInstance-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/javax/xml/datatype/DatatypeFactory.html
https://docs.oracle.com/javase/8/docs/technotes/guides/xml/jaxp/enhancements-8.html

Garbage	collection	automatically	frees	unused	objects.	All	major	JVMs	are	designed	to	work	with	a
maximum	Java	heap	size	(specified	with	-Xmx).	When	the	Java	heap	is	full	(or	various	sub-heaps),	an
allocation	failure	occurs	and	the	garbage	collector	will	kick	in	to	try	to	find	space.	There	are	some	key
aspects	to	garbage	collections:

1.	 Mark:	Determine	whether	objects	are	live	or	unused.
2.	 Sweep:	Reclaim	unused	objects	by	marking	their	memory	as	available	on	a	free	list.
3.	 Compact:	Reduce	fragmentation	by	rearranging	the	free	list	into	one	area	of	memory.
4.	 Generational	collector:	Split	the	heap	into	two	parts:	a	nursery	for	short	lived	objects	and	a	tenured

area	for	long-lived	objects.
5.	 Copy	collection:	Mark,	then	copy	live	objects	into	a	survivor	space	(and/or	tenured	space	for

generational	collectors).	A	compaction	in	the	survivor	space	is	implicit.
6.	 Stop-the-world	(STW)	operation:	The	"world"	is	Java	and	a	STW	operation	stops	all	Java	activity

while	some	operations	are	performed.

Best	practice:	The	proportion	of	time	spent	in	garbage	collection	versus	application	time	should	be	less	than
10%	and	ideally	less	than	1%.

One	of	the	most	important	tuning	parameters	is	the	maximum	heap	size.	There	are	three	broad	types	of
memory	when	considering	the	maximum	heap	size:

1.	 Base	footprint:	This	generally	includes	the	base	product	(such	as	WAS,	Portal,	etc.)	as	well	as
metadata	such	as	Classes	and	ClassLoaders	used	by	your	application.

2.	 Caches	and	functional	queues:	These	include	in-memory	caches	such	as	object	caches	and	pools,	and
functional	queues	comprised	of	queues	that	hold	HTTP	session	data,	for	example,	if	stateful	HTTP
requests	are	being	used.

3.	 Per	thread	data:	Each	piece	of	work	ultimately	executes	on	one	or	more	threads.	Each	thread	will
allocate	memory	while	it	processes	its	unit	of	work.	The	maximum	thread	pool	size	is	intimately
related	to	the	maximum	heap	size.

Increasing	the	maximum	heap	size	increases	the	time	between	allocation	failures	but	also	increases	the
duration	of	each	garbage	collection.	These	two	aspects	must	be	kept	in	balance.

Generational	collectors	(e.g.	IBM	gencon/balanced	and	all	HotSpot	collectors)	split	the	heap	into	one	or	more
regions	for	different	age	groups	of	objects.	This	is	based	on	the	observation	that	Java	programs	tend	to	have
two	different	types	of	objects:	long-lived	and	short-lived.	The	purpose	of	splitting	the	heap	(and	collecting
the	heaps	in	different	phases)	is	to	reduce	the	average	time	spent	in	garbage	collection	by	avoiding	checking
objects	that	are	long-lived	since	they	are	less	likely	to	be	garbage.

Some	tools	will	refer	to	"used"	heap.	This	is	not	necessarily	the	same	as	"live"	heap	or	"footprint."	This	is
because	some	garbage	collection	policies	such	as	generational	collectors	will	actively	avoid	collecting
certain	subsets	of	garbage	in	some	types	of	collections.	This	garbage	will	still	be	part	of	"used"	heap,	but	it	is
not	live,	by	definition.

"Look	for	peaks	in	the	"Pause	times	(including	exclusive	access)"	line	to	identify	long	garbage	collection
cycles.	When	you	have	identified	a	long	garbage	collection	cycle,	determine	which	of	the	mark,	sweep,	and
compact	activities	of	the	garbage	collection	cycle	caused	the	cycle	to	be	as	long	as	it	was...	If	you	find	long
garbage	collection	cycles	you	can	examine,	the	raw	verbose:gc	entry	for	that	garbage	collection	cycle	by
selecting	the	first	tab	at	the	bottom	of	the	main	panel.	This	tab	has	the	same	name	as	the	file	containing	the
verbose:gc	data.	You	can	then	look	for	the	garbage	collection	cycle.	Raw	verbose:gc	cycle	output	is	useful
because	it	often	contains	the	reason	why	particular	actions	were	taken	in	that	cycle	and	you	can	see	how	to
avoid	those	actions."

"To	ensure	that	the	occupancy	does	not	exceed	70%,	set	the	maximum	Java	heap	size	to	at	least	43%	larger
than	the	Maximum	occupancy	value	provided	by	GCMV.	This	setting	then	makes	the	Maximum	value	70%
of	the	Java	heap	and	the	average	to	be	above	40%	of	the	Java	heap	size...	In	situations	where	memory
occupancy	of	the	Java	heap	varies	significantly,	you	might	not	be	able	to	maintain	occupancy	between	40%
and	70%	of	the	Java	heap.	In	these	situations,	it	is	more	important	to	keep	the	occupancy	below	70%	of	the
maximum	heap	size	than	it	is	to	keep	the	occupancy	above	40%."

"Two	additional	metrics	to	key	in	on	are	the	garbage	collection	intervals	and	the	average	pause	times	for
each	collection.	The	GC	interval	is	the	amount	of	time	in	between	garbage	collection	cycles.	The	pause	time
is	the	amount	of	time	that	a	garbage	collection	cycle	took	to	complete...	As	heap	size	increases,	the	interval
between	GCs	increase,	enabling	more	work	to	be	performed	before	the	JVM	pauses	to	execute	its	garbage
collection	routines.	However,	increasing	the	heap	also	means	that	the	garbage	collector	must	process	more
objects	and,	in	turn,	drives	the	GC	pause	times	higher...	The	GC	intervals	and	pause	times	together	make	up
the	amount	of	time	that	was	spent	in	garbage	collection:	%	Time	in	GC	=	(Average	Pause	Time)	/	(GC
Interval	+	Average	Pause	Time)"

One	useful	set	of	tests	is	to	plot	maximum	heap	size	along	with	%	Time	in	GC	to	find	the	best	maximum
heap	size.

One	of	the	most	important	factors	for	choosing	a	policy	is	the	worst	case	pause	time.

	

Optimal	Heap	Size

"If	the	occupancy	of	the	Java	heap	is	too	high,	garbage	collection	occurs	frequently.	If	the	occupancy	is	low,
garbage	collection	is	infrequent	but	lasts	longer...	Try	to	keep	the	memory	occupancy	of	the	Java	heap
between	40%	and	70%	of	the	Java	heap	size...	The	highest	point	of	occupancy	of	the	Java	heap	is	preferably
not	above	70%	of	the	maximum	heap	size,	and	the	average	occupancy	is	between	40%	and	70%	occupancy.
If	the	occupancy	goes	over	70%,	resize	the	Java	heap."

"A	correctly	sized	Java	heap	should	always	have	a	memory	occupancy	of	between	40%	and	70%	of	the
maximum	Java	heap	size.	To	ensure	that	the	occupancy	does	not	exceed	70%,	set	the	maximum	Java	heap
size	to	at	least	43%	larger	than	the	Maximum	occupancy	value	provided	by	GCMV.	This	setting	then	makes
the	Maximum	value	70%	of	the	Java	heap	and	the	average	to	be	above	40%	of	the	Java	heap	size."

By	default	the	JVM	provides	a	very	flexible	heap	configuration	that	allows	the	heap	to	grow	and	shrink
dynamically	in	response	to	the	needs	of	the	application.	This	allows	the	JVM	to	claim	only	as	much	memory
as	necessary	at	any	given	time,	thereby	cooperating	with	other	processes	running	on	the	system.	The	starting
and	maximum	size	of	the	heap	can	be	specified	with	the	-Xms<size><M|G>	and	-Xmx<size><M|G>	options
respectively.	This	flexibility	however	comes	at	a	cost,	as	the	JVM	must	request	memory	from	the	operating
system	whenever	the	heap	needs	to	be	grown	and	return	memory	whenever	it	shrinks.	This	behavior	can	lead
to	various	worse-case	scenarios.	If	the	application's	heap	requirements	oscillate	it	may	cause	excessive	heap
growth	and	shrinkage.	If	the	JVM	is	running	on	a	dedicated	machine	or	memory	is	otherwise	not	a	concern,
the	overhead	of	heap	resizing	can	be	eliminated	by	requesting	a	constant	sized	heap.	This	can	be

accomplished	by	setting	-Xms	equal	to	-Xmx.	Choosing	the	right	size	for	the	heap	is	very	important,	as	GC
overhead	is	directly	proportional	to	the	size	of	the	heap!	The	heap	should	be	large	enough	to	satisfy	the
application's	maximum	memory	requirements	and	also	contain	some	wiggle	room.	The	GC	has	to	work
much	harder	when	the	heap	is	near	full	capacity	due	to	fragmentation	and	other	issues,	so	20-30%	of	extra
space	above	the	application's	maximum	needs	can	lower	overall	GC	overhead.

If	an	application	requires	more	flexibility	than	can	be	achieved	with	a	constant	sized	heap	it	may	be
beneficial	to	tune	the	sizing	parameters	for	a	dynamic	heap.	One	of	the	most	expensive	GC	events	is	object
allocation	failure.	This	occurs	when	there	is	not	enough	contiguous	space	in	the	current	heap	to	satisfy	the
allocation	and	results	in	a	GC	collection	and	a	possible	heap	expansion.	If	the	current	heap	size	is	less	than
Xmx	the	heap	will	be	expanded	in	response	to	the	allocation	failure	if	the	amount	of	free	space	is	below	a
certain	threshold.	Therefore,	it	is	important	to	insure	that	when	an	allocation	fails	the	heap	is	expanded	to	not
only	allow	the	failed	allocation	to	succeed,	but	also	many	future	allocations,	otherwise	the	next	failed
allocation	could	trigger	yet	another	GC	collection.	This	is	known	as	heap	thrashing.	The	-Xminf,	-Xmaxf,	-
Xmine,	and	-Xmaxe	group	of	options	can	be	used	to	effect	when	and	how	the	GC	resizes	the	heap.	The	-
Xminf<factor>	option	(where	factor	is	a	real	number	between	0	and	1)	specifies	the	minimum	free	space	in
the	heap;	if	the	total	free	space	falls	below	this	factor	the	heap	is	expanded.	The	-Xmaxf<factor>	option
specifies	the	maximum	free	space;	if	the	total	free	space	rises	above	this	factor	the	heap	is	shrunk.	These
options	can	be	used	to	minimize	heap	thrashing	and	excessive	resizing.	The	-Xmine<size><M|G>	and	-
Xmaxe<size><M|G>	options	specify	the	minimum	and	maximum	sizes	to	shrink	and	grow	the	heap	by.	These
options	can	be	used	to	insure	that	the	heap	has	enough	free	contiguous	space	to	allow	satisfy	a	reasonable
number	of	allocations	before	failure.

In	general,	if	memory	usage	is	very	flat	and	consistent,	it	may	be	optimal	to	fix	-Xms=-Xmx.	For	widely
varying	heap	usage,	-Xmx<-Xmx	is	generally	recommended.	You	may	get	the	best	of	both	worlds	by
settings	-Xms	to	the	lowest	steady	state	memory	usage,	-Xmaxf1.0	to	eliminate	shrinkage,	-Xminf	to	avoid
compaction	before	expansion,	and	-Xmine	to	reduce	expansions.

Regardless	of	whether	or	not	the	heap	size	is	constant,	it	should	never	exceed	the	physical	memory	available
to	the	process,	otherwise	the	operating	system	may	have	to	swap	data	in	and	out	of	memory.	An	application's
memory	behavior	can	be	determined	by	using	various	tools,	including	verbose	GC	logs.

"GC	will	adapt	heap	size	to	keep	occupancy	between	40%	and	70%.	Heap	occupancy	over	70%	causes
frequent	GC	-	reduced	performance.	Heap	occupancy	below	40%	means	infrequent	GC	cycles,	but	cycles	can
be	longer	than	they	need	to	be	-	longer	pause	times	-	Reduced	Performance.	The	maximum	heap	size	should
therefore	be	about	40%	larger	than	the	maximum	occupancy.	Maximum	occupancy	+	43%	means	occupancy
at	70%	of	total	heap.	Example:	For	70	MB	occupancy,	100	MB	Max	Heap	required,	which	is	70	MB	plus
43%	of	70	MB."

	

Generational	Garbage	Collectors

The	Sawtooth

A	generational	garbage	collector	tenures	objects	from	the	"young"	or	"nursery"	region	of	the	Java	heap	into
an	"old"	or	"tenured"	region	of	the	Java	heap.	If	the	rate	of	garbage	creation	exceeds	the	rate	at	which
young/nursery	generation	scavenges	can	clear	objects	before	they	are	tenured,	then	this	garbage	builds	up	in
the	tenured	region.	When	the	tenured	region	fills	up,	a	full	garbage	collection	is	run	to	clean	up	this	garbage.
This	pattern	may	suggest	suboptimal	tuning;	however,	it	may	be	unavoidable.	This	is	a	very	common	pattern
and	produces	a	"sawtooth"	shape	of	Java	heap	usage.	For	example,	here	is	a	graph	from	the	Garbage
Collection	and	Memory	Visualizer	Tool:

In	the	above	graph,	there	are	three	different	plots:

1.	 Used	heap	(after	collection)	-	teal	color.	This	is	what	most	people	look	at	first	when	analyzing	Java
heap	usage.	This	is	a	line	plot	of	the	heap	usage	after	any	garbage	collection,	whether	nursery	or
tenured.	This	shows	the	classic	sawtooth	pattern.

2.	 Used	heap	(after	global	collection)	-	red	color.	This	is	a	better	way	to	look	at	the	"real"	Java	heap	usage
over	time.	This	is	a	line	plot	of	the	heap	usage	only	after	full	garbage	collections.	This	does	not	show
the	build-up	of	garbage	in	the	tenured	area.	If	the	slope	of	this	line	is	positive,	there	may	be	a	leak.

3.	 GC	type	-	green	color.	The	"nursery"	line	at	the	top	is	a	solid	color	and	this	is	expected	because
nursery	scavenges	should	occur	frequently	under	load.	The	"global"	plot	at	the	bottom	shows	a	few
periodic	full	garbage	collections.	These	will	line	up	with	the	large	drops	in	heap	usage	when	the	build-
up	of	garbage	is	cleaned	up	in	the	tenured	area.

The	implication	of	the	sawtooth	is	that	it	is	generally	naïve	to	look	at	the	used	heap	after	any	collection	or	to
otherwise	sample	Java	heap	usage.	In	the	case	of	a	sawtooth	usage	pattern,	such	measurements	are	likely	to
include	a	lot	of	garbage.	This	also	means	that	common	techniques	like	"tailing"	the	verbose	garbage
collection	log	must	be	more	sophisticated	to	look	at	used	heap	only	after	global	collections	(this	may	be	done
with	grep	-A	...	|	grep	for	example).

	

Verbose	garbage	collection	(-verbose:gc)

Enabling	Verbosegc

Verbose	garbage	collection	(known	colloquially	as	verbosegc)	prints	details	about	the	operations	of	the
garbage	collector	to	a	text	file.	This	output	can	be	processed	in	a	tool	such	as	the	IBM	Garbage	Collection
and	Memory	Visualizer	(GCMV)	to	understand	the	proportion	of	time	spent	in	garbage	collection,	total
pause	times,	etc.

A	common	heuristic	is	that	the	proportion	of	time	in	GC	should	be	less	than	5%	and	ideally	less	than	1%.
Tools	such	as	GCMV	can	calculate	this	statistic.

By	default,	verbosegc	is	not	enabled	in	the	OpenJ9	JVM	(IBM	Java	and	IBM	Semeru	Runtimes)	and	the

HotSpot	JVM;	however,	verbosegc	is	enabled	by	default	in	recent	versions	of	WebSphere	Application	Server
traditional	and	WebSphere	Liberty.	The	overhead	of	verbosegc	in	the	OpenJ9	JVM	is	about	less	than	0.5%
and	therefore	IBM	generally	recommends	that	verbosegc	is	enabled	for	most	production	environments.

See	the	verbosegc	section	of	each	JVM	vendor's	chapter	for	more	details	on	how	to	enable	verbosegc:

OpenJ9	JVM	verbosegc
HotSpot	JVM	verbosegc

	

GC	Threads

The	garbage	collector	used	by	the	JVM	takes	every	opportunity	to	exploit	parallelism	on	multi-CPU
machines.	All	phases	of	the	GC	can	be	executed	in	parallel	with	multiple	helper	threads	dividing	up	the	work
in	order	to	complete	the	task	as	quickly	as	possible.	Depending	on	the	GC	strategy	and	heap	size	in	use,	it
may	be	beneficial	to	adjust	the	number	of	threads	that	the	GC	uses.	The	number	of	GC	threads	can	be
specified	with	the	-Xgcthreads<number>	option.	The	default	number	of	GC	threads	is	equal	to	the	number	of
logical	processors	on	the	machine	minus	1	and	it	is	usually	not	helpful	to	exceed	this	value,	reducing	it
however	will	reduce	GC	overhead	and	may	be	desirable	in	some	situations.	The	most	important
consideration	is	the	number	of	CPUs	available	to	the	JVM;	if	the	JVM	is	pinned	to	less	than	the	total	number
of	CPUs	(for	example	by	using	execrset	on	AIX	or	taskset	on	Linux)	then	the	number	of	GC	threads	should
be	adjusted.	Tuning	the	number	of	GC	threads	may	also	be	desirable	when	running	multiple	JVMs	on	a
single	machine,	or	when	the	JVM	is	running	in	a	virtualized	environment.

	

Memory	Leaks

Memory	leaks	in	the	Java	language	are	a	dangerous	contributor	to	garbage	collection
bottlenecks.	Memory	leaks	are	more	damaging	than	memory	overuse,	because	a	memory	leak
ultimately	leads	to	system	instability.	Over	time,	garbage	collection	occurs	more	frequently	until
the	heap	is	exhausted	and	the	Java	code	fails	with	a	fatal	out-of-memory	exception.	Memory
leaks	occur	when	an	unused	object	has	references	that	are	never	freed.	Memory	leaks	most
commonly	occur	in	collection	classes,	such	as	Hashtable	because	the	table	always	has	a
reference	to	the	object,	even	after	real	references	are	deleted.

High	workload	often	causes	applications	to	crash	immediately	after	deployment	in	the
production	environment.	If	an	application	has	memory	leaks,	a	high	workload	can	accelerate	the
magnification	of	the	leakage	and	cause	memory	allocation	failures	to	occur.

The	goal	of	memory	leak	testing	is	to	magnify	numbers.	Memory	leaks	are	measured	in	terms	of
the	amount	of	bytes	or	kilobytes	that	cannot	be	garbage	collected.	The	delicate	task	is	to
differentiate	these	amounts	between	expected	sizes	of	useful	and	unusable	memory.	This	task	is
achieved	more	easily	if	the	numbers	are	magnified,	resulting	in	larger	gaps	and	easier
identification	of	inconsistencies.	The	following	list	provides	insight	on	how	to	interpret	the
results	of	your	memory	leak	testing:

Memory	leak	problems	can	manifest	only	after	a	period	of	time,	therefore,	memory	leaks	are
found	easily	during	long-running	tests.	Short	running	tests	might	provide	invalid	indications	of
where	the	memory	leaks	are	occurring.	It	is	sometimes	difficult	to	know	when	a	memory	leak	is
occurring	in	the	Java	language,	especially	when	memory	usage	has	seemingly	increased	either
abruptly	or	monotonically	in	a	given	period	of	time.	The	reason	it	is	hard	to	detect	a	memory
leak	is	that	these	kinds	of	increases	can	be	valid	or	might	be	the	intention	of	the	developer.	You
can	learn	how	to	differentiate	the	delayed	use	of	objects	from	completely	unused	objects	by
running	applications	for	a	longer	period	of	time.	Long-running	application	testing	gives	you
higher	confidence	for	whether	the	delayed	use	of	objects	is	actually	occurring.

https://github.com/OpenLiberty/open-liberty/issues/23001#issuecomment-1322184198

Repetitive	test

In	many	cases,	memory	leak	problems	occur	by	successive	repetitions	of	the	same	test	case.	The
goal	of	memory	leak	testing	is	to	establish	a	big	gap	between	unusable	memory	and	used
memory	in	terms	of	their	relative	sizes.	By	repeating	the	same	scenario	over	and	over	again,	the
gap	is	multiplied	in	a	very	progressive	way.	This	testing	helps	if	the	number	of	leaks	caused	by
the	execution	of	a	test	case	is	so	minimal	that	it	is	hardly	noticeable	in	one	run.

You	can	use	repetitive	tests	at	the	system	level	or	module	level.	The	advantage	with	modular
testing	is	better	control.	When	a	module	is	designed	to	keep	the	private	module	without	creating
external	side	effects	such	as	memory	usage,	testing	for	memory	leaks	is	easier.	First,	the	memory
usage	before	running	the	module	is	recorded.	Then,	a	fixed	set	of	test	cases	are	run	repeatedly.
At	the	end	of	the	test	run,	the	current	memory	usage	is	recorded	and	checked	for	significant
changes.	Remember,	garbage	collection	must	be	suggested	when	recording	the	actual	memory
usage	by	inserting	System.gc()	in	the	module	where	you	want	garbage	collection	to	occur,	or
using	a	profiling	tool,	to	force	the	event	to	occur.

Concurrency	test

Some	memory	leak	problems	can	occur	only	when	there	are	several	threads	running	in	the
application.	Unfortunately,	synchronization	points	are	very	susceptible	to	memory	leaks	because
of	the	added	complication	in	the	program	logic.	Careless	programming	can	lead	to	kept	or	not-
released	references.	The	incident	of	memory	leaks	is	often	facilitated	or	accelerated	by	increased
concurrency	in	the	system.	The	most	common	way	to	increase	concurrency	is	to	increase	the
number	of	clients	in	the	test	driver.

Consider	the	following	points	when	choosing	which	test	cases	to	use	for	memory	leak	testing:

A	good	test	case	exercises	areas	of	the	application	where	objects	are	created.	Most	of	the	time,
knowledge	of	the	application	is	required.	A	description	of	the	scenario	can	suggest	creation	of
data	spaces,	such	as	adding	a	new	record,	creating	an	HTTP	session,	performing	a	transaction
and	searching	a	record.

Look	at	areas	where	collections	of	objects	are	used.	Typically,	memory	leaks	are	composed	of
objects	within	the	same	class.	Also,	collection	classes	such	as	Vector	and	Hashtable	are	common
places	where	references	to	objects	are	implicitly	stored	by	calling	corresponding	insertion
methods.	For	example,	the	get	method	of	a	Hashtable	object	does	not	remove	its	reference	to	the
retrieved	object.

Heap	consumption	that	indicates	a	possible	leak	during	periods	when	the	application	server	is
consistently	near	100	percent	CPU	utilization,	but	disappears	when	the	workload	becomes
lighter	or	near-idle,	is	an	indication	of	heap	fragmentation.	Heap	fragmentation	can	occur	when
the	JVM	can	free	sufficient	objects	to	satisfy	memory	allocation	requests	during	garbage
collection	cycles,	but	the	JVM	does	not	have	the	time	to	compact	small	free	memory	areas	in	the
heap	to	larger	contiguous	spaces.

Another	form	of	heap	fragmentation	occurs	when	objects	that	are	less	than	512	bytes	are	freed.
The	objects	are	freed,	but	the	storage	is	not	recovered,	resulting	in	memory	fragmentation	until	a
heap	compaction	occurs.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunejvm_v61.html

Many	customers	have	daily	or	weekly	restarts,	often	because	of	uninvestigated	leaks.	These	customers	will
often	believe	that	this	is	a	"solution"	to	their	problem,	and	although	that	may	avoid	OutOfMemoryErrors,	it
may	still	impact	garbage	collection	times.

You	should	also	monitor	native	memory	leaks	using	operating	system	tools.

	

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunejvm_v61.html

Determining	Leaks	with	Generational	Collectors

By	design,	generational	collectors	may	put	trash	into	the	tenured	region	until	a	full	collection	occurs;
therefore,	to	determine	if	there	is	a	leak	with	a	generational	collector,	review	the	used	Java	heap	after	full
garbage	collections.	If	the	slope	is	positive,	then	there	may	be	a	leak.	However,	there	are	cases	where	even
this	pattern	may	not	be	a	leak.	For	example,	if	a	SoftReference	cache	builds	up	more	quickly	than	the	soft
reference	threshold	to	clear	them,	the	used	heap	after	global	collection	may	rise	but	those	SoftReferences	will
be	cleared	under	memory	pressure.

	

InetAddress	Cache
Review	the	cache	for	DNS	name	resolutions:	http://www-01.ibm.com/support/docview.wss?
uid=swg21207534

	

32-bit	versus	64-bit
There	is	a	non-trivial	cost	for	64-bit	over	32-bit	due	to	increased	memory	requirements	(larger
pointers/references),	reduced	processor	data	and	instruction	cache	line	hits	(e.g.	L2,	L3	caches,	TLB	cache
hits),	etc.	Even	with	-Xcompressedrefs,	the	performance	hit	for	64-bit	may	be	up	to	5-10%	and	the	increase
in	overall	memory	usage	up	to	15%	(see	also).

Some	scenarios	where	64-bit	is	better:

Computationally	expensive	or	scientific	applications.
A	large	cache	avoids	out	of	process	calls	to	get	data.
If	the	application	requires	a	large	Java	heap	that	cannot	be	fit	into	32-bit	processes	otherwise.
If	the	application	requires	more	native	memory.
If	the	64-bit	process	gets	more	registers	than	a	32-bit	process,	it	may	run	more	quickly.	For	example,
with	the	IBM	Power	CPU,	32-bit	and	64-bit	processes	get	the	same	number	of	registers.

	

Synchronization	and	Lock	Contention
"If	the	method	is	an	instance	method,	[synchronization]	locks	the	lock	associated	with	the	instance	for	which
it	was	invoked	(that	is,	the	object	that	will	be	known	as	this	during	execution	of	the	body	of	the	method).	If
the	method	is	static,	[synchronization]	locks	the	lock	associated	with	the	Class	object	that	represents	the
class	in	which	the	method	is	defined."	(See	Java	Specification)

"Multithreaded	applications	apply	synchronization	(locks)	around	shared	resources	to	ensure	that	the	state	of
the	resource	is	consistent	and	that	the	state	is	not	changed	by	one	thread	while	it	is	read	by	another	thread.
When	an	application	is	deployed	on	a	larger	number	of	CPUs,	and	subjected	to	an	increasing	load,	the
demand	for	shared	resources	increases.	To	manage	the	shared	resources,	more	synchronization	locks	might
be	created.	These	locks	can	become	points	of	contention,	preventing	threads	from	executing	at	the	same	time.
The	result	is	that	the	application	cannot	scale	to	use	all	available	CPU."

You	can	reduce	the	rate	of	lock	contention	in	two	ways:

Reduce	the	time	that	the	lock	is	owned	when	it	is	taken;	for	example,	limit	the	amount	of
work	done	under	the	lock	in	the	synchronized	block	of	code.
Reduce	the	scope	of	the	lock;	for	example,	instead	of	using	a	single	lock	for	an	entire
table,	use	separate	locks	for	each	row	or	column	of	the	table.

http://www-01.ibm.com/support/docview.wss?uid=swg21207534
ftp://ftp.software.ibm.com/software/webserver/appserv/was/WAS_V7_64-bit_performance.pdf
ftp://public.dhe.ibm.com/software/webservers/appserv/WAS_64-bit_FAQ.pdf

A	thread	must	spend	as	little	time	as	possible	holding	a	lock.	The	longer	a	lock	is	held,	the
greater	the	probability	that	another	thread	tries	to	obtain	the	lock	and	is	forced	to	wait.	Reducing
the	duration	that	a	lock	is	held	reduces	the	contention	on	the	lock	and	allows	the	application	to
scale	further.	If	you	see	a	long	average	hold	time	for	a	lock,	examine	the	source	code:

check	if	code	that	runs	under	the	lock	can	be	moved	outside	the	lock;	for	example,	the
code	does	not	act	on	the	shared	resource.	In	this	case,	move	the	code	outside	the	lock	to
allow	it	to	be	run	in	parallel	with	other	threads.
check	if	code	that	runs	under	the	lock	results	in	a	blocking	operation;	for	example,	a
connection	to	another	process	is	made.	In	this	case,	realease	the	lock	before	the	blocking
operation	starts.

The	locking	architecture	in	an	application	must	be	granular	enough	that	the	level	of	lock
contention	is	low.	The	greater	the	amount	of	shared	resource	that	is	protected	by	a	single	lock,
the	greater	the	probability	that	multiple	threads	try	to	access	the	resource	at	the	same	time.
Reducing	the	scope	of	the	resource	protected	by	a	lock,	and	therefore	increasing	the	lock
granularity,	reduces	the	level	of	lock	contention	and	allows	the	application	to	scale	further.

	

ReentrantLock

The	states	and	owners	of	java.util.concurrent.locks.ReentrantLock	instances	are	not	reported	in	thread
dumps.	A	system	dump	or	HPROF	heapdump	can	be	used	with	the	Memory	Analyzer	Tool	(Open	Query
Browser	>	Java	Basics	>	Thread	Overview	and	Stacks)	to	analyze	the	exclusiveOwnerThread	field	of	the
ReentrantLock	to	review	ownership	and	contention.

	

Investigate	Lock	Contention

1.	 Use	thread	dumps	and	review	the	raw	text	files	for	lock	contention	or	use	a	tool	such	as	 TMDA.
2.	 If	the	step	above	is	inconclusive,	use	a	sampling	lock	profiler	such	as	HealthCenter	(for	IBM	Java	and

OpenJ9)	or	MissionControl	(for	HotSpot).
3.	 If	the	step	above	is	inconclusive,	use	a	deeper	lock	profiler	such	as	Performance	Inspector.

	

Deadlocks
A	deadlock	occurs	when	two	or	more	threads	are	contending	on	resources	in	such	a	way	that
each	thread	is	preventing	the	others	from	continuing.	If	exactly	two	threads	or	processes	are
contending	on	resources,	the	deadlock	can	be	called	a	"deadly	embrace".

In	a	deadlock,	Thread	1	owns	the	lock	on	Object	A	and	is	trying	to	acquire	the	lock	on	Object	B.
At	the	same	time,	Thread	2	owns	the	lock	on	Object	B	and	is	trying	to	acquire	the	lock	on
Object	A.	Neither	thread	will	give	up	the	lock	it	has,	so	neither	thread	can	continue.	In	more
complicated	forms,	the	deadlock	problem	can	involve	multiple	threads	and	multiple	locks.	In	the
case	of	a	Java	application,	the	presence	of	a	deadlock	typically	leads	to	most	or	all	of	the	threads
in	the	application	becoming	unable	to	carry	out	further	work	as	they	queue	up	on	the	locks
involved	in	the	deadlock.

See	the	Deadlock	sections	below	for	each	JVM	vendor	for	techniques	on	determining	deadlocks.

	

Classloading

"[Before	Java	7],	multithreaded	custom	class	loaders	could	deadlock	when	they	did	not	have	an	acyclic
delegation	model."	(http://docs.oracle.com/javase/7/docs/technotes/guides/lang/cl-mt.html)

Therefore,

"Currently	many	class	loading	interactions	are	synchronized	on	the	class	loader	lock."
(http://openjdk.java.net/groups/core-libs/ClassLoaderProposal.html)

However,

"The	Java	SE	7	release	includes	the	concept	of	a	parallel	capable	class	loader."
(http://docs.oracle.com/javase/7/docs/technotes/guides/lang/cl-mt.html)

But,

WAS	currently	uses	the	older	synchronized	classloader	design	even	in	Java	7.	In	cases	where	there	is
significant	monitor	contention	in	ClassLoader	synchronization,	the	common	root	cause	of	the	contention	is
some	repeated	pattern	of	class	loads	(for	example,	creating	JAXP	objects),	and	it's	often	possible	to	cache	the
results	of	these	loads	and	avoid	the	problematic	class	loads.

	

Explicit	Garbage	Collection	(System.gc,	Runtime.gc)
It	is	generally	a	malpractice	for	an	application	to	call	System.gc()	or	Runtime.gc()	(hereafter	referring	to	both
as	System.gc(),	since	the	former	simply	calls	the	latter).	By	default,	these	calls	instruct	the	JVM	to	perform	a
full	garbage	collection,	including	tenured	spaces	and	a	full	compaction.	These	calls	may	be	unnecessary	and
may	increase	the	proportion	of	time	spent	in	garbage	collection	than	otherwise	would	have	occurred	if	the
garbage	collector	was	left	alone.

The	generic	JVM	arguments	-Xdisableexplicitgc	(IBM)	and	-XX:+DisableExplicitGC	(HotSpot)	are	used	to
tell	the	JVM	to	do	nothing	when	System.gc()	and	Runtime.gc()	are	called.	These	arguments	are	often
recommended	when	it	is	found	in	verbosegc	that	calls	to	System.gc	are	negatively	affecting	the	JVM.
However,	there	are	potential	unintended	consequences:	For	example,	in	some	JVM	implementations,	core
Java	functionality	such	as	DirectByteBuffer	cleanup	may	be	affected	in	some	situations,	leading	to
unnecessary	OutOfMemoryErrors	and	crashes	since	the	self-healing	calls	to	System.gc	to	cleanup	iceberg
native	objects	have	no	effect.

Therefore,	it	is	a	malpractice	to	use	-Xdisableexplicitgc	or	-XX:+DisableExplicitGC	permanently.	The	best
practice	is	to	figure	out	who	is	calling	System.gc	and	avoid	or	remove	those	calls.	Here	are	methods	to
determine	this:

Method	#1:	IBM	Java	only:	Use	-Xtrace	trigger

Restart	the	JVM	with	the	generic	JVM	argument	-
Xtrace:trigger=method{java/lang/Runtime.gc,jstacktrace},print=mt
(http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.aix.80.doc/diag/tools/trace_options_trigger.html

Any	time	System.gc	is	called,	a	stack	trace	will	be	printed	to	native_stderr.log.	For	example:

12:02:55.436*0x191de00	mt.2	>	java/lang/Runtime.gc()V	Native	method,	This	=	1b24188
12:02:55.463	0x191de00	mt.18	-	Instance	method	receiver:	java/lang/Runtime@00002B8F6249AA70	arguments:	()
12:02:55.463	0x191de00j9trc_aux.0	-	jstacktrace:
12:02:55.464	0x191de00j9trc_aux.1	-	[1]	java.lang.Runtime.gc	(Native	Method)
12:02:55.464	0x191de00j9trc_aux.1	-	[2]	java.lang.System.gc	(System.java:278)
12:02:55.464	0x191de00j9trc_aux.1	-	[3]	Test.main	(Test.java:3)

Important	Note:	Until	IBM	Java	7.1,	using	-Xtrace:print=mt	may	have	a	significant	overhead.	See	the	-
Xtrace	section	in	the	IBM	Java	chapter.

http://docs.oracle.com/javase/7/docs/technotes/guides/lang/cl-mt.html
http://openjdk.java.net/groups/core-libs/ClassLoaderProposal.html
http://docs.oracle.com/javase/7/docs/technotes/guides/lang/cl-mt.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.aix.80.doc/diag/tools/trace_options_trigger.html

Method	#2:	Use	a	tracing	profiler

There	are	many	tracing	profilers	which	can	time	method	calls.	Find	a	profiler	with	the	option	of	only
profiling	the	Runtime.gc	method	and	with	the	option	of	getting	a	call	stack	to	the	profile	samples.

Method	#3:	Attach	a	debugger

Attach	a	debugger	and	set	a	breakpoint	in	the	Runtime.gc	method.	Then	inspect	the	call	stack.

	

Common	Callers	of	System.gc

1.	 DirectByteBuffer	usage	may	drive	calls	to	System.gc	(see	the	DirectByteBuffers	section	below).

2.	 If	using	RMI,	a	background	thread	calls	System.gc	every	hour	by	default.	This	interval	may	be
controlled	with	JVM	parameters	(in	milliseconds):

Every	100	hours:

-Dsun.rmi.dgc.client.gcInterval=360000000	-Dsun.rmi.dgc.server.gcInterval=360000000

Essentially	never:

-Dsun.rmi.dgc.server.gcInterval=9223372036854775807	-Dsun.rmi.dgc.client.gcInterval=9223372036854775807

http://www-01.ibm.com/support/docview.wss?uid=swg21173431
http://www-01.ibm.com/support/docview.wss?uid=swg21394812
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/sunrmiproperties.html

3.	 There	is	an	undocumented	API	sun.misc.GC.requestLatency	which	may	be	used	to	schedule	a
background	thread	that	calls	System.gc	on	the	specified	interval.	The	System.gc	will	be	called	from
the	method	sun.misc.GC$Daemon.run.

	

java.nio.DirectByteBuffers
DirectByteBuffers	(DBBs)	allocated	through	java/nio/ByteBuffer.allocateDirect	are	one	way	for
Java	applications	to	allocate	and	modify	native	memory	outside	of	the	Java	heap.

	

DirectByteBuffers	and	full	garbage	collections

Since	DirectByteBuffers	are	managed	through	PhantomReferences,	their	final	cleanup	occurs	through	full
garbage	collections.	In	a	similar	way	that	the	Java	heap	has	a	maximum	size	(configured	with	-Xmx	or	-
XX:MaxRAMPercentage)	which	is	then	garbage	collected	as	needed,	a	maximum	size	may	be	configured	on
the	total	native	memory	allocated	through	DirectByteBuffers	using	-XX:MaxDirectMemorySize	which
garbage	collects	any	no-longer-used	DirectByteBuffer	allocations.	Ensure	there	is	enough	physical	memory
to	support	the	DBB	demands.

If	this	maximum	would	be	exceeded	when	trying	to	allocate	a	new	DirectByteBuffer,	then	Java	will	first
run	some	number	of	full	garbabe	collections;	if	those	cleanups	don't	free	enough	DirectByteBuffer	native
memory	for	the	new	allocation	to	fit,	then	an	OutOfMemoryError	is	thrown.	The	most	common	causes	of	this
are	either	that	-XX:MaxDirectMemorySize	is	too	small	for	the	given	load	or	that	there	is	a
DirectByteBuffer	leak	which	can	be	investigated	with	the	Eclipse	Memory	Analyzer	Tool.

IBM	Semeru	Runtimes	and	other	OpenJDK	based	runtimes	default	-XX:MaxDirectMemorySize	to	a

http://www-01.ibm.com/support/docview.wss?uid=swg21173431
http://www-01.ibm.com/support/docview.wss?uid=swg21394812
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/sunrmiproperties.html
https://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html#allocateDirect-int-
https://docs.oracle.com/javase/8/docs/api/java/lang/ref/PhantomReference.html
https://eclipse.dev/openj9/docs/xxmaxdirectmemorysize/
https://eclipse.dev/openj9/docs/xxmaxdirectmemorysize/

proportion	of	the	maximum	heap	size.

IBM	Java	(but	not	IBM	Semeru	Runtimes)	defaults	to	an	unlimited	-XX:MaxDirectMemorySize.

	

DirectByteBuffer	native	memory	waste

Before	Java	7,	there	was	significant	native	memory	waste	for	each	DirectByteBuffer:

"Prior	to	the	JDK	7	release,	direct	buffers	allocated	using	java.nio.ByteBuffer.allocateDirect(int)
were	aligned	on	a	page	boundary.	In	JDK	7,	the	implementation	has	changed	so	that	direct
buffers	are	no	longer	page	aligned.	This	should	reduce	the	memory	requirements	of	applications
that	create	lots	of	small	buffers.	Applications	that	previously	relied	on	the	undocumented
alignment	can	revert	to	previous	behavior	if	they	are	run	with	the	command	line	option:	-
XX:+PageAlignDirectMemory."

	

Reflection	Inflation
When	using	Java	reflection,	the	JVM	has	two	methods	of	accessing	the	information	on	the	class
being	reflected.	It	can	use	a	JNI	accessor,	or	a	Java	bytecode	accessor.	If	it	uses	a	Java	bytecode
accessor,	then	it	needs	to	have	its	own	Java	class	and	classloader
(sun/reflect/GeneratedMethodAccessor<N>	class	and	sun/reflect/DelegatingClassLoader).	These
classes	and	classloaders	use	native	memory.	The	accessor	bytecode	can	also	get	JIT	compiled,
which	will	increase	the	native	memory	use	even	more.	If	Java	reflection	is	used	frequently,	this
can	add	up	to	a	significant	amount	of	native	memory	use.	The	JVM	will	use	the	JNI	accessor
first,	then	after	some	number	of	accesses	on	the	same	class,	will	change	to	use	the	Java	bytecode
accessor.	This	is	called	inflation,	when	the	JVM	changes	from	the	JNI	accessor	to	the	bytecode
accessor.	(http://www-01.ibm.com/support/docview.wss?uid=swg21566549)

The	option	-Dsun.reflect.noInflation=true	enables	immediate	inflation	on	all	method	invocations.	In	general,
inflated	Java	bytecode	accessors	are	faster	than	native	JNI	accessors,	at	the	cost	of	additional	native	and	Java
memory	usage.

	

Serviceability
The	IBM	JVM	provides	significant	serviceability	improvements	such	as:

Thread	dumps	in	separate	files	with	much	more	information	(but	still	lightweight)
Easily	showing	stack	traces	of	calls	that	allocate	large	objects
Method	trace	and	triggers	to	help	with	things	such	as	getting	stack	traces	of	who	is	calling	System.gc

	

Java	Modules
Java	module	command	line	options:

--add-exports:	Directly	access	otherwise	non-exported	packages.	Example:

--add-exports	openj9.dtfjview/com.ibm.jvm.dtfjview=ALL-UNNAMED

--add-opens:	Reflectively	access	otherwise	non-exported	packages	and	call	methods	such	as

http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www-01.ibm.com/support/docview.wss?uid=swg21566549
https://openjdk.org/jeps/261

setAccessible.	Example:

--add-opens	openj9.dtfjview/com.ibm.jvm.dtfjview=ALL-UNNAMED

--add-modules:	Load	otherwise	unloaded	modules.	Example:

--add-modules=openj9.dtfjview

	

Java	Agent
A	simple	agent	that	runs	on	startup:

1.	 Example	class:

import	java.lang.instrument.*;
public	class	Premain	{
		public	static	void	premain(String	args,	Instrumentation	inst)	{
				System.out.println("Premain	agent	started");
		}
}

2.	 Put	a	META-INF/MANIFEST.MF	in	the	jar	with	the	content:

Premain-Class:	Premain

3.	 Package	into	a	JAR	and	start	the	target	JVM	with:

-javagent:premain.jar

	

Java	Virtual	Machines	(JVMs)
The	whole	Java	landscape	is	quite	confusing	and	is	summarized	on	the	Java	page.

	

Sub-chapters

OpenJ9	and	IBM	J9	JVMs
HotSpot	JVM

	

OpenJ9	and	IBM	J9	JVMs

OpenJ9	and	IBM	J9	JVMs	Recipe

1.	 Review	the	JVM-independent	recipe	in	the	Java	chapter.
2.	 In	most	cases,	the	default	-Xgcpolicy:gencon	garbage	collection	policy	works	best,	with	the	key

tuning	being	the	maximum	heap	size	(-Xmx	or	-XX:MaxRAMPercentage)	and	maximum	nursery	size	(-
Xmn).

3.	 Upgrade	to	the	latest	version	and	fixpack	as	there	is	a	history	of	making	performance	improvements
and	fixing	issues	or	regressions	over	time.

4.	 Take	a	javacore	and	review	the	Java	arguments	(UserArgs)	and	Environment	Variables	sections	and
remove	any	unnecessary	debug	options.

5.	 Take	a	javacore	and	review	if	the	JIT	code	cache	is	full	or	nearly	full;	if	so,	and	there's	available
physical	memory,	test	increasing	it	with	-Xcodecachetotal384m	-Xcodecache32m

6.	 Take	a	javacore	and	review	if	the	shared	class	cache	is	full	or	nearly	full;	if	so,	and	there's	available
physical	memory,	consider	increasing	-Xscmx

7.	 If	using	-Xgcpolicy:gencon	and	you	want	to	reduce	average	nursery	pause	times	at	some	throughput
and	CPU	cost,	consider	concurrent	scavenge.

8.	 Consider	setting	-XX:+CompactStrings	where	available,	applicable,	and	not	already	the	default.
9.	 Review	the	performance	tuning	topics	in	the	OpenJ9	or	IBM	Java	documentation.

10.	 When	running	benchmarks	or	comparing	performance	to	other	JVMs,	consider	testing	various
benchmark	ideas.

11.	 If	using	IBM	Semeru	Runtimes:
1.	 If	JIT	CPU	or	memory	usage	are	a	concern,	consider	using	the	remote	JITServer	on	available

platforms.
2.	 For	AIX	and	Linux,	ensure	OpenSSL	is	on	the	system	path	for	maximum	security	performance.
3.	 On	z/OS,	consider	enabling	IBM	Java	Health	Center	(-Xhealthcenter:level=headless)	for

post-mortem	CPU	and	lock	profiling	data,	although	this	has	an	overhead	of	about	2%.
4.	 On	z/OS,	consider	using	the	"pauseless"	garbage	collection	option	-Xgc:concurrentScavenge

if	using	gencon	and	on	recent	software	and	hardware.
12.	 If	using	IBM	Java	(does	not	apply	to	IBM	Semeru	Runtimes):

1.	 Consider	setting	-XX:MaxDirectMemorySize	to	avoid	some	unnecessary	full	garbage
collections.

2.	 Consider	using	the	IBMJCEPlus	security	provider	that	may	offer	large	performance
improvements	in	encryption.	This	is	now	the	default	except	on	z/OS	since	8.0.7.0.

3.	 If	the	node	is	using	a	static	IP	address	that	won't	be	changed	while	the	JVM	is	running,	use	the
JVM	option	-Dcom.ibm.cacheLocalHost=true.

4.	 Consider	enabling	IBM	Java	Health	Center	(-Xhealthcenter:level=headless)	for	post-
mortem	CPU	and	lock	profiling	data,	although	this	has	an	overhead	of	about	2%.

	

J9

J9	is	an	informal	name	for	the	JVM	that	runs	both	IBM	Java	and	IBM	Semeru	Runtimes	with	some
differences	in	J9	between	the	two	and	differences	in	the	SDKs	discussed	elsewhere.	J9	is	developed	mostly
in	the	Eclipse	OpenJ9	project.

To	find	the	version	of	the	J9	JVM	in	IBM	Java,	find	your	IBM	Java	service	and	fixpack	release	in	the
changes	list	and	find	the	OpenJ9	version	link.	There	are	also	nightly	downloads	available.

	

General

By	default,	Java	will	cache	non-localhost	lookups;	however,	localhost	lookups	are	not	cached	in	case
localhost	changes.	In	some	operating	systems	or	configurations,	localhost	lookups	add	significant	overhead.
If	the	static	IP	address	of	the	node	on	which	Java	is	running	is	unlikely	to	change,	use	-
Dcom.ibm.cacheLocalHost=true	to	reduce	localhost	lookup	time
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunejvm_v61.html

	

Garbage	Collection

-Xgcpolicy:gencon	is	the	default	garbage	collection	policy	starting	in	Java	6.26	(WAS	8)	-	it	is	a	copy
collector	in	the	nursery	area	and	a	mark-sweep-compact	collector	in	the	tenured	area.	Previously,	the	default
policy	is	-Xgcpolicy:optthruput.

In	garbage	collection,	generally	the	term	parallel	means	running	on	multiple	threads,	and	concurrent	means
running	at	the	same	time	as	the	application	(i.e.	not	stop-the-world).	Thread	local	heaps	(TLH)	are	used	by

https://eclipse.dev/openj9/docs/xxcompactstrings/
https://www.eclipse.org/openj9/docs/introduction/#performance-tuning
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.80.doc/performance.html
https://www.ibm.com/support/pages/pause-less-garbage-collection-java-ibm-z
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=providers-enabling-ibmjceplus-ibmjceplusfips
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=wn-service-refresh-7
https://www.ibm.com/docs/en/was/9.0.5?topic=jvm-java-virtual-machine-custom-properties#com.ibm.cacheLocalHost
https://www.ibm.com/docs/en/sdk-java-technology/8
https://developer.ibm.com/languages/java/semeru-runtimes/
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=openj9-user-documentation
https://github.com/eclipse-openj9/openj9
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=guide-whats-new
https://openj9-artifactory.osuosl.org/artifactory/ci-openj9/
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunejvm_v61.html

each	thread	for	very	small	objects	to	reduce	cross	thread	contention	(global	heap	lock).

	

Comparing	Policies

-
Xgcpolicy:gencon

-
Xgcpolicy:optthruput

-
Xgcpolicy:optavgpause

-
Xgcpolicy:balanced Xgcpolicy:metronome

Generational	-
most	GC	pauses
are	short
(nursery/scavenge
collections)

Yes No No Yes No

Compaction Sometimes Sometimes Sometimes Partial,	full	in
overload	conditions Never

Large	Heaps
(>10GB)

Yes,	depending	on
heap	utilization No No Yes Yes

Soft	Real	Time	-
all	GC	pauses	are
very	short	(unless
cpu/heap
exhaustion
occurs)

No No No No Yes

Hard	Real	Time	-
requires	hard	real
time	OS,	all	GC
pauses	are	very
short	(unless
CPU/heap
exhaustion
occurs)

No No No No Yes

Benefits

Tries	to	balance
application
throughput	with
low	pause	times

Tries	to	optimize
application
throughput;	CPU
efficient

Tries	to	flatten	out
average	pause	times

Tries	to	deal	with
large	heaps	by
breaking	memory
into	many	regions.
May	help	with
NUMA

Tries	to	have
consistently	low	pause
times

Potential
Consequences

Long	global	GC
pauses	with	large
heaps;	Occasional
long	compactions;
Benefits	negated
by	frequent	large
object	allocations
if	they	are	long-
lived

Longer	average	pause
times

Reduced	throughput;
Increased	CPU;	Poorly
handles	large	heap
usage	variations

Increased	CPU;
Reduced	throughput Increased	CPU

Recommended
for

General	Use	(e.g.
Web	applications,
messaging
systems)

Batch	applications Consistent	pause	time
requirement

Large	heaps
(>10GB)

Very	low,	consistent
GC	latency

Resources:

https://developer.ibm.com/articles/garbage-collection-tradeoffs-and-tuning-with-openj9/

	

https://developer.ibm.com/articles/garbage-collection-tradeoffs-and-tuning-with-openj9/

-Xgcpolicy:gencon

The	idea	[of	a	generational	collector]	is	to	divide	the	heap	up	into	different	areas,	and	collect
these	areas	at	different	rates.	New	objects	are	allocated	out	of	one	such	area,	called	the	nursery
(or	newspace).	Since	most	objects	in	this	area	will	become	garbage	quickly,	collecting	it	offers
the	best	chance	to	recover	memory.	Once	an	object	has	survived	for	a	while,	it	is	moved	into	a
different	area,	called	tenure	(or	oldspace).	These	objects	are	less	likely	to	become	garbage,	so
the	collector	examines	them	much	less	frequently...

IBM's	gencon	policy	(-Xgcpolicy:gencon)	offers	a	generational	GC	("gen-")	on	top	of	[-
Xgcpolicy:optavgpause].	The	tenure	space	is	collected	as	described	above,	while	the	nursery
space	uses	a	copying	collector.	This	algorithm	works	by	further	subdividing	the	nursery	area
into	allocate	and	survivor	spaces...	New	objects	are	placed	in	allocate	space	until	its	free	space
has	been	exhausted.	The	application	is	then	halted,	and	any	live	objects	in	allocate	are	copied
into	survivor.	The	two	spaces	then	swap	roles;	that	is,	survivor	becomes	allocate,	and	the
application	is	resumed.	If	an	object	has	survived	for	a	number	of	these	copies,	it	is	moved	into
the	tenure	area	instead.

http://www.ibm.com/developerworks/websphere/techjournal/1106_bailey/1106_bailey.html

The	default	maximum	nursery	size	(-Xmn)	in	Java	5	is	64MB.	The	default	in	Java	6	is	25%	of	-Xmx.	The
larger	the	nursery,	the	greater	the	time	between	collects,	the	less	objects	are	likely	to	survive;	however,	the
longer	a	copy	can	potentially	take.	In	general	the	advice	is	to	have	as	large	a	nursery	as	you	can	afford	to
avoid	full	collects	-	but	the	full	collects	shouldn't	be	any	worse	than	the	optavgpause	case.	The	use	of
concurrent	collection	is	still	in	place,	and	the	presence	of	the	nursery	should	be	that	there's	less	likelihood	of
compacting	being	required	in	the	tenured	space.

For	-Xgcpolicy:gencon,	consider	tuning	the	nursery	size	(-Xmn)	to	a	larger	proportion	of	-Xmx	(the	default
is	25%)...	For	applications	with	more	short-lived	objects,	a	performance	improvement	can	be	seen	by
increasing	the	nursery	size.

In	an	ideal	world,	no	object	is	copied	more	than	once	-	after	the	first	copy	it	either	dies	or	is	tenured	because
it	is	long	lived.

Tenure	age:	"Tenure	age	is	a	measure	of	the	object	age	at	which	it	should	be	promoted	to	the	tenure	area.
This	age	is	dynamically	adjusted	by	the	JVM	and	reaches	a	maximum	value	of	14.	An	object's	age	is
incremented	on	each	scavenge.	A	tenure	age	of	x	means	that	an	object	is	promoted	to	the	tenure	area	after	it
has	survived	x	flips	between	survivor	and	allocate	space.	The	threshold	is	adaptive	and	adjusts	the	tenure	age
based	on	the	percentage	of	space	used	in	the	new	area."
(http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/understanding/mm_gc_generational_tenure.html

http://www.ibm.com/developerworks/websphere/techjournal/1106_bailey/1106_bailey.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/understanding/mm_gc_generational_tenure.html

A	high	tenure	age	means	the	JVM	is	aggressive	about	leaving	objects	in	the	nursery,	trying	to	let	them	die
there,	which	is	generally	healthy,	since	the	JVM	observes	that	it	is	able	to	collect	most	garbage	in	a
scavenge.

As	the	nursery	size	increases,	the	maximum	copy	count	and	the	adaptive	tenure	age	will	trend	to	1.	Once	the
application	is	a	self	optimizing	tenure	age	of	1	at	runtime,	it	may	make	sense	to	set	tenureage=1	explicitly	to
make	startup	faster.	That	sets	the	tenure	age	where	it	will	end	up	anyway,	and	ensures	we	don't	do	a	lot	of
copying	of	"infrastructure"	objects	allocated	at	startup.	Fix	the	tenure	age,	e.g.:	-
Xgc:scvNoAdaptiveTenure,scvTenureAge=1

A	healthy	used	tenured	heap	(after	collection)	will	show	a	sawtooth	pattern	where	garbage	collects	in	tenured
continuously	until	a	full	collection.	If	the	nursery	size	is	too	large	(or	the	overall	heap	size	is	too	small),	then
an	unhealthy	pattern	in	this	plot	will	lack	the	sawtooth	and	you	will	see	a	low	tenure	age.	This	will	caused
the	JVM	to	constantly	run	full	collections	and	may	increase	the	rate	of	compactions.	A	rough	guide	is	that
the	size	of	the	sawtooth	drop	should	be	about	25%	of	-Xmx.	The	tenured	area	may	grow	and	shrink	by
specifying	-Xmos	and	-Xmox.

You	want	the	nursery	to	be	large	enough	that	data	is	at	most	copied	once.	Once	that	occurs	the
duration	of	a	nursery	collect	is	largely	fixed	at	the	copy	time	of	the	data,	so	after	that	increasing
the	nursery	size	increases	the	time	between	nursery	collects	-	and	therefore	drops	the	GC
overhead,	and	mostly	likely	the	frequency	of	global	collections	as	well.

If	you've	got	large	amounts	of	available	RAM	and	process	address	space,	the	extreme	tuning
solution	is	a	very	large	nursery	with	a	tenure	age	of	1.	This	works	on	the	theory	that
transactional	data	can	only	be	copied	once,	and	anything	surviving	two	collects	should	be	put
into	the	old	generation	as	its	non-transactional	(ie,	at	startup).	You	can	fix	the	tenure	age	via	a
command	line	option.

There's	no	easy	(low	overhead)	way	of	finding	out	what	the	average	flip	count	is,	but	the
following	will	give	you	a	histogram	on	each	scavenge	collect:
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/gcpd_tracing_scavenger.html

The	maximum	nursery	size	should	be	greater	or	equal	to	the	maximum,	concurrent	transaction
data	for	all	threads.	The	average	number	of	times	that	non-tenured	objects	are	copied	should	be
~=	1

To	force	full	GCs	after	each	N	scavenges,	use	-Xgc:maxScavengeBeforeGlobal=N

If	you	would	like	to	tail	the	verbosegc	log,	it	is	generally	recommended	to	look	at	free	memory	after	global
collections	only	because	scavenges	do	not	touch	trash	in	the	tenured	region.	On	Linux,	for	example:

$	tail	-f	native_stderr.log	|	grep	-A	1	"gc-end.*global"	native_stderr.log
<gc-end	id="1748"	type="global"	contextid="1741"	durationms="670.959"	timestamp="2014-07-02T16:28:22.476">
		<mem-info	id="1749"	free="156456360"	total="311361536"	percent="50">

Consider	testing	with	-XX:+InterleaveMemory	to	take	advantage	of	certain	CPU-memory	architectures.

	

Concurrent	Scavenge

Consider	using	-Xgc:concurrentScavenge	if	you	want	to	reduce	average	nursery	garbage	collection	times
(though	not	necessarily	maximum	times)	at	the	cost	of	reduced	throughput	and	increased	CPU.	The	average
throughput	drop	may	be	up	to	10-20%.	The	CPU	increase	may	be	about	20%	though	some	newer	hardware
such	as	the	Z14	has	hardware	assist	that	can	bring	this	down	to	about	5-10%.	The	time	of	full	GCs	is
generally	not	impacted	though	they	may	become	more	frequent.	It	is	possible	that	Java	heap	utilization	may
also	increase,	and	nursery	tuning	(e.g.	-Xmn)	can	become	particularly	important.	If	total	CPU	usage	is	near
saturation,	additional	performance	impacts	may	be	observed.	When	testing,	consider	testing	increased	-Xmn
(and	potentially	also	-Xmx,	if	possible).

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/gcpd_tracing_scavenger.html
https://www.eclipse.org/openj9/docs/xgc/#concurrentscavenge

	

Tilt	Ratio

The	tilt	ratio	is	(size	of	new	or	allocate	space)/(size	of	survivor	space).	The	tilt	ratio	starts	at	50%	and	is
dynamically	updated	in	an	attempt	to	maximize	the	time	between	scavenges:
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/understanding/mm_gc_generational_tilt.html

	

Concurrent	Marking

In	general	for	both	the	gencon	and	optavgpause	GC	policies,	concurrent	marking	can	be	tuned
with	the	-XconcurrentlevelN	option	which	specifies	the	ratio	between	the	amounts	of	heap
allocated	and	the	amounts	of	heap	marked.	The	default	value	is	8.	The	number	of	low	priority
mark	threads	can	be	set	with	the	-XconcurrentbackgroundN	option.	By	default	1	thread	is	used
for	concurrent	marking.	If	generational	garbage	collection	is	desired	but	the	overhead	of
concurrent	marking,	with	respect	to	both	the	overhead	of	the	marking	thread	and	the	extra	book-
keeping	required	when	allocating	and	manipulating	objects,	is	not	desired	then	concurrent
marking	may	be	disabled	with	the	-Xconcurrentlevel0	option	although	this	may	increase
pause	times.	This	option	is	appropriate	for	workloads	that	benefit	from	gencon's	optimizations
for	object	allocation	and	lifetimes	but	also	require	maximum	throughput	and	minimal	GC
overhead	while	application	threads	are	running.

Further	documentation:

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/mm_gc_mark_concurrent.html
-XconcurrentlevelX:
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xconcurrentlevel/index.html
-XconcurrentslackSIZE:
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xconcurrentslack/index.html
-XconcurrentbackgroundX:
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xconcurrentbackground/index.html

	

-Xgcpolicy:balanced

The	balanced	GC	policy	(available	starting	with	Java	7)	is	suitable	for	arbitrarily	large	heaps,	and	includes
various	techniques	to	prevent	worst-case	pause	time	from	growing	linearly	with	total	heap	size.	Balanced	is	a
generational	policy,	so	as	with	gencon	most	collections	will	be	of	the	nursery	space,	and	thus	will	be	quite
brief.	An	incremental	compaction	function	performs	a	subset	of	compaction	work	during	each	GC	pause,	to
avoid	the	very	large	pause	time	associated	with	compacting	the	entire	heap	in	a	single	operation.	Tenured
space	collections	are	performed	on	sub-areas	of	the	tenured	heap,	and	objects	are	grouped	by	lifespan	within
the	heap,	to	make	tenured	collections	more	efficient	and	brief.

The	primary	goal	of	the	balanced	collector	is	to	amortize	the	cost	of	global	garbage	collection
across	many	GC	pauses,	reducing	the	effect	of	whole	heap	collection	times.	At	the	same	time,
each	pause	should	attempt	to	perform	a	self	contained	collection,	returning	free	memory	back	to
the	application	for	immediate	reuse.

To	achieve	this,	the	balanced	collector	uses	a	dynamic	approach	to	select	heap	areas	to	collect	in
order	to	maximize	the	return-on-investment	of	time	and	effort.	This	is	similar	to	the	gencon
policy	approach,	but	is	more	flexible	as	it	considers	all	parts	of	the	heap	for	collection	during
each	pause,	rather	than	a	statically	defined	new	space.

http://www.ibm.com/developerworks/websphere/techjournal/1108_sciampacone/1108_sciampacone.html

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/understanding/mm_gc_generational_tilt.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/mm_gc_mark_concurrent.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xconcurrentlevel/index.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xconcurrentslack/index.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xconcurrentbackground/index.html
http://www.ibm.com/developerworks/websphere/techjournal/1108_sciampacone/1108_sciampacone.html

The	balanced	policy	can	better	utilize	NUMA	node	groupings.

Balanced	GC	overview:
http://www.ibm.com/developerworks/websphere/techjournal/1108_sciampacone/1108_sciampacone.html

	

-Xgcpolicy:metronome

The	metronome	GC	policy	(available	in	the	base	VM	starting	with	Java	7)	invokes	the	WebSphere	RealTime
(WRT)	collector.	WRT	performs	GC	in	small	increments	using	a	time-bounded	algorithm	to	ensure	that	any
individual	GC	pause	is	very	brief.	This	behavior	is	suitable	for	applications	needing	consistent	low	latency
response	times,	e.g.	financial	transaction	systems.	The	trade-off	for	getting	very	low	GC	latency	is	some
increase	in	CPU	and	heap	consumption.	Unlike	gencon,	optthruput,	and	optavgpause	collectors,	GC	pause
time	with	WRT	does	not	increase	linearly	with	heap	size,	so	WRT	is	suitable	for	use	with	very	large	heaps.

http://www.ibm.com/developerworks/library/j-rtj4/

	

-Xgcpolicy:optthruput

"The	simplest	possible	garbage	collection	technique	is	to	continue	allocating	until	free	memory	has	been
exhausted,	then	stop	the	application	and	process	the	entire	heap.	While	this	results	in	a	very	efficient	garbage
collector,	it	means	that	the	user	program	must	be	able	to	tolerate	the	pauses	introduced	by	the	collector.
Workloads	that	are	only	concerned	about	overall	throughput	might	benefit	from	this	strategy."
(http://www.ibm.com/developerworks/websphere/techjournal/1106_bailey/1106_bailey.html)

		

-Xgcpolicy:optavgpause

"For	applications	that	are	willing	to	trade	some	overall	throughput	for	shorter	pauses...	-
Xgcpolicy:optavgpause	attempts	to	do	as	much	GC	work	as	possible	before	stopping	the	application,	leading
to	shorter	pauses...	The	same	mark-sweep-compact	collector	is	used,	but	much	of	the	mark	and	sweep	phases
can	be	done	as	the	application	runs.	Based	on	the	program's	allocation	rate,	the	system	attempts	to	predict
when	the	next	garbage	collection	will	be	required.	When	this	threshold	approaches,	a	concurrent	GC	begins.
As	application	threads	allocate	objects,	they	will	occasionally	be	asked	to	do	a	small	amount	of	GC	work
before	their	allocation	is	fulfilled.	The	more	allocations	a	thread	does,	the	more	it	will	be	asked	to	help	out.
Meanwhile,	one	or	more	background	GC	threads	will	use	idle	cycles	to	get	additional	work	done.	Once	all
the	concurrent	work	is	done,	or	if	free	memory	is	exhausted	ahead	of	schedule,	the	application	is	halted	and
the	collection	is	completed.	This	pause	is	generally	short,	unless	a	compaction	is	required.	Because
compaction	requires	moving	and	updating	live	objects,	it	cannot	be	done	concurrently."
(http://www.ibm.com/developerworks/websphere/techjournal/1106_bailey/1106_bailey.html)

http://www.ibm.com/developerworks/websphere/techjournal/1108_sciampacone/1108_sciampacone.html
http://www.ibm.com/developerworks/library/j-rtj4/
http://www.ibm.com/developerworks/websphere/techjournal/1106_bailey/1106_bailey.html
http://www.ibm.com/developerworks/websphere/techjournal/1106_bailey/1106_bailey.html

Optimized	for	applications	with	responsiveness	criteria.	It	reduces	and	makes	more	consistent	the	time	spent
inside	the	stop-the-world	operations	by	carying	out	some	of	the	stop-the-world	activity	while	the	application
is	running.	This	has	an	additional	overhead.	Optavgpause	is	suited	for	consistent	allocation	patterns	or	when
very	large	objects	adversely	affect	gencon.

	

Should	you	set	minimum	heap	equal	to	the	maximum	heap?

For	generational	policies,	the	guidance	is	that	you	should	fix	the	nursery	size:	-Xmns	==	-Xmnx,	and	allow
the	tenured	heap	to	vary:	-Xmos	!=	-Xmox.	For	non	generational	you	only	have	a	tenured	heap,	so	-Xms	!=	-
Xmx	applies.

The	reason	being	that	the	ability	to	expand	the	heap	adds	resilience	into	the	system	to	avoid
OutOfMemoryErrors.	If	you're	then	worried	about	the	potential	cost	of	expansion/shrinkage	that	this
introduces	by	causing	compactions,	then	that	can	be	mitigated	by	adjusting	-Xmaxf	and	-Xminf	to	make
expand/shrink	a	rare	event.

	

Long	Mark	Times

Long	mark	times	can	occur	for	the	following	reasons:

1.	 Increase	in	the	number	of	Objects	on	the	Java	heap
2.	 Increase	in	the	Java	heap	size
3.	 CPU	contention
4.	 System	paging

An	increase	in	the	number	of	objects	on	the	Java	heap	or	an	increase	in	the	Java	heap	size	is
typical.	They	are	the	two	major	factors	contributing	to	GC	duration;	more	Java	objects	take
longer	to	mark,	and	more	Java	heap	space	means	more	time	is	required	to	traverse	the	larger
memory	space.	CPU	contention	and	system	paging	are	caused	by	system	resource	contention,
which	you	can	determine	if	the	paging	and	CPU	information	is	available.

	

Long	Sweep	Times

Long	sweep	times	can	occur	for	the	following	reasons:

1.	 Increase	in	Java	heap	size
2.	 CPU	contention
3.	 System	paging

An	increase	in	Java	heap	size	is	typical	because	the	major	factor	contributing	to	the	duration	of
the	sweep	phase	is	the	size	of	the	Java	heap	that	must	be	traversed.	If	sweep	times	increase

significantly,	the	most	likely	cause	is	system	resource	contention,	which	you	can	determine	if
the	paging	and	CPU	information	is	available.

	

Compaction

When	compactions	occur,	they	use	most	of	the	garbage	collection	cycle.	The	Garbage	Collector
avoids	compaction	where	possible.	However,	when	compactions	must	occur,	the	raw	verbose:gc
output	contains	a	message	explaining	why	the	compaction	occurred.

The	most	common	cause	of	avoidable	long	GC	cycles	is	Java	heap	expansion	and	shrinkage.
When	the	Java	heap	shrinks	in	size,	a	compaction	is	probably	required	to	allow	the	shrinkage	to
occur.	When	the	Java	heap	expands,	a	compaction	might	occur	before	the	expansion,
particularly	when	the	Java	heap	occupancy	is	growing	rapidly.

A	correctly	sized	Java	heap	aims	to	keep	the	Java	heap	occupancy	between	40%	and	70%	of	the
maximum	heap	size,	which	are	the	trigger	occupancy	levels	for	heap	expansion	and	shrinkage.	If
the	range	of	occupancy	is	too	great	to	stay	within	the	recommended	range,	it	is	more	important
to	keep	the	occupancy	under	70%	of	the	maximum	than	it	is	to	stay	over	40%.

You	can	remove	or	reduce	the	need	for	shrinkage	by	increasing	the	-Xmaxf	option	from	its
default	value	of	0.6,	which	controls	the	40%	threshold	for	shrinkage.	By	increasing	the	-Xmaxf
value,	the	lower	threshold	is	reduced	below	the	normal	range	of	occupancy,	and	shrinkage	can
be	avoided	during	the	normal	operation	of	the	application,	while	still	leaving	the	possibility	of
shrinkage	if	the	Java	heap	occupancy	drops	dramatically.

The	-Xmaxf	parameter	specifies	the	amount	of	the	Java	heap	that	must	be	free	before	shrinkage
occurs,	so	a	setting	of	-Xmaxf0.7	will	cause	shrinkage	when	the	occupancy	is	below	30%	(70%
is	free),	and	-Xmaxf0.9	cause	shrinkage	when	the	occupancy	is	below	10%	(90%	is	free).

Explicit	requests	for	garbage	collection	to	run	using	calls	to	the	System.gc()	or	Runtime.gc()
methods	cause	a	compaction	to	occur	during	the	garbage	collection	cycle	if	compaction	did	not
occur	in	the	previous	garbage	collection	cycle.	Explicit	garbage	collection	calls	cause	garbage
collection	to	run	more	frequently	than	necessary,	and	are	likely	to	cause	a	compaction	to	occur.
Remove	explicit	garbage	collection	calls	where	possible.

To	disable	heap	shrinkage:	-Xmaxf1.0

	

Verbose	garbage	collection	(-verbose:gc)

Comprehensive	tests	in	2022	measuring	the	relative	difference	of	verbosegc	in	startup,	footprint,	first	request
and	throughput	tests	on	bare	metal,	z/OS,	and	containers	using	both	spinning	and	NVME	disks	showed	an
overhead	of	verbosegc	of	less	than	1%	and	mostly	less	than	0.5%.

By	default,	with	just	-verbose:gc,	output	will	be	sent	to	stderr	(in	WAS	traditional,	native_stderr.log;	in
WebSphere	Liberty,	console.log).	Specifying	-Xverbosegclog	implicitly	enables	-verbose:gc	and	allows
you	to	write	verbosegc	to	named	files	instead,	along	with	the	option	of	rotating	said	files	after	certain
numbers	of	GC	events	(this	works	on	all	platforms	including	z/OS).	If	you	are	concerned	about	performance,
you	can	use	-Xverbosegclog	to	write	the	data	to	a	RAMdisk.	If	the	JVM	is	unable	to	create	the	file	(e.g.
permissions,	disk	space,	etc.),	verbosegc	will	fall	back	to	stderr.

When	using	-Xverbosegclog,	generally	you'll	want	to	specify	non-unique	dump	tokens	along	with	a	set	of
historical	files	so	that	the	logs	roll	over	across	process	instances	(in	practice,	this	means	not	using	%pid	or
%Y%m%d.%H%M%S).	For	example:

-Xverbosegclog:verbosegc.%seq.log,20,50000

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xverbosegclog

If	you	specify	X,Y	after	the	log	name,	output	is	redirected	to	X	number	of	files,	each	containing	Y	GC	cycles.
You	can	only	roll-over	by	the	number	of	GC	cycles	and	not	by	raw	file	size;	however,	garbage	collection
events	are	generally	in	the	same	magnitude	in	size,	so	you	should	be	able	to	approximate.	As	a	rough	starting
point,	one	GC	cycle	outputs	about	2KB.	Therefore,	if	let's	say	you	wanted	to	rollover	at	100MB,	you	would
do:

A	=	Desired	size	in	MB
B	=	Average	GC	cycle	size	output	in	bytes
Y	=	(A	*	1024	*	1024)	/	B

So,	with	A=100	and	B=2048,	Y	would	be	51200,	and	then	you	would	use:

-Xverbosegclog:verbosegc.%seq.log,20,51200

That	would	create	up	to	20	historical	files	with	roughly	100MB	each.	If	you	wanted	to	better	approximate	Y,
then	you	need	to	better	understand	B.	For	that,	you	could	do	a	historical	analysis	of	verbosegc	and	calculate
the	mean	sizes,	in	bytes,	of	each	GC	event,	and	fiddle	around	with	B	until	you	get	close	to	A	per	file.

Showing	allocation	rates:

awk	-F\"	'/allocated-bytes/	{nontlh+=$2;tlh+=$4;}	END	{printf("non-tlh:	%4.0f	GB,	tlh:	%4.0f	GB	\n",nontlh/1024/1024/1024,tlh/1024/1024/1024);}'	verbosegc*.log

	

verbosegc	examples

The	following	will	create	up	to	20	historical	files	of	roughly	100MB	each	in	generally	recommended
directories:

WebSphere	Liberty:

-Xverbosegclog:logs/verbosegc.%seq.log,20,50000

WAS	traditional	(enabled	by	default	starting	in	WAS	9):

-Xverbosegclog:${SERVER_LOG_ROOT}/verbosegc.%seq.log,20,50000

	

Stop-the-world	Events

A	"stop-the-world"	garbage	collection	event	is	defined	as	the	time	between	exclusive-start	and	exclusive-end
verbosegc	elements.	This	includes	scavenges.

	

Time	spent	unloading	classes

If	you	find	long	total	GC	pause	times	and	the	break	down	includes	long	times	in	"time	spent	unloading
classes"	in	GCMV,	then	there	are	a	few	options:

1.	 Investigate	which	classes	and	classloaders	are	being	unloaded	and	review	if	creating	these	can	be
reduced	or	avoided	(for	example,	see	the	discussion	on	reflection	inflation):
-verbose:class	-Xgc:verboseExtensions

2.	 Consider	using	-Xgc:classUnloadingKickoffThreshold=N

3.	 Consider	using	-Xgc:maxScavengeBeforeGlobal=N

4.	 Consider	changing	to	a	different	-Xgcpolicy.	GC	policies	like	optthruput	and	optavgpause	do	not	have

a	tenured	region,	and	balanced	cleans	up	classloaders	more	aggressively	(see	the	table	above	for
details	on	tradeoffs	of	each).

5.	 Ensure	IBM	Java	APAR	IV49664	is	applied:	http://www-01.ibm.com/support/docview.wss?
uid=swg1IV49664

6.	 Test	increasing	the	nursery	size	and/or	decreasing	-Xmx	to	cause	full	GCs	to	run	more	often.

7.	 If	unloading	times	increase	as	the	number	of	class(loader)es	increases,	test	with	-
Xjit:disableCHOpts,disableCHTabl	or	more	aggressively	(if	there	are	no	Java	agents),	-
Xjit:disableCHOpts,disableCHTable,noRecompile

8.	 Check	for:	APAR	IV49664:	SLOW	CLASS	UNLOADING	SCAN	TIME

9.	 Check	for:	APAR	IV47984:	LONG	GC	PAUSE	TIMES	WHEN	USING	WIDE	CLASS
HIERARCHIES

10.	 Try	a	different	GC	policy,	(perhaps	balanced).

Example	verbosegc	tag	showing	time	spent	unloading	classes:

<classunloading	classloaders="325178"	classes="905"	timevmquiescems="0.000"	timetakenms="16990.786"	/>

	

Exclusive	Access	Time

Before	a	garbage	collection,	the	GC	requests	"exclusive	access"	to	the	JVM.	Normally,	this	should	take
almost	no	time.	This	time	is	not	included	in	the	"Total	Pause	Time"	statistic	in	GCMV	(instead	there	is	an
Exclusive	Access	Time	statistic).	If	this	is	taking	a	long	time,	then	most	likely	some	other	JVM	thread	is
holding	exclusive	access	for	that	time.	You	can	determine	how	long	these	are	by	looking	for:

<exclusive-start	id="1628"	timestamp="2014-03-31T16:13:51.448"	intervalms="16331.866">
		<response-info	timems="1499.726"	idlems="999.647"	threads="2"	lastid="000000000FC2C600"	lastname="Thread-123"	/>
</exclusive-start>

The	only	real	way	to	investigate	these	is	to	take	a	core	dump	by	using	the	-Xdump	slow	event	and	setting	the
threshold	below	the	average	timems	value;	for	example:	-
Xdump:system:events=slow,filter=1000ms,range=1..2

Load	the	dump	into	IDDE,	run	"!info	lock"	and	search	for	this	section:

id:	0x2aaab4000ed0	name:	VM	exclusive	access
				owner	thread	id:	27707	name:	Thread-105
				waiting	thread	id:	26717	name:	defaultJavaTimer-thread-1

The	current	thread	should	match	the	owner	thread,	so	then	just	run	"!info	thread"	and	you'll	see	the	stack	(top
frame	should	be	in	a	native	method).

	

Excessive	Garbage	Collection

By	default,	if	the	JVM	detects	"excessive	time"	spent	in	garbage	collection	(default	95%),	an
OutOfMemoryError	is	thrown:
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xgc/index.html#excessivegcratio

The	95%	threshold	can	be	changed	with	-Xgc:excessiveGCratio=90	where	90	is	an	example	different
percentage.

http://www-01.ibm.com/support/docview.wss?uid=swg1IV49664
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xgc/index.html#excessivegcratio

	

Explicit	Garbage	Collection	(System.gc,	Runtime.gc)

In	addition	to	the	cases	covered	in	the	general	Java	chapter,	the	IBM	JVM	may	explicitly	call	System.gc	in
certain	situations.	For	example,	if	the	JVM	is	unable	to	get	native	memory	for	class(loader)	metadata,	it	will
call	System.gc	in	case	this	indirectly	cleans	up	native	resources.	In	fact,	in	this	case,	the	JVM	calls	an	internal
method	so	a	full	GC	will	occur	even	if	-Xdisableexplicitgc	is	set.	If	the	JVM	runs	out	of	native	memory	but
continues	to	run	and	continues	to	try	to	allocate	native	class(loader)	metadata,	this	can	cause	a	full	GC	storm.

	

Garbage	Collection	Threads

The	maximum	number	of	logical	CPU	cores	is	read	and	fixed	at	JVM	startup	by	querying	the	operating
system.	If	the	number	of	logical	CPUs	decreases	at	runtime,	and	-Xgcthreads	is	not	specified,	then	the	JVM
may	decide	to	use	less	CPUs	during	a	garbage	collection	based	on	how	many	are	available.	If	the	number	of
logical	CPU	cores	increases	more	than	the	amount	at	JVM	startup,	the	JVM	will	not	use	these	additional
cores	for	garbage	collection.

	

Garbage	Collection	Notes

A	scavenge	which	is	converted	into	a	global	collection	collection	is	called	a	percolate	(percolate-collect).
This	happens	when	there	isn't	enough	space	in	the	tenured	region	to	accommodate	objects	that	need	to	be
tenured	from	the	nursery.	If	you	see	a	lot	of	full	GCs	due	to	percolate	and	even	when	there	is	a	lot	of	free
space	in	tenured,	then	tenured	is	probably	highly	fragmented.	Consider	discovering	large	object	allocations
and	eliminating	them.	Increasing	the	maximum	heap	size	may	help	but	that	should	be	tested.	The	balanced
GC	policy	may	also	help	but	that	is	a	more	significant	change.

An	"aggressive"	GC	is	declared	if	a	previous	GC	was	unable	to	reclaim	sufficient	resources.	It	means	that	the
GC	will	try	as	much	as	it	can,	including	compaction,	class	unloading,	softref	clearing,	etc.	An	aggressive
collect	may	also	be	triggered	if	two	explicit	GCs	happen	back-to-back.

	

Just	in	Time	(JIT)	Compiler

The	JIT	compiler	samples	Java	method	execution	at	runtime	and	compiles	the	byte	code	of	more	frequently
invoked	methods	into	optimized	native	code.	This	native	code	is	typically	10-20	times	faster.

Some	JIT	command	line	options	are	specified	with	-Xjit.	Note	that	this	option	may	only	be	specified	once,
so	if	you	want	to	use	multiple	such	options,	combine	them	with	commas	into	one	option.

	

JIT	Interpeter	Profiler

The	JIT	has	an	interpreter	profiler	that	helps	it	decide	what	methods	to	JIT	compiler	(or	re-compile).	The	JIT
profiler	has	a	memory	limit,	and	if	this	limit	is	hit,	parts	of	the	profiler	may	be	disabled.	Consider	testing
with	a	larger	limit;	for	example:

-Xjit:iprofilerMemoryConsumptionLimit=67108864

	

https://community.ibm.com/community/user/wasdevops/blogs/kevin-grigorenko1/2021/06/30/lessons-from-the-field-6-ibm-java-and-openj9-just?CommunityKey=5c4ba155-561a-4794-9883-bb0c6164e14e
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/xjit/index.html

JIT	CPU	Usage

The	-XsamplingExpirationTime${SECONDS}	option	allows	you	to	disable	this	background	process	a	certain
number	of	seconds	after	the	JVM	starts	when	you	think	that	the	most	important	JITting	has	been	completed.
A	related	option	helps	control	sampling	frequency	when	the	JVM	is	idle:	-
Xjit:samplingFrequencyInIdleMode=${ms}

As	of	this	writing,	in	recent	versions	of	J9	Java,	the	default	number	of	JIT	compilation	threads	on	non-Linux
operating	systems	is	the	number	of	CPUs	minus	1	but	no	less	than	1	and	no	more	than	7.	On	Linux,	7	threads
are	created	although	only	the	number	of	CPUs	minus	1	are	activated	initially;	if	JIT	compilation	starvation	is
detected,	additional	threads	up	to	7	may	be	activated.	These	can	be	quite	intensive,	and	if	there	are	many
Java	processes	on	a	machine,	if	the	JIT	compilation	threads	happen	to	run	at	the	same	time,	the	processors
may	become	saturated.	In	the	same	way	that	-Xgcthreads	must	be	considered	when	running	multiple	JVMs
on	a	machine,	-XcompilationThreads	can	be	reduced	although	this	should	be	tested.

There	is	an	option	to	increase	the	size	of	the	JIT	profiling	buffer	(default	1024):	-
Xjit:iprofilerBufferSize=${bytes}

The	option	-Xjit:noServer	may	be	used	to	reduce	the	level	of	inlining	and	therefore	reduce	JIT	CPU
utilization,	although	the	program	may	run	more	slowly.	The	option	-Xjit:virtualizationHighDensity
may	be	used	to	be	even	more	aggressive	in	reducing	JIT	CPU	utilization	(it	is	a	superset	of	-Xjit:noServer),
although	the	program	may	run	even	more	slowly.

Another	way	to	reduce	the	CPU	usage	of	JIT	compilation	is	to	increase	the	size	of	the	shared	class	cache	(-
Xscmx)	and	consequently	the	likelihood	that	Ahead-of-time	(AOT)	compiled	methods	can	be	reused.	In
general,	AOT	can	be	as	big	as	disk	space	and	physical	memory	support.

By	default,	the	JIT	will	compile	methods	after	a	certain	number	of	invocations.	This	can	be	changed	with	-
Xjit:count	(use	0	to	compile	immediately,	although	this	is	generally	not	recommended).

	

JIT	Code	and	Data	Caches

The	JIT	has	two	caches:	code	and	data.	The	code	cache	holds	the	actual	compiled	native	code	for	any
methods	that	are	JITted	and	the	data	cache	is	metadata	for	said	code	(which	is	relatively	much	smaller	than
the	code).	If	the	application	uses	a	lot	of	classes	or	classloaders	or	runs	heavy	workload	for	a	long	time,	the
JIT	code	cache	may	fill	up	and	subsequent	JITting	is	reduced	or	stopped.	The	JIT	code	cache	is	not	an	LRU
cache	and	methods	may	only	be	removed	for	a	narrow	set	of	reasons	(e.g.	class	unloading,	agent
retransformation,	etc.).	You	may	also	make	more	room	in	the	caches	by	excluding	some	methods	from	being
JITted	with	-Xjit:exclude.

The	size	of	the	code	and	data	caches	may	be	reviewed	in	javacores	in	the	NATIVEMEMINFO	or	Total
memory	in	use	and	Total	memory	free	statistics	(not	that	the	latter	may	grow	up	to	Allocation	limit):

2MEMUSER							+--JIT:	363,553,696	bytes	/	18702	allocations
2MEMUSER							|		|
3MEMUSER							|		+--JIT	Code	Cache:	134,217,792	bytes	/	1	allocation
2MEMUSER							|		|
3MEMUSER							|		+--JIT	Data	Cache:	71,305,344	bytes	/	34	allocations

[...]

1STSEGTYPE					JIT	Code	Cache
[...]
1STSEGTOTAL				Total	memory:																			134217728	(0x0000000008000000)
1STSEGINUSE				Total	memory	in	use:												121952439	(0x000000000744D8B7)
1STSEGFREE					Total	memory	free:															12265289	(0x0000000000BB2749)
1STSEGLIMIT				Allocation	limit:															134217728	(0x0000000008000000)

[...]

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/jitpd_idle.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xcompilationthreads.html
http://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xjit.html

1STSEGTYPE					JIT	Data	Cache
[...]
1STSEGTOTAL				Total	memory:																				71303168	(0x0000000004400000)
1STSEGINUSE				Total	memory	in	use:													71303168	(0x0000000004400000)
1STSEGFREE					Total	memory	free:																						0	(0x0000000000000000)
1STSEGLIMIT				Allocation	limit:															402653184	(0x0000000018000000)

In	general,	the	first	compile	occurs	at	the	warm	level	except	during	startup	which	starts	at	cold	to	compile
methods	more	quickly	and	then	those	are	usually	recompiled	later.	This	may	be	disabled	with	-
Xjit:dontDowngradeToCold.

	

Tuning	the	JIT	Code	Cache

The	maximum	size	of	the	code	cache	is	controlled	with	-Xcodecachetotal:

Long-running,	complex,	server-type	applications	can	fill	the	JIT	code	cache,	which	can	cause
performance	problems	because	not	all	of	the	important	methods	can	be	JIT-compiled.	Use	the	-
Xcodecachetotal	option	to	increase	or	decrease	the	maximum	code	cache	size	to	a	setting	that
suits	your	application.

In	recent	versions,	the	default	maximum	size	of	the	cache	is	256MB.	For	example,	to	increase	to	384MB:

-Xcodecachetotal384m

Alternatively,	since	OpenJ9	0.40.0	(e.g.	IBM	Java	8.0.8.10),	this	may	be	specified	as	a	percentage	of	visible
RAM	using	codecachetotalMaxRAMPercentage:

-XX:codecachetotalMaxRAMPercentage=25

The	maximum	size	may	also	be	controlled	with	-Xjit:codetotal=393216	where	the	value	is	in	KB
although	note	that	this	option	is	not	public	and	must	be	combined	with	other	-Xjit	options.

The	segment	size	is	controlled	with	-Xcodecache.	A	larger	segment	size	may	decrease	fragmentation;
however,	it	increases	runtime	footprint	because	each	JIT	compilation	thread	can	work	on	its	own	segment.
The	maximum	size	is	32MB	and	the	default	is	scaled	based	on	-Xcodecachetotal.	For	example:

-Xcodecache32m

An	excessive	code	cache	size	may	have	negative	consequences.	The	longer	the	JVM	runs,	the	more	likely
the	JIT	is	to	generate	code	at	higher	optimization	levels	if	there's	space	in	the	cache.	The	higher	optimization
compilations	produce	much	bigger	compiled	method	bodies	(typically	because	of	additional	inlining).	This
can	impact	the	instruction	cache	which	may	reduce	performance.	So,	ideally,	you	want	the	JIT	to	compile
just	the	“right”	set	of	methods	at	“appropriate”	optimization	levels	and	then	stop.	There	isn’t	any	way	of
knowing	when	that	has	happened,	so	if	the	code	cache	is	set	very	big	it	will	likely	just	keep	going	into
negative	territory.	In	addition,	it	takes	a	long	time	to	compile	at	the	higher	optimization	levels,	and	that	time
spent	on	the	compiling	can	be	a	negative	itself.

In	other	words,	it	is	common	for	the	JIT	code	cache	to	fill	up	in	large	production	workloads,	and	this	may	be
optimal.	There	are	cases	when	a	larger	code	cache	size	is	better	but	ensure	you	monitor	tests	of	such	larger
values	over	a	long	period	of	time	(e.g.	until	the	larger	code	cache	fills	up).

	

Tuning	the	JIT	Data	Cache

The	JIT	data	cache	maximum	size	is	tuned	with	-Xjit:dataTotal=XKB.

https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/xcodecachetotal/index.html
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xxcodecachetotalmaxrampercentage
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/xcodecache/index.html

JIT	Verbose	Logging

Restart	with	the	option:

-Xjit:verbose={compileStart|compileEnd|compilePerformance},vlog=jitlog

This	will	produce	a	file	named	jitlog.$YYYYMMDD.$HHMMSS.$PID	in	the	current	working	directory	of	the
JVM	(e.g.	$WAS/profiles/$PROFILE/).	As	with	verbose	garbage	collection	logging,	the	word	"verbose"	is	a
misnomer	as	this	logging	is	very	lightweight	and	it	has	a	very	low	overhead	which	means	JIT	verbose
logging	is	suitable	for	production.	For	every	compilation	event,	which	occurs	relatively	rarely,	there	will	be	a
few	lines	printed.	There	are	no	command	line	options	to	control	maximum	vlog	file	size	or	rotation	but	the
file	should	be	relatively	small.	For	example,	this	was	run	in	production	on	a	very	large	customer	on	each	of
their	JVMs	with	little	overhead	and	it	produced	about	50MB	for	an	entire	day	of	running	(per	JVM).

There	is	no	option	to	roll	the	verbose	JIT	log	file.	One	will	be	produced	and	continuously	written	to	per
process	ID	until	the	JVM	is	stopped.

Example	output:

+	(AOT	load)	sun/io/ByteToCharUTF8.reset()V	@	00002AAAB4D9B5A8-00002AAAB4D9B6C4	compThread	0
#CR		000000000050C100			Compile	request	rqk=8	j9method=000000000053BF38	java/util/Hashtable.rehash()V
#CR		000000000050C100			Compile	request	rqk=8	j9method=0000000000520268	java/lang/String.hashCode()I
(warm)	Compiling	java/util/Hashtable.rehash()V		t=10	rqk=8

	

Shared	Classes	(-Xshareclasses)

Class	data	sharing	is	a	mechanism	to	reduce	start-up	and	restart	time	of	a	JVM,	and	to	reduce	memory
footprint	if	multiple	JVMs	on	the	same	node	are	running	concurrently	which	use	some	classes	that	are	the
same.	In	addition	to	class	metadata,	the	shared	class	cache	may	also	include	Ahead-Of-Time	(AOT)
compilations	of	native	class	code.

By	default	in	IBM	Java,	class	data	sharing	is	disabled.	By	default	in	Semeru	Java,	class	data	sharing	is
enabled	only	for	bootstrap	classes.	However,	by	default,	class	data	sharing	is	fully	enabled	in	WebSphere
Application	Server	traditional,	Liberty,	and	Liberty	in	containers.

Class	data	sharing	is	enabled	with	the	-Xshareclasses	option,	most	commonly	including	a	logical	name	for
the	shared	class	cache	(although	this	usually	doesn't	need	to	be	specified	for	the	above	products	that	enable	it
by	default,	unless	you	want	to	change	the	name	or	specify	other	tuning	options):

-Xshareclasses:name=myapp

Consider	creating	a	unique	shared	class	cache	for	every	category	of	JVMs	on	a	node;	for	example,
application	servers,	node	agents,	deployment	manager,	etc.

A	common	issue	is	that	the	shared	class	cache	fills	up.	This	may	be	checked	by	requesting	a	thread	dump	and
reviewing	the	SHARED	CLASSES	section.	Check	the	percent	full	line:

2SCLTEXTCPF												Cache	is	100%	full

If	the	cache	is	full	and	there	is	available	physical	memory,	the	maximum	size	of	the	shared	class	cache	may
be	specified	with	-Xscmx;	for	example:

-Xscmx400M

However,	note	that	all	JVMs	must	be	first	stopped,	the	previous	shared	class	cache	must	be	destroyed	by
running	Java	with	the	destroy	option:

java	-Xshareclasses:name=myapp,destroy

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=sharing-introduction
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-aot-compiler
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=sharing-introduction
https://www.eclipse.org/openj9/docs/xshareclasses/
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=jvm-java-virtual-machine-settings
https://openliberty.io/docs/latest/reference/command/server-run.html#_server_process_properties
https://www.ibm.com/docs/en/was-liberty/core?topic=containers-implementing-openj9-shared-class
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xshareclasses
https://www.ibm.com/support/pages/same-shared-class-cache-scc-name-dmgr-and-odrserver-causes-high-variance-java-odr-benchmark-using-java-70
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=dumps-java-dump#shared-classes
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xscmx

And	then	a	JVM	must	be	started	with	the	new	-Xscmx	size.

All	shared	class	caches	may	be	listed	with:

java	-Xshareclasses:listAllCaches

A	common	tuning	that	may	be	tested	is:

-Xscmx400M	-Xjit:dontDowngradeToCold,useHigherMethodCounts,forceAOT	-Xaot:dontDowngradeToCold,useHigherMethodCounts,forceAOT

If	-Xshareclasses:verbose	is	specified	during	a	test,	when	the	JVM	stops	gracefully,	it	will	print	how
much	AOT	or	JIT	data	was	unable	to	use	the	shared	class	cache	to	stderr;	for	example:

Unstored	AOT	bytes	due	to	the	setting	of	-Xscmaxaot	is	184230.
Unstored	JIT	bytes	due	to	the	setting	of	-Xscmaxjitdata	is	193842.

Then	consider	increasing	-Xscmaxaot	and	-Xscminjitdata	based	on	the	above	numbers	(and	potentially
increase	-Xscmx)	and	re-test.

	

-Xquickstart

"The	IBM	JIT	compiler	is	tuned	for	long-running	applications	typically	used	on	a	server.	You
can	use	the	-Xquickstart	command-line	option	to	improve	the	performance	of	short-running
applications,	especially	for	applications	in	which	processing	is	not	concentrated	into	a	few
methods.

-Xquickstart	causes	the	JIT	compiler	to	use	a	lower	optimization	level	by	default	and	to	compile
fewer	methods.	Performing	fewer	compilations	more	quickly	can	improve	application	startup
time.	When	the	AOT	compiler	is	active	(both	shared	classes	and	AOT	compilation	enabled),	-
Xquickstart	causes	all	methods	selected	for	compilation	to	be	AOT	compiled,	which	improves
the	startup	time	of	subsequent	runs.	-Xquickstart	might	degrade	performance	if	it	is	used	with
long-running	applications	that	contain	methods	using	a	large	amount	of	processing	resource.	The
implementation	of	-Xquickstart	is	subject	to	change	in	future	releases."
(http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/jitpd_short_run.html

-Xquickstart	is	generally	only	interesting	for	short-lived	benchmarks.

	

Container	Support

When	running	in	containers,	use	-XX:+UseContainerSupport	and	use	-XX:MaxRAMPercentage	and	-
XX:InitialRAMPercentage	instead	of	-Xmx	and	-Xms.

	

Reduce	Memory	Footprint

To	reduce	memory	footprint	when	idling,	use	-XX:+IdleTuningGcOnIdle	and	-
XX:+IdleTuningCompactOnIdle

	

-Xaggressive

Consider	testing	with	-Xaggressive:	"Enables	performance	optimizations	and	new	platform	exploitation	that
are	expected	to	be	the	default	in	future	releases."

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xscminaot
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xscminjitdata
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/jitpd_short_run.html

(http://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/Xaggressive.html

	

Large	Object	Area

-Xloaminimum	may	be	used	to	increase	the	size	of	the	LOA:
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/xloaminimum/index.html

	

-Xrs

The	-Xrs	flag	is	used	to	disable	the	default	signal	handler	(for	things	such	as	javacores	with	kill	-3,	etc.);
however,	using	this	option	may	reduce	performance	by	up	to	5%	due	to	the	way	the	JIT	works	and	the	way
Java	uses	signals	when	available	for	performance	boosts.

	

IBM	Semeru	Runtimes

OpenSSL

On	Linux	and	AIX,	IBM	Semeru	Runtimes	uses	more	performant	native	cryptographic	libraries,	if	available.
Ensure	OpenSSL	libraries	are	installed	on	the	system	path.	On	Windows	and	macOS,	IBM	Semer	Runtimes
bundles	OpenSSL.

On	Linux,	check	for	libcrypto	libraries	on	the	system	path	with	ldconfig	-p	|	grep	libcrypto.	Library
versions	will	be	checked	in	a	certain	order.

Use	the	-Djdk.nativeCryptoTrace	trace	to	confirm	with	tracepoints	including	"using	Native	crypto
library".

	

JITServer

On	Semeru	>=	11,	the	JITServer	on	available	platforms	offloads	JIT	compilation	CPU	and	memory	usage	to
another	process.

	

Benchmark	Ideas

When	running	benchmarks	or	comparing	performance	to	other	JVMs,	consider	testing	some	of	the	following
options	(in	addition	to	the	overall	tuning	recipe).	Note	that	some	of	these	may	not	be	generally	recommended
for	production	use	as	they	may	reduce	function	or	serviceability;	if	you	find	an	option	to	be	particularly
valuable,	open	a	support	case	to	inquire	more	about	it	and	the	potential	risks	or	costs	of	using	it.	Effects	of
options	may	not	be	mutually	exclusive.	-Xjit	options	should	be	combined	into	a	single	option.

1.	 -Xtune:throughput	(available	since	OpenJ9	0.32.0;	IBM	Java	7.0.7.15)
1.	 For	earlier	JVMs,	try	the	JVM	options	-

Xjit:dontDowngradeToCold,disableSelectiveNoServer,useHigherMethodCounts	-
Xaot:dontDowngradeToCold,disableSelectiveNoServer,useHigherMethodCounts	and	the
environment	variable	TR_DisableNoIProfilerDuringStartupPhase=1

2.	 -Xjit:dontDowngradeToCold,useHigherMethodCounts,forceAOT	-
Xaot:dontDowngradeToCold,useHigherMethodCounts,forceAOT

http://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/Xaggressive.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/xloaminimum/index.html
https://eclipse.dev/openj9/docs/openssl/
https://github.com/ibmruntimes/openj9-openjdk-jdk11/blob/v0.33.0-release/closed/src/java.base/unix/native/libjncrypto/NativeCrypto_md.c#L41-L45
https://www.eclipse.org/openj9/docs/jitserver/
https://github.com/eclipse-openj9/openj9/pull/14277

3.	 -Xaggressive
4.	 -XtlhPrefetch
5.	 -XcompilationThreads1
6.	 -Xtrace:none
7.	 -Xverify:none	(note:	this	is	only	for	testing;	on	recent	versions,	use	-

XX:+ClassRelationshipVerifier	instead)
8.	 -Xshareclasses:none
9.	 -Xtune:virtualized	(if	in	a	virtualized	environment)

10.	 -Xjit:acceptHugeMethods,scratchSpaceLimit=1048576
11.	 Environment	variable	TR_OptimizeForConstantLengthArrayCopy=1
12.	 Linux:	echo	always	|	sudo	tee	/sys/kernel/mm/transparent_hugepage/enabled
13.	 Run	with	-verbose:class	and	eliminate	any	recurring	classloading	after	startup
14.	 For	gencon,	test	with	tuning	or	disabling	concurrent	marking	or	test	with	different	GC	policies	without

gencon's	concurrent	mark	such	as	balanced	and	optthruput	(although	each	has	implications).
15.	 Test	with	large	pages	(-Xlp).	This	is	enabled	by	default	in	recent	versions,	but	may	require	operating

system	configuration	for	full	enablement.
16.	 Stop	the	JVMs,	restart	and	destroy	the	shared	class	cache	(-Xshareclasses:destroyAll),	and	restart

again	without	the	destroyAll	option
17.	 -XXsetHWPrefetch:os-default
18.	 On	older	versions	of	Java	but	newer	hardware,	use	-

Dcom.ibm.crypto.provider.doAESInHardware=true
19.	 On	AIX	and	Linux	on	Power,	and	OpenJ9	>=	0.20.0	or	IBM	Java	>=	8.0.6.20,	consider	-

XX:+GlobalLockReservation
20.	 -Xthr	options
21.	 -XX:-CompactStrings

	

External	Delays

Performance	problems	can	sometimes	be	caused	by	the	poor	responsiveness	of	external
resources	that	your	application	is	attempting	to	access.	These	external	resources	include
database,	File	I/O,	other	applications,	and	legacy	systems.	To	see	if	the	problem	is	caused	by
external	delays:

Identify	that	a	number	of	threads	are	waiting	on	external	resources	and	what	those	resources	are,
by	examining	the	javacore.txt	file	that	has	been	collected.
Profile	the	responsiveness	of	the	resource	to	see	if	response	times	are	longer	than	expected.	You
can	use	a	method	trace	to	profile	when	the	call	to	the	resource	returns,	or	you	can	profile	the
resource	being	accessed.

Java	thread	information	is	displayed	in	the	"THREADS	subcomponent"	section	of	the
Javadump.	The	stack	trace	is	provided	for	each	thread,	which	can	be	used	to	determine	whether
there	are	any	threads	waiting	on	external	resources.	A	thread	may	wait	on	an	external	resource
either	in	a	wait,	read,	or	receive	method.	In	this	example,	the	threads	are	in	the	Object.wait()
method	because	of	a	call	to	AS400ThreadedServer.receive(),	which	is	an	external	resource:

3XMTHREADINFO	"WebContainer	:	0"	(TID:0x0000000001191E00,
sys_thread_t:0x00000000010955C0,	state:CW,	native	ID:0x0000000000004454)	prio=5
4XESTACKTRACE	at	java/lang/Object.wait(Native	Method)
4XESTACKTRACE	at	java/lang/Object.wait(Object.java:199(Compiled	Code))
4XESTACKTRACE	at
com/ibm/as400/access/AS400ThreadedServer.receive(AS400ThreadedServer.java:281(Compiled
Code))

4XESTACKTRACE	at
com/ibm/as400/access/AS400ThreadedServer.sendAndReceive(AS400ThreadedServer.java:419(Compiled
Code))

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=releases-version-0200
https://www.eclipse.org/openj9/docs/xthr/

4XESTACKTRACE	at
com/ibm/as400/access/BaseDataQueueImplRemote.read(BaseDataQueueImplRemote.java:220(Compiled
Code))
4XESTACKTRACE	at
com/ibm/as400/access/KeyedDataQueue.read(KeyedDataQueue.java:413(Compiled	Code))
4XESTACKTRACE	at
com/ibm/testapp/vjops/infra/cdapj/trans/CDAPDataQRouter.readByteBuffer(Bytecode
PC:36(Compiled	Code))
4XESTACKTRACE	at
com/ibm/testapp/vjops/infra/cdapj/trans/CDAPDataQRouter.getMessage(Bytecode
PC:28(Compiled	Code))
4XESTACKTRACE	at
com/ibm/testapp/vjops/infra/cdapj/trans/DataQueueMsgTransactor.doCDAPTransaction(Bytecode
PC:175(Compiled	Code))
...
3XMTHREADINFO	"WebContainer	:	2"	(TID:0x0000000001495100,
sys_thread_t:0x000000000135D6B0,	state:CW,	native	ID:0x000000000000445C)	prio=5
4XESTACKTRACE	at	java/lang/Object.wait(Native	Method)
4XESTACKTRACE	at	java/lang/Object.wait(Object.java:199(Compiled	Code))
4XESTACKTRACE	at
com/ibm/as400/access/AS400ThreadedServer.receive(AS400ThreadedServer.java:281(Compiled
Code))
4XESTACKTRACE	at
com/ibm/as400/access/AS400ThreadedServer.sendAndReceive(AS400ThreadedServer.java:419(Compiled
Code))
4XESTACKTRACE	at
com/ibm/as400/access/BaseDataQueueImplRemote.read(BaseDataQueueImplRemote.java:220(Compiled
Code))
4XESTACKTRACE	at
com/ibm/as400/access/KeyedDataQueue.read(KeyedDataQueue.java:413(Compiled	Code))
4XESTACKTRACE	at
com/ibm/testapp/vjops/infra/cdapj/trans/CDAPDataQRouter.readByteBuffer(Bytecode
PC:36(Compiled	Code))
4XESTACKTRACE	at
com/ibm/testapp/vjops/infra/cdapj/trans/CDAPDataQRouter.getMessage(Bytecode
PC:28(Compiled	Code))
4XESTACKTRACE	at
com/ibm/testapp/vjops/infra/cdapj/trans/DataQueueMsgTransactor.doCDAPTransaction(Bytecode
PC:175(Compiled	Code))
...
3XMTHREADINFO	"WebContainer	:	3"	(TID:0x000000000167A800,
sys_thread_t:0x0000000000E57AE0,	state:B,	native	ID:0x0000000000005072)	prio=5
4XESTACKTRACE	at	java/lang/Object.wait(Native	Method)
4XESTACKTRACE	at	java/lang/Object.wait(Object.java:231(Compiled	Code))
4XESTACKTRACE	at
com/ibm/ws/util/BoundedBuffer.waitGet_(BoundedBuffer.java:188(Compiled	Code))
4XESTACKTRACE	at
com/ibm/ws/util/BoundedBuffer.take(BoundedBuffer.java:522(Compiled	Code))
4XESTACKTRACE	at	com/ibm/ws/util/ThreadPool.getTask(ThreadPool.java:816(Compiled
Code))
4XESTACKTRACE	at
com/ibm/ws/util/ThreadPool$Worker.run(ThreadPool.java:1476(Compiled	Code))

One	of	the	threads	is	in	BoundedBuffer.waitGet_(),	which	is	an	internal	resource	[and	thus	not
an	external	delay;	in	this	case	the	thread	is	waiting	for	work].	If	the	Javadump	shows	threads
that	are	suspected	to	be	blocking	on	external	resources,	the	next	step	is	to	profile	the	response
time	of	those	resources	to	see	if	they	are	taking	a	long	time.

You	can	profile	the	amount	of	time	taken	by	a	method	that	accesses	an	external	resource	by
using	method	trace.	Method	trace	can	capture	trace	data	for	the	JVM,	the	Java	Class	Libraries
(JCL),	and	Java	application	code.	You	do	not	need	to	modify	your	application	to	use	method
trace,	which	is	useful	if	the	source	code	for	the	methods	of	interest	is	not	available.	The
following	resources	describe	how	to	activate	and	control	method	trace:

...	For	example,	you	might	profile	the	"AS400ThreadedServer.receive()"	method,	using	the
following	command-line	options:

-Xtrace:maximal=mt,output=mtrace#.out,10m,10,methods=
{com/ibm/as400/access/AS400ThreadedServer.receive*}

These	options	create	up	to	ten	files	called	mtrace#.out,	where	the	#	symbol	is	replaced	with	a
sequence	number.	Each	is	up	to	10	MB	in	size.	When	all	ten	possible	files	have	been	created,	the
trace	engine	begins	to	overwrite	the	first	file	in	the	sequence.	You	can	then	format	the
mtrace#.out	files	as	described	in	the	IBM	Diagnostic	Guide	for	Java.	These	files	provide
microsecond	precision	timing	information	for	the	entry	and	exit	of	each	call	to	the
AS400ThreadedServer.receive()	method.	You	can	use	this	information	to	calculate	the	average
response	time	and	determine	if	responsiveness	is	a	problem.

	

Lock	Contention

A	monitor	has	a	"thin"	lock	that	can	be	tested	efficiently,	but	which	does	not	support	blocking,
and	--	only	when	necessary	--	an	"inflated"	lock.	The	inflated	lock	is	typically	implemented
using	OS	resources	that	can	support	blocking,	but	also	is	less	efficient	because	of	the	additional
path	length	required	when	making	the	calls	to	the	operating	system.	Because	thin	locks	don't
support	blocking,	spinning	is	often	used	such	that	threads	will	spin	for	a	short	period	of	time	in
case	the	lock	becomes	available	soon	after	they	first	try	to	acquire	it.

Analysis	of	typical	locking	patterns	gives	us	the	insight	that	spinning	helps	most	cases,	but	for
some	specific	cases	it	does	not.	Before	running	an	application,	it	is	impossible	to	know	for
which	monitors	spinning	will	not	be	useful.	It	is	possible,	however,	to	observe	monitor	usage
and	identify	at	run	time	those	monitors	for	which	you	do	not	believe	spinning	will	be	helpful.
You	can	then	reduce	or	eliminate	spinning	for	those	specific	monitors.

The	JVM	shipped	with	WebSphere	Application	Serer	V8	includes	spinning	refinements	that
capture	locking	history	and	use	this	history	to	adaptively	decide	which	monitors	should	use	spin
and	which	should	not.	This	can	free	up	additional	cycles	for	other	threads	with	work	to	do	and,
when	CPU	resources	are	fully	utilized,	improve	overall	application	performance.

http://www.ibm.com/developerworks/websphere/techjournal/1111_dawson/1111_dawson.html

Starting	in	Java	6.0.1,	various	improvements	were	made	that	are	expected	to	improve	CPU	effeciency.	If
CPU	utilization	decreases	but	application	peformance	decreases,	test	with	-
Xthr:secondarySpinForObjectMonitors.	If	application	performance	is	affected	after	the	application	has	run
for	some	time	or	after	a	period	of	heavy	load,	test	with	-Xthr:noAdaptSpin.	If	heap	usage	is	reduced	but
overall	application	performance	decreases,	test	-Xlockword:mode=all
(http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/problem_determination/optimizations_pd.html

In	a	javacore,	you	may	see	most	threads	in	Conditional	Wait	(CW)	states	which	you	would	normally	expect
to	show	as	Runnable	instead.	This	is	"by	design"	starting	in	IBM	JVM	5.	If	the	top	of	a	thread	stack	is	neither
in	Object.wait,	nor	Thread.sleep,	nor	Thread.join,	nor	a	native	method,	then	the	JVM	will	put	the	thread	into
CW	state	in	preparation	for	the	javacore	and	will	return	it	to	Runnable	after	the	javacore	is	finished.	This	is
done	by	having	all	of	the	aforementioned	threads	wait	for	exclusive	access	to	the	JVM	by	waiting	on	the
"Thread	public	flags	mutex	lock."	This	is	done	to	get	an	internally	consistent	snapshot	of	Java	stack	and
monitor	states.	(http://www-01.ibm.com/support/docview.wss?uid=swg21413580)

http://www.ibm.com/developerworks/websphere/techjournal/1111_dawson/1111_dawson.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/problem_determination/optimizations_pd.html
http://www-01.ibm.com/support/docview.wss?uid=swg21413580

Consider	upgrading	to	the	latest	version	of	Java	because	there	are	often	performance	improvements	in	lock
contention	in	the	JDK	(for	example,	http://www-01.ibm.com/support/docview.wss?uid=swg1IV67003).

	

Lock	Reservation

Synchronization	and	locking	are	an	important	part	of	any	multi-threaded	application.	Shared	resources	must
be	adequately	protected	by	monitors	to	insure	correctness,	even	if	some	resources	are	only	infrequently
shared.	If	a	resource	is	primarily	accessed	by	a	single	thread	at	any	given	time	that	thread	will	frequently	be
the	only	thread	to	acquire	the	monitor	guarding	the	resource.	In	such	cases	the	cost	of	acquiring	the	monitor
can	be	reduced	with	the	-XlockReservation	option.	With	this	option	it	is	assumed	that	the	last	thread	to
acquire	the	monitor	will	likely	also	be	the	next	thread	to	acquire	it.	The	lock	is	therefore	said	to	be	reserved
for	that	thread,	thereby	minimizing	its	cost	to	acquire	and	release	the	monitor.	This	option	is	well-suited	to
workloads	using	many	threads	and	many	shared	resources	that	are	infrequently	shared	in	practice.

	

Deadlocks

The	Javadump	file	that	should	have	been	collected	contains	a	'LOCKS'	subcomponent.	During
the	generation	of	the	javacore.txt	file,	a	deadlock	detector	is	run,	and,	if	a	deadlock	is
discovered,	it	is	detailed	in	this	section,	showing	the	threads	and	locks	involved	in	the	deadlock:

=======================		
								Deadlock	detected	!!!		

										Thread	"DeadLockThread	1"	(0x41DAB100)		
												is	waiting	for:		
														sys_mon_t:0x00039B98	infl_mon_t:			0x00039BD8:		
														java/lang/Integer@004B2290/004B229C:		
												which	is	owned	by:		
										Thread	"DeadLockThread	0"	(0x41DAAD00)		
												which	is	waiting	for:		
														sys_mon_t:0x00039B40	infl_mon_t:			0x00039B80:		
														java/lang/Integer@004B22A0/004B22AC:		
												which	is	owned	by:		
										Thread	"DeadLockThread	1"	(0x41DAB100)		

This	example	was	taken	from	a	deadlock	test	program	where	two	threads	DeadLockThread	0
and	DeadLockThread	1	unsuccessfully	attempted	to	synchronize	(Java	keyword)	on	two
java/lang/Integers.

You	can	see	in	the	example	that	DeadLockThread	1	has	locked	the	object	instance
java/lang/Integer@004B2290.	The	monitor	has	been	created	as	a	result	of	a	Java	code	fragment
looking	like	synchronize(count0).	This	monitor	has	DeadLockThread	1	waiting	to	get	a	lock	on
the	same	object	instance	(count0	from	the	code	fragment).	Below	the	highlighted	section	is
another	monitor	locked	by	DeadLockThread	0	that	has	DeadLockThread	1	waiting.

	

Large	Object	Allocation	Stack	Traces

For	a	5MB	threshold:

-Xdump:stack:events=allocation,filter=#5m

https://www.ibm.com/developerworks/mydeveloperworks/blogs/troubleshootingjava/entry/profiling_large_objects

http://www-01.ibm.com/support/docview.wss?uid=swg1IV67003
https://www.ibm.com/developerworks/mydeveloperworks/blogs/troubleshootingjava/entry/profiling_large_objects

For	a	size	range	(5	to	6	MB):	-Xdump:stack:events=allocation,filter=#5m..6m

	

Compressed	References

64-bit	processes	primarily	offer	a	much	larger	address	space,	thereby	allowing	for	larger	Java	heaps,	JIT	code
caches,	and	reducing	the	effects	of	memory	fragmentation	in	the	native	heap.	Certain	platforms	also	offer
additional	benefits	in	64-bit	mode,	such	as	more	CPU	registers.	However,	64-bit	processes	also	must	deal
with	increased	overhead.	The	overhead	comes	from	the	increased	memory	usage	and	decreased	cache
utilization.	This	overhead	is	present	with	every	single	object	allocation,	as	each	object	must	now	be	referred
to	with	a	64-bit	address	rather	than	a	32-bit	address.	To	alleviate	this,	the	-Xcompressedrefs	option	may	be
used,	and	it	is	enabled	by	default	in	certain	release	on	certain	operating	systems.	When	enabled,	the	JVM	will
use	smaller	references	to	objects	instead	of	64-bit	references	when	possible.	Object	references	are
compressed	and	decompressed	as	necessary	at	minimal	cost.

In	order	to	determine	the	compression/decompression	overhead	for	a	given	heap	size	on	a	particular
platform,	review	verbosegc:

<attribute	name="compressedRefsDisplacement"	value="0x0"	/>
<attribute	name="compressedRefsShift"	value="0x0"	/>

Values	of	0	essentially	indicate	that	no	work	has	to	be	done	in	order	convert	between	references.	Under	these
circumstances,	64-bit	JVMs	running	with	-Xcompressedrefs	can	reduce	the	overhead	of	64-bit	addressing
even	more	and	achieve	better	performance.

-Xcompressedrefs	is	enabled	by	default	in	Java	6.0.1	SR5	and	Java	7	SR4	when	the	size	of	the	heap	allows
it.	-Xnocompressedrefs	can	be	used	to	explicitly	disable	it.	On	z/OS,	before	Java	7.1,	compressed	references
was	disabled	by	default,	but	it	could	be	enabled	explicitly.

Some	benchmarks	show	a	10-20%	relative	throughput	decrease	when	disabling	compressed	references:
"Analysis	shows	that	a	64-bit	application	without	CR	yields	only	80-85%	of	32-bit	throughput	but	with	CR
yields	90-95%.	Depending	on	application	requirements,	CR	can	improve	performance	up	to	20%	over
standard	64-bit."	(ftp://public.dhe.ibm.com/software/webserver/appserv/was/WAS_V7_64-
bit_performance.pdf).	You	may	be	able	to	recover	some	of	this	drop	by	increasing	L2/L3	processor	cache
sizes.	Disabling	compressed	references	will	also	dramatically	increase	Java	heap	usage	by	up	to	70%.
Additional	background:	http://www-01.ibm.com/support/docview.wss?uid=swg21660890

Starting	with	Java	8	SR2	FP10,	the	maximum	heap	size	that	supports	compressed	references	was	increased
from	25GB	to	57GB:	http://www-
01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/preface/changes_80/whatsnew_sr2fp10.html

	

-Xgc:preferredHeapBase

With	compressed	references	enabled,	due	to	the	design	of	Java,	native	metadata	must	all	be	allocated	in	the
virtual	memory	range	0-4GB.	This	includes	all	native	objects	backing	classes,	classloaders,	threads,	and
monitors.	If	there	is	insufficient	space	for	additional	metadata	to	be	allocated,	then	a	native
OutOfMemoryError	(NOOM)	will	be	thrown.	In	general,	this	can	happen	for	two	reasons:	1)	there	is	a	class,
classloader,	thread,	or	monitor	leak,	and	2)	the	Java	heap	is	sharing	the	0-4GB	space.	The	first	cause	can	be
investigated	with	the	javacore.txt	file	that's	produced	with	the	NOOM	by	searching	for	large	numbers	of
these	objects.

The	second	cause	is	due	to	the	default	performance	optimizations	that	Java	makes.	The	location	of	the	Java
heap	will	affect	the	type	of	compression	operations	that	must	be	performed	on	each	Java	pointer	reference
(http://www-01.ibm.com/support/docview.wss?uid=swg21660890).	If	the	Java	heap	can	fit	completely
underneath	4GB,	then	no	"compression"	needs	to	occur	-	the	top	32	bits	are	simply	truncated.	Otherwise,	for

ftp://public.dhe.ibm.com/software/webserver/appserv/was/WAS_V7_64-bit_performance.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg21660890
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/preface/changes_80/whatsnew_sr2fp10.html
http://www-01.ibm.com/support/docview.wss?uid=swg21660890

different	locations	of	the	Java	heap,	different	arithmetic	operations	need	to	be	performed.	On	all	operating
systems,	there	are	cases	where	the	Java	heap	will	be	preferred	underneath	4GB	and	squeeze	the	metadata
space,	thus	causing	NOOMs.	One	option	is	to	reduce	metadata	demands,	and	the	second	option	is	to	specify
where	the	Java	heap	should	start.	Usually,	it	is	sufficient	to	start	the	Java	heap	at	the	4GB	mark:	-
Xgc:preferredHeapBase=0x100000000

	

-Xgc:classUnloadingKickoffThreshold

If	a	classloader	becomes	eligible	for	garbage	collection,	it	may	only	be	cleaned	up	during	a	full	garbage
collection,	and	the	cleanup	process	is	relatively	long	because	of	the	complexity	of	unloading	classloaders	and
classes.	If	there	is	a	large	volume	of	such	classloaders	and	classes	to	clean	up,	full	GC	pause	times	may	be
very	long.	In	addition,	classloaders	and	classes	are	backed	by	native	memory	so	this	may	drive	native
memory	issues	such	as	native	OutOfMemoryErrors	(the	"iceberg"	problem).	This	may	be	an	issue	if	the
frequency	of	full	GCs	is	low.

The	-Xgc:classUnloadingKickoffThreshold=N	increases	the	frequency	of	full	GCs	based	on	classloading
behavior.	It	instructs	the	JVM	to	start	a	concurrent	global	collection	after	N	classloaders	have	been	created	to
try	to	get	ahead	of	this	situation	and	clean	up	such	classloaders	and	classes	before	they	build	up	too	much	in
the	tenured	regions.

There	was	a	period	of	a	few	years	where	this	option	stopped	working	and	this	was	fixed	in	APAR	IJ31667.

	

Method	Tracing	(-Xtrace	methods)

Before	IBM	Java	7.1,	using	any	method	trace	may	have	a	significant	performance	overhead,	in	some	cases
up	to	40%,	and	up	to	70%	during	JVM	startup.	This	only	affects	the	-Xtrace	"method"	option	(including
simple	triggers),	not	tpnid	or	other	options.	This	overhead	has	been	mostly	removed	in	Java	7.1

Use	-Xtrace	triggers	to	gather	diagnostics	when	specified	Java	methods	are	executed.	For	example,	to	take	a
javacore	on	the	first	1500	executions:

-Xtrace:trigger=method{ilog/rules/factory/IlrReflect.*Listener,javadump,,,1500}

For	example,	here	is	a	trace	that	tracks	Java	socket	I/O	activity:

-Xtrace:none	-Xtrace:maximal=tpnid{IO.0-50},output=javatrace.log

Example	output:

17:11:02.473807000										0x12b83f00									IO.18			Entry						>IO_Connect(descriptor=353,	connect_to(AF_INET6:	port=7272	flow=0	addr=...
17:11:02.473944000										0x12b83f00									IO.20			Exit							<IO_Connect	-	return	=0
17:11:02.474078000										0x12b83f00									IO.32			Entry						>IO_Send(descriptor=353,	msg=4197800128,	len=20,	flags=0)
17:11:02.474117000										0x12b83f00									IO.34			Exit							<IO_Send	-	bytes	sent=20
17:11:02.474124000										0x12b83f00									IO.32			Entry						>IO_Send(descriptor=353,	msg=4197800128,	len=193,	flags=0)
17:11:02.474145000										0x12b83f00									IO.34			Exit							<IO_Send	-	bytes	sent=193
17:11:02.474149000										0x12b83f00									IO.32			Entry						>IO_Send(descriptor=353,	msg=4197800128,	len=1498,	flags=0)
17:11:02.474171000										0x12b83f00									IO.34			Exit							<IO_Send	-	bytes	sent=1498
17:12:20.422571000										0x13090c00									IO.21			Entry						>IO_Recv(descriptor=311,	buffer=4195936448,	len=88,	flags=0)
17:12:20.422577000										0x13090c00									IO.23			Exit							<IO_Recv	-	bytes	read=88
17:11:02.474183000										0x12b83f00									IO.43			Entry						>IO_Dup2(fd1=290,	fd2=353)
17:11:02.474206000										0x12b83f00									IO.44			Exit							<IO_Dup2	-	error=353
17:11:02.474209000										0x12b83f00									IO.47			Entry						>IO_Close(descriptor=353)
17:11:02.474210000										0x12b83f00									IO.49			Exit							<IO_Close	-	return	code=0

To	format	an	xtrace	output	file:

java	com.ibm.jvm.format.TraceFormat	xtrace.out

https://www.ibm.com/support/pages/apar/IJ31667

Trace	history	for	a	specific	thread	can	be	retrieved	through	jdmpview	or	IDDE:	!snapformat	-t	<J9VMThread
address>

	

Xverify

-Xverify:none	disables	the	verifier;	however,	this	is	not	supported,	not	recommended,	and	has	been
deprecated	in	Java	13:

-Xverify:none	Disables	the	verifier.	Note:	This	is	not	a	supported	configuration	and,	as	noted,
was	deprecated	from	Java	13.

-Xverify:none	is	sometimes	used	because	it	may	provide	a	performance	benefit.	Instead,	in	recent	versions
of	J9,	try	-XX:+ClassRelationshipVerifier	instead.

	

Javacore	Thread	Dump

Review	the	native	stack	traces	as	well	for	hot	stacks	because	that	might	point	to	some	more	fundamental
issue	in	the	operating	system	(e.g.	malloc	contention),	etc.

Per-thread	CPU	usage	in	javacore	(Java	7	SR6,	Java	626	SR7,	and	Java	7.1):	A	new	line	has	been	added	to
the	header	section	for	each	thread,	giving	CPU	usage	information	for	that	thread	(as	available	from	the	OS):

3XMTHREADINFO						"main"	J9VMThread:0x0000000022C80100,	j9thread_t:0x0000000000D4E5C0,	java/lang/Thread:0x0000000022B96250,	state:R,	prio=5
3XMJAVALTHREAD												(java/lang/Thread	getId:0x1,	isDaemon:false)
3XMTHREADINFO1												(native	thread	ID:0xE90,	native	priority:0x5,	native	policy:UNKNOWN)
3XMCPUTIME															CPU	usage	total:	0.249601600	secs,	user:	0.218401400	secs,	system:	0.031200200	secs
3XMHEAPALLOC													Heap	bytes	allocated	since	last	GC	cycle=25368	(0x6318)

Starting	with	Java	8,	CPU	usage	of	JVM-attached	threads	is	tracked	by	thread	category	(which	can	be
disabled	with	-XX:-ReduceCPUMonitorOverhead):
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/preface/changes_80/whatsnew.html
New	lines	at	the	end	of	the	THREADS	section	in	javacore	provide	the	accumulated	CPU	totals	in	each
category,	for	example:

1XMTHDSUMMARY		Threads	CPU	Usage	Summary
NULL											=========================
1XMTHDCATEGORY	All	JVM	attached	threads:	134.253955000	secs
1XMTHDCATEGORY	|
2XMTHDCATEGORY	+--System-JVM:	8.642450000	secs
2XMTHDCATEGORY	|		|
3XMTHDCATEGORY	|		+--GC:	1.216805000	secs
2XMTHDCATEGORY	|		|
3XMTHDCATEGORY	|		+--JIT:	6.224438000	secs
1XMTHDCATEGORY	|
2XMTHDCATEGORY	+--Application:	125.611505000	secs

In	the	header	lines	for	each	thread,	an	additional	field	at	the	end	of	the	3XMCPUTIME	line	indicates	the
current	CPU	usage	category	of	that	thread,	for	example:

3XMTHREADINFO			"JIT	Compilation	Thread-0	Suspended"	J9VMThread:0x000000000F01EB00,	j9thread_t:0x000000000296A7F8
	java/lang/Thread:0x00000000E0029718,	state:R,	prio=10
3XMJAVALTHREAD									(java/lang/Thread	getId:0x4,	isDaemon:true)
3XMTHREADINFO1									(native	thread	ID:0xDFC,	native	priority:0xB,	native	policy:UNKNOWN,	vmstate:CW,	vm	thread	flags:0x01000001)
3XMCPUTIME												CPU	usage	total:	5.912437900	secs,	user:	5.865637600	secs,	system:	0.046800300	secs,	current	category="JIT"

http://www-
01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/preface/changes_80/whatsnew.html

https://www.eclipse.org/openj9/docs/xverify/
https://www.eclipse.org/openj9/docs/xxclassrelationshipverifier/
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/preface/changes_80/whatsnew.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/preface/changes_80/whatsnew.html

	

Stack	Size	(-Xss)

If	using	large	stack	sizes,	consider	setting	-Xssi	as	well:	http://www-01.ibm.com/support/docview.wss?
uid=swg21659956

	

Large	Pages	(-Xlp)

Details	of	enabling	large	pages	are	on	each	operating	system	page.	To	see	whether	large	pages	are	enabled	on
a	running	JVM,	compare	pageSize	and	requestedPageSize	in	verbosegc:

<attribute	name="pageSize"	value="0x1000"	/>
<attribute	name="requestedPageSize"	value="0x20000"	/>

	

OpenJ9

Performance:	https://www.eclipse.org/openj9/oj9_performance.html

	

Environment	Variables

Use	IBM_JAVA_OPTIONS	on	IBM	Java	or	OPENJ9_JAVA_OPTIONS	for	OpenJ9	to	specify	additional
JVM	arguments	for	programs	launches	in	that	terminal/command	prompt.	For	example:

export	IBM_JAVA_OPTIONS="-Xmx1024m"
/opt/IBM/WebSphere/AppServer/bin/collector.sh

In	more	recent	versions	of	IBM	Java	and	Semeru	Java,	the	_JAVA_OPTIONS	envar	is	also	available.

	

z/OS

zIIP/zAAP	Usage

Even	if	application	processing	hands-off	to	non-zIIP-eligible	native	code	(e.g.	third	party	JNI),	recent
versions	of	z/OS	(with	APAR	OA26713)	have	a	lazy-switch	design	in	which	short	bursts	of	such	native	code
may	stay	on	the	zIIP	and	not	switch	to	GCPs.

To	check	a	snapshot	of	activity	and	see	whether	it's	zIIP-eligible,	take	a	console	dump,	load	it	in	jdmpview,
run	info	thread	all	and	check	each	thread	for	IFA	Enabled=yes	or	IFA	Enabled=yes.

	

Known	Issues	and	Regressions

IJ44106:	~10%	higher	CPU	on	versions	higher	than	8.0.7.11	with	stacks	often	in
com/ibm/crypto/provider.	Resolved	in	8.0.7.20.
IJ35969:	Higher	CPU	with	stacks	often	in	java/io/ObjectInputStream	or
sun/misc/VM.latestUserDefinedLoader.	Regression	introduced	in	8.0.6.31	through	IJ32927.
IJ35969	provides	a	workaround	available	in	8.0.7.5	using	-Dcom.ibm.disableLUDCLRefresh=true	if

http://www-01.ibm.com/support/docview.wss?uid=swg21659956
https://www.eclipse.org/openj9/oj9_performance.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.80.doc/user/specifying_options.html
https://www.eclipse.org/openj9/docs/env_var/
https://www.eclipse.org/openj9/docs/cmdline_specifying/
https://www.ibm.com/support/pages/apar/IJ44106
https://www.ibm.com/support/pages/apar/IJ35969
https://www.ibm.com/support/pages/apar/IJ32927

user	code	is	not	invoked	during	ObjectInputStream	processing.

	

HotSpot	JVM

HotSpot	JVM	Recipe

1.	 Review	the	JVM-independent	recipe	in	the	Java	chapter.
2.	 In	most	cases,	the	default	-XX:+UseG1GC	or	-XX:+UseParallelOldGC	garbage	collection	policies

(depending	on	version)	work	best,	with	the	key	tuning	being	the	maximum	heap	size	(-Xmx).
3.	 Set	-XX:+HeapDumpOnOutOfMemoryError.
4.	 Enable	verbose	garbage	collection	and	use	a	tool	such	as	the	Garbage	Collection	and	Memory

Visualizer	to	confirm	the	proportion	of	time	in	stop-the-world	garbage	collection	pauses	is	less	than
~10%	and	ideally	less	than	1%.

1.	 Check	for	long	individual	pause	times	(e.g.	greater	than	400ms	or	whatever	response	time
expectations	are)

2.	 For	G1GC,	check	for	humongous	allocations.
3.	 Review	the	latest	garbage	collection	tuning	guidance.

	

General

Use	-XX:+PrintFlagsFinal	to	see	all	the	options	the	JVM	actually	starts	with.

	

Garbage	Collection

By	default,	the	collector	uses	N	threads	for	minor	collection	where	N	=	#	of	CPU	core	threads.	Control	with	-
XX:ParallelGCThreads=N

	

Comparing	Policies

-
XX:+UseParallelOldGC

-
XX:+UseG1GC

-
XX:+UseShenandoahGC

-
XX:+UseZGC XX:+UseSerialGC

Generational	-
most	GC	pauses
are	short
(nursery/scavenge
collections)

Yes	(Two	Generations) Yes	(Two
Generations) Yes	(One	Generation) Yes	(One

Generation)
Yes	(Two
Generations)

Compaction Alayws Partial Concurrent ? No
Large	Heaps
(>10GB) Maybe Yes Yes ? ?

Soft	Real	Time	-
all	GC	pauses	are
very	short	(unless
cpu/heap
exhaustion
occurs)

No Yes Yes ? No

https://docs.oracle.com/en/java/javase/17/gctuning/hotspot-virtual-machine-garbage-collection-tuning-guide.pdf

Hard	Real	Time	-
requires	hard	real
time	OS,	all	GC
pauses	are	very
short	(unless
CPU/heap
exhaustion
occurs)

No No No ? No

Benefits
Tries	to	balance
application	throughput
with	low	pause	times

Regionalized
heap	-	good	for
very	large	heaps

Designed	for	very	large
heaps ? No	cross-thread

contention

Potential
Consequences

Not	designed	for	low
latency	requirements ? ? ? Potentially	limited

throughput	of	GC

Recommended
for

General	Use	(e.g.	Web
applications,	messaging
systems)

General	Use	on
recent	versions
of	Java

Large	heaps	(>10GB) ? ?

-
XX:+UseParallelOldGC

-
XX:+UseG1GC

-
XX:+UseShenandoahGC

-
XX:+UseZGC XX:+UseSerialGC

	

Garbage-First	Garbage	Collector	(G1GC)

The	Garbage	First	Garbage	Collector	(G1GC)	is	a	multi-region,	generational	garbage	collector.	Review	the
G1GC	Tuning	Guide.

G1GC	is	the	default	collector	starting	with	Java	9.

	

Humongous	objects

Any	object	larger	than	half	the	region	size	(-XX:G1HeapRegionSize)	is	considered	a	humongous	object,	it's
allocated	directly	into	the	old	generation,	and	it	consumes	the	entire	region	which	drives	fragmentation.

Print	humongous	requests	from	a	verbosegc:

awk	'BEGIN	{print	"Humongous	Allocation";}	/humongous/	{	for	(i=1;i<=NF;i++)	{	if	($i	==	"allocation"	&&	$(i+1)	==	"request:")	{	print	$(i+2);	}	}	}'	$FILE	>	data.csv

To	create	a	histogram	using	Python+Seaborn:

import	seaborn	as	sns
import	matplotlib
import	matplotlib.pyplot	as	plt
import	pandas	as	pd
sns.set_theme()
data	=	pd.read_csv("data.csv")
axes	=	sns.histplot(data,	x="Humongous	Allocation")
axes.ticklabel_format(style='plain')
axes.get_xaxis().set_major_formatter(matplotlib.ticker.StrMethodFormatter('{x:,.0f}'))
axes.get_yaxis().set_major_formatter(matplotlib.ticker.StrMethodFormatter('{x:,.0f}'))
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('humongous.png')

https://openjdk.java.net/jeps/363
https://www.oracle.com/technical-resources/articles/java/g1gc.html
https://www.oracle.com/technical-resources/articles/java/g1gc.html
https://openjdk.org/jeps/248
https://www.oracle.com/technical-resources/articles/java/g1gc.html

plt.show()

	

Throughput/Parallel	Scavenge	Collector	(ParallelGC)

This	is	the	default	policy	on	Java	8	and	below.

The	throughput	collector	that	performs	parallel	scavenge	copy	collection	on	the	young
generation.	This	type	of	garbage	collection	is	the	default	type	on	multi-processor	server	class
machines.

Two	types	of	tuning	for	this	collector:

Option	1:	Use	the	default	throughput/parallel	scavenge	collector	with	built-in	tuning	enabled.

Starting	with	Version	5,	the	Sun	HotSpot	JVM	provides	some	detection	of	the	operating	system
on	which	the	server	is	running,	and	the	JVM	attempts	to	set	up	an	appropriate	generational
garbage	collection	mode,	that	is	either	parallel	or	serial,	depending	on	the	presence	of	multiple
processors,	and	the	size	of	physical	memory.	It	is	expected	that	all	of	the	hardware,	on	which	the
product	runs	in	production	and	preproduction	mode,	satisfies	the	requirements	to	be	considered	a
server	class	machine.	However,	some	development	hardware	might	not	meet	this	criteria.

The	behavior	of	the	throughput	garbage	collector,	whether	tuned	automatically	or	not,	remains
the	same	and	introduces	some	significant	pauses,	that	are	proportional	to	the	size	of	the	used
heap,	into	execution	of	the	Java	application	system	as	it	tries	to	maximize	the	benefit	of
generational	garbage	collection.	However,	these	automatic	algorithms	cannot	determine	if	your
workload	well-suits	its	actions,	or	whether	the	system	requires	or	is	better	suited	to	a	different
garbage	collection	strategy.

Consult	these	tuning	parameters:
-XX:+UseParallelGC
-XX:+UseAdaptiveSizePolicy
-XX:+AggressiveHeap

Option	2:	Use	the	default	throughput/parallel	scavenge	collector,	but	tune	it	manually.

Disadvantages	of	using	the	built-in	algorithm	that	is	established	using	the	-
XX:+UseAdaptiveSizePolicy	parameter,	include	limiting	what	other	parameters,	such	as	the	-
XX:SurvivorRatio	parameter,	can	be	configured	to	do	in	combination	with	the	built-in	algorithm.
When	you	use	the	built-in	algorithm,	you	give	up	some	control	over	determining	the	resource
allocations	that	are	used	during	execution.	If	the	results	of	using	the	built-in	algorithm	are
unsatisfactory,	it	is	easier	to	manually	configure	the	JVM	resources,	than	to	try	and	tune	the
actions	of	the	algorithm.	Manually	configuring	the	JVM	resources	involves	the	use	of	half	as
many	options	as	it	takes	to	tune	the	actions	of	the	algorithm.

Consult	these	tuning	parameters:

-XX:NewRatio=2	This	is	the	default	for	a	server	that	is	configured	for	VM	mode		
-XX:MaxNewSize=	and	-XX:NewSize=		
-XX:SurvivorRatio=		
-XX:+PrintTenuringDistribution		
-XX:TargetSurvivorRatio=

See	https://www.ibm.com/docs/en/was-nd/9.0.5?topic=tj-tuning-hotspot-java-virtual-machines-solaris-hp-ux
and	https://www.ibm.com/docs/en/was-nd/9.0.5?topic=thjvmshu-sun-hotspot-jvm-tuning-parameters-solaris-
hp-ux

	

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=tj-tuning-hotspot-java-virtual-machines-solaris-hp-ux
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=thjvmshu-sun-hotspot-jvm-tuning-parameters-solaris-hp-ux

Verbose	garbage	collection	(-verbose:gc)

Verboseg	garbage	collection	is	a	low-overhead	log	to	understand	garbage	collection	times	and	behavior.	By
default,	it	is	written	to	stdout	(e.g.	native_stdout.log).

	

Java	8

For	Java	8,	use	the	following	Java	options:

-verbose:gc	-XX:+PrintGCDateStamps	-XX:+PrintGCDetails

To	add	safepoint	times:

-verbose:gc	-XX:+PrintGCDateStamps	-XX:+PrintGCDetails	-XX:+PrintGCApplicationConcurrentTime	-XX:+PrintGCApplicationStoppedTime

To	send	output	to	a	set	of	rolling	files	instead	of	stderr:

-verbose:gc	-XX:+PrintGCDateStamps	-XX:+PrintGCDetails	-XX:+PrintGCApplicationConcurrentTime	-XX:+PrintGCApplicationStoppedTime	-Xloggc:verbosegc.log	-XX:+UseGCLogFileRotation	-XX:NumberOfGCLogFiles=10	-XX:GCLogFileSize=100M

For	WAS	traditional,	use	SERVER_LOG_ROOT	to	write	to	the	same	directory	as	other	files:

-verbose:gc	-XX:+PrintGCDateStamps	-XX:+PrintGCDetails	-XX:+PrintGCApplicationConcurrentTime	-XX:+PrintGCApplicationStoppedTime	-Xloggc:${SERVER_LOG_ROOT}/verbosegc.log	-XX:+UseGCLogFileRotation	-XX:NumberOfGCLogFiles=10	-XX:GCLogFileSize=100M

-XX:+PrintHeapAtGC	may	be	used	for	additional	information	although	it	has	some	overhead.

	

Java	>=	9

For	Java	>9,	use	the	recommended	-Xlog:gc	option	instead.	Note	that	-XX:+PrintGCDetails	is	no	longer
required	(see	the	mapping	for	other	options):

-Xlog:gc:stdout:time,level,tags

To	add	safepoints:

-Xlog:safepoint=info,gc:stdout:time,level,tags

To	send	output	to	a	set	of	rolling	files	instead	of	stderr:

-Xlog:safepoint=info,gc:file=verbosegc.log:time,level,tags:filecount=10,filesize=100M

	

CompressedOops

On	64-bit,	if	using	-Xmx	less	than	or	equal	to	32GB,	then	-XX:+UseCompressedOops	is	enabled	by	default:
"Compressed	oops	is	supported	and	enabled	by	default	in	Java	SE	6u23	and	later"
(http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html)

Oops	stands	for	ordinary	object	pointer.

Recent	versions	of	HotSpot	supports	-Xmx	much	larger	than	32GB	with	CompressedOops	using	-
XX:ObjectAlignmentInBytes:	https://bugs.openjdk.java.net/browse/JDK-8040176

	

Detailed	Garbage	Collection	Tuning

https://openjdk.java.net/jeps/158
https://docs.oracle.com/javase/9/tools/java.htm#GUID-BE93ABDC-999C-4CB5-A88B-1994AAAC74D5__CONVERTGCLOGGINGFLAGSTOXLOG-A5046BD1
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html
https://bugs.openjdk.java.net/browse/JDK-8040176

-XX:+AggressiveOpts:

Turns	on	point	performance	optimizations	that	are	expected	to	be	on	by	default	in	upcoming
releases.	The	changes	grouped	by	this	flag	are	minor	changes	to	JVM	runtime	compiled	code
and	not	distinct	performance	features	(such	as	BiasedLocking	and	ParallelOldGC).	This	is	a
good	flag	to	try	the	JVM	engineering	team's	latest	performance	tweaks	for	upcoming	releases.
Note:	this	option	is	experimental!	The	specific	optimizations	enabled	by	this	option	can	change
from	release	to	release	and	even	build	to	build.	You	should	reevaluate	the	effects	of	this	option
with	prior	to	deploying	a	new	release	of	Java.

http://www.oracle.com/technetwork/java/tuning-139912.html#section4.2.4

Consider	-XX:+UseTLAB	which	"uses	thread-local	object	allocation	blocks.	This	improves	concurrency	by
reducing	contention	on	the	shared	heap	lock."
(http://docs.oracle.com/cd/E13209_01/wlcp/wlss30/configwlss/jvmgc.html)

The	-XX:+AlwaysPreTouch	option	may	be	used	to	force	the	entire	Java	heap	into	RAM	on	startup.

	

Permanent	Region	(permgen)

HotSpot	used	to	have	a	dedicated	region	of	the	address	space	called	the	permanent	generation	to	store	things
such	as	class	meta-data,	interned	Strings,	and	class	static	variables.	This	region	needed	to	be	manually	sized.
If	the	region	was	exhausted,	the	JVM	would	throw	an	OutOfMemoryError	with	the	message	"PermGen
space."	The	PermGen	space	has	been	removed	in	Java	8	(http://openjdk.java.net/projects/jdk8/milestones)
and	replaced	with	the	Metaspace	(unbounded	by	default	but	may	be	capped	with	-XX:MaxMetaspaceSize).

Hotspot's	representation	of	Java	classes	(referred	to	here	as	class	meta-data)	is	currently	stored	in
a	portion	of	the	Java	heap	referred	to	as	the	permanent	generation.	In	addition,	interned	Strings
and	class	static	variables	are	stored	in	the	permanent	generation.	The	permanent	generation	is
managed	by	Hotspot	and	must	have	enough	room	for	all	the	class	meta-data,	interned	Strings
and	class	statics	used	by	the	Java	application.	Class	metadata	and	statics	are	allocated	in	the
permanent	generation	when	a	class	is	loaded	and	are	garbage	collected	from	the	permanent
generation	when	the	class	is	unloaded.	Interned	Strings	are	also	garbage	collected	when	the
permanent	generation	is	GC'ed.

The	proposed	implementation	will	allocate	class	meta-data	in	native	memory	and	move	interned
Strings	and	class	statics	to	the	Java	heap.	Hotspot	will	explicitly	allocate	and	free	the	native
memory	for	the	class	meta-data.	Allocation	of	new	class	meta-data	would	be	limited	by	the
amount	of	available	native	memory	rather	than	fixed	by	the	value	of	-XX:MaxPermSize,
whether	the	default	or	specified	on	the	command	line.

http://openjdk.java.net/jeps/122

"The	-XX:MaxPermSize=	and	-Xmx	(Maximum	Java	Heap	size)	parameters	respectively	configure	the
maximum	size	of	the	permanent	region,	where	the	class	code	and	related	data	are	logically	presented	as	part
of	the	old	generation	region	but	are	kept	physically	separate,	and	the	maximum	size	of	the	main	heap	where
Java	objects	and	their	data	are	stored	either	in	the	young	or	old	generation	regions.	Together	the	permanent
region	and	the	main	heap	comprise	the	total	Java	heap.	An	allocation	failure	in	either	of	these	regions	either
represents	the	inability	to	accommodate	either	all	the	application	code	or	all	the	application	data,	both	of
which	are	terminal	conditions,	that	can	exhaust	available	storage,	and	cause	an	OutOfMemory	error."
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_hotspot_jvm.html
https://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-VM/html/memleaks.html)

In	addition,	note	that	interned	Strings	moved	to	the	Java	heap	starting	in	Java	7:
https://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html#jdk7changes

	

http://www.oracle.com/technetwork/java/tuning-139912.html#section4.2.4
http://docs.oracle.com/cd/E13209_01/wlcp/wlss30/configwlss/jvmgc.html
http://openjdk.java.net/projects/jdk8/milestones
http://openjdk.java.net/jeps/122
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_hotspot_jvm.html
https://docs.oracle.com/javase/7/docs/webnotes/tsg/TSG-VM/html/memleaks.html
https://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html#jdk7changes

Reference	Processing

PhantomReferences	are	handled	differently	than	finalizers.	Queued	PhantomReferences	are	processed	on	the
back	of	every	GC	cycle.

By	default,	there	is	a	single	"Reference	Handler"	thread	which	processes	the	ReferenceQueue.	Use	-
XX:+ParallelRefProcEnabled	to	enable	multiple	threads	for	parallel	reference	queue	processing.	This	may	be
useful	for	things	such	as	high	DirectByteBuffer	allocation	and	free	rates.

DirectByteBuffers	may	be	monitored	with	the	BufferPoolMXBean:
http://docs.oracle.com/javase/7/docs/api/java/lang/management/BufferPoolMXBean.html

	

Safepoints

Safepoints	are	the	internal	mechanism	by	which	the	JVM	tries	to	pause	application	threads	for	operations
such	as	stop-the-world	garbage	collections.

Additional	information	may	be	printed	with:

-XX:+PrintSafepointStatistics

	

PreserveFramePointer

If	using	JDK	>=	8u60,	use	-XX:+PreserveFramePointer	to	allow	tools	such	as	Linux	perf	to	perform	higher
quality	stack	walking.	Details:

https://docs.oracle.com/javase/9/tools/java.htm
http://www.brendangregg.com/Slides/JavaOne2015_MixedModeFlameGraphs.pdf

	

DTrace	Integration

Newer	versions	of	Java	have	DTrace	integration,	but	one	large	limitation	is	Bug	6617153,	which	causes
DTrace	to	fail	to	evaluate	Java	thread	stack	names,	making	jstack	nearly	useless.

	

Code	Cache

The	default	JIT	compiled	code	cache	size	is	32MB-48MB.	If	there	is	available	RAM,	consider	increasing
this	code	cache	size	to	improve	JIT	performance.	For	example:

-XX:ReservedCodeCacheSize=1536m

Increasing	the	maximum	code	cache	size	may	have	negative	consequences.	The	longer	the	JIT	keeps
compiling,	the	more	likely	it	is	to	generate	code	at	higher	optimisation	levels.	It	takes	a	long	time	to	compile
at	the	higher	optimization	levels,	and	that	time	spent	on	the	compiling	can	be	a	negative	itself.	More	broadly,
the	higher	optimization	compilations	produce	much	bigger	compiled	method	bodies.	Too	many	can	start	to
impact	the	instruction	cache.	So,	ideally,	you	want	the	JIT	to	just	compile	the	"right"	set	of	methods	at
"appropriate"	optimization	levels	and	then	stop.	There	isn't	any	way	of	knowing	when	that	has	happened,	so
if	the	code	cache	is	set	very	big	it	may	keep	going	into	negative	territory	if	it	runs	for	long	enough.	The	best
way	to	find	the	right	value	is	to	run	experiments	with	different	values	and	run	for	long	periods	of	time.

http://docs.oracle.com/javase/7/docs/api/java/lang/management/BufferPoolMXBean.html
https://docs.oracle.com/javase/9/tools/java.htm
http://www.brendangregg.com/Slides/JavaOne2015_MixedModeFlameGraphs.pdf
https://bugs.openjdk.java.net/browse/JDK-6617153
https://docs.oracle.com/javase/8/embedded/develop-apps-platforms/codecache.htm

To	exclude	certain	methods	from	JIT	code	cache	compilation:

-XX:CompileCommand=exclude,com/example/Exapmle.method

To	log	code	compilations:	-XX:+LogCompilation

	

Code	Cache	Flushing

We	have	observed	cases	where	code	cache	flushing	when	the	code	cache	is	full	causes	application	thread
pauses	(e.g.	DTrace	stack	samples	in
libjvm.so\1cJCodeCachebAfind_and_remove_saved_code6FpnNmethodOopDesc__pnHnmethod+0x50)`.
You	may	test	if	this	is	the	case	or	not	by	disable	code	cache	flushing,	although	of	course	this	means	that	code
can	no	longer	be	JITted	after	the	code	cache	limit	is	reached:

-XX:-UseCodeCacheFlushing

For	performance	reasons,	consider	increasing	the	code	cache	size	as	well	when	doing	this	(tuned	to	available
RAM):

-XX:-UseCodeCacheFlushing	-XX:ReservedCodeCacheSize=1536m

If	the	code	cache	still	fills	up	(e.g.	lots	of	reflection,	etc.)	then	you	will	receive	this	message	in	stderr:

CodeCache	is	full.	Compiler	has	been	disabled.

Relevant	code	cache	changes:

https://bugs.openjdk.java.net/browse/JDK-8006952

	

Environment	Variables

Use	JAVA_TOOL_OPTIONS	to	specify	additional	JVM	arguments	for	programs	launches	in	that
terminal/command	prompt.	For	example:

export	JAVA_TOOL_OPTIONS="-Xmx1024m"
/opt/IBM/WebSphere/AppServer/bin/collector.sh

	

async-profiler

async-profiler	is	a	Safepoint-aware	native	sampling	profiler.

	

Concurrent	low-pause	mark-sweep	collector	(CMS)

The	CMS	collector	has	been	removed	since	Java	14:	https://openjdk.java.net/jeps/363

The	stop-the-world	phases	of	the	CMS	garbage	collector	include	CMS-remark
(https://blogs.oracle.com/poonam/entry/understanding_cms_gc_logs),	and	CMS-initial-mark
(https://blogs.oracle.com/jonthecollector/entry/the_unspoken_cms_and_printgcdetails).

CMS	has	poor	contraction	capabilities,	partly	because	it	can	only	compact	on	the	back	of	a	failed	CMS,	full
collection.	If	fragmentation	is	high,	this	can	cause	CMS	to	fail	more	often	and	cause	many	full	GCs.

https://bugs.openjdk.java.net/browse/JDK-8006952
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/envvars002.html
https://github.com/jvm-profiling-tools/async-profiler
https://openjdk.java.net/jeps/363
https://blogs.oracle.com/poonam/entry/understanding_cms_gc_logs
https://blogs.oracle.com/jonthecollector/entry/the_unspoken_cms_and_printgcdetails

"CMS	(Concurrent	Mark	Sweep)	garbage	collection	does	not	do	compaction."
(http://www.oracle.com/technetwork/java/javase/tech/g1-intro-jsp-135488.html)

	

Java	Class	Libraries	(JCLs)
The	whole	Java	landscape	is	quite	confusing	and	is	summarized	on	the	Java	page.

	

Sub-chapters

OpenJDK	JCL	and	Tools
IBM	JCL	and	Tools

	

OpenJDK	JCL	and	Tools

java.util.logging	(JUL)

	

Log	to	System.err

1.	 Create	logging.properties	and	set	all	the	trace	levels	at	the	end:

handlers=java.util.logging.ConsoleHandler	
java.util.logging.ConsoleHandler.level=ALL
java.util.logging.SimpleFormatter.format=[%1$tc]	%4$s:	%5$s	%6$s%n

#	Trace:
#.level=INFO
.level=ALL
#com.example.MyClass.level=ALL

2.	 Set	-Djava.util.logging.config.file=/$PATH/logging.properties

	

Log	to	a	file

1.	 Create	logging.properties	and	set	all	the	trace	levels	at	the	end:

handlers=java.util.logging.FileHandler
java.util.logging.FileHandler.pattern=/$PATH/jul.log			
java.util.logging.FileHandler.limit=100000
java.util.logging.FileHandler.count=2
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter
java.util.logging.SimpleFormatter.format=[%1$tc]	%4$s:	%5$s	%6$s%n

#	Trace:
.level=INFO
com.example.MyClass.level=ALL

2.	 Set	-Djava.util.logging.config.file=/$PATH/logging.properties

	

http://www.oracle.com/technetwork/java/javase/tech/g1-intro-jsp-135488.html

SimpleFormatter	patterns

Available	fields:

1.	 date
2.	 source:	caller,	if	available;	otherwise,	the	logger's	name.
3.	 logger
4.	 level
5.	 message
6.	 thrown:	throwable	if	any

The	format	is	specified	with	format	string	syntax:

[%1$tc]	%4$s:	%5$s%n

[Fri	Sep	25	12:13:14	PDT	2020]	SEVERE:	message

%1$tY-%1$tm-%1$td	%1$tH:%1$tM:%1$tS.%1$tL	%4$-6s	%3$s	%5$s%6$s%n

2020-01-01	01:02:03.456	SEVERE	com.example.MyClass	message

Java	>=	7	supports	specifying	SimpleFormatter.format	with	-
Djava.util.logging.SimpleFormatter.format=$FORMAT

	

Reflection	Inflation

For	a	discussion	of	reflection	and	inflation,	see	the	general	Java	chapter.	On	the	HotSpot	JVM,	the	option	-
Dsun.reflect.inflationThreshold=0	creates	an	inflated	Java	bytecode	accessor	which	is	used	on	the	second	and
every	subsequent	method	invocation.

	

JSSE	Debug

JSSE	supports	debug	output	to	System.out	with	-Djavax.net.debug	(example	output);	most	commonly,	-
Djavax.net.debug=all

All	the	options	are	described	in	sun/security/ssl/Debug.java.

The	value	-Djavax.net.debug=	is	equivalent	to	disabling	debug.

	

HTTP(S)	Client	(HttpURLConnection)

The	OpenJDK	JCL	includes	an	HTTP	client	implemented	using	the	abstract	classes
java/net/HttpURLConnection	and	javax/net/ssl/HttpsURLConnection	and	concrete	classes
sun/net/www/protocol/http/HttpURLConnection	and	sun/net/www/protocol/https/HttpsURLConnectionImpl.
A	client	is	created	using	the	java/net/URL.openConnection	method.

	

Timeouts

Set	default	connect	timeout:	-Dsun.net.client.defaultConnectTimeout=$MILLISECONDS
Set	default	read	timeout:	-Dsun.net.client.defaultReadTimeout=$MILLISECONDS

https://docs.oracle.com/javase/8/docs/api/java/util/logging/SimpleFormatter.html#format-java.util.logging.LogRecord-
https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html#syntax
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#Debug
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/ReadDebug.html
https://github.com/openjdk/jdk/blob/jdk8-b120/jdk/src/share/classes/sun/security/ssl/Debug.java
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/sun/net/www/protocol/http/HttpURLConnection.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/sun/net/www/protocol/https/HttpsURLConnectionImpl.java
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html#openConnection--
https://docs.oracle.com/javase/8/docs/technotes/guides/net/properties.html
https://docs.oracle.com/javase/8/docs/api/java/net/URLConnection.html#setConnectTimeout-int-
https://docs.oracle.com/javase/8/docs/technotes/guides/net/properties.html
https://docs.oracle.com/javase/8/docs/api/java/net/URLConnection.html#setReadTimeout-int-

	

Keep-Alive

For	HTTP/1.1	connections,	the	specification	(RFC	2616)	states	that	if	the	server	does	not	respond	with	a
Connection:	close	response	header,	then	the	connection	should	be	treated	as	a	keep-alive	connection.	The
maximum	duration	may	be	specified	wih	the	Keep-Alive:	timeout=X	(seconds)	response	header.

However,	OpenJDK	also	requires	that	the	server	responds	with	a	Connection:	keep-alive	header.	It
appears	this	logic	is	not	required	by	the	specification	but	it	seems	to	be	there	for	legacy	reasons	and	is
unlikely	to	be	changed,	particularly	with	the	replacement	HTTP	client	available	since	Java	11.

Therefore,	if	the	server	responds	with	Connection:	keep-alive,	then	the	connection	is	cached	into	an	in-
memory	KeepAliveCache.	This	may	be	disabled	with	-Dhttp.keepAlive=false	although	this	may	impact
performance	(the	main	purpose	of	keep-alive	connections	is	to	avoid	the	TCP	and	TLS	handshakes,	which
are	relatively	expensive).	The	maximum	number	of	cached	keep-alive	connections	per	destination	host	is
controlled	with	-Dhttp.maxConnections=X	(default	5).

If	the	server	responds	with	a	Keep-Alive:	timeout=X	response	header,	then	the	KeepAliveCache	will	purge
and	close	the	connection	after	approximately	X	seconds	of	idleness.	If	the	server	does	not	respond	with	such
a	header,	the	default	is	5	seconds.	The	timeout	mechanism	is	implemented	on	a	thread	with	the	name	Keep-
Alive-Timer.	The	thread	ends	gracefully	if	there	are	no	connections	in	the	pool,	and	the	thread	is	re-created
when	needed.

In	summary,	if	the	HttpURLConnection	client	is	used,	and	the	protocol	is	HTTP/1.1,	and	the	server	responds
with	a	Connection:	keep-alive	header,	and	the	server	does	not	respond	with	a	Keep-Alive:	timeout=X
header,	then	the	client	JDK	will	time-out	the	connection	from	its	KeepAliveCache	after	5	seconds	of
inactivity.	In	newer	versions	of	Java	(e.g.	8u361,	IBM	Java	8.0.8.0,	etc.),	this	5	second	default	is	tunable	with
-Dhttp.keepAlive.time.server.

In	general,	for	LAN	connections	that	are	expected	to	be	persistent	between	a	JCL	HTTP(S)	client	and
backend,	set	-Dhttp.maxConnections	less	than	or	equal	to	the	maximum	number	of	concurrent	connections
supported	by	the	backend	divided	by	the	number	of	clients,	ensure	the	backend	is	sending	the	Connection:
keep-alive	header,	configure	the	Keep	Alive	Timeout	relatively	high	(this	may	be	limited	by	resource
constraints	or	intermediate	network	device	timeouts),	and,	if	possible,	configure	the	backend	to	send	a	Keep-
Alive:	timeout=X	value	that	is	slightly	less	than	the	timeout	that	it	uses	itself	to	time	out	connections	(to
avoid	a	race	condition	wherein	the	client	re-uses	a	pooled	connection	which	has	already	timed	out	on	the
backend).

For	examples:

If	WebSphere	Liberty	is	acting	as	a	server:

<httpEndpoint	id="defaultHttpEndpoint"
														httpPort="9081"
														httpsPort="9444"
														headersRef="addResponseHeaders"	/>

<headers	id="addResponseHeaders">
		<add>Connection:	keep-alive</add>
		<add>Keep-Alive:	timeout=30</add>
</headers>

<httpOptions	persistTimeout="575h"	/>

If	IHS	is	acting	as	a	server,	starting	with	IHS	9	or	8.5.5.19,	when	setting	KeepAliveTimeout	to	a
millisecond	value,	for	example,	KeepAliveTimeout	30999ms,	then	IHS	will	use	this	for	its	timeout	but
it	will	send	back	a	Keep-Alive	timeout	response	header	rounded	down	to	30	seconds	(in	this	example).

	

https://tools.ietf.org/html/rfc2616#section-8.1
https://github.com/openjdk/jdk/blob/27bbe7be2c43a22e8cf55aa403d8018346ae3e37/src/java.base/share/classes/sun/net/www/http/HttpClient.java#L856
https://bugs.openjdk.org/browse/JDK-8278067?focusedCommentId=14462204&page=com.atlassian.jira.plugin.system.issuetabpanels%253Acomment-tabpanel#comment-14462204
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/sun/net/www/http/HttpClient.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/sun/net/www/http/KeepAliveCache.java
https://docs.oracle.com/javase/8/docs/api/java/net/doc-files/net-properties.html
https://docs.oracle.com/javase/8/docs/api/java/net/doc-files/net-properties.html
https://bugs.openjdk.org/browse/JDK-8278067
https://docs.oracle.com/javase/8/docs/api/java/net/doc-files/net-properties.html

Expect:	100-Continue

This	client	has	a	limitation	that	if	the	request	contains	the	header	"Expect:	100-Continue",	this	will	only
automatically	be	processed	by	the	JDK	if	streaming	mode	is	enabled.	Streaming	mode	is	not	enabled	by
default	and	it	may	be	enabled	by	calling	HttpURLConnection	setChunkedStreamingMode	or
setFixedLengthStreamingMode.

	

HTTP(S)	Client	(HTTP	Client)

Java	11	introduced	the	Java	HTTP	Client.	This	is	a	more	modern	alternative	to	HttpURLConnection,
including	support	for	HTTP/2	and	it	does	not	have	limitations	such	as	the	Expect	100-Continue	non-
streaming	mode	limitation.

Starting	with	Java	20,	the	default	idle	connection	timeout	was	reduced	from	1200	to	30	seconds	and
jdk.httpclient.keepalive.timeout	was	enhanced	to	also	apply	to	HTTP/2	connections.

	

Lightweight	Directory	Access	Protocol	(LDAP)	Client

-Dcom.sun.jndi.ldap.connect.timeout=X:	connection	timeout	in	milliseconds
-Dcom.sun.jndi.ldap.read.timeout=X:	read	timeout	in	milliseconds	for	LDAP	operations

https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/jndi-ldap.html

	

ServerCommunicatorAdmin

The	following	warning	message:

The	server	has	decided	to	close	this	client	connection.

is	emitted	by	a	subclass	of	com/sun/jmx/remote/internal/ServerCommunicatorAdmin.

This	is	within	JMX	because	of	a	terminate	call	(probably	from	the	timeout	thread).	Example	output:

[5/15/20	19:20:49:708	EEST]	0000022b	misc										W	ServerCommunicatorAdmin	reqIncoming	The	server	has	decided	to	close	this	client	connection.

On	J9-based	JVMs,	you	may	investigate	who	is	creating	and	destroying	these	objects	with:

-Xtrace:print=mt,methods={com/sun/jmx/remote/internal/ServerCommunicatorAdmin.<init>*},trigger=method{com/sun/jmx/remote/internal/ServerCommunicatorAdmin.<init>*,jstacktrace}

	

String.substring	Performance

HotSpot	V7	update	6	introduced	a	significant	change	to	the	implementation	of	java/lang/String,	where	calls
to	substring	no	longer	return	a	"view"	into	the	String,	but	instead	return	a	copy	(of	the	substring	portion):

List	of	Java	SE	7	Release	Notes:	http://www.oracle.com/technetwork/java/javase/7u-relnotes-
515228.html
List	of	bugs	fixed	in	7u6:	http://www.oracle.com/technetwork/java/javase/2col/7u6-bugfixes-
1733378.html
Change	request	discussing	the	changes:	http://bugs.sun.com/bugdatabase/view_bug.do?
bug_id=6924259

https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.net.http/java/net/http/HttpClient.html
https://openjdk.java.net/groups/net/httpclient/intro.html
https://bugs.openjdk.org/browse/JDK-8297564
https://docs.oracle.com/en/java/javase/17/core/java-networking.html#GUID-E6C82625-7C02-4AB3-B15D-0DF8A249CD73
https://bugs.openjdk.org/browse/JDK-8295649
https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/jndi-ldap.html
https://github.com/openjdk/jdk/blob/jdk8-b120/jdk/src/share/classes/com/sun/jmx/remote/internal/ServerCommunicatorAdmin.java#L70
http://www.oracle.com/technetwork/java/javase/7u-relnotes-515228.html
http://www.oracle.com/technetwork/java/javase/2col/7u6-bugfixes-1733378.html
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6924259

Developer	mailing	list	discussing	the	changes:	 http://mail.openjdk.java.net/pipermail/core-libs-
dev/2013-February/014609.html
Java	Lobby	article	on	the	subject:	https://dzone.com/articles/changes-stringsubstring-java-7
Java	Performance	Tuning	article	on	the	subject:	http://java-performance.info/changes-to-string-java-1-
7-0_06/

If	profiling	shows	significant	activity	in	substring	or	in	array	copy,	then	this	may	be	why.	In	general,	the
change	is	believed	to	be	positive	because	with	the	old	behavior,	the	original,	potentially	very	large,	String
cannot	be	garbage	collected	unitl	all	substrings	are	garbage	collected.	However,	if	applications	use	substring
heavily,	then	they	may	need	to	be	re-coded.

	

DNS	Cache

The	JVM	has	a	DNS	cache	called	the	InetAddress	cache.	The	cache	timeout	is	first	read	from
networkaddress.cache.ttl	in	the	java.security	file.	Next,	it	is	read	from	the	system	property	-
Dsun.net.inetaddr.ttl	although	this	is	deprecated.	If	neither	property	is	set,	and	a	SecurityManager	is
enabled	(Java	2	Security	on	WebSphere),	then	successful	lookups	are	cached	forever;	otherwise,	successful
lookups	are	cached	for	30	seconds.	Unsuccessful	lookups	are	cached	for	10	seconds
(networkaddress.cache.negative.ttl	or	-Dsun.net.inetaddr.negative.ttl).

The	result	of	evaluating	localhost	is	not	cached	by	default.

If	the	operating	system	supports	both	IPv4	and	IPv6,	then	lookups	will	first	be	done	over	IPv6.	If	IPv6	is	not
the	primary	source,	to	instead	do	IPv4	first	and	avoid	potential	IPv6	timeouts,	use	-
Djava.net.preferIPv4Stack=true.

	

IBM	JCL	and	Tools

Reflection	Inflation

For	a	discussion	of	reflection	and	inflation,	see	the	general	Java	chapter.	On	the	IBM	JVM,	the	option	-
Dsun.reflect.inflationThreshold=0	disables	inflation	completely.

The	sun.reflect.inflationThreshold	property	tells	the	JVM	what	number	of	times	to	use	the	JNI
accessor.	If	it	is	set	to	0,	then	the	JNI	accessors	are	always	used.	Since	the	bytecode	accessors
use	more	native	memory	than	the	JNI	ones,	if	we	are	seeing	a	lot	of	Java	reflection,	we	will	want
to	use	the	JNI	accessors.	To	do	this,	we	just	need	to	set	the	inflationThreshold	property	to	zero.
(http://www-01.ibm.com/support/docview.wss?uid=swg21566549)

On	IBM	Java,	the	default	-Dsun.reflect.inflationThreshold=15	means	that	the	JVM	will	use	the	JNI	accessor
for	the	first	15	accesses,	then	after	that	it	will	change	to	use	the	Java	bytecode	accessor.	Using	bytecode
accessor	currently	costs	3-4x	more	than	an	invocation	via	JNI	accessor	for	the	first	invocation,	but
subsequent	invocations	have	been	benchmarked	to	be	over	20x	faster	than	JNI	accessor.

	

Advanced	Encryption	Standard	New	Instructions	(AESNI)

AESNI	is	a	set	of	CPU	instructions	to	improve	the	speed	of	encryption	and	decryption	using	AES	ciphers.	It
is	available	on	recent	Intel	and	AMD	CPUs	(https://en.wikipedia.org/wiki/AES_instruction_set)	and	POWER
>=	8	CPUs	(http://www.redbooks.ibm.com/abstracts/sg248171.html).	If	using	IBM	Java	>=	6	and	the	IBM
JCE	security	provider,	then	AESNI,	if	available,	can	be	exploited	with	-
Dcom.ibm.crypto.provider.doAESInHardware=true	(http://www-

http://mail.openjdk.java.net/pipermail/core-libs-dev/2013-February/014609.html
https://dzone.com/articles/changes-stringsubstring-java-7
http://java-performance.info/changes-to-string-java-1-7-0_06/
https://www.ibm.com/support/pages/node/340049
https://docs.oracle.com/javase/8/docs/technotes/guides/net/properties.html
http://www-01.ibm.com/support/docview.wss?uid=swg21566549
https://en.wikipedia.org/wiki/AES_instruction_set
http://www.redbooks.ibm.com/abstracts/sg248171.html

01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.security.component.70.doc/security-
component/JceDocs/aesni.html?lang=en).

In	some	benchmarks,	SSL/TLS	overhead	was	reduced	by	up	to	35%.

Use	-Dcom.ibm.crypto.provider.AESNITrace=true	to	check	if	the	processor	supports	the	AES-IN	instruction
set:

	

Object	Request	Broker	(ORB)	and	Remote	Method	Invocation	(RMI)

Important	links:

General	information	on	ORB
TroubleShooting:	Object	Request	Broker	(ORB)	problems
MustGather:	Object	Request	Broker	(ORB)
Additional	troubleshooting	guide
Object	Request	Broker	tuning	guidelines

Review	key	ORB	properties	discussed	in	WAS	documentation	and	Java	documentation	with	the	following
highlights:

-Dcom.ibm.CORBA.ConnectTimeout=SECONDS	:	New	socket	connect	timeout.
-Dcom.ibm.CORBA.MaxOpenConnections=X	:	Maximum	number	of	in-use	connections	that	are	to	be
kept	in	the	connection	cache	table	at	any	one	time.
-Dcom.ibm.CORBA.RequestTimeout=SECONDS	:	Total	number	of	seconds	to	wait	before	timing	out	on	a
Request	message.
-Dcom.ibm.CORBA.SocketWriteTimeout=SECONDS	:	More	granular	timeout	for	every	socket	write.
The	value	will	depend	on	whether	fragmentation	is	enabled	or	not.	If	it's	enabled,	then	it	should
generally	be	set	relatively	low	(e.g.	5	seconds)	because	each	write	is	very	small	(see	FragmentSize).	If
it's	disabled,	then	the	write	will	be	as	big	as	the	largest	message,	so	set	the	timeout	based	on	that	and
your	expected	network	performance.	When	setting	this	value,	set	on	both	client	and	server.
-Dcom.ibm.CORBA.ConnectionMultiplicity=N	:	See	the	discussion	on	ConnectionMultiplicity.
Recent	versions	of	Java	automatically	tune	this	value	at	runtime.
-Dcom.ibm.websphere.orb.threadPoolTimeout=MILLISECONDS	:	Avoid	potential	deadlocks	or	hangs
on	reader	threads.	This	is	often	set	to	a	value	of	10000.
-Dcom.ibm.CORBA.FragmentSize=N	:	See	the	discussion	on	FragmentSize.

Default	ORB	configuration	is	specified	in	${java}/jre/lib/orb.properties.	For	WAS,	it's	generally
recommended	instead	to	change	these	options	(where	available)	under	Administrative	Console	}	Websphere
application	servers	}	$server	}	Container	services	}	ORB	service	or	using	-D	generic	JVM	arguments.	There
may	be	additional	settings	under	Custom	Properties	within	this	panel.	WAS	on	z/OS	has	additional
settings	under	z/OS	additional	settings.	For	WAS	configuration,	these	available	settings	translate	to	the
<services	xmi:type="orb:ObjectRequestBroker"	...	element	or	<properties	...	child	elements
underneath	that	in	server.xml	(or	genericJVMarguments	and	custom	properties	under	the	JVM	section	in
server.xml).

Note	that	in	WAS,	there	is	an	ORB.thread.pool	configuration	which	is	normally	used;	however,	if	the
ThreadPool	properties	are	specified	in	orb.properties,	then	they	override	the	WAS	configuration.	See	a
detailed	discussion	of	how	properties	are	evaluated	at	the	different	levels.

You	may	see	ORB	reader	threads	(RT)	and	writer	threads	(WT).	For	example,	here	is	a	reader	thread:

3XMTHREADINFO
"RT=265:P=941052:O=0:WSTCPTransportConnection[addr=...,port=2940,local=48884]"
J9VMThread:0x000000000E255600,	j9thread_t:0x00002AAAC15D5470,
java/lang/Thread:0x000000004CF4B4F0,	state:R,	prio=5
3XMTHREADINFO1	(native	thread	ID:0x7EFD,	native	priority:0x5,	native	policy:UNKNOWN)

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.security.component.70.doc/security-component/JceDocs/aesni.html?lang=en
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/corb_maino.html
https://www.ibm.com/support/pages/troubleshooting-object-request-broker-orb-problems-1
https://www.ibm.com/support/pages/mustgather-object-request-broker-orb-problems-websphere-application-server
https://www.ibm.com/support/pages/node/569483
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rorb_tims.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rorb_setg.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/understanding/orb_using.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/appendixes/cmdline/Dcomibmcorbaconnectionmultiplicity.html
https://www.ibm.com/support/pages/troubleshooting-object-request-broker-orb-problems-1
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/uorb_rsetg.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/uorb_rorb_service.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rorb_setg.html

3XMTHREADINFO2	(native	stack	address	range	from:0x00002AAAD7D6A000,
to:0x00002AAAD7DAB000,	size:0x41000)
3XMTHREADINFO3	Java	callstack:
4XESTACKTRACE	at	java/net/SocketInputStream.socketRead0(Native	Method)
4XESTACKTRACE	at	java/net/SocketInputStream.read(SocketInputStream.java:140(Compiled	Code))
4XESTACKTRACE	at	com/ibm/rmi/iiop/Connection.readMoreData(Connection.java:1642(Compiled
Code))
4XESTACKTRACE	at	com/ibm/rmi/iiop/Connection.createInputStream(Connection.java:1455(Compiled
Code))
4XESTACKTRACE	at	com/ibm/rmi/iiop/Connection.doReaderWorkOnce(Connection.java:3250(Compiled
Code))
4XESTACKTRACE	at	com/ibm/rmi/transport/ReaderThread.run(ReaderPoolImpl.java:142(Compiled
Code))

These	will	normally	be	in	R	(runnable)	state,	even	if	they	are	just	waiting	for	the	incoming	message.

The	number	of	Reader	Threads	(RT)	are	controlled	by	the	number	of	active	socket	connections,	not	by	the
ORB	thread	pool	size.	For	every	socket.connect/accept	call,	an	RT	gets	created	and	an	RT	gets	removed
when	the	socket	closes.	RT	is	not	bounded	by	MaxConnectionCacheSize	which	is	a	soft	limit	-	the	cache	can
grow	beyond	the	MaxConnectionCacheSize.	Once	the	cache	hits	the	MaxConnectionCacheSize,	the	ORB
will	try	to	remove	stale	i.e.	unused	connections.

The	ORB	thread	pool	size	will	be	a	cap	on	the	maximum	number	of	Writer	Threads	(WT),	as	only	up	to	the
number	of	ORB	threads	can	be	writing.

	

Connection	Multiplicity

com.ibm.CORBA.ConnectionMultiplicity:	The	value	of	the	ConnectionMultiplicity	defines	the	number	of
concurrent	TCP	connections	between	a	server	and	client	ORB.	The	default	is	1	or	automatic	depending	on
the	version	of	Java.	Lower	values	can	lead	to	a	performance	bottleneck	in	J2EE	deployments	where	there	are
a	large	number	of	concurrent	requests	between	client	&	server	ORB.

For	example,	-Dcom.ibm.CORBA.ConnectionMultiplicity=N

See	further	discussion	at	https://www.ibm.com/support/pages/troubleshooting-object-request-broker-orb-
problems-1	and	https://www.ibm.com/support/pages/node/244347.

	

Fragment	Size

The	ORB	separates	messages	into	fragments	to	send	over	the	ORB	connection.	You	can
configure	this	fragment	size	through	the	com.ibm.CORBA.FragmentSize	parameter.
To	determine	and	change	the	size	of	the	messages	that	transfer	over	the	ORB	and	the	number	of
required	fragments,	perform	the	following	steps:

In	the	administrative	console,	enable	ORB	tracing	in	the	ORB	Properties	page.
Enable	ORBRas	diagnostic	trace	ORBRas=all	(http://www-01.ibm.com/support/docview.wss?
uid=swg21254706).
Increase	the	trace	file	sizes	because	tracing	can	generate	a	lot	of	data.
Restart	the	server	and	run	at	least	one	iteration	(preferably	several)	of	the	case	that	you	are
measuring.
Look	at	the	traceable	file	and	do	a	search	for	Fragment	to	follow:	Yes.

This	message	indicates	that	the	ORB	transmitted	a	fragment,	but	it	still	has	at	least	one
remaining	fragment	to	send	prior	to	the	entire	message	arriving.	A	Fragment	to	follow:	No	value

https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/appendixes/cmdline/Dcomibmcorbaconnectionmultiplicity.html
https://www.ibm.com/support/pages/troubleshooting-object-request-broker-orb-problems-1
https://www.ibm.com/support/pages/node/244347
http://www-01.ibm.com/support/docview.wss?uid=swg21254706

indicates	that	the	particular	fragment	is	the	last	in	the	entire	message.	This	fragment	can	also	be
the	first,	if	the	message	fits	entirely	into	one	fragment.

If	you	go	to	the	spot	where	Fragment	to	follow:	Yes	is	located,	you	find	a	block	that	looks
similar	to	the	following	example:

Fragment	to	follow:	Yes
Message	size:	4988	(0x137C)
--
Request	ID:	1411

This	example	indicates	that	the	amount	of	data	in	the	fragment	is	4988	bytes	and	the	Request	ID
is	1411.	If	you	search	for	all	occurrences	of	Request	ID:	1411,	you	can	see	the	number	of
fragments	that	are	used	to	send	that	particular	message.	If	you	add	all	the	associated	message
sizes,	you	have	the	total	size	of	the	message	that	is	being	sent	through	the	ORB.
You	can	configure	the	fragment	size	by	setting	the	com.ibm.CORBA.FragmentSize	ORB
custom	property.

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/understanding/orb_using.html

Setting	-Dcom.ibm.CORBA.FragmentSize=0	disables	fragmentation	and	may	improve	performance	in	some
cases;	however,	note	that	multiple	requests	may	be	multiplexed	on	a	single	connection	and	there	will	be	a
lock	on	the	connection	during	the	write	of	the	full	message.	If	a	message	is	large,	fragmentation	is	disabled,
and	the	concurrent	load	is	greater	than	ConnectionMultiplicity,	this	may	create	a	bottleneck.

One	additional	value	that	FragmentSize=0	may	provide	is	to	isolate	a	subset	of	problematic	clients	(e.g.	bad
network)	to	just	the	reader	threads	because	a	full,	non-fragmented	read	occurs	on	the	reader	thread	whereas
with	fragmentation,	it	will	need	to	consume	a	worker	thread	while	it	waits	for	the	next	fragment.	Note	that
when	the	server	sends	the	response	back	to	the	client,	the	write	happens	on	the	ORB	thread	pool	thread;
however,	with	a	sufficient	ORB	thread	pool	size,	this	may	help	isolate	such	problematic	clients.

	

Interceptors

Interceptors	are	ORB	extensions	that	can	set	up	the	context	prior	to	the	ORB	runs	a	request.	For
example,	the	context	might	include	transactions	or	activity	sessions	to	import.	If	the	client
creates	a	transaction,	and	then	flows	the	transaction	context	to	the	server,	then	the	server	imports
the	transaction	context	onto	the	server	request	through	the	interceptors.

Most	clients	do	not	start	transactions	or	activity	sessions,	so	most	systems	can	benefit	from
removing	the	interceptors	that	are	not	required.

To	remove	the	interceptors,	manually	edit	the	server.xml	file	and	remove	the	interceptor	lines
that	are	not	needed	from	the	ORB	section.

	

ORB	IBM	Data	Representation	(IDR)

ORB	7.1	introduced	dramatic	performance	improvements.

java.nio.DirectByteBuffer

Unlike	IBM	Semeru	Runtimes	and	similar	OpenJDK	runtimes,	IBM	Java	has	slightly	different	default
DirectByteBuffer	behavior:	The	-XX:MaxDirectMemorySize	hard	limit	defaults	to	unlimited	and	instead
there	is	a	"soft"	limit	default	of	64MB.	This	soft	limit	grows	if	the	application	needs	more
DirectByteBuffer	space	and	no	hard	limit	is	configured.	The	JDK	is	reluctant	to	grow	the	soft	limit	and

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/understanding/orb_using.html

before	it	will	expand	the	soft	limit	there	will	be	a	series	of	System	GC	events,	trying	to	free	up	enough	space
to	avoid	growing	the	limit.	System	GCs	cause	long	pauses	during	which	application	threads	cannot	do	any
work,	so	we	generally	try	to	avoid	them	if	at	all	possible	for	performance	reasons.	Also,	when	the	soft	limit
is	used,	the	limit	will	be	raised	only	a	little	bit	at	a	time,	and	every	time	the	limit	is	hit,	there	is	another	series
of	System	GCs	before	growth	is	allowed.	So	if	the	application	demands	a	lot	of	DirectByteBuffers,	then
starting	at	64	MB	and	growing	to	whatever	the	necessary	size	is	will	take	a	long	time,	during	which
performance	will	be	significantly	impacted.	For	this	reason,	from	a	performance	perspective,	it	is	generally
recommended	to	specify	-XX:MaxDirectMemorySize	as	needed.	Ensure	there	is	enough	physical	memory	to
support	the	potential	DBB	demands.	For	example:

-XX:MaxDirectMemorySize=1G

The	option	-Dcom.ibm.nio.DirectByteBuffer.AggressiveMemoryManagement=true	may	be	used	to
enable	a	more	aggressive	DirectByteBuffer	cleanup	algorithm	(which	may	increase	the	frequency	of
System.gc	calls).

	

XML	and	XSLT

Profile	your	application	using	tools	such	as	the	IBM	Java	Health	Center	or	more	simply	by	taking	multiple
thread	dumps.	If	you	observe	significant	lock	contention	on	an	instance	of	java/lang/Class	and/or	significant
CPU	time	in	com/ibm/xtq/xslt/*	classes,	then	consider	testing	the	older	XSLT4J	interpreter	to	see	if	you	have
better	results:

From	Version	6,	the	XL	TXE-J	compiler	replaces	the	XSLT4J	interpreter	as	the	default	XSLT
processor.

The	XL	TXE-J	compiler	is	faster	than	the	XSLT4J	interpreter	when	you	are	applying	the	same
transformation	more	than	once.	If	you	perform	each	individual	transformation	only	once,	the	XL
TXE-J	compiler	is	slower	than	the	XSLT4J	interpreter	because	compilation	and	optimization
reduce	performance.

For	best	performance,	ensure	that	you	are	not	recompiling	XSLT	transformations	that	can	be
reused.	Use	one	of	the	following	methods	to	reuse	compiled	transformations:

If	your	stylesheet	does	not	change	at	run	time,	compile	the	stylesheet	as	part	of	your	build
process	and	put	the	compiled	classes	on	your	classpath.	Use	the
org.apache.xalan.xsltc.cmdline.Compile	command	to	compile	the	stylesheet	and	set	the
http://www.ibm.com/xmlns/prod/xltxe-j/use-classpath	transformer	factory	attribute	to	true
to	load	the	classes	from	the	classpath.
If	your	application	will	use	the	same	stylesheet	during	multiple	runs,	set	the
http://www.ibm.com/xmlns/prod/xltxe-j/auto-translet	transformer	factory	attribute	to	true
to	automatically	save	the	compiled	stylesheet	to	disk	for	reuse.	The	compiler	will	use	a
compiled	stylesheet	if	it	is	available,	and	compile	the	stylesheet	if	it	is	not	available	or	is
out-of-date.	Use	the	http://www.ibm.com/xmlns/prod/xltxe-j/destination-directory
transformer	factory	attribute	to	set	the	directory	used	to	store	compiled	stylesheets.	By
default,	compiled	stylesheets	are	stored	in	the	same	directory	as	the	stylesheet.
If	your	application	is	a	long-running	application	that	reuses	the	same	stylesheet,	use	the
transformer	factory	to	compile	the	stylesheet	and	create	a	Templates	object.	You	can	use
the	Templates	object	to	create	Transformer	objects	without	recompiling	the	stylesheet.
The	Transformer	objects	can	also	be	reused	but	are	not	thread-safe.
If	your	application	uses	each	stylesheet	just	once	or	a	very	small	number	of	times,	or	you
are	unable	to	make	any	of	the	other	changes	listed	in	this	step,	you	might	want	to	continue
to	use	the	XSLT4J	interpreter	by	setting	the	javax.xml.transform.TransformerFactory
service	provider	to	org.apache.xalan.processor.TransformerFactoryImpl.

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/xml/xslt_migrate.html

http://www.ibm.com/xmlns/prod/xltxe-j/use-classpath
http://www.ibm.com/xmlns/prod/xltxe-j/auto-translet
http://www.ibm.com/xmlns/prod/xltxe-j/destination-directory
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/xml/xslt_migrate.html

For	additional	information,	see	http://www-01.ibm.com/support/docview.wss?uid=swg21639667

	

DNS	Cache

The	DNS	Cache	works	the	same	as	in	the	OpenJDK	JCL;	however,	there	is	an	additional	property	-
Dcom.ibm.cacheLocalHost=true	to	cache	localhost	lookups.

	

Java	Profilers
There	are	two	broad	categories	of	profilers:	statistical/sampling	profilers	which	sample	call	stacks,	and
tracing	profilers	which	record	method	entry/exit	times.	In	general,	sampling	profilers	are	very	low	overhead
and	suitable	for	production	(e.g.	IBM	Health	Center	is	less	than	1%),	whereas	tracing	profilers	may	be	up	to
50%	or	more	overhead	and	generally	aren't	suitable	for	production.	Imagine	that	sampling	profilers	are	like
taking	javacores	at	a	high	frequency	(with	less	overhead	since	the	profiler	is	only	sampling	call	stacks).
Tracing	profilers	are	more	accurate	but	produce	a	lot	more	data	and	have	to	hook	deeply	into	the	JVM	to	get
their	data,	causing	the	additional	overhead.

Whether	or	not	your	tests	are	going	well,	it	is	important	to	plan	in	at	least	some	basic	profiling	tests,	both	for
a	single	user	(either	sampling	or	tracing	profiler)	and	for	a	full	stress	test	(sampling	profiler).

	

Java	Profilers	Recipe
1.	 In	most	cases,	sampling	profilers	are	used	first	and	tracing	profilers	are	only	used	for	fine	grained

tuning	or	deep	dive	analysis.
2.	 Analyze	any	methods	that	use	more	than	1%	of	the	reported	time	in	themselves.
3.	 Analyze	any	methods	that	use	more	than	10%	of	the	reported	time	in	themselves	and	their	children.
4.	 Analyze	any	locks	that	have	large	contention	rates,	particularly	those	with	long	average	hold	times.

	

Statistical/Sampling	Profilers

IBM	Java	Health	Center

The	IBM	Java	Health	Center	tool	is	covered	in	depth	in	the	Major	Tools	chapter.

	

HotSpot	HPROF

HPROF	is	a	sampling	JVMTI	profiler	that	ships	with	Java	(and	therefore	with	WebSphere).	Restart	the	JVM
with	-agentlib:hprof=cpu=samples

When	the	program	stops	gracefully,	the	sample	counts	will	be	printed	to	stdout/stderr.

Example	output:

CPU	SAMPLES	BEGIN	(total	=	126)	Fri	Oct	22	12:12:14	2004
rank			self		accum			count	trace	method
			1	53.17%	53.17%						67	300027	java.util.zip.ZipFile.getEntry

http://www-01.ibm.com/support/docview.wss?uid=swg21639667

			2	17.46%	70.63%						22	300135	java.util.zip.ZipFile.getNextEntry
			3		5.56%	76.19%							7	300111	java.lang.ClassLoader.defineClass2
			4		3.97%	80.16%							5	300140	java.io.UnixFileSystem.list
			5		2.38%	82.54%							3	300149	java.lang.Shutdown.halt0
			6		1.59%	84.13%							2	300136	java.util.zip.ZipEntry.initFields
			7		1.59%	85.71%							2	300138	java.lang.String.substring
			8		1.59%	87.30%							2	300026	java.util.zip.ZipFile.open
			9		0.79%	88.10%							1	300118	com.sun.tools.javac.code.Type$ErrorType.<init>
		10		0.79%	88.89%							1	300134	java.util.zip.ZipFile.ensureOpen

http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

	

Java	Mission	Control	(Formerly	JRockit	Mission	Control)

This	tool	has	been	moved	into	the	Major	Tools	chapter	under	OpenJDK	Mission	Control.

	

HotSpot	VisualVM

VisualVM	(http://docs.oracle.com/javase/7/docs/technotes/guides/visualvm/)	is	shipped	with	Java
(${JAVA}/bin/jvisualvm)	and	therefore	with	WebSphere.	It	provides	both	a	sampling	and	tracing	profiler.
VisualVM	does	not	have	a	headless	mode,	so	you	must	run	the	GUI	client	on	the	same	machine	as	the	target
JVM	(http://docs.oracle.com/javase/7/docs/technotes/tools/share/jstatd.html).	jvisualvm	through	jstatd	does
not	support	remote	profiling:	"Java	VisualVM...	cannot	profile	remote	applications."
(http://docs.oracle.com/javase/7/docs/technotes/guides/visualvm/applications_remote.html).	The	only	way	to
use	it	remotely	would	be	to	export	DISPLAY	to	another	machine.

Once	you've	connected	to	the	JVM,	click	on	Sampler	and	click	the	CPU	button	to	start	sampling.	By	default,
when	VisualVM	samples	a	stack,	it	will	skip	over	stack	frames	in	the	packages	java.*,	javax.*,	sun.*,
sunw.*,	and	com.sun.*	(https://blogs.oracle.com/nbprofiler/entry/profiling_with_visualvm_part_2).	You	can
setup	a	profiling	preset	under	Tools	>	Options	and	specify	a	blank	string	for	the	"Do	not	profile	packages"
textbox	to	override	this.

It	does	not	appear	that	VisualVM	data	can	be	cropped	to	a	particular	time	period,	making	it	difficult	to	use
for	problems	during	a	specific	period.

VisualVM	supports	a	plugin	that	can	track	DirectByteBuffer	usage:
https://blogs.oracle.com/nbprofiler/entry/new_memory_buffer_plugin_for

	

Tracing	Profilers

IBM	Java	-Xtrace

For	simple	tracing	profiler	usage	on	IBM	Java,	-Xtrace	is	very	easy	to	use:	http://www-
01.ibm.com/support/docview.wss?uid=swg21657391

	

Rational	Application	Developer	(RAD)	Profiler

The	Rational	Application	Developer	profiling	platform	provides	three	different	analyses	of	application
behavior:

Memory-usage	analysis

http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
http://docs.oracle.com/javase/7/docs/technotes/guides/visualvm/
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jstatd.html
http://docs.oracle.com/javase/7/docs/technotes/guides/visualvm/applications_remote.html
https://blogs.oracle.com/nbprofiler/entry/profiling_with_visualvm_part_2
https://blogs.oracle.com/nbprofiler/entry/new_memory_buffer_plugin_for
http://www-01.ibm.com/support/docview.wss?uid=swg21657391

Method-level	execution	analysis
Thread	analysis

Suited	when	you	have	an	eclipse	based	IDE	installed	and	are	using	RAD	to	develop	software.

Profiling	agents	are	executed	alongside	the	JVM	(and	inside	the	JVM	process)	when	that	JVM	is	run	with
special	JVMTI-specific	VM	arguments.	When	the	profiling	agents	run,	they	collect	data	from	the	JVM	in	the
form	of	execution,	heap,	or	thread	events.	Within	the	Rational	Application	Developer	profiling	sphere,	these
agents	are	referred	to	as	the	Execution	Analysis,	Heap	Analysis,	and	Thread	Analysis	agents.

The	following	tutorial	walks	you	through	how	to	go	about	setting	up	the	profiling	agent	and	collecting	data

http://www.ibm.com/developerworks/rational/tutorials/profilingjavaapplicationsusingrad/

You	can	also	profile	outside	of	RAD	using	the	standalone	mode.

	

Rational	Agent	Controller	(RAC)

The	Rational	Agent	Controller	(RAC)	has	a	really	broad	set	of	supported	operating	systems:	AIX,	Linux,
Linux	s/390	(zLinux),	Windows,	Solaris,	and	z/OS:	http://www-01.ibm.com/support/docview.wss?
uid=swg27013420#v8.	Once	you've	got	the	agent	controller	installed	and	the	JVM	instrumented,	you	can
either	gather	data	in	headless	mode	which	you	load	into	Rational	Application	Developer,	or	start/pause
monitoring	remotely	from	RAD.

The	RAC	comes	with	a	JVMTI	profiling	agent	which	has	to	be	attached	to	the	JVM.	This	profiler	has	a	lot	of
native	components	which	makes	this	a	bit	tricky.	First,	you'll	need	to	add	a	generic	JVM	argument,	such	as:

"-agentpath:/opt/IBM/SDP/AgentController/plugins/org.eclipse.tptp.javaprofiler/libJPIBootLoader.so=JPIAgent:server=controlled,format=binary,file=log.trcbin;CGProf"

Note	that	the	argument	has	to	be	specified	with	double	quotes	to	avoid	any	issues	with	the	semicolon	in	the
Linux	launcher.	So	if	you	already	had	some	arguments,	such	as	-Xgcpolicy:gencon,	then	your	final	generic
JVM	arguments	would	be:

-Xgcpolicy:gencon	"-agentpath:/opt/IBM/SDP/AgentController/plugins/org.eclipse.tptp.javaprofiler/libJPIBootLoader.so=JPIAgent:server=controlled,format=binary,file=log.trcbin;CGProf"

Next,	we	need	to	tell	Linux	how	to	load	native	library	dependencies	for	libJPIBootLoader.so.	To	do	this,	we
need	to	tell	WAS	to	start	with	a	specific	LD_LIBRARY_PATH	environment	variable.	Envars	can	be	set
through	the	Environment	Entries	option	(http://www-01.ibm.com/support/docview.wss?uid=swg21254153):

Name	=	LD_LIBRARY_PATH
Value	=	/opt/IBM/SDP/AgentController/plugins/org.eclipse.tptp.javaprofiler/:/opt/IBM/SDP/AgentController/lib

WAS	is	smart	enough	to	append	the	library	path	you	specify	to	the	library	path	that	it	needs	itself.

Use	the	server=controlled	option	in	which	case	the	JVM	will	not	start	until	RAD	connects	to	it
(http://www.eclipse.org/tptp/home/downloads/4.5.0/documents/installguide/agentcontroller_45/linux/getting_started.html#Java_15
The	reason	we	did	this	was	so	that	we	can	control	what	gets	profiled,	since	we	weren't	interested	in	profiling
JVM	startup.	This	option	is	recommended	over	server=enabled	for	high	volume	profiling	(http://www-
01.ibm.com/support/docview.wss?uid=swg21414403).	Here	are	the	basic	steps	we	followed:

1.	 Start	the	RAC	agent	(RAStart.sh)	before	launching	the	application	server
2.	 Launch	the	application	server	(it	will	immediately	enter	a	wait	state)
3.	 Connect	to	the	JVM	using	RAD:

http://www.ibm.com/developerworks/rational/tutorials/profilingjavaapplicationsusingrad/index.html
4.	 In	some	versions	of	RAD,	this	will	immediately	start	profiling,	in	which	case	you'll	probably	want	to

click	Pause	-	the	JVM	will	continue	to	start	but	profiling	will	not	be	active
5.	 When	you're	ready,	resume	the	actual	profiling	and	continue	as	long	as	necessary
6.	 You'll	probably	want	to	select	the	option	in	RAD	to	save	the	data	to	a	local	file	for	post-analysis	in

http://www.ibm.com/developerworks/rational/tutorials/profilingjavaapplicationsusingrad/
http://www-01.ibm.com/support/docview.wss?uid=swg27013420#v8
http://www-01.ibm.com/support/docview.wss?uid=swg21254153
http://www.eclipse.org/tptp/home/downloads/4.5.0/documents/installguide/agentcontroller_45/linux/getting_started.html#Java_15
http://www-01.ibm.com/support/docview.wss?uid=swg21414403
http://www.ibm.com/developerworks/rational/tutorials/profilingjavaapplicationsusingrad/index.html

addition	to	streaming	it	into	RAD	itself

There	is	also	the	option	of	using	server=standalone	which	writes	the	profiling	data	to	a	local	file	and	avoids
the	RAC	itself	and	needing	to	connect	in	remotely	from	RAD.	However,	startup	may	take	very	long	and
create	a	lot	of	data	which	would	have	been	cumbersome	to	analyze.

There	are	many	ways	to	analyze	the	captured	data:
http://www.ibm.com/developerworks/rational/tutorials/profilingjavaapplicationsusingrad/index.html

For	example,	capture	top	-b	-H	-d	1800	-p	$PID	to	gather	accumulated	CPU	time	per	thread	at	the	start	of
profiling	and	at	the	end	and	take	the	difference	to	find	the	threads	that	accumulated	CPU	and	sort	by	that
number.	Next,	within	RAD's	Execution	Time	Analysis,	select	the	Call	Tree	tab	and	find	these	threads.
Expand	the	threads	and	follow	down	the	largest	paths	of	cumulative	time.	Note	that	there	may	be	some	rows
with	very	large	cumulative	times	that	are	probably	just	the	frames	of	the	thread	that	are	"waiting	for	work,"
such	as	a	call	to	getTask	or	await,	and	these	can	be	disregarded.

Once	you	find	a	high	level	method	of	interest	(the	art	of	profiling!),	right	click	it	and	select	Show	Method
Invocation	Details.	In	the	third	table,	"Selected	Method	Invokes,"	sort	by	Cumulative	CPU	Time,	descending
(if	you	don't	have	this	column,	you	will	need	to	make	sure	you	have	this	option	selected	in	one	of	the	RAD
attach/profiling	screens	when	starting	to	profile).	This	will	give	the	accumulated	CPU	time	from	a	high	level.
You	can	then	"drill	down"	further	if	you'd	like	to	by	doing	the	same	procedure	with	rows	from	this	table.

Note:	Cumulative	CPU	time	in	the	method	invocation	details	is	for	the	whole	tracing	profile,	not	from	within
the	context	of	the	call	tree	thread	stack	that	you	get	here	from.

	

Performance	Inspector
Performance	inspector	is	a	suite	of	profilers	including	sampling	and	tracing	profilers	and	other	tools	for
various	operating	systems.	An	open	source	version	still	exists	but	it	is	not	actively	maintained:
http://perfinsp.sourceforge.net/

	

http://www.ibm.com/developerworks/rational/tutorials/profilingjavaapplicationsusingrad/index.html
http://perfinsp.sourceforge.net/

IBM	Java	Runtime	Environment
This	chapter	has	been	split	and	moved	into	a	JVM	chapter	(OpenJ9	and	IBM	J9	JVMs)	and	JDK	chapters:
OpenJDK	JCL	and	Tools	if	you're	using	OpenJ9,	or	IBM	JCL	and	Tools	if	you're	using	IBM	Java.	The
whole	Java	landscape	is	quite	confusing	and	is	summarized	on	the	Java	page.

	

Oracle	Java	Runtime	Environment
This	chapter	has	been	split	and	moved	into	a	JVM	chapter	(HotSpot	JVM)	and	a	JDK	chapter	(OpenJDK	JCL
and	Tools).	The	whole	Java	landscape	is	quite	confusing	and	is	summarized	on	the	Java	page.

	

WebSphere	Application	Server
IBM	WebSphere	Application	Server	(WAS)	is	a	Java	Enterprise	Edition	(JEE)	application	server	with
functions	such	as	serving	websites.	WAS	traditional	(colloquially	abbreviated	tWAS)	is	the	name	of	the
original	product	produced	since	1998	and	still	a	strategic	offering.	WebSphere	Liberty	is	a	partial	rewrite
produced	since	2012	and	geared	towards	cloud	and	MicroServices.	Both	editions	of	WebSphere	are
commonly	purchased	through	the	WebSphere	Hybrid	Edition	offering.

	

Sub-Chapters
See	the	following	sub-chapters	depending	on	which	product	you're	using:

WebSphere	Application	Server	traditional
WebSphere	Liberty

	

WebSphere	Application	Server	traditional
WAS	traditional	is	colloquially	abbreviated	tWAS.	Documentation:

WAS	traditional	Base
WAS	traditional	Network	Deployment	(ND)
WAS	traditional	for	z/OS

	

WAS	traditional	Recipe
1.	 Review	the	Operating	System	recipe	for	your	OS.	The	highlights	are	to	ensure	CPU,	RAM,	network,

and	disk	are	not	consistently	saturated.
2.	 Review	the	Java	recipe	for	your	JVM.	The	highlights	are	to	tune	the	maximum	heap	size	(-Xmx),	the

maximum	nursery	size	(-Xmn)	and	enable	verbose	garbage	collection	and	review	its	output	with	the
GCMV	tool.

3.	 Ensure	that	the	application	thread	pools	are	not	consistently	saturated:	HTTP	=	WebContainer,	EJB	=
ORB.thread.pool,	JMS	activation	specifications	over	MQ	=	WMQJCAResourceAdapter,	JMS	over

https://www.ibm.com/cloud/websphere-application-server
https://www.ibm.com/cloud/websphere-hybrid-edition
https://www.ibm.com/support/knowledgecenter/en/SSEQTP
https://www.ibm.com/support/knowledgecenter/en/SSAW57
https://www.ibm.com/support/knowledgecenter/en/SS7K4U

SIBus	=	SIBJMSRAThreadPool,	z/OS	=	ORB	workload	profile	setting,	etc.
4.	 Consider	reducing	the	default	Hung	Thread	Detection	threshold	and	interval	which	will	print	a

warning	and	stack	trace	when	requests	exceed	a	time	threshold.
5.	 If	receiving	HTTP(S)	requests:

1.	 For	HTTP/1.0	and	HTTP/1.1,	avoid	client	keepalive	socket	churn	by	setting	Unlimited
persistent	requests	per	connection.

2.	 For	servers	with	incoming	LAN	HTTP	traffic	from	clients	using	persistent	TCP	connection	pools
with	keep	alive	(e.g.	a	reverse	proxy	like	IHS/httpd	or	web	service	client),	consider	increasing
the	Persistent	timeout	to	reduce	keepalive	socket	churn.

3.	 For	HTTP/1.0	and	HTTP/1.1,	minimize	the	number	of	application	responses	with	HTTP	codes
400,	402-417,	or	500-505	to	reduce	keepalive	socket	churn.

4.	 If	using	HTTP	session	database	persistence,	tune	the	write	frequency.
5.	 For	increased	resiliency,	if	using	HTTPS,	set	-DtimeoutValueInSSLClosingHandshake=1.
6.	 If	possible,	configure	and	use	servlet	caching/Dynacache	for	HTTP	response	caching.
7.	 Consider	enabling	the	HTTP	NCSA	access	log	with	response	times	for	post-mortem	traffic

analysis.
8.	 If	the	applications	don't	use	resources	in	META-INF/resources	directories	of	embedded	JAR

files,	then	set	com.ibm.ws.webcontainer.SkipMetaInfResourcesProcessing	=	true.
9.	 Consider	reducing	each	TCP	Transport's	Maximum	open	connections	to	the	hundreds	range	to

avoid	excessive	request	queuing	under	stress	and	test	with	a	saturation	test.
6.	 If	using	databases	(JDBC):

1.	 Connection	pools	should	not	be	consistently	saturated.	Tune	each	pool's	Maximum	connections.
2.	 Consider	tuning	each	data	source's	statement	cache	size	and	isolation	level.
3.	 Consider	disabling	idle	and	age	connection	timeouts	by	setting	reap	time	to	0	(and	tune	any

firewalls,	TCP	keep-alive,	and/or	database	connection	timeouts,	if	needed).
4.	 Compare	relative	results	of	globalConnectionTypeOverride=unshared.

7.	 If	using	JMS	MDBs	without	a	message	ordering	requirement,	tune	activation	specifications'	maximum
concurrency	to	control	the	maximum	concurrent	MDB	invocations	and	maximum	batch	size	to	control
message	batch	delivery	size.

8.	 If	using	authentication:
1.	 Consider	tuning	the	authentication	cache	and	LDAP	sizes.
2.	 Test	the	relative	performance	of	disabling	horizontal	security	attribute	propagation.

9.	 If	using	EJBs,	consider	tuning	the	ORB	such	as	-Dcom.ibm.CORBA.ConnectionMultiplicity,	-
Dcom.ibm.CORBA.FragmentSize,	and	-Dcom.ibm.CORBA.MaxOpenConnections.

10.	 If	none	of	the	Intelligent	Management	or	Intelligent	Management	for	Web	Server	features	are	used	nor
planned	to	be	used,	set	LargeTopologyOptimization=false	to	reduce	unnecessary	CPU	usage	and
PMI	overhead.

11.	 Review	logs	for	any	errors,	warnings,	or	high	volumes	of	messages,	and	use	-
Dcom.ibm.ejs.ras.disablerasnotifications=true	if	you're	not	listening	to	JMX	log	notifications.

12.	 Monitor,	at	minimum,	response	times,	number	of	requests,	thread	pools,	connection	pools,	and	CPU
and	Java	heap	usage	using	TPV/PMI	and/or	a	third	party	monitoring	program.

13.	 Upgrade	to	the	latest	version	and	fixpack	of	WAS	and	Java	as	there	is	a	history	of	making	performance
improvements	over	time.

14.	 Consider	running	with	a	sampling	profiler	such	as	Health	Center	for	post-mortem	troubleshooting.
15.	 If	using	Dynacache	replication:

1.	 If	using	memory-to-memory	HTTP	session	replication,	weigh	whether	the	costs	and	complexity
are	better	than	simple	sticky	sessions	with	re-login,	or	consider	using	a	linearly	scalable	external
cache	provider,	or	the	Dynacache	client/server	replication	model.

2.	 Install	and	use	the	Cache	Monitor	sample	application	to	watch	cache	hit	rates	and	cache
exhaustion.

3.	 If	using	SHARED_PUSH	replication,	consider	using	SHARED_PUSH_PULL	to	reduce	replication
volume.

16.	 If	the	application	writes	a	lot	to	SystemOut.log,	consider	switching	to	binary	HPEL	for	improved
performance.

17.	 Review	the	performance	tuning	topic	in	the	WAS	traditional	documentation.

	

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=chains-tcp-transport-channel-settings
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/udat_jdbcdatasorprops
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cdat_isolevel
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tdat_conpoolman
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=management-intelligent-overview
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=in-intelligent-management-web-servers-overview
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=cells-cell-custom-properties#LargeTopologyOptimization
https://www.ibm.com/support/pages/latest-fix-packs-websphere-application-server
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cprs_m2m_cs
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cdyn_cachemonitor
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=90-tuning-performance

WAS	Basics
"In	general,	a	large	number	of	applications	will	realize	some	improvement	from	tuning	in	three	core	areas:
the	JVM,	thread	pools,	and	connection	pools."

Review	all	messages	in	SystemOut.log,	SystemErr.log	(or	HPEL	logs),	native_stdout.log,	native_stderr.log,
application	logs	(such	as	log4j),	and	First	Failure	Data	Capture	(FFDC)	logs.	Note	that	with	FFDC	logs,	an
exception	will	often	only	create	an	FFDC	stack	and	information	file	on	the	first	occurrence	(this	is	the	design
of	FFDC),	but	you	can	review	the	_exception.log	summary	file	for	the	number	of	times	that	exception	was
thrown.

Review	the	WAS	logs	and	eliminate	(or	try	to	reduce)	any	warnings	and	exceptions.	If	customers	say,	"Oh,
those	warnings/errors	are	'normal',"	persist	in	investigating	them	anyway	and	pushing	for	them	to	be
eliminated.	Imagine	you	are	tuning	a	sports	car	for	optimal	performance	and	there's	a	warning	light	in	the
dashboard.	Yes,	it	is	possible	that	the	warning	is	"normal"	and	will	not	impact	performance,	but	unless	you
have	direct	evidence	that	this	is	so,	you	should	go	under	the	assumption	that	such	warnings	and	errors	are
signs	of	potential	performance	problems.	You	should	resolve	any	warnings	that	the	designers	of	the	car
thought	worthy	of	highlighting.	Such	warnings	may	have	indirect	or	subtle	performance	impacts	that	may	not
be	easy	to	theoretically	understand.	At	minimum,	the	system	is	spending	resources	tracking	and	reacting	to
these	warning	conditions.	In	the	case	of	exceptions,	these	include	stack	traces	which	may	cost	a	significant
amount	to	create,	even	if	an	exception	is	caught	and	suppressed.

Continue	to	monitor	for	warnings	and	errors	during	performance	runs,	particularly	hung	thread	warnings
(WSVR0605W)	and	CPU	starvation	warnings	(HMGR0152W).

If	you	don't	know	the	host	names	and	ports	of	the	various	nodes	and	servers	but	you	have	access	to	the
configuration,	consult	the	file	WAS/profiles/{PROFILE}/config/cells/CELL/nodes/{NODE}/serverindex.xml
and	search	for	the	relevant	virtual	hosts	such	as	WC_adminhost_secure	and	WC_defaulthost.	The
administrative	server	is	normally	at	https://DMGRHOST:{DMGRADMINHOST_SECUREPORT}/admin

Review	the	WAS	FDA/config/appserver/server.xml	and	FDA/config/appserver/node.resources.xml	files	in
the	latest	SPECj	results	submitted	by	IBM	(click	Full	Disclosure	Archive):
http://www.spec.org/jEnterprise2010/results/res2013q2/jEnterprise2010-20130402-00042.html

Key	administrative	concepts:

An	installation	of	WAS	Network	Deployment	has	a	set	of	0	or	more	profiles	which	represent	nodes.
These	nodes	share	the	same	runtime	binaries.	An	installation	is	either	32-bit	or	64-bit
A	profile/node	is	a	set	of	0	or	more	managed	servers	(most	commonly,	application	servers).	The	node
has	a	process	called	the	node	agent	which	manages	the	configuration	of	the	servers,	and	may	also
orchestrate	their	runtime	behavior	(starting	and	stopping	them,	restarting	failed	application	servers,
etc.).
A	special	type	of	profile/node	is	the	deployment	manager	profile	(dmgr).	This	profile	represents	a	cell,
which	is	a	set	of	1	or	more	nodes,	including	the	deployment	manager	node/server	itself.	The
deployment	manager	holds	the	primary	configuration	data	for	the	whole	cell	and	the	deployment
manager	runs	the	Administrative	Console	application	which	is	used	to	administer	the	whole	cell.
To	participate	in	a	cell,	a	node	must	be	federated	with	the	deployment	manager	profile	using	tooling	or
the	"addNode"	command	from	the	newly	created	profile's	bin	directory.
Usually,	WAS	will	be	installed	on	one	physical/virtual	machine	with	a	single	deployment	manager
profile/node,	and	then	a	set	of	1	or	more	other	physical/virtual	machines	will	install	WAS	with	a	single
profile/node	(representing	that	machine)	federated	into	the	deployment	manager.
When	a	configuration	change	is	made	in	the	deployment	manager,	nodes	must	be	synchronized	with
the	deployment	manager	to	get	the	updated	changes.	By	default,	this	happens	automatically	every	1
minute	(see	the	node	agent's	file	synchronization	service	settings).	Nodes	can	also	be	manually
synchronized	while	saving	the	changes	into	the	DMGR	(click	Review,	and	then	check	the	box	to
synchronize	the	nodes),	or	through	the	Nodes	collection	under	System	Administration.	For	example,	if
you	have	10	machines,	with	5	application	servers	each,	you	install	an	application	into	the	deployment
manager,	then	when	the	nodes	are	synchronized,	the	application	will	be	distributed	to	all	the	nodes	and

http://www.spec.org/jEnterprise2010/results/res2013q2/jEnterprise2010-20130402-00042.html

then	it	can	be	started	across	all	of	those	servers.

	

Performance	Tuning	Templates
WAS	ships	with	a	set	of	tuning	templates	including	a	production	tuning	template	for	a	typical	production
environment.	The	script	is	found	in	${WAS}/bin/applyPerfTuningTemplate.py	and	the	production	template
is	found	in	${WAS}/scriptLibraries/perfTuning/V70/peak.props.

The	production	tuning	template	applies	the	following	changes
(https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_tuneappserv_script.html
however,	we	recommend	re-enabling	PMI	after	the	script	completes.

Note:	Although	the	production	tuning	template	is	in	a	folder	named	V70,	it	applies	to	later	versions	of	WAS.

Here	is	a	Unix	example	of	running	the	production	tuning	template	on	one	application	server.	This	assumes
that	the	deployment	manager	and	node	agent	are	started.

$	cd	${WAS}/bin/
$./wsadmin.sh	-lang	jython	-f	applyPerfTuningTemplate.py	-nodeName	node1	-serverName	server1	-templateFile	../scriptLibraries/perfTuning/V70/peak.props

	

General	Tuning
Check	"Start	components	as	needed"	to	potentially	improve	startup	time	by	not	starting	components	of	the
application	server	that	are	not	used
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/urun_rappsvr.html

Tune	the	XML	parser	definitions	by	updating	the	jaxp.properties	and	xerces.properties	files	in
the	${app_server_root}/jre/lib	and	adding:

javax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParserFactoryImpl
javax.xml.parsers.DocumentBuildFactory=org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
org.apache.xerces.xni.parser.XMLParserConfiguration=org.apache.xerces.parsers.XIncludeAwareParserConfiguration

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tuneappserv.html

	

Shared	Libraries

Use	shared	libraries	where	possible	to	reduce	memory	usage.

	

Change	Java	Software	Development	Kit	(SDK)
In	recent	versions	of	WAS,	use	the	managesdk	command	to	change	the	Java	Software	Development	Kit:
http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rxml_managesdk.html?
lang=en

Example:	List	available	SDKs:

$./managesdk.sh	-listAvailable
CWSDK1003I:	Available	SDKs	:

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_tuneappserv_script.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/urun_rappsvr.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tuneappserv.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rxml_managesdk.html?lang=en

CWSDK1005I:	SDK	name:	1.7_64
CWSDK1005I:	SDK	name:	1.6_64

Example:	Change	SDK	for	all	profiles:

$./managesdk.sh	-enableProfileAll	-sdkName	1.7_64
CWSDK1017I:	Profile	AppSrv01	now	enabled	to	use	SDK	1.7_64.

	

Idle	CPU
See	Idle	WebSphere	Tuning	Considerations

	

Education
Self-paced	WebSphere	Application	Server	Troubleshooting	and	Performance	Lab
Top	10	Performance	and	Troubleshooting	tips	for	WebSphere	Application	Server	traditional	and
Liberty

	

Sub-Chapters
Scaling	and	Large	Topologies
Performance	Monitoring
Logging	and	Tracing
Thread	Pools
Java	Database	Connectivity	(JDBC)
HTTP
Startup
Database	Persistence
Dynamic	Cache
EJBs
Messaging
Web	Services
Asynchronous	Beans
Intelligent	Management
Security
Administration
Session	Initiation	Protocol	(SIP)
WAS	traditional	on	zOS

	

Scaling	and	Large	Topologies

Scaling	and	Large	Topologies	Recipe

1.	 Use	clusters	to	scale	horizontally	and	vertically,	and	to	support	failover	and	easier	administration.	If
using	WAS	>=	8.5,	consider	using	dynamic	clusters.

2.	 If	using	the	High	Availability	Manager	(HAM)	or	any	functions	that	require	it	(e.g.	EJB	WLM,	SIB,
etc.):

1.	 In	general,	the	number	of	processes	in	a	single	core	group	should	not	exceed	100-200.

https://www-03.ibm.com/support/techdocs/atsmastr.nsf/002573f7000ac64286256c71006d2e0a/aca4f4ca60627d0b862578680008c257/$FILE/WP101894%20-%20WAS%20Idle%20Server%20Tuning%20-%20Aug%201%202013.pdf
https://ibm.biz/websphere_perf_pd_lab
https://techtv.bemyapp.com/#/conference/5f8f5646a6e08100205ee8ce

Practically,	this	number	is	limited	by	the	CPU	usage,	heartbeat	intervals,	and	number	of
available	sockets.	Review	the	potential	scaling	impacts	and	alternatives.

2.	 Processes	communicating	using	HAM	must	be	in	the	same	core	group	or	part	of	bridged	core
groups.

3.	 The	members	of	a	core	group	should	be	on	the	same	LAN.
4.	 The	members	of	a	cell	should	not	communicate	with	one	another	across	firewalls	as	that

provides	no	meaningful	additional	security	and	complicates	administration.
5.	 Create	dedicated	preferred	coordinators	for	large	core	groups	with	a	large	default	maximum

heap	size	(e.g.	-Xmx2g).
6.	 If	using	core	group	bridges,	create	dedicated	bridge	servers	with	a	large	default	maximum	heap

size	(e.g.	-Xmx2g).
7.	 Start	or	stop	groups	of	processes	at	the	same	time	to	reduce	the	effects	of	view	changes.
8.	 Change	the	HAM	protocols	to	the	latest	versions:	IBM_CS_WIRE_FORMAT_VERSION	and

IBM_CS_HAM_PROTOCOL_VERSION
3.	 If	you	have	many	processes	and	applications	are	not	using	any	function	that	requires	the	High

Availability	Manager,	it	is	generally	not	recommended	to	disable	HAM,	but	instead	to	create	multiple
cells	or	bridged	core	groups.

4.	 Very	large	topologies	may	employ	multiple	cells	for	the	same	application(s).	This	allows	for
deployment	of	new	application	versions	or	configurations	to	only	one	of	the	cells;	if	the	change	breaks,
it	affects	only	that	cell.	However,	multiple	such	cells	can	be	problematic	if	significant	database	schema
changes	are	made.

	

Clusters

Clusters	are	the	core	component	of	application	high	availability:

Clusters	are	sets	of	servers	that	are	managed	together	and	participate	in	workload	management.
Clusters	enable	enterprise	applications	to	scale	beyond	the	amount	of	throughput	capable	of
being	achieved	with	a	single	application	server.	Clusters	also	enable	enterprise	applications	to	be
highly	available	because	requests	are	automatically	routed	to	the	running	servers	in	the	event	of
a	failure.	The	servers	that	are	members	of	a	cluster	can	be	on	different	host	machines....	A	cell
can	include	no	clusters,	one	cluster,	or	multiple	clusters.

Servers	that	belong	to	a	cluster	are	members	of	that	cluster	set	and	must	all	have	identical
application	components	deployed	on	them.	Other	than	the	applications	configured	to	run	on
them,	cluster	members	do	not	have	to	share	any	other	configuration	data.	One	cluster	member
might	be	running	on	a	huge	multi-processor	enterprise	server	system,	while	another	member	of
that	same	cluster	might	be	running	on	a	smaller	system.

A	vertical	cluster	has	cluster	members	on	the	same	node,	or	physical	machine.	A	horizontal
cluster	has	cluster	members	on	multiple	nodes	across	many	machines	in	a	cell.	You	can
configure	either	type	of	cluster,	or	have	a	combination	of	vertical	and	horizontal	clusters.

	

Dynamic	Clusters

WAS	8.5	and	above	includes	Intelligent	Management	which	provides	dynamic	clusters.	Dynamic	clusters
provide	the	same	functionality	of	traditional	clusters	and	more.

	

Large	Topologies,	High	Availability	Manager

The	latest	guidance	on	core	group	size	is:

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=workloads-clusters-workload-management
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=domains-core-group-scaling-considerations

Core	groups	of	up	to	100	members	should	work	without	issue.
Core	groups	containing	more	than	100	members	should	work	without	issue	in	many
topologies.	Exceeding	a	core	group	of	200	members	is	not	recommended.

If	the	size	of	your	core	group	is	too	large,	consider	core	group	bridging.

It's	a	best	practice	to	use	the	newer	High	Availability	Manager	(HAManager)	protocols,	particularly	with
large	topologies:

IBM_CS_WIRE_FORMAT_VERSION=6.1.0
IBM_CS_HAM_PROTOCOL_VERSION=6.0.2.31

Other	considerations:

1.	 Set	a	preferred	coordinator:

Remember	that	coordinator	election	occurs	whenever	the	view	changes.	Electing	a	new
coordinator	uses	a	lot	of	resources	because	this	process	causes	increased	network	traffic
and	CPU	consumption.	Specifying	a	preferred	coordinator	server,	whenever	practical,
helps	eliminate	the	need	to	make	frequent	coordinator	changes...	Preferred	coordinator
servers	should	be	core	group	processes	that	are	cycled	as	infrequently	as	possible.	The
preferred	coordinator	servers	should	also	be	hosted	on	machines	with	excess	capacity.

2.	 Don't	use	a	deployment	manager	as	a	core	group	coordinator:

Even	though	it	is	possible	to	use	a	deployment	manager	as	a	core	group	coordinator,	it	is
recommended	that	you	use	an	application	server	that	is	not	a	deployment	manager.

3.	 Consider	tuning	some	of	the	HA	intervals.

In	general,	for	small	core	groups,	HA/DCS	issues	are	usually	symptoms	of	other	issues	like	CPU	exhaustion,
network	instability,	etc.

	

Core	Group	Bridges

Core	group	bridges	allow	communication	across	core	groups:

1.	 Core	group	bridges	be	configured	in	their	own	dedicated	server	process,	and	that	these	processes	have
their	monitoring	policy	set	for	automatic	restart.

2.	 For	each	of	your	core	groups,	you	set	the	IBM_CS_WIRE_FORMAT_VERSION	core	group	custom	property
to	the	highest	value	that	is	supported	on	your	environment.

3.	 To	conserve	resources,	do	not	create	more	than	two	core	group	bridge	interfaces	when	you	define	a
core	group	access	point.	You	can	use	one	interface	for	workload	purposes	and	another	interface	for
high	availability.	Ensure	that	these	interfaces	are	on	different	nodes	for	high	availability	purposes.	For
more	information,	see	the	frequently	asked	question	information	on	core	group	bridges.

4.	 You	should	typically	specify	ONLY	two	bridge	interfaces	per	core	group.	Having	at	least	two	bridge
interfaces	is	necessary	for	high	availability.	Having	more	than	two	bridge	interfaces	adds	unnecessary
overhead	in	memory	and	CPU.

	

Large	Topology	Theory

The	Best	Practices	for	Large	WebSphere	Application	Server	Topologies	whitepaper	provides	in-depth	study
of	large	WAS	topologies.	Useful	excerpts:

The	WebSphere	Application	Server	Network	Deployment	product	is	tuned	for	small	to	modest-

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=ccgbs-core-group-communications-using-core-group-bridge-service
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=domains-core-group-protocol-versions
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=domains-core-group-coordinator
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=groups-configuring-core-group-preferred-coordinators
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=group-discovery-failure-detection-settings
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=ccgbs-configuring-communication-between-core-groups-that-are-in-same-cell
https://www3.software.ibm.com/ibmdl/pub/software/dw/wes/0710_largetopologies/LargeWebSphereTopologies.pdf

sized	cells	in	its	default	configuration.	By	understanding	how	the	application	server	components
are	designed	and	behave,	it	is	possible	to	tune	the	product	so	that	large	topologies,	which	contain
hundreds	of	application	servers,	can	be	created	and	supported.

The	primary	thing	that	limits	the	size	of	the	cell	is	the	need	to	support	shared	information	across
all	or	a	large	set	of	application	server	processes.	The	breadth	and	currency	requirements	for
shared	information,	which	is	something	that	must	be	known	by	all	or	many	application	server
instances	within	the	cell,	present	a	challenge	for	any	distributed	computing	system.

An	instance	of	the	High	Availability	Manager	(HAManager)	runs	inside	every	process	in	a
Network	Deployment	cell,	including	the	deployment	manager,	node	agents,	application	servers
and	proxy	servers.	The	HAManager	provides	a	set	of	frameworks	and	facilities	that	other
WebSphere	services	and	components	use	to	make	themselves	highly	available.

The	HAManager	relies	on	core	groups.	A	core	group	is	a	collection	of	firmly	coupled	processes
which	collaborate	to	form	a	distributed	group	communication	service.	It	is	a	requirement	that	all
members	of	a	core	group	must	be	in	the	same	cell.

As	the	size	of	a	cell	increases,	it	may	be	necessary	to	partition	the	cell	into	multiple	core	groups,
because	core	groups	do	not	scale	to	the	same	degree	as	other	cell	constructs.	When	a	cell	has
been	partitioned,	it	is	often	necessary	to	share	routing	information	between	core	groups.	For
example,	a	web	application	located	in	core	group	1	may	call	an	enterprise	bean	application
located	in	core	group	2.	There	are	also	cases	where	it	is	necessary	to	share	routing	information
across	cells.	A	Core	Group	Bridge	provides	this	capability	to	extend	the	HAManager	bulletin
board	beyond	core	group	boundaries.	Core	groups	that	are	connected	with	a	core	group	bridge
can	share	routing	data.

While	there	are	no	WebSphere-defined	limits	on	the	size	of	a	core	group,	there	are	practical
limits.	The	practical	limits	are	primarily	driven	by	available	resources	and	stability.	The	amount
of	resource	used	by	the	HAManager	and	core	groups	depends	on	a	number	of	factors,	including
the	core	group	size,	core	group	configuration	settings,	the	amount	of	routing	data	required	to
support	the	deployed	applications,	and	quality	of	service	settings.

All	members	of	a	core	group	must	be	located	on	machines	that	are	connected	by	a	high	speed
local	area	network	(LAN).	Do	not	locate	members	of	the	same	core	group	on	machines	that	are
connected	by	a	wide-area	network	(WAN).	Do	not	place	members	of	a	cell	across	a	firewall,	as	a
firewall	provides	no	meaningful	security	between	members	of	WebSphere	processes.

For	active	heart-beating,	the	default	configuration	settings	provide	a	30	second	heartbeat	interval
and	a	180	second	heartbeat	timeout,	meaning	that	failovers	initiated	by	the	active	failure
detection	mechanism	take	longer	than	failovers	initiated	by	socket	closing	events.	This	default
setting	represents	a	compromise	between	failover	time	and	background	CPU	usage.	If	faster
failover	is	required,	then	the	configured	heartbeat	timeout	can	be	lowered,	at	the	cost	of
additional	background	CPU	usage.

The	amount	of	background	CPU	used	by	the	HAManager	for	heart-beating	and	failure	detection
is	affected	by	the	heartbeat	interval	and	core	group	size.	Starting	with	a	core	group	of	100
members	as	a	baseline	using	the	default	heartbeat	interval	of	30	seconds,	approximately	20%	of
the	background	CPU	used	by	a	WebSphere	product	application	server	at	idle	is	spent	on
heartbeat	processing.

Observing	a	high	background	CPU	at	idle	can	be	indicative	of	the	core	group	(or	groups)
approaching	the	practical	limit	for	your	infrastructure	and	deployment.	If	you	encounter	high
idle	CPU,	you	should	explore	decreasing	the	number	of	members	in	existing	core	groups	by
moving	processes	to	a	new	bridged	core	group	to	reduce	the	background	CPU.

It	is	a	best	practice	to	configure	one	or	more	preferred	coordinator	processes	for	each	core
group.	This	limits	the	movement	of	the	coordinator	and	number	of	state	rebuilds.	Ideally,	assign
processes	that	do	not	host	applications	and	are	located	on	machines	with	spare	capacity	as

preferred	coordinators.

In	a	topology	that	contains	core	group	bridges,	it	is	a	best	practice	to	create	stand-alone
application	server	processes	that	do	not	host	applications	to	function	as	both	bridge	interfaces
and	preferred	coordinators.

The	limits	on	the	size	of	a	core	group	are	practical,	not	programmatic.	The	most	important
considerations	in	determining	core	group	sizes	are	resource	usage	and	stability.

The	HAManager	uses	CPU,	memory,	and	network	resources.	Generally	speaking,	memory	is	not
a	major	factor	in	determining	core	group	size.	The	amount	of	long-term	heap	memory	required
for	routing	data	is	determined	by	the	topology	and	applications	installed,	not	by	the	core	group
size.	Splitting	a	cell	into	multiple	core	groups	does	not	reduce	the	memory	required	for	the
routing	data.	Therefore,	the	size	of	the	core	group	is	determined	almost	exclusively	based	on	the
CPU	required	to	establish	and	maintain	the	group	communication	service.

The	HAManager	uses	CPU	to	establish	network	connections	and	group	communication
protocols	between	running	members	of	the	core	group.	As	processes	are	started,	connections	are
opened	to	other	core	group	members	and	the	group	membership	and	communication	protocols
are	updated	to	include	the	newly	started	members	in	the	group,	or	"View".	This	change	is	often
referred	to	as	a	"View	Change."	As	processes	are	stopped,	connections	are	closed	and	the	group
membership	and	communication	protocols	are	updated	to	exclude	the	stopped	members.

Therefore,	starting	or	stopping	a	process	causes	the	HAManager	to	use	CPU	to	open	or	close
connections	and	update	the	group	communication	service.	This	means	that	starting	or	stopping
one	process	causes	some	CPU	usage	by	all	other	running	core	group	members.	As	the	size	of	the
core	group	grows,	the	number	of	connections	and	size	of	the	group	membership	will	grow,
meaning	that	more	CPU	will	be	used	for	large	core	groups	than	for	small	ones.	There	is	also
some	short-term	usage	of	heap	memory	to	send	the	network	messages	required	to	update	the
group	communication	service.

In	general,	it	is	more	efficient	to	start	or	stop	groups	of	processes	at	the	same	time,	allowing	the
HAManager	to	efficiently	consolidate	multiple	group	membership	and	communication	protocol
changes	within	a	single	view	change.

An	additional	factor	to	consider	is	the	number	of	sockets	that	are	consumed	to	create	the
connections	between	core	group	members.	The	members	of	a	core	group	form	a	fully	connected
network	mesh,	meaning	every	member	connects	directly	to	every	other	member.	The	total
number	of	sockets	used	to	connect	all	members	of	a	core	group	approaches	n2,	where	n	is	the
number	of	core	group	members.	Suppose	for	example	that	you	tried	to	create	a	core	group	of	200
members	on	a	single	machine.	The	number	of	sockets	required	would	be	200	x	199	or	39,800
sockets.	The	same	200	members	split	into	4	core	groups	of	50	members	each	would	require	4	x
50	x	49	or	9800	sockets.

Core	groups	containing	more	than	100	members	should	work	without	issue	in	many	topologies.
Exceeding	a	core	group	size	of	200	members	is	not	recommended.

Important:	Disabling	the	HAManager	might	cause	some	critical	functions	to	fail.

For	the	reasons	outlined	previously,	rather	than	disabling	HAManager,	either	create	multiple
cells	or	partition	the	cell	into	multiple	core	groups	and	create	bridges.	Even	if	you	do	not
currently	use	a	component	that	requires	HAManger,	you	may	require	one	at	a	later	time.

	

IBM_CS_DATASTACK_MEG

In	recent	versions	of	WAS,	the	default	values	of	IBM_CS_DATASTACK_MEG	and	the	transport	buffer	size	are

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=coordinators-core-group-custom-properties
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=groups-configuring-core-group-memory-utilization

usually	sufficient.	Setting	the	two	memory	sizes	does	not	increase	the	amount	of	static	heap	allocated	by	the
HAManager.	These	settings	affect	flow	control	(how	many	messages	are	allowed	to	pass	through	the
HAManager	at	any	one	point	in	time	before	we	stop	sending	messages).	Larger	settings	allow	more	efficient
communications.	We	have	seen	situations	(on	large	topologies)	where	having	the	memory	sizes	set	too	small
will	lead	to	problems.	Generally,	the	messages	have	already	been	allocated	by	the	time	they	reach	the
congestion	checker	so	this	doesn't	give	much	relief	on	heap	usage	although	may	help	with	some	stability
issues.

	

WAS	Performance	Monitoring
WAS	provides	two	broad	capabilities	for	performance	monitoring:	the	Performance	Monitoring
Infrastructure	(PMI),	and	Application	Response	Measurement	(ARM).	PMI	is	a	statistical	sampler	inside
WAS	that	periodically	gathers	averaged	or	instantaneous	data	on	various	components	such	as	HTTP	response
times,	thread	pools,	database	connection	pools,	messaging,	etc.	Application	Response	Measurement,	also
called	Request	Metrics,	traces	and	times	individual	requests	as	they	execute	through	various	components.
This	difference	in	approaches	was	covered	previously	in	the	Java	Profilers	chapter.	To	recap,	statistical
samplers	(e.g.	PMI)	are	very	lightweight	and	help	resolve	the	majority	of	issues;	however,	they	will	not
capture	data	on	particular	requests.	Whereas,	tracing	profilers	(e.g.	ARM)	are	much	heavier	weight	and	more
complex	to	analyze.	PMI	exposes	its	data	through	JMX	and	ARM	exposes	its	data	either	through	log	files	or
a	Java	agent	API.

	

Performance	Monitoring	Infrastructure	(PMI)

What	is	PMI?

The	Performance	Monitoring	Infrastructure	(PMI)	uses	a	client-server	architecture.	The	server	collects
performance	data	from	various	WebSphere	Application	Server	components.	A	client	retrieves	performance
data	from	one	or	more	servers	and	processes	the	data.	This	data	consists	of	counters	such	as	servlet	response
time	and	database	connection	pool	usage.

PMI	supports	five	sets	of	counters:	None,	Basic,	Extended,	All,	and	Custom.	The	Basic	set	is	enabled	by
default	and	has	an	overhead	of	approximately	2%,	whether	or	not	it	is	actively	being	logged	or	queried:

"Basic	overhead	~=	2%
Extended	overhead	~=	3%
Custom	~=	2%	-	6%"

http://www-01.ibm.com/support/docview.wss?uid=swg21206317

In	general,	it	is	recommended	to	run	with	PMI	enabled,	even	in	production.	Running	without	PMI	is
equivalent	to	flying	a	plane	without	instruments.	However,	for	the	purposes	of	a	benchmark,	after	you've
"completed"	your	tuning,	for	the	final	run	you	may	consider	reducing	or	disabling	PMI.	Disabling	PMI
completely	may	cause	a	small	throughput	improvement	(in	one	benchmark,	about	2%).

	

Various	Dimensions	of	Monitoring

It	is	useful	to	conceptualize	different	PMI	statistics	into	groups.	The	first	dimension	is	the	"end	user	view"	or
a	black	box	view	of	your	application.	This	gives	you	a	view	as	to	how	the	application	is	performing	and	what
are	the	response	times	taken	to	serve	the	requests.	For	example,	for	HTTP	requests,	the	PMI	counters	are
Web	Applications/ServiceTime.

http://www-01.ibm.com/support/docview.wss?uid=swg21206317

The	second	dimension	is	the	"resources	utilization	view"	of	the	system	involved	in	the	user	activity.	This
will	tell	you	the	basic	health	of	your	system,	including	CPU,	memory	consumption,	JVM	health,	as	well	as
the	health	of	various	resources	available	such	as	HTTP	sessions,	connection	pools,	thread	pools,	etc.	This
dimension	corresponds	to	the	"what	resource	is	constrained"	portion	of	the	problem	diagnosis.	For	example,
for	HTTP	requests,	the	PMI	counters	are	Thread	Pools/ActiveCount	and	JDBC	Connection
Pools/FreePoolSize,	as	well	as	JVM	Runtime/ProcessCPUUsage	and	JVM	Runtime/UsedMemory.

The	third	dimension	is	the	"application	view."	Application	code	typically	runs	as	a	servlet	or	entreprise	java
bean	to	access	various	back-ends	such	as	databases,	web	services,	etc.	For	example,	for	HTTP	requests,	the
PMI	counters	are	Enterprise	Beans/MethodResponseTime.

The	data	points	are	then	retrieved	using	a	web	client,	Java	client	or	JMX	client.	WebSphere	Application
Server	provides	the	built-in	Tivoli	Performance	Viewer	(TPV),	which	is	embedded	into	WAS	admin
console.

	

HTTP	Metrics	Endpoint

Since	WAS	9.0.5.7	and	8.5.5.20,	PMI	data	may	be	made	available	through	a	/metrics	URL	endpoint	in
Prometheus	format	by	installing	$WAS/installableApps/metrics.ear	into	an	application	server	or	the
deployment	manager.	A	sample	Grafana	dashboard	may	be	used	to	visualize	the	data.	See	an	article
describing	this	in	detail.

	

Tivoli	Performance	Viewer	(TPV)

The	Tivoli	Performance	Viewer	(TPV)	retrieves	performance	data	by	periodically	polling	the	PMI	service	of
the	application	server	that	is	being	monitored.	TPV	is	not	part	of	any	external	Tivoli	tool.	TPV	is	part	of	the
WebSphere	Application	Server	administrative	console.

To	minimize	the	performance	impact,	Tivoli	Performance	Viewer	polls	the	server	with	the	PMI	data	at	an
interval	set	by	the	user.	All	data	manipulations	are	done	in	the	Tivoli	Performance	Viewer.	The	Tivoli
Performance	Viewer's	GUI	provides	controls	that	enable	you	to	choose	the	particular	resources	and	counters
to	include	in	the	view	and	whether	to	visualize	in	chart	or	table	form.

In	a	Network	Deployment	environment,	the	node	agent	maintains	each	monitored	server's	per-user	buffer.
When	the	TPV	monitor	is	enabled	in	the	administrative	console,	the	deployment	manager	polls	the	node
agents	for	data	to	display.	Therefore,	it's	important	to	monitor	the	performance	of	the	deployment	manager
and	node	agents	themselves	when	using	PMI	and/or	TPV,	particularly	verbose	garbage	collection.	There	will
be	some	additional	overhead	when	enabling	TPV,	but	mostly	in	the	node	agents	and	particularly	in	the
deployment	manager.

In	the	administrative	console,	select	Monitoring	and	Tuning	>	Performance	Viewer	>	Current	activity,	the
check	the	box	next	to	"server1"	and	click	"Start	Monitoring."	After	that	operation	comples,	click	the	link	on
an	application	server:

https://www.ibm.com/support/pages/node/6436149
https://grafana.com/grafana/dashboards/14151
https://developer.ibm.com/tutorials/kibana-dashboards-for-was-traditional-on-ocp/

Expand	"Performance	Modules"	and,	for	example,	check	"JDBC	Connection	Pools,"	"Servlet	Session
Manager,"	and	"Web	Applications,"	expand	"Thread	Pools,"	and	check	"WebContainer,"	and	click	"View
Modules."

In	the	table	under	the	graph,	check	the	boxes	next	to	the	line	plots	that	should	be	drawn	in	the	graph.	For
example,	you	may	want	to	check	the	JDBC	"UseTime"	and	"WaitTime"	to	review	database	response	times
and	times	to	acquire	a	database	conection,	respectively.	By	default,	the	graph	updates	every	30	seconds.The
"Value"	and	"Scale	Value"	columns	display	the	last	value	of	the	counter	(the	Scale	Value	is	used	for	the
graph).	In	the	following	example,	the	average	JDBC	use	time	of	a	connection	is	18.5	milliseconds,	the
average	reseponse	time	of	all	servlets	is	1.85	milliseconds,	and	the	average	concurrently	active	threads	in	all
WAS	thread	pool	is	8.

The	modules	may	be	further	broken	down	in	detail.	For	example,	you	may	check	each	servlet	under	Web
Applications,	click	View	Modules,	and	review	the	average	response	time	per	servlet:

For	more	details,	please	visit	the	following	URLs.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tpvmonitor.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tpvcurrentactivity.html

	

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tpvmonitor.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tpvcurrentactivity.html

What	metrics	should	you	gather?

Summary	of	all	metrics:
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_dataorg.html

PMI	Basic	includes	the	following	counters.	The	most	commonly	useful	are	highlighted	in	bold:

Enterprise	Beans.CreateCount
Enterprise	Beans.RemoveCount
Enterprise	Beans.ReadyCount
Enterprise	Beans.MethodCallCount:	The	number	of	calls	to	the	business	methods	of	the	bean.
Enterprise	Beans.MethodResponseTime:	The	average	response	time	in	milliseconds	on	the	business
methods	of	the	bean.
Enterprise	Beans.PooledCount
Enterprise	Beans.MessageCount:	MDB:	The	number	of	messages	delivered	to	the	onMessage
method	of	the	bean.
Enterprise	Beans.PassiveCount
Enterprise	Beans.MethodReadyCount
Enterprise	Beans.ReadLockTime
Enterprise	Beans.WriteLockTime
Enterprise	Beans.LockCancelCount
Enterprise	Beans.AsyncWaitTime
Enterprise	Beans.AsyncQSize
Enterprise	Beans.AsyncCancelCount
Enterprise	Beans.AsyncFNFFailCount
Enterprise	Beans.AsyncFutureObjectCount
Enterprise	Beans.Discards
JDBC	Connection	Pools.CreateCount
JDBC	Connection	Pools.CloseCount
JDBC	Connection	Pools.PoolSize
JDBC	Connection	Pools.FreePoolSize:	The	number	of	free	connections	in	the	pool.
JDBC	Connection	Pools.WaitingThreadCount
JDBC	Connection	Pools.PercentUsed
JDBC	Connection	Pools.UseTime:	The	average	time	a	connection	is	used...	Difference	between	the
time	at	which	the	connection	is	allocated	and	returned.	This	value	includes	the	JDBC	operation	time.
JDBC	Connection	Pools.WaitTime:	The	average	waiting	time	in	milliseconds	until	a	connection	is
granted.
JVM	Runtime.HeapSize
JVM	Runtime.UsedMemory:	The	used	memory	in	the	JVM	run	time.
JVM	Runtime.UpTime
JVM	Runtime.ProcessCpuUsage:	The	CPU	Usage	(in	percent)	of	the	Java	virtual	machine.
JCA	Connection	Pools.CreateCount
JCA	Connection	Pools.CloseCount
JCA	Connection	Pools.PoolSize
JCA	Connection	Pools.FreePoolSize:	The	number	of	free	connections	in	the	pool.
JCA	Connection	Pools.WaitingThreadCount
JCA	Connection	Pools.UseTime:	Average	time	in	milliseconds	that	connections	are	in	use.
JCA	Connection	Pools.WaitTime:	The	average	waiting	time	in	milliseconds	until	a	connection	is
granted.
Servlet	Session	Manager.LiveCount:	The	number	of	local	sessions	that	are	currently	cached	in
memory	from	the	time	at	which	this	metric	is	enabled.
System	Data.CPUUsageSinceLastMeasurement:	The	average	system	CPU	utilization	taken	over	the
time	interval	since	the	last	reading...	On	SMP	machines,	the	value	returned	is	the	utilization	averaged
over	all	CPUs.
Thread	Pools.ActiveCount:	The	number	of	concurrently	active	threads.	Note:	The	ActiveCount	value
can	include	a	count	for	a	long-running	thread	that	is	used	for	asynchronous	I/O.	Under	these
circumstances,	it	is	possible	that	even	when	there	is	no	apparent	activity	on	the	thread	pool,	the
ActiveCount	value	will	never	reach	zero.

https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_dataorg.html

Thread	Pools.PoolSize
Transaction	Manager.ActiveCount
Transaction	Manager.CommittedCount
Transaction	Manager.RolledbackCount:	The	total	number	of	global	transactions	rolled	back.
Web	Applications.RequestCount:	The	total	number	of	requests	that	a	servlet	processed.
Web	Applications.ServiceTime:	The	response	time,	in	milliseconds,	of	a	servlet	request.

Warning:	If	you	are	using	a	generational	garbage	collection	policy	such	as	the	IBM	gencon	or	balanced
policies	(gencon	is	the	new	default	starting	in	WAS	version	8),	or	most	of	the	Oracle	policies,	then	be	aware
that	the	JVM	Runtime.UsedMemory	statistic	may	be	deceiving	because	it	is	sampling	based	on	time	rather
than	global	collections,	so	samples	may	report	high	memory	utilization	that	may	consist	of	a	lot	of	trash	that
will	be	cleaned	up	at	the	next	global	collection.	Use	verbose	garbage	collection	instead.

We	do	not	cover	the	PMI	Extended	set	because	we	recommend	that	if	you	do	plan	on	doing	complex	PMI
analysis,	that	you	should	use	the	Custom	set	instead.

In	general,	we	recommend	the	PMI	Custom	set	with	all	of	the	applicable	highlighted	counters	above	as	well
as	the	following	counters	(where	applicable):

Dynamic	Caching.HitsInMemoryCount:	The	number	of	requests	for	cacheable	objects	that	are	served
from	memory.	For	servlet	instance,	locate	it	under	template	group.	For	object	instance,	locate	it	under
object	group.
Dynamic	Caching.MissCount:	The	number	of	requests	for	cacheable	objects	that	were	not	found	in	the
cache.	For	servlet	instance,	locate	it	under	template	group.	For	object	instance,	locate	it	under	object
group.
JDBC	Connection	Pools.JDBCTime:	The	amount	of	time	in	milliseconds	spent	running	in	the	JDBC
driver	which	includes	time	spent	in	the	JDBC	driver,	network,	and	database
JDBC	Connection	Pools.PrepStmtCacheDiscardCount:	The	total	number	of	statements	discarded	by
the	least	recently	used	(LRU)	algorithm	of	the	statement	cache
Mediation.MediatedMessageCount:	The	number	of	messages	that	have	been	mediated	at	a	mediated
destination.
Mediation.MediationTime:	The	amount	of	time	in	milliseconds	taken	to	mediate	a	message	at	a
mediated	destination.
MEStats.BufferedReadBytes:	Number	of	bytes	of	data	that	have	been	received	from	the	network	and
are	held	pending	further	processing.	Large	values	might	indicate	that	the	application	server	is	unable
to	process	data	fast	enough	to	keep	up	with	the	other	application	server	processes	hosting	messaging
engines.
MEStats.BufferedWriteBytes:	Number	of	bytes	of	data	being	held	pending	transmission.	Large	values
might	indicate	network	congestion	or	application	server	processes	hosting	messaging	engines	that	are
unable	to	process	data	fast	enough	to	keep	up	with	the	application	server.
QueueStats.AvailableMessageCount:	The	number	of	messages	available	for	a	queue	for	consumption.
If	this	number	is	close	to	the	destination	high	messages	value	then	review	the	high	messages	value.
QueueStats.LocalMessageWaitTime:	The	time	spent	by	messages	on	this	queue	at	consumption.	If	this
time	is	not	what	was	expected	then	view	the	message	in	the	administrative	console	to	decide	what
action	needs	to	be	taken.
Servlet	Session	Manager.ExternalReadTime:	The	time	(milliseconds)	taken	in	reading	the	session	data
from	the	persistent	store.	For	multirow	sessions,	the	metrics	are	for	the	attribute;	for	single	row
sessions,	the	metrics	are	for	the	entire	session.	Applicable	only	for	persistent	sessions.	When	using	a
JMS	persistent	store,	you	can	choose	to	serialize	the	replicated	data.	If	you	choose	not	to	serialize	the
data,	the	counter	is	not	available.
Servlet	Session	Manager.ExternalWriteTime:	The	time	(milliseconds)	taken	to	write	the	session	data
from	the	persistent	store.	Applicable	only	for	(serialized)	persistent	sessions.	Similar	to	external	Read
Time.
Servlet	Session	Manager.LifeTime:	The	average	session	life	time	in	milliseconds	(time	invalidated	-
time	created)
Servlet	Session	Manager.NoRoomForNewSessionCount:	Applies	only	to	sessions	in	memory	with
AllowOverflow=false.	The	number	of	times	that	a	request	for	a	new	session	cannot	be	handled
because	it	exceeds	the	maximum	session	count.

Servlet	Session	Manager.SessionObjectSize:	High	impact	-	debugging	only:	The	size	in	bytes	of	(the
serializable	attributes	of)	in-memory	sessions.	Only	session	objects	that	contain	at	least	one
serializable	attribute	object	is	counted.	A	session	can	contain	some	attributes	that	are	serializable	and
some	that	are	not.	The	size	in	bytes	is	at	a	session	level.
Servlet	Session	Manager.TimeoutInvalidationCount:	The	number	of	sessions	that	are	invalidated	by
timeout.
Thread	Pools.ConcurrentHungThreadCount:	The	number	of	concurrently	hung	threads
Web	Applications.AsyncContext	Response	Time:	The	response	time	(in	milliseconds)	for	an
AsyncContext	associated	with	a	servlet	to	complete.
Web	Applications.ErrorCount:	Total	number	of	errors	in	a	servlet	or	JavaServer	Page	(JSP).
Web	services.ProcessedRequestCount:	The	number	of	requests	the	service	successfully	processed.
Web	services.ResponseTime:	The	average	response	time	(in	milliseconds)	for	a	successful	request

	

Java	Heap	Utilization

In	general,	instead	of	monitoring	heap	utilization	(which	has	various	issues	such	as	generational	false	positive
sawtooth	sampling),	if	possible,	we	recommend	monitoring	the	average	proportion	of	time	in	garbage
collection	over	a	rolling	window	which	can	be	calculated	from	the	garbage	collection	pause	times.	In
general,	we	recommend	that	the	proportion	of	time	in	GC	is	less	than	5-10%.

	

Configuring	Custom	PMI

In	the	WAS	administrative	console,	navigate	to	Servers	>	Server	Types	>	WebSphere	Application	Server	>
server1	>	Performance	Monitoring	Infrastructure	and	click	on	"Custom."	Click	on	the	"Runtime"	tab,	and	for
example,	expand	"Servlet	Session	Manager,"	click	on	"DayTrader3#web.war,"	check	"SessionObjectSize"
and	click	"Enable."

		

Logging	TPV	Data

TPV	is	a	live	view	but	for	most	system	monitoring,	problem	analysis,	or	performance	tuning,	you	will	want
to	look	at	the	data	after	the	fact.	TPV	supports	sending	the	data	to	log	files	and	loading	those	files	into	any
administrative	console	for	playback.	TPV	logging	is	a	bit	cumbersome	because	the	log	must	be	restarted
after	every	application	server	restart;	however,	this	can	be	automated	with	wsadmin	scripts.

Logging	TPV	data	in	a	production	environment	may	have	a	significant	overhead.	Consider	using	a
monitoring	product	such	as	ITCAM	before	trying	to	use	TPV	logging	in	production.

Select	Monitoring	and	Tuning	>	Performance	Viewer	>	Current	activity,	click	the	link	on	"server1,"	and
click	the	"Log"	link	under	settings	in	TPV:

Set	"Duration"	to	300000000,	"Maximum	File	Size"	to	100,	"Maximum	Number	of	Historical	Files"	to	5,
"Log	Output	Format"	to	"Binary,"	click	"Apply,"	and	then	click	"View	Modules."

Click	the	"Start	Logging"	button:

Files	will	be	writen	to	/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/logs/tpv/,	for	example.

Later,	when	you	want	to	view	the	logs,	in	the	administrative	console,	select	Monitoring	and	Tuning	>
Performance	Viewer	>	View	Logs,	click	"Browse,"	select
/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/logs/tpv/*.tpv,	and	click	"View	Log."

Check	the	performance	modules	as	before,	click	View	Modules,	and	use	the	backwards,	stop,	play,	and
forward	buttons	to	review	the	collected	data.	By	default,	the	log	will	be	played	back	automatically.

Note:	If	there	is	a	very	short	duration	of	data,	you	may	not	see	all	of	the	buttons	above	as	all	of	the	data	can
be	displayed	in	one	view.

	

Analyzing	TPV	XML	Data	on	the	Command	Line

Example	which	finds	all	TPV	XML	files,	extracts	out	the	node	and	JVM	name,	and	extracts	the	timestamp
and	WMQJCAResourceAdapter	thread	pool	ActiveCount	value:

find	.	-name	"tpv*xml"	|	while	read	tpvfile;	do	grep	-A	5	-e	"<Snapshot"	-e	"<Stats.*WMQJCAResourceAdapter\""	${tpvfile}	|	sed	's/.*time="\(..........\)\(...\)".*/\1/g'	|	grep	-e	"^[0-9]"	-e	"BRS	id=\"3\""	|	while	read	timestamp;	do	read	threadpool;	printf	"$(TZ=CAT-2	date	-d	@${timestamp}	+"%Y-%m-%d	%H:%M:%S"),$(echo	"${tpvfile}"	|	sed	's/.*\(node.\).*tpv_\(AppServer[^_]\+\)_.*/\1-\2/g'),$(echo	"${threadpool}"	|	sed	's/.*cur="\([^"]\+\)".*/\1/g')\n";	done;	done	|	sort	|	uniq

The	"id"	value	to	search	for	may	be	found	here:
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.javadoc.doc/web/apidocs/constant-
values.html

For	example,	the	above	was	found	by	searching	for	com.ibm.websphere.pmi.stat.WSThreadPoolStats	and
then	noting	that	ActiveCount	has	the	value	3.

	

PMI	Details

In	general,	use	ThreadPool.ActiveCount	over	ThreadPool.PoolSize,	as	the	former	is	the	average	concurrently
active	threads	in	a	thread	pool,	whereas	the	latter	is	simply	the	size	of	the	thread	pool.	ActiveCount	is	an
instantaneous	measurement.

	

Runtime	Performance	Advisors	(RPA)

Runtime	Performance	Advisors	(RPAs)	are	pieces	of	code	built	into	WAS	that	may	be	enabled	to	watch	for
certain	performance	issues	and	periodically	report	tuning	recommendations.	They	are	disabled	by	default:

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.javadoc.doc/web/apidocs/constant-values.html

Tuning	WebSphere	Application	Server	involves	analyzing	performance	data	and	determining
the	optimal	server	configuration.	This	determination	requires	considerable	knowledge	about	the
various	components	in	the	application	server	and	their	performance	characteristics.	The
performance	advisors	encapsulate	this	knowledge,	analyze	the	performance	data,	and	provide
configuration	recommendations	to	improve	the	application	server	performance.	Therefore,	the
performance	advisors	provide	a	starting	point	to	the	application	server	tuning	process	and	help
you	without	requiring	that	you	become	an	expert.
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tuningentrypoint.html

Note:	The	PMI	service	must	be	enabled	for	RPAs.	If	an	RPA	is	enabled	and	the	needed	PMI	counters	are	not
already	enabled,	then	the	configuration	will	be	updated	to	enable	those	counters.

An	RPA	runs	in	one	of	two	places
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cprf_choosingperfadvisor.html

1.	 In	each	application	server	JVM	and	provides	warning	level	advice	in	SystemOut/Runtime
Messages/JMX	(Performance	and	Diagnostic	Advisor).	Advice	provided	on:	WebContainer	and	ORB
thread	pools,	connection	pool	size,	persisted	session	sizes	and	times,	prepared	statement	cache	size,
session	cache	size,	and	memory	leak	detection.

2.	 In	the	node	agent	and	provides	advice	in	the	administrative	console	Tivoli	Performance	Viewer	(Tivoli
Performance	Viewer	advisor).	Advice	provided	on:	WebContainer	and	ORB	thread	pools,	connection
pool	size,	persisted	session	sizes	and	times,	prepared	statement	cache	size,	session	cache	size,	dynamic
cache	size,	and	JVM	heap	size.

In	general,	JVM	advisors	are	used	to	review	advice	after	the	fact,	whereas	TPV	advisors	are	used	when
actively	monitoring	TPV	data.

Warning:	If	you	are	using	a	generational	garbage	collection	policy	such	as	the	IBM	gencon	or	balanced
policies	(gencon	is	the	new	default	starting	in	WAS	version	8),	or	most	of	the	Oracle	policies,	then	be	aware
that	the	memory	leak	detection	advice	may	report	false	positives.	This	is	due	to	the	fact	that	the	advisor
samples	heap	usage	to	minimize	performance	impact;	however,	the	design	of	generational	policies	means
that	heap	usage	will	show	a	leaking	profile	in	between	full	garbage	collections	as	the	tenured	regions	fill	up
with	garbage.	Starting	in	WAS	8.5,	instead	of	using	the	memory	leak	detection	advice,	you	should	use	the
excessive	memory	usage	and	excessive	garbage	collection	health	policies	with	usexdHeapModule=true.	This
has	been	resolved	in	APAR	PI28801:	http://www-01.ibm.com/support/docview.wss?uid=swg1PI28801

	

Application	Response	Measurement	(ARM)	/	Request	Metrics

Request	metrics	is	a	tool	that	enables	you	to	track	individual	transactions,	recording	the
processing	time	in	each	of	the	major	WebSphere	Application	Server	components...	As	a
transaction	flows	through	the	system,	request	metrics	includes	additional	information	so	that	the
log	records	from	each	component	can	be	correlated,	building	up	a	complete	picture	of	that
transaction.

Because	request	metrics	tracks	individual	transactions,	using	it	imposes	some	performance
implications	on	the	system.	However,	this	function	can	be	mitigated	by	the	use	of	the	request
filtering	capabilities.

For	example,	tools	can	inject	synthetic	transactions.	Request	metrics	can	then	track	the	response
time	within	the	WebSphere	Application	Server	environment	for	those	transactions.	A	synthetic
transaction	is	one	that	is	injected	into	the	system	by	administrators	to	take	a	proactive	approach
to	testing	the	performance	of	the	system.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_requestmetrics.html

"Performance	Monitoring	Infrastructure	(PMI)	provides	information	about	average	system	resource	usage
statistics,	with	no	correlation	between	the	data	across	different	WebSphere	Application	Server	components.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tuningentrypoint.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cprf_choosingperfadvisor.html
http://www-01.ibm.com/support/docview.wss?uid=swg1PI28801
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_requestmetrics.html

For	example,	PMI	provides	information	about	average	thread	pool	usage.	Request	metrics	provides	data
about	each	individual	transaction,	correlating	this	information	across	the	various	WebSphere	Application
Server	components	to	provide	an	end-to-end	picture	of	the	transaction"
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cprf_positioningrm.html

Enabling	Request	Metrics:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_rqenable.html
and
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/uprf_rrequestmetrics.html
and
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/uprf_settrace.html

Description	of	ARM	data	in	SystemOut.log:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_tracerecord.html

After	ARM	is	enabled,	to	get	data	in	the	web	server	plugin,	you	must	regenerate	the	configuration	file:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_webserver.html

	

Enabling	Request	Metrics

The	overhead	of	"Standard	Logs"	may	be	in	the	tens	of	percent	or	more,	mostly	due	to	the	additional	volume
of	logging.	Consider	using	HPEL	if	available	to	reduce	this.

WebSphere	Administrative	Console	>	Monitoring	and	Tuning	>	Request	Metrics
Ensure	"Prepare	Servers	for	Request	metrics	collection"	is	checked	(by	default,	it	is).
Under	"Components	to	be	instrumented,"	either	select	"All"	or	select	"Custom,"	and	multi-select	the
components;	for	example,	"Servlet,"	"Servlet	Filter",	and	"WebServices"
Under	"Trace	level,"	select	"Performance_Debug,"	unless	you	also	need	to	see	Servlet	Filters,	in	which
case	select	"Debug"
Under	"Request	Metrics	Destination,"	check	"Standard	Logs"
Click	"OK,"	save	and	synchronize.	If	"Prepare	Servers	for	Request	metrics	collection"	was	already
checked	(the	default),	then	the	application	server(s)	do	not	need	to	be	restarted.
The	output	will	go	to	SystemOut.log	and	it	may	be	significant.	Ensure	that	enough	SystemOut
historical	files	and	sizes	are	configured:	http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/utrb_jvmlogs.html?
cp=SSAW57_8.5.5%2F3-18-6-479&lang=en

For	example	this	will	write	up	to	1GB:
File	Size	>	Maximum	Size	=	250MB
Maximum	Number	of	Historical	Log	Files	=	4

Here	is	example	output	(the	elapsed	portion	is	in	milliseconds):

[11/7/13	15:11:45:178	PST]	0000008a	PmiRmArmWrapp	I		
PMRM0003I:		parent:ver=1,ip=127.0.0.1,time=1383865303230,pid=3807,reqid=6,event=1	-
current:ver=1,ip=127.0.0.1,time=1383865303230,pid=3807,reqid=7,event=1
type=URI	detail=/AppWithFilter/TestServlet	elapsed=5001

[11/7/13	15:11:45:180	PST]	0000008a	PmiRmArmWrapp	I		
PMRM0003I:		parent:ver=1,ip=127.0.0.1,time=1383865303230,pid=3807,reqid=6,event=1	-
current:ver=1,ip=127.0.0.1,time=1383865303230,pid=3807,reqid=6,event=1
type=Servlet	Filter	detail=TestFilter	elapsed=15003

Note	that	request	metrics	is	enabled	at	a	cell	level.	Therefore,	once	the	setting	changes	are	saved	and
synchronized,	all	servers	will	immediately	start	logging	request	and	this	can	impact	performance	on	all	of
them.	You	can	disable	this	on	some	servers	by	appending	the	diagnostic	string	com.ibm.ws.pmi.*=none
before	applying	the	setting	changes.

	

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cprf_positioningrm.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_rqenable.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/uprf_rrequestmetrics.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/uprf_settrace.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_tracerecord.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_webserver.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/utrb_jvmlogs.html?cp=SSAW57_8.5.5%252F3-18-6-479&lang=en

Request	Metrics	Analyzer	Next

The	following	GUI	tool	is	a	very	nice	way	to	explore	request	metrics	logs:
https://github.com/skliche/request-metrics-analyzer-next

	

Request	Metrics	Filters

Request	Metrics	has	a	dramatic	performance	overhead	when	tracking	every	request,	but	it	has	various	filters
that	only	print	data	for	requests	that	match	the	filters.	One	technique	to	use	this	in	production	is	to	add	a	filter
for	a	particular	IP	address.	When	a	problem	occurs,	use	this	client	computer	to	make	requests	and	that	way
you	will	see	how	the	various	components	are	responding	for	just	those	requests.

Click	on	"Filters"
Click	on	"SOURCE_IP"

Check	"Enable"
Click	OK
Click	on	"Filter	Values"

Click	"New"
Value=$IP_ADDRESS
Check	"Enable	filter"
Click	OK

If	you	are	not	seeing	something,	first	confirm	all	the	above	are	checked	(sometimes	settings	are	lost	because
of	not	clicking	OK	on	the	proper	screens).	Next,	confirm	you're	using	the	right	IP	address.	You	can	turn	on
NCSA	access	logging	in	WAS	to	see	what	the	IP	address	is	of	the	incoming	user	(see	below).

	

Sampling	Profiler

Consider	enabling	a	sampling	profiler,	even	in	production.	This	does	have	a	cost	but	provides	very	rich
troubleshooting	data	on	what	Java	code	used	most	of	the	CPU,	what	monitors	were	contended,	and	periodic
thread	information.	Benchmarks	for	Health	Center	showed	an	overhead	of	<2%.	Gauge	the	overhead	in	a
performance	test	environment.

IBM	Java:
1.	 Add	the	following	to	generic	JVM	arguments	and	restart:

-Xhealthcenter:level=headless

2.	 After	each	time	the	JVM	gracefully	stops,	a	healthcenter*.hcd	file	is	produced	in	the	current
working	directory	(e.g.	$WEBSPHERE/profiles/$PROFILE/).

	

Logging	and	Tracing
The	SystemOut.log	is	the	main	log	file	(e.g.	$WAS/profiles/$PROFILE/logs/$SERVER/SystemOut.log)
and	contains	WAS	messages	and	System.out	messages.	The	SystemErr.log	is	also	an	important	log	file
that	contains	System.err	messages	(for	example,	from	Throwable.printStackTrace).	The
native_stderr.log	file	is	another	important	file	as	it	includes	all	native	stderr	messages	such	as	JVM
warnings	and	errors	(in	general,	search	for	JVM).	The	native_stdout.log	is	a	lesser	used	file	and	contains
native	stdout	messages.

Unless	you	are	consuming	JMX	notifications	for	log	events,	disable	them	to	improve	performance	of	logging
and	tracing	by	up	to	50%	using	the	system	property	-Dcom.ibm.ejs.ras.disablerasnotifications=true.

https://github.com/skliche/request-metrics-analyzer-next

Starting	in	WAS	8,	the	IBM	service	log	(activity.log)	is	disabled	by	default.	Before	WAS	8,	it	is
recommended	to	disable	the	activity.log.

	

Trace	Overhead

The	overhead	of	WAS	diagnostic	trace	is	proportional	to	the	breadth	of	the	trace	specification	and	the
number	of	concurrent	threads	(e.g.	requests)	driving	said	tracers.	The	overhead	is	inversely	proportional	to
the	filesystem	speed,	available	system	capacity	(e.g.	CPU	&	caches),	number	of	CPU	core	threads,	and
available	physical	memory.	It's	very	difficult	to	estimate	the	overhead	of	a	trace	specification,	even	for	those
that	are	commonly	used,	because	just	one	of	these	variables	may	have	a	significant	effect.	For	example,	the
broad	WAS	security	trace	which	enables	all	security	tracers	may	have	very	different	overhead	depending	on
which	security	features	are	configured.	Therefore,	a	customer	should	run	a	baseline	performance	test	that's
representative	of	production	traffic	in	a	test	environment,	and	then	run	the	same	test	with	the	desired	trace
enabled,	and	calculate	the	overhead.

In	one	DayTrader	benchmark,	the	diagnostic	trace	ejbcontainer=fine,	which	is	a	detailed	trace	of	EJB
activity,	reduced	throughput	by	75%.	Starting	with	WAS	8,	the	optional	High	Performance	Extensible
Logging	(HPEL)	diagnostic	trace	alternative	(with	TextLog	disabled)	reduced	that	same	benchmark
overhead	by	50%.	With	both	WAS	diagnostic	trace	systems,	if	log	statement	JMX	notifications	are	not
needed,	-Dcom.ibm.ejs.ras.disablerasnotifications=true	should	also	be	used.

Here	are	some	ideas	to	improve	the	trace	experience:

1.	 On	WAS	>=8,	switch	to	HPEL	with	the	TextLog	disabled	(for	convenience,	the	TextLog	may	be
enabled	for	only	a	slightly	penalty	as	it	doesn't	contain	traces).

2.	 Tune	the	speed	of	the	filesystem	where	the	trace	is	written.
3.	 Consider	using	operating	system	RAMdisks	to	dedicate	RAM	to	a	virtual	filesystem	and	write	the

traces	to	that	mount.
4.	 If	possible,	use	the	generic	JVM	argument	-Dcom.ibm.ejs.ras.disablerasnotifications=true
5.	 If	the	problem	can	be	reproduced	with	a	single	user,	isolate	a	production	server	from	production	traffic,

enable	all	the	full	required	traces,	and	use	some	mechanism	to	only	allow	one	problematic	user	onto
that	server	(e.g.	direct	IPs,	ODR	routing	rules,	etc.).

6.	 Disable	the	IBM	service	log	(activity.log).	On	WAS	8,	and	later	versions,	it	is	disabled	by	default.
7.	 If	trace	is	being	written	to	a	networked	filesystem,	write	to	a	local	filesystem	instead	(or	RAMdisk).
8.	 Ask	IBM	development	for	a	reduced	trace	string	or	diagnostic	patch	with	very	specific	trace	points.

	

Controlling	Trace	Levels

The	diagnostic	trace	level	defaults	to	*=info.	The	level	specification	is	a	colon-delimited	list	of	the	form
name=level	and	it	may	be	changed	dynamically	at	runtime:	http://www-01.ibm.com/support/docview.wss?
uid=swg21254706

Depending	on	the	trace	specification	and	application	activity,	the	volume	of	trace	written	may	be	very	high.
It	is	often	recommended	to	update	the	trace	log	rotation	to	something	like	File	>	Maximum	Size	=	250MB
and	Maximum	Number	of	Historical	Log	Files	=	4	(http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/utrb_traceservice.html?
cp=SSAW57_8.5.5%2F3-18-6-295&lang=en).

Print	the	current	trace	level	using	wsadmin	-lang	jython:

AdminControl.getAttribute(AdminControl.completeObjectName("type=TraceService,process=server1,*"),	"traceSpecification")

Dynamically	update	trace	level	using	wsadmin	-lang	jython:

http://www-01.ibm.com/support/docview.wss?uid=swg21254706
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/utrb_traceservice.html?cp=SSAW57_8.5.5%252F3-18-6-295&lang=en

AdminControl.setAttribute(AdminControl.completeObjectName("type=TraceService,process=server1,*"),	"traceSpecification",	"*=all")

In	WAS	>=	7.0.0.37,	8.0.0.10,	and	8.5.5.5,	a	new	setTraceSpecification	method	has	been	added	which
returns	the	finally	applied	string	(for	verification	or	typos	and	optimizations):

AdminControl.invoke(AdminControl.completeObjectName("type=TraceService,process=server1,*"),	"setTraceSpecification",	"*=all:*=info")

The	diagnostic	trace	level	may	also	be	used	to	control	java.util.logging.Logger	(JUL)	thresholds.	Here	is	an
example	servlet	with	a	JUL:
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/java/SimpleWebServlet.java

If	the	WAS	diagnostic	trace	level	is	set	to	*=info:	com.ibm.simpleweb.SimpleWebServlet=all,	then	trace.log
will	show	matching	JUL	statements:

[10/6/14	12:45:15:158	PDT]	0000009f	SimpleWebServ	>	com.ibm.simpleweb.SimpleWebServlet	service	ENTRY
[10/6/14	12:45:15:159	PDT]	0000009f	SimpleWebServ	<	com.ibm.simpleweb.SimpleWebServlet	service	RETURN

However,	you	will	receive	the	following	warning	when	using	such	a	specification	in	the	administrative
console.	This	warning	may	be	disregarded.

The	configured	trace	state	included	the	following	specifications	that	do	not	match	any	loggers
currently	registered	in	the	server:	''com.ibm.simpleweb.SimpleWebServlet=all''

	

High	Performance	Extensible	Logging	(HPEL)

Consider	using	High	Performance	Extensible	Logging	(HPEL).	In	benchmarks,	HPEL	reduced	the	overhead
of	logs	and	trace	by	about	50%.	In	general,	unless	you	are	listening	to	log	notifications,	also	consider	setting
-Dcom.ibm.ejs.ras.disablerasnotifications=true.	If	possible,	disable	the	HPEL	text	log	to	further
improve	performance.	The	text	log	content	is	redundant	and	only	for	convenience;	the	same	information	is
stored	in	the	binary	repositories.	Note	that	HPEL	does	not	use	less	disk	space	and	in	fact	will	use	more	disk
space;	the	performance	improvements	occur	for	other	reasons.

	

logViewer

The	logViewer	tool	is	used	to	read	binary	HPEL	logs.	There	are	various	options,	including	a	-monitor
[seconds]	option	to	dynamically	tail	logs	(http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rtrb_logviewer.html?
lang=en):

$	logViewer	-monitor

	

Cross	Component	Trace	(XCT)

XCT	is	available	starting	in	WAS	8.5.	XCT	adds	a	unique	request	identifier	to	log	and	trace	entries.	XCT	is
similar	to	request	metrics	in	many	ways,	but	it	is	more	deeply	ingrained	into	the	flow.	XCT	requires	that
High	Performance	Extensible	Logging	(HPEL)	is	enabled	instead	of	classic	logging,	and	you	also	have	to
enable	XCT	itself.

There	are	four	XCT	modes:	Disabled,	Enabled,	Enabled+XCT	Records,	Enabled+XCT	Records+Data
Snapshots.	The	simple	Enabled	mode	adds	a	unique	request	ID	to	every	applicable	log	and	trace	record.	You
can	dump	this	data	using	the	HPEL	logViewer	with	the	"-format	advanced"	argument.	For	example,	I've	got
an	application	that	causes	a	transaction	timeout.	Traditionally,	all	you	would	get	is	a	WTRN0124I	message
with	the	last	thread	stack	and	a	WTRN0041I	message	noting	the	timeout.	I	enabled	the	minimal	tracing	of

https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/java/SimpleWebServlet.java
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=applications-high-performance-extensible-logging-hpel
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rtrb_logviewer.html?lang=en

getting	WAS	response	times	and	then	ran	logViewer	-format	advanced:

[7/10/12	9:11:45:121	PDT]	00000099	I	UOW=	source=com.ibm.websphere.XCT	org=null
prod=null	component=null	thread=[WebContainer	:	2]	requestID=[AABHT9d/5yd-
AAAAAAAAAAB]	BEGIN	AABHT9d/5yd-AAAAAAAAAAB	00000000000-cccccccccc2
HTTPCF(InboundRequest	/TransactionTest/Test	RemoteAddress(0:0:0:0:0:0:0:1)
RequestContext(2072483128))
[7/10/12	9:13:45:125	PDT]	0000007e	I	UOW=	source=com.ibm.ws.tx.jta.TimeoutManager
org=IBM	prod=WebSphere	component=Application	Server	thread=[Non-deferrable	Alarm	:	1]
WTRN0124I:	When	the	timeout	occurred	the	thread	with	which	the	transaction	is,	or	was	most
recently,	associated	was	Thread[WebContainer	:	2,5,main].	The	stack	trace	of	this	thread	when
the	timeout	occurred	was:	...

	

First	Failure	Data	Capture	(FFDC)

Since	7.0.0.19,	after	an	FFDC	exception	is	thrown,	the	algorithm	is	here:	http://www-
01.ibm.com/support/docview.wss?uid=swg1PM39875

"...for	the	FFDC	summary	file	to	be	updated	for	a	given	incident...
1.		When	there	have	been	more	than	10	incidents	and	at	least	a	minute	has	passed	after	the	last	time	the	summary	table	was	updated.
2.		It	has	been	more	than	5	minutes	since	the	last	time	the	summary	table	was	updated."

When	this	happens,	the	same	file	name	is	used	-	${server}_exception.log	-	but	the	file	is	simply	truncated
and	rewritten.

The	_exception.log	file	is	only	rotated	on	JVM	startup:	http://www-01.ibm.com/support/docview.wss?
uid=swg1PK86345

The	FFDC1003I	message	is	only	printed	the	first	time	each	"type"	of	an	FFDC	exception	is	thrown.	After
that,	only	the	summary	_exception.log	file	is	updated.	This	can	be	configured	differently	but	it	would	create	a
lot	more	FFDC	log	files.

Example	_exception.log:

	Index		Count		Time	of	first	Occurrence				Time	of	last	Occurrence					Exception	SourceId	ProbeId
------+------+---------------------------+---------------------------+---------------------------
					0						4			10/20/14	10:54:32:479	PDT			10/20/14	11:05:32:584	PDT	java.io.IOException	com.ibm.ws.management.discovery.DiscoveryService.sendQuery	189	...txt
					1						4			10/20/14	11:23:16:003	PDT			10/20/14	11:23:27:173	PDT	org.omg.CORBA.INV_OBJREF	com.ibm.ws.giop.message.GIOPRequestMessage.populate	192	...txt

	

Transaction	Log

The	Transaction	log	directory	can	be	set	in	the	administrative	console	by	navigating	to	Servers	=>
Application	Servers	=>	server_name	=>	Container	Services	=>	Transaction	Service.

When	an	application	that	runs	on	the	application	server	accesses	more	than	one	resource,	the
application	server	stores	transaction	information	in	the	product	directory	so	that	it	can	coordinate
and	manage	the	distributed	transaction	correctly.	When	there	is	a	higher	transaction	load,	storing
persistent	information	in	this	way	can	slow	the	performance	of	the	application	server	because	it
depends	on	the	operating	system	and	the	underlying	storage	systems.	To	achieve	better
performance,	designate	a	new	directory	for	the	log	files	on	a	separate,	physically	larger,	storage
system.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/udat_contranserv.html

The	transaction	log	is	most	commonly	stored	either	in	a	shared	filesystem	or	in	a	database.	In	general,
internal	benchmarks	show	that	using	a	database	is	approximately	10%	slower,	but	the	time	spent	processing

http://www-01.ibm.com/support/docview.wss?uid=swg1PM39875
http://www-01.ibm.com/support/docview.wss?uid=swg1PK86345
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/udat_contranserv.html

the	transaction	log	is	usually	a	small	proportion	of	the	total	transaction	time,	so	this	difference	is	often
imperceptible.

	

Database	Transaction	Log

In	terms	of	multi	threading,	the	log	is	written	to	on	multiple	threads	though	there	is	serialization	between	the
threads	so	that	only	one	writes	to	the	database	at	a	time.	The	threads	involved	are	simply	the	threads	that	the
application	is	executing	transactions	on	(so	threads	across	multiple	thread	pools).	In	order	for	that	to	scale	the
basic	idea	is	that	one	thread	is	capable	of	writing	data	on	behalf	of	several	other	threads	(i.e.	it	batches	SQL
statements)	and	the	other	threads	wait	on	an	intrinsic	lock	but	once	acquired	they	can	return	without	needing
to	write	to	the	database	since	their	changes	have	been	persisted	already.

-Dcom.ibm.ws.recoverylog.custom.jdbc.ThrottleThreshold	is	an	integer	value	that	defaults	to	6	and	is
related	to	batching	of	updates.	It	is	a	measure	of	how	many	threads	are	requesting	that	their	data	is	persisted
to	the	logs.	When	the	number	is	reached,	then	the	log	service	prioritises	the	forcing	threads	so	they	can
return	with	a	no-op	after	the	current	thread	writing	their	data	has	dropped	the	intrinsic	lock	(to	a	rough
approximation).	In	theory,	in	a	very	busy	system	with	very	high	levels	of	concurrency,	increasing	that	value
could	help	throughput	(fewer,	bigger	batches)	and	conversely	if	concurrency	was	quite	low	then	a	smaller
value	may	have	some	value	in	batching	the	SQL	more	efficiently.

	

Networked	Filesystem	(NFS)

http://www-01.ibm.com/support/docview.wss?uid=swg21456699

	

CPU	Starvation	Detected	Warning	(HMGR0152W)

[9/23/14	14:17:05:923	CDT]	0000008f	CoordinatorCo	W	HMGR0152W:	CPU	Starvation	detected.	Current
thread	scheduling	delay	is	7	seconds.

The	HMGR0152W	starvation	detection	warning	works	by	looping,	noting	time	X,	calling
java/lang/Thread.sleep(Y=IBM_CS_THREAD_SCHED_DETECT_PERIOD,	default	30	seconds),	noting
time	Z	upon	return,	and	then	reporting	Z-Y-X	as	the	scheduling	delay	if	it	is	over	the	threshold
IBM_CS_THREAD_SCHED_DETECT_ERROR	(default	5	seconds).

For	example,	by	default,	a	report	of	a	7	second	scheduling	delay	means	that	a	thread	called	Thread.sleep(30),
but	returned	37	seconds	later,	2	seconds	more	than	the	threshold.

If	this	message	appears	frequently,	or	if	this	message	occurs	at	about	the	same	time	as	significant
performance	slowdowns	or	timeouts,	you	may	want	to	investigate	further.	This	message	will	disappear	when
the	thread	scheduling	delay	has	been	corrected.	Perform	resource	analysis	to	determine	the	proper	course	of
action.	Common	items	to	review:

The	most	common	cause	of	this	is	a	long,	stop-the-world	garbage	collection	cycle,	because	Java
threads,	including	the	timer	that	prints	this	warning,	cannot	be	dispatched	during	this	cycle.	Review
verbose:gc	or	a	monitoring	tool	for	garbage	collections	immediately	preceding	this	warning	that	take
longer	than	IBM_CS_THREAD_SCHED_DETECT_ERROR.
Review	operating	system	statistics	immediately	preceding	the	warning	such	as	high	processor
utilization,	processor	run	queues	greater	than	available	processors,	low	memory	and	paging	activity,
virtualization	steal	times,	etc.	Operating	system	statistics	are	often	gathered	at	intervals	such	as	60	or
300	seconds.	If	this	interval	is	greater	than	IBM_CS_THREAD_SCHED_DETECT_ERROR,	then	the
relevant	symptoms	may	be	averaged	out	of	the	operating	system	numbers.	In	this	case,	reduce	the
operating	system	statistics	gathering	interval	to	less	than	or	equal	to	the

http://www-01.ibm.com/support/docview.wss?uid=swg21456699

IBM_CS_THREAD_SCHED_DETECT_ERROR.

http://www-01.ibm.com/support/docview.wss?uid=swg21236327

	

Thread	Pools
Thread	pools	and	their	corresponding	threads	control	all	execution	of	the	application.	The	more	threads	you
have,	the	more	requests	you	can	be	servicing	at	once.	However,	the	more	threads	you	have	the	more	they	are
competing	for	shared	resources	such	as	CPUs	and	Java	heap	and	the	slower	the	overall	response	time	may
become	as	these	shared	resources	are	contended	or	exhausted.	If	you	are	not	reaching	a	target	CPU
percentage	usage,	you	can	increase	the	pool	sizes,	but	this	will	probably	require	more	memory	and	should	be
sized	properly.	If	there	is	a	bottleneck	other	than	the	CPUs,	then	CPU	usage	will	stop	increasing.	You	can
think	of	thread	pools	as	queuing	mechanisms	to	throttle	how	many	concurrent	requests	you	will	have	running
at	any	one	time	in	your	application.

The	most	commonly	used	(and	tuned)	thread	pools	within	the	application	server	are:

1.	 HTTP:	WebContainer
2.	 JMS	(SIB):	SIBJMSRAThreadPool
3.	 JMS	(MQ	Activation	Specifications):	WMQJCAResourceAdapter
4.	 JMS	(MQ	Listener	Ports):	MessageListenerThreadPool
5.	 EJB:	ORB.thread.pool
6.	 z/OS:	WebSphere	WLM	Dispatch	Thread

	

Sizing	Thread	Pools

Understand	which	thread	pools	your	application	uses	and	size	all	of	them	appropriately	based	on	utilization
you	see	in	tuning	exercises	through	thread	dumps	or	PMI/TPV.

If	the	application	server	ends	up	being	stalled	1/2	of	the	time	it	is	working	on	an	individual	request	(likely
due	to	waiting	for	a	database	query	to	start	returning	data),	then	you	want	to	run	with	2X	the	number	of
threads	than	cores	being	pinned.	Similarly	if	it's	25%,	then	4X,	etc.

Use	TPV	or	the	IBM	Thread	and	Monitor	Dump	Analyzer	to	analyze	thread	pools.

Thread	pools	need	to	be	sized	with	the	total	number	of	hardware	processor	cores	in	mind.

If	sharing	a	hardware	system	with	other	WAS	instances,	thread	pools	have	to	be	tuned	with	that	in
mind.
You	need	to	more	than	likely	cut	back	on	the	number	of	threads	active	in	the	system	to	ensure	good
performance	for	all	applications	due	to	context	switching	at	OS	layer	for	each	thread	in	the	system
Sizing	or	restricting	the	max	number	of	threads	an	application	can	have,	will	help	prevent	rouge
applications	from	impacting	others.

The	ActiveCount	statistic	on	a	thread	pool	in	WebSphere	is	defined	as	"the	number	of	concurrently	active
threads"	managed	by	that	thread	pool.	This	metric	is	particularly	useful	on	the	WebContainer	thread	pool
because	it	gives	an	indication	of	the	number	of	HTTP	requests	processed	concurrently.

Note:	The	concurrent	thread	pool	usage	(PMI	ActiveCount)	may	not	necessarily	be	the	concurrently	"active"
users	hitting	the	application	server.	This	is	not	due	just	to	human	think	times	and	keepalive	between	requests,
but	also	because	of	asynchronous	I/O	where	active	connections	may	not	be	actively	using	a	thread	until	I/O
activity	completes	(non-blocking	I/O).	Therefore,	it	is	incorrect	to	extrapolate	incoming	concurrent	activity
from	snapshots	of	thread	pool	usage.

http://www-01.ibm.com/support/docview.wss?uid=swg21236327

If	this	metric	approaches	its	maximum	(which	is	determined	by	the	maximum	pool	size),	then	you	know	that
either	the	pool	is	simply	too	small	or	that	there	is	a	bottleneck	that	blocks	the	processing	of	some	of	the
requests.

One	rule	of	thumb	is	to	use	5	threads	per	server	CPU	core	for	the	default	thread	pool,	and	10	threads	per
server	CPU	for	the	ORB	and	Web	container	thread	pools.	For	a	machine	with	up	to	4	CPUs,	the	default
settings	are	usually	a	good	start	for	most	applications.	If	the	machine	has	multiple	application	server
instances,	then	these	sizes	should	be	reduced	accordingly.	Conversely,	there	could	be	situations	where	the
thread	pool	size	might	need	to	be	increased	to	account	for	slow	I/O	or	long	running	back-end	connections.

Recent	versions	of	WAS	report	when	a	thread	pool	has	reached	80%	or	100%	of	maximum	capacity.
Whether	or	not	this	is	sustained	or	just	a	blip	needs	to	be	determined	with	diagnostics	or	PMI.

WSVR0652W:	The	size	of	thread	pool	"WebContainer"	has	reached	100	percent	of	its	maximum.

	

Hung	Thread	Detection

WAS	hung	thread	detection	may	be	more	accurately	called	WAS	long	response	time	detection	(which
defaults	to	watching	requests	taking	more	than	10-13	minutes)	and	the	"may	be	hung"	warning	may	be	more
accurately	read	as	"has	been	executing	for	more	than	the	configured	threshold."	The	thread	may	or	may	not
be	actually	hung	at	the	time	of	the	detection.

WSVR0605W	is	the	warning	printed	when	WAS	detects	that	a	unit	of	work	is	taking	longer	than	the	WAS
hung	thread	detection	threshold.	Hang	detection	only	monitors	most	WAS	managed	threads,	such	as	the
WebContainer	thread	pool.	Any	native	threads,	or	threads	spawned	by	an	application	are	not	monitored.	The
warning	includes	the	stack	of	the	thread	at	the	moment	the	warning	is	printed	which	often	points	to	the	delay:

[11/16/09	12:41:03:296	PST]	00000020	ThreadMonitor	W	WSVR0605W:	Thread	"WebContainer	:	0"	(00000021)	has	been	active	for	655546	milliseconds	and	may	be	hung.
There	is/are	1	thread(s)	in	total	in	the	server	that	may	be	hung.
		at	java.lang.Thread.sleep(Native	Method)
		at	java.lang.Thread.sleep(Thread.java:851)
		at	com.ibm.Sleep.doSleep(Sleep.java:55)
		at	com.ibm.Sleep.service(Sleep.java:35)

https://www.ibm.com/support/pages/apar/PI40095
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_confighangdet.html

		at	javax.servlet.http.HttpServlet.service(HttpServlet.java:831)...

WAS	will	check	threads	every	com.ibm.websphere.threadmonitor.interval	seconds	(default	180)	and
any	threads	dispatched	more	than	com.ibm.websphere.threadmonitor.threshold	seconds	(default	600)
will	be	dumped.	Therefore,	any	thread	dispatched	between	com.ibm.websphere.threadmonitor.threshold
seconds	and	com.ibm.websphere.threadmonitor.threshold	+
com.ibm.websphere.threadmonitor.interval	seconds	will	be	marked.

Hung	thread	detection	includes	the	option	of	exponential	backoff	so	that	logs	are	not	flooded	with
WSVR0605W	warnings.	Every	com.ibm.websphere.threadmonitor.false.alarm.threshold	number	of
warnings	(default	100),	the	threshold	is	increased	by	1.5X.

The	amount	of	time	the	thread	has	been	active	is	approximate	and	is	based	on	each	container's	ability	to
accurately	reflect	a	thread's	waiting	or	running	state;	however,	in	general,	it	is	the	amount	of	milliseconds
that	a	thread	has	been	dispatched	and	doing	"work"	(i.e.	started	or	reset	to	"non	waiting"	by	a	container)
within	a	WAS	managed	thread	pool.

To	configure	hung	thread	detection,	change	the	following	properties	and	restart:	$SERVER	}	Server
Infrastructure	}	Administration	}	Custom	Properties:

com.ibm.websphere.threadmonitor.interval:	The	frequency	(in	seconds)	at	which	managed
threads	in	the	selected	application	server	will	be	interrogated.	Default:	180	seconds	(three	minutes).
com.ibm.websphere.threadmonitor.threshold:	The	length	of	time	(in	seconds)	in	which	a	thread
can	be	active	before	it	is	considered	hung.	Any	thread	that	is	detected	as	active	for	longer	than	this
length	of	time	is	reported	as	hung.	Default:	The	default	value	is	600	seconds	(ten	minutes).

	

Hung	Thread	Detection	Overhead

The	hung	thread	detection	algorithm	is	very	simple:	it's	basically	a	loop	that	iterates	over	every	thread	and
compares	the	dispatch	time	(a	long)	to	the	current	time	(a	long)	and	checks	if	the	difference	is	greater	than
the	threshold.	Therefore,	in	general,	it	is	possible	to	set	the	threshold	and	interval	very	low	to	capture	"long"
responses	of	a	very	short	duration.	For	example,	some	customers	run	the	following	in	production:

1.	 $SERVER	}	Server	Infrastructure	}	Administration	}	Custom	Properties
2.	 com.ibm.websphere.threadmonitor.interval	=	1
3.	 com.ibm.websphere.threadmonitor.threshold	=	5
4.	 Restart

	

OS	Core	Dumps	on	Hung	Thread	Warnings	with	J9

For	OpenJ9	and	IBM	Java,	you	can	also	produce	core	dumps	on	a	hung	thread	warning	using	-
Xtrace:trigger:

-Xtrace:trigger=method{com/ibm/ws/runtime/component/ThreadMonitorImpl.threadIsHung,sysdump,,,1}

In	this	example,	the	maximum	number	of	system	dumps	to	produce	for	this	trigger	is	1.	Enabling	certain	-
Xtrace	options	on	IBM	Java	<=	7.1	may	affect	the	performance	of	the	entire	JVM	(see	the	-Xtrace	section).

	

Thread	Pool	Statistics

Starting	with	WAS	7.0.0.31,	8.0.0.8,	and	8.5.5.2,	thread	pool	statistics	may	be	written	periodically	to
SystemOut.log	or	trace.log.	This	information	may	be	written	to	SystemOut.log	by	enabling	the	diagnostic

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xtrace/index.html#trigger

trace	Runtime.ThreadMonitorHeartbeat=detail	or	to	trace.log	by	enabling	the	diagnostic	trace
Runtime.ThreadMonitorHeartbeat=debug.	Example	output:

[1/12/15	19:38:15:208	GMT]	000000d4	ThreadMonitor	A			UsageInfo[ThreadPool:hung/active/size/max]={
		SIBFAPThreadPool:0/2/4/50,
		TCPChannel.DCS:0/3/18/20,
		server.startup:0/0/1/3,
		WebContainer:0/3/4/12,
		SIBJMSRAThreadPool:0/0/10/41,
		ProcessDiscovery:0/0/1/2,
		Default:0/2/7/20,
		ORB.thread.pool:0/0/10/77,
		HAManager.thread.pool:0/0/2/2
		}

When	the	diagnostic	trace	is	enabled,	this	output	is	written	every	com.ibm.websphere.threadmonitor.interval
seconds.	Only	thread	pools	that	have	at	least	one	worker	thread	(whether	active	or	idle)	will	be	reported.

	

BoundedBuffer

Consider	BoundedBuffer	tuning:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunechain.html

The	thread	pool	request	buffer	is	essentially	a	backlog	in	front	of	the	thread	pool.	If	the	thread	pool	is	at	its
maximum	size	and	all	of	the	threads	are	dispatched,	then	work	will	queue	in	the	requestBuffer.	The
maximum	size	of	the	requestBuffer	is	equal	to	the	thread	pool	maximum	size;	however,	if	the	unit	of	work	is
executed	on	the	thread	pool	with	a	blocking	mode	of
EXPAND_WHEN_QUEUE_IS_FULL_ERROR_AT_LIMIT	or
EXPAND_WHEN_QUEUE_IS_FULL_WAIT_AT_LIMIT,	then	the	maximum	size	is	ThreadPoolMaxSize
*	10.	When	the	requestBuffer	fills	up,	then	WSVR0629I	is	issued	(although	only	the	first	time	this	happens
per	JVM	run	per	thread	pool).	When	the	requestBuffer	is	full,	work	will	either	wait	or	throw	a
ThreadPoolQueueIsFullException,	depending	on	how	the	unit	of	work	is	executed.

	

How	the	JVM	MBean	dumpThreads	method	works

WAS	exposes	a	JVM	MBean	for	each	process	that	has	methods	to	create	thread	dumps,	heap	dumps,	and
system	dumps.	For	example,	to	produce	a	thread	dump	on	server1,	use	this	wsadmin	command	(-lang
jython):

AdminControl.invoke(AdminControl.completeObjectName("type=JVM,process=server1,*"),
"dumpThreads")

The	dumpThreads	functionality	is	different	depending	on	the	operating	system:

POSIX	(AIX,	Linux,	Solaris,	etc.):	kill(pid,	SIGQUIT)
Windows:	raise(SIGBREAK)
z/OS:	In	recent	versions,	produces	a	javacore,	heapdump,	and	SYSTDUMP	by	default

For	any	customers	that	have	changed	the	behavior	of	the	JVM	(-Xdump)	in	how	it	responds	to
SIGQUIT/SIGBREAK	(i.e.	kill	-3),	then	dumpThreads	will	respond	accordingly	(unless	running	z/OS,	in
which	case	use	wsadmin_dumpthreads*	properties).	For	anyone	wishing	to	keep	a	non-default	behavior	for
SIGQUIT/SIGBREAK	but	still	have	a	scriptable	way	to	produce	only	javacores,	see	the	Troubleshooting
chapters	on	alternative	ways	of	requesting	thread	dumps.

	

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunechain.html

Java	Database	Connectivity	(JDBC)

Investigating	Long	Executions

On	WAS	>=	9.0.0.4	and	8.5.5.12,	consider	enableJDBCTiming	with	a	millisecond	threshold	which	will	print
a	stack	of	executions	exceeding	that	threshold	and	the	query.

	

Lightweight	Query	Trace

*=info:com.ibm.ws.rsadapter.jdbc.WSJdbcPreparedStatement=all

https://www.ibm.com/support/pages/how-display-sql-statements-executed-jee-applications-using-minimal-
tracing

	

Database	Connection	Pools

Database	connection	pools	are	highly	contended	in	heavily	multi-threaded	applications.	Ensuring	available
connections	in	the	pool	leads	to	superior	performance.	Monitor	PMI	metrics	to	watch	the	number	of	threads
waiting	on	connections	from	the	pool	as	well	as	the	average	wait	time.

If	threads	are	waiting,	consider	increasing	the	number	of	pooled	connections	in	conjunction	with	your
database	administrator	(DBA),	decreasing	the	number	of	active	threads	in	the	system,	or	investigating
the	usage	of	database	connections	by	the	application.
In	some	cases,	a	one-to-one	mapping	between	DB	connections	and	threads	may	be	ideal.
Always	use	the	latest	database	driver	for	the	database	you	are	running	as	performance	optimizations
between	versions	are	often	significant.

The	maximum	connection	pool	size	is	set	under	Connection	pool	settings:	Resources	}	JDBC	}	Data	Sources
}	$DS	}	Connection	pool	properties

In	order	to	successfully	tune	the	connection	pool,	you	need	to	know	two	pieces	of	information:

1.	 The	requests	per	second	that	occur	during	a	peak
2.	 How	long	the	database	takes	to	respond	to	each	type	of	operation,	SELECT,	INSERT,	UPDATE,	and

so	on.

Maximum	connections	setting:

Double	the	number	of	the	Maximum	connections	parameter	then	slowly	back	it	down
Better	performance	is	generally	achieved	if	this	value	is	set	lower	than	the	value	for	the	maximum	size
of	the	Web	container	thread	pool

If	a	ConnectionWaitTimeoutException	is	found	in	the	WebSphere	logs:

Obtain	the	average	database	operations	duration	for	the	application
Start	with	a	value	that	is	5	seconds	longer	than	this	average
Gradually	increase	it	until	problem	is	resolved	or	setting	is	at	the	highest	value	that	the	client/SLAs
will	tolerate.
Before	you	increase	the	pool	size,	consult	the	database	administrator.	Why?	Because	the	DBA	sets	the
maximum	number	of	connections	their	database	will	accept.	If	the	size	of	the	connection	pool
increases	then	that	will	across	all	cluster	members	and	can	result	in	trying	to	establish	more
connections	to	the	database	than	it	will	accept.	That	scenario	results	in	a	lot	of	strange	failures	that	will
take	some	time	to	troubleshoot	to	get	to	the	root	cause.
Ensure	that	the	database	server	is	configured	to	handle	the	maximum	pool	size	setting.

https://www.ibm.com/support/pages/apar/PI82110
https://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/rtrb_jdbclong.html
https://www.ibm.com/support/pages/how-display-sql-statements-executed-jee-applications-using-minimal-tracing
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=applications-connection-pool-settings

In	a	clustered	environment,	there	is	the	potential	of	simultaneously	allocating	Max	connections	form
all	servers	simultaneously.

Connection	pools	are	a	shared,	synchronized	resource.	They	have	been	highly	optimized	but	when	there	are	a
very	large	number	of	threads,	lock	synchronization	may	become	a	bottleneck.	You	may	use	the	IBM	Health
Center	tool	or	similar	tool	to	measure	the	lock	contention,	and	if	it	is	high,	then	you	may	need	to	consider
scaling	out	to	more	JVMs.

	

Connection	pool	idle	and	aged	timeouts

For	maximum	performance,	connections	in	the	pool	should	not	timeout	due	to	the	idle	timeout	("Unused
timeout")	nor	the	age	timeout	("Aged	timeout").	To	accomplish	this,	disable	the	connection	pool	maintenance
thread	by	setting	the	"Reap	time"	to	0.

The	reason	to	do	this	is	that	connection	creation	and	destruction	may	be	expensive	(e.g.	TLS,	authentication,
etc.).	Besides	increased	latency,	in	some	cases,	this	expense	may	cause	a	performance	tailspin	that	may	make
response	time	spikes	worse;	for	example,	something	causes	an	initial	database	response	time	spike,	incoming
load	in	the	clients	continues	apace,	the	clients	create	new	connections,	and	the	process	of	creating	new
connections	causes	the	database	to	slow	down	more	than	it	otherwise	would,	causing	further	backups,	etc.

The	main	potential	drawback	of	this	approach	is	that	if	there	is	a	firewall	between	the	connection	pool	and
the	database,	and	the	firewall	has	an	idle	or	age	timeout,	then	the	connection	may	be	destroyed	and	cause	a
stale	connection	exception	the	next	time	it's	used.	This	may	fail	the	request	and	purge	the	entire	connection
pool	if	"Purge	policy"	=	"EntirePool".	The	main	ways	to	avoid	this	are	either	to	configure	the	firewall	idle	or
age	timeouts	similar	to	above,	or	tune	the	TCP	keepalive	settings	in	the	client	or	database	operating	systems
below	the	timeouts.

Similarly,	some	databases	may	have	their	own	idle	or	age	timeouts.	The	database	should	be	tuned	similarly.
For	example,	IBM	DB2	does	not	have	such	connection	timeouts.

Finally,	some	people	use	connection	pool	usage	as	a	proxy	of	database	response	time	spikes.	Instead,	monitor
database	response	times.

	

Connection	Pool	Usage

The	DataSource	MBean	may	be	used	to	query	connection	pool	usage	using	wsadmin	-lang	jython.	In	the
following	example,	three	connections	are	in	use	and	two	connections	are	free:

wsadmin>print	AdminControl.invoke(AdminControl.queryNames("*:type=DataSource,process=server1,name=TradeDataSource,*"),	"showPoolContents")

PoolManager	name:jdbc/TradeDataSource
PoolManager	object:-522043580
Total	number	of	connections:	5	(max/min	5/5,	reap/unused/aged	180/1800/0,	connectiontimeout/purge	180/EntirePool)
																															(testConnection/inteval	false/0,	stuck	timer/time/threshold	0/0/0,	surge	time/connections	0/-1)
																															(pool	paused	false,	prePopulate	alternate	false,	resourceFailBackEnabled	true,	isAlternateResourceEnabled	false,
																																	disableDatasourceFailoverAlarm	false,	startFailBack	false)
																															(isPartialResourceAdapterFailoverSupportEnabled	false,	isAlteranteResourcePoolManager	false,	resourceAvailabilityTestRetryInterval
																																	10,	currentInusePool	null,	currentMode	100,	alternate	jndiName	null)
Shared	Connection	information	(shared	partitions	200)
				com.ibm.ws.tx.jta.TransactionImpl@a47615d6#tid=349227028		MCWrapper	id	767a85e9		Managed	connection	WSRdbManagedConnectionImpl@37f2f2c5		
						State:STATE_TRAN_WRAPPER_INUSE	Connections	being	held	1	Used	with	transaction	com.ibm.ws.tx.jta.TransactionImpl@a47615d6#tid=349227028
				com.ibm.ws.tx.jta.TransactionImpl@9ea5a8b5#tid=349227084		MCWrapper	id	3f4eefc9		Managed	connection	WSRdbManagedConnectionImpl@689ac78c		
						State:STATE_TRAN_WRAPPER_INUSE	Connections	being	held	1	Used	with	transaction	com.ibm.ws.tx.jta.TransactionImpl@9ea5a8b5#tid=349227084
				com.ibm.ws.tx.jta.TransactionImpl@4850aa55#tid=349227060		MCWrapper	id	716535f		Managed	connection	WSRdbManagedConnectionImpl@7424ebb6		
						State:STATE_TRAN_WRAPPER_INUSE	Connections	being	held	1	Used	with	transaction	com.ibm.ws.tx.jta.TransactionImpl@4850aa55#tid=349227060
		Total	number	of	connection	in	shared	pool:	3
Free	Connection	information	(free	distribution	table/partitions	5/1)

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=applications-connection-pool-settings#d1837177e523
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=applications-connection-pool-settings#d1837177e602
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=applications-connection-pool-settings#d1837177e443

		(0)(0)MCWrapper	id	863b69f0		Managed	connection	WSRdbManagedConnectionImpl@41038936		State:STATE_ACTIVE_FREE
		(0)(0)MCWrapper	id	94ff7816		Managed	connection	WSRdbManagedConnectionImpl@9791d5db		State:STATE_ACTIVE_FREE

		Total	number	of	connection	in	free	pool:	2
UnShared	Connection	information
		No	unshared	connections

Connection	Leak	Logic	Information:	...

All	data	source	connection	pool	statistics	may	be	displayed	with	showAllPoolContents:

wsadmin>print	AdminControl.invoke(AdminControl.queryNames("*:type=DataSource,process=server1,name=TradeDataSource,*"),	"showAllPoolContents")

Free	connections	in	a	data	source	connection	pool	may	be	purged	manually:

wsadmin>AdminControl.invoke(AdminControl.queryNames("*:type=DataSource,process=server1,name=TradeDataSource,*"),	"purgePoolContents",	"immediate")
''
wsadmin>AdminControl.invoke(AdminControl.queryNames("*:type=DataSource,process=server1,name=TradeDataSource,*"),	"purgePoolContents",	"0")
''

	

Statement	cache

"The	WebSphere	Application	Server	data	source	optimizes	the	processing	of	prepared
statements	and	callable	statements	by	caching	those	statements	that	are	not	being	used	in	an
active	connection.	Both	statement	types	help	reduce	overhead	for	transactions	with	backend
data.

A	prepared	statement	is	a	precompiled	SQL	statement	that	is	stored	in	a	PreparedStatement
object.	Application	Server	uses	this	object	to	run	the	SQL	statement	multiple	times,	as	required
by	your	application	run	time,	with	values	that	are	determined	by	the	run	time.
A	callable	statement	is	an	SQL	statement	that	contains	a	call	to	a	stored	procedure,	which	is	a
series	of	precompiled	statements	that	perform	a	task	and	return	a	result.	The	statement	is	stored
in	the	CallableStatement	object.	Application	Server	uses	this	object	to	run	a	stored	procedure
multiple	times,	as	required	by	your	application	run	time,	with	values	that	are	determined	by	the
run	time.

In	general,	the	more	statements	your	application	has,	the	larger	the	cache	should	be.	Be	aware,
however,	that	specifying	a	larger	statement	cache	size	than	needed	wastes	application	memory
and	does	not	improve	performance.

Determine	the	value	for	your	cache	size	by	adding	the	number	of	uniquely	prepared	statements
and	callable	statements	(as	determined	by	the	SQL	string,	concurrency,	and	the	scroll	type)	for
each	application	that	uses	this	data	source	on	a	particular	server.	This	value	is	the	maximum
number	of	possible	statements	that	can	be	cached	on	a	given	connection	over	the	life	of	the
server.

Default:	For	most	databases	the	default	is	10.	Zero	means	there	is	no	cache	statement."
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rdat_datobjtune.html

The	statement	cache	size	specifies	the	number	of	statements	that	can	be	cached	per	connection.	Caching
prepared	statements	improves	overall	response	times	because	an	application	can	reuse	a	PreparedStatement
on	a	connection	if	it	exists	in	that	connection's	cache,	bypassing	the	need	to	create	a	new
PreparedStatement.	However,	to	make	effective	use	of	this	cache	the	application	has	to	be	properly	written
to	use	parameterized	SQL	statements	using	the	?	(question	mark)	notation	instead	of	dynamically	building
strings	with	the	parameters	already	substituted	as	each	unique	statement	will	make	the	cache	useless.

Ideally	the	PreparedStmtCacheDiscardCount	should	be	zero;	however,	given	potential	memory	constraints,
then	having	a	slow	incrementing	count	is	not	necessarily	a	bad	thing.	See:
https://www.ibm.com/support/pages/node/6410242

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rdat_datobjtune.html
https://www.ibm.com/support/pages/node/6410242

Recommendations	are	made	in	several	WebSphere	Application	Server	documents	on	the	value
for	the	prepared	statement	cache.	They	all	recommend	estimating	the	number	of	unique	SQL
statements	an	application	prepares	and	using	this	number	to	set	the	number	of	prepared
statements	to	be	cached	for	each	connection.

These	formulas	work	well	when	the	number	of	unique	prepared	statements	and	maximum
connections	are	relatively	small;	however,	these	formulas	do	not	take	into	account	the	possible
memory	consumption	of	the	cached	prepared	statements,	particularly	when	the	total	number	of
statements	being	cached	is	large.	What	is	considered	a	small	or	large	prepared	statement	cache
depends	on	the	database	vendor	in	use.

Each	prepared	statement	object	consumes	some	amount	of	memory.	The	actual	amount	is
variable,	based	on	the	database	vendor	in	use,	as	well	as	the	number	and	size	of	the	parameter
data	for	the	statement.	When	prepared	statement	caches	are	configured	to	large	values,	it	is
possible	to	outgrow	the	amount	of	memory	available	to	the	cache,	resulting	in	unexpected
behavior.	Depending	on	the	type	of	JDBC	driver,	the	memory	consumption	might	be	from	the
Java	heap	or	from	the	JVM's	native	heap...

If	you	choose	to	decrease	the	size	of	your	prepared	statement	cache,	some	cycling	of	the
statement	cache	could	occur,	as	the	least	recently	used	statements	are	closed	to	make	room	for
more	recently	used	statements.	It	can	be	worthwhile	to	analyze	the	usage	pattern	of	the	prepared
statements	in	your	application.	If	some	prepared	statements	are	executed	infrequently,	the
penalty	in	consumed	resources	might	outweigh	the	advantage	of	the	caching	mechanism.	These
infrequently-used	statements	might	be	better	suited	to	the	java.sql.Statement	interface,	rather
than	the	java.sql.PreparedStatement	interface.	Statement	objects	are	not	cached	by	the
Application	Server	and	will	not	consume	memory	beyond	the	scope	in	which	they	are	used.

	

Shareable	versus	Unshareable	Connections

Database	connections	marked	shareable	are	not	returned	to	the	connection	pool	when	they	are	closed.
Instead,	they	are	reserved	for	reuse	by	subsequent	requests	for	a	connection	within	the	same	transaction
containment	context.	For	example,	if	a	thread	within	a	servlet	uses	the	normal	get-use-close	pattern	on	a
database	connection	more	than	once,	the	second	time,	the	same	connection	is	immediately	returned	since	it
was	reserved	from	the	pool.

The	Java	Enterprise	Edition	specification	defines	shareable	as	the	default	configuration	unless	otherwise
specified:

Sharing	connections	typically	results	in	efficient	usage	of	resources	and	better	performance.	[...]
Containers	must	assume	connections	to	be	shareable	if	no	deployment	hint	is	provided.

With	all	that	said,	there	are	some	cases	where	unshareable	connections	perform	better,	so	you	should
consider	trying	unshareable.	Note	that	this	may	expose	connection	leaks	or	other	problems.	You	can	set
globalConnectionTypeOverride=unshared	to	disable	shareable	connections:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdat_conpoolman.html

Scenarios	where	unshareable	connections	may	be	preferable:

The	time	it	takes	for	the	application	to	service	an	HTTP	request	takes	a	long	time.
The	application	typically	does	not	open/close	more	than	one	connection	to	service	an	HTTP	request.
The	application	rarely	uses	a	transaction	other	than	auto-commit	with	the	database.

Scenarios	where	shareable	connections	may	be	preferable:

The	time	it	takes	for	the	application	to	service	an	HTTP	request	is	very	quick.
The	application	will	frequently	open/close	a	connection	to	the	database.
The	application	makes	heavy	use	of	transactions	to	the	database.

https://javaee.github.io/javaee-spec/download/JavaEE8_Platform_Spec_FinalRelease.pdf#page=79
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdat_conpoolman.html

Some	EJB	container	transactions	require	shareable	connections.

As	with	any	setting	within	the	application	server	it	is	imperative	to	perform	load	testing	and	seeing	which
connection	setting	works	better	with	the	application.

	

More	JDBC	Connections	than	Threads

Applications	that	open	more	than	one	JDBC	connection	simultaneously	in	the	same	thread	before	closing	the
previous	connections	are	identified	by	seeing	more	connections	in	the	JDBC	connection	pool	than	threads	in
the	thread	pool.	This	can	potentially	result	in	an	application	deadlock	if	there	are	not	enough	connections	in
the	connection	pool.	To	correct	this	the	application	developers	have	to	fix	the	code	to	close	a	JDBC
connection	before	acquiring	another	connection.

	

DB2	JDBC	Driver

On	HP-UX,	preallocate	the	DB2	trace	segment	and	ensure	the	database	is	created	with	the	UTF-8	code	set:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunehp.html

	

Oracle	JDBC	Driver

Tracing

Enabling	Oracle	JDBC	driver	trace:	Oracle	ships	several	JAR	files	for	each	version	of	the	JDBC	drivers.	The
optimized	JAR	files	do	not	contain	any	logging	code	and,	therefore,	do	not	generate	any	log	output	when
used.	To	get	log	output,	you	must	use	the	debug	JAR	files,	which	are	indicated	with	a	"_g"	in	the	file	name,
like	ojdbc5_g.jar	or	ojdbc6_g.jar.

Set	this	diagnostic	trace:
*=info:WAS.j2c=all:RRA=all:WAS.database=all:Transaction=all:com.ibm.ws.oracle.logwriter=all
Activate	the	Debug	Library	by	creating	the	custom	property:	-Doracle.jdbc.Trace=true

The	JVM	must	be	restarted	after	the	changes	have	been	made	to	use	the	debug	JAR.	The	Oracle	trace	points
all	come	from	the	'logwriter'	component.

	

Large	memory	usage

High	memory	usage,	java.lang.OutOfMemoryErrors,	slow	performance,	and	a	large	volume	of	garbage
collection	cycles	may	occur	when	the	Oracle	JDBC	driver	is	used	to	connect	to	Oracle	databases.	This	is	due
to	the	memory	management	of	the	Oracle	JDBC	driver.

In	a	heap	dump,	it	can	be	seen	that	the	Oracle	JDBC	driver	stores	a	large	amount	of	data	in	Connection	and
PreparedStatement	objects.	For	example,	oracle.jdbc.driver.T4CConnection,
oracle.jdbc.driver.PhysicalConnection$BufferCacheStore,	oracle.jdbc.driver.BufferCache,
oracle.jdbc.driver.T4CPreparedStatement,	and	others.

The	problem	is	caused	by	the	way	that	the	Oracle	JDBC	driver	manages	memory.	For	full	details,	refer	to	the
Oracle	white	paper,	Oracle	JDBC	Memory	Management.	Here	are	some	relevant	quotes:

The	Oracle	JDBC	drivers	can	use	large	amounts	of	memory.	This	is	a	conscious	design	choice,
to	trade	off	large	memory	use	for	improved	performance.	For	the	most	part	and	for	most	users

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tunehp.html
https://www.oracle.com/technetwork/database/enterprise-edition/memory.pdf

this	has	proved	to	be	a	good	choice.	Some	users	have	experienced	problems	with	the	amount	of
memory	the	JDBC	drivers	use.

Some	users,	mostly	those	with	very	large	scale	applications,	have	seen	performance	problems
due	to	large	heap	size,	garbage	collector	thrashing,	and	even	OutOfMemoryExceptions.	In
subsequent	releases	the	development	team	has	worked	to	address	those	issues	by	improving	the
way	the	drivers	use	memory	and	by	providing	users	with	additional	control	to	address	specific
problems.

the	size	of	the	buffers	depends	not	on	the	actual	size	of	the	row	data	returned	by	the	query,	but
on	the	maximum	size	possible	for	the	row	data.	After	the	SQL	is	parsed,	the	type	of	every
column	is	known	and	from	that	information	the	driver	can	compute	the	maximum	amount	of
memory	required	to	store	each	column.	The	driver	also	has	the	fetchSize,	the	number	of	rows	to
retrieve	on	each	fetch.	With	the	size	of	each	column	and	the	number	of	rows,	the	driver	can
compute	the	absolute	maximum	size	of	the	data	returned	in	a	single	fetch.	That	is	the	size	of	the
buffers.

In	the	worst	case,	consider	a	query	that	returns	255	VARCHAR2(4000)	columns.	Each	column
takes	8k	bytes	per	row.	Times	255	columns	is	2040K	bytes	or	2MB	per	row.	If	the	fetchSize	is
set	to	1000	rows,	then	the	driver	will	try	to	allocate	a	2GB	char[].	This	would	be	bad...	The
primary	tool	for	controlling	memory	use	is	the	fetchSize.

Although	Java	memory	management	is	quite	good,	allocating	large	buffers	is	expensive.	It	is	not
the	actual	malloc	cost.	That	is	very	fast.	Instead	the	problem	is	the	Java	language	requirement
that	all	such	buffers	be	zero	filled.	So	not	only	must	a	large	buffer	be	malloc'ed,	it	must	also	be
zero	filled.	Zero	filling	requires	touching	every	byte	of	the	allocated	buffer.	Modern	processors
with	their	multilevel	data	caches	do	ok	with	small	buffers.	Zero	filling	a	large	buffer	overruns
the	processor	data	caches	and	runs	at	memory	speed,	substantially	less	than	the	maximum	speed
of	the	processor.	Performance	testing	has	repeatedly	shown	that	allocating	buffers	is	a	huge
performance	drag	on	the	drivers.	This	has	led	to	a	struggle	to	balance	the	cost	of	allocating
buffers	with	the	memory	footprint	required	to	save	buffers	for	reuse.

The	11.1.0.7.0	drivers	introduce	a	connection	property	to	address	the	large	buffer	problem.	This
property	bounds	the	maximum	size	of	buffer	that	will	be	saved	in	the	buffer	cache...	The
connection	property	is	-Doracle.jdbc.maxCachedBufferSize=N	...	e.g.	100000.	The	default	is
Integer.MAX_VALUE.	This	is	the	maximum	size	for	a	buffer	which	will	be	stored	in	the
internal	buffer	cache...	If	you	need	to	set	maxCachedBufferSize,	start	by	estimating	the	buffer
sizes	for	the	SQL	queries	that	require	the	largest	buffers.	In	the	process	you	may	find	that	by
tuning	the	fetch	size	for	these	queries	you	can	achieve	the	desired	performance.	Considering	the
frequency	of	execution	and	the	size	of	the	buffers,	pick	a	size	such	that	most	statements	can	use
cached	buffers,	but	still	small	enough	so	that	the	Java	runtime	can	support	the	number	of	buffers
needed	in	order	to	minimize	the	frequency	with	which	new	buffers	have	to	be	allocated.

In	11.2	the	value	of	maxCachedBufferSize	is	interpreted	as	the	log	base	2	of	the	maximum
buffer	size.	For	example	if	maxCachedBufferSize	is	set	to	20	the	max	size	buffer	that	is	cached
is	2^20	=	1048576.	For	backwards	compatibility,	values	larger	than	30	are	interpreted	as	the
actual	size	rather	than	log2	of	the	size,	but	using	powers	of	2	is	recommended...	It	is	usually	the
case	that	setting	maxCachedBufferSize	to	a	reasonable	value	has	no	impact.	If	you	need	to	set
maxCachedBufferSize,	start	with	18.	If	you	have	to	set	the	value	to	less	than	16,	you	probably
need	more	memory."

	

Servlets

WebContainer	Thread	Pool

Configure	the	maximum	size	of	the	WebContainer	thread	pool	under	Application	Servers	}	$SERVER	}

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=servers-thread-pool-settings

Thread	Pools	}	WebContainer	}	Maximum	Size

If	system	resources	allow,	it	is	recommended	to	set	the	minimum	size	of	the	WebContainer	equal	to	the
maximum	size	because	some	DirectByteBuffers	are	cached	and	kept	in	thread	locals	and	these	are	lost	if	the
threads	recycle.

	

Keep	Alive	Connections

Max	requests	per	connection

By	default	for	HTTP/1.0	and	HTTP/1.1	(but	not	HTTP/2.0),	WAS	closes	an	incoming	HTTP	keep	alive
connection	after	100	requests.	This	may	cause	a	significant	throughput	impact,	particularly	with	TLS	(in	one
benchmark,	~100%).	To	disable	such	closure	of	sockets,	check	"Unlimited	persistent	requests	per
connection"	and	restart:

Servers	}	Application	servers	}	$SERVER	}	Web	container	settings	}	Web	container	transport	chains	}
$TRANSPORT	}	HTTP	Inbound	Channel	}	Check	"Unlimited	persistent	requests	per	connection"

	

Idle	timeouts

In	general,	for	servers	with	incoming	LAN	network	traffic	from	clients	using	persistent	TCP	connection	pools
(e.g.	a	reverse	proxy	like	IHS/httpd	or	web	service	client),	increase	the	idle	timeout	(and	restart)	to	avoid
connections	getting	kicked	out	of	the	client	connection	pool.	The	maximum	value	is	2147483	seconds	or
about	24	days.

Servers	}	Application	servers	}	$SERVER	}	Web	container	settings	}	Web	container	transport	chains	}
$TRANSPORT	}	HTTP	Inbound	Channel	}	Set	"Persistent	timeout"

	

Error	codes	closing	keep-alive	connections

If	an	HTTP	response	returns	what's	internally	considered	an	"error	code"	(HTTP	400,	402-417,	or	500-505);
then,	after	the	response	completes,	if	the	socket	is	a	keep-alive	socket,	it	will	be	closed.	This	may	impact
throughput	if	an	application	is,	for	example,	creating	a	lot	of	HTTP	500	error	responses	and	thus	any	servers
with	incoming	LAN	network	traffic	from	clients	using	persistent	TCP	connection	pools	(e.g.	a	reverse	proxy
like	IHS/httpd	or	web	service	client)	will	have	to	churn	through	more	sockets	than	otherwise	(particularly
impactful	for	TLS	handshakes).	This	code	is	shared	with	Liberty	so	you	may	see	more	details	there.

	

Class	and	JSP	reload	checking

If	not	needed,	disable	application	class	and	JSP	reload	checking:

Enterprise	Applications	}	$APP	}	Class	loading	and	update	detection
Check	"Override	class	reloading	settings	for	Web	and	EJB	modules"
Set	"Polling	interval	for	updated	files"	=	0

Enterprise	Applications	}	$APP	}	JSP	and	JSF	options
Uncheck	"JSP	enable	class	reloading"

Save,	Synchronize,	and	Restart

	

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=chains-http-transport-channel-settings#chaintypehttp_persistreq
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=chains-http-transport-channel-settings#chaintypehttp_keepalive
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=chains-http-transport-channel-settings#chaintypehttp_persistime

Invocation	Cache

If	more	than	500	unique	URLs	are	actively	being	used	(each	JavaServer	Page	is	a	unique	URL),	you	should
increase	the	size	of	the	invocation	cache.

	

NCSA	Access	Logs

The	HTTP	transport	channel	supports	the	standardized	NCSA	access	log	format	to	print	a	line	for	every
HTTP	response	with	various	details	such	as	URL.	There	was	a	regression	in	8.5.5.24,	9.0.5.16,	and	9.0.5.17
that	caused	timestamp	display	issues	when	using	accessLogFormat	and	it	was	fixed	in	APAR	PH56229	and
subsequent	fixpacks.

	

Enabling	the	NCSA	Access	Log

In	the	WAS	Administrative	Console:

1.	 Navigate	to	$SERVER	}	Web	Container	Settings	}	Web	container	transport	chains
2.	 Click	on	each	WCInbound*	entry	that	is	handling	the	traffic	of	interest	and	perform	the	following	steps.
3.	 }	HTTP	inbound	channel
4.	 Check	"Enable	logging"
5.	 Expand	"NCSA	Access	logging"

1.	 Check	"Use	chain-specific	logging"
2.	 Access	log	file	path	=	${SERVER_LOG_ROOT}/http_access.log
3.	 Access	log	maximum	size	=	500
4.	 Maximum	Number	of	historical	files	=	2
5.	 NCSA	access	log	format	=	Common

6.	 Expand	"Error	logging"
1.	 Check	"Use	chain-specific	logging"
2.	 Error	log	file	path	=	${SERVER_LOG_ROOT}/http_error.log
3.	 Error	log	maximum	size	=	500
4.	 Maximum	Number	of	historical	files	=	2

7.	 Click	Apply
8.	 Click	"Custom	properties"
9.	 Click	New...

1.	 Name	=	accessLogFormat
2.	 Value	=

1.	 WAS	9	or	WAS	>=	8.5.5.6:

%h	%u	%t	"%r"	%s	%b	%D	%{R}W

2.	 WAS	<	8.5.5.6:

%h	%u	%t	"%r"	%s	%b	%D

3.	 Click	OK
10.	 Save,	synchronize,	and	restart	the	JVM.

For	example,	with	an	accessLogFormat	of	%h	%u	%t	"%r"	%s	%b	%D	%{R}W ,	an	http_access.log	file	will
be	written	in	$WAS/profiles/$PROFILE/logs/	with	output	such	as	the	following.	The	second-to-last	column
is	the	response	time	of	the	request	in	microseconds	(divide	by	1000	for	milliseconds):

127.0.0.1	-	[03/Sep/2014:17:32:33	-0700]	"GET	/	HTTP/1.1"	200	5792	25603	24654

The	time	printed	is	the	time	the	request	arrived,	so	it	is	possible	that	the	timestamps	will	not	be	in	order.

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=cache-tuning-url-invocation

Starting	with	WAS	8.5.5.6,	the	WAS	access	log	supports	%{R}W	which	is	the	HTTP	service	time.	The
difference	between	the	HTTP	response	time	and	the	HTTP	service	time	is	that	the	former	includes	the	time
to	send	back	the	entire	response,	whereas	the	latter	only	times	up	to	the	first	byte	sent	back.	The	reason	for
this	distinction	is	that	one	very	common	issue	is	a	slow	or	bad	network,	slow	client,	or	slow	intermediary
proxy	(e.g.	IHS,	etc.).	With	%D,	there	is	no	distinction	between	the	time	spent	in	WAS	and	the	time	spent	in
the	network,	end-user,	and	intermediary	proxies.	%{R}W	is	a	subset	of	%D	and	helps	isolate	where	the
slowdown	may	be.	This	is	a	heuristic	and	it	doesn't	help	with	servlets	that	stream	responses	(and	do	complex
work	in	between)	or	otherwise	call	flush.	It	also	doesn't	help	if	WAS	(or	the	operating	system	it	sits	on)	has
an	issue	while	sending	back	the	rest	of	the	bytes.	With	those	caveats,	%{R}W	is	a	great	addition	to	help	find
where	HTTP	responses	may	be	slow	and	you	should	enable	both	%D	and	%{R}W	if	your	version	of	WAS
includes	them.

	

Investigating	Response	Times

This	section	covers	different	methods	of	printing	the	response	times	of	HTTP(S)	requests.	If	all	you	need	are
averages,	then	the	built-in	Performance	Monitoring	Infrastructure	(PMI)	provides	average	statistics	for
HTTP(S)	response	times.	However,	if	you	need	information	on	particular	requests,	then	averages	may	not
help.	The	most	robust	solution	is	to	use	a	monitoring	product.	This	will	cover	the	basic	capabilities	that	are
built-in	to	WAS.

Method	0:	Web	Server	logs

This	method	is	not	part	of	WAS,	but	most	use	a	web	server	in	front	of	WAS	such	as	the	IBM	HTTP	Server
(IHS)	or	Apache	httpd.	Servers	such	as	IHS/httpd	can	log	each	request	and	its	response	time.	For	example,	on
IHS/httpd,	add	%D	or	%T	to	your	LogFormat	to	print	the	response	time.	Other	up-stream	load	balancers	or
proxies	may	have	similar	capabilities.	The	rest	of	this	section	covers	WAS-only	methods...

Method	1:	Starting	in	WAS	8.0.0.2,	NCSA	access	log	with	custom	accessLogFormat	(see	previous	section
above).

Method	2:	Diagnostic	Trace

The	following	diagnostic	trace	can	be	used:
com.ibm.ws.http.channel.inbound.impl.HttpICLReadCallback=all:com.ibm.ws.http.channel.inbound.impl.HttpInboundLink=all
-	Change	the	log	details	to	this	for	the	relevant	servers	(this	can	be	done	dynamically	using	the	Runtime	tab).
For	each	request,	the	following	entries	will	appear	in	trace.log	for	a	new	connection

[9/26/11	16:07:30:143	PDT]	00000029	HttpInboundLi	3	Init	on	link:	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d	com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7		
[9/26/11	16:07:30:144	PDT]	00000029	HttpInboundLi	>	ready:	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d	com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7	Entry		
[9/26/11	16:07:30:144	PDT]	00000029	HttpInboundLi	3	Parsing	new	information:	com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7		
[9/26/11	16:07:30:146	PDT]	00000029	HttpInboundLi	3	Received	request	number	1	on	link	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d		
[9/26/11	16:07:30:146	PDT]	00000029	HttpInboundLi	3	Discrimination	will	be	called		
[9/26/11	16:07:30:149	PDT]	00000029	SystemOut	O	SWAT	EAR:	Invoking	com.ibm.Sleep	by	anonymous	(127.0.0.1)...	[]		
[9/26/11	16:07:31:151	PDT]	00000029	SystemOut	O	SWAT	EAR:	Done	com.ibm.Sleep		
[9/26/11	16:07:31:152	PDT]	00000029	HttpInboundLi	3	close()	called:	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d	com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7		
[9/26/11	16:07:31:153	PDT]	00000029	HttpInboundLi	3	Reading	for	another	request...		
[9/26/11	16:07:31:153	PDT]	00000029	HttpInboundLi	<	ready	Exit

For	an	existing	connection,	it	will	be	slightly	different:

[9/26/11	16:07:35:139	PDT]	00000028	HttpICLReadCa	3	complete()	called:	com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7		
[9/26/11	16:07:35:139	PDT]	00000028	HttpInboundLi	3	Parsing	new	information:	com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7		
[9/26/11	16:07:35:141	PDT]	00000028	HttpInboundLi	3	Received	request	number	2	on	link	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d		
[9/26/11	16:07:35:141	PDT]	00000028	HttpInboundLi	3	Discrimination	will	be	called		
[9/26/11	16:07:35:144	PDT]	00000028	SystemOut	O	SWAT	EAR:	Invoking	com.ibm.Sleep	by	anonymous	(127.0.0.1)...	[]		
[9/26/11	16:07:36:146	PDT]	00000028	SystemOut	O	SWAT	EAR:	Done	com.ibm.Sleep		
[9/26/11	16:07:36:147	PDT]	00000028	HttpInboundLi	3	close()	called:	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d	com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7		
[9/26/11	16:07:36:148	PDT]	00000028	HttpInboundLi	3	Reading	for	another	request...

The	time	between	the	Discrimination	will	be	called	and	close()	lines	is	when	the	request/response

executed.

Method	3:	Request	Metrics

Request	metrics	(also	called	Application	Response	Measurement)	is	a	standard	mechanism	for	tracking,
exposing,	and/or	logging	end-to-end	transaction	information.	However,	request	metrics	has	a	very	large
overhead	by	default	unless	you	use	filters	(discussed	below)	and	should	only	be	used	in	a	test	environment.
Request	metrics	can	be	enabled	in	the	administrative	console	under	Monitoring	and	Tuning	}	Request
Metrics.	The	server	does	not	need	to	be	restarted	for	request	metrics	to	start	working.

1.	 Ensure	"Prepare	Servers	for	Request	metrics	collection"	is	checked
2.	 Select	"Custom"	for	"Components	to	be	instrumented"	and	select	"Servlet"
3.	 Set	"Trace	level"	to	"Hops"
4.	 Check	"Standard	Logs"

For	each	JSP	and	servlet	request,	the	PMRM0003I	log	entry	will	be	written	to	SystemOut.log:

[9/26/11	15:43:45:448	PDT]	00000027	PmiRmArmWrapp	I	PMRM0003I:	parent:ver=1,ip=10.20.30.8,time=1317075586068,pid=32507,reqid=1,event=1	-	current:ver=1,ip=10.20.30.8,time=1317075586068,pid=32507,reqid=1,event=1	type=URI	detail=/swat/Sleep	elapsed=1004

The	elapsed	value	at	the	end	of	the	log	line	is	how	long	the	request	took	to	process	and	send	back	the	full
response,	in	milliseconds.	The	detail	field	has	the	URL.

If	you	also	select	JDBC,	you'll	get	line	such	as:

[9/26/11	15:49:11:128	PDT]	0000003c	PmiRmArmWrapp	I	PMRM0003I:	parent:ver=1,ip=10.20.30.8,time=1323213487261,pid=13311,reqid=1,event=1	-	current:ver=1,ip=10.20.30.8,time=1323213487261,pid=13311,reqid=5,event=1	type=JDBC	detail=java.sql.Statement.executeQuery(String)	elapsed=1

For	high	volume	systems,	this	can	have	a	huge	performance	impact,	mostly	in	the	overhead	of	writing	to	the
logs	(even	with	a	fast	disk,	there	is	also	some	cross-thread	synchronization	in	logging,	etc.).	If	possible,	use
the	request	metrics	filters	to	limit	what	is	logged	to	particular	URLs.	Another	common	technique	is	to	use	a
source	IP	filter	to	a	well	known	user.	When	an	issue	occurs,	have	that	user	inject	their	workload	and	then
only	those	requests	will	be	logged.

Given	that	request	metrics	is	enabled	cell-wide,	if	you	want	to	disable	the	SystemOut	logging	on	some
servers,	you	can	change	the	log	details	for	those	servers	by	adding	(this	can	be	done	dynamically	using	the
Runtime	tab):	com.ibm.ws.pmi.reqmetrics.PmiRmArmWrapper=off

It	is	also	possible	to	write	your	own	ARM	agent	in	Java	which	could,	for	example,	watch	for	requests	that
take	longer	than	some	threshold,	and	only	print	those	out	to	SystemOut.log	and/or	gather	javacores/thread
stacks	for	that	request.	You	would	then	uncheck	"Standard	Logs"	and	instead	check	"Application	Response
Measurement(ARM)	agent	."

Method	4:	IBM	-Xtrace

If	you	want	to	look	at	the	response	times	of	a	particular	Java	method,	and	you're	using	the	IBM	JVM,	then
you	could	use	-Xtrace	method	trace.	For	example,	we	know	that	all	HTTP(s)	requests	for	servlets	go
through	javax/servlet/http/HttpServlet.service,	so	we	could	use	the	generic	JVM	argument:

-Xtrace:methods={javax/servlet/http/HttpServlet.service},print=mt

Every	time	this	method	is	executed,	the	following	entries	will	be	written	to	native_stderr.log:

23:21:46.020*0x2b28d0018700	mt.0	>	javax/servlet/http/HttpServlet.service(Ljavax/servlet/ServletRequest;Ljavax/servlet/ServletResponse;)V	Bytecode	method,	This	=	2b292400fcf8		
23:21:47.071	0x2b28d0018700	mt.6	<	javax/servlet/http/HttpServlet.service(Ljavax/servlet/ServletRequest;Ljavax/servlet/ServletResponse;)V	Bytecode	method

Remember	that	servlets	can	include	other	servlets	(usually	through	JSPs),	and	the	method	trace	entries	will
be	properly	indentend,	but	just	make	sure	you	match	the	right	entry	and	exit	to	get	the	correct	elapsed	time.

Method	trace	is	more	useful	when	you	already	have	some	idea	of	where	the	slowdown	may	be.	For	example,
you	can	specify	a	list	of	particular	business	methods,	and	then	iteratively	drill	down	into	those	that	are	slow
until	you	reach	the	slow	method.	This	of	course	won't	help	if	the	problem	is	systemic,	such	as	garbage
collection,	operating	system	paging,	etc.,	since	that	will	arbitrarily	affect	any	methods.	However,	it	is	good	at

pinpointing	backend	slowdowns	(e.g.	put	a	method	trace	around	database	calls).

Method	trace	changes	the	way	methods	are	JITted	(that's	how	it's	able	to	instrument	any	Java	method)	and	it
does	have	a	non-trivial	performance	overhead.	This	overhead	may	be	slightly	minimized	by	writing	the	trace
to	a	binary	output	file	instead	of	as	text	to	stderr.

Other	Methods

If	you	are	using	the	WebSphere	Virtual	Enterprise	On	Demand	Router,	it	has	advanced	logging
capabilities,	particularly	including	filtering	to	avoid	logging	overhead.
If	you	know	when	the	slowness	happens,	javadump	snapshots	are	often	a	good	way	to	determine	the
slowdown.
As	mentioned	in	the	beginning,	although	PMI	is	an	average,	it	does	have	per-servlet	statistics,	so	that
may	be	able	to	help	pinpoint	the	slow	servlets.
Adding	your	own	logging	entry/exit	points	around	common	execution	points	(for	example,	if	you	use	a
servlet	filter	or	servlet	base	class)	could	serve	the	same	function	as	a	custom	ARM	agent.

	

WebContainer	Channel	Write	Type

The	design	of	WAS	with	the	default	configuration	of	channelwritetype=async	is	that	WAS	will	buffer	up
to	the	size	of	each	HTTP	response	in	native	DirectByteBuffer	(DBB)	memory	as	it	waits	for	asynchronous
TCP	writes	to	finish.	This	means	that	if	WAS	is	serving	a	large	volume	of	responses	from	Java	servlets
(including	static	files	through	the	WAS	FileServlet,	servlet/JSP	responses,	etc.),	and	if	the	clients	(or	the
network	path	leading	to	the	clients)	cannot	keep	up	with	the	pace	of	network	writes,	then	these
DirectByteBuffers	will	consume	the	amount	of	pending	writes	in	native	memory.	This	can	cause	native
OutOfMemoryErrors	in	32-bit	processes,	or	paging	on	64-bit	processes	with	insufficient	physical	memory.
Even	if	the	network	and	end-user	do	keep	up,	this	behavior	may	simply	create	a	large	volume	of	DBBs	that
can	build	up	in	the	tenured	area.	You	may	change	channelwritetype	to	sync	to	avoid	this	behavior
although	servlet	performance	may	suffer,	particularly	for	end-users	on	WANs.

Note:	With	channelwritetype=async,	you	may	see	WCChannelLinks	waiting	to	write	to	the	client	without
any	WebContainer	thread	processing	a	request.	This	is	expected	and	is	a	possibility	with	asynchronous
writing.	In	this	case,	what	likely	happened	is	that	the	servlet	wrote	all	of	its	response	to	the	HTTP	channel
and	finished	its	use	of	the	thread,	and	the	HTTP	channel	will	asynchronously	write	the	buffered	response	to
the	client.

If	you	have	a	system	dump,	in	the	Memory	Analyzer	Tool,	you	can	find	DirectByteBuffers	waiting	to	be
written	to	the	client	in	the	writeQueue	java.util.ArrayList	under
com.ibm.ws.webcontainer.channel.WCChannelLink.	In	a	PHD	heapdump,	you	won't	know	it	is	the
writeQueue,	but	that	field	is	the	only	ArrayList	on	that	object	so	you	know	it	is	the	writeQueue.	Right
click	on	the	ArrayList	and	click	Show	Retained	Set.	Each
com.ibm.ws.buffermgmt.impl.PooledWsByteBufferImpl	references	a	DirectByteBuffer,	so	the	number	of
these	instances	will	correlate	with	the	number	of	DirectByteBuffers.	In	a	system	dump,	you	can	also	check
the	writing	field	on	the	WCChannelLink	to	see	if	that	link	to	the	client	is	still	in	the	process	of	writing	the
response.

If	you	have	a	system	dump	and	a	recent	version	of	the	IBM	Extensions	for	Memory	Analyzer,	you	can
determine	the	channelwritetype	by	clicking	Open	Query	Browser	}	IBM	Extensions	}	WebSphere
Application	Server	}	Web	Container	Analysis.

If	you	have	a	system	dump,	you	can	find	the	URL	being	processed	(to	review	if	it	may	be	a	large	file,	for
example)	and	other	information	such	as	HTTP	headers	underneath	the	WCChannelLink	request	and	response
fields.

	

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xtrace#output
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=configuration-web-container-custom-properties#synchronous_writes
https://www.ibm.com/support/pages/setting-websphere-application-server-webcontainer-synchronous-mode

SSLUtils.flushCloseDown

If	you	find	many	threads	in	a	thread	dump	in	the	following	stack:

		at	java/lang/Thread.sleep(Native	Method)
		at	java/lang/Thread.sleep(Thread.java:950(Compiled	Code))
		at	com/ibm/ws/ssl/channel/impl/SSLUtils.flushCloseDown(SSLUtils.java:237(Compiled	Code))
		at	com/ibm/ws/ssl/channel/impl/SSLUtils.shutDownSSLEngine(SSLUtils.java:126(Compiled	Code))
		at	com/ibm/ws/ssl/channel/impl/SSLConnectionLink.cleanup(SSLConnectionLink.java:228(Compiled	Code))
		at	com/ibm/ws/ssl/channel/impl/SSLConnectionLink.close(SSLConnectionLink.java:172(Compiled	Code))
		at	com/ibm/ws/http/channel/inbound/impl/HttpInboundLink.close(HttpInboundLink.java:899(Compiled	Code))
		at	com/ibm/wsspi/channel/base/InboundApplicationLink.close(InboundApplicationLink.java:58(Compiled	Code))
		at	com/ibm/ws/webcontainer/channel/WCChannelLink.close(WCChannelLink.java:333(Compiled	Code))
		at	com/ibm/ws/webcontainer/channel/WCChannelLink.releaseChannelLink(WCChannelLink.java:503(Compiled	Code))	[...]

Then	you	may	consider	setting	the	generic	JVM	argument	-DtimeoutValueInSSLClosingHandshake=1	or
the	same	as	an	SSL	channel	custom	property.

When	this	property	was	introduced,	the	default	wait	was	indefinite;	however,	a	subsequent	fixpack	in	late
2017	changed	the	default	timeout	to	30	seconds.

This	stack	tends	to	occur	when	WAS	tries	to	write	the	closing	SSL	handshake	and	the	other	side	is	not
reading	data,	the	other	side	is	not	closing	the	connnection,	and/or	the	write	buffers	are	full.

	

com.ibm.ws.webcontainer.async.AsyncContextImpl.startUsingWCThreadPool

If	a	thread	pool	is	consumed	by	threads	in
com.ibm.ws.webcontainer.async.AsyncContextImpl.startUsingWCThreadPool	or	there	are	many	errors
of	the	form	"Async	operation	cannot	obtain	a	thread	for	execution	due	to	timeout",	then	tune	the
WebContainer	customer	property	com.ibm.ws.webcontainer.asyncrunnabletimeout	(default	30	seconds).
See	APAR	PH60242.	This	is	only	a	workaround	and	otherwise	consider	reducing	the	volume	of
asynchronous	work	being	posted	and/or	gather	an	OS	core	dump	during	the	issue.	One	unresolved
hypothesis	is	that	the	threads	waiting	to	be	spawned	are	processing	a	WSCompleteRunnable.

	

DirectByteBuffer	Pools

The	WAS	WebContainer	uses	DirectByteBuffers	(DBBs)	to	perform	HTTP	reads	and	writes.	The	use	of
DBBs	is	required	for	good	performance.	DBBs	are	used	in	both	cases	of	channelwritetype=async	and
channelwritetype=sync.	The	way	DBBs	are	used	is	that	each	WebContainer	thread	has	a	lazy-loaded,
ThreadLocal	pool	of	DBBs	and	there	is	a	global	pool	of	DBBs	for	all	WebContainer	threads.	This	is	a	major
reason	why	it's	good	for	performance	to	set	the	minimum	size	of	the	WebContainer	thread	pool	to	the
maximum	size	because	that	minimizes	the	creation	and	destruction	of	these	DBBs.

The	size	of	the	DBB	used	will	depend	on	the	size	of	the	HTTP	read	or	write.	Each	DBB	pool	is	split	into
buckets	with	each	bucket	having	DBBs	of	a	certain	fixed	size.	The	default	sizes	of	the	DBBs	are:

32,	1024,	8192,	16384,	24576,	32768,	49152,	65536

In	other	words,	there	is	a	bucket	of	DBBs	that	are	each	32	bytes,	and	a	bucket	of	DBBs	that	are	each	1024
bytes,	and	so	on.

The	default	sizes	of	each	bucket	for	a	WebContainer	ThreadLocal	DBB	pool	are:

30,	30,	30,	20,	20,	20,	10,	10

In	other	words,	there	can	be	up	to	30	DBBs	of	size	32	in	the	first	bucket,	up	to	30	DBBs	of	size	1024	in	the

https://www.ibm.com/support/pages/node/3410493
https://www.ibm.com/support/pages/apar/PI52696
https://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadLocal.html

second	bucket,	and	so	on.

The	global	DBB	pool	multiplies	each	of	the	bucket	sizes	by	10.	In	other	words,	there	can	be	up	to	300	DBBs
of	size	32,	and	so	on.

Therefore,	by	default,	the	global	pool	will	use	up	to	~28MB	of	DBB	native	memory,	and	each	WebContainer
ThreadLocal	DBB	pool	will	use	up	to	~3MB	of	DBB	native	memory.

To	determine	if	the	DBB	sizes	and/or	DBB	bucket	sizes	are	insufficient,	first,	ensure	that	the	WebContainer
thread	pool	minimum	=	maximum,	then	configure	DBB	trace	(this	may	have	significant	overhead,	so	be
careful	running	in	production)	with	-Xtrace:print=j9jcl.335-
338,trigger=tpnid{j9jcl.335,jstacktrace},trigger=tpnid{j9jcl.338,jstacktrace},	run	the	JVM
until	the	WebContainer	thread	pool	reaches	the	maximum	size,	and	run	the	workload	until	it	reaches	steady
state.	If	after	this	point,	the	DBB	trace	is	still	showing	allocations	from
com.ibm.ws.buffermgmt.impl.WsByteBufferPoolManagerImpl.allocateBufferDirect,	then	consider
increasing	the	DBB	and/or	bucket	sizes.	Normally,	we	only	change	the	bucket	sizes	(poolDepths)	and	leave
the	poolSizes	as	default.

Another	inconclusive	but	often	indirect	symptom	of	DBB	pool	exhaustion	is	high	global	garbage	collection
pause	times	with	high	numbers	of	PhantomReferences	being	cleared.	The	native	memory	backing
DirectByteBuffers	is	cleared	using	PhantomReferences,	so	once	a	DBB	has	no	more	strong	references,	it	is
put	on	a	queue	like	a	finalizer.	DBBs	tend	to	get	tenured,	so	they	can	build	up	in	the	tenured	region	of	a
generational	collector	and	this	will	hold	on	to	native	memory	until	the	next	full	GC,	or	if
MaxDirectMemorySize	is	hit,	and	a	large	number	of	queued	DBBs	may	increase	global	GC	pause	times	(in
some	implementations,	because	PhantomReference	processing	is	single	threaded).

To	modify	either	the	DBB	sizes	and/or	the	bucket	sizes,	edit	server.xml	(in	a	network	deployment
environment,	edit	in	the	deployment	manager	configuration	and	then	synchronize	the	node(s)):

In	the	root	process:Server	element,	add	the	attribute

xmlns:wsbytebufferservice="http://www.ibm.com/websphere/appserver/schemas/6.0/wsbytebufferservice.xmi"

Find	the	services	element	with	the	xmi:type	loggingservice.http:HTTPAccessLoggingService.	After	the
matching	</services>	tag,	override	the	DBB	sizes	and/or	the	bucket	sizes.	For	example:

<services	xmi:type="wsbytebufferservice:WSByteBufferService"	xmi:id="WSBBS_1"	enable="true">
	<properties	xmi:id="BuffSVC_4"	name="poolSizes"	value="32,1024,8192,16384,24576,32768,49152,65536"/>
	<properties	xmi:id="BuffSVC_5"	name="poolDepths"	value="100,100,100,20,20,20,20,20"/>
</services>

Restart	the	JVM.

	

JSP	Buffers

The	JSP	body	buffer	needs	to	contain	the	evaluation	of	a	JSP	body	tag.	The	buffer	will	grow	to	the	size	of
the	body	of	an	action:	"The	buffer	size	of	a	BodyContent	object	is	unbounded.".	The	property
BodyContentBuffSize	defines	the	initial	size	of	each	buffer	(default	512	bytes)	and	it's	doubled	until	all	of
the	content	is	contained.	If	com.ibm.ws.jsp.limitBuffer=false	(the	default),	the	buffer	will	remain	at	its
latest	size	for	subsequent	requests.	If	com.ibm.ws.jsp.limitBuffer=true,	the	buffer	is	reset	to
BodyContentBuffSize.	If	the	total	size	of	instances	of	org.apache.jasper.runtime.BodyContentImpl
exceeds	5-10%	of	the	maximum	Java	heap	size,	then	it's	recommended	to	either	reduce	the	application's
usage	of	large	JSP	body	content	and/or	to	set	com.ibm.ws.jsp.limitBuffer=true.

It's	difficult	to	theoretically	calculate	an	optimal	default	value	for	BodyContentBuffSize.	If	the	size	is	too
small,	then	there	is	potentially	extra	time	spent	growing	the	buffer.	If	the	size	is	too	large,	then	there	is
potentially	extra	time	spent	garbage	collecting.	This	is	a	property	used	for	all	JSPs,	but	if	there	are	multiple
JSPs,	they	will	have	different	characteristics.	As	with	most	performance	tuning,	the	best	approach	is	to	test

https://docs.oracle.com/javaee/6/api/javax/servlet/jsp/tagext/BodyContent.html
https://www.ibm.com/docs/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rweb_custom_props.html#setting_buff_size

different	options	and	find	the	optimal	value	using	a	binary	search	(ideally	first	in	a	test	environment):	Start
with	a	value	X1=512.	Continue	doubling	as	long	as	results	improve.	Once	results	are	worse,	halve	the
difference	from	the	previous	value	(X2-X1)/2	and	repeat	the	algorithm	(double	or	halve	the	difference)	until
an	optimal	value	is	found.

If	you	have	a	heapdump,	use	the	Memory	Analyzer	Tool	to	calculate	the	retained	set	of	the	class
org.apache.jasper.runtime.BodyContentImpl.

If	you	have	a	system	dump	or	HPROF	heapdump,	then	use	the	following	OQL	queries	in	the	Memory
Analyzer	Tool	to	check	the	settings	of	limitBuffer	and	BodyContentBuffSize:

SELECT	x.limitBuffer	FROM	INSTANCEOF	java.lang.Class	x	WHERE	x.@displayName.contains("class	org.apache.jasper.runtime.BodyContentImpl	")

x.limitBuffer
				true

SELECT	x.bodyContentBufferSize	FROM	org.apache.jasper.runtime.JspFactoryImpl	x

x.bodyContentBufferSize
				512

	

HTTP	gzip	compression

HTTP	compression	can	be	done	either	for	a	request	body,	or	more	commonly,	for	a	response	body.	HTTP
compression	can	only	be	done	if	the	client	sends	a	request	header	called	Accept-Encoding	with	an	encoding
supported	by	the	server:

GET	/	HTTP/1.1
Accept-Encoding:	gzip,deflate

When	a	response	is	compressed,	the	response	will	have	an	HTTP	header	saying	how	the	body	is	compressed:

HTTP/1.1	200	OK
Content-Encoding:	gzip

WAS	traditional	does	not	natively	support	Content-Encoding	such	as	gzip	compression	for	HTTP
responses	(except	in	the	proxy	server	or	ODR).

It	is	recommended	to	do	compression	at	the	web	server	level	(e.g.	for	IHS,	mod_deflate	or	mod_gzip);
however,	it	may	be	done	by	the	application	within	WAS	by	setting	the	proper	response	header	and
compressing	the	response	content	using	a	custom	servlet	filter.

	

Java	Server	Faces	(JSF)

The	default	setting	of	org.apache.myfaces.SERIALIZE_STATE_IN_SESSION=true	in	the	version	of
MyFaces	2.0	that	WAS	<=	8.5.5	uses	may	have	a	significant	performance	overhead.	The	default	in	MyFaces
2.2	has	been	changed	to	false.	However,	note	setting	this	to	false	causes	the	state	to	be	stored	in	browser
cookies.	If	the	amount	of	state	is	very	large,	this	can	cause	performance	problems	for	the	client-to-server
interaction.

The	com.sun.faces.util.LRUMap	object	can	hold	on	to	a	lot	of	memory	as	this	is	used	to	hold	the	various
JSF	Views	in	the	session.	There	are	two	types	of	JSF	Views	stored	in	the	session.	Logical	Views	in	session
and	Number	of	views	in	session:	A	logical	view	is	a	top	level	view	that	may	have	one	or	more	actual	views
inside	of	it.	This	will	be	the	case	when	you	have	a	frameset,	or	an	application	that	has	multiple	windows
operating	at	the	same	time.	The	LOGICAL_VIEW_MAP	map	is	an	LRU	Map	which	contains	an	entry	for	each
logical	view,	up	to	the	limit	specified	by	the	com.sun.faces.numberOfViewsInSession	parameter.	Each
entry	in	the	LOGICAL_VIEW_MAP	is	an	LRU	Map,	configured	with	the

com.sun.faces.numberOfLogicalViews	parameter.

By	default	the	number	of	views	stored	for	each	of	these	maps	is	15.	Therefore	you	can	see	how	it	could	end
up	using	a	lot	of	memory.	The	value	of	com.sun.faces.numberOfViewsInSession	and
com.sun.faces.numberOfLogicalViews	does	not	have	to	be	"4",	it	can	whatever	you	feel	is	adequate	for
your	application.

If	either	of	these	parameters	are	not	in	the	application	then	it	will	store	up	to	15	views	in	the	LRU	Maps.
Setting	these	values	to	something	lower	will	result	in	lower	memory	usage	by	JSF.

The	actual	number	depends	on	your	application.	Basically,	if	we	can't	find	a	JSF	View	in	the	session	to
restore	we	will	create	a	new	one.	In	general,	a	complex	application	is	one	that	would	allow	a	user	to	move
back	and	forth	to	pages	(think	something	like	a	wizard),	or	an	application	that	contains	framesets	or	a	lot	of
pop	up	windows.	For	example,	if	a	pop	up	window	is	used	to	fill	out	some	information	and	then	click	submit
to	go	back	to	the	original	page...	that	would	require	storing	more	views	in	session.

15	tends	to	be	a	high	number,	especially	if	the	views	are	large	(contains	quite	a	lot	of	JSF	components	and
their	state).	One	thing	to	remember	is	each	Logical	View	can	contain	the	set	number	of	Actual	Views.	That
is	where	the	idea	of	a	frameset	comes	in	--	one	logical	view	for	the	parent	page,	and	the	actual	views	are	the
different	frames.

More	information	and	how	to	set	the	parameters:

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=parameters-jsf-engine-configuration
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=22-configuring-jsf-engine-parameters

In	particular,	com.sun.faces.numberOfViewsInSession	and	com.sun.faces.numberOfLogicalViews,
potentially	as	low	as	4	(the	default	for	both	is	15),	and	com.sun.face.serializeServerState=true

				<context-param>
						<param-name>com.sun.faces.numberOfViewsInSession</param-name>
						<param-value>4</param-value>
				</context-param>
				<context-param>
						<param-name>com.sun.faces.numberOfLogicalViews</param-name>
						<param-value>4</param-value>
				</context-param>

For	general	MyFaces	JSF	tuning	guidance,	see	https://wiki.apache.org/myfaces/Performance

	

MyFaces	JSF	Embedded	JAR	Search	for	META-INF/*.faces-config.xml

By	default,	the	IBM	Apache	MyFaces	JSF	implementation	searches	JSF-enabled	applications	for	META-
INF/*.faces-config.xml	files	in	all	JARs	on	the	application	classpath.	A	CPU	profiler	might	highlight
such	tops	of	stacks	of	this	form:

				java.util.jar.JarFile$1.nextElement
				java.util.jar.JarFile$1.nextElement
				org.apache.myfaces.view.facelets.util.Classpath._searchJar
				org.apache.myfaces.view.facelets.util.Classpath._searchResource
				org.apache.myfaces.view.facelets.util.Classpath.search
				com.ibm.ws.jsf.config.resource.WASFacesConfigResourceProvider.getMetaInfConfigurationResources	[...]

When	an	embedded	faces-config.xml	file	is	found,	a	message	is	written	to	SystemOut.log	with	a	wsjar:
prefix,	so	this	would	be	a	simple	way	to	check	if	such	embedded	resource	searches	are	needed.	For	example:

[10/13/18	4:36:18:481	EST]	00000073	DefaultFacesC	I			Reading	config	:	wsjar:file:[...]/installedApps/[...]/[...].ear/lib/bundled.jar!/META-INF/faces-config.xml

If	your	applications	only	use	a	faces-config.xml	within	the	application	itself	and	do	not	depend	on	embedded

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=parameters-jsf-engine-configuration
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=22-configuring-jsf-engine-parameters
https://wiki.apache.org/myfaces/Performance

faces-config.xml	files	within	JARs	on	the	application	classpath,	then	you	can	just	disable	these	searches:

Servers	}	Server	Types	}	WebSphere	application	servers	}	${SERVER}	}	Web	Container	Settings	}
Web	container	}	Custom	Properties	}	New
Name	=	com.ibm.ws.jsf.disablealternatefacesconfigsearch
Value	=	true
Documentation

If	some	applications	do	require	embedded	faces-config.xml	files,	then	you	can	disable	the	search	globally,
but	then	enable	the	search	on	a	per-application	basis.

	

HTTP	Sessions

The	HTTP	session	timeout	is	an	important	factor	for	how	much	heap	pressure	the	JVM	will	face.	Work	with
the	business	to	find	the	lowest	reasonable	value	(default	30	minutes).

If	a	customer	requires	session	fail	over,	in	general,	use	session	persistence	(database)	over	memory-to-
memory	replication.	Consider	if	session	failover	is	required	as	it	increases	complexity	and	decreases
performance.	The	alternative	is	to	affinitize	requests	and	surgically	store	any	critical	state	into	a	database.

If	using	session	persistence	and	a	customer	can	handle	timed	update	semantics,	use	timed	updates.	This	is
typical	for	very	high	volume	websites	or	those	with	very	large	HTTP	session	sizes	or	both.	Again,	there	is
risk	even	with	10	second	intervals	of	some	data	loss	should	a	negative	event	occur.	Therefore	ensure	that	the
business	owners	for	the	application	are	aware	of	the	risk	and	their	acknowledgment	of	the	risk	before
switching	to	timed	updates.	There	is	also	the	option	of	manual	synchronization	of	sessions	but	this	does
involve	adding	and	testing	additional	code.

The	WebSphere	Contrarian:	Back	to	basics:	Session	failover

"My	preferred	alternative	is	to	rely	not	on	session	distribution,	but	instead	to	rely	simply	on
HTTP	server	plug-in	affinity	to	"pin"	a	user	to	an	application	server,	although	this	does	mean
that	stopping	an	application	server	JVM	will	result	in	the	loss	of	the	HttpSession	object.	The
benefit	of	doing	so	is	that	there	is	no	need	to	distribute	the	session	objects	to	provide	for
HttpSession	object	failover	when	an	application	server	fails	or	is	stopped.	The	obvious	down
side	is	that	a	user	will	lose	any	application	state	and	will	need	to	log	back	in	and	recreate	it,	and
this	may	or	may	not	be	acceptable	for	your	application	or	business	requirements.	I'll	mention	that
I've	worked	with	a	number	of	customers	that	in	fact	agree	with	this	view	and	make	this	their
standard	practice."

Try	to	keep	per-user	session	data	small,	ideally	less	than	4KB	each.

Session	overflow	(Allow	overflow)	of	non-distributed/non-persisted	sessions	is	generally	a	dangerous
practice.	This	creates	an	unbounded	queue	for	sessions,	and	it's	rarely	good	to	ever	have	unbounded	queues,
especially	with	objects	that	are	often	times	quite	big	and	long-lived.	This	can	easily	cause	out	of	memory
errors	with	sudden	spikes	of	load,	and	allows	for	simple	Denial	of	Service	(DoS)	attacks,	whether	they	be
malicious	or	an	errant	script.	Consider	disabling	session	overflow	for	non-distributed/non-persistent	sessions
(by	default	it	is	disabled),	and	adding	logic	to	the	application	to	check	for	overflow	and	handle	that.	Then,
sufficient	queue	tuning,	session	timeout	tuning,	and	horizontal	scaling	should	be	done	to	support	the	required
number	of	sessions.	When	overflow	occurs	for	non-distributed	sessions,	an	instance	of	a	non-null	session	is
returned	and	it	is	set	to	invalid.	This	can	be	checked	by	the	application	developer.

Note	that	Allow	overflow	does	not	apply	to	distributed	sessions,	although	the	maximum	in-memory	session
count	does	still	act	as	an	in-memory	cache:

Allow	overflow	[...]	is	valid	only	in	non-distributed	sessions	mode.

	

https://www.ibm.com/docs/en/SSEQTP_8.5.5/com.ibm.websphere.base.iseries.doc/ae/rweb_custom_props.html#com.ibm.ws.jsf.disablealternatefacesconfigsearch
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=22-configuring-jsf-engine-parameters
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=sessions-best-practices-using-http
http://www.ibm.com/developerworks/websphere/techjournal/0810_webcon/0810_webcon.html
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=level-session-management-settings
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=level-session-management-settings

Database	Session	Persistence

There	are	various	important	tuning	settings	for	database	session	persistence,	including,	for	example,	the	write
frequency.

	

Session	Data	Disappears	on	Fail	Over

In	order	for	HTTP	Session	fail	over	to	work	properly	an	application	has	to	code	their	Java	objects	properly	by
implementing	either	Serializable	or	Externalizable.	If	the	developers	fail	to	do	this	then	when	some	negative
event	causes	users	to	fail	over	to	another	JVM	session	data	will	simply	disappear.

	

Annotation	Scanning

Consider	disabling	annotation	scanning	if	not	needed:

Enterprise	applications	that	contain	many	classes	and	are	enabled	for	annotations	processing	(are
not	marked	as	"metadata-complete")	take	extra	time	to	deploy.	Extra	time	is	necessary	to	scan
application	binaries	for	annotations	that	were	introduced	by	Java	EE	5.	If	there	are	no	additional
options	to	limit	which	classes	are	scanned,	when	scanning	is	enabled	for	a	module	all	classes	in
the	module	must	be	scanned.	A	scan	of	all	classes	is	necessary	even	when	only	a	small	subset	of
classes	within	a	given	module	has	annotations.

	

ServletContext.getResource	performance

The	Java	Enterprise	Edition	6	(JEE6)	specification	changed	the	behavior	of	ServletContext.getResource
to	also	search	for	resources	in	META-INF/resources	directories	of	any	JAR	files	in	/WEB-INF/lib:

javax/servlet/ServletContext.getResource	will	first	search	the	document	root	of	the	web
application	for	the	requested	resource,	before	searching	any	of	the	JAR	files	inside	/WEB-
INF/lib.

WAS	starts	to	implement	JEE6	in	version	8	with	some	performance	improvements	starting	with	8.0.0.10	and
8.5.5.5.

If	you	notice	a	lot	of	time	spent	in	ServletContext.getResource	(more	specifically,
com/ibm/ws/webcontainer/util/MetaInfResourcesFileUtils),	or	significant	processing	unzipping	JARs
with	that	method	in	the	stack,	and	if	you	can	confirm	with	your	application	developers	that	there	are	no
resources	in	the	JAR	files	in	the	WARs,	then	you	can	set
com.ibm.ws.webcontainer.SkipMetaInfResourcesProcessing	=	true	to	revert	to	JEE5	behavior.

The	custom	property	com.ibm.ws.webcontainer.metainfresourcescachesize,	which	defaults	to	20,	may
be	used	to	reduce	META-INF/lib	searching	and	JAR	processing.	If	tracing	is	enabled	with
com.ibm.ws.webcontainer.util.*=all,	a	cache	hit	will	produce	the	trace	entry	starting	with	got	cached
META-INF	name.

	

Timeouts

"In	general,	increasing	values	for	timeouts	or	pool	sizes	will	delay	recognition	of	a	downstream	component
failure,	but	in	the	case	of	pool	sizes	a	larger	value	also	provides	some	buffering	in	the	event	of	a	failure.	As
you	can	see,	tuning	to	prevent	your	website	from	stalling	in	the	event	of	a	failure	will	require	a	tradeoff

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=sessions-tuning-parameter-settings
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=sessions-tuning-parameter-custom-settings
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=deployment-reducing-annotation-searches-during-application
https://docs.oracle.com/javaee/6/api/javax/servlet/ServletContext.html#getResource%2528java.lang.String%2529
https://www.ibm.com/docs/en/was-nd/8.5.5?topic=overview-specifications-api-documentation
https://www.ibm.com/support/pages/apar/PI28751
https://www.ibm.com/docs/en/was/9.0.5?topic=configuration-web-container-custom-properties#com.ibm.ws.webcontainer.SkipMetaInfResourcesProcessing
https://www.ibm.com/support/pages/poor-response-or-application-timeout-zipfile-operation

between	increasing	and	decreasing	various	parameters.	Arriving	at	the	optimal	values	for	your	environment
will	require	iterative	testing	with	various	settings	and	failure	scenarios	so	that	you	(or	at	least	your	computer
systems)	will	be	prepared	to	fail,	which	in	turn	should	help	insure	your	success	(and	continued
employment)."

	

WebContainer	Diagnostic	Trace

The	following	diagnostic	trace	can	be	used:
com.ibm.ws.http.channel.inbound.impl.HttpICLReadCallback=all:com.ibm.ws.http.channel.inbound.impl.HttpInboundLink=all

For	each	request,	the	following	entries	will	appear	in	trace.log	for	a	new	connection

[9/26/11	16:07:30:143	PDT]	00000029	HttpInboundLi	3	Init	on	link:	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d
		com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7
[9/26/11	16:07:30:144	PDT]	00000029	HttpInboundLi	>	ready:	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d
		com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7	Entry
[9/26/11	16:07:30:144	PDT]	00000029	HttpInboundLi	3	Parsing	new	information:	com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7
[9/26/11	16:07:30:146	PDT]	00000029	HttpInboundLi	3	Received	request	number	1	on	link	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d
[9/26/11	16:07:30:146	PDT]	00000029	HttpInboundLi	3	Discrimination	will	be	called
[9/26/11	16:07:30:149	PDT]	00000029	SystemOut	O	SWAT	EAR:	Invoking	com.ibm.Sleep	by	anonymous	(127.0.0.1)...	[]
[9/26/11	16:07:31:151	PDT]	00000029	SystemOut	O	SWAT	EAR:	Done	com.ibm.Sleep
[9/26/11	16:07:31:152	PDT]	00000029	HttpInboundLi	3	close()	called:	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d
		com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7
[9/26/11	16:07:31:153	PDT]	00000029	HttpInboundLi	3	Reading	for	another	request...
[9/26/11	16:07:31:153	PDT]	00000029	HttpInboundLi	<	ready	Exit

For	an	existing	connection,	it	will	be	slightly	different:

[9/26/11	16:07:35:139	PDT]	00000028	HttpICLReadCa	3	complete()	called:	com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7
[9/26/11	16:07:35:139	PDT]	00000028	HttpInboundLi	3	Parsing	new	information:	com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7
[9/26/11	16:07:35:141	PDT]	00000028	HttpInboundLi	3	Received	request	number	2	on	link	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d
[9/26/11	16:07:35:141	PDT]	00000028	HttpInboundLi	3	Discrimination	will	be	called
[9/26/11	16:07:35:144	PDT]	00000028	SystemOut	O	SWAT	EAR:	Invoking	com.ibm.Sleep	by	anonymous	(127.0.0.1)...	[]
[9/26/11	16:07:36:146	PDT]	00000028	SystemOut	O	SWAT	EAR:	Done	com.ibm.Sleep
[9/26/11	16:07:36:147	PDT]	00000028	HttpInboundLi	3	close()	called:	com.ibm.ws.http.channel.inbound.impl.HttpInboundLink@83d083d
		com.ibm.ws.channel.framework.impl.InboundVirtualConnectionImpl@6c706c7
[9/26/11	16:07:36:148	PDT]	00000028	HttpInboundLi	3	Reading	for	another	request...

The	time	between	the	"Discrimination	will	be	called"	and	"close()"	lines	is	when	the	request/response	is
executed.

	

IBM	Java	-Xtrace

If	you	want	to	look	at	the	response	times	of	a	particular	Java	method,	and	you're	using	the	IBM	JVM,	then
you	could	use	-Xtrace	method	trace.	For	example,	we	know	that	all	HTTP(s)	requests	for	servlets	go	through
javax/servlet/http/HttpServlet.service,	so	we	could	use	the	generic	JVM	argument:

-Xtrace:methods={javax/servlet/http/HttpServlet.service},print=mt

Every	time	this	method	is	executed,	the	following	entries	will	be	written	to	native_stderr.log:

23:21:46.020*0x2b28d0018700	mt.0	>	javax/servlet/http/HttpServlet.service(Ljavax/servlet/ServletRequest;Ljavax/servlet/ServletResponse;)V	Bytecode	method,	This	=	2b292400fcf8
23:21:47.071	0x2b28d0018700	mt.6	<	javax/servlet/http/HttpServlet.service(Ljavax/servlet/ServletRequest;Ljavax/servlet/ServletResponse;)V	Bytecode	method

Remember	that	servlets	can	include	other	servlets	(usually	through	JSPs),	and	the	method	trace	entries	will
be	properly	indented,	but	just	make	sure	you	match	the	right	entry	and	exit	to	get	the	correct	elapsed	time.

Method	trace	is	more	useful	when	you	already	have	some	idea	of	where	the	slowdown	may	be.	For	example,
you	can	specify	a	list	of	particular	business	methods,	and	then	iteratively	drill	down	into	those	that	are	slow

until	you	reach	the	slow	method.	This	of	course	won't	help	if	the	problem	is	systemic,	such	as	garbage
collection,	operating	system	paging,	etc.,	since	that	will	arbitrarily	affect	any	methods.	However,	it	is	good	at
pinpointing	backend	slowdowns	(e.g.	put	a	method	trace	around	database	calls).

	

Transport	Channels

How	transport	channels	work:

The	product	web	container	manages	all	HTTP	requests	to	servlets,	JavaServer	Pages	and	web
services.	Requests	flow	through	a	transport	chain	to	the	web	container.	The	transport	chain
defines	the	important	tuning	parameters	for	performance	for	the	web	container.	There	is	a
transport	chain	for	each	TCP	port	that	the	product	is	listening	on	for	HTTP	requests.	For
example,	the	default	HTTP	port	9080	is	defined	in	web	container	inbound	channel	chain.

The	default	write	buffer	size	for	HTTP	requests	is	32768	bytes.	Responses	greater	than	this	value	trigger	an
implicit	flush,	and	if	no	content	length	was	specified,	result	in	the	response	being	sent	with	chunked
Transfer-Encoding.	Setting	this	value	much	higher	probably	does	not	result	in	significantly	fewer	actual
write()	system	calls,	as	the	underlying	OS	buffers	are	unlikely	to	accept	such	large	writes.	The	most	interest
in	this	property	is	not	for	performance,	but	as	a	safety	net	for	response	data	being	written	prior	to	the	headers
being	complete.	Or	to	avoid	chunked	responses	(one-off	clients	may	be	confused	by	some	unexpected
chunked	responses,	download	progress	cannot	be	estimated,	etc).

	

Asynchronous	I/O	(AIO)	versus	New	I/O	(NIO)

AIO	is	the	default	TCP	transport	mechanism	which	is	a	WAS	feature	that	uses	a	native	library	on	each
operating	system	to	utilize	operating	system	features	for	asynchronous	I/O.	An	alternative	is	NIO	which	is
Java's	built	in	asynchronous	I/O	(also	uses	native	functions	in	the	JVM).	Historically,	AIO	has	been	disabled
primarily	to	decrease	native	memory	pressures	on	32-bit	processes	running	near	the	edge.	There	are	no	clear
performance	numbers	comparing	AIO	versus	NIO.	Therefore,	consider	testing	with	NIO	instead.

In	general,	AIO	should	show	a	marginal	performance	improvement	over	NIO	because	it	simplifies	some	of
the	selector	logic	and	reduces	thread	context	switching.	On	newer	versions	of	Windows,	AIO	may	have
poorer	performance.

AIO	may	report	more	concurrently	active	threads	than	NIO	in	the	WebContainer	thread	pool	because	of	a
design	difference	in	the	way	the	WebContainer	thread	pool	is	used	to	handle	network	input/output.	In
particular,	AIO	runs	ResultHandler	Runnables	in	the	WebContainer	thread	pool	which	may	be	idle	in	the
sense	that	they	are	waiting	for	I/O,	but	are	considered	active	by	the	WebContainer	thread	pool	because	they
are	actively	waiting	for	AIO	results.	This	behavior	is	by	design	and	it	may	only	be	a	concern	if	the
concurrently	active	thread	count	is	90%	or	more	of	the	maximum	size	of	the	thread	pool.	Application
performance	should	primarily	be	judged	by	response	times	and	throughput,	not	by	thread	pool	utilization.

There	are	two	AIO	native	libraries	shipped	with	WAS:	ibmaio	and	ibmaiodbg	(e.g.	.so	or	.dll).	If	the	JVM
is	started	with	-DAIODebugNative=true	then	ibmaiodbg	is	loaded	instead	which	writes	additional	debug
tracing	to	traceaio.txt	in	the	JVM's	working	directory	(e.g.	$WAS/profiles/$PROFILE/).	This
traceaio.txt	file	does	not	wrap	and	cannot	be	enabled	or	disabled	dynamically.	In	general,	this	should	be
paired	with	the	WAS	diagnostic	trace
=info:com.ibm.ws.webcontainer.=all:com.ibm.ws.wswebcontainer.*=all:com.ibm.wsspi.webcontainer.*=all:HTTPChannel=all:GenericBNF=all:TCPChannel=all

With	NIO,	a	dedicated	thread	does	the	scheduling	for	the	other	WC	threads	rather	than	how	AIO	has	each
WC	thread	do	scheduling	as	needed.	This	may	avoid	certain	AIO	deadlock	scenarios	with	persistent
connections	where	all	threads	are	in	com/ibm/ws/util/BoundedBuffer.waitPut_	after
com/ibm/ws/http/channel/inbound/impl/HttpInboundLink.close.

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=environment-tuning-application-servers
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=environment-tuning-transport-channel-services
https://www.ibm.com/support/pages/disabling-aio-asynchronous-inputoutput-native-transport-websphere-application-server
https://www.ibm.com/support/pages/was-channel-framework-aio-versus-nio

	

TCP	Transport	Channel

Maximum	Open	Connections

By	default,	each	TCP	transport	channel	allows	up	to	20,000	concurrently	open	incoming	connections
(Maximum	open	connections).

Benefits	of	a	large	value	are:

1.	 AIO/NIO	intensive	work	(e.g.	most	of	the	time	spent	reading	or	writing	HTTP	responses)	can	process
more	concurrent	requests.

2.	 There	can	be	more	keepalive	connections.
3.	 Certain	applications	have	many	connections	with	little	activity	on	each	connection.
4.	 Other	functions	such	as	asynchronous	servlets	and	WebSockets	may	require	a	large	number	of

connections.

Disadvantages	of	a	large	value	are:

1.	 If	there	is	a	backup	in	the	application,	host,	or	external	services,	too	many	requests	can	queue	and
increase	response	times	without	any	timeout	notification	to	end-users,	unless	there	are	timeouts	in
upstream	proxies	(for	example,	ServerIOTimeout	in	IHS).

2.	 The	number	of	connections	must	be	supported	by	operating	system	and	process	resource	limits	such
(for	example,	on	a	POSIX	system,	every	socket	requires	a	file	descriptor	and	thus	the	open	file	ulimit
must	be	large	enough).

	

Keep	alive

Both	tWAS	and	Liberty	set	TCP	KeepAlive	on	TCP	channel	sockets	by	default	(setKeepAlive(true)).

503	Service	Unavailable

WAS	will	send	back	a	503	in	at	least	these	situations:

If	the	WAS	HTTP	transport	channel	is	stopping	or	stopped.
If	there	is	an	internal	failure	when	setting	up	a	new	connection.
If	the	web	application	containing	the	target	servlet	is	stopping,	stopped,	restarting,	uninstalled,	etc.

An	application	may	send	back	a	503	response	itself,	as	can	other	products	such	as	the	SIP	proxy,	Java	Proxy
Server,	On	Demand	Router,	etc.

	

Apache	HttpClient

To	isolate	your	deployment	from	the	OSS	framework	"Apache	HTTP	Components"	provided	by	WAS,	you
would	define	one	or	more	of	the	system	properties.

For	example:

-Dcom.ibm.ws.classloader.server.alwaysProtectedPackages=org.apache.http.

The	input	will	cause	the	server	to	block	all	loadClass()	operations	on	class	names	containing	the	package
prefix	"org.apache.http.".	If	you	need	to	block	getResource()	operations	on	org/apache/http/,	then	you	would
also	define	property:

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=chains-tcp-transport-channel-settings
https://www.ibm.com/docs/en/was/8.5.5?topic=SSEQTP_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/welc6tech_opensource_isolate.htm

-Dcom.ibm.ws.classloader.server.alwaysProtectedResources=org/apache/http/

And	if	you	need	access	to	a	subpackage	of	org.apache.http.,	or	a	class	in	org.apache.http.,	you	could	define
property:

-Dcom.ibm.ws.classloader.server.alwaysAllowedPackages=org.apache.http.subpkg.,org.apache.http.ClassName

	

Startup

Common	Tuning

Context	and	Dependency	Injection	(CDI)

With	tWAS	>=	9,	CDI	is	enabled	by	default.	With	tWAS	<	9,	CDI	is	only	enabled	if	an	application
has	a	beans.xml	file
If	all	applications	do	not	use	CDI	beans.xml,	then	set	-
Dcom.ibm.ws.cdi.enableImplicitBeanArchives=false	or	to	disable	CDI	completely,	-
Dcom.ibm.ws.cdi.enableCDI=false
To	disable	CDI	on	a	per-application	basis,	use	the	amm.filter.properties	file.

	

Application	Startup

There	is	a	"server.startup"	thread	pool	(default	maximum	size	of	3)	in	which	applications	start.	If	this	thread
pool	(actually,	its	queue	of	work)	is	full,	the	following	message	will	be	printed	in	SystemOut.log:

[10/9/18	19:07:24:002	CEST]	00000001	ThreadPool	I	WSVR0629I:	The	request	buffer	for	thread	pool	"server.startup"	has	reached	its	capacity.

However,	simply	increasing	the	server.startup	thread	pool	may	not	help	because	large	parts	of	application
startup	within	the	WebContainer	are	single	threaded	and	you	may	see	contention	in
com.ibm.ws.webcontainer.component.WebContainerImpl.	A	feature	request	was	opened	but	deemed	too
risky	and	complex:	https://www.ibm.com/developerworks/rfe/execute?use_case=viewRfe&CR_ID=21322

As	per	Amdahl's	Law,	the	best	thing	to	do	is	to	profile	and	optimize	the	startup	time	of	the	application(s)
taking	the	longest	time	to	start.	For	J9-based	JVMs,	use	IBM	Java	Health	Center	and	for	HotSpot-based
JVMs,	use	OpenJDK	Mission	Control.	More	simply,	take	a	bunch	of	thread	dumps	during	startup	to	see
where	most	of	the	time	is	spent.	If	there	aren't	many	opportunities	to	optimize	startup,	then	consider	splitting
applications	into	separate	clusters.

Alternatively,	there	is	a	feature	called	"Launch	application	before	server	completes	startup"	which	may	be
disabled,	although	note:	"A	setting	of	true	informs	the	product	that	the	application	might	start	on	a
background	thread	and	thus	server	startup	might	continue	without	waiting	for	the	application	to	start.	Thus,
the	application	might	not	be	ready	for	use	when	the	application	server	starts."

You	may	see	a	stack	with	a	synchronization	block	such	as:

3XMTHREADINFO						"server.startup	:	2"	J9VMThread:0xDE4DAD00,	j9thread_t:0xDE3E61D4,	java/lang/Thread:0xF6424EB8,	state:CW,	prio=5
3XMTHREADINFO1												(native	thread	ID:0x12AF,	native	priority:0x5,	native	policy:UNKNOWN)
3XMTHREADINFO2												(native	stack	address	range	from:0x01981000,	to:0x019C2000,	size:0x41000)
3XMTHREADINFO3											Java	callstack:
4XESTACKTRACE																at	java/lang/Thread.sleep(Native	Method)
4XESTACKTRACE																at	java/lang/Thread.sleep(Thread.java:893)
4XESTACKTRACE																at	com/ibm/test/ApplicationStartup.contextInitialized(ApplicationStartup.java:12)
4XESTACKTRACE																at	com/ibm/ws/webcontainer/webapp/WebApp.notifyServletContextCreated(WebApp.java:1651)
4XESTACKTRACE																at	com/ibm/ws/webcontainer/webapp/WebAppImpl.initialize(WebAppImpl.java:410)
4XESTACKTRACE																at	com/ibm/ws/webcontainer/webapp/WebGroupImpl.addWebApplication(WebGroupImpl.java:88)
4XESTACKTRACE																at	com/ibm/ws/webcontainer/VirtualHostImpl.addWebApplication(VirtualHostImpl.java:169)

https://www.ibm.com/support/pages/custom-properties-improving-application-startup-websphere-application-server
https://www.ibm.com/developerworks/rfe/execute?use_case=viewRfe&CR_ID=21322
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/urun_rapp_startup_behavior.html

4XESTACKTRACE																at	com/ibm/ws/webcontainer/WSWebContainer.addWebApp(WSWebContainer.java:749)
4XESTACKTRACE																at	com/ibm/ws/webcontainer/WSWebContainer.addWebApplication(WSWebContainer.java:634)
4XESTACKTRACE																at	com/ibm/ws/webcontainer/component/WebContainerImpl.install(WebContainerImpl.java:422)
4XESTACKTRACE																at	com/ibm/ws/webcontainer/component/WebContainerImpl.start(WebContainerImpl.java:714)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/ApplicationMgrImpl.start(ApplicationMgrImpl.java:1154)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/DeployedApplicationImpl.fireDeployedObjectStart(DeployedApplicationImpl.java:1369)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/DeployedModuleImpl.start(DeployedModuleImpl.java:638)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/DeployedApplicationImpl.start(DeployedApplicationImpl.java:967)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/ApplicationMgrImpl.startApplication(ApplicationMgrImpl.java:760)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/ApplicationMgrImpl.start(ApplicationMgrImpl.java:2147)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/CompositionUnitMgrImpl.start(CompositionUnitMgrImpl.java:445)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/CompositionUnitImpl.start(CompositionUnitImpl.java:123)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/CompositionUnitMgrImpl.start(CompositionUnitMgrImpl.java:388)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/CompositionUnitMgrImpl.access$500(CompositionUnitMgrImpl.java:116)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/CompositionUnitMgrImpl$CUInitializer.run(CompositionUnitMgrImpl.java:994)
4XESTACKTRACE																at	com/ibm/wsspi/runtime/component/WsComponentImpl$_AsynchInitializer.run(WsComponentImpl.java:349)
4XESTACKTRACE																at	com/ibm/ws/util/ThreadPool$Worker.run(ThreadPool.java:1659)

3XMTHREADINFO						"server.startup	:	1"	J9VMThread:0xDE4D7100,	j9thread_t:0xDE3E5EB8,	java/lang/Thread:0xF6424F40,	state:B,	prio=5
3XMTHREADINFO1												(native	thread	ID:0x12AE,	native	priority:0x5,	native	policy:UNKNOWN)
3XMTHREADINFO2												(native	stack	address	range	from:0x01940000,	to:0x01981000,	size:0x41000)
3XMTHREADBLOCK					Blocked	on:	com/ibm/ws/webcontainer/component/WebContainerImpl@0xE72A44F8	Owned	by:	"server.startup	:	2"	(J9VMThread:0xDE4DAD00,	java/lang/Thread:0xF6424EB8)
3XMTHREADINFO3											Java	callstack:
4XESTACKTRACE																at	com/ibm/ws/webcontainer/component/WebContainerImpl.start(WebContainerImpl.java:714)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/ApplicationMgrImpl.start(ApplicationMgrImpl.java:1154)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/DeployedApplicationImpl.fireDeployedObjectStart(DeployedApplicationImpl.java:1369)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/DeployedModuleImpl.start(DeployedModuleImpl.java:638)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/DeployedApplicationImpl.start(DeployedApplicationImpl.java:967)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/ApplicationMgrImpl.startApplication(ApplicationMgrImpl.java:760)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/ApplicationMgrImpl.start(ApplicationMgrImpl.java:2147)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/CompositionUnitMgrImpl.start(CompositionUnitMgrImpl.java:445)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/CompositionUnitImpl.start(CompositionUnitImpl.java:123)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/CompositionUnitMgrImpl.start(CompositionUnitMgrImpl.java:388)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/CompositionUnitMgrImpl.access$500(CompositionUnitMgrImpl.java:116)
4XESTACKTRACE																at	com/ibm/ws/runtime/component/CompositionUnitMgrImpl$CUInitializer.run(CompositionUnitMgrImpl.java:994)
4XESTACKTRACE																at	com/ibm/wsspi/runtime/component/WsComponentImpl$_AsynchInitializer.run(WsComponentImpl.java:349)
4XESTACKTRACE																at	com/ibm/ws/util/ThreadPool$Worker.run(ThreadPool.java:1659)

	

Enabling	Diagnostic	Trace	during	Startup

The	normal	mechanism	to	enable	diagnostic	trace	at	runtime	is	through	the	Runtime	tab	or	an	MBean	call;
however,	both	are	unavailable	during	startup.	Instead,	Java	Surgery
(https://www.ibm.com/support/pages/ibm-runtime-diagnostic-code-injection-java-platform-java-surgery)
may	be	used	to	call	the	static	method	to	set	trace	dynamically	and	this	works	even	during	startup.	Example:

java	-jar	surgery.jar	-pid	${PID}	-command	ExecuteMethod	-class	com.ibm.ejs.ras.ManagerAdmin	-method	setTraceState	-arg	"*=info:WAS.j2c=all:RRA=all:Transaction=all"

	

Startup	Order

The	startup	order	of	applications	may	be	controlled	with	the	Startup	order	value.

	

Java	Persistence	API	(JPA)
JPA	2.0	and	before	uses	OpenJPA.	JPA	2.1	and	later	uses	EclipseLink	(unlesss	otherwise	configured).

Increasing	the	integer	value	of	[com.ibm.websphere.jpa.entitymanager.poolcapacity]	might	improve
performance	by	reducing	the	number	of	EntityManager	instances	that	must	be	created.	However,	increasing
the	value	affects	the	amount	of	consumed	memory

https://www.ibm.com/support/pages/ibm-runtime-diagnostic-code-injection-java-platform-java-surgery
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/urun_rapp_startup_behavior.html
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=providers-configuring-wsjpa-persistence-provider

(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rejb_jpa_system_prop.html

	

OpenJPA

If	an	OpenJPA	application	is	running	in	a	single	JVM,	then	you	may	use	the	OpenJPA	data	cache:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tejb_datcacheconfig.html

Otherwise,	you	may	use	the	OpenJPA	second	level	(L2)	cache	provider	plug-in	over	Dynacache:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rdyn_openjpa.html

L2	caching	increases	the	memory	consumption	of	the	application,	therefore,	it	is	important	to
limit	the	size	of	the	L2	cache.	There	is	also	a	possibility	of	stale	data	for	updated	objects	in	a
clustered	environment.	Configure	L2	caching	for	read-mostly,	infrequently	modified	entities.	L2
caches	are	not	recommended	for	frequently	and	concurrently	updated	entities.

If	the	application	has	a	set	of	data	that	is	used	in	a	static,	read-only	method,	like	accessing	basic	persistent
fields	and	persisting	unidirectional	relationships	to	a	read-only	type,	then	the	WSJPA	ObjectCache	is	a	non-
distributed	cache	of	read-only	entities	that	operates	at	the	EntityManagerFactory	object	level:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tejb_jpaobjectcache.html

To	trace	all	OpenJPA	initiated	SQL	statements,	edit	persistence.xml	and	add	a	property	with	name
"openjpa.Log"	and	value	"SQL=TRACE".	This	will	go	to	SystemErr.log:

[1/5/10	5:20:27:063	CST]	00000034	SystemErr					R	1293127		GTIMSPersistence		TRACE		[WebContainer	:	5]	openjpa.jdbc.SQL	-	<t	292426094,	conn	2131263240>
[1730	ms]	spent

Now	look	for	the	corresponding	query,	i.e.	the	statement	corresponding	to	connection	"conn	2131263240".
The	duration	of	the	query	in	this	case	was	1730ms	above.

[1/5/10	5:20:25:333	CST]	00000034	SystemErr					R	1291397		GTIMSPersistence		TRACE		[WebContainer	:	5]	openjpa.jdbc.SQL	-	<t	292426094,	conn	2131263240>
executing	prepstmnt	393222	select	doc_Id	from	(SELECT	d.doc_Id	FROM	GTIMS.Doc_Component_Instance	d	where	d.doc_Component_Id	=	?	and	d.document_Component_Inst_Data=?
intersect	SELECT	d.doc_Id	FROM	GTIMS.Doc_Component_Instance	d	where	d.doc_Component_Id	=	?	and	d.document_Component_Inst_Data=?)		where	doc_Id!=?
[params=(long)	2,	(String)	-1761467286,	(long)	1,	(String)	CORPORATION,	(long)	82305]

Latest	JPA	performance	options	available	in	WAS	8.5:

<property	name="openjpa.ConnectionRetainMode"	value="always"/>
<property	name="wsjpa.FastPath"	value="true"/>
<property	name="openjpa.RestoreState"	value="false"/>
<property	name="openjpa.OptimizeIdCopy"	value="true"/>
<property	name="openjpa.ProxyManager"	value="delayCollectionLoading=true"/>

	

Dynamic	Cache	(Dynacache)

Dynacache	Recipe

1.	 If	using	memory-to-memory	HTTP	session	replication,	weigh	whether	the	costs	and	complexity	are
better	than	simple	sticky	sessions	with	re-login,	or	consider	using	a	linearly	scalable	external	cache
provider,	or	the	Dynacache	client/server	replication	model.

2.	 Install	and	use	the	Cache	Monitor	sample	application	to	watch	cache	hit	rates	and	cache	exhaustion.
3.	 If	using	SHARED_PUSH	replication,	consider	using	SHARED_PUSH_PULL	to	reduce	replication	volume.

	

General	Dynacache	Notes

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rejb_jpa_system_prop.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tejb_datcacheconfig.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rdyn_openjpa.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tejb_jpaobjectcache.html
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cprs_m2m_cs.html
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cdyn_cachemonitor.html

"WebSphere	Application	Server's	Dynacache	provides	a	general	in-memory	caching	service	for	objects	and
page	fragments	generated	by	the	server.	The	DistributedMap	and	DistributedObjectCache	interfaces	can	be
used	within	an	application	to	cache	and	share	Java	objects	by	storing	references	to	these	objects	in	the	cache
for	later	use.	Servlet	caching,	on	the	other	hand,	enables	servlet	and	JSP	response	fragments	to	be	stored	and
managed	by	a	customizable	set	of	caching	rules."

Caching	the	output	of	servlets,	commands,	and	JavaServer	Pages	(JSP)	improves	application	performance...
[Dynacache]	intercepts	calls	through	a	servlet	service	method	or	a	command	execute	method,	and	either
stores	the	output	of	the	object	to	the	cache	or	serves	the	content	of	the	object	from	the	dynamic	cache...	The
dynamic	cache	service	is	enabled	by	default.
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_dynamiccache.html

For	command	caching	to	operate	properly,	you	must	enable	servlet	caching.
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_cachecommands.html

There	is	an	option	called	"limit	memory	cache	size"	to	constrain	how	much	memory	Dynacache	will	use:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/udyn_rcachesettings.html

	

Dynamic	Cache	Replication	-	Data	Replication	Service	(DRS)

[DRS]	replicates	data	from	the	dynamic	cache	service	across	the	consumers	in	a	replication
domain.

To	create	replication	domains	manually,	click	Environment	>	Replication	domains	in	the
administrative	console.

To	create	a	new	replication	domain	automatically	when	you	create	a	cluster,	click	Servers	>
Clusters	>	New	in	the	administrative	console.

Do	not	use	the	default	value	of	a	single	replica	for	the	Number	of	replicas	for	dynamic	cache
replication	domains.	Instead,	use	a	full	group	replica	for	any	replication	domains	that	you
configure	for	dynamic	cache.

In	the	administrative	console,	click	Servers	>	Server	Types	>	WebSphere	application	servers	>
server_name	>	Container	services	>	Dynamic	cache	service.	To	enable	replication,	select	Enable
cache	replication.	Choose	a	replication	domain.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_cachereplication.html

With	replication,	data	is	generated	one	time	and	copied	or	replicated	to	other	servers	in	the
cluster,	saving	time	and	resources.	Cache	replication	can	take	on	three	forms:

PUSH	-	Send	out	new	entries,	both	ID	and	data,	and	updates	to	those	entries.

PULL	-	Requests	data	from	other	servers	in	the	cluster	when	that	data	is	not	locally	present.	This
mode	of	replication	is	not	recommended.

PUSH/PULL	-	Sends	out	IDs	for	new	entries,	then,	only	requests	from	other	servers	in	the
cluster	entries	for	IDs	previously	broadcast.	The	dynamic	cache	always	sends	out	cache	entry
invalidations.

Specifically,	for	PUSH	or	PUSH/PULL,	the	dynamic	cache	broadcasts	the	update
asynchronously,	based	on	a	timed	interval	rather	than	sending	them	immediately	when	they	are
created.	Invalidations	are	sent	immediately.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cdyn_cachereplication.html

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_dynamiccache.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_cachecommands.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/udyn_rcachesettings.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_cachereplication.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cdyn_cachereplication.html

SHARED_PUSH	policy	means	as	an	object	is	added	to	the	cache,	it	is	immediately	replicated	to	other	nodes
which	is	expensive	in	terms	of	JVM	memory	usage.	Instead,	the	SHARED_PUSH_PULL	policy	should	be
used.	This	means	only	the	cache	key	is	replicated	to	the	other	nodes,	and	if	the	object	is	required	it	is
replicated	on	the	first	'cache	miss'.	This	is	much	more	memory	efficient	at	the	expense	of	a	longer	response
time	on	the	first	access	to	the	cached	object.	As	the	object	would	only	be	required	on	failover,	this	would	be
a	rare	occurrence	anyway.	This	change	in	caching	policy	should	be	reviewed	by	the	application	development
team,	and	tested	in	a	failover	scenario.

The	other	replication	mode	is	NOT_SHARED:	"When	you	use	the	Not	Shared	setting,	as	cache	entries	are
created,	neither	the	cache	content	nor	the	cache	IDs	are	propagated	to	other	servants	or	servers	in	the
replication	domain.	However,	invalidations	are	propagated	to	other	servants	or	servers."
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/udyn_rcachesettings.html

There	are	two	major	types	of	invalidations:	implicit	and	explicit.	Implicit	invalidations	occur	when	a	cache
entry	times	out	(if	it	has	a	time	out)	or	it	gets	pushed	out	of	the	cache	by	the	Least	Recently	Used	(LRU)
algorithm	if	the	cache	is	full	(based	on	the	maximum	cache	size).	Explicit	invalidations	occur	when	someone
calls	the	DistributedMap	invalidate*	methods	(for	example,	on	a	user	logout)	or	through	the	same	thing	on	a
dependency.	In	some	cases,	implicit	invalidations	are	not	necessary	to	propagate,	such	as	in	large	WebSphere
Portal	clusters:	http://www-
10.lotus.com/ldd/portalwiki.nsf/dx/Tuning_a_cluster_environment_%28Tuning_Guide_6.1.x%29.	There	are
two	JVM	custom	properties	that	avoid	these	implicit	invalidations:
com.ibm.ws.cache.CacheConfig.filterTimeOutInvalidation=true	for	the	timeout	case	and
com.ibm.ws.cache.CacheConfig.filterLRUInvalidation=true	for	the	case	when	a	cache	is	full	and	an	entry	is
pushed	out.

Replication	type:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/udyn_scacheinstancesettings.html

	

Architecture

The	main	architectures	are	peer-to-peer	(default)	and	client/server.

	

Potential	Tuning

Advanced	options	may	help	with	DRS	and	Dynacache	performance:

-Dcom.ibm.ws.cache.CacheConfig.useServerClassLoader=true
Deserializes	an	InvalidationEvent	using	the	system	classloader	first	and	then	using	application
classloader	which	generally	improves	performance.

-Dcom.ibm.ws.cache.CacheConfig.filterLRUInvalidation=true
In	general,	if	a	cache	item	is	evicted	because	of	lack	of	space,	it's	generally	not	needed	to
invalidate	the	entry	in	other	JVMs.

-Dcom.ibm.ws.cache.CacheConfig.filterTimeOutInvalidation=true
In	general,	entries	will	timeout	independently	across	all	the	JVMs	at	approximately	the	same
time,	so	it's	not	needed	to	explicitly	send	an	invalidation	event.

-Dcom.ibm.ws.cache.CacheConfig.filterInactivityInvalidation=true
In	general,	entries	will	timeout	independently	across	all	the	JVMs	at	approximately	the	same
time,	so	it's	not	needed	to	explicitly	send	an	invalidation	event.

-Dcom.ibm.ws.cache.CacheConfig.ignoreValueInInvalidationEvent=true

This	tuning	may	be	applied	globally	using	the	instructions	under	"configure	the	custom	property	globally
across	all	configured	cache	instances"	at	http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rdyn_tunediskcache.html

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/udyn_rcachesettings.html
http://www-10.lotus.com/ldd/portalwiki.nsf/dx/Tuning_a_cluster_environment_%2528Tuning_Guide_6.1.x%2529
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/udyn_scacheinstancesettings.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cprs_m2m_p2p_default.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cprs_m2m_cs.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rdyn_cacheinstances.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rdyn_tunediskcache.html

	

ignoreValueInInvalidationEvent

Specifies	whether	the	cache	value	of	Invalidation	event	is	ignored.	If	it	is	true,	the	cache	value	of
Invalidation	event	is	set	to	NULL	when	the	code	is	returned	to	the	caller.

	

propogateInvalidationsNotSharedValue

Default	set	to	false,	which	provides	the	best	performance.	If	it	is	set	to	true,	Dynacache	will	send
invalidations	to	peer	members	in	the	cluster	on	cache	entry	insertions	and	updates	for	a	NOT_SHARED
cache	instance.	This	can	cause	a	significant	performance	impact.

	

DRS	Thread	Pool

Consider	tuning	the	DRS	thread	pool.	Defaults:

DRS_THREADPOOL_MINSIZE=40
DRS_THREADPOOL_MAXSIZE-100
DRS_THREADPOOL_ISGROWABLE=false

	

ws/WSSecureMap

The	ws/WSSecureMap	Dynacache	is	used	for	horizontal	security	attribute	propagation	(web	inbound
security	attribute	propagation).

	

System	Dump	or	HPROF	Heapdump	Analysis

With	the	IBM	Memory	Analyzer	Tool	and	the	IBM	Extensions	for	Memory	Analyzer,	use	the	Dynacache
queries	to	get	details	of	Dynacache	in	a	system	dump.	The	list	of	queries	are:

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/trun_drs_replication.html

For	example,	review	the	number	of	entries,	cache	size,	and	hit	ratio:

A	high	number	of	misses	could	mean	that	the	cache	size	is	too	small,	there	are	many	invalidations,	there	is	a
get-check-update	pattern	without	warmup/pre-loading,	etc.

	

Clearing	Cache

The	DynaCache	MBean	is	a	scriptable	interface	to	interact	with	DynaCache	caches	at	runtime.

For	example,	to	clear	a	DynaCache	cache	instance	on	a	server	at	runtime,	use	the	following	Jython	wsadmin
code:

AdminControl.invoke(AdminControl.completeObjectName("type=DynaCache,node=MYNODE,process=MYSERVER,*"),
"clearCache",	"MYCACHEINSTANCE")

The	documentation	for	clearCache	says	it	will	"clear	all	cache	entries	for	the	named	cache	instance."	This
will	clear	both	the	in-memory	cache	entries	as	well	as	any	cache	entries	offloaded	to	disk.	You	can	confirm
this	by	executing	the	"getAllCacheStatistics"	command	on	the	cache	instance	before	and	after	the	clearCache
call.

	

Servlet	Caching

Servlet	caching	may	cause	a	significant	throughput	improvement	(in	one	benchmark,	30-60%).

Use	this	task	to	define	cacheable	objects	inside	the	cachespec.xml,	found	inside	the	web	module
WEB-INF	or	enterprise	bean	META-INF	directory...	[or]	you	can	save	a	global	cachespec.xml
in	the	application	server	properties	directory,	but	the	recommended	method	is	to	place	the	cache
configuration	file	with	the	deployment	module.

In	situations	where	there	is	a	global	cachespec.xml	file	in	the	application	server	properties
directory,	and	a	cachespec.xml	file	in	an	application,	the	entries	in	the	two	cachespec.xml	files
are	merged.	If	there	are	conflicting	entries	in	the	two	files,	the	entries	in	the	cachespec.xml	file
that	is	in	the	application	override	the	entries	in	the	global	cachespec.xml	file	for	that	application.

To	cache	an	object,	WebSphere	Application	Server	must	know	how	to	generate	unique	IDs	for
different	invocations	of	that	object.	The	<cache-id>	element	performs	that	task.	Each	cache
entry	can	have	multiple	cache-ID	rules	that	run	in	order	until	either	a	rule	returns	a	cache-ID	that
is	not	empty	or	no	more	rules	remain	to	run.	If	no	cache-ID	generation	rules	produce	a	valid
cache	ID,	then	the	object	is	not	cached.

Use	dependency	ID	elements	to	specify	additional	cache	group	identifiers	that	associate	multiple
cache	entries	to	the	same	group	identifier.	The	dependency	ID	is	generated	by	concatenating	the
dependency	ID	base	string	with	the	values	returned	by	its	component	elements.	If	a	required
component	returns	a	null	value,	then	the	entire	dependency	ID	is	neither	generated	nor.

Invalidate	other	cache	entries	as	a	side	effect	of	this	object	start,	if	relevant.	You	can	define
invalidation	rules	in	exactly	the	same	manner	as	dependency	IDs...	The	invalidation	ID	is
generated	by	concatenating	the	invalidation	ID	base	string	with	the	values	returned	by	its
component	element.	If	a	required	component	returns	a	null	value,	then	the	entire	invalidation	ID
is	not	generated	and	no	invalidation	occurs.	Multiple	invalidation	rules	can	exist	per	cache-entry.
All	invalidation	rules	run	separately.

The	dynamic	cache	reloads	the	updated	file	automatically.	If	you	are	caching	static	content	and
you	are	adding	the	cache	policy	to	an	application	for	the	first	time,	you	must	restart	the
application.	You	do	not	need	to	restart	the	application	server	to	activate	the	new	cache	policy.

When	new	versions	of	the	cachespec.xml	are	detected,	the	old	policies	are	replaced.	Objects	that
cached	through	the	old	policy	file	are	not	automatically	invalidated	from	the	cache;	they	are
either	reused	with	the	new	policy	or	eliminated	from	the	cache	through	its	replacement
algorithm.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_dynamiccacheconfig.html

Full	cachespec.xml	schema:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rdyn_cachespec.html

The	<timeout>	is	specified	in	seconds.	If	a	timeout	is	not	specified,	then	the	cache	entry	does	not	expire.
However,	in	both	cases,	a	cache	entry	may	be	evicted	or	invalidated	either	explicitly,	by	invalidation	rules,	or
by	the	Least	Recently	Used	(LRU)	algorithm	when	the	cache	is	full.

Before	WAS	9,	if	servlet	caching	is	enabled	in	an	application	server,	all	requests	pass	through	Dynacache,
even	if	there	is	no	chance	they	will	be	cached.	Starting	in	WAS	9,	only	requests	that	have	a	context	root
associated	with	a	cachespec.xml	flow	through	Dynacache.	This	means	that	using	a	global	cachespec.xml	in
WAS/profiles/{PROFILE}/properties	only	works	for	applications	that	have	a	cachespec.xml	in	the	WAR's
WEB-INF.	To	"defer"	to	a	global	cachespec.xml,	a	"dummy"	cachespec.xml	may	be	placed	in	the
application	such	as:

A	cached	response	served	from	the	servlet	cache	will	also	set	a	CACHED_RESPONSE:	true	response	header.

<?xml	version="1.0"	?>
<!DOCTYPE	cache	SYSTEM	"cachespec.dtd">
<cache>
		<cache-entry>
				<class>servlet</class>
				<name>/dummy</name>
		</cache-entry>
</cache>

Example	custom	ID	generators:	https://github.com/kgibm/WASServletCachingIDGenerators

	

Servlet	Caching	Example

Suppose	that	a	servlet	manages	a	simple	news	site.	This	servlet	uses	the	query	parameter
"action"	to	determine	if	the	request	views	(query	parameter	"view")	news	or	updates	(query
parameter	"update")	news	(used	by	the	administrator).	Another	query	parameter	"category"
selects	the	news	category.	Suppose	that	this	site	supports	an	optional	customized	layout	that	is
stored	in	the	user's	session	using	the	attribute	name	"layout".	Here	are	example	URL	requests	to
this	servlet:

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_dynamiccacheconfig.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rdyn_cachespec.html
https://github.com/kgibm/WASServletCachingIDGenerators

http://yourhost/yourwebapp/newscontroller?action=view&category=sports	(Returns	a	news	page
for	the	sports	category)
http://yourhost/yourwebapp/newscontroller?action=view&category=money	(Returns	a	news
page	for	the	money	category)
http://yourhost/yourwebapp/newscontroller?action=update&category=fashion	(Allows	the
administrator	to	update	news	in	the	fashion	category)

Define	the	<cache-entry>	elements	that	are	necessary	to	identify	the	servlet.	In	this	case,	the
URI	for	the	servlet	is	"newscontroller",	so	this	is	the	cache-entry	<name>	element.	Because	this
example	caches	a	servlet	or	JavaServer	Pages	(JSP)	file,	the	cache	entry	class	is	"servlet".

Define	cache	ID	generation	rules.	This	servlet	caches	only	when	action=view,	so	one	component
of	the	cache	ID	is	the	parameter	"action"	when	the	value	equals	"view".	The	news	category	is
also	an	essential	part	of	the	cache	ID.	The	optional	session	attribute	for	the	user's	layout	is
included	in	the	cache	ID.

Define	dependency	ID	rules.	For	this	servlet,	a	dependency	ID	is	added	for	the	category.	Later,
when	the	category	is	invalidated	due	to	an	update	event,	all	views	of	that	news	category	are
invalidated.

Define	invalidation	rules.	Because	a	category	dependency	ID	is	already	defined,	define	an
invalidation	rule	to	invalidate	the	category	when	action=update.	To	incorporate	the	conditional
logic,	add	"ignore-value"	components	into	the	invalidation	rule.	These	components	do	not	add	to
the	output	of	the	invalidation	ID,	but	only	determine	whether	or	not	the	invalidation	ID	creates
and	runs.

<cache-entry>
		<name>newscontroller</name>
		<class>servlet</class>
		<cache-id>
				<component	id="action"	type="parameter">
						<value>view</value>
						<required>true</required>
				</component>
				<component	id="category"	type="parameter">
						<required>true</required>
				</component>
				<component	id="layout"	type="session">
						<required>false</required>
				</component>
		</cache-id>
		<dependency-id>
				<component	id="category"	type="parameter">
						<required>true</required>
				</component>
		</dependency-id>
		<invalidation>
				<component	id="action"	type="parameter"	ignore-value="true">
						<value>update</value>
					<required>true</required>
				</component>
				<component	id="category"	type="parameter">
						<required>true</required>
				</component>
		</invalidation>
</cache-entry>

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_enablecache.html

	

Servlet	Caching	by	User

http://yourhost/yourwebapp/newscontroller?action=view&category=sports
http://yourhost/yourwebapp/newscontroller?action=view&category=money
http://yourhost/yourwebapp/newscontroller?action=update&category=fashion
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_enablecache.html

Be	careful	in	building	your	cache	ID	if	cached	objects	may	be	user-specific.	In	such	a	case,	you	can	use	some
user-identifiable	component	for	the	cache	ID	such	as	the	JSESSIONID:

<cache-entry>
		<class>servlet</class>
		<name>/forward.do</name>
		<cache-id>
				<property	name="EdgeCacheable">true</property>
				<component	id="type"	type="parameter">
						<required>true</required>
						<value>esiParentConsume</value>
				</component>
				<component	id="JSESSIONID"	type="cookie"	/>
				<timeout>35</timeout>
				<priority>1</priority>
		</cache-id>
</cache-entry>

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rdyn_cachespec.html

	

cachespec.xml

Example	to	Disable	Caching	for	a	Servlet	or	JSP

<cache-entry>
		<class>servlet</class>
		<name>com.example.servlet.MyServlet.class</name>
		<property	name="do-not-cache">true</property>
</cache-entry>
<cache-entry>
		<class>servlet</class>
		<name>com.ibm._jsp._myjsp.class</name>
		<property	name="do-not-cache">true</property>
</cache-entry>

	

Monitoring

"Use	the	administrative	console	to	install	the	cache	monitor	application	from	the
app_server_root/installableApps	directory.	The	name	of	the	application	is	CacheMonitor.ear...	you	can
access	the	cache	monitor	using	http://your_host_name:your_port_number/cachemonitor"
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_servletmonitor.html

Monitor	the	cache	hit	ratio:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_cache_tune.html

Use	JMX:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rdyn_mbeancachestat.html

If	javacores	or	other	indicators	show	a	lot	of	JMX	activity	causing	performance	issues,	use
com.ibm.ws.management.connector.soap.logClientInfo=true

Example	in	dmgr	SystemOut.log:

[8/20/13	11:31:19:624	SGT]	0000001d	SOAPConnector	I	SOAP	client	info:	Host/port=	localhost/54242,	authSubject.getPrincipals()=

Another	method	to	monitor	Dynacache	is	using	this	flight	recorder:
https://github.com/kelapure/dynacache/blob/master/scripts/DynaCacheStatisticsCSV.py.readme.txt	and
https://github.com/kelapure/dynacache/blob/master/scripts/DynaCacheStatisticsCSV.py

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rdyn_cachespec.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_servletmonitor.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_cache_tune.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rdyn_mbeancachestat.html
https://github.com/kelapure/dynacache/blob/master/scripts/DynaCacheStatisticsCSV.py.readme.txt
https://github.com/kelapure/dynacache/blob/master/scripts/DynaCacheStatisticsCSV.py

	

baseCache

The	baseCache	is	a	built-in	cache	instance.	Its	replication	in	a	replication	domain	is	disabled	by	default
(enable	under	$SERVER	}	Container	Services	}	Dynamic	cache	service).	Its	JNDI	name	is
services/cache/distributedmap.

	

Missed	replication

Missed	replication	may	be	caused	by:

Uninitialized	caches	which	is	usually	resolved	by	-
Dcom.ibm.ws.cache.CacheConfig.createCacheAtServerStartup=true

	

Disk	Offload

Disk	offload	allows	paging	cache	to/from	disk	to	allow	a	cache	larger	than	the	in-memory	cache.	The	disk
offload	also	includes	a	garbage	collector.

	

Flush	to	Disk	on	Stop

Flush	to	disk	graceful	JVM	stop	may	be	enabled	globally	with	-
Dcom.ibm.ws.cache.flushToDiskOnStop=true

Messages	are	printed	when	this	is	enabled	for	each	cache	and	another	shows	how	long	it	takes	to	write.	For
example:

[11/20/20	16:26:41:432	EST]	000000ac	Cache									I			DYNA0060I:	Flush	to	disk	on	stop	is	enabled	for	cache	name	"baseCache".
[11/20/20	16:30:51:639	EST]	000000ac	Cache									I			DYNA0073I:	Flush	to	disk	on	stop	for	cache	name	"baseCache"	has	completed.	The	statistics	are:		numOfEntriesFlushToDisk=1964	numOfBytesFlushToDisk=70984192	timeElapsedEntriesFlushToDisk=1645	numDepIdsInAuxTable=76253	numCacheIdsInDepIdAuxTable=703152	numTemplatesInAuxTable=10	numCacheIdsInTemplateAuxTable=121752	timeElapsedWriteAuxTables=248560

	

Object	Request	Broker	(ORB)	and	Remote	Method	Invocation
(RMI)
For	IBM	JVMs,	additionally	see	the	ORB	section	in	the	IBM	Java	chapter.

ORB	pass	by	reference	(com.ibm.CORBA.iiop.noLocalCopies)	may	cause	a	significant	throughput
improvement	(in	one	benchmark,	50-60%).

The	Object	Request	Broker	(ORB)	pass	by	reference	option	determines	if	pass	by	reference	or
pass	by	value	semantics	should	be	used	when	handling	parameter	objects	involved	in	an	EJB
request.	This	option	can	be	found	in	the	administrative	console	by	navigating	to	Servers	=>
Application	Servers	=>	server_name	=>	Object	Request	Broker	(ORB).	By	default,	this	option
is	disabled	and	a	copy	of	each	parameter	object	is	made	and	passed	to	the	invoked	EJB	method.
This	is	considerably	more	expensive	than	passing	a	simple	reference	to	the	existing	parameter
object.

To	summarize,	the	ORB	pass	by	reference	option	basically	treats	the	invoked	EJB	method	as	a
local	call	(even	for	EJBs	with	remote	interfaces)	and	avoids	the	requisite	object	copy.	If	remote

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cdyn_diskcacheenhance.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cdyn_evictionpolicy.html

interfaces	are	not	absolutely	necessary,	a	slightly	simpler	alternative	which	does	not	require
tuning	is	to	use	EJBs	with	local	interfaces.	However,	by	using	local	instead	of	remote	interfaces,
you	lose	the	benefits	commonly	associated	with	remote	interfaces,	location	transparency	in
distributed	environments,	and	workload	management	capabilities.

The	ORB	pass	by	reference	option	will	only	provide	a	benefit	when	the	EJB	client	(that	is,
servlet)	and	invoked	EJB	module	are	located	within	the	same	classloader.	This	requirement
means	that	both	the	EJB	client	and	EJB	module	must	be	deployed	in	the	same	EAR	file	and
running	on	the	same	application	server	instance.	If	the	EJB	client	and	EJB	modules	are	mapped
to	different	application	server	instances	(often	referred	to	as	split-tier),	then	the	EJB	modules
must	be	invoked	remotely	using	pass	by	value	semantics.

Set	com.ibm.CORBA.ServerSocketQueueDepth	to	511
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tuneappserv.html
If	this	value	is	reached,	subsequent	connection	attempts	will	receive	connection	refused	errors	after	a
connection	timeout	period	(and	potentially	implicit	retries).

The	thread	pool	size	is	dependent	on	your	workload	and	system.	In	typical	configurations,
applications	need	10	or	fewer	threads	per	processor.	(Servers	>	Server	Types	>	Application
servers	>	server_name	>	Container	services	>	ORB	service	>	Thread	pool)

Each	inbound	and	outbound	request	through	the	ORB	requires	a	thread	from	the	ORB	thread
pool.	In	heavy	load	scenarios	or	scenarios	where	ORB	requests	nest	deeply,	it	is	possible	for	a
Java	virtual	machine	(JVM)	to	have	all	threads	from	the	ORB	thread	pool	attempting	to	send
requests.	Meanwhile,	the	remote	JVM	ORB	that	processes	these	requests	has	all	threads	from	its
ORB	thread	pool	attempting	to	send	requests.	As	a	result,	progress	is	never	made,	threads	are	not
released	back	to	the	ORB	thread	pool,	and	the	ORB	is	unable	to	process	requests.	As	a	result,
there	is	a	potential	deadlock.	Using	the	administrative	console,	you	can	adjust	this	behavior
through	the	ORB	com.ibm.websphere.orb.threadPoolTimeout	custom	property.

http://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/rorb_tims.html

Monitor	and	tune	the	ORB	service	thread	pool:
http://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/rorb_tims.html

Monitor	and	tune	the	connection	cache	size	(com.ibm.CORBA.MaxOpenConnections):
http://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/rorb_tims.html
Ideally,	this	should	be	greater	than	or	equal	to	the	maximum	number	of	concurrent	connections,	but	not	so
large	as	to	cause	too	many	threads	(or	in	such	a	case,	JNI	Reader	Threads	could	be	used	instead).

By	default,	the	option	to	"prefer	local"	(meaning	to	prefer	sending	requests	to	EJBs	on	the	same	node,	if
available)	is	enabled;	however,	the	deployment	manager	must	be	running	for	it	to	function:	http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/urun_rwlm_cluster_create1.html?
lang=en

Running	with	Java	security	enabled	will	reduce	performance.	For	example:	http://www-
01.ibm.com/support/docview.wss?uid=swg21661691

	

EJBs

If	the	Performance	Monitoring	Infrastructure	(PMI)	counters	show	a	high	rate	of	ejbStore	methods	being
called,	then	the	EJB	container	cache	size	may	need	to	be	increased:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_ejbcontainer.html

Run	the	EJB	Cache	trace	to	ensure	the	cache	sizes	are	tuned	optimally:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tejb_tunecash.html

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tuneappserv.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/rorb_tims.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/rorb_tims.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/rorb_tims.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/urun_rwlm_cluster_create1.html?lang=en
http://www-01.ibm.com/support/docview.wss?uid=swg21661691
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_ejbcontainer.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tejb_tunecash.html

If	there	is	significant	heap	pressure	from	stateful	session	beans	(check	heapdumps),	consider	specifying	a
timeout	that	the	application	can	handle	using	-
Dcom.ibm.websphere.ejbcontainer.defaultStatefulSessionTimeout=$MINUTES
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_ejbcontainer.html

If	PMI	shows	that	most	bean	instances	are	being	used	in	the	pool,	consider	increasing	the	pool	size	for	that
application:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_ejbcontainer.html
For	example,	com.ibm.websphere.ejbcontainer.poolSize="*=,3000"

	

JNI	Reader	Threads

In	general,	switching	to	JNI	Reader	Threads	is	only	recommended	when	a	very	large	number	of	concurrent
users/connections	is	required.	Instead	of	the	default	one	thread	per	connection	(and	each	client	will	have	at
least	2-3	connections:	one	for	bootstrap,	one	for	the	listener,	and	potentially	one	for	TLS),	JNI	reader	threads
only	require	a	handful	of	threads	(usually	4	is	enough,	which	is	the	default),	each	one	of	which	handles	up	to
1,024	connections	simultaneously	using	asynchronous	I/O.

By	default,	the	ORB	uses	a	Java	thread	for	processing	each	inbound	connection	request	it
receives.	As	the	number	of	concurrent	requests	increases,	the	storage	consumed	by	a	large
number	of	reader	threads	increases	and	can	become	a	bottleneck	in	resource-constrained
environments.	Eventually,	the	number	of	Java	threads	created	can	cause	out-of-memory
exceptions	if	the	number	of	concurrent	requests	exceeds	the	system's	available	resources.

To	help	address	this	potential	problem,	you	can	configure	the	ORB	to	use	JNI	reader	threads
where	a	finite	number	of	reader	threads,	implemented	using	native	OS	threads	instead	of	Java
threads,	are	created	during	ORB	initialization.	JNI	reader	threads	rely	on	the	native	OS	TCP/IP
asynchronous	mechanism	that	enables	a	single	native	OS	thread	to	handle	I/O	events	from
multiple	sockets	at	the	same	time.	The	ORB	manages	the	use	of	the	JNI	reader	threads	and
assigns	one	of	the	available	threads	to	handle	the	connection	request,	using	a	round	robin
algorithm.	Ordinarily,	JNI	reader	threads	should	only	be	configured	when	using	Java	threads	is
too	memory-intensive	for	your	application	environment.
Each	JNI	thread	can	handle	up	to	1024	socket	connections	and	interacts	directly	with	the
asynchronous	I/O	native	OS	mechanism,	which	might	provide	enhanced	performance	of	network
I/O	processing.

http://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/rorb_tims.html

If	JNI	Readers	Threads	are	enabled,	the	default	number	(com.ibm.CORBA.numJNIReaders)	is	4	which	can
handle	up	to	4,096	concurrent	connections:	http://www-
01.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rorb_setg.html?
cp=SSAW57_8.5.5&lang=en

	

Workload	Management	(WLM)

"Multiple	application	servers	can	be	clustered	with	the	EJB	containers,	enabling	the	distribution	of	enterprise
bean	requests	between	EJB	containers	on	different	application	servers...	EJB	client	requests	are	routed	to
available	EJB	containers	in	a	round	robin	fashion	based	on	assigned	server	weights."	(http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/crun_srvgrp.html?
lang=en)

WLM	balances	requests	in	the	form	of	method	calls/invocations.	The	"pattern	problem"	occurs	when	there	is
a	pattern	of	method	calls	that	correlates	with	the	number	of	cluster	members.	For	example,	if	there	are	two
cluster	members	and	an	even	number	of	method	calls	such	as	"create"	and	"invoke,"	it's	possible	that	all	the

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_ejbcontainer.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_ejbcontainer.html
http://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/rorb_tims.html
http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rorb_setg.html?cp=SSAW57_8.5.5&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/crun_srvgrp.html?lang=en

lightweight	create	requests	execute	on	one	server,	and	the	heavyweight	invoke	requests	execute	on	the	other
server.	In	that	case	the	"load"	on	the	servers	(for	example,	measured	in	CPU	utilization)	is	not	equal	among
the	servers.	Workarounds	to	this	problem	include	1)	changing	the	number	of	cluster	members	(for	example,
from	even	to	odd),	and	2)	adjusting	the	weights	of	the	cluster	members	to	non-equal	values	(typically
recommended	for	normalization	are	cluster	weights	of	19	and	23).

	

Java	Naming	and	Directory	Interface	(JNDI)
By	default	the	JNDI	naming	caches	are	unbounded	and	persist	for	the	life	of	the	JVM.	There	is	one	cache	per
provider	URL.	If	applications	use	a	large	variety	of	names	or	large	named	objects,	then	the	caches	may	use
significant	amounts	of	memory.	Each	cache	can	be	made	to	timeout	(on	next	access)	using	the	-
Dcom.ibm.websphere.naming.jndicache.maxcachelife=$minutes	property:	http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rnam_jndi_settings.html?
cp=SSAW57_8.5.5&lang=en.	The	caches	can	be	completely	disabled	with	-
Dcom.ibm.websphere.naming.jndicache.cacheobject=none.	These	properties	can	be	placed	into	the
properties	Hashtable	used	in	creating	the	InitialContext.

You	can	find	the	size	of	all	JNDI	caches	by	gathering	a	heapdump	or	coredump.	Open	the	IBM	Memory
Analyzer	Tool,	and	click	Open	Query	Browser	>	Show	Retained	Set.	For	the	class	row,	type
com.ibm.ws.naming.jcache.Cache	and	click	OK.	Review	the	sum	of	shallow	heaps	in	the	bottom	right.

	

InitialContext

A	javax.naming.InitialContext	is	the	starting	point	to	perform	naming	operations.	There	is	significant
processing	in	creating	an	InitialContext,	so	it	is	recommended	to	cache	them.	However,	an	InitialContext	is
not	thread	safe:

An	InitialContext	instance	is	not	synchronized	against	concurrent	access	by	multiple	threads.
(http://docs.oracle.com/javase/8/docs/api/javax/naming/InitialContext.html)

It	is	recommended	to	use	ThreadLocals	to	create	InitialContexts	once.	For	example:

				private	final	ThreadLocal<InitialContext>	jndiContext	=	new	ThreadLocal<InitialContext>()	{
								protected	InitialContext	initialValue()	{
												try	{
																final	InitialContext	context	=	new	InitialContext();
																return	context;
												}	catch	(NamingException	e)	{
																throw	new	RuntimeException(e);
												}
								};
				};

InitialContexts	are	often	used	to	bind	once	at	application	startup	(in	which	case	a	thread	local	is	not	needed);
however,	it	is	common	practice	to	catch	exceptions	on	object	invocations	and	re-lookup	a	resource	at
runtime,	in	which	case	ThreadLocals	should	be	used	to	avoid	the	cost	of	creating	InitialContexts.

	

Message	Driven	Beans	(MDBs)

Activation	Specifications	versus	Listener	Ports

You	can	choose	Activation	Specifications	or	Listener	Ports	for	handling	MDBs.	In	general,	we	recommend
using	Activation	Specifications	because	Listener	Ports	are	stabilized:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rnam_jndi_settings.html?cp=SSAW57_8.5.5&lang=en
http://docs.oracle.com/javase/8/docs/api/javax/naming/InitialContext.html
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=cjrmp-migrating-listener-port-activation-specification-use-mq-messaging-provider

Listener	Ports	follow	the	principle	of	the	Application-Service-Facility	(ASF)	part	of	the	JMS
specification	and	thus	they	poll	for	messages	from	the	destinations.	Activation	Specifications	on	the
other	hand	work	on	the	principle	of	callbacks	and	notifications,	so	there	is	no	polling	involved.
Listener	Ports	are	not	portable,	whereas	Activation	Specifications	are	portable	across	JEE
environments.
Activation	Specifications	are	better	in	performance	due	to	the	nature	of	callbacks:	the	moment	a
message	is	available	on	the	destination	the	message	provider	notifies	the	consumers.	For	Listener
Ports,	the	thread	has	to	constantly	poll	for	messages.	Once	a	message	is	found,	it	has	to	spawn	a	new
thread,	pass	the	message	reference	to	the	other	thread	so	that	the	other	thread	can	actually	do	a	get.

	

Sizing	Thread	Pools	for	Message	Driven	Beans

Whether	you're	using	activation	specifications	or	listener	ports,	tuning	the	relevant	thread	pools	is	a	key
aspect	of	MDB	performance.	Thread	pools	are	configured	at	a	server	level,	while	the	number	and
concurrency	of	the	MDBs	is	configured	independently.	Therefore,	if	your	maximum	thread	pool	size	is	too
small,	messages	may	queue	unnecessarily.	Below	are	equations	for	the	most	common	setups	which	define
how	to	setup	the	relevant	thread	pool	maximums	to	avoid	queuing.	The	x=1..n	items	are	all	the	items	of	that
type	processing	MDBs	for	that	server	(which	may	be	configured	at	a	higher	scope).	The	thread	pool
maximum	size	is	not	the	only	variable	--	the	JVM	heap,	OS	resources,	etc.	also	have	to	be	able	to	support	the
configured	concurrency.

Service	Integration	Bus	(SIB):

WebSphere	MQ	Messaging	Provider:

Listener	Ports:

	

Activation	Specifications

MDB	concurrency	is	the	primary	tuning	variable,	along	with	the	thread	pool	on	which	MDBs	execute:

SIBus	MDB	concurrency	set	with:	Maximum	Concurrent	MDB	invocations	per	endpoint.	Updates	to
this	value	require	a	restart	of	the	messaging	cluster.
WebSphere	MQ	Messaging	Provider	concurrency	set	with:	Advanced	Properties	}	Maximum	Server
Sessions	or	maxConcurrency

The	batch	size	is	how	many	messages	are	queued	up	in	front	of	each	MDB.

	

Pausing	and	Resuming	Activation	Specifications

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=settings-jms-activation-specification
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=messaging-configuring-mdb-throttling-default-provider

Pause	an	Activation	Specification	using	wsadmin	-lang	jython:

AdminControl.invoke(AdminControl.queryNames("*:type=J2CMessageEndpoint,ActivationSpec=jms/testactivationspec1,*"),	"pause")
J2CA0524I:	The	Message	Endpoint	...	is	deactivated.

Resume	an	Activation	Specification	using	wsadmin	-lang	jython:

AdminControl.invoke(AdminControl.queryNames("*:type=J2CMessageEndpoint,ActivationSpec=jms/testactivationspec1,*"),	"resume")
J2CA0523I:	The	Message	Endpoint	...	is	activated.

Get	status	of	an	Activation	Specification	using	wsadmin	-lang	jython:

GetStatus:	AdminControl.invoke(AdminControl.queryNames("*:type=J2CMessageEndpoint,ActivationSpec=jms/testactivationspec1,*"),	"getStatus")
1	(Active),	2	(Inactive),	3	(Stopped).

	

Service	Integration	Bus	(SIB)

The	Service	Integration	Bus	is	a	pure	Java	JMS	provider	built	into	WAS:

Bus:	Group	of	messaging	engines
Bus	Member:	Hosts	messaging	engine
Messaging	Engine	(ME):	Handles	destinations	(queues,	topics),	connections,	and	messages
ME	Cluster	Policy:

High	availability:	ME(s)	will	failover	to	other	available	cluster	members
Scalability:	Each	cluster	member	runs	an	ME
Both:	Each	ME	may	failover	to	one	other	cluster	member

	

SIB	Thread	Pools

JMS	messages	for	Activation	Specifications	are	processed	on	the	SIBJMSRAThreadPool	thread	pool.
Therefore,	the	sum	of	the	maximum	concurrent	invocations	per	endpoint	for	all	Activation	Specifications
should	be	less	than	or	equal	to	the	maximum	size	of	the	SIBJMSRAThreadPool	thread	pool.

JMS	messages	for	Listener	Ports	are	processed	on	the	MessageListenerThreadPool	thread	pool.	Therefore,
the	sum	of	the	maximum	sessions	for	all	listener	ports	should	be	less	than	or	equal	to	the	maximum	size	of
the	MessageListenerThreadPool	thread	pool.

Network	communication	is	received	by	the	JS-ReceiveListenerDispatcher	thread	pool.	Its	maximum	size
is	controlled	by	com.ibm.ws.sib.jfapchannel.MAX_CONCURRENT_DISPATCHES	and	defaults	to	32.

Incoming	messages	are	received	by	the	SIBFAPInboundThreadPool	threads.	If	such	messages	need	to	be
persisted	to	a	database	in	a	messaging	engine,	that	is	done	by	the	sib.PersistentDispatcher	thread	pool
whose	maximum	size	is	controlled	by	sib.msgstore.jdbcWriteThreads.

	

General	SIB	Tuning	Tips

Tune	the	maximum	concurrent	endpoints	and	maximum	batch	sizes.
Consider	tuning	the	memory	buffers
From	Best	Practices	for	Large	WebSphere	Application	Server	Topologies

There	are	several	factors	that	affect	SIBus	performance.	The	more	destinations	there	are
hosted	on	a	messaging	engine,	the	longer	it	takes	for	the	engine	to	start...	If	the	same
number	of	destinations	are	apportioned	over	more	than	one	bus	member,	the	startup	time

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=messaging-configuring-mdb-throttling-default-provider
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=engines-controlling-memory-buffers-used-by-messaging-engine
https://www3.software.ibm.com/ibmdl/pub/software/dw/wes/0710_largetopologies/LargeWebSphereTopologies.pdf

improves	considerably.	However,	the	drawback	is	that	there	are	more	network
connections	between	the	bus	members,	more	overall	resource	usage,	and	that	the
configuration	becomes	more	complex.

If	you	have	many	disjoint	destinations	in	your	bus	being	used	by	different	applications,
consider	creating	different	buses.

You	must	tune	the	environment	so	that	messages	are	consumed	at	a	rate	slightly	higher
than	the	rate	that	they	are	produced.	If	the	producer	produces	messages	at	a	faster	rate,	the
messages	will	overload	the	bus.

	

SIB	Configuration

SIB	properties	set	in	the	administrative	console	take	precedence	over	properties	set	in	the	sib.properties
file.

Consider	increasing	various	data	buffer	sizes.

If	you	are	using	durable	subscriptions,	explicitly	set	the	activation	specification	configuration	in	the
Administrative	Console	within	the	cluster	that	hosts	the	durable	subscription	home	ME	to	Target	type	=
Messaging	engine	name,	Target	Significance	=	Required,	and	Target	=	Durable	subscription	home
messaging	engine.	Otherwise,	remote	GETs	may	occur	in	some	situations	(particularly	failover)	and	they	are
pointless	overhead	(both	CPU	and	memory)	for	durable	subscriptions.

On	z/OS,	the	control	region	adjunct	(CRA)	address	space	runs	SIBus	messaging	engines	and	the	MDBs	run
in	the	servants.

	

Message	Reliability

The	SIBus	provides	five	different	levels	of	reliability.

Best	effort	non-persistent
Express	non-persistent
Reliable	non-persistent
Reliable	persistent
Assured	persistent

Persistent	messages	are	always	stored	to	some	form	of	persistent	data	store,	while	non-persistent	messages
are	generally	stored	in	volatile	memory.	There	is	a	trade-off	between	reliability	of	message	delivery	and	the
speed	with	which	messages	are	delivered.	The	further	the	reliability	level	decreases,	the	faster	messages	can
be	processed.

Non-persistent	message	reliability	may	cause	a	significant	throughput	improvement	(in	one	benchmark,
29%).

If	you	are	using	mediations	and	not	using	assured	persistent	messages,	consider	skipping	the	well	formed
check.

	

Message	Store

Message	store	type:

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=engines-controlling-memory-buffers-used-by-messaging-engine
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=retrieval-message-driven-beans-tuning-settings-zos
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=mediations-setting-tuning-properties-mediation

Local	Derby	database	data	store:	With	this	option,	a	local,	in-process	Derby	database	is	used	to	store
the	operational	information	and	messages	associated	with	the	messaging	engine.	Although	convenient
for	development	purposes,	this	configuration	uses	valuable	cycles	and	memory	within	the	application
server	to	manage	the	stored	messages.
File-based	data	store:	(default)	If	the	message	engine	is	configured	to	use	a	file-based	data	store,
operating	information	and	messages	are	persisted	to	the	file	system	instead	of	a	database.	This
performs	faster	than	the	local	Derby	database	and,	when	a	fast	disk	such	as	a	redundant	array	of
independent	disks	(RAID)	is	used,	can	perform	just	as	fast	as	a	remote	database.	The	test	results	shown
below	did	not	use	a	RAID	device	for	the	file-based	data	store	and	do	not	reflect	this	additional
improvement.
Remote	database	data	store:	In	this	configuration,	a	database	residing	on	a	remote	system	is	configured
to	act	as	the	message	engine	data	store.	This	frees	up	cycles	for	the	application	server	JVM	process
that	were	previously	used	to	manage	the	Derby	database	or	file-based	stores,	enabling	a	more
performant,	production	level	database	server	(such	as	IBM	DB2	Enterprise	Server)	to	be	used.	One
technical	advantage	of	using	a	database	for	the	data	store	is	that	some	J2EE	applications	can	share
JDBC	connections	to	benefit	from	one-phase	commit	optimization.	For	more	information	see
information	on	sharing	connections	to	benefit	from	one-phase	commit	optimization.	File	store	does	not
support	this	optimization.

Using	a	remote	data	store	may	cause	a	significant	throughput	improvement	(in	one	benchmark,	55%).

	

Database	Message	Store

IBM	DB2	tuning:	"To	get	the	best	performance	from	messages	in	the	3	KB	to	20	KB	range,	you	should
consider	putting	the	SIBnnn	tables	into	a	tablespace	with	32	KB	pages	and	adjusting	the	column	width	of	the
VARCHAR	column	to	32032	bytes."

	

Data	Tables

If	statistics	suggest	a	concurrency	bottleneck	on	the	SIBnnn	tables	for	a	data	store,	you	might	try	to	solve	the
problem	by	increasing	the	number	of	tables.	Example	wsadmin	code	to	perform	this:

engines	=	AdminTask.listSIBEngines('[-bus	BUS_NAME]')
datastore	=	AdminConfig.list('SIBDatastore',	engines)
AdminConfig.modify(datastore,	[['permanentTables',	'10'],	['temporaryTables',	'10']])
AdminConfig.save()
AdminNodeManagement.syncActiveNodes()

Relevant	points:

1.	 Every	destination	(queue/topic)	is	represented	as	multiple	streams	internally	based	on	various
conditions.	The	permanent	table	will	be	allocated	to	different	streams	of	various	destinations	during
the	creation	of	the	messaging	engine.	So,	if	there	are	multiple	permanent	tables	configured	then	there
is	a	mechanism	to	allocate	different	tables	to	multiple	streams	and	the	information	about	the	streams
and	table	allocation	would	be	stored	in	the	SIB000	table.

2.	 Once	the	permanent	table	ID	is	set	on	a	particular	stream,	it	would	use	the	same	table	to	put	all	the
data	which	uses	that	particular	stream.	So	in	a	scenario	where	only	a	single	destination	is	used	by	the
application	to	put	all	the	messages	and	all	the	messages	have	same	priority	and	reliability,	then	only	a
single	stream	would	be	used	and	hence	all	the	messages	would	be	put	to	a	single	table.

3.	 However,	if	there	are	messages	of	different	priorities	and	there	are	multiple	destinations	and	the
messages	are	being	added	concurrently,	then	multiple	streams	would	be	selected	and	the	messages
would	be	written	to	the	SIB	table	depending	on	the	table	allocated	to	that	stream.

If	all	of	the	messages	are	put	to	the	same	destination	and	have	same	priority	and	reliability	set,	then	they	are
written	to	the	same	table.	One	simple	way	to	check	if	multiple	tables	are	indeed	selected	in	your	environment

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=stores-data-store-performance
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=tmeds-increasing-number-data-store-tables-relieve-concurrency-bottleneck

is	to	review	the	SIB000	table	and	look	for	the	permanentId	or	permanent_id	column.

If	the	messages/notifications	produced	are	put	to	the	same	destination/queue	in	SIB	and	have	the	same
priority	and	reliability,	then	all	of	these	would	go	to	only	one	of	the	permanent	table.	Currently	there	is	no
provision	to	distribute	this	evenly	across	all	the	tables.	Since	the	decision	to	use	a	particular	SIB	table	is
made	during	queue	creation,	you	can	run	some	tests	by	deleting	and	recreating	some	of	the	queues	and
observe	the	behaviour.

	

Database	Lock

After	SIB	has	started,	it	checks	the	database	to	ensure	a	lock	every	20	seconds.	If	this	check	fails	due	to	a
fatal	database	exception	and	jdbcFailoverOnDBConnectionLoss	=	true	(default),	then	this	will	lead	to	the
JVM	shutting	itself	down	(through	an	HAManager	panic)	to	force	a	SIB	failover	to	another	JVM.	If
jdbcFailoverOnDBConnectionLoss	=	false,	SIB	will	continue	trying	to	get	the	lock	every	20	seconds
(during	which	there	is	a	potential	for	data	loss).	If	another	highly	available	cluster	member	is	running,	the
high	availability	manager	will	automatically	start	the	messaging	engine	on	another	running	server.	During
SIB	startup,	the	properties	jdbcInitialDatasourceWaitTimeout	(default	15	minutes)	and
jdbcStaleConnectionRetryDelay	(default	2	seconds)	are	used	to	retry	errors	during	startup.

	

File	Message	Store

The	file	store	log	directory	can	be	specified	during	the	creation	of	an	SIBus	member	using	the	-
logDirectory	option	in	the	AdminTask.addSIBusMember	command	or	via	the	administration	console	SIBus
Member	creation	panels.	This	should	be	on	fast	disks.

	

Monitoring

There	are	various	SIB	wsadmin	monitoring	scripts.

The	CWSID0016I	message	indicates	the	state	of	messaging	engines.	For	example:

000000fe	SibMessage				I			[:]	CWSID0016I:	Messaging	engine	${NAME}	is	in	state	Starting.
000000fe	SibMessage				I			[:]	CWSID0016I:	Messaging	engine	${NAME}	is	in	state	Joining.
000000fe	SibMessage				I			[:]	CWSID0016I:	Messaging	engine	${NAME}	is	in	state	Joined.
000000fe	SibMessage				I			[:]	CWSID0016I:	Messaging	engine	${NAME}	is	in	state	Started.
000000fe	SibMessage				I			[:]	CWSID0016I:	Messaging	engine	${NAME}	is	in	state	Stopping.
000000fe	SibMessage				I			[:]	CWSID0016I:	Messaging	engine	${NAME}	is	in	state	Stopped.

	

Useful	PMI	Statistics

Thread	Pools
ActiveCount

Enterprise	Beans
MessageBackoutCount:	The	number	of	backed	out	messages	that	failed	to	be	delivered	to	the
onMessage	method	of	the	bean	(applies	to:	message-driven	beans).
MessageCount:	The	number	of	messages	delivered	to	the	onMessage	method	of	the	bean
(applies	to:	message-driven	beans).
MethodResponseTime:	The	average	response	time	in	milliseconds	on	the	remote	methods	of	the
bean.
ActiveMethodCount:	Average	concurrently	actively	called	methods.

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=stores-tuning-detection-database-connection-loss
https://www.ibm.com/support/pages/commonly-used-wsadmin-scripts-websphere-application-server-sibus

MethodCallCount
SIB	Service	}	SIB	Messaging	Engines	}	*	}	Destinations	}	Queues

AvailableMessageCount:	Number	of	messages	available	for	consumption	from	this	queue
AggregateMessageWaitTime:	Total	amount	of	time	spent	in	the	bus	by	messages	consumed
from	this	queue
UnavailableMessageCount:	Number	of	messages	on	this	queue	but	not	available	for
consumption
TotalMessagesProducedCount:	Total	number	of	messages	produced	to	this	queue
LocalConsumerCount:	Number	of	local	consumers	currently	attached	to	this	queue
LocalProducerCount:	Number	of	local	producers	currently	attached	to	this	queue
LocalMessageWaitTime:	Total	amount	of	time	spent	on	this	queue	by	messages	consumed	from
this	queue
TotalMessagesConsumedCount:	Total	number	of	messages	consumed	from	this	queue

SIB	Service	}	SIB	Messaging	Engines	}	*	}	Storage	Management	}	Data	Store
JDBCTransactionTime:	Total	execution	time	of	internal	batches
PersistentDispatcherAvoidanceCount:	Measures	the	number	of	operations	on	reliable	persistent
data	dispatched	for	writing	to	the	data	store	but	whose	writing	was	subsequently	unnecessary.

SIB	Service	}	SIB	Messaging	Engines	}	*	}	Storage	Management	}	File	Store
FileStoreLogSpace:	Space	in	bytes	left	in	the	file	store	log
FileStorePermanentObjectStoreSpace:	Space	in	bytes	left	in	the	file	store	permanent	store

SIB	Service	}	SIB	Communications	}	Messaging	Engines	}	Standard
MEStats.BufferedReadBytes
MEStats.BufferedWriteBytes
MEStats.MessageBytesRead
MEStats.MessageBytesWritten

JCA	Connection	Factory
PoolSize
FreePoolSize
UseTime
WaitTime

	

Message	Visibility/Message	Gathering

Message	visibility/message	gathering	may	be	used	to	consume	messages	from	all	available	queue	points	of	a
destination.	This	may	be	useful	when	cluster	members	have	different	configurations	or	processing	speeds;
however,	message	visibility	itself	has	a	high	performance	overhead.	In	general,	using	a	single,	highly
available,	clustered	destination	will	probably	perform	better	in	the	case	of	differing	node	performance.

	

Read	ahead

Read	ahead	will	preemptively	mark	messages	so	that	they	can	be	flowed	down	a	client	connection	and	made
available	for	a	consumer	to	receive	before	explicitly	requested.	The	default	behaviour	is	for	this	to	be	used
for	non-durable	and	unshared	durable	subscribers	(where	there	can	only	be	a	single	consumer	receiving	a
subscription	message	at	any	one	time).	The	reason	for	this	is	that	in	both	these	cases,	once	messages	are
assigned	for	a	particular	subscription,	there	should	only	be	one	consumer	at	a	time	that	can	attempt	to	receive
those	messages.	So,	if	messages	are	marked,	but	for	some	reason	the	consumer	doesn't	receive	them	(for
example,	either	because	work	is	rolled	back	or	the	consumer	is	closed	before	receiving	all	the	messages)	then
those	messages	can	be	unmarked	on	the	destination	without	affecting	any	other	consumers.	While	read	ahead
can	provide	some	performance	benefit	in	simple	scenarios,	it	can	be	disabled	if	problems	arise	in	more
complicated	scenarios.

	

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=jrrmcbm-configuring-requester-consume-messages-from-all-queue-points-simultaneously

Administrative	Console	Monitoring

In	recent	versions	of	WAS,	the	administrative	console	provides	basic	monitoring	on	the	Runtime	tab	of	the
Messaging	Engine.

Publication	point	queue	depth:

Subscription	queue	depth:

		

Service	Integration	Bus	Destination	Handler

The	IBM	Service	Integration	Bus	Destination	Handler	tool	is	a	tool	that	can	view,	move,	copy,	delete	and
restore	messages.

	

Service	Integration	Bus	Explorer

SIB	Explorer	is	a	tool	to	monitor	SIB:

https://www.ibm.com/support/pages/ibm-service-integration-bus-destination-handler-version-11
https://www.ibm.com/support/pages/service-integration-bus-explorer

		

Service	Integration	Bus	Performance

SIB	Performance	is	a	tool	to	monitor	SIBus	performance.

Advanced	ME	Tuning

Consider	various	performance	tuning	properties	either	through	custom	properties	or	the	sib.properties
file.	Setting	properties	requires	restarting	the	MEs.	Potential	values	worth	testing:

sib.msgstore.cachedDataBufferSize=80000000
Default	size	is	40000000.	With	a	larger	cache,	it	is	more	likely	a	message	can	be	delivered	from
memory,	instead	of	being	read	from	the	persistence	store.

sib.msgstore.jdbcWriteMaxBytesPerBatch=8000000
sib.msgstore.jdbcWriteMaxTasksPerBatch=128
sib.msgstore.jdbcWriteThreads=16
sib.msgstore.transactionSendLimit=200
sib.msgstore.jdbcWriteRate=160

	

Lightweight	Tracing

To	investigate	activation	specification	maxConcurrency	(search	for	maxWorkCount	in	the	client):

Client:
*=info:com.ibm.ws.sib.ra.inbound.impl.SibRaSingleProcessListener=all:com.ibm.ws.sib.ra.inbound.impl.SibRaDispatcher=all
ME:
*=info:com.ibm.ws.sib.comms.server.clientsupport.CATAsynchConsumer=all:com.ibm.ws.sib.comms.server.clientsupport.StaticCATConnection=all:com.ibm.ws.sib.processor.impl.ConsumerDispatcher=all

	

WebSphere	MQ	Messaging	Provider

JMS	messages	are	processed	on	the	WMQJCAResourceAdapter	thread	pool.	Therefore,	the	sum	of	the
maximum	concurrent	invocations	per	endpoint	for	all	Activation	Specifications	should	be	less	than	or	equal
to	the	maximum	size	of	the	WMQJCAResourceAdapter	thread	pool.

	

MDB	Response	Times

Request	Metrics	(covered	earlier)	can	be	used	to	track	the	response	times	of	individual	MDB	transactions:

1.	 Ensure	"Prepare	Servers	for	Request	metrics	collection"	is	checked
2.	 Select	"Custom"	for	"Components	to	be	instrumented"	and	select	"JMS"	and	any	other	relevant

components
3.	 Set	"Trace	level"	to	"Hops"
4.	 Check	"Standard	Logs"

Simply	save	and	synchronize	the	changes	and	request	metrics	is	dynamically	enabled.

Here	is	an	example	where	a	servlet	calls	a	stateless	session	bean	which	puts	a	message	on	a	queue.	Then	an

https://www.ibm.com/support/pages/service-integration-bus-performance
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=engines-setting-tuning-properties-by-editing-sibproperties-file
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=engines-setting-tuning-properties-messaging-engine
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=engines-setting-tuning-properties-by-editing-sibproperties-file

Activation	Specification	reads	from	this	service	integration	bus	queue	to	parse	the	message	and	sleep	one
second.	Here	is	the	output	in	SystemOut.log:

[4/17/14	8:56:48:531	PDT]	00000028	SystemOut					O	TestMDB	received	message
[4/17/14	8:56:48:529	PDT]	00000021	PmiRmArmWrapp	I			PMRM0003I:		parent:ver=1,ip=127.0.0.1,time=1397749842692,pid=21621,reqid=8,event=1	-	current:ver=1,ip=127.0.0.1,time=1397749842692,pid=21621,reqid=8,event=1	type=URI	detail=/TestAdvancedWeb/Test	elapsed=78
[4/17/14	8:56:49:563	PDT]	00000028	PmiRmArmWrapp	I			PMRM0003I:		parent:ver=1,ip=127.0.0.1,time=1397749842692,pid=21621,reqid=8,event=1	-	current:ver=1,ip=127.0.0.1,time=1397749842692,pid=21621,reqid=4097,event=1	type=JMS	detail=queue1	elapsed=1034

The	"type=JMS"	line	indicates	that	an	MDB	has	finished	processing,	the	detail	field	shows	the	WAS	queue
name,	and	the	elapsed	field	shows	it	took	1034ms.	Interestingly,	I	also	had	the	Servlet	component	enabled	in
request	metrics,	and	you	can	see	that	the	"parent"	of	the	JMS	line	is	the	"current"	of	the	servlet	line,	which
means	the	correlation	crosses	some	boundaries	and	allows	us	to	know	that	this	message	was	processed	from
the	same	transaction	as	that	particular	servlet	invocation.	This	is	very	useful	for	tracking	asynchronous
requests.

	

JMS	Connections	Explained

When	an	application	obtains	a	J2EE	Managed	connection,	which	includes	JMSConnections	obtained	from	a
(JCA	managed)	connection	factory	looked	up	in	the	J2EE	app	server's	naming	context,	the	J2C	connection
manager	owns/manages	the	JMS	Connection,	what	the	application	is	given	is	a	wrapper	(an	instance	of	the
JMSConnectionHandle	class	which	implements	the	JMS	Connection	interface).	It	is	this	connection	handle
that	is	'closed'	by	the	container/J2C	-	once	it	is	closed	further	attempts	to	use	the	connection	handle	(for
example	to	create	a	session)	will	fail	with	javax.jms.IllegalStateException:	Connection	closed

Once	closed	the	connection	handle	cannot	be	re-opened.

When	looking	in	the	connection	pool	what	you	see	are	the	JMS	Connections	that	the	J2C	connection
manager	is	managing	(technically	it	actually	manages	javax.resource.spi.ManagedConnection	objects	which
themselves	are	wrappers	to	the	actual	JMS	Connection,	and	the	connection	handles).	JMS	Connections	are
not	closed	when	the	close	is	called	(on	the	connection	handle)	but	returned	to	the	pool	(for	unshareable;	for
shareable,	they	are	available	for	reuse	until	returned	to	the	free	pool	when	the	transaction	context	ends).

The	handle	is	closed	in	compliance	with	the	J2EE	connector	architecture	specification.	The	close	of	the
handle	is	not	part	of	the	transaction	context	(JTA	or	LTC)	ending	but	performed	by	the	container	in	concert
with	J2C	as	part	of	application	component	instance	lifecyle	management	as	per	the	JCA	specification.	While
it	is	absolutely	correct	that	JMS	Connections	are	required	by	the	JMS	specification	to	be	thread	safe	and	are
non-Transactional,	they	are	still	managed	connections	in	a	J2EE	app	server	environment.

In	other	words,	managed	JMS	Connections	can	be	reused	under	different	LTCs;	handles	to	the	managed
connections	are	closed,	rendering	them	unusable,	as	part	of	the	interaction	between	J2C	and	the	container
managing	the	lifecycle	of	the	application	component	instance.

It	is	possible	to	cache	the	connection	handle	inside	a	stateful	session	bean;	however,	passivation	would	need
to	be	accounted	for,	as	would	connection	failure	handling.	This	is	generally	discouraged	since	J2C	is
managing	connections	and	it	is	generally	a	bad	idea	for	two	entities	to	attempt	to	manage	the	same	resource	-
which	effectively	is	what	the	app	would	be	attempting	to	do	by	caching+reusing	the	connection.	It	is	also
worth	noting	that	JMS	connections	themselves	may	not	map	one-to-one	with	the	actual	TCP	connections	and
a	large	number	of	them	may	not	pose	a	resource	issue;	for	example,	WMQ	may	multiplex	a	configurable
number	of	multiple	JMS	connections	and	sessions	down	the	same	TCP	connection	though	this	will	be	JMS
provider	specific.

An	alternative	is	to	use	J2SE	JMS.	Using	this	alternative	means	using	a	non	JCA	managed	connection	factory
which	will	produce	non-managed	connections	and	non-managed	sessions.	Management
(caching/reuse/threading/connection	failure	etc)	of	the	connections/sessions	etc	is	then	the	sole	responsibility
of	the	application.	Any	work	performed	against	the	sessions	would	not	be	enlisted	with	transactions	(LTC	or
JTA)	-	they	would	behave	just	as	they	would	in	a	J2SE	environment.

	

Listener	Ports

MDB	concurrency	is	the	primary	tuning	variable,	along	with	the	thread	pool	on	which	MDBs	execute:

MDB	concurrency	set	with:	Maximum	Sessions

	

Pausing	and	Resuming	Listener	Ports

Stop	a	listener	port	using	wsadmin	-lang	jython:

AdminControl.invoke(AdminControl.queryNames("*:type=ListenerPort,name=LPNAME,process=server1,*"),	"stop")
WMSG0043I:	MDB	Listener...	stopped...

Start	a	listener	port	using	wsadmin	-lang	jython:

AdminControl.invoke(AdminControl.queryNames("*:type=ListenerPort,name=LPNAME,process=server1,*"),	"start")
WMSG0042I:	MDB	Listener...	started	successfully...

Print	if	a	listener	port	is	started	or	not	via	wsadmin	-lang	jython:

AdminControl.getAttribute(AdminControl.queryNames("*:type=ListenerPort,name=LPNAME,process=server1,*"),	"getStatus")
Returns	true	or	false

	

Web	Services
This	chapter	mostly	only	applies	if	the	application	uses	the	IBM	web	services	engine.	If	a	third	party	engine
(or	HTTP	client)	is	used,	separate	tuning	must	be	reviewed	for	that	framework.

	

General	web	service	tuning	tips

1.	 Review	the	Web	services	performance	best	practices
2.	 Review	the	custom	properties	of	the	HTTP	transport	chain	for	web	services
3.	 Reduce	the	time	to	create	the	JAXBContext	with	-

Dcom.ibm.ws.websvcs.getJAXBContext.cacheClassList.persist=true	and	other	application	best
practices

4.	 If	applicable	and	if	using	JAX-WS	and	WAS	>=	8.5.5.2,	set	-
Dcom.ibm.websphere.webservices.jaxwsOptimizeLevelOne=true

5.	 If	you	use	transport	level	security	for	XML	encryption	or	digital	signatures,	consider	using	the
unrestricted	JCE	policy	files

6.	 If	using	JAX-RPC,	consider	testing	the	relative	benefit	of	response	compression	using	-
Dcom.ibm.websphere.webservices.http.responseContentEncoding

7.	 If	sending	web	services	requests	from	an	MDB,	use	-
Dcom.ibm.ws.websvcs.transport.jms.cacheReplyQCF=true

8.	 If	using	JAX-WS	on	WAS	>=	8.5.5.2,	consider	setting	-DcacheTransformerFactory=true
9.	 If	using	a	JAX-WS	client	with	WAS	security	enabled	and	WS-Reliable	Messaging	is	not	needed,

consider	setting	-Dcom.ibm.websvcs.client.serializeSecurityContext=false

	

Outbound	Connection	Cache

If	using	the	web	service	client,	tune	-Dcom.ibm.websphere.webservices.http.maxConnection=X	based	on

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=applications-web-services-performance-best-practices
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=services-http-transport-custom-properties-web-applications
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=services-reducing-time-required-create-jaxbcontext
https://www.ibm.com/support/pages/apar/PI14203
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=security-tuning-web-services-version-90-applications
https://www.ibm.com/docs/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rwbs_httptransportprop.html#http_field6
https://www.ibm.com/support/pages/apar/PM93004
https://www.ibm.com/support/pages/apar/PI06819
https://www.ibm.com/support/pages/apar/PI07385
https://www.ibm.com/docs/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rwbs_httptransportprop.html#http_field1

the	thread	pool	size	and	backend	capacity.

For	performance	reasons,	ensure	that	the	com.ibm.websphere.webservices.http.maxConnection
custom	property	is	at	least	half	the	size	of	the	maximum	number	of	threads	in	the	web	container
thread	pool.	The	default	size	for	the	web	container	thread	pool	is	50.	As	a	result,	the	default	size
of	the	com.ibm.websphere.webservices.http.maxConnection	property	is	set	to	25	and	50	for
JAX-RPC	and	JAX-WS,	respectively.	You	can	adjust	the	setting	for
com.ibm.websphere.webservice.http.maxConnection	upwards	from	this	initial	value,	as	required,
to	better	utilize	the	threads.

The	outbound	connection	cache	does	not	have	PMI	monitoring	but	does	have	a	lightweight	diagnostic	trace:

JAX-WS:	*=info:com.ibm.ws.websvcs.transport.channel.Monitor=all
JAX-RPC:	*=info:com.ibm.ws.webservices.engine.transport.channel.Monitor=all

	

WSPerf	Tool

Investigate	JAX-WS	or	JAX-RPC	performance	using	diagnostic	trace.

	

Inbound	Web	Services	Processing

Monitor	PMI	statistics	on	inbound	web	services	processing

	

Preferring	Local	Execution

If	the	web	services	client	is	running	in	the	same	JVM	as	the	web	service	target,	consider	using	the	 optimized
local	communication	path:

To	improve	performance,	there	is	an	optimized	communication	path	between	a	web	services
client	application	and	a	web	container	that	are	located	in	the	same	application	server	process.
Requests	from	the	web	services	client	that	are	normally	sent	to	the	web	container	using	a
network	connection	are	delivered	directly	to	the	web	container	using	an	optimized	local	path.
The	local	path	is	available	because	the	web	services	client	application	and	the	web	container	are
running	in	the	same	process.

The	optimized	local	communication	path	is	disabled	by	default.	You	can	enable	the	local
communication	path	with	the	enableInProcessConnections	custom	property.	Before	configuring
this	custom	property,	make	sure	that	you	are	not	using	wildcards	for	host	names	in	your	web
container	end	points.	Set	this	property	to	true	in	the	web	container	to	enable	the	optimized	local
communication	path.	When	disabled,	the	web	services	client	and	the	web	container
communicate	using	network	transports.

	

Web	Services	Response	Caching

Service	Servlet	Caching

Consider	using	Dynacache	to	cache	web	service	responses.

	

https://www.ibm.com/support/pages/apar/PK77273
https://www.ibm.com/support/pages/troubleshooting-jax-wsjax-rpc-web-services-performance-problems-ibm-websphere-application-server-web-services-performance-wsperf-trace?lang=en
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=services-monitoring-performance-web-applications
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=servers-web-services-client-web-container-optimized-communication
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=caching-example-web-services

JAX-RPC	Client	Caching

If	using	JAX-RPC,	enabling	the	web	services	client	cache	is	an	option	to	improve	the	performance	by	using
the	dynamic	cache	service	to	save	responses	from	remote	web	services	for	a	specified	amount	of	time.	You
enable	the	web	services	caching	by	enabling	the	dynamic	cache	service	and	servlet	caching.	After	a	response
is	returned	from	a	remote	web	service,	the	response	is	saved	in	the	client	cache	on	the	application	server.
Any	identical	requests	that	are	made	to	the	same	remote	web	service	are	then	responded	to	from	the	cache
for	a	specified	period	of	time.	The	web	services	client	cache	relies	primarily	on	time-based	invalidations
because	the	target	web	service	can	be	outside	of	your	enterprise	network	and	unaware	of	your	client	caching.
Therefore,	you	can	specify	the	amount	of	time	in	the	cache	and	the	rules	to	build	cache	entry	IDs	in	the	cache
in	your	client	application.

	

Asynchronous	Beans
Legacy	WAS	work	asynchronous	beans	implement	com.ibm.websphere.asynchbeans.Work	and	are
run	asynchronously	by	a	WAS	WorkManager	(which	manages	a	set	of	threads)	through	the	startWork
method	call.
CommonJ	work	asynchronous	beans	implement	commonj.work.Work	and	are	run	asynchronously	by	a
CommonJ	WorkManager	(which	manages	a	set	of	threads)	through	the	schedule	method	call.
Timer	listener	asynchronous	beans	implement	commonj.timers.TimerListener	and	are	run
asynchronously	by	a	WAS	timer	manager	that	implements	commonj.timers.TimerManager.	These
timers	are	used	to	schedule	future	work	and	are	appropriate	for	managed	JEE	environments,	unlike
instances	of	java.util.Timer.
Alarm	listener	asynchronous	beans	implement	com.ibm.websphere.asynchbeans.AlarmListener	and
are	run	asynchronously	by	a	WAS	alarm	manager	(which	manages	a	set	of	threads).	These	alarms	are
used	to	schedule	future	work.
http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/asyncbns/concepts/casb_asbover.html?
cp=SSAW57_8.5.5&lang=en

	

Work	Manager

If	a	non-zero	"work	timeout"	is	specified	and	if	the	time	the	work	bean	has	been	queued	for	execution	plus
the	execution	time	exceeds	the	work	timeout,	then	the	WorkManager	will	call	release()	on	the	work	bean.
(http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/asyncbns/tasks/tasb_workmanager.html?
lang=en)

	

Intelligent	Management

Intelligent	Management	Recipe

1.	 If	using	Java	On	Demand	Routers:
1.	 Test	the	relative	performance	of	an	increased	maximum	size	of	the	Default	thread	pool.
2.	 If	ODRs	are	on	shared	installations,	consider	using	separate	shared	class	caches.
3.	 If	using	Windows:

1.	 If	using	AIO	(the	default),	test	the	relative	performance	of	-
DAIONewWindowsCancelPath=1

2.	 If	using	AIO	(the	default),	test	the	relative	performance	of	disabling	AIO	and	using	NIO

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=service-configuring-jax-rpc-web-services-client-cache
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/asyncbns/concepts/casb_asbover.html?cp=SSAW57_8.5.5&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/asyncbns/tasks/tasb_workmanager.html?lang=en
https://www.ibm.com/support/pages/same-shared-class-cache-scc-name-dmgr-and-odrserver-causes-high-variance-java-odr-benchmark-using-java-70
https://www.ibm.com/support/pages/apar/PI25221
https://www.ibm.com/support/pages/disabling-aio-asynchronous-inputoutput-native-transport-websphere-application-server

	

Background

Intelligent	Management	(IM)	was	formerly	a	separate	product	called	WebSphere	Virtual	Enterprise	(WVE)
and	it	became	a	part	of	WebSphere	Network	Deployment	starting	with	version	8.5.

IM	introduces	the	On	Demand	Router	which	supports	application	editioning,	health	policies,	service
policies,	maintenance	mode,	automatic	discovery,	dynamic	clusters,	traffic	shaping,	and	more.	The	ODR	was
first	delivered	as	a	Java	process	that	was	based	on	the	Proxy	Server	and	it	was	normally	placed	in	between	a
web	server	and	the	application	servers.	Starting	with	WAS	8.5.5,	there	is	an	option	called	Intelligent
Management	for	Web	Servers	(colloquially,	ODRLib)	which	is	a	native	C	component	that	delivers	some	of
the	same	functionality	but	is	integrated	directly	into	the	IBM	HTTP	Server	(IHS)	web	server.

	

Java	On	Demand	Router	(ODR)

The	Java	On	Demand	Router	(ODR)	is	built	on	top	of	the	WAS	Java	Proxy	Server.	Both	of	these	write	the
following	log	files	asynchronously	in	a	background	LoggerOffThread:

local.log:	A	log	of	the	communications	between	the	client	(e.g.	browser)	and	the	ODR,	i.e.	the
activities	in	the	"local"	ODR	process.
proxy.log:	A	log	of	the	communications	between	the	ODR	and	the	backend	server	(e.g.	application
server).

The	weighted	least	outstanding	request	(WLOR)	load	balancing	algorithm	is	generally	superior	to	the
available	load	balancing	algorithms	in	the	WebSphere	plugin.	WLOR	takes	into	account	both	the	weight	of
the	server	and	the	number	of	outstanding	requests,	so	it	is	better	at	evening	out	load	if	one	server	slows
down.	WLOR	is	the	default	in	both	ODRLib	and	the	Java	ODR.

The	"excessive	request	timeout	condition"	and	"excessive	response	time	condition"	are	useful	health	policies
that	the	ODR	can	monitor	to	gather	diagnostics	on	anomalous	requests.

Conditional	Request	Trace	enables	traces	only	for	requests	that	match	a	particular	condition	such	as	a	URI.

The	ODR	measures	"service	time"	as	the	time	the	request	was	sent	to	the	application	server	until	the	time	the
first	response	chunk	arrives.

	

Default	Thread	Pool

The	Java	ODR/Proxy	primarily	uses	the	Default	thread	pool	for	its	HTTP	proxying	function;	however,	most
of	its	activity	is	asynchronous,	so	a	very	large	volume	of	traffic	would	be	required	to	overwhelm	this	thread
pool.	In	such	case,	it	may	help	to	increase	its	maximum	size,	although	exhaustion	of	the	Default	thread	pool
may	just	be	a	symptom	of	downstream	or	upstream	issues	instead.

	

Maintenance	Mode

Putting	servers	into	maintenance	mode	is	a	great	way	to	gather	performance	diagnostics	while	reducing	the
potential	impact	to	customers.	One	maintenance	mode	option	is	to	allow	users	with	affinity	to	continue
making	requests	while	sending	new	requests	to	other	servers.

Putting	a	server	into	maintenance	mode	is	a	persistent	change.	In	other	words,	a	server	will	remain	in
maintenance	mode	(even	if	the	server	is	restarted)	until	the	mode	is	explicitly	changed.	The	maintenance

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=operations-creating-configuring-odrs
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=in-intelligent-management-web-servers-overview

mode	of	a	server	is	stored	persistently	as	a	server	custom	property.	The	name	of	the	custom	property	is
"server.maintenancemode"	under	Application	Servers	}	Administration	}	Custom	Properties.	Possible	values
for	that	property	are:

false	-	maintenance	mode	is	disabled
affinity	-	only	route	traffic	with	affinity	to	the	server
break	-	don't	route	any	traffic	to	the	server

	

Custom	Logging

The	Java	ODR	supports	custom	logging	which	logs	information	about	HTTP	responses,	allows	for
conditions	on	what	is	logged	and	has	very	flexible	fields	for	logging.

The	condition	uses	HTTP	request	and	response	operands.	Response	operands	include	response	code,	target
server,	response	time,	and	service	time.

There	are	various	fields	available	to	print.

Instructions	to	log	all	responses:

1.	 Log	into	the	machine	that	runs	the	WAS	DMGR,	open	a	command	prompt,	and	change	directory	to
the	$WAS/bin/	directory.

2.	 Run	the	following	command	for	each	ODR,	replacing	$ODRNODE	with	the	ODR's	node	and	$ODRSERVER
with	the	name	of	the	ODR:

wsadmin	-f	manageODR.py	insertCustomLogRule	$ODRNODE:$ODRSERVER	1	"service.time	}=	0"	"http.log	%h	%t	%r	%s	%b	%Z	%v	%R	%T"

3.	 In	the	WAS	DMGR	administrative	console,	for	each	ODR,	go	to:	Servers	}	Server	Types	}	On
Demand	Routers	}	$ODR	}	On	Demand	Router	Properties	}	On	Demand	Router	settings	}	Custom
Properties

1.	 Click	New	and	set	Name=http.log.maxSize	and	Value=100	and	click	OK.	This	value	is	in	MB.
2.	 Click	New	and	set	Name=http.log.history	and	Value=10	and	click	OK
3.	 Click	Review,	check	the	box	to	synchronize,	and	click	Save

4.	 Restart	the	ODRs
5.	 Now	observe	that	there	should	be	an	http.log	file	in	$WAS\profiles\$PROFILE\logs\$ODR\

The	default	value	for	http.log.maxSize	is	500	MB	and	the	default	value	for	http.log.history	is	1.

Note	that	the	number	of	historical	files	is	in	addition	to	the	current	file,	meaning	that	the	defaults	will
produce	up	to	1GB	in	two	files.	Also	note	that	changing	the	values	affects	not	only	the	ODR	custom	logs,
but	also	the	proxy.log,	local.log,	and	cache.log.

Other	notes:

Log	rules	may	be	listed	with:

$	wsadmin	-f	manageODR.py	listCustomLogRules	$ODRNODE:$ODRSERVER
WASX7209I:	Connected	to	process	"dmgr"	on	node	dmgr1	using	SOAP	connector;		The	type	of	process	is:	DeploymentManager
WASX7303I:	The	following	options	are	passed	to	the	scripting	environment	and	are	available	as	arguments	that	are	stored	in	the	argv	variable:	"[listCustomLogRules,	odr1:odrserver1]"
1:	condition='service.time	>=	0'	value='http.log	%h	%t	%r	%s	%b	%Z	%v	%R	%T'

Log	rules	may	be	removed	by	referencing	the	rule	number	(specified	in	insertCustomLogRule	or	listed	on
the	left	side	of	the	output	of	listCustomLogRules):

$	wsadmin	-f	manageODR.py	removeCustomLogRule	${ODRNODE}:%{ODRSERVER}	1
WASX7209I:	Connected	to	process	"dmgr"	on	node	dmgr1	using	SOAP	connector;		The	type	of	process	is:	DeploymentManager
WASX7303I:	The	following	options	are	passed	to	the	scripting	environment	and	are	available	as	arguments	that	are	stored	in	the	argv	variable:	"[removeCustomLogRule,	odr1:odrserver1,	1]"
Removed	log	rule	#1

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=odrs-manageodrpy-script
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=policy-intelligent-management-http-operands
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=logs-custom-log-file-format
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=odrs-intelligent-management-demand-router-system-custom-properties

If	the	overhead	of	the	example	log	rule	above	is	too	high,	then	it	may	be	reduced	significantly	by	only
logging	requests	that	take	a	long	time.	Change	the	server.time	threshold	(in	milliseconds)	to	some	large
value.	For	example	(the	name	of	the	log	is	also	changed	to	be	more	meaningful	such	as	http_slow.log):

$./wsadmin.sh	-f	manageODR.py	insertCustomLogRule	${ODRNODE}:%{ODRSERVER}	1	"service.time	>=	5000"	"http_slow.log	%h	%t	%r	%s	%b	%Z	%v	%R	%T"
WASX7209I:	Connected	to	process	"dmgr"	on	node	dmgr1	using	SOAP	connector;		The	type	of	process	is:	DeploymentManager
WASX7303I:	The	following	options	are	passed	to	the	scripting	environment	and	are	available	as	arguments	that	are	stored	in	the	argv	variable:	"[insertCustomLogRule,	odr1:odrserver1,	1,	service.time	>=	5000,	http_slow.log	%h	%t	%r	%s	%b	%Z	%v	%R	%T]"
Inserted	'log	rule	#1

Example	output:

localhost6.localdomain6	09/Jan/2018:14:33:55	PST	"GET	/swat/Sleep	HTTP/1.1"	200	326	cell1/node1/dc1_node1	oc3466700346	6006	6004

Note	that	%r	will	be	double-quoted	without	you	needing	to	specify	the	double	quotes	in
insertCustomLogRule.	In	fact,	insertCustomLogRule	does	not	support	double	quotes	around	any	field.

	

Binary	Trace	Facility	(BTF)

The	Java	ODR	supports	a	different	type	of	tracing	from	the	traditional	diagnostic	trace.	Btrace	enables	trace
on	a	per-request	basis	and	infrequently-occurring	conditions	out-of-the-box	(e.g.	reason	for	503).	Btrace	is
hierarchical	with	respect	to	function	rather	than	code	and	trace	records	are	organized	top-down	and	left-to-
right	(processing	order).	The	trace	specification	can	be	set	as	a	cell	custom	property	starting	with	trace,	e.g.
name=trace.http,	value=http.request.loadBalance=2

The	trace	command	in	the	WAS	installation	directory	can	be	used	to	format	btrace	data:

$WAS/bin/trace	read	$SERVER_LOGS_DIRECTORY	$SPEC_TO_READ

	

Dynamic	clusters

Application	Placement	Controller	(APC)

The	Application	Placement	Controller	code	runs	in	one	JVM	in	the	cell	and	coordinates	stopping	and	starting
JVMs	when	dynamic	clusters	are	in	automatic	mode,	or	creating	runtime	tasks	for	doing	so	when	dynamic
clusters	are	in	supervised	mode.	The	frequency	of	changes	is	throttled	by	the	minimum	time	between
placements	option.	Some	of	the	basic	theory	of	the	APC	is	described	in	Tang	et	al.,	2007.

Investigate	autonomic	dynamic	cluster	size	violations.

Investigate	APC	issues:

1.	 Check	all	node	agents	are	running	and	healthy	and	the	core	group	is	marked	as	stable.
2.	 Check	if	any	nodes	or	servers	are	in	maintenance	mode.
3.	 Check	the	logs	for	servers	to	see	if	they	were	attempted	to	be	started	but	failed	for	some	reason	(e.g.

application	initialization).
4.	 Check	each	node's	available	physical	memory	if	there	is	sufficient	free	space	for	additional	servers.
5.	 Find	where	the	APC	is	running	(DCPC0001I/HAMI0023I)	and	not	stopped	(DCPC0002I/HAMI0023I),	and

ensure	that	it	is	actually	running	at	the	interval	of	minimum	time	between	placement	options
(otherwise,	it	may	be	hung).

6.	 Check	if	APC	detected	a	violation	with	the	DCPC0309I	message.	If	found,	check	for	any	subsequent
errors	or	warnings.

7.	 Check	the	apcReplayer.log,	find	the	**BEGIN	PLACEMENT	INPUT	DUMP**	section,	and	review	if	all
nodes	are	registered	with	lines	starting	with	{CI.

If	APC	is	constantly	stopping	and	starting	JVMs	seemingly	needlessly,	test	various	options	such	as:

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=placement-monitoring-tuning-application-controller
https://doi.org/10.1145/1242572.1242618
https://www.ibm.com/support/pages/resolving-and-preventing-violation-number-minmax-instances-dynamic-cluster-websphere-version-70-and-later-and-virtual-enterprise-environment

APC.BASE.PlaceConfig.DEMAND_DISTANCE_OVERALL=0.05
APC.BASE.PlaceConfig.UTILITY_DISTANCE_PER_APPL=0.05
APC.BASE.PlaceConfig.WANT_VIOLATION_SCORE=true
APC.BASE.PlaceConfig.PRUNE_NO_HELP=false

	

Service	Policies

Service	policies	define	application	goals	(e.g.	average	response	time	less	than	1	second)	and	relative
priorities	(e.g.	application	A	is	High).	The	Java	ODR	uses	these	policies	in	its	request	prioritization	and
routing	decisions.

	

CPU/Memory	Overload	Protection

These	overload	protection	features	cause	the	Java	ODR	to	queue	work	to	application	servers	that	it	sees	are
over	the	configured	thresholds	of	CPU	and/or	memory	usage.

	

Health	Policies

When	using	the	"excessive	memory	usage"	health	policy,	set	usexdHeapModule=true.	Otherwise,	the	heap
usage	is	sampled	and	this	can	create	false	positives	with	generational	garbage	collection	policies	such	as
gencon.	The	"memory	leak"	health	policy	uses	the	built-in	traditional	WAS	performance	advisor	and	this
always	samples,	so	it's	not	recommended	with	generational	garbage	collectors.

	

Visualization	Data	Service

This	service	logs	key	performance	data	into	CSV	log	files.	The	logs	are	written	to	the	deployment	manager
profile	directory	at	$DMGR_PROFILE/logs/visualization/*.log

1.	 System	Administration	}	Visualization	Data	Service	}	Check	"Enable	Log"
1.	 Timestamp	format	=	MM/dd/yyyy	HH:mm:ss

1.	 If	this	is	not	specified,	it	defaults	to	the	"number	of	milliseconds	since	the	standard	base
time	known	as	"the	epoch",	namely	January	1,	1970,	00:00:00	GMT."	-	i.e.	new
Date(timestamp)

2.	 Max	file	size	=	20MB
3.	 Max	historical	files	=	5

1.	 The	max	file	size	and	historical	files	apply	to	each	viz	data	log	file,	individually.

Example	output	of	ServerStatsCache.log:

timeStamp,name,node,cellName,version,weight,cpu,usedMemory,uptime,totalRequests,liveSessions,updateTime,highMemMark,residentMemory,totalMemory,db_averageResponseTime,db_throughput,totalMethodCalls		
01/03/2019	09:45:53,server1,localhostNode01,localhostCell01,XD	9.0.0.9,1,0.26649348143619733,80953,846,1337,0,01/03/2019	09:45:44,,334792,5137836,,,

	

Bulletin	Board	over	the	Structured	Overlay	Network	(BBSON)

BBSON	is	an	alternative	to	the	High	Availability	Manager	(HAManager)	and	allows	some	of	the	WAS
components	that	traditionally	relied	on	the	HAManager	to	use	a	different	approach.	BBSON	is	built	on	the
P2P	component	which	is	peer-to-peer	with	small	sized	groups	rather	than	a	mesh	network	like	HAManager.
This	can	allow	for	greater	scalability	and	no	need	for	core	group	bridges.	All	IM	components	can	use

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=management-health
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=management-intelligent-health-controller-custom-properties
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=service-serverstatscache

BBSON.	WAS	WLM	can	also	use	BBSON.

The	SON	thread	pool	sizes	may	be	set	with	cell	custom	properties	son.tcpInThreadPoolMin,
son.tcpInThreadPoolMax,	son.tcpOutThreadPoolMin,	and	son.tcpOutThreadPoolMax.

	

High	Availability	Deployment	Manager	(HADMGR)

The	high	availability	deployment	manager	allows	multiple	instances	of	the	deployment	manager	to	share	the
same	configuration	(using	a	networked	filesystem)	to	eliminate	a	single	point	of	failure	if	one	of	them	is	not
available.	The	HADMGR	must	be	accessed	through	an	On	Demand	Router	(ODR)	which	routes	to	one	of	the
active	deployment	managers.	The	deployment	manager	can	be	very	chatty	in	making	many	small	file	I/O
accesses,	thus	performance	of	the	networked	filesystem	is	critical.

	

PMI

In	WAS	ND	8.5	and	above,	to	disable	PMI	completely,	if	you	are	not	using	any	Intelligent	Management
capabilities,	then	set	the	cell	custom	property	LargeTopologyOptimization=false,	disable	PMI,	and	restart:

Intelligent	Management	which	is	part	of	Websphere	Application	Server	V8.5.0.0	and	later,
requires	the	default	PMI	counters	to	be	enabled.	It	is	not	possible	to	disable	PMI	or	the	default
PMI	counters	when	using	Intelligent	Management	capabilities.	If	no	IntelligentManagement
capabilities	will	ever	be	used	then	the	property	described	in	this	fix	can	be	used	to	disable
Intelligent	Management.	In	turn	it	will	allow	disabling	the	PMI	Monitoring	Infrastructure	of
default	PMI	counters.

1.	 System	Administration	}	Cell	}	Additional	Properties	}	Custom	Properties	}	New
1.	 Name:	LargeTopologyOptimization
2.	 Value:	false
3.	 OK

2.	 Server	}	Server	Types	}	WebSphere	application	servers	}	$SERVER	}	Performance	}	Performance
Monitoring	Infrastructure	(PMI)

1.	 Uncheck	"Enable	Performance	Monitoring	Infrastructure"
2.	 OK

3.	 Review
1.	 Check	"Synchronize	changes	with	Nodes"
2.	 Save

4.	 Restart	$SERVER

	

Security

Authentication	Cache

The	authentication	cache	should	generally	be	enabled	(which	it	is	by	default)	and	its	maximum	size	tuned:

Consider	increasing	the	cache	and	token	timeout	if	you	feel	your	environment	is	secure	enough.
By	increasing	these	values,	you	have	to	re-authenticate	less	often.	This	action	supports
subsequent	requests	to	reuse	the	credentials	that	already	are	created.	The	downside	of	increasing
the	token	timeout	is	the	exposure	of	having	a	token	hacked	and	providing	the	hacker	more	time
to	hack	into	the	system	before	the	token	expires.	You	can	use	security	cache	properties	to
determine	the	initial	size	of	the	primary	and	secondary	hashtable	caches,	which	affect	the
frequency	of	rehashing	and	the	distribution	of	the	hash	algorithms.

https://www.ibm.com/support/pages/apar/PM71531
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=managers-high-availability-deployment-manager
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/ragt_cell_customprops.html#LargeTopologyOptimization
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_prfstartadmin.html
https://www.ibm.com/support/pages/apar/PM79754
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=domains-authentication-cache-settings
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=configurations-tuning-security

	

Java	Security

Java	Security	is	disabled	by	default	which	is	generally	recommended	as	it	has	a	significant	performance	cost.
For	a	discussion	of	the	limitations	of	the	Java	Security	Manager,	see	the	proposed	JEP	411	to	deprecate	and
remove	it.

Java	security	typically	reduces	throughput	by	15-40%.	However,	Java	Security	is	not	a	fixed	cost;	rather,	the
cost	is	proportional	to	the	number	of	security	calls.	One	common	manifestation	of	this	is	that	one	application
has	an	overhead	with	Java	Security	enabled	of	X%,	and	then	another	application	has	a	much	higher
overhead;	in	most	cases,	this	is	caused	by	a	difference	in	the	number	of	calls	to	security	between	those
applications,	rather	than	a	product	issue.	A	sampling	profiler	such	as	IBM	Java	Health	Center	is	usually	the
best	way	to	gauge	the	overhead	of	Java	Security.	Use	the	call	stack	invocation	paths	to	reduce	the	number	of
security	calls	if	possible.

	

Single	Sign	On	(SSO)

Consider	configuring	Single	Sign	On	(SSO)	so	that:

a	single	authentication	to	one	application	server	is	enough	to	make	requests	to	multiple
application	servers	in	the	same	SSO	domain.

	

Security	Attribute	Propagation

Security	attribute	propagation	shares	authenticated	security	Subjects	and	security	context	information
between	servers.	Consider	some	potential	tuning:

The	following	two	custom	properties	might	help	to	improve	performance	when	security	attribute
propagation	is	enabled:

com.ibm.CSI.propagateFirstCallerOnly:	The	default	value	of	this	property	is	true.	When
this	custom	property	is	set	to	true	the	first	caller	in	the	propagation	token	that	stays	on	the
thread	is	logged	when	security	attribute	propagation	is	enabled.	When	this	property	is	set
to	false,	all	of	the	caller	switches	are	logged,	which	can	affect	performance.
com.ibm.CSI.disablePropagationCallerList:	When	this	custom	property	is	set	to	true	the
ability	to	add	a	caller	or	host	list	in	the	propagation	token	is	completely	disabled.	This
function	is	beneficial	when	the	caller	or	host	list	in	the	propagation	token	is	not	needed	in
the	environment.

	

Horizontal	Security	Attribute	Propagation

The	Single	Sign	On	option	will	first	check	the	local	JVM's	authentication	cache.	A	Subject	used	often	can
remain	here	until	the	LtpaToken	expiration.	Next,	if	security	attribute	propagation	and	Dynacache	are
enabled,	WAS	will	check	the	ws/WSSecureMap	DistributedMap:

When	front-end	servers	are	configured	and	in	the	same	data	replication	service	(DRS)	replication
domain,	the	application	server	automatically	propagates	the	serialized	information	to	all	of	the
servers	within	the	same	domain	using	ws/WSSecureMap.

The	size	of	this	map	may	be	tuned:

https://www.ibm.com/docs/en/was/9.0.5?topic=security-java-2
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=configurations-tuning-security
https://www3.software.ibm.com/ibmdl/pub/software/dw/wes/0710_largetopologies/LargeWebSphereTopologies.pdf
https://openjdk.java.net/jeps/411
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=configurations-tuning-security
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=configurations-tuning-security
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=users-security-attribute-propagation
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=configurations-tuning-security

The	WSSecureMap	security	cache	settings	can	be	adjusted	through	custom	properties	in	the
administrative	console.

com.ibm.ws.security.WSSecureMapInitAtStartup=true
com.ibm.ws.security.WSSecureMapSize	(integer	of	100	or	greater).

Explicit	invalidations	for	ws/WSSecureMap	are	sent	out	on	user	logout.	To	disable	this,	use
com.ibm.websphere.security.web.removeCacheOnFormLogout=false

If	the	subject	is	not	found	in	ws/WSSecureMap,	WAS	will	try	to	make	an	MBean	call	back	to	the	server	that
originally	created	the	subject.	The	originating	server's	host:port	is	found	in	the	SSO	token.	In	some	cases,
this	may	cause	worse	performance	than	simply	re-authenticating :

You	must	determine	whether	enabling	this	option	improves	or	degrades	the	performance	of	your
system.	While	the	option	prevents	some	remote	user	registry	calls,	the	deserialization	and
decryption	of	some	tokens	might	impact	performance.	In	some	cases	propagation	is	faster,
especially	if	your	user	registry	is	the	bottleneck	of	your	topology.	It	is	recommended	that	you
measure	the	performance	of	your	environment	both	by	using	and	not	using	this	option.	When
you	test	the	performance,	it	is	recommended	that	you	test	in	the	operating	environment	of	the
typical	production	environment	with	the	typical	number	of	unique	users	accessing	the	system
simultaneously.

There	is	also	a	timeout	value	that	can	be	set	to	manage	this	condition:
com.ibm.websphere.security.tokenFromMBeanSoapTimeout.	You	can	also	disable	the	mbean	callback
with	com.ibm.websphere.security.disableGetTokenFromMBean.

Note:	Security	attribute	propagation	may	be	set	at	multiple	levels:	cell,	server,	and	security	domain.	For
security	domains,	the	option	is	set	as	a	custom	property	with	the	name
com.ibm.ws.security.webInboundPropagationEnabled	and	a	value	of	true	or	false.

	

LDAP	Authentication

When	using	LDAP	authentication,	consider	various	common	tuning:

Consider	the	following	steps	to	tune	Lightweight	Directory	Access	Protocol	(LDAP)
authentication.

In	the	administration	console,	click	Security	>	Global	security.
Under	User	account	repository,	click	the	Available	realm	definitions	drop-down	list,	select
Standalone	LDAP	registry	and	click	Configure.
Select	the	Ignore	case	for	authorization	option	in	the	stand-alone	LDAP	registry
configuration,	when	case-sensitivity	is	not	important.
Select	the	Reuse	connection	option.
Use	the	cache	features	that	your	LDAP	server	supports.
Choose	either	the	IBM	Tivoli	Directory	Server	or	SecureWay	directory	type,	if	you	are
using	an	IBM	Tivoli	Directory	Server.	The	IBM	Tivoli	Directory	Server	yields	improved
performance	because	it	is	programmed	to	use	the	new	group	membership	attributes	to
improve	group	membership	searches.	However,	authorization	must	be	case	insensitive	to
use	IBM	Tivoli	Directory	Server.
Choose	either	iPlanet	Directory	Server	(also	known	as	Sun	ONE)	or	Netscape	as	the
directory	if	you	are	an	iPlanet	Directory	user.	Using	the	iPlanet	Directory	Server	directory
can	increase	performance	in	group	membership	lookup.	However,	use	Role	only	for	group
mechanisms.

Also	consider	tuning	the	LDAP	connection	and	context	pools	and	the	virtual	member	manager	(VMM).

	

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=users-propagating-security-attributes-among-application-servers
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=configurations-tuning-security
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=tuning-access-ldap-server
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=documentation-tuning

Secure	Sockets	Layer	(SSL),	Transport	Layer	Security	(TLS)

When	using	TLS/SSL,	review	various	common	tuning.

	

J2C	Authentication	Subjects

When	using	container-managed	authentication	data	aliases,	consider	using	 read-only	subjects:

Read-only	Subject	enables	a	new	cache	for	J2C	Auth	Subjects	when	using	container-managed
auth	data	aliases.	If	the	J2C	auth	subject	does	not	need	to	be	modified	after	it	is	created,	the
following	new	tuning	parameters	can	be	used	to	improve	Java	2	Security	performance:

com.ibm.websphere.security.auth.j2c.cacheReadOnlyAuthDataSubjects=true
com.ibm.websphere.security.auth.j2c.readOnlyAuthDataSubjectCacheSize=50	(This	is
the	maximum	number	of	subjects	in	the	hashtable	of	the	cache.	Once	the	cache	reaches
this	size,	some	of	the	entries	are	purged.	For	better	performance,	this	size	should	be	equal
to	the	number	of	unique	subjects	(cache	based	on	uniqueness	of	user	principal	+	auth	data
alias	+	managed	connection	factory	instance)	when	role-based	security	and	Java	2	security
are	used	together).

	

CSIv2	Cache

If	using	CSIv2,	consider	setting	stateful	sessions:

Ensure	that	stateful	sessions	are	enabled	for	CSIv2.	This	is	the	default,	but	requires
authentication	only	on	the	first	request	and	on	any	subsequent	token	expirations.

	

Administrative	Security

Review	the	performance	difference	between	SOAP	and	RMI:

Consider	changing	your	administrative	connector	from	Simple	Object	Access	Protocol	(SOAP)
to	Remote	Method	Invocation	(RMI)	because	RMI	uses	stateful	connections	while	SOAP	is
completely	stateless.	Run	a	benchmark	to	determine	if	the	performance	is	improved	in	your
environment.

	

Expired	Certificates

1.	 On	the	SSL	certificate	and	key	management	page,	click	the	Keystores	and	Certificates	link	in	the
Related	Items	list.

2.	 Click	the	Keystore,

3.	 Click	Personal	certificate	>	Additional	Properties.

4.	 Renew	the	certificate	and	exchange	the	signer	certificates	between	the	DMGR	and	Nodes:

1.	 Go	to	SSL	certificate	and	key	management	>	Manage	endpoint	security	configurations	>	Click
on	inbound	on	the	node	(NodeDefaultSSLSettings,null)	>	click	on	Key	stores	and	certificates

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_ssl.htm
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=configurations-tuning-security
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=configurations-tuning-security
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=configurations-tuning-security
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=configurations-tuning-security

2.	 Select	both	CellDefaultKeyStore	and	CellDefaultTrustStore	by	checking	the	box	and	click	on
exchange	signers	under	CellDefaultKeyStore	personal	certificates.	Choose	all	certificates	and
click	add	click	add	and	it	will	add	all	those	certificate	under	CellDefaultTrustStore	signers	and
then	click	OK

3.	 Same	thing	but	select	both	CellDefaultKeyStore	and	NodeDefaultTrustStore	by	checking	the
box	and	click	on	exchange	signers	under	CellDefaultKeyStore	personal	certificates.	Choose	all
certificates	and	click	add	and	it	will	add	all	those	certificate	under	NodeDefaultTrustStore
signers	and	then	click	OK

4.	 Same	thing	but	select	NodeDefaultKeyStore	and	CellDefaultTrustStore	by	checking	the	box	and
click	on	exchange	signers	under	NodeDefaultKeyStore	personal	certificates.	Choose	all
certificates	and	click	add	and	it	will	add	all	those	certificate	under	CellDefaultTrustStore	signers
and	then	click	OK

5.	 Same	thing	but	select	NodeDefaultKeyStore	and	NodeDefaultTrustStore	by	checking	the	box
and	click	on	exchange	signers	under	NodeDefaultKeyStore	personal	certificates.	Choose	all
certificates	and	click	add	and	it	will	add	all	those	certificate	under	NodeDefaultTrustStore
signers	and	then	click	OK

5.	 Save	the	changes	with	the	master	configuration	and	restart	the	dmgr.

6.	 Stop	the	nodeagent	and	JVMs	and	manually	sync	the	node	with	dmgr	using	syncNode

1.	 If	the	syncNode	fails	(e.g.	ADMU0127E),	then	manually	copy	the	key.p12	file	from	the	node's
configuration	in	the	DMGR	profile	to	the	node's	configuration.

7.	 Start	the	nodeagent	and	see	the	status	in	the	admin	console	and	sync	the	node	from	the	console	and	see
if	sync	is	going	smooth	by	tailing	the	nodeagent	logs.

	

Clock	synchronization

Clock	synchronization	(e.g.	NTP)	may	be	important	for	security	performance:

Use	a	clock	synchronization	service	to	keep	system	clock	values	as	close	as	possible.	Security
processing	depends	on	time	stamp	validation	and	having	clocks	out	of	synchronization	more
than	five	minutes	can	affect	performance	due	to	unnecessary	re-authentication	and	retry
processing.

	

Trace

Tracing	login:	*=info:com.ibm.ws.security.*=all:com.ibm.websphere.security.*=all	and	search	for
login

	

PasswordEncoder

Password	encoder:

$WAS/java/bin/java	-Djava.ext.dirs=$WAS/plugins:$WAS/lib	com.ibm.ws.security.util.PasswordEncoder	$PASSWORD

Password	Decoder:

$WAS/java/bin/java	-Djava.ext.dirs=$WAS/plugins:$WAS/lib	com.ibm.ws.security.util.PasswordDecoder	$PASSWORD

https://www3.software.ibm.com/ibmdl/pub/software/dw/wes/0710_largetopologies/LargeWebSphereTopologies.pdf

	

Administration

Administration	Best	Practices

Use	consistent	and	repeatable	administration	processes.	Manual	changes	may	miss	changes	in	some
environments	or	otherwise	cause	operational	instability.	This	means	to	automate	all	administration.	For
example,	changes	should	be	done	through	wsadmin	and	other	scripts	rather	than	through	hard-to-repeat
processes	such	as	manual	changes	in	the	Administrative	Console.	This	includes	installation,	configuration,
application	changes,	and	maintenance	in	all	environments.

However,	the	Administrative	Console	may	be	used	to	read	and	review	the	current	configuration,	or	to	test
proposed	changes	and	use	the	"View	administrative	scripting	command	for	last	action"	link	after	making	a
change	to	help	generate	automation	scripts.

	

Deployment	Manager

From	Best	Practices	for	Large	WebSphere	Application	Server	Topologies:

The	memory	requirement	of	the	deployment	manager	increases	as	the	size	of	the	topology
increases,	and	as	the	number	of	concurrent	sessions	increases.	Since	the	deployment	manager	is
just	a	single	process,	there	is	no	mechanism	to	balance	the	load.	Therefore,	there	is	a	limit	to	the
number	of	concurrent	users	that	can	be	supported	on	a	single	deployment	manager.

Just	as	you	would	tune	the	application	server	heap	size,	you	need	to	tune	the	deployment
manager	heap	size	to	accommodate	the	number	of	concurrent	users	who	access	the	deployment
manager.	Enable	verbose	garbage	collection,	and	observe	how	the	heap	size	increases	with	the
increase	in	topology	and	in	the	number	of	users.

If	too	many	concurrent	sessions	are	overloading	the	deployment	manager,	you	need	to	place	a
limit	on	concurrent	access.	For	scripting,	consider	using	the	V7	job	manager	as	a	mechanism	for
users	to	submit	wsadmin	jobs.	The	jobs	are	run	sequentially,	and	an	email	notification	is	sent	to
the	user	upon	job	completion.

A	JMX	request	from	the	deployment	manager	to	a	single	application	server	flows	through	the
deployment	manager	to	the	node	agent	on	the	same	node	where	the	server	resides,	and	finally	to
the	application	server	itself.	This	design	is	intended	for	scalability.	The	deployment	manager	has
to	communicate	with	a	node	agent	only,	and	each	node	agent	has	to	communicate	with	its
respective	application	servers	only.

If	an	invocation	is	made	to	all	of	the	servers	on	a	node,	the	deployment	manager	uses	one
invocation	to	the	node	agent	and	the	node	agent,	in	turn,	broadcasts	the	invocation	to	every
server	on	the	node.	To	avoid	a	scenario	where	queries	get	stuck,	use	narrow	queries	that	target
only	the	servers	or	nodes	from	which	you	really	need	information.	Queries	that	touch	every
server	can	considerably	consume	cell	resources.

Use	-Dcom.ibm.ws.management.connector.soap.keepAlive=true	to	avoid	the	cost	of	SSL	re-
handshaking	when	AdminClient	uses	PullRemoteReceiver/PullRemoteSender.

Starting	with	WAS	8.5.5.7	(PI42208),	you	may	set	-Dcom.ibm.console.overrideSyncPref=true	on	the
deployment	manager	so	that	saving	any	changes	will	automatically	synchronize	with	any	running	nodes.	This
avoids	common	issues	with	junior	administrators	that	save	a	change	and	restart	a	server	before	the	automatic
synchronization	kicks	in.

	

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=console-administrative-actions-command-assistance
https://www3.software.ibm.com/ibmdl/pub/software/dw/wes/0710_largetopologies/LargeWebSphereTopologies.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg1PI42208

wsadmin/JMX

From	Best	Practices	for	Large	WebSphere	Application	Server	Topologies:

Often	in	a	script	you	need	to	search	for	a	specific	configuration	object,	such	as	a	specific	node,
server,	or	data	source.	The	configuration	service	extracts	what	you	are	searching	from	the	master
repository	to	the	workspace	for	you	to	make	your	changes.	How	you	construct	your	query	can
greatly	affect	how	many	files	are	extracted.	If	you	do	not	use	a	targeted	query,	you	can
potentially	cause	the	entire	repository	to	be	extracted.	For	a	large	topology	this	is	a	very
expensive	operation.

Starting	the	wsadmin	process	may	take	20	seconds	or	more,	depending	on	hardware.	Avoid
breaking	up	your	configuration	operations	into	multiple	wsadmin	invocations.	Do	combine	them
into	a	single	script	that	can	be	run	within	one	wsadmin	session.	Consider	structuring	your	scripts
into	multiple	files,	and	import	them	from	a	front-end	script.

The	-conntype	NONE	option	is	running	wsadmin	in	local	mode.	We	don't	support	updating	the	configuration
in	local	mode	while	the	deployment	manager	is	running.	After	the	change	is	made,	to	reflect	to	the	changes
to	the	nodes,	the	user	will	need	to	start	the	dmgr	and	run	the	node	sync	(syncNode)	operation	in	order	to	sync
the	changes	to	the	nodes.	In	local	mode,	the	user	will	not	be	able	to	run	anything	operational	such	as
AdminControl	commands	to	invoke	any	WAS	MBeans	(and	some	of	the	AdminTask	commands	also	require
that	the	server	is	running).	Other	than	that,	local	mode	should	act	the	same.

Getting	diagnostics:

AdminControl.invoke(AdminControl.completeObjectName("type=JVM,process=server1,*"),
"dumpThreads")
AdminControl.invoke(AdminControl.completeObjectName("type=JVM,process=server1,*"),
"generateHeapDump")
AdminControl.invoke(AdminControl.completeObjectName("type=JVM,process=server1,*"),
"generateSystemDump")

Additional	links:

wsadminlib
WSADMIN	Primer
Using	the	Jython	Scripting	Language	with	WSADMIN

	

Examples

Restart	server:

print	"Restarting	"	+	sys.argv[0]	+	"/"	+	sys.argv[1]	+	"..."
print	AdminControl.invoke(AdminControl.queryNames("WebSphere:*,type=Server,node="	+	sys.argv[0]	+	",process="	+	sys.argv[1]),	"restart")
print	"Restart	asynchronously	started..."

The	only	potential	problem	with	the	above	is	that	it	fires	off	the	restart	asynchronously,	so	you	don't	know	if
it	succeeded	or	not.	Instead,	the	script	can	be	changed	to	invoke	a	stop	and	then	a	start,	the	first	of	which	is
synchronous	and	reports	any	errors:

print	"Stopping	"	+	sys.argv[0]	+	"/"	+	sys.argv[1]	+	"..."
print	AdminControl.stopServer(sys.argv[1],	sys.argv[0])
print	"Starting	"	+	sys.argv[0]	+	"/"	+	sys.argv[1]	+	"..."
print	AdminControl.startServer(sys.argv[1],	sys.argv[0])
print	"Done"

	

https://www3.software.ibm.com/ibmdl/pub/software/dw/wes/0710_largetopologies/LargeWebSphereTopologies.pdf
https://github.com/wsadminlib/wsadminlib
https://www.ibm.com/support/pages/system/files/inline-files/WP101014_-_WSADMIN_zOS_V61_Primer_with_Jython.pdf
https://www.ibm.com/support/pages/system/files/inline-files/WP100963_-_Jython_Scripting_with_wsadmin_tutorial.pdf

Querying	PMI

#	Provide	the	name	of	the	WebSphere	Application	Server
serverName	=	"server1"

pmiObject	=	"JVM"

#	If	serverName	is	not	unique	across	the	cell,	add	"node=N,"	before	"process":
lookup	=	"process="	+	serverName

objectName	=	AdminControl.completeObjectName("type=Perf,"	+	lookup	+	",*")
if	objectName	==	''	or	objectName	is	None:
				print	"Server	not	running	or	not	found"
else:
				#	Query	PMI:
				stats	=	AdminControl.invoke_jmx(AdminControl.makeObjectName(objectName),	"getStatsObject",	[AdminControl.makeObjectName(AdminControl.completeObjectName("type="	+	pmiObject	+	","	+	lookup	+	",*")),	java.lang.Boolean("false")],	["javax.management.ObjectName","java.lang.Boolean"])

				usedmem	=	stats.getStatistic("UsedMemory").getCount()
				totalmem	=	stats.getStatistic("HeapSize").getCurrent()
				percentUsed	=	int((float(usedmem)/float(totalmem))*100.0)
				
				print("Used	Java	Heap	(MB):	%s"	%(usedmem/1024))
				print("Current	Java	Heap	Size	(MB):	%s"	%(totalmem/1024))
				print("Percent	Java	Heap	Used:	%s"	%(percentUsed))

	

Node	Synchronization

By	default,	automatic	node	synchronization	is	set	to	occur	every	1	minute.	This	can	be	increased	to	60
minutes.	In	general,	do	not	disable	Automatic	Synchronization	as	it	can	affect	security	components	such	as
LTPA	key	distribution.

From	Best	Practices	for	Large	WebSphere	Application	Server	Topologies:

Node	synchronization	is	the	process	by	which	the	WebSphere	configuration	is	transferred	from
the	deployment	manager	to	the	node	agent.	The	deployment	manager	and	node	agents	compare
MD5	hashes	of	the	configuration	files	to	determine	whether	the	files	are	identical.	In	the	cases
of	a	node	agent	or	deployment	manager	restart,	the	respective	server	must	create	all	the	MD5
hashes	in	memory	for	all	the	configuration	documents	in	the	node	or	cell.	As	the	cell	size	and
number	of	documents	become	larger,	the	start-up	time	also	increases.

WebSphere	Application	Server	has	added	support	for	"Hot	Restart	Sync."	With	this	support,	the
node	agent	and	deployment	managers	save	the	hashes	in	both	memory	as	well	as	on	the	file
system.	When	a	restart	is	performed,	the	MD5	hashes	do	not	need	to	be	recomputed	but	rather
can	be	loaded	directly	from	disk.	To	enable	this	support,	add	the	following	custom	property	to
your	deployment	manager	and	node	agent:
-DhotRestartSync=true

	

Notifications

The	SOAP	connector	has	the	advantage	of	having	a	better	chance	of	making	it	through	a	firewall	(since	it	is
HTTP	traffic)	than	RMI/IIOP;	however,	you	will	generally	receive	notifications	faster	with	RMI	than	with
SOAP.	This	is	because	the	RMI	uses	a	"push"	model	while	SOAP	uses	a	"pull"	model.

When	the	RMI	connector	is	used,	a	remote	object	is	created	on	the	client	side	and	on	the	stub	passed	to	the
server	side.	Whenever	a	notification	is	received	on	the	server,	it	is	almost	immediately	sent	(or	"pushed")	to
the	client	and	handed	to	the	registered	listeners.	With	SOAP,	at	regular	intervals,	the	client	requests	any
notifications	from	the	server	for	this	listener.	If	there	are	any,	they	are	returned	from	(or	"pulled"	from)	the
server	and	then	handed	to	the	listeners.	This	occurs	approximately	every	20	seconds,	but	can	be	more

https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/uagt_rsynchservice.html
https://www3.software.ibm.com/ibmdl/pub/software/dw/wes/0710_largetopologies/LargeWebSphereTopologies.pdf

frequent	if	a	large	number	of	notifications	are	being	received.

Since	notifications	can	take	up	to	20	seconds	to	be	received	when	using	the	SOAP	connector,	it	is
recommended	that	the	RMI	connector	be	used	to	receive	notifications,	when	possible.

	

Copy	WAS	nodes	or	cells	to	other	hosts

WAS	9:	The	-allowSameRelease	true	option	of	WASPreUpgrade	allows	moving	a	V9	node	or	cell	to
another	set	of	hosts.	Append	-allowSameRelease	true	on	step	5	of	migrating	cells	to	new	host
machines	using	the	command-line	tool
WAS	8.5:

For	a	single	node,	see	"Move	a	node	to	a	product	installation	on	a	different	computer	but	at	the
same	path"	in	Recovering	or	moving	nodes	with	the	addNode	-asExistingNode	command
For	an	entire	cell,	see	"Create	a	cell	from	a	template	cell"	in	Recovering	or	moving	nodes	with
the	addNode	-asExistingNode	command
For	another	option,	see	"Move	a	node	to	a	product	installation	on	a	different	operating	system	or
with	a	different	path"	in	Recovering	or	moving	nodes	with	the	addNode	-asExistingNode
command
In	some	cases,	it	may	also	be	useful	to	backup	and	restore	Installation	Manager	as	well

Alternatively,	depending	on	how	it's	done,	this	is	either	partially	supported	or	unsupported,	but	another
option	is	to	copy	files	over	and	change	host	names

	

Re-install	Corrupt	WAS	on	the	same	nodes

To	re-install	a	corrupt	WAS	installation	through	Installation	Manager,	for	each	node,	starting	with	the
DMGR:

1.	 Stop	all	Java	processes	(application	servers,	nodeagent,	DMGR,	etc.)
2.	 Backup	(recursive	copy)	of	$WASHOME
3.	 View	$WASHOME/properties/version/installed.xml	and	write	down	the	path	values	of	the

agent.launch.command,	agent.install.location,	and	cacheLocation	properties.	For	each	one	of
these	paths,	back	them	up	(recursive	copy).

4.	 Backup	(copy)	InstallationManager.dat	from	the	home	directory	of	the	user	that	installed	Installation
Manager,	e.g.	~/etc/.ibm/registry/InstallationManager.dat

5.	 If	Installation	Manager	itself	is	suspected	to	be	corrupt,	delete	InstallationManager.dat,	the	paths
of	agent.launch.command,	agent.install.location,	and	cacheLocation	properties,	and	$WASHOME;
then,	re-install	IM,	e.g.	$IMAGENT/tools/imcl	install	com.ibm.cic.agent	-dataLocation
/opt/IBM/IBMIM/data	-repositories	$IMAGENT/repository.config	-installationDirectory
/opt/IBM/IBMIM/eclipse	-sharedResourcesDirectory	/opt/IBM/IBMIMShared	-accessRights
nonAdmin	-acceptLicense	-sP	-preferences
offering.service.repositories.areUsed=false,com.ibm.cic.common.core.preferences.searchForUpdates=false

6.	 If	Installation	Manager	is	not	suspected	to	be	corrupt,	then	uninstall	WAS:	$IM/eclipse/tools/imcl
uninstallAll	-installationDirectory	$WASHOME;	then,	recursively	delete	$WASHOME

7.	 Install	WAS,	e.g.	$IM/eclipse/tools/imcl	install	com.ibm.websphere.ND.v90_[...]
com.ibm.java.jdk.v8_8.0.[...]	-sharedResourcesDirectory	/opt/IBM/IBMIMShared	-
repositories	/tmp/WASREPO/repository.config	-installationDirectory	$WASHOME	-sP	-
acceptLicense.	Ensure	that	the	exact	version	of	WAS	and	any	fixpacks	and	iFixes	are	installed	that
match	the	configurations	that	have	been	backed	up.

8.	 Recursively	copy	$WASBACKUP/properties/fsdb	to	$WASHOME/properties/
9.	 Recursively	copy	$WASBACKUP/properties/profileRegistry.xml	to	$WASHOME/properties/

10.	 Recursively	copy	$WASBACKUP/profiles	to	$WASHOME/
11.	 Recursively	remove	$WASHOME/configuration/org.eclipse.core.runtime

$WASBACKUP/configuration/org.eclipse.equinox.app
$WASBACKUP/configuration/org.eclipse.osgi

https://community.ibm.com/community/user/wasdevops/blogs/ryan-golden1/2022/03/31/migrating-websphere-90-cells-to-a-new-machine?CommunityKey=5c4ba155-561a-4794-9883-bb0c6164e14e&tab=recentcommunityblogsdashboard
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=mpc-migrating-cells-new-host-machines-using-command-line-tool
https://www.ibm.com/docs/en/was-nd/8.5.5?topic=nodes-recovering-moving-addnode-asexistingnode
https://www.ibm.com/docs/en/was-nd/8.5.5?topic=nodes-recovering-moving-addnode-asexistingnode
https://www.ibm.com/docs/en/was-nd/8.5.5?topic=nodes-recovering-moving-addnode-asexistingnode
https://www.ibm.com/docs/en/installation-manager/1.8.5?topic=manager-backing-up-restoring-installation
https://www.ibm.com/support/pages/system/files/support/swg/swgdocs.nsf/0/ae735d9be5629433852577cf004bb5ec/$FILE/WSTE-11042010-IBMWebSphereApplicationServerRepositoryMigration-Nathan.pdf#page=17
https://www.ibm.com/docs/en/was-nd/8.5.5?topic=servers-changing-node-host-names
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.8.5/com.ibm.silentinstall12.doc/topics/t_silent_installIM_IMinst.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.installation.nd.doc/ae/tins_uninstallation_cl.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.installation.nd.doc/ae/tins_uninstman.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.installation.nd.doc/ae/tins_installation_cl.html

$WASBACKUP/configuration/org.eclipse.update
12.	 For	each	profile,	recursively	remove	logs	$WASHOME/profiles/$PROFILE/logs/*
13.	 For	each	profile,	recursively	remove

$WASHOME/profiles/$PROFILE/configuration/org.eclipse.core.runtime
$WASHOME/profiles/$PROFILE/configuration/org.eclipse.equinox.app
$WASHOME/profiles/$PROFILE/configuration/org.eclipse.osgi
$WASHOME/profiles/$PROFILE/configuration/org.eclipse.update

14.	 For	each	profile,	recursively	remove	$WASHOME/profiles/$PROFILE/temp/*
$WASHOME/profiles/$PROFILE/wstemp/*

15.	 For	each	profile,	run	$WASHOME/profiles/$PROFILE/bin/osgiCfgInit.sh
16.	 Run	$WASHOME/bin/clearClassCache.sh
17.	 If	the	node	is	the	deployment	manager,	start	the	deployment	manager
18.	 If	the	node	is	not	the	deployment	manager,	log	out	of	the	deployment	manager	administrative	console

if	logged	in,	then	run	$WASHOME/profiles/$PROFILE/bin/syncNode.sh	$DMGRHOST	$DMGRSOAPPORT,
and	then	run	$WASHOME/profiles/$PROFILE/bin/startNode.sh

19.	 Start	all	the	application	servers	and	perform	tests.
20.	 If	everything	goes	well	and	further	fixpacks	or	fixpacks	are	required,	then	apply	those	fixes	now	using

normal	procedures.

	

Session	Initiation	Protocol	(SIP)
UDP	and	Linux	tuning:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsip_tunelinux.html

Consider	JVM	and	thread	pool	tuning:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsip_tune_ha.html

	

WAS	traditional	on	z/OS

WAS	traditional	on	z/OS	Recipe

1.	 Review	the	z/OS	Recipe.
2.	 Enable	and	review	SMF	120	Subtype	9	records.
3.	 Consider	classifying	workload	into	individually	tuned	WLM	transaction/service/report	classes	with	a

classification	file.
4.	 Consider	classifying	the	control	region	and	other	address	spaces	as	per	general	best	practices.
5.	 Enable	and	review	SMF	72.3	Workload	Activity	Reports.
6.	 Review	the	WLM	Delay	Monitoring	Report.

	

SMF	120	Records

SMF	Type	120	records	provide	various	performance	statistics.	Subtype	9	records	generally	supersede	and
subsume	subtype	1-8	records.	Subtype	9	records	also	tend	to	be	more	accurate	and	lower	overhead.

1.	 Enable	SMF	120	records
2.	 Format	the	output	data	set	and	upload

Post-process	the	output	data	set	using	SMF_WAS_PLUGINS.	To	get	statistics	on	the	LPARs	and	record
types:

java	-Xmx1g	"-Dcom.ibm.ws390.smf.dateTimeFormat=yyyy-MM-dd'T'HH:mm:ss.SSSZ"	-DPRINT_WRAPPER=false	-jar	smftools.jar	"INFILE(DATASET)"

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsip_tunelinux.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsip_tune_ha.html
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=workloads-classifying-zos-workload
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=zos-address-space-management-work-requests
https://www.ibm.com/docs/en/zos/3.1.0?topic=conditions-workload-activity-smf-record-type-72-3
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=report-rmf-workload-activity-reports-rmf-monitor-iii
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=health-wlm-delay-monitoring
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=srt1o-smf-record-type-120-78-websphere-application-server-performance-statistics
https://www.ibm.com/support/pages/node/6355123
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=smf-enabling-recording
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=smf-formatting-output-data-set
https://github.com/IBM/IBM-Z-zOS/blob/main/SMF-Tools/SMF_WAS_PLUGINS/readme.md

Example	output:

SMF	Data	for	system	ABCD	covering	Mon	Dec	11	12:30:00	GMT	2023	to	Mon	Dec	11	14:29:59	GMT	2023
	Record	Type						Records		%Total			Avg	Length			Min	Length			Max	Length
										98								1,440				0.00				28,533.69							27,292							30,204
									120				4,801,374				1.00					1,680.77								1,236								6,116
							Total				4,802,814		100.00					1,688.82								1,236							30,204

SMF	Data	for	system	EFGH	covering	Mon	Dec	11	12:30:00	GMT	2023	to	Thu	Dec	14	10:28:06	GMT	2023
	Record	Type						Records		%Total			Avg	Length			Min	Length			Max	Length
											2												1				0.00								14.00											14											14
											3												1				0.00								14.00											14											14
										98								1,440				0.00				27,914.16							20,124							30,524
									120				6,183,802				1.00					1,598.33								1,236								6,116
							Total				6,185,244		100.00					1,604.45											14							30,524

	

Response	Times

Basic	statistics:

java	-Xmx1g	"-Dcom.ibm.ws390.smf.dateTimeFormat=yyyy-MM-dd'T'HH:mm:ss.SSSZ"	-DPRINT_WRAPPER=false	-jar	smftools.jar	"INFILE(DATASET)"	"PLUGIN(com.ibm.smf.was.plugins.ResponseTimes,STDOUT)"

It	is	often	useful	to	break	out	response	times	over	time:

java	-Xmx1g	"-Dcom.ibm.ws390.smf.dateTimeFormat=yyyy-MM-dd'T'HH:mm:ss.SSSZ"	-DPRINT_WRAPPER=false	-Dcom.ibm.ws390.smf.smf1209.useTime=RESPONDED	-Dcom.ibm.ws390.smf.smf1209.breakdown=BY_SERVER	-jar	smftools.jar	"INFILE(DATASET)"	"PLUGIN(com.ibm.smf.was.plugins.ResponseTimes,STDOUT)"

	

General	Considerations

See	the	z/OS	operating	systems	chapter	for	prerequisite	knowledge.

Keep	the	number	of	nodes	per	local	partition	(LPAR)	between	one	or	two	nodes	with	a
maximum	of	four	nodes	per	LPAR.	Spread	a	cell	or	cluster	over	at	least	two	LPARs.	Using
multiple	LPARs	ensures	hardware	redundancy	as	well,	while	still	allowing	the	cluster	to	be
upgraded	on	a	per	node	basis.

http://www3.software.ibm.com/ibmdl/pub/software/dw/wes/0710_largetopologies/LargeWebSphereTopologies.pdf

IBM	recommends	that	you	install	as	much	of	the	WebSphere	Application	Server	for	z/OS	code	in	the	Link
Pack	Area	(LPA)	as	is	reasonable.	Also,	ensure	that	you	have	eliminated	any	unnecessary	STEPLIBs	which
can	affect	performance.	If	you	must	use	STEPLIBs,	verify	that	any	STEPLIB	DDs	in	the	controller	and
servant	procs	do	not	point	to	any	unnecessary	libraries.
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezprogloc.html

The	first	place	to	review	is	your	CTRACE	configuration.	Ensure	that	all	components	are	either
set	to	MIN	or	OFF.	To	display	the	CTRACE	options	for	all	components	on	your	system,	issue
the	following	command	from	the	operator	console:	D	TRACE,COMP=ALL

To	change	the	setting	for	an	individual	component	to	its	minimum	tracing	value,	use	the
following	command,	where	xxx	is	the	component	ID:	TRACE	CT,OFF,COMP=xxx

This	configuration	change	eliminates	the	unnecessary	overhead	of	collecting	trace	information
that	is	not	needed.	Often	during	debug,	CTRACE	is	turned	on	for	a	component	and	not	shut	off
when	the	problem	is	resolved.

Ensure	that	you	are	not	collecting	more	SMF	data	than	you	need.	Review	the	SMFPRMxx
settings	to	ensure	that	only	the	minimum	number	of	records	is	collected.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezopsys.html

https://github.com/IBM/IBM-Z-zOS/blob/main/SMF-Tools/SMF_WAS_PLUGINS/src/com/ibm/smf/was/plugins/ResponseTimes.java
http://www3.software.ibm.com/ibmdl/pub/software/dw/wes/0710_largetopologies/LargeWebSphereTopologies.pdf
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezprogloc.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezopsys.html

The	Transaction	Service	RLS_LOGSTREAM_COMPRESS_INTERVAL	custom	property	can	be	set	to	a
value	larger	than	the	default	value	if	the	Transaction	Service	is	the	only	application	component	using	a
logstream.	If	none	of	your	components	are	configured	to	use	a	logstream,	you	can	set	this	property	to	0	(zero)
to	disable	this	function.
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tuneappserv.html

If	you	find	long	garbage	collection	pause	times	but	the	normal	components	of	a	pause	(mark,	sweep,
compact,	exclusiveaccess)	do	not	add	up	to	the	total	time,	then	this	is	usually	caused	by	the	Virtual
Lookaside	Facility	(VLF)	caching	being	disabled	or	not	working	efficiently.

"Ensure	that	ras_trace_defaultTracingLevel=0	or	1,	and	that	ras_trace_basic	and	ras_trace_detail	are	not	set."
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tuneztrace.html

	

Address	Spaces

Each	application	server	is	split	into	two	or	more	address	spaces:	a	control	region	and	one	or	more	servant
regions.	The	control	region	handles	incoming	traffic	and	distributes	it	to	the	servant	regions	where	the
application	work	is	performed.	It	is	a	best	practice	to	use	${X}	as	the	control	region	name	and	${X}S	for	the
servant	region	names.	For	example,	WBESR12	and	WBESR12S.

(http://www-
03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/dc4870284450d9b88625769c00521734/$FILE/WP101620%20-
%20Basic%20Sizing%20of%20WAS%20zOS.pdf)

	

Servants

WebSphere	allows	you	to	configure	a	minimum	and	maximum	number	of	servants	for	a	server.
WLM	will	dynamically	adjust	the	number	of	servants	within	the	specified	range,	up	or	down
based	on	what's	needed	to	meet	the	goals	for	the	system.	WLM	does	this	for	work	running	in
WebSphere	and	for	work	elsewhere	on	the	system.

To	set	the	minimum	value,	consider	how	many	servants	you	want	to	start	automatically	when
the	server	is	started	and	how	many	you	want	WLM	to	keep	available.	In	determining	the
maximum	value,	consider	how	many	servants	you	can	support	on	your	system.	Also,	consider
the	number	of	available	connectors	for	applications	in	WebSphere	and	elsewhere	in	the	system.

But	what	if	something	changes	someday	and	the	minimum	just	is	not	enough?	Or,	you	reach	the
configured	maximum	and	need	more	servants?	To	change	the	values,	you	must	update	the
configuration	and	recycle	the	server.	But	if	you	are	running	at	peak	utilization	and	decide	you
need	to	increase	the	maximum	number	of	servants;	recycling	the	whole	server	is	probably	going

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tprf_tuneappserv.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tuneztrace.html
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/dc4870284450d9b88625769c00521734/$FILE/WP101620%20-%20Basic%20Sizing%20of%20WAS%20zOS.pdf

to	hurt	more	than	just	not	having	enough	servants.	It	would	be	nice	to	be	able	to	dynamically
change	the	number	of	servants	without	a	recycle.

In	Version	7,	we	introduced	a	new	MODIFY	command	to	let	you	do	that.	If	the	server	is	not
configured	as	single-servant,	you	can	change	the	current	minimum	and	maximum	number	of
servants.	You	enter	the	command	as	follows:

MODIFY	server,WLM_MIN_MAX=(minimum,maximum)

Specify	these	values	as	decimal	numbers.	Obviously,	the	minimum	must	be	less	than	the
maximum.

Your	changes	are	in	effect	until	the	next	time	you	recycle	the	server,	in	which	case,	the	values	in
the	configuration	are	used	instead.	To	make	your	changes	permanent,	you	need	to	update	the
configuration.

In	general,	WLM	responds	quickly	to	your	request.	If	the	minimum	number	of	servants	is	not
already	running,	WLM	starts	more.	Increasing	the	maximum	value,	however,	might	not	have
any	immediate	effect.	Further,	decreases	in	values	might	also	not	cause	an	immediate	change
because	of	WLM's	opinion	as	to	how	many	servants	it	needs.	Some	situations,	such	as	session
data	pinned	to	the	servant,	might	prevent	WLM	from	reducing	the	number	of	currently	active
servants.	Of	course,	unless	you've	committed	your	min	and	max	values	to	memory,	you	would
probably	like	to	have	a	quick	way	to	see	what	you	are	currently	configured	for.	We	added	a	new
command	to	allow	you	to	do	that.

MODIFY	server,DISPLAY,WLM

http://www-
03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/da939fa8cdf48510862575a1007461d2/$FILE/WP101464%20-
%20WebSphere%20zOS%20Hidden%20Gems2.pdf

Start	servants	in	parallel:	wlm_servant_start_parallel=1	(http://www-
03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/da939fa8cdf48510862575a1007461d2/$FILE/WP101464%20-
%20WebSphere%20zOS%20Hidden%20Gems2.pdf)

All	of	the	various	custom	properties,	environment	variables,	etc.	that	are	set	in	the	WAS	configuration	(e.g.
through	the	admin	console)	ultimately	get	generated	into	the	was.env	file	(located	under
profiles/default/config/cells/cellname/nodes/nodename/servers/servername/was.env)	which	is	read	when	the
address	space	starts.

	

Contraction

First,	with	proper	idle	tuning	and	disabling	Intelligent	Management	if	not	used,	CPU	usage	of	unused
servants	is	expected	to	be	very	low.	For	further	profiling	and	tuning,	use	the	IBM	Java	Health	Center
profiler.	If	the	concern	for	unused	servants	is	virtual	storage	usage,	note	that	it's	generally	not	recommended
to	overcommit	memory.	Finally,	if	work	is	being	distributed	unevenly	between	servants,	this	should	not
impact	overall	processor	usage.

Nevertheless,	if	for	whatever	reason	you	would	like	to	contract	servants	by	setting	the	minimum	number	of
servants	less	than	the	maximum,	the	way	this	works	is	that	every	10	minutes,	WLM	considers	if	there	are
excess	servants	above	the	minimum	with	no	outstanding	affined	work.	This	is	a	conservative	judgment
because	starting	and	stopping	servants	is	itself	an	intensive	process.	If	WLM	decides	a	servant	is	no	longer
needed,	it	first	unbinds	it	from	the	service	class	(because	a	different	service	class	may	need	it).	After	further
time,	if	the	servant	still	isn't	needed,	then	it	will	be	fully	destroyed.	There	is	an	explicit	WLM_MIN_MAX
MODIFY	command;	however,	this	is	primarily	used	to	adjust	the	minimum	to	request	adding	servants
whereas	reducing	the	minimum	is	still	very	conservative.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/da939fa8cdf48510862575a1007461d2/$FILE/WP101464%20-%20WebSphere%20zOS%20Hidden%20Gems2.pdf
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/da939fa8cdf48510862575a1007461d2/$FILE/WP101464%20-%20WebSphere%20zOS%20Hidden%20Gems2.pdf
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/crun_servants.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rxml_mvsmodify.html

For	details,	see	https://www-
03.ibm.com/support/techdocs/atsmastr.nsf/002573f7000ac64286256c71006d2e0a/f1ec690b6bee04cd8625778800595c69/$FILE/WP101740%20-
%20WAS_and_zOS_WLM_v8.pdf#page=19	and	https://dx.doi.org/10.5445/KSP/1000034624

	

Control	Region

The	default	value	of	worker	threads	in	a	control	region	is	25.	This	can	be	changed	to	a	higher	value	as
required	by	setting	customer	property	was.controlThreads	as	follows:

Application	servers	>	server_name	>	Container	Services	>	ORB	Service	>	Custom	Properties	>
was.controlThreads

To	verify	how	many	control	region	threads	you	are	using,	you	can	check	the	following	message	in	the
control	region	joblog:

BBOM0001I	control_region_thread_pool_size:	25.

Starting	in	WAS	8.0.0.8	and	8.5.5.2	(PM85194),	use	the	property
control_region_thread_pool_maximum_size	to	allow	growth	of	this	pool,	or	set	to	0	to	allow	dynamic
calculation	of	the	size	(see	also	PI50098).

	

Daemon

"Stopping	a	Daemon	server	will	stop	all	servers	for	that	cell	on	that...	image.	This	is	because	of	the	way
servers	for	that	cell...	access	key	LPA	modules.	It's	done	"through"	the	Daemon	server.	Stopping	the	Daemon
server	means	the	servers	can	no	longer	access	those	modules,	so	they	too	stop."	(http://www-
01.ibm.com/support/docview.wss?uid=tss1wp100396&aid=3)

	

Thread	Pools

Most	work	in	the	servant	is	handled	by	the	ORB	thread	pool.	The	maximum	size	of	this	pool	is	controlled	by
the	ORB	workload	profile	setting:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tgrid_zosthreads.html

IOBOUND:	Default	-	Number	of	threads	is	3	*	Number	of	processors.	Specifies	more	threads	in
applications	that	perform	I/O-intensive	processing	on	the	z/OS	operating	system.	The	calculation	of
the	thread	number	is	based	on	the	number	of	processors.	IOBOUND	is	used	by	most	applications	that
have	a	balance	of	processor	intensive	and	remote	operation	calls.	A	batch	job	is	an	example	that	uses
the	IOBOUND	profile.
CPUBOUND:	Number	of	threads	is	the	number	of	processors.	Specifies	that	the	application	performs
processor-intensive	operations	on	the	z/OS	operating	system,	and	therefore,	would	not	benefit	from
more	threads	than	the	number	of	processors.	The	calculation	of	the	thread	number	is	based	on	the
number	of	processors.	Use	the	CPUBOUND	profile	setting	in	processor	intensive	applications,	like
compute-intensive	(CI)	jobs,	XML	parsing,	and	XML	document	construction,	where	the	vast	majority
of	the	application	response	time	is	spent	using	the	processor.
LONGWAIT:	Number	of	threads	is	40.	Specifies	more	threads	than	IOBOUND	for	application
processing.	LONGWAIT	spends	most	of	its	time	waiting	for	network	or	remote	operations	to
complete.	Use	this	setting	when	the	application	makes	frequent	calls	to	another	application	system,
like	Customer	Information	Control	System	(CICS)	screen	scraper	applications,	but	does	not	do	much
of	its	own	processing.
In	WebSphere	Application	Server	for	z/OS	V7	you	can	choose	Workload	profile	CUSTOM	and	then
set	property	servant_region_custom_thread_count	to	the	number	of	servant	threads	you	want	up	to	a

https://www-03.ibm.com/support/techdocs/atsmastr.nsf/002573f7000ac64286256c71006d2e0a/f1ec690b6bee04cd8625778800595c69/$FILE/WP101740%20-%20WAS_and_zOS_WLM_v8.pdf#page=19
https://dx.doi.org/10.5445/KSP/1000034624
http://www-01.ibm.com/support/docview.wss?uid=swg1PM85194
http://www-01.ibm.com/support/docview.wss?uid=swg1PI50098
http://www-01.ibm.com/support/docview.wss?uid=tss1wp100396&aid=3
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tgrid_zosthreads.html

limit	of	100.

BBOO0234I	SERVANT	PROCESS	THREAD	COUNT	IS	X

WAS	7	on	z/OS	introduced	the	ability	to	interrupt	hung	threads:	http://www-
03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/3c02b79e79ea32fd8625751a005d7f63/$FILE/WP101374%20-
%20WebSphere%20zOS%20V7%20Dispatch%20Timeout%20Improvements.pdf.	This	was	improved	in
WAS	8:	http://w3-
03.ibm.com/support/techdocs/atsmastr.nsf/3af3af29ce1f19cf86256c7100727a9f/d7bb7aa1f7be24128625791e00830412/$FILE/WP101992%20-
%20WebSphere%20zOS%20V8%20Hidden%20Gems.pdf

	

Joblogs

Type	?	next	to	the	WAS	servant	region	in	the	SDSF.DA	or	SDFS.ST	panels.	Roughly	speaking,	SYSPRINT
is	equivalent	to	SystemOut.log	and	SYSOUT	is	equivalent	to	SystemErr.log	+	native_stderr.log

Common	things	to	look	for	in	WAS	joblogs:

Search	for	the	word	HOST	by	typing	F	HOST	and	F5	to	repeat	search
Hostname:	com.ibm.CORBA.LocalHost	=	ZTESTB2.PDL.POK.IBM.COM

Search	for	the	word	LEVEL	by	typing	F	LEVEL	and	F5	to	repeat	search
WAS	Level:	BBOM0007I	CURRENT	CB	SERVICE	LEVEL	IS	build	level	6.1.0.32
(AM24112)	release	WAS61.ZNATV	date	10/10/10	19:40:16.

Search	for	the	word	cell_name
Cell	name:	cell_name:	wbecell.

Search	for	the	word	PROCEDURE	by	typing	F	PROCEDURE	and	F5	to	repeat
PROCLIB:	PROCEDURE	WBESS62	WAS	EXPANDED	USING	SYSTEM	LIBRARY
USER.S12.PROCLIB

Search	for	the	word	WAS_HOMe	by	typing	F	WAS_HOME	and	F5	to	repeat
WAS_HOME:	BBOM0001I	adjunct_region_jvm_properties_file:
/S12/wbe61/wbes12/AppServer/profiles/default/config/cells/ws/wbenode2/servers/wbesr12/adjunct.jvm.options.

	

Timeouts
See	http://www-
03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/3c02b79e79ea32fd8625751a005d7f63/$FILE/WP101374%20-
%20WebSphere%20zOS%20V7%20Dispatch%20Timeout%20Improvements.pdf

	

zIIP/zAAP	Usage

In	general,	WAS	traditional	on	z/OS	is	mostly	Java	so	it	mostly	offloads	to	zIIPs	(other	than	small	bits	such
as	creating	WLM	enclaves,	SAF,	writing	SMF	records,	etc.).	Even	if	application	processing	hands-off	to	non-
zIIP-eligible	native	code	(e.g.	third	party	JNI),	recent	versions	of	z/OS	(with	APAR	OA26713)	have	a	lazy-
switch	design	in	which	short	bursts	of	such	native	code	may	stay	on	the	zIIP	and	not	switch	to	GCPs.	For
non-zIIP-eligible	native	code	such	as	the	type	2	DB2	driver,	some	of	that	may	use	zAAPs	and	total	processor
usage	compared	to	type	4	depends	on	various	factors	and	may	be	lower.

	

WLM

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/3c02b79e79ea32fd8625751a005d7f63/$FILE/WP101374%20-%20WebSphere%20zOS%20V7%20Dispatch%20Timeout%20Improvements.pdf
http://w3-03.ibm.com/support/techdocs/atsmastr.nsf/3af3af29ce1f19cf86256c7100727a9f/d7bb7aa1f7be24128625791e00830412/$FILE/WP101992%20-%20WebSphere%20zOS%20V8%20Hidden%20Gems.pdf
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/3c02b79e79ea32fd8625751a005d7f63/$FILE/WP101374%20-%20WebSphere%20zOS%20V7%20Dispatch%20Timeout%20Improvements.pdf

WebSphere	has	several	different	types	of	work	running	in	its	address	spaces.	It	is	classified	using
classification	rules	under	3	different	workloads:

1.	 For	STC	workloads	the	WebSphere	address	spaces	control	regions	and	servant	regions	would	be	given
an	aggressive	Velocity	goal	equal	to	or	slightly	less	than	DB2,	IMS,	or	MQ	and	a	goal	equal	to	or
slightly	higher	than	CICS.

2.	 For	OMVS	workloads	the	WebSphere	address	spaces	control	regions	and	servant	regions	would	be
given	an	aggressive	Velocity	goal	so	that	at	start-up	the	BPXBATCH	facility	used	to	run	our
applyPTF.sh	script	does	not	slow	startup	of	the	server.

3.	 For	CB	workloads	the	WebSphere	Servant	Regions	are	given	a	Response	time	with	percentile	goal
close	to	but	not	to	exceed	90%	of	the	work	in	.5	seconds.	Even	though	WebSphere	servers	are	long
running	tasks,	typically	Velocity	goals	are	used	for	long	running	tasks,	the	actual	transactions	within
WebSphere	are	very	short	lived	HTTP	type	transactions.	Response	times	with	percentile	goals	are	used
for	these	short	lived	transactions.

The	report	classes	associated	with	the	classification	rule	for	each	workload	would	be	unique.

Workload	CB	is	enclave	work	or	WLM	queue	managed	WebSphere	work.	Almost	all	WebSphere	work
happens	here	after	the	initial	startup	of	the	address	spaces.

STC	work	also	occurs	in	the	WebSphere	address	spaces:

The	processing	necessary	to	start	the	address	spaces	before	the	first	enclave	is	created	is	STC
workload.
Any	spawned	threads	from	the	application	will	not	be	enclave,	WLM,	or	CB	managed	work	and	will
run	under	STC.
Address	space	functions	such	as	JES	related	activities	will	be	STC	workload.
An	argument	can	be	made	that	says	Garbage	Collection	activities	run	under	STC	workload.

Rarely	use	discretionary	classification	for	WebSphere.	If	there	is	only	a	single	service	class,	then	all	work
occurs	in	that	service	class	(i.e.	overflow	work	would	not	go	into,	for	example,	a	discretionary	servie	class).

OMVS	work	also	occurs	in	the	WebSphere	Address	Spaces.	During	startup	a	program	called	BPXBATCH	is
executed	to	run	a	script	in	the	JCL.	This	script	called	applyPTF.sh	checks	to	see	if	any	service	has	been
applied.	If	service	has	been	applied	this	script	executes	any	post	install	actions	necessary.	If	startup	is	very
slow,	you	may	want	to	investigate	a	classification	rule	for	OMVS.	If	the	combination	of	applyPTF.sh	and
lack	of	classification	are	the	cause	of	the	slow	startup,	adding	a	classification	rule	may	fix	the	slow	start
problem.

More	on	WAS	with	WLM:	https://www-
03.ibm.com/support/techdocs/atsmastr.nsf/002573f7000ac64286256c71006d2e0a/f1ec690b6bee04cd8625778800595c69/$FILE/WP101740%20-
%20WAS_and_zOS_WLM_v8.pdf

WebSphere	creates	a	WLM	enclave	for	all	requests	that	get	dispatched	in	a	servant.	An	enclave
has	an	associated	WLM	service	class	and	report	class.	The	service	class	is	used	by	WLM	to	help
make	decisions	about	assigning	resources	to	the	servant	to	ensure	the	requests	meet	the	goals
defined	in	the	service	class.	The	report	class	is	used	to	separate	information	about	the	requests	in
reports	generated	by	RMF	(or	other	similar	products).	To	determine	which	service	class	and
report	class	to	assign	to	the	enclave,	WLM	looks	at	classification	information	provided	by
WebSphere	when	the	enclave	is	created.

One	piece	of	information	provided	is	called	a	transaction	class.	This	is	just	an	eight	character
name	assigned	to	the	request.	WebSphere	supports	an	XML	file	pointed	to	by	the	variable
wlm_classification_file	to	determine	what	transaction	class	to	use.	The	XML	file	allows	you	to
specify	a	different	transaction	class	(and	thus	indirectly	a	different	service	class	and	report	class)
for	different	applications	or	even	parts	of	applications.

The	XML	file	also	allows	you	to	specify	a	transaction	class	to	be	used	when	classifying	requests
that	are	internally	generated.	Sometimes	the	controller	needs	to	dispatch	something	in	its	own

https://www-03.ibm.com/support/techdocs/atsmastr.nsf/002573f7000ac64286256c71006d2e0a/f1ec690b6bee04cd8625778800595c69/$FILE/WP101740%20-%20WAS_and_zOS_WLM_v8.pdf

servant.	For	example,	this	could	be	the	dispatch	of	a	management	bean	(MBean).	To	separate
internal	work	from	application	work,	you	might	want	to	put	these	requests	in	their	own	report
class.	To	do	that	you	simply	specify	the	'internal'	clause	in	the	XML	file	and	provide	a
transaction	class	name	that	WLM	will	recognize	(based	on	the	rules	you	provide	in	the	WLM
configuration)	and	assign	service	and	report	classes	appropriately.

http://www-
03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/da939fa8cdf48510862575a1007461d2/$FILE/WP101464%20-
%20WebSphere%20zOS%20Hidden%20Gems2.pdf

	

WLMStatefulSession

Note	that	wlm_stateful_session_placement_on	is	not	true	round	robin:

When	you	enable	[wlm_stateful_session_placement_on]	[...]	When	a	new	HTTP	request	without
affinity	arrives	on	a	work	queue,	the	WLM	checks	to	see	if	there	is	a	servant	that	has	at	least	one
worker	thread	waiting	for	work.	If	there	are	no	available	worker	threads	in	any	servants,	WLM
queues	the	request	until	a	worker	thread	in	any	of	the	servants	becomes	available.	If	there	are
available	worker	threads,	WLM	finds	the	servant	with	the	smallest	number	of	affinities.	If	there
are	servant	regions	with	equal	number	of	affinities,	then	WLM	dispatches	the	work	to	the
servant	region	with	the	smaller	number	of	busy	server	threads.	The	goal	of	this	algorithm	is	for
WLM	to	balance	the	incoming	requests	without	servant	affinity	among	waiting	servants	while
considering	changing	conditions.	The	algorithm	does	not	blindly	assign	requests	to	servers	in	a
true	round-robin	manner.	[...]	This	distribution	mechanism	works	for	all	inbound	requests
without	affinity.	After	the	HTTP	session	object	is	created,	all	the	client	requests	are	directed	to
that	servant	until	the	HTTP	session	object	is	removed.

Links:

Configuring	wlm_stateful_session_placement_on

	

SMF	120

Details	on	120-9	records	in	WP-101342

MODIFY	Command

/F	ADDRESSSPACE,...	COMMANDS...	or	/MODIFY	ADDRESSSPACE,...	COMMANDS
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rxml_mvsmodify.html

Display	Java	heap	information:	/F	ADDRESSSPACE,JVMHEAP

Generate	a	javacore:	/F	ADDRESSSPACE,JAVACORE
The	joblog	will	show	where	it	is	written:	JVMDUMP007I	JVM	Requesting	Java	Dump	using
'/var/WebSphere/home/ZPSRG/javacore.20090309.205027.50397255.txt

In	version	8	we	added	an	option	to	these	commands	to	specify	the	ASID	of	the	servant	region	you	want
dumped.	Just	add	a	"ASIDX="	after	the	command	with	the	appropriate	ASID	(in	hex)	of	the	servant
region	you	want	to	dump.	For	example	(http://www-
03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/2e8a87fddebbb3328625791e0083041f/$FILE/WP101992%20-
%20WebSphere%20zOS%20V8%20Hidden%20Gems.pdf):

/F	server,JAVACORE,ASIDX=F4

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/da939fa8cdf48510862575a1007461d2/$FILE/WP101464%20-%20WebSphere%20zOS%20Hidden%20Gems2.pdf
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/crun_wlm_sessionplacement.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/trun_wlm_sessionplacement.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rxml_mvsmodify.html
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/2e8a87fddebbb3328625791e0083041f/$FILE/WP101992%20-%20WebSphere%20zOS%20V8%20Hidden%20Gems.pdf

PAUSELISTENERS,	will	cause	the	target	server	to	close	its	listener	ports	and	stop	taking	new
requests

DISPLAY,SERVERS	modify	command	has	been	enhanced	to	also	report	the	'state'	of	the	server.
There	are	four	possibilities:	ACTIVE,	ENDING,	PAUSED/STOPPING,	and	RECOVERY.	ACTIVE
seems	pretty	obvious.	Basically	ACTIVE	means	it	isn't	any	of	the	other	states;	it	could	be	up	or	it
could	be	initializing.	ENDING	means	that	the	server	is	on	its	way	down.	PAUSED/STOPPING	means
either	you	have	issued	PAUSELISTENERS	or	STOPped	the	server.	It	is	kind	of	the	same	thing.	In
both	cases	the	server	is	not	taking	new	work,	but	there	is	a	possibility	work	is	still	in-flight	inside	the
server.	The	only	difference	is	if	we	are	stopping,	then	once	the	work	completes	the	server	will	end.
Finally,	RECOVERY	means	that	the	server	has	been	started	to	recover	in-flight	transactions	and	will
automatically	shut	down	once	that	is	done.	No	new	work	will	be	taken.

BBOO0182I	SERVER	ASID	SYSTEM	LEVEL	STATE
BBOO0183I	WAS00	/ZWASAXXX	6Fx	SY1	8.0.0.0	(ff1106.32)	ACTIVE
BBOO0183I	BBON001	/BBON001	58x	SY1	8.0.0.0	(ff1106.32)	ACTIVE
BBOO0183I	BBOC001	/BBOS001	5Bx	SY1	8.0.0.0	(ff1106.32)	PAUSED/STOPPING
BBOO0183I	BBODMGR	/BBODMGR	57x	SY1	8.0.0.0	(ff1106.32)	ACTIVE

Way	back	in	WebSphere	Version	5	we	introduced	the	DISPLAY,WORK	command	(underneath	the
MVS	'Modify'	command	for	the	WAS	controller).	This	pretty	cool	command	lets	you	see	how	much
work	had	been	processed	by	the	server	since	it	started	and	how	much	work	was	actually	in	the	server
at	the	time.	You	could	even	look	server	region	by	server	region	and	see	how	work	was	spreading	(or
not)	across	them.	(http://www-
03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/ec31a38f42faf8c486257c27005f7a64/$FILE/WP102371%20-
%20New%20Functions%20in%20WAS%20zOS%20Maintenance%20Stream.pdf)

	

MODIFY	Commands

z/OS	supports	modify	commands	which	request	diagnostic	data	from	an	address	space:

Request	javacores	on	servants:

MODIFY	$CONTROLLER,JAVACORE

Request	stacks	on	servants:

MODIFY	$CONTROLLER,STACKTRACE

	

Console	Dump

Take	a	console	dump	from	the	operator	console	with	the	title	$X	of	the	address	space	with	ID	$Y,
responding	to	the	operator	console	identifier	$Z	returned	by	the	DUMP	command	(replace	X,	Y,	and	Z):

DUMP	COMM=($X)
R	$Z,ASID=$Y,CONT
R	$Z	SDATA=(PSA,CSA,LPA,LSQA,RGN,SQA,SUM,SWA,TRT,ALLNUC,GRSQ),END

	

Dispatch	Progress	Monitor	(DPM)

DPM	is	complementary	to	WAS	hung	thread	detection,	although	it	provides	many	more	z/OS-related	details:
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_monitor_dispatch_requests.html

Example	of	dynamically	enable	DPM	to	dump	stack	traces	to	the	joblogs	for	requests	taking	more	than	30

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/ec31a38f42faf8c486257c27005f7a64/$FILE/WP102371%20-%20New%20Functions%20in%20WAS%20zOS%20Maintenance%20Stream.pdf
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_monitor_dispatch_requests.html

seconds:

MODIFY	$JOB,DPM,HTTP=30
MODIFY	$JOB,DPM,HTTPS=30
MODIFY	$JOB,DPM,DUMP_ACTION=TRACEBACK

To	display	active	DPMs,	look	for	non-RESET	values:

MODIFY	$JOB,DISPLAY,DPM
BBOO0361I	DISPATCH	PROGRESS	MONITOR	(DPM)	SETTINGS:IIOP(RESET):HTTP(030):HTTPS(030):MDB(RESET):SIP(RESET):SIPS(RESET):OLA(RESET):CRA(RESET)	DUMP_ACTION(RESET)

Dynamically	disable	DPM:

MODIFY	$JOB,DPM,RESET_ALL

	

Acquire	console	dump	with	DPM

1.	 Set	DPM	trigger	after	X	elapsed	seconds	(replace	$addressspace	to	match):

	F	$addressspace,dpm,HTTP=X,HTTPS=X,dump_action=TRACEBACK

Change	the	protocol	if	the	work	comes	in	through	some	method	other	than	HTTP	such	as	MDB.	See
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_monitor_dispatch_requests.html

2.	 Configure	DPM	to	send	to	the	MVS	console	in	addition	to	joblog	(replace	$addressspace	to	match):

	F	$addressspace,msgroute,COPYCONSOLE=BBOJ0118I

3.	 Set	slip	trap	on	the	DPM	message	(note	that	the	column	in	the	message	ID	is	required).	Replace
$jobname	to	match	and	end	with	an	*	to	capture	controller	and	servants:

	SLIP	SET,MSGID=BBOJ0118I:,A=SVCD,JOBNAME=$jobname*,MATCHLIM=1,
	JOBLIST=($jobname),
	SDATA=(ALLNUC,CSA,GRSQ,LPA,LSQA,PSA,RGN,SQA,SUM,SWA,TRT),END

4.	 After	a	slip	is	triggered,	it	will	be	removed.

5.	 After	dumps	are	captured,	reset	COPYCONSOLE	(replace	$addressspace	to	match):

	F	$addressspace,msgroute,COPYCONSOLE,reset

6.	 Upload	console	dumps,	job	logs,	and	verbosegc*log	for	the	servants	from	HFS/ZFS

	

TCP	Packet	Trace

Capture	packet	trace	to/from	IP	10.20.30.1:30037

V	TCPIP,NCDTCP,PKT,ON,FULL,IP=10.20.30.1,PORTNUM=30037

			

WebSphere	Liberty
WebSphere	Liberty	Recipe

1.	 Review	the	Operating	System	recipe	for	your	OS.	The	highlights	are	to	ensure	CPU,	RAM,	network,

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_monitor_dispatch_requests.html

and	disk	are	not	consistently	saturated.
2.	 Review	the	Java	recipe	for	your	JVM.	The	highlights	are	to	tune	the	maximum	heap	size	(-Xmx),	the

maximum	nursery	size	(-Xmn)	and	enable	verbose	garbage	collection	and	review	its	output	with	the
GCMV	tool.

3.	 Liberty	has	a	single	thread	pool	where	most	application	work	occurs	and	this	pool	is	auto-tuned	based
on	throughput.	In	general,	it	is	not	recommended	to	tune	nor	specify	this	element;	however,	if	there	is	a
throughput	problem	or	there	are	physical	or	virtual	memory	constraints,	test	with	<executor
maxThreads="X"	/>.	If	an	explicit	value	is	better,	consider	opening	a	support	case	to	investigate	why
the	auto-tuning	is	not	optimal.

4.	 If	receiving	HTTP(S)	requests:
1.	 If	using	the	servlet	feature	less	than	version	4,	then	consider	explicitly	enabling	HTTP/2	with

protocolVersion="http/2".
2.	 For	HTTP/1.0	and	HTTP/1.1,	avoid	client	keepalive	socket	churn	by	setting

maxKeepAliveRequests="-1".	This	is	the	new	default	as	of	Liberty	21.0.0.6.
3.	 For	servers	with	incoming	LAN	HTTP	traffic	from	clients	using	persistent	TCP	connection

pools	with	keep	alive	(e.g.	a	reverse	proxy	like	IHS/httpd	or	web	service	client),	consider
increasing	persistTimeout	to	reduce	keepalive	socket	churn.

4.	 For	HTTP/1.0	and	HTTP/1.1,	minimize	the	number	of	application	responses	with	HTTP	codes
400,	402-417,	or	500-505	to	reduce	keepalive	socket	churn	or	use	HTTP/2.

5.	 If	using	HTTP	session	database	persistence,	tune	the	<httpSessionDatabase	/>	element.
6.	 If	possible,	configure	and	use	HTTP	response	caching.
7.	 If	using	TLS,	set	-DtimeoutValueInSSLClosingHandshake=1.
8.	 Consider	enabling	the	HTTP	NCSA	access	log	with	response	times	for	post-mortem	traffic

analysis.
9.	 If	there	is	available	CPU,	test	enabling	HTTP	response	compression.

10.	 If	the	applications	don't	use	resources	in	META-INF/resources	directories	of	embedded	JAR
files,	then	set	<webContainer	skipMetaInfResourcesProcessing="true"	/>.

11.	 Consider	reducing	each	HTTP	endpoint's	tcpOptions	maxOpenConnections	to	the	hundreds
range	to	avoid	excessive	request	queuing	under	stress	and	test	with	a	saturation	test.

5.	 If	using	databases	(JDBC):
1.	 Connection	pools	generally	should	not	be	consistently	saturated.	Tune	<connectionManager

maxPoolSize="X"	/>.
2.	 Consider	tuning	each	connectionManager's	numConnectionsPerThreadLocal	and	purgePolicy,

and	each	dataSource's	statementCacheSize	and	isolationLevel.
3.	 Consider	disabling	idle	and	aged	connection	timeouts	(and	tune	any	firewalls,	TCP	keep-alive,

and/or	database	connection	timeouts,	if	needed).
6.	 If	using	JMS	MDBs	without	a	message	ordering	requirement,	tune	activation	specifications'

maxConcurrency	to	control	the	maximum	concurrent	MDB	invocations	and	maxBatchSize	to	control
message	batch	delivery	size.

7.	 If	using	EJBs:
1.	 If	using	non-@Asynchronous	remote	EJB	interfaces	in	the	application	for	EJBs	available	within

the	same	JVM,	consider	using	local	interface	or	no-interface	equivalents	instead	to	avoid	extra
processing	and	thread	usage.

2.	 If	an	EJB	is	only	needed	to	be	accessed	locally	within	the	same	server,	then	use	local	interfaces
(pass-by-reference)	instead	of	remote	interfaces	(pass-by-value)	which	avoids	serialization.

8.	 If	using	security,	consider	tuning	the	authentication	cache	and	LDAP	sizes.
9.	 Use	the	minimal	feature	set	needed	to	run	your	application	to	reduce	startup	time	and	footprint.

10.	 Upgrade	to	the	latest	version	and	fixpack	as	there	is	a	history	of	making	performance	improvements
and	fixing	issues	or	regressions	over	time.

11.	 Consider	enabling	request	timing	which	will	print	a	warning	and	stack	trace	when	requests	exceed	a
time	threshold.

12.	 Review	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
13.	 Monitor,	at	minimum,	response	times,	number	of	requests,	thread	pools,	connection	pools,	and	CPU

and	Java	heap	usage	using	mpMetrics-2.3,	monitor-1.0,	JAX-RS	Distributed	Tracing,	and/or	a	third
party	monitoring	program.

14.	 Consider	enabling	event	logging	which	will	print	a	message	when	request	components	exceed	a	time
threshold.

15.	 Consider	running	with	a	sampling	profiler	such	as	Health	Center	or	Mission	Control	for	post-mortem

https://openliberty.io/docs/latest/reference/config/httpEndpoint.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_tun.html
https://www.ibm.com/docs/en/was-liberty/core?topic=configuration-httpendpoint#tcpOptions

troubleshooting.
16.	 Disable	automatic	configuration	and	application	update	checking	if	such	changes	are	unexpected.
17.	 If	the	application	writes	a	lot	to	messages.log,	consider	switching	to	binary	logging	for	improved

performance.
18.	 Review	the	performance	tuning	topics	in	the	OpenLiberty	and	WebSphere	Liberty	documentation.
19.	 If	running	on	z/OS:

1.	 Consider	enabling	SMF	120	records.
2.	 Consider	WLM	classification:	zosWlm-1.0
3.	 Enable	hardware	cryptography	for	Java	8,	Java	11,	or	Java	17

			

Documentation
OpenLiberty	is	an	open	source	Java	application	server.	WebSphere	Liberty	is	IBM's	commercial	extension	of
OpenLiberty.	Both	may	be	entitled	for	support.

For	feature	differences	between	editions,	find	the	latest	Quarterly	Webinar	by	searching	for	"Liberty
quarterly"	(without	double	quotes)	under	Search	Library	Entries ,	then	sort	by	Most	Recent,	click	the
link,	open	the	PDF,	and	search	for	"Periodic	Table	of	Liberty".

WebSphere	Liberty:

WebSphere	Liberty	Documentation
WebSphere	Liberty	Proof-of-Technology
WebSphere	Liberty	Releases

OpenLiberty:

OpenLiberty	Documentation
OpenLiberty	Source	code
Open	Liberty	Releases
Open	Liberty	Cheat	Sheet

			

Continuous	Delivery
If	you	have	longer-term	support	considerations,	consider	using	Liberty	releases	ending	in	.3,	.6,	.9	or	.12.

			

server.xml
Liberty	is	configured	through	a	server.xml:

WebSphere	Liberty	server.xml
OpenLiberty	server.xml

			

jvm.options
Generic	JVM	arguments	are	set	either	in	$LIBERTY/usr/servers/$SERVER/jvm.options	for	a	particular
JVM	or	in	$LIBERTY/etc/jvm.options	as	defaults	for	all	servers.

https://openliberty.io/docs/latest/performance-tuning.html
https://www.ibm.com/docs/en/was-liberty/nd?topic=tuning-liberty
https://www.ibm.com/docs/en/was-liberty/nd?topic=zos-enabling-workload-management-liberty
https://www.ibm.com/support/pages/node/6209109
https://www.ibm.com/support/pages/node/6840291
https://www.ibm.com/support/pages/node/6840291
https://openliberty.io/
https://www.ibm.com/cloud/websphere-liberty
https://www.ibm.com/cloud/websphere-liberty/pricing
https://community.ibm.com/community/user/wasdevops/communities/community-home/all-news?communitykey=5c4ba155-561a-4794-9883-bb0c6164e14e&tab=librarydocuments&LibraryFolderKey=&DefaultView=
https://www.ibm.com/docs/en/was-liberty/nd
https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/wasdev/pot/
https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/wasdev/downloads/wlp/
https://openliberty.io/docs/
https://github.com/OpenLiberty/open-liberty
https://public.dhe.ibm.com/ibmdl/export/pub/software/openliberty/runtime/release/
https://aguibert.github.io/openliberty-cheat-sheet/
https://www.ibm.com/support/pages/single-stream-continuous-delivery-sscd-software-support-lifecycle-policy-websphere-liberty
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_config.html
https://openliberty.io/docs/ref/config/
https://www.ibm.com/support/pages/node/476495

Put	each	option	on	its	own	line.	The	file	supports	commented	lines	that	start	with	#.

			

Verbose	Garbage	Collection

Consider	enabling	Java	verbose	garbage	collection	on	all	JVMs,	including	production.	This	will	help	with
performance	analysis,	OutOfMemoryErrors,	and	other	post-mortem	troubleshooting.	Benchmarks	show	an
overhead	of	less	than	1%	and	usually	less	than	0.5%.

OpenJ9	or	IBM	Java	-Xverbosegclog:

-Xverbosegclog:logs/verbosegc.%seq.log,20,50000

HotSpot	-Xloggc:
Java	>=	9:

-Xlog:safepoint=info,gc:file=logs/verbosegc.log:time,level,tags:filecount=5,filesize=20M

Java	8:

-Xloggc:logs/verbosegc.log
-XX:+UseGCLogFileRotation
-XX:NumberOfGCLogFiles=5
-XX:GCLogFileSize=20M
-XX:+PrintGCDateStamps
-XX:+PrintGCDetails

Monitor	for	high	pause	times	and	that	the	proportion	of	time	in	GC	pauses	is	less	than	~5-10%	using	the
GCMV	tool.

			

Logs	and	Trace
See	WebSphere	Liberty	Logging	Documentation	and	OpenLiberty	Logging	Documentation.

Always	provide	or	analyze	both	console.log	and	messages.log	as	they	may	have	different	sets	of
messages.	Ideally,	when	gathering	Liberty	server	logs,	gather	the	entire	logs	folder	under
$LIBERTY/usr/servers/$SERVER/logs,	as	well	as	the	server.xml	under	$LIBERTY/usr/servers/$SERVER/.

Liberty	uses	a	Java	retransformation	agent	to	supports	some	of	its	logging	capabilities.	On	IBM	Java	<	7.1,
the	mere	presence	of	a	retransformation	agent	will	cause	the	VM	to	double	the	amount	of	class	native
memory	used,	whether	any	individual	class	is	transformed	or	not.	On	IBM	Java	>=	7.1,	additional	memory	is
allocated	on-demand	only	for	the	classes	that	are	retransformed.

WAS	traditional	Cross-Component	Trace	(XCT)	and	Request	Metrics	are	not	available	in	Liberty.

			

messages.log

messages.log	includes	WAS	messages	equal	to	or	above	the	INFO	threshold	(non-configurable),
java.util.logging.Logger	messages	equal	to	or	above	traceSpecification	(default	*=info),
System.out,	and	System.err,	with	timestamps.

On	server	startup,	any	old	messages.log	is	first	rotated	(unless	the	bootstrap	property
com.ibm.ws.logging.newLogsOnStart=false	is	set).

To	specify	the	maximum	file	size	(in	MB)	and	maximum	number	of	historical	files:

https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_logging.html
https://openliberty.io/docs/latest/log-trace-configuration.html

<logging	maxFiles="X"	maxFileSize="Y"	/>

For	those	experienced	with	WAS	traditional,	messages.log	is	like	the	combination	of	SystemOut.log	and
SystemErr.log;	however,	unless	the	bootstrap	property	com.ibm.ws.logging.newLogsOnStart=false	is
set,	unlike	WAS	traditional,	Liberty	doesn't	append	to	the	existing	SystemOut.log	on	restart	by	default.

			

console.log

console.log	includes	native	stdout,	native	stderr,	WAS	messages	(except	trace)	equal	to	or	above	the
threshold	set	by	consoleLogLevel	(by	default,	AUDIT),	System.out	plus	System.err	(if
copySystemStreams	is	true,	which	it	is	by	default)	and	without	timestamps	(unless	consoleFormat	is
simple).	The	console.log	is	always	truncated	on	server	startup	when	using	$LIBERTY/bin/server	start
and	does	not	support	maximum	size	nor	rollover.

For	those	experienced	with	WAS	traditional,	by	default,	console.log	is	like	the	combination	of
native_stdout.log,	native_stderr.log,	and	SystemOut.log	and	SystemErr.log	messages	above	AUDIT
without	timestamps.

If	you	would	like	to	use	console.log	for	native	stdout	and	native	stderr	only	and	use	messages.log	for
everything	else	(note:	a	couple	of	AUDIT	messages	will	still	show	up	before	the	logging	configuration	is
read):

<logging	copySystemStreams="false"	consoleLogLevel="OFF"	/>

Starting	with	Liberty	20.0.0.5,	consoleFormat	supports	the	simple	value	that	adds	timestamps.	For	example:

$	docker	run	--rm	-e	"WLP_LOGGING_CONSOLE_FORMAT=simple"	-it	open-liberty:latest
Launching	defaultServer	(Open	Liberty	20.0.0.6/wlp-1.0.41.cl200620200528-0414)	on	Eclipse	OpenJ9	VM,	version	1.8.0_252-b09	(en_US)
[6/24/20	19:21:53:874	GMT]	00000001	com.ibm.ws.kernel.launch.internal.FrameworkManager											A	CWWKE0001I:	The	server	defaultServer	has	been	launched.

			

trace.log

Diagnostic	trace	is	enabled	with	traceSpecification.	For	example:

<logging	traceSpecification="*=info"	maxFileSize="250"	maxFiles="4"	/>

For	a	more	compact	format,	add	traceFormat="BASIC".

If	trace	is	enabled,	trace.log	includes	WAS	messages,	java.util.logging.Logger	messages,	WAS
diagnostic	trace,	System.out,	and	System.err,	with	timestamps.

Sending	trace	to	native	stdout:

<logging	traceSpecification="*=info"	traceFileName="stdout"	maxFileSize="0"	traceFormat="BASIC"	/>

			

Request	Timing

Consider	enabling	and	tuning	request	timing	which	will	print	a	warning	and	stack	trace	when	requests	exceed
a	time	threshold.	Even	in	the	case	that	you	use	a	monitoring	product	to	perform	slow	request	detection,	the
built-in	Liberty	detection	is	still	valuable	for	easy	searching,	alerting,	and	providing	diagnostics	to	IBM
support	cases.

The	slowRequestThreshold	(designated	X	below)	is	the	main	configuration	and	it	should	be	set	to	your
maximum	expected	application	response	time	in	seconds,	based	on	business	requirements	and	historical

https://github.com/OpenLiberty/open-liberty/issues/9606
https://openliberty.io/docs/ref/general/#logging.html
https://openliberty.io/docs/ref/config/#logging.html
https://www.ibm.com/support/pages/node/476701
https://www.ibm.com/docs/en/was-liberty/core?topic=liberty-slow-hung-request-detection

analysis.	Make	sure	to	include	the	s	after	the	value	to	specify	seconds.

The	hungRequestThreshold	is	an	optional	configuration	that	works	similar	to	slowRequestThreshold,	but
if	it	is	exceeded,	Liberty	will	produce	three	thread	dumps,	one	minute	apart,	starting	after	a	request	exceeds
this	duration.

Performance	test	the	overhead	and	adjust	the	thresholds	and	sampleRate	as	needed	to	achieve	acceptable
overhead.

<featureManager><feature>requestTiming-1.0</feature></featureManager>
<requestTiming	slowRequestThreshold="Xs"	hungRequestThreshold="600s"	sampleRate="1"	/>

Some	benchmarks	have	shown	that	requestTiming	has	an	overhead	of	about	3-4%	when	using	a
sampleRate	of	1:

The	requestTiming-1.0	feature,	when	activated,	has	been	shown	to	have	a	4%	adverse	effect	on
the	maximum	possible	application	throughput	when	measured	with	the	DayTrader	application.
While	the	effect	on	your	application	might	be	more	or	less	than	that,	you	should	be	aware	that
some	performance	degradation	might	be	noticeable.

As	of	this	writing,	requestTiming	does	not	track	asynchronous	servlet	request	runnables	though	a	feature
request	is	opened.

Example	output:

[10/1/20	13:21:42:235	UTC]	000000df	com.ibm.ws.request.timing.manager.SlowRequestManager									W	TRAS0112W:	Request	AAAAqqZnfKN_AAAAAAAAAAB	has
been	running	on	thread	000000c2	for	at	least	5000.936ms.	The	following	stack	trace	shows	what	this	thread	is	currently	running.
										at	java.lang.Thread.sleep(Native	Method)	[...]

				The	following	table	shows	the	events	that	have	run	during	this	request.
				Duration					Operation
				5003.810ms	+	websphere.servlet.service	|	pd	|	com.ibm.pd.Sleep?durationms=10000

			

Event	Logging

Consider	enabling	and	tuning	event	logging	to	log	excessively	long	component	times	of	application	work.
This	is	slightly	different	than	request	timing.	Consider	the	following	case:	You've	set	the	requestTiming
threshold	to	10	seconds	which	will	print	a	tree	of	events	for	any	request	taking	more	than	10	seconds.
However,	what	if	a	request	occurs	which	has	three	database	queries	of	1	second,	2	seconds,	and	6	seconds.	In
this	case,	the	total	response	time	is	9	seconds,	but	the	one	query	that	took	6	seconds	is	presumably
concerning,	so	event	logging	can	granularly	monitor	for	such	events.

<featureManager>
		<feature>eventLogging-1.0</feature>
</featureManager>
<eventLogging	includeTypes="websphere.servlet.service"	minDuration="500ms"	logMode="exit"	sampleRate="1"	/>

Example	output:

[10/1/15	14:10:57:962	UTC]	00000053	EventLogging	I	END	requestID=AAABqGA0rs2_AAAAAAAAAAA	#	eventType=websphere.servlet.service	#	contextInfo=pd
|	com.ibm.pd.Sleep?durationms=10000	#	duration=10008.947ms

			

Binary	Logging

Consider	using	Binary	Logging.	In	benchmarks,	binaryLogging	reduced	the	overhead	of	logs	and	trace	by
about	50%.	Note	that	binary	logging	does	not	use	less	disk	space	and	in	fact	will	use	more	disk	space;	the
performance	improvements	occur	for	other	reasons.

https://www.ibm.com/docs/en/was-liberty/nd?topic=configuration-requesttiming
https://www.ibm.com/docs/en/was-liberty/base?topic=liberty-slow-hung-request-detection
https://cloud-platform.ideas.ibm.com/ideas/LIBERTY-I-120
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_eventlogging.html
https://www.ibm.com/docs/en/was-liberty/core?topic=environment-binary-logging

Add	the	following	additional	lines	to	bootstrap.properties	for	the	server	(if	no	such	file	exists,	create	the
file	in	the	same	directory	as	server.xml):

websphere.log.provider=binaryLogging-1.0
com.ibm.hpel.log.purgeMaxSize=100
com.ibm.hpel.log.outOfSpaceAction=PurgeOld
com.ibm.hpel.trace.purgeMaxSize=2048
com.ibm.hpel.trace.outOfSpaceAction=PurgeOld

			

Thread	Pools
Most	application	work	in	Liberty	occurs	in	a	single	thread	pool	named	"Default	Executor"	(by	default).	The
<executor	/>	element	in	server.xml	may	be	used	to	configure	this	pool;	however,	unless	there	are	observed
problems	with	throughput,	it	is	generally	not	recommended	to	tune	nor	even	specify	this	element.	If
maxThreads	is	not	configured,	Liberty	dynamically	adjusts	the	thread	pool	size	between	coreThreads	and
maxThreads	based	on	observed	throughput:

In	most	environments,	configurations,	and	workloads,	the	Open	Liberty	thread	pool	does	not
require	manual	configuration	or	tuning.	The	thread	pool	self-tunes	to	determine	how	many
threads	are	needed	to	provide	optimal	server	throughput.	[...]	However,	in	some	situations,
setting	the	coreThreads	or	maxThreads	attributes	might	be	necessary.	The	following	sections
describe	these	attributes	and	provide	examples	of	conditions	under	which	they	might	need	to	be
manually	tuned.

coreThreads:	This	attribute	specifies	the	minimum	number	of	threads	in	the	pool.	[...]
maxThreads:	This	attribute	specifies	the	maximum	number	of	threads	in	the	pool.	The
default	value	is	-1,	which	is	equal	to	MAX_INT,	or	effectively	unlimited.

If	there	is	a	throughput	problem,	test	with	a	maximum	number	of	threads	equal	to	$cpus	*	2.	If	this	or
another	explicit	value	is	better,	consider	opening	a	support	case	to	investigate	why	the	auto-tuning	is	not
optimal.	For	example:

<executor	maxThreads="64"	/>

Diagnostic	trace	to	investigate	potential	executor	issues:
com.ibm.ws.threading.internal.ThreadPoolController=all

As	of	this	writing,	the	default	value	of	coreThreads	is	$cpus	*	2.

Additional	details:

https://openliberty.io/blog/2019/04/03/liberty-threadpool-autotuning.html

			

HTTP
If	the	applications	don't	use	resources	in	META-INF/resources	directories	of	embedded	JAR	files,	then	set
<webContainer	skipMetaInfResourcesProcessing="true"	/>.

Liberty	(starting	in	18.0.0.2)	uses	DirectByteBuffers	for	HTTP	reading	and	writing	just	like	WAS	traditional;
however,	there	is	only	a	global	pool	rather	than	ThreadLocal	pools,	and	the	DBB	sizes	and	bucket	sizes	may
be	configured	with,	for	example:

<bytebuffer	poolSizes="32,1024,8192,16384,24576,32768,49152,65536"	poolDepths="100,100,100,20,20,20,20,20"	/>

			

https://www.ibm.com/docs/en/was-liberty/core?topic=manually-configuring-binary-logging-in-liberty
https://openliberty.io/docs/latest/thread-pool-tuning.html
https://github.com/OpenLiberty/open-liberty/blob/gm-20.0.0.9/dev/com.ibm.ws.threading/src/com/ibm/ws/threading/internal/ExecutorServiceImpl.java#L200
https://openliberty.io/blog/2019/04/03/liberty-threadpool-autotuning.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_tun.html

Keep	Alive	Connections

Max	requests	per	connection

By	default,	for	Liberty	<	21.0.0.6,	for	HTTP/1.0	and	HTTP/1.1	(but	not	HTTP/2.0),	Liberty	closes	an
incoming	HTTP	keep	alive	connection	after	100	requests	(see	maxKeepAliveRequests).	This	may	cause	a
significant	throughput	impact,	particularly	with	TLS	(in	one	benchmark,	~100%).	To	disable	such	closure	of
sockets,	set	maxKeepAliveRequests="-1":

<httpOptions	maxKeepAliveRequests="-1"	/>

This	is	the	default	as	of	Liberty	21.0.0.6.

			

Idle	timeouts

In	general,	for	servers	with	incoming	LAN	network	traffic	from	clients	using	persistent	TCP	connection	pools
(e.g.	a	reverse	proxy	like	IHS/httpd	or	web	service	client),	increase	the	idle	timeout	(see	persistTimeout)	to
avoid	connections	getting	kicked	out	of	the	client	connection	pool.	Try	values	less	than	575	hours.	For
example:

<httpOptions	persistTimeout="575h"	/>

			

Error	codes	closing	keep-alive	connections

If	an	HTTP	response	returns	what's	internally	considered	an	"error	code"	(HTTP	400,	402-417,	or	500-505;
any	StatusCodes	instance	with	the	third	parameter	set	to	true);	then,	after	the	response	completes,	if	the
socket	is	a	keep-alive	socket,	it	will	be	closed.	This	may	impact	throughput	if	an	application	is,	for	example,
creating	a	lot	of	HTTP	500	error	responses	and	thus	any	servers	with	incoming	LAN	network	traffic	from
clients	using	persistent	TCP	connection	pools	(e.g.	a	reverse	proxy	like	IHS/httpd	or	web	service	client)	will
have	to	churn	through	more	sockets	than	otherwise	(particularly	impactful	for	TLS	handshakes).	As	an
alternative	to	minimizing	such	responses,	test	using	HTTP/2	instead.

			

HTTP	Access	Logs

HTTP	access	logging	with	response	times	may	be	used	to	track	the	number	and	response	times	of	HTTP(S)
requests	in	an	NCSA	format	using	%D	(in	microseconds).	The	example	also	uses	%{R}W	which	is	the	time
until	the	first	set	of	bytes	is	sent	in	response	(in	microseconds)	which	is	often	a	good	approximation	for
application	response	time	(as	compared	to	%D	which	is	end-to-end	response	time	including	client	and
network).

For	example:

<httpEndpoint	httpPort="9080"	httpsPort="9443">
		<accessLogging	filepath="${server.output.dir}/logs/http_access.log"	maxFileSize="100"	maxFiles="4"	logFormat="%h	%u	%t	"%r"	%s	%b	%D	%{R}W"	/>
</httpEndpoint>

Starting	with	Liberty	21.0.0.11,	the	%{remote}p	option	is	available	to	print	the	ephemeral	local	port	of	the
client	which	may	be	used	to	correlate	to	network	trace:

<httpEndpoint	httpPort="9080"	httpsPort="9443">
		<accessLogging	filepath="${server.output.dir}/logs/http_access.log"	maxFileSize="100"	maxFiles="4"	logFormat="%h	%u	%t	"%r"	%s	%b	%D	%{R}W	%{remote}p	%p"	/>
</httpEndpoint>

https://openliberty.io/docs/latest/reference/config/httpOptions.html
https://openliberty.io/docs/latest/reference/config/httpOptions.html
https://github.com/OpenLiberty/open-liberty/issues/17040
https://openliberty.io/docs/latest/reference/config/httpOptions.html
https://github.com/OpenLiberty/open-liberty/blob/gm-21.0.0.3/dev/com.ibm.ws.transport.http/src/com/ibm/wsspi/http/channel/values/StatusCodes.java
https://github.com/OpenLiberty/open-liberty/blob/gm-21.0.0.3/dev/com.ibm.ws.transport.http/src/com/ibm/ws/http/channel/internal/inbound/HttpInboundServiceContextImpl.java#L193
https://openliberty.io/docs/latest/access-logging.html
https://github.com/OpenLiberty/open-liberty/issues/18132

If	you	are	on	older	versions	of	Liberty,	ensure	you	have	APARs	PI20149	and	PI34161.

See	also:

Outputting	to	JSON

			

HTTP	Sessions

By	default,	Liberty	sets	allowOverflow="true"	for	HTTP	sessions,	which	means	that
maxInMemorySessionCount	is	not	considered	and	HTTP	sessions	are	unbounded	which	may	cause
OutOfMemoryErrors	in	the	default	configuration	without	session	persistence.	If	allowOverflow	is	disabled,
maxInMemorySessionCount	should	be	sized	taking	into	account	the	maximum	heap	size,	the	average	HTTP
session	timeout,	and	the	average	HTTP	session	heap	usage.

			

HTTP	Session	Database	Persistence

If	using	HTTP	session	database	persistence,	configure	the	<httpSessionDatabase	/>	element	along	the
lines	of	WAS	traditional	tuning	guidelines.

If	using	time-based	writes,	the	writeInterval	is	the	amount	of	time	to	wait	before	writing	pending	session
updates.	Note	that	there	is	a	separate	timer	which	controls	the	period	at	which	a	thread	checks	for	any
updates	exceeding	the	writeInterval	threshold.	If	the	writeInterval	is	less	than	10	seconds,	then	the	timer	is
set	to	the	value	of	the	writeInterval;	otherwise,	the	timer	is	set	to	a	fixed	10	seconds,	which	means	that	writes
may	occur	up	to	10	seconds	after	the	writeInterval	threshold	has	passed.

			

HTTP	Response	Compression

Starting	with	Liberty	20.0.0.4,	HTTP	responses	may	be	automatically	compressed	(gzip,	x-gzip,	deflate,	zlib
or	identity)	with	the	httpEndpoint	compression	element.	For	example,	without	additional	options,	the
element	compresses	text/*	and	application/javascript	response	MIME	types:

<httpEndpoint	httpPort="9080"	httpsPort="9443">
		<compression	/>
</httpEndpoint>

This	will	reduce	response	body	size	but	it	will	increase	CPU	usage.

			

Web	Response	Cache

The	Web	Response	Cache	configures	HTTP	response	caching	using	the	distributedMap.	Example:

<featureManager>
		<feature>webCache-1.0</feature>
</featureManager>

<distributedMap	id="baseCache"	memorySizeInEntries="2000"	/>

The	configuration	is	specified	in	a	cachespec.xml	in	the	application.	For	details,	see	ConfigManager	and	the
WAS	traditional	discussion	of	cachespec.xml.	The	response	cache	uses	the	baseCache.

			

https://openliberty.io/blog/2020/12/10/custom-access-logs.html
https://openliberty.io/docs/ref/config/#httpSession.html
https://openliberty.io/docs/latest/reference/config/httpSessionDatabase.html
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/uprs_rtuning_parameters.html
https://github.com/OpenLiberty/open-liberty/blob/release-19.0.0.9/dev/com.ibm.ws.session/src/com/ibm/ws/session/SessionContext.java#L352
https://openliberty.io/blog/2020/04/22/http-response-compression.html
https://openliberty.io/docs/ref/config/#httpEndpoint.html
https://openliberty.io/docs/latest/reference/feature/webCache-1.0.html
ftp://ftp.www.ibm.com/software/iea/content/com.ibm.iea.was_v8/was/8.5.5.0/content/WAS855_LibertyDynacache.pdf
https://openliberty.io/docs/latest/reference/config/distributedMap.html
https://github.com/OpenLiberty/open-liberty/blob/master/dev/com.ibm.ws.dynacache.web/resources/schemas/cachespec.xsd
https://github.com/OpenLiberty/open-liberty/blob/master/dev/com.ibm.ws.dynacache.web/src/com/ibm/ws/cache/web/config/ConfigManager.java
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rdyn_cachespec.html
https://github.com/OpenLiberty/open-liberty/blob/master/dev/com.ibm.ws.dynacache/src/com/ibm/ws/cache/DCacheBase.java

HTTP/2

Large	request	bodies

If	an	HTTP/2	client	is	sending	large	request	bodies	(e.g.	file	uploads),	then	consider	testing	additional	tuning
in	httpOptions	under	httpEndpoint	available	since	23.0.0.4:

limitWindowUpdateFrames:	"Specifies	whether	the	server	waits	until	half	of	the	HTTP/2	connection-
level	and	stream-level	windows	are	exhausted	before	it	sends	WINDOW_UPDATE	frames."
settingsInitialWindowSize:	"Specifies	the	initial	window	size	in	octets	for	HTTP/2	stream-level
flow	control."
connectionWindowSize:	"Specifies	the	window	size	in	octets	for	HTTP/2	connection-level	flow
control."

			

Monitoring
Consider	enabling,	gathering,	and	analyzing	WAS	statistics	on,	at	least,	thread	pools,	connection	pools,
number	of	requests,	average	response	time,	and	CPU	and	Java	heap	usage.	This	is	useful	for	performance
analysis	and	troubleshooting.	The	following	options	are	not	mutually	exclusive:

mpMetrics:	Expose	statistics	through	a	REST	endpoint:
1.	 Enable	mpMetrics.	For	example:

<featureManager>
		<feature>mpMetrics-4.0</feature>
</featureManager>

2.	 Gather	the	data	through	the	/metrics	REST	endpoint	through	Prometheus	or	direct	requests.
monitor-1.0:	Expose	statistics	through	Java	MXBeans:

1.	 Enable	monitor-1.0:

<featureManager>
		<feature>monitor-1.0</feature>
</featureManager>

2.	 Enable	JMX	access	through	localConnector-1.0	and/or	restConnector-2.0
3.	 Gather	the	data	through	monitoring	products,	JConsole,	or	a	Java	client	(example:	libertymon).
4.	 Key	MXBeans	are	ThreadPoolStats,	JvmStats,	ServletStats,	SessionStats,	and	ConnectionPool.

If	all	MXBeans	are	enabled	(as	they	are	by	default	if	monitor-1.0	is	configured),	benchmarks
show	about	a	4%	overhead.	This	may	be	reduced	by	limiting	the	enabled	MXBeans;	for
example:

<monitor	filter="ThreadPoolStats,ServletStats,ConnectionPool,..."	/>

JAX-RS	Distributed	Tracing	for	applications	with	JAX-RS	web	services:
1.	 Enable	mpOpenTracing-1.3:

<featureManager>
		<feature>mpOpenTracing-1.3</feature>
</featureManager>

2.	 Connect	to	Jaeger	(easier	because	no	user	feature	is	required)	or	Zipkin.

			

mpMetrics

When	mpMetrics-x.x	(or	the	convenience	microProfile-x.x	feature)	is	enabled,	the	monitor-1.0	feature
is	implicitly	enabled	to	provide	vendor	metrics	that	include	metrics	for	thread	pools,	connection	pools,	web

https://openliberty.io/docs/latest/reference/config/httpEndpoint.html
https://github.com/OpenLiberty/open-liberty/commit/27f1ca33068a73865c636ac2fdff1f4ed8f791eb
https://openliberty.io/docs/latest/reference/feature/mpMetrics.html
https://openliberty.io/docs/latest/metrics-list.html
https://www.ibm.com/docs/en/was-liberty/core?topic=environment-monitoring-monitor-10
https://www.ibm.com/docs/en/was-liberty/core?topic=jmx-configuring-local-connection-liberty
https://www.ibm.com/docs/en/was-liberty/core?topic=jmx-configuring-secure-connection-liberty
https://www.ibm.com/docs/en/was-liberty/core?topic=liberty-developing-jmx-java-client
https://github.com/kgibm/libertymon
https://www.ibm.com/docs/en/was-liberty/nd?topic=environment-monitoring-monitor-10
https://www.ibm.com/support/knowledgecenter/en/SSD28V_liberty/com.ibm.websphere.wlp.core.doc/ae/twlp_dist_tracing.html
https://www.ibm.com/support/knowledgecenter/en/SSD28V_liberty/com.ibm.websphere.wlp.core.doc/ae/twlp_dist_mptracing.html
https://www.openliberty.io/blog/2019/12/06/microprofile-32-health-metrics-190012.html#jmo
https://github.com/eclipse/microprofile-metrics/blob/master/spec/src/main/asciidoc/architecture.adoc#vendor-specific-metrics
https://www.ibm.com/docs/en/was-liberty/nd?topic=metrics-microprofile-11-vendor

applications,	HTTP	sessions,	and	JAX-WS.	This	adds	a	small	performance	overhead	(especially	the	thread
pool	metrics).	If	only	a	subset	of	these	metrics	are	needed,	reduce	the	overhead	by	adding	a	filter	that
explicitly	configures	the	available	metrics:

Only	JAX-RS:

<monitor	filter="REST"	/>

Only	some	subset	of	the	vendor	metrics	(pick	and	choose	from	the	following	list):

<monitor	filter="JVM,ThreadPool,WebContainer,Session,ConnectionPool,REST"	/>

No	JAX-RS	nor	vendor	metrics	and	instead	only	base	and	application	metrics:

<monitor	filter="	"/>	<!--	space	required	-->

			

Centralized	Logging
Consider	sending	log	data	to	a	central	service	such	as	Elastic	Stack.	This	is	useful	for	searching	many	logs	at
once.

			

Java	Database	Connectivity	(JDBC)
Review	common	JDBC	tuning,	in	particular:

maxPoolSize:	The	maximum	connections	to	the	DB	for	this	pool.
statementCacheSize:	Maximum	number	of	cached	prepared	statements	per	connection.
purgePolicy:	Whether	to	purge	all	connections	when	one	connection	has	a	fatal	errors.	Defaults	to
EntirePool.	Consider	FailingConnectionOnly.
numConnectionsPerThreadLocal:	Cache	DB	connections	in	ThreadLocals	on	the	DefaultExecutor
pool.	Consider	testing	with	an	explicit	maxThreads	size	for	the	pool.
isolationLevel:	If	application	semantics	allow	it,	consider	reducing	the	isolationLevel.

			

Connection	pool	idle	and	aged	timeouts

For	maximum	performance,	connections	in	the	pool	should	not	time	out	due	to	the	idle	timeout
(maxIdleTime)	nor	the	aged	timeout	(agedTimeout).	To	accomplish	this,	modify	connectionManager
configuration:

1.	 Set	minPoolSize	to	the	same	value	as	maxPoolSize	or	set	maxIdleTime="-1",	and
2.	 Ensure	agedTimeout	is	not	specified	or	is	set	to	-1,	and
3.	 Ensure	any	intermediate	firewalls	to	the	database	do	not	have	idle	or	age	timeouts	or	configure	client

operating	system	TCP	keep-alive	timeouts	to	below	these	values,	and
4.	 Ensure	the	database	does	not	have	idle	or	age	timeout.

For	example:

<connectionManager	minPoolSize="50"	maxPoolSize="50"	reapTime="-1"	/>

The	reason	to	do	this	is	that	connection	creation	and	destruction	may	be	expensive	(e.g.	TLS,	authentication,
etc.).	Besides	increased	latency,	in	some	cases,	this	expense	may	cause	a	performance	tailspin	in	the	database
that	may	make	response	time	spikes	worse;	for	example,	something	causes	an	initial	database	response	time
spike,	incoming	load	in	the	clients	continues	apace,	the	clients	create	new	connections,	and	the	process	of

https://github.com/eclipse/microprofile-metrics/blob/master/spec/src/main/asciidoc/architecture.adoc#scopes
https://www.ibm.com/support/knowledgecenter/en/SSD28V_liberty/com.ibm.websphere.wlp.core.doc/ae/twlp_elk_stack.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_tun.html
https://www.ibm.com/docs/en/was-liberty/nd?topic=configuration-connectionmanager
https://www.ibm.com/docs/en/was-liberty/nd?topic=configuration-connectionmanager
https://www.ibm.com/docs/en/was-liberty/nd?topic=configuration-connectionmanager
https://www.ibm.com/docs/en/was-liberty/nd?topic=configuration-connectionmanager

creating	new	connections	causes	the	database	to	slow	down	more	than	it	otherwise	would,	causing	further
backups,	etc.

The	main	potential	drawback	of	this	approach	is	that	if	there	is	a	firewall	between	the	connection	pool	and
the	database,	and	the	firewall	has	an	idle	or	age	timeout,	then	the	connection	may	be	destroyed	and	cause	a
stale	connection	exception	the	next	time	it's	used.	This	may	fail	the	request	and	purge	the	entire	connection
pool	if	purgePolicy="EntirePool".	The	main	ways	to	avoid	this	are	either	to	configure	the	firewall	idle	or
age	timeouts	similar	to	above,	or	tune	the	TCP	keepalive	settings	in	the	client	or	database	operating	systems
below	the	timeouts.

Similarly,	some	databases	may	have	their	own	idle	or	age	timeouts.	The	database	should	be	tuned	similarly.
For	example,	IBM	DB2	does	not	have	such	connection	timeouts	by	default.

Some	people	use	connection	pool	usage	as	a	proxy	of	database	response	time	spikes.	Instead,	monitor
database	response	times	in	the	database	or	using	Liberty's	ConnectionPool	MXBean	and	its	InUseTime
statistic.

			

Admin	Center
The	Admin	Center	is	commonly	put	on	port	9443,	for	example	https://localhost:9443/adminCenter/

<featureManager>
		<feature>adminCenter-1.0</feature>
</featureManager>
<quickStartSecurity	userName="wsadmin"	userPassword="wsadmin"	/>

				

Sampling	Profiler

https://www.ibm.com/docs/en/was-liberty/core?topic=10-connectionpool-monitoring
https://localhost:9443/adminCenter/

Consider	enabling	a	sampling	profiler,	even	in	production.	This	does	have	a	cost	but	provides	very	rich
troubleshooting	data	on	what	Java	code	used	most	of	the	CPU,	what	monitors	were	contended,	and	periodic
thread	information.	Benchmarks	for	Health	Center	showed	an	overhead	of	<2%.	Gauge	the	overhead	in	a
performance	test	environment.

OpenJ9	or	IBM	Java:
1.	 Add	the	following	to	jvm.options	and	restart:

-Xhealthcenter:level=headless

2.	 After	each	time	the	JVM	gracefully	stops,	a	healthcenter*.hcd	file	is	produced	in	the	current
working	directory	(e.g.	$LIBERTY/usr/servers/$SERVER/).

HotSpot	Mission	Control:
1.	 Add	the	following	to	jvm.options	and	restart:

-XX:+FlightRecorder
-XX:StartFlightRecording=filename=jmcrecording.jfr,settings=profile

2.	 After	each	time	the	JVM	gracefully	stops,	a	*.jfr	file	is	produced	in	the	current	working
directory	(e.g.	$LIBERTY/usr/servers/$SERVER/).

			

Start-up
If	a	cdi	feature	is	used	(check	the	CWWKF0012I	message)	and	the	applications	don't	have	CDI	annotations	in
embedded	archives,	disable	such	scanning	to	improve	startup	times	with	<cdi12
enableImplicitBeanArchives="false"/>.

			

Jandex

Consider	creating	Jandex	index	files	to	pre-compute	class	and	annotation	data	for	application	archives.

			

Startup	Timeout	Warning

Liberty	profile	has	a	fixed	timeout	of	30	seconds	for	applications	to	start.	After	the	30	second
timeout	expires	two	things	happen:	a	message	is	output	to	the	logs	saying	the	application	didn't
start	quickly	enough;	during	server	startup	the	server	will	stop	waiting	for	the	application	to
start	and	claim	to	be	started,	even	though	the	application	is	not	yet	ready.

To	set	this	value	to	(for	example)	one	minute	add	the	following	to	server.xml:

<applicationManager	startTimeout="1m"/>

https://www-01.ibm.com/support/docview.wss?uid=swg1PI51375

			

Startup	order

Starting	with	Liberty	20.0.0.6,	the	application	element	has	an	optional	startAfter	attribute	that	allows
controlling	the	order	of	application	startup.	Example:

<application	id="APP1"	location="APP1.war"/>
<webApplication	id="APP2"	location="APP2.war"	startAfterRef="APP1"/>

https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_tun.html
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_improve_app_start.html
https://www-01.ibm.com/support/docview.wss?uid=swg1PI51375
https://github.com/OpenLiberty/open-liberty/issues/7331
https://openliberty.io/docs/ref/config/#application.html

<enterpriseApplication	id="APP3"	location="APP3.ear"/>
<application	id="APP4"	location="APP4.ear"	startAfterRef="APP2,	APP3"/>

			

OSGi	Feature	Startup	Times

Edit	wlp/usr/servers/<serverName>/bootstrap.properties:

osgi.debug=

Edit	wlp/usr/servers/<serverName>/.options:

org.eclipse.osgi/debug/bundleStartTime=true
org.eclipse.osgi/debug/startlevel=true

Example	output:

10	ms	for	total	start	time	event	STARTED	-	osgi.identity;	type="osgi.bundle";	version:Version="1.3.42.202006040801";	osgi.identity="com.ibm.ws.kernel.service"	[id=5]
13	ms	for	total	start	time	event	STARTED	-	osgi.identity;	type="osgi.bundle";	version:Version="1.0.42.202006040801";	osgi.identity="com.ibm.ws.org.eclipse.equinox.metatype"	[id=6]

The	bundles	have	some	dependencies	so	there	are	a	series	of	start-levels	to	support	the	necessary	sequencing,
but	all	bundles	within	a	given	start-level	are	started	in	parallel,	not	feature-by-feature.	You	may	disable
parallel	activation	to	get	more	accurate	times	but	then	you	have	to	figure	out	all	the	bundles	the	feature
enables.

			

Idle	CPU
Idle	CPU	usage	may	be	decreased	if	dynamic	configuration	and	application	updates	are	not	required:

<applicationMonitor	dropinsEnabled="false"	updateTrigger="disabled"/>
<config	updateTrigger="disabled"/>

Alternatively,	you	may	still	support	dynamic	updates	through	MBean	triggers	that	has	lower	overhead	than
the	default	polling:

<applicationMonitor	updateTrigger="mbean"	pollingRate="999h"	/>
<config	updateTrigger="mbean"	monitorInterval="999h"	/>

When	the	MBean	is	triggered,	the	update	occurs	immediately	(i.e.	the	 pollingRate	and	monitorInterval
values	can	be	set	as	high	as	you	like).

			

Authentication	Cache
If	using	security	and	the	application	allows	it,	consider	increasing	the	 authentication	cache	timeout	from	the
default	of	10	minutes	to	a	larger	value	using,	for	example,	<authCache	timeout="30m"	/>.

If	using	security	and	the	authentication	cache	is	becoming	full,	consider	increasing	the	 authentication	cache
maxSize	from	the	default	of	25000	to	a	larger	value	using,	for	example,	<authCache	maxSize="100000"	/>.

			

LDAP
If	using	LDAP,	consider	increasing	various	cache	values	in	<attributesCache	/>,	<searchResultsCache

https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_tun.html
https://www.ibm.com/docs/en/was-liberty/nd?topic=liberty-tuning-secure-applications
https://www.ibm.com/docs/en/was-liberty/core?topic=liberty-configuring-authentication-cache-in
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_tun_fedldap.html
https://openliberty.io/docs/latest/reference/config/ldapRegistry.html

/>,	and	<contextPool	/>	elements.	For	example:

<ldapRegistry	[...]>
		<ldapCache>
				<attributesCache	size="4000"	sizeLimit="4000"	timeout="2400s"	/>
				<searchResultsCache	resultsSizeLimit="4000"	size="4000"	timeout="2400s"	/>
		</ldapCache>
		<contextPool	preferredSize="6"	/>
</ldapRegistry>

			

Web	Services

JAX-RS

JAX-RS	Client

The	JAX-RS	2.0	and	2.1	clients	are	built	on	top	of	Apache	CXF.	The	JAX-RS	3.0	and	above	clients	are	built
on	top	of	RESTEasy.	Upgrading	to	JAX-RS	3.0	and	above	may	require	some	application	changes.

For	applications,	it	is	best	to	re-use	anything	that	you	can.	For	example,	you	should	try	to	re-use	Client
instances	if	you	are	invoking	multiple	different	endpoints	(although	other	implementations	may	not	be,	the
Client	implementation	in	Liberty	is	thread	safe).	If	you	are	invoking	the	same	endpoint,	but	possibly	with
different	parameters,	then	you	should	re-use	the	WebTarget.	If	you	are	invoking	the	same	request	(same
parameters,	cookies,	message	body,	etc.),	then	you	can	re-use	the	Invocation.Builder.	Re-using	as	much
as	possible	prevents	waste	and	also	improves	performance	as	you	are	no	longer	creating	new	clients,	targets,
etc.	Make	sure	to	close	Response	objects	after	using	them.

			

Connection	and	Read	Timeouts

Timeouts	may	be	specified	via	the	com.ibm.ws.jaxrs.client.connection.timeout	and
com.ibm.ws.jaxrs.client.receive.timeout	properties	in	JAX-RS	2.0,	via	the	connectTimeout()	and
readTimeout()	methods	in	JAX-RS	2.1,	or	via	server.xml	using	the	webTarget	element	and	setting	the
connectionTimeout	and/or	receiveTimeout	attributes.

			

Keep-Alive	Connection	Pools

The	JAX-RS	V2	client	in	synchronous	mode	uses	connection	pooling	through	the	JDK's
HttpURLConnection.	In	particular,	this	means	that	if	the	server	does	not	respond	with	a	Keep-Alive
response	header,	then	the	connection	will	time-out	after	5	seconds	(which	is	tunable	in	recent	versions	of
Java).

The	JAX-RS	V2	client	in	asynchronous	mode	uses	connection	pooling	through	Apache	HttpClient.	This
HttpClient	may	be	tuned	with	client.setProperty	or	property	calls	such	as
org.apache.cxf.transport.http.async.MAX_CONNECTIONS,
org.apache.cxf.transport.http.async.MAX_PER_HOST_CONNECTIONS,
org.apache.cxf.transport.http.async.CONNECTION_TTL,	and
org.apache.cxf.transport.http.async.CONNECTION_MAX_IDLE,	although	these	have	high	default	values.

It	may	be	possible	(although	potentially	unsupported)	to	switch	from	a	JAX-RS	V2	synchronous	client	into
an	asynchronous	client	with	a	client.setProperty	or	property	call	with	use.async.http.conduit=true.

			

https://openliberty.io/docs/latest/reference/feature/jaxrsClient-2.1.html
https://openliberty.io/docs/latest/reference/feature/restfulWSClient-3.0.html
https://www.openliberty.io/docs/latest/reference/jaxrs-dif.html
https://openliberty.io/blog/2019/01/24/async-rest-jaxrs-microprofile.html
https://cxf.apache.org/docs/asynchronous-client-http-transport.html

JSP
By	default,	Liberty	compiles	JSPs	on	first	access	(if	a	cached	compile	isn't	already	available).	If	you	would
like	to	compile	all	JSPs	during	server	startup	instead,	use	the	following	(these	are	re-compiled	every	startup):

<jspEngine	prepareJSPs="0"/>
<webContainer	deferServletLoad="false"/>

			

JSF

MyFaces	JSF	Embedded	JAR	Search	for	META-INF/*.faces-config.xml

By	default,	the	Liberty	Apache	MyFaces	JSF	implementation	searches	JSF-enabled	applications	for	META-
INF/*.faces-config.xml	files	in	all	JARs	on	the	application	classpath.	A	CPU	profiler	might	highlight
such	tops	of	stacks	of	a	form	such	as:

		java.util.jar.JarFile$1.nextElement
		java.util.jar.JarFile$1.nextElement
		org.apache.myfaces.view.facelets.util.Classpath._searchJar
		org.apache.myfaces.view.facelets.util.Classpath._searchResource
		org.apache.myfaces.view.facelets.util.Classpath.search
		[...]FacesConfigResourceProvider.getMetaInfConfigurationResources
		[...]

When	an	embedded	faces-config.xml	file	is	found,	a	message	is	written	to	messages.log	with	a	wsjar:
prefix,	so	this	would	be	a	simple	way	to	check	if	such	embedded	resource	searches	are	needed	or	not.	For
example:

Reading	config	:	wsjar:file:[...]/installedApps/[...]/[...].ear/lib/bundled.jar!/META-INF/faces-config.xml

If	your	applications	only	use	a	faces-config.xml	within	the	application	itself	and	do	not	depend	on
embedded	faces-config.xml	files	within	JARs	on	the	application	classpath,	then	you	can	disable	these
searches	with	org.apache.myfaces.INITIALIZE_SKIP_JAR_FACES_CONFIG_SCAN=true	if	on	JSF	>=	2.3.
This	may	be	set	in	WEB-INF/web.xml,	META-INF/web-fragment.xml,	or	globally	as	a	JVM	property.	For
example,	in	jvm.options:

-Dorg.apache.myfaces.INITIALIZE_SKIP_JAR_FACES_CONFIG_SCAN=true

If	you	want	to	disable	globally	using	the	JVM	property	but	some	applications	do	require	embedded	faces-
config.xml	files,	then	use	the	above	property	and	then	enable	particular	applications	in	WEB-INF/web.xml	or
META-INF/web-fragment.xml.

			

EJB
The	Liberty	EJB	implementation	is	a	fork	of	the	Apache	Geronimo	Yoko	ORB.

			

Yoko	Timeouts

-Dyoko.orb.policy.connect_timeout=MILLISECONDS	(default	-1	which	is	no	timeout)
-Dyoko.orb.policy.request_timeout=MILLISECONDS	(default	-1	which	is	no	timeout)
-Dyoko.orb.policy.reply_timeout=MILLISECONDS	(default	-1	which	is	no	timeout)
-Dyoko.orb.policy.timeout=MILLISECONDS:	Change	connect_timeout	and	request_timeout
together	(default	-1	which	is	no	timeout)

https://myfaces.apache.org/#/core23
https://openliberty.io/docs/latest/reference/feature/jsf-2.3.html
https://www.ibm.com/docs/en/was-liberty/nd?topic=configuration-orb
https://github.com/OpenLiberty/yoko
https://geronimo.apache.org/yoko/orb-properties.html

			

Remote	Interface	Optimization

If	an	application	uses	a	remote	EJB	interface	and	that	EJB	component	is	available	within	the	same	JVM,	as
of	this	writing,	the	Yoko	ORB	that	Liberty	uses	does	not	have	an	optimization	to	automatically	use	the	local
interface	(as	is	done	with	WAS	traditional	using	its	"local	optimization"	[different	from	prefer	local])	and
this	will	drive	the	processing	of	the	remote	EJB	on	a	separate	thread.	If	an	EJB	is	not	@Asynchronous,
consider	running	such	EJBs	on	the	same	thread	by	using	the	local	interface	or	no-interface	instead	of	the
remote	interface.

			

Messaging
Liberty	provides	various	forms	of	JMS	messaging	clients	and	connectors.

			

Activation	Specifications

If	using	JMS	MDBs,	tune	activation	specifications'	maxConcurrency	to	control	the	maximum	concurrent
MDB	invocations	and	maxBatchSize	to	control	message	batch	delivery	size.

			

Embedded	Messaging	Server

The	embedded	messaging	server	(wasJmsServer)	is	similar	to	the	WAS	traditional	SIB	messaging	with	the
following	differences:

1.	 There	is	no	messaging	bus	in	Liberty.	A	single	messaging	engine	can	run	in	each	JVM	but	there	is	no
cluster	concept	that	will	present	the	messaging	engines,	queues	and	topics	within	them	as	belonging	to
a	single	clustered	entity.

2.	 There	is	no	high	availability	fail-over	for	the	messaging	engine.	The	client	JVM	is	defined	to	access
the	queues	and	topics	in	messaging	engines	running	in	specific	JVMs	running	at	a	specific	hostname
rather	than	anywhere	in	the	same	cell	as	in	WAS	traditional.

3.	 There	are	other	minor	differences	where	Liberty	sticks	more	closely	to	the	JMS	specification.
Examples:

1.	 JMSContext.createContext	allows	a	local	un-managed	transaction	to	be	started	in	WAS
traditional	(although	this	is	often	an	application	design	error)	but	this	is	not	allowed	in	Liberty.

4.	 WAS	traditional	SIB	APIs	(com.ibm.websphere.sib)	are	not	provided	in	Liberty.

The	WebSphere	Application	Server	Migration	Toolkit	helps	discover	and	resolve	differences.

			

Database	Persistence
JPA	2.0	and	before	uses	OpenJPA.	JPA	2.1	and	later	uses	EclipseLink.

			

JakartaEE
Jakarta	EE8	feature	and	javadocs

https://www.ibm.com/docs/en/was-liberty/core?topic=deal-using-enterprise-javabeans-applications-that-call-local-ejb-components-in-another-application
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_dep_messaging.html
https://openliberty.io/docs/20.0.0.9/reference/config/jmsActivationSpec.html#jmsActivationSpec/properties.wasJms
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_dep_msg_embedded.html
https://jakarta.ee/specifications/platform/8/apidocs/javax/jms/JMSContext.html#createContext-int-
https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Application_Server_Migration_Toolkit
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://jakarta.ee/specifications/platform/8/apidocs/

			

Classloading
The	directory	${shared.config.dir}/lib/global	(commonly,	$WLP/usr/shared/lib/global/)	is	on	the
global	classpath,	unless	the	application	specifies	a	classloader	element,	in	which	case	a	commonLibraryRef
of	global	can	be	added	to	still	reference	that	directory.

The	ContainerClassLoader	is	the	super	class	of	the	AppClassLoader.	If	an	application	has	an	EAR	with	one
or	more	WARs,	there	will	be	two	AppClassLoaders	(one	for	the	WAR	module	that	is	a	child	loader	of	the
EAR's	loader).	If	it's	just	a	standalone	WAR,	then	only	one	AppClassLoader.

The	WAR/EAR	AppClassLoader	is	a	child	of	a	GatewayClassLoader	that	represents	the	access	to	Liberty's
OSGI	bundle	classloaders.	The	GW	loader	only	allows	class	loads	that	are	in	API	packages	(i.e.
javax.servlet.*	if	the	servlet	feature	is	enabled,	javax.ejb.*	if	the	ejb	feature	is	enabled,	etc.).

Each	WAR/EAR	AppClassLoader	also	has	a	child	loader	called	ThreadContextClassLoader	that	basically
has	two	parents	-	the	associated	AppClassLoader	and	it's	own	Gateway	ClassLoader	that	can	load	additional
classes	from	Liberty	bundles	that	are	in	packages	marked	for	thread-context	that	allows	Liberty	to	load
classes	using	the	thread's	context	classloader	without	allowing	an	application	class	to	directly	depend	on	it.

AppClassLoader	will	use	the	Class-Path	entry	in	a	MANIFEST.MF	on	a	JAR,	but	it	is	not	required.	The
classpath	for	a	WAR	is	all	classes	in	the	WEB-INF/classes	directrory	plus	all	of	the	jar	files	in	WEB-INF/lib
-	then	if	there	are	any	private	shared	libraries	associated	with	the	app,	then	those	class	entries	are	added	to
the	classpath	too.

Liberty	doesn't	allow	shared	library	references	from	WARs	within	an	EAR.	The	references	are	only	handled
at	the	application	scope	(whether	that's	an	EAR	or	a	standalone	WAR).	Therefore,	you	can't	separately
reference	a	library	for	each	WAR	like	you	could	in	WAS	traditional.	The	alternative	is	to	put	the	jars	from
the	shared	library	into	the	WARs'	WEB-INF/lib	directories.

JARs	placed	in	${LIBERTY}/usr/${SERVER}/lib/global	should	be	accessible	by	all	applications	through
Class.forName.

			

Passing	Configuration
1.	 MicroProfile	Config

2.	 Use	a	jndiEntry	in	server.xml;	for	example:

<variable	name="myVariable"	value="myValue"/>
<jndiEntry	jndiName="myEntry"	value="${myVariable}"/>

Then	the	application	can	do	new	InitialContext().lookup("myEntry");.

Note	that	this	may	also	be	used	to	pass	Liberty	configuration	such	as,	for	example,
${com.ibm.ws.logging.log.directory}	for	the	log	directory.

			

dnf/yum/apt-get	repositories
See	https://openliberty.io/blog/2020/04/09/microprofile-3-3-open-liberty-20004.html#yum

			

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_classloader_global_libs.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/cwlp_sharedlibrary.html
https://openliberty.io/guides/microprofile-config-intro.html#enabling-microprofile-config-in-open-liberty
https://openliberty.io/blog/2020/04/09/microprofile-3-3-open-liberty-20004.html#yum

Security
Links:

Application	configuration	security	hardening
Security	Considerations
Hardening

Tracing	login:	*=info:com.ibm.ws.security.*=all:com.ibm.ws.webcontainer.security.*=all	and
search	for	performJaasLogin	Entry	and	performJaasLogin	Exit

			

Failed	login	delays

APAR	PH38929	introduced	in	21.0.0.10	performs	a	delay	from	0-5	seconds	(a	different	random	number	in
this	range	each	time)	on	a	failed	login.	Consider	enabling	and	reviewing	the	HTTP	access	log	to	find	such
delays	by	checking	for	delays	with	an	HTTP	401	or	403	response	code.	If	your	original	concern	was	about
response	times	spikes	in	your	monitoring,	then	you	may	consider	leaving	this	behavior	as-is,	and	removing
such	401	or	403	responses	from	your	response	time	monitoring.	Otherwise,	if	your	security	team	reviews	the
failed	logins	and	the	potential	of	user	enumeration	attacks	and	decides	it	is	okay	to	reduce	or	eliminate	the
delay,	this	may	be	done	with	failedLoginDelayMin	and	failedLoginDelayMax,	although	you	should	also
continue	to	monitor	for	failed	login	attempts.

			

Basic	Extensions	using	Liberty	Libraries	(BELL)
The	bell	feature	allows	packaging	a	ServletContainerInitializer	in	a	jar	file	with	META-INF/services	and	run
for	every	app	that	gets	deployed.

<bell	libraryRef="scilib"	/>

			

JConsole
JConsole	is	a	simple	monitoring	utility	shipped	with	the	JVM.

Note	that	while	JConsole	does	have	some	basic	capabilities	of	writing	statistics	to	a	CSV,	this	is	limited	to	a
handful	of	JVM	statistics	from	the	main	JConsole	tabs	and	is	not	available	for	the	MXBean	data.	Therefore,
for	practical	purposes,	JConsole	is	only	useful	for	ad-hoc,	live	monitoring.

To	connect	remotely	with	the	restConnector,	launch	the	client	JConsole	as	follows:

jconsole	-J-Djava.class.path=$JDK/lib/jconsole.jar:$JDK/lib/tools.jar:$LIBERTY/clients/restConnector.jar	-J-Djavax.net.ssl.trustStore=$LIBERTY/usr/servers/server1/resources/security/key.jks	-J-Djavax.net.ssl.trustStorePassword=$KEYSTOREPASSWORD	-J-Djavax.net.ssl.trustStoreType=jks

Then	use	a	URL	such	as	service:jmx:rest://localhost:9443/IBMJMXConnectorREST	and	enter	the
administrator	credentials.

1.	 Start	JConsole:	WLP/java/{JAVA}/bin/jconsole
2.	 Choose	the	JVM	to	connect	to:

https://openliberty.io/docs/latest/application-configuration-hardening.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_sec_considerations.html
https://community.ibm.com/community/user/imwuc/communities/community-home/librarydocuments/viewdocument?DocumentKey=b4e72e35-156a-43b4-acf1-c279721ec517&CommunityKey=da043955-1299-4c40-a6a8-479e62046c8f&tab=librarydocuments
https://www.ibm.com/support/pages/node/6489485
https://openliberty.io/docs/latest/reference/config/federatedRepository.html
https://openliberty.io/docs/latest/reference/config/bell.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/jconsole.html

3.	 You	may	be	asked	to	automatically	switch	to	the	secure	port:

4.	 Review	the	overview	graphs:

5.	 Click	the	MBeans	tab	to	review	enabled	data:

6.	 You	may	also	export	some	of	the	data	by	right	clicking	and	creating	a	CSV	file:

7.	 You	may	also	execute	various	MBeans,	for	example:

Accessing	statistics	through	code:

MBeanServer	mbs	=	ManagementFactory.getPlatformMBeanServer();

ObjectName	name	=	new	ObjectName("WebSphere:type=REST_Stats,name=restmetrics/com.example.MyJaxRsService/endpointName");
RestStatsMXBean	stats	=	JMX.newMXBeanProxy(mbs,	name,	RestStatsMXBean.class);
long	requestCount	=	stats.getRequestCount();
double	responseTime	=	stats.getResponseTime();

			

JConsole	with	HotSpot

You	may	need	options	such	as	the	following	for	local	connections	with	HotSpot:

-Dcom.sun.management.jmxremote.port=9005
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

			

Find	Release	for	a	Pull	Request
1.	 Find	the	line	[...]	merged	commit	X	into	OpenLiberty:integration	[...] .	Take	the	value	of	X.

For	example,	for	PR	10332,	X	is	c7eb966.
2.	 Click	on	the	link	for	that	commit	and	review	the	tags	at	the	top.	For	example,	 commit	c7eb966	shows

tags	starting	at	20.0.0.2	which	is	the	first	release	it's	available.
3.	 Alternatively,	from	the	command	line,	search	for	tags	with	that	commit:	git	tag	--contains	X.	For

example,	PR	10332	is	available	starting	in	20.0.0.2:

git	tag	--contains	c7eb966
gm-20.0.0.2
gm-20.0.0.3
gm-20.0.0.4
gm-20.0.0.5
gm-20.0.0.6
gm-20.0.0.7
gm-20.0.0.8
gm-20.0.0.9

			

Java	Support
Liberty	requires	a	certain	minimum	version	of	Java.	As	of	this	writing,	the	only	feature	that	requires	a	JDK	is
localConnector-1.0;	all	other	features	only	need	a	JRE.

			

Quick	Testing
If	you	have	Docker	installed,	you	may	quickly	test	some	configuration;	for	example:

$	echo	'<server><config	updateTrigger="mbean"	monitorInterval="60m"	/><logging	traceSpecification="*=info:com.ibm.ws.config.xml.internal.ConfigFileMonitor=all"	traceFormat="BASIC"	traceFileName="stdout"	maxFileSize="250"	/></server>'	>	configdropin.xml	&&	docker	run	--rm	-v	$(pwd)/configdropin.xml:/config/configDropins/overrides/configdropin.xml	-it	open-liberty:latest	|	grep	-e	CWWKF0011I	-e	"Configuration	monitoring	is	enabled"
[9/14/20	21:16:27:371	GMT]	00000026	ConfigFileMon	3			Configuration	monitoring	is	enabled.	Monitoring	interval	is	3600000
[9/14/20	21:16:31:048	GMT]	0000002a	FeatureManage	A			CWWKF0011I:	The	defaultServer	server	is	ready	to	run	a	smarter	planet.	The	defaultServer	server	started	in	6.851	seconds.

^C

			

FFDC
Liberty	will	keep	up	to	the	last	500	FFDC	files.	These	are	generally	small	files,	useful	for	post-mortem

https://github.com/OpenLiberty/open-liberty/pull/10332
https://github.com/OpenLiberty/open-liberty/commit/c7eb966ce5c995875cc116342e3e375dbcd07fa8
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_restrict.html#rwlp_restrict__rest13
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_admin_jmx.html
https://github.com/OpenLiberty/open-liberty/blob/gm-20.0.0.12/dev/com.ibm.ws.logging/src/com/ibm/ws/logging/internal/impl/BaseFFDCService.java#L369

debugging,	and	don't	need	to	be	manually	cleaned	up.

			

z/OS

Monitoring	on	z/OS

WebSphere	Liberty	provides	SMF	120	records	for	understanding	performance	aspects	of	various	processes
in	a	Liberty	server.	Note	that	there	is	a	small	throughput	overhead	for	enabling	SMF	recording	of
approximately	3%	(your	mileage	may	vary).

HTTP	requests	may	be	monitored	with	SMF	120	subtype	11	records.	These	records	are	enabled	by
adding	the	zosRequestLogging-1.0	feature	to	the	server	configuration	and	enabling	SMF	to	capture
those	records.
Java	batch	jobs	may	be	monitored	with	SMF	120	subtype	12	records.	These	records	are	enabled	by
adding	the	batchSMFLogging-1.0	feature	to	the	server	configuration	and	enabling	SMF	to	capture
those	records.

Additional	background:

Open	source	Java	SMF	output	parser
A	brief	history	of	HTTP	SMF	records	with	Liberty	on	z/OS

			

zIIPs/zAAPs

In	general,	WebSphere	Liberty	on	z/OS	is	mostly	Java	so	it	mostly	offloads	to	zIIPs	(other	than	small	bits
such	as	creating	WLM	enclaves,	SAF,	writing	SMF	records,	etc.).	Even	if	application	processing	hands-off	to
non-zIIP-eligible	native	code	(e.g.	third	party	JNI),	recent	versions	of	z/OS	(with	APAR	OA26713)	have	a
lazy-switch	design	in	which	short	bursts	of	such	native	code	may	stay	on	the	zIIP	and	not	switch	to	GCPs.
For	non-zIIP-eligible	native	code	such	as	the	type	2	DB2	driver,	some	of	that	may	use	zAAPs	and	total
processor	usage	compared	to	type	4	depends	on	various	factors	and	may	be	lower.

			

JAXB
JAXB	may	be	used	to	marshal	and	unmarshal	Java	classes	to	and	from	XML,	most	commonly	with	web
service	clients	or	endpoints	using	JAX-WS	such	as	through	the	xmlWS,	xmlBinding,	jaxws,	or	jaxb	features.

If	you	observe	that	JAXBContext.newInstance	is	impacting	performance,	consider:

1.	 Package	a	jaxb.index	file	for	every	package	that	does	not	contain	an	`ObjectFactory`	class.
2.	 Consider	faster	instantiation	performance	over	faster	sustained	unmarshalling/marshalling

performance:
If	using	Liberty's	xmlWS/xmlBinding:	-
Dorg.glassfish.jaxb.runtime.v2.runtime.JAXBContextImpl=true
If	using	Liberty's	jaxws/jaxb:	-Dcom.sun.xml.bind.v2.runtime.JAXBContextImpl=true

3.	 If	creating	a	JAXBContext	directly,	consider	using	a	singleton	pattern	which	is	thread	safe.

			

Timed	Operations

https://www.ibm.com/docs/en/was-liberty/nd?topic=erllz-smf-type-120-subtype-11-version-2-version-3-record-mapping
https://www.ibm.com/docs/en/was-liberty/nd?topic=zos-enabling-request-logging-liberty
https://www.ibm.com/docs/en/was-liberty/nd?topic=zos-smf-type-120-subtype-12-record-mapping
https://www.ibm.com/docs/en/was-liberty/nd?topic=liberty-enabling-java-batch-smf-logging-zos
https://github.com/follis/IBM-Z-zOS/tree/main/SMF-Tools
https://www.ibm.com/support/pages/liberty-zos-smf-120-11-version-2
https://openliberty.io/docs/latest/reference/feature/xmlWS.html
https://openliberty.io/docs/latest/reference/feature/xmlBinding.html
https://openliberty.io/docs/latest/reference/feature/jaxws-2.2.html
https://openliberty.io/docs/latest/reference/feature/jaxb-2.2.html
https://jakarta.ee/specifications/platform/10/apidocs/jakarta/xml/bind/jaxbcontext#newInstance(java.lang.String,java.lang.ClassLoader)
https://github.com/eclipse-ee4j/jaxb-ri/blob/4.0.4-RI/jaxb-ri/runtime/impl/src/main/java/org/glassfish/jaxb/runtime/v2/runtime/JAXBContextImpl.java#L247-L253
https://javaee.github.io/jaxb-v2/doc/user-guide/ch06.html#d0e6879

Timed	operations	was	introduced	before	requestTiming	and	is	largely	superseded	by	requestTiming,
although	requestTiming	only	uses	simple	thresholds.	Unless	the	more	complex	response	time	triggering	is
interesting,	use	requestTiming	instead.

When	enabled,	the	timed	operation	feature	tracks	the	duration	of	JDBC	operations	running	in	the
application	server.	In	cases	where	operations	take	more	or	less	time	to	execute	than	expected,
the	timed	operation	feature	logs	a	warning.	Periodically,	the	timed	operation	feature	will	create	a
report,	in	the	application	server	log,	detailing	which	operations	took	longest	to	execute.	If	you
run	the	server	dump	command,	the	timed	operation	feature	will	generate	a	report	containing
information	about	all	operations	it	has	tracked.

To	enable	timed	operations,	add	the	timedOperations-1.0	feature	to	the	server.xml	file.

The	following	example	shows	a	sample	logged	message:

[3/14/13	14:01:25:960	CDT]	00000025	TimedOperatio	W	TRAS0080W:	Operation
websphere.datasource.execute:	jdbc/exampleDS:insert	into	cities	values	('myHomeCity',
106769,	'myHomeCountry')	took	1.541	ms	to	complete,	which	was	longer	than	the	expected
duration	of	0.213	ms	based	on	past	observations.

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/cwlp_timeop.html

<featureManager>
		<feature>timedOperations-1.0</feature>
</featureManager>

			

Education
Self-paced	WebSphere	Application	Server	Troubleshooting	and	Performance	Lab
Top	10	Performance	and	Troubleshooting	tips	for	WebSphere	Application	Server	traditional	and
Liberty

			

Configuration	Analysis

WAS	traditional	Extracting	Properties

A	subset	of	configuration	properties	may	be	extracted	using	an	MBean:
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/txml_7propsfile.html

Additional	background	on	properties-based	configuration,	including	this	note:

You	cannot	extract	whole	configuration	properties	from	one	cell,	and	apply	to	another	empty
cell	to	clone	your	environment.

			

WebSphere	Application	Server	Configuration	Visualizer

The	WAS	Configuration	Visualizer	visualizes	a	WAS	traditional	config	directory	in	an	HTML	page:
https://www.ibm.com/support/pages/websphere-application-server-configuration-visualizer

			

WebSphere	Application	Server	Configuration	Comparison	Tool

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/cwlp_timeop.html
https://ibm.biz/liberty_performance_lab
https://techtv.bemyapp.com/#/conference/5f8f5646a6e08100205ee8ce
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/txml_7propsfile.html
https://www.ibm.com/support/pages/introducing-properties-file-based-configuration-way-automate-websphere-configuration-changes-without-extensive-scripting-skills-part-1
https://www.ibm.com/support/pages/websphere-application-server-configuration-visualizer

The	following	tool	performs	configuration	comparison	for	WAS	traditional:
https://www.ibm.com/support/pages/websphere-application-server-configuration-comparison-tool

			

General	Health	Check	Points

1.	 Ask	for	any	previous	health	checks	that	have	been	done
2.	 Involve	the	account	team	throughout	the	process
3.	 Ask	what	are	the	current	problems	and	pain	points
4.	 If	there	is	time,	perform	a	preliminary	review	of	findings	and	recommendations	(e.g.	in	the	middle	of

the	health	check)	to	make	sure	you're	on	the	right	track	and	covering	the	key	areas
5.	 Mark	findings	and	recommendations	with	a	priority	level,	effort	level,	category	(e.g.	applications,

performance,	up-time,	product	level,	architecture,	security,	configuration,	past	issues,	problem
determination,	logging	and	monitoring,	HA/DR,	etc.),	environment,	status	(needs	attention,
information	only,	not	optimal,	etc.),	etc.

1.	 Create	a	spreadsheet	with	titles	of	findings/recommendations	with	a	column	for	each	of	the
above.	This	allows	various	different	people	to	quickly	filter	to	what's	important	to	them.

6.	 Point	out	things	that	are	going	well
7.	 For	each	recommendation,	end	with	the	reason;	for	example,	"Change	configuration	X	to	improve
resiliency"

8.	 What	are	the	response	time	targets,	and	what	are	the	observations?
9.	 What	are	the	CPU	and	memory	utilization	targets,	and	what	are	the	observations?

10.	 How	does	testing	work?	How	does	performance	testing	compare	to	production?
11.	 Which	highly	available	services	are	used	(e.g.	transaction	logs,	session	replication/persistence)?
12.	 Create	an	architecture	diagram
13.	 Invite	relevant	management	for	the	final	presentation/review
14.	 Review:

1.	 Software	versions
2.	 Hardware	configuration	(e.g.	CPU	number/speed,	RAM	amount,	etc.)
3.	 Architecture	of	component	interactions
4.	 CPU	utilization	over	time
5.	 Memory	utilization	over	time
6.	 Network	utilization	over	time
7.	 Disk	utilization	over	time
8.	 Software	logs	(WAS,	Java,	OS,	etc.)	for	warnings/errors
9.	 Process	arguments

10.	 Proportion	of	time	in	garbage	collection	over	time
11.	 Longest	garbage	collection	pause	times
12.	 Thread	pool	utilization	over	time	(WAS,	IHS,	etc.)
13.	 Connection	pool	(e.g.	DB,	JMS)	utilization	over	time
14.	 Timeouts
15.	 Security	configuration
16.	 Operating	system	core	hard	ulimits	and	how	cores	are	saved/truncated
17.	 Review	cache	usage	(e.g.	HTTP	sessions)
18.	 Difference	in	behavior	(response	times,	GC,	etc.)	between	similar	cluster	members
19.	 Memory	leaks
20.	 Review	all	components	(WAS,	IHS,	etc.)
21.	 Review	the	recipes	from	this	cookbook

			

WAS	traditional	Health	Check

Gather	WAS	traditional	Health	Check	Data

1.	 Run	the	collector	on	the	deployment	manager:

https://www.ibm.com/support/pages/websphere-application-server-configuration-comparison-tool

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_runct.html
1.	 Log	in	as	the	same	user	that's	running	WAS
2.	 mkdir	-p	/tmp/was/
3.	 cd	/tmp/was
4.	 export	IBM_JAVA_OPTIONS="-Xmx2g"
5.	 ${WAS}/profiles/${PROFILE}/bin/collector.sh
6.	 Gather	the	file	named	*WASenv.jar

2.	 Run	the	collector	on	at	least	one	random	application	node	(for	log	analysis);	ideally,	all.
3.	 Gather	any	historical	operating	system	statistics	such	as	nmon,	perfmon,	etc.
4.	 Upload	all	*WASenv.jar	files	(there	should	be	at	least	2)	and	any	OS	statistics	if	available.

			

Analyze	WAS	traditional	Health	Check	Data

Analyze	(after	expanding	the	*WASenv.jar	files):

1.	 WAS	versions:
1.	 find	.	-type	f	-name	"*SystemOut*log*"	-exec	grep	-H	"^WebSphere"	{}	\;	|	awk

'{print	$(NF-4),$3}'	|	sort	|	uniq
2.	 find	.	-type	f	-name	node-metadata.properties	-exec	grep	-H	ProductVersion	{}

\;	|	grep	-v	-e	wxdop	-e	xdProduct	|	sed	's/.*nodes\///g'	|	sed	's/\/node-
metadata.*:/:	/g'	|	sort

2.	 Operating	system	versions:
1.	 find	.	-type	f	-name	"*SystemOut*log*"	-exec	grep	-H	"Host	Operating	System	is"

{}	\;	|	sed	's/.*	is	//g'	|	sort	|	uniq
3.	 Java	versions:

1.	 find	.	-type	f	-name	"*SystemOut*log*"	-exec	grep	-H	"Java	version	=	"	{}	\;	|
sed	's/.*	is	//g'	|	sort	|	uniq

4.	 Max	file	descriptors:
1.	 find	.	-type	f	-name	"*SystemOut*log*"	-exec	grep	-H	"Max	file	descriptor	count

=	"	{}	\;	|	sed	's/.*://g'	|	sort	|	uniq
5.	 If	needed,	review	installed	APARs:	AppServer/properties/version/installed.xml
6.	 Check	for	hung	thread	warnings:

1.	 find	.	-type	f	-name	"*SystemOut*log*"	-exec	grep	-Hn	WSVR0605W	{}	\;
7.	 Find	warnings	and	errors	in	SystemOut*	logs:

1.	 find	.	-type	f	-name	"*SystemOut*log*"	-exec	grep	-H	"	[W|E]	"	{}	\;	>
sysout_warnings_errors.txt

1.	 awk	'{print	$7}'	sysout_warnings_errors.txt	|	grep	"[WE]:$"	|	sort	|	uniq
-c	|	sort	-nr	|	head	-10

8.	 Find	warnings	and	errors	in	SystemErr*	logs:
1.	 find	.	-name	"*SystemErr*log"	-exec	grep	-H	"."	{}	\;	|	grep	-v	-e

"SystemErr[[:blank:]]\+R[[:blank:]]\+at"	-e	"Display	Current	Environment"
9.	 Find	log	message	rate:

1.	 find	.	-type	f	\(-name	"*SystemOut*log*"	-or	-name	"messages*log*"	\)	-exec
grep	"^\[.*"	{}	\;	|	awk	'{print	$1,$2}'	|	sed	's/:[0-9][0-9][0-9]$//g'	|	sed
's/\[//g'	|	sort	|	uniq	-c

10.	 Find	startup	trace	specification:
1.	 find	.	-type	f	-name	server.xml	-not	-path	"*template*"	-exec	grep	-H

"startupTraceSpecification"	{}	\;	|	sed	's/:.*	startupTraceSpecification="/	/g'
|	sed	's/".*//g'

11.	 Find	applications	deployed	by	cluster:
1.	 find	.	-type	f	-name	deployment.xml	-exec	grep	-H	deploymentTargets	{}	\;	|

grep	-v	-e	ibmasyncrsp	-e	isclite	-e	OTiS	-e	WebSphereWSDM	|	sed	's/:.*name="/
/g'	|	sed	's/".*//g'	|	sed	's/\//	/g'	|	awk	'{print	$(NF),$(NF-4)}'	|	sort	|
uniq	|	sort	-k	2

12.	 Find	generic	JVM	arguments:
1.	 find	.	-type	f	-name	server.xml	-not	-path	"*template*"	-exec	grep	-H

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_runct.html

genericJvm	{}	\;	|	sed	's/:.*genericJvmArguments="\([^"]*\)".*/:	\1/g'	|	grep	-
v	':	$'

2.	 find	.	-type	f	-name	server.xml	-not	-path	"*templates*"	-exec	grep	-H
systemProperties	{}	\;	|	grep	-v	-e	'value="off"'	-e	java.awt.headless

13.	 Find	where	unexpected	JVM	debugging	is	enabled:
1.	 find	.	-type	f	-name	server.xml	-not	-path	"*template*"	-exec	grep	-H

genericJvm	{}	\;	|	grep	-e	'verboseModeClass="true"'	-e	'verboseModeJNI="true"'
-e	'runHProf="true"'	-e	'debugMode="true"'

14.	 Find	LTPA	timeout	(minutes);
1.	 find	.	-type	f	-name	security.xml	-exec	grep	-H	system.LTPA	{}	\;	|	sed

's/:.*timeout/:	timeout/g'	|	sed	's/"	.*/"/g'
15.	 Check	if	"Enable	failover	of	transaction	log	recovery"	is	enabled	(disabled	may	not	show	in	the	grep):

1.	 find	.	-type	f	-name	cluster.xml	-exec	grep	-H	enableHA	{}	\;	|	sed
's/:.*enableHA/:	enableHA/g'	|	sed	's/>//g'

16.	 See	if	the	transaction	log	directory	has	been	modified	(default	of	a	local	directory	shows	no	results):
1.	 find	.	-type	f	-name	serverindex.xml	-exec	grep	recoveryLog	{}	\;

17.	 Find	transaction	timeout	settings:
1.	 find	.	-type	f	-name	server.xml	-not	-path	"*template*"	-exec	grep	-H

"services.*TransactionService"	{}	\;	|	sed	's/:.*total/:	total/g'
1.	 totalTranLifetimeTimeout	=	Total	transaction	lifetime	timeout
2.	 propogatedOrBMTTranLifetimeTimeout	=	Maximum	transaction	timeout
3.	 clientInactivityTimeout	=	Client	inactivity	timeout
4.	 asyncResponseTimeout	=	Async	response	timeout

18.	 Review	defined	resources	and	their	scopes:
1.	 find	.	-type	f	-name	resources.xml	-not	-path	"*template*"	-exec	grep	-H	"

<resources"	{}	\;	|	sed	's/xmi.*name/name/g'	|	sed	's/	description.*//g'	|	sed
's/"	.*/"/g'	|	sort	-k	2	|	grep	-v	-e	URLProvider	-e	MailProvider	-e
JavaEEDefaultResources

19.	 Check	if	IBM	Service	Log	(activity.log)	enabled:
1.	 find	.	-type	f	-name	server.xml	-not	-path	"*template*"	-exec	grep	-H

"serviceLog.*true"	{}	\;
20.	 Check	the	type	of	log	rollover	(SIZE,	TIME,	or	BOTH):

1.	 find	.	-type	f	-name	server.xml	-not	-path	"*template*"	-exec	grep	-H
rolloverType	{}	\;	|	sed	's/:.*rolloverType="/:	/g'	|	sed	's/".*//g'

21.	 Check	rollover	sizes	of	logs:
1.	 find	.	-type	f	-name	server.xml	-not	-path	"*template*"	-exec	grep	-H

"rolloverType=\"[SB]"	{}	\;	|	sed	's/:.*fileName="/:	/g'	|	sed
's/".*maxNumberOfBackupFiles="\([^"]\+\)"/	maxNumberOfBackupFiles	\1/g'	|	sed
's/rolloverSize="\([^"]\+\)"/rolloverSize	\1;/g'	|	sed	's/;.*//g'

22.	 Find	thread	pool	sizes:
1.	 find	.	-type	f	-name	server.xml	-not	-path	"*template*"	-exec	grep	-H	"

<threadPool.*name"	{}	\;	|	grep	-v	"<threadPool	.*ORB"	|	grep	-e	WebContainer	-
e	Default	-e	Message.Listener.Pool	-e	ORB.thread.pool	-e	SIBJMSRAThreadPool	-e
WMQJCAResourceAdapter	|	sed	's/^\(.*\):	.*minimumSize="\
([^"]\+\)".*maximumSize="\([^"]\+\)".*name="\([^"]\+\)".*/\1	\4	\2	\3/g'

23.	 Find	JMS	activation	specifications:
1.	 find	.	-type	f	-name	resources.xml	-not	-path	"*templates*"	-exec	grep	-H	-A	20

j2cActivationSpec.*name=	{}	\;	|	grep	-e	j2cActivationSpec	-e	maxConcurrency	|
sed	's/\(.*\):	.*jndiName="\([^"]\+\)".*/\1	\2/g'	|	sed	's/\(.*\)-
.*maxConcurrency.*value="\([^"]\+\)".*/\1	maxConcurrency	\2/g'

24.	 Find	listener	ports:
1.	 find	.	-type	f	-name	server.xml	-not	-path	"*templates*"	-exec	grep	-H	"

<listenerPorts"	{}	\;	|	sed	's/^\(.*\):	.*name="\([^"]\+\)".*maxSessions="\
([^"]\+\)".*maxMessages="\([^"]\+\)".*/\1	\2	maxSessions	\3	maxMessages	\4/g'

25.	 Find	data	source	maximum	connections:
1.	 find	.	-type	f	-name	resources.xml	-not	-path	"*templates*"	-exec	grep	-H	-A	50

"<factories.*DataSource"	{}	\;	|	grep	-e	"<factories.*DataSource"	-e	"
<connectionPool"	|	sed	's/\(.*\):	.*jndiName="\([^"]\+\)".*/\1	\2/g'	|	sed	's/\

(.*\)-	.*maxConnections="\([^"]\+\)".*/\1	maxConnections	\2/g'	|	grep	-B	1
maxConnections	|	grep	-v	"\-\-"

26.	 Find	list	of	all	custom	properties:
1.	 find	.	-type	f	-name	"*xml"	-not	-path	"*templates*"	-exec	grep	"<properties	"

{}	\;	|	grep	com.ibm	|	sed	's/.*name="\([^"]\+\)".*/\1/g'	|	sort	|	uniq
27.	 Review	operating	system	statistics

			

WebSphere	Liberty	Health	Check

Gather	WebSphere	Liberty	Health	Check	Data

1.	 If	attaching	to	the	running	process	to	dump	basic	information	and	a	thread	dump	is	an	acceptable	risk:
1.	 Liberty	server	dump:

https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_setup_dump_server.html
1.	 Log	in	as	the	same	user	that's	running	WAS
2.	 ${WAS}/bin/server	dump	${NAME}	--include=thread
3.	 Gather	the	file	as	noted	in	the	message:	Server	${NAME}	dump	complete	in	${FILE}

2.	 Otherwise:
1.	 server.xml	and	any	included	xml	files
2.	 jvm.options	(if	any)
3.	 bootstrap.properties	(if	any)
4.	 Container	logs	and	any	messages.log	and	FFDC

3.	 Gather	any	historical	operating	system	statistics	such	as	nmon,	perfmon,	etc.
4.	 Upload	all	Liberty	file	collections	and	any	OS	statistics	if	available.

			

Analyze	WebSphere	Liberty	Health	Check	Data

1.	 Check	for	transaction	manager	configuration	(e.g.	transactionLogDirectory	if	storing	trans	logs	on
shared	disk,	nested	dataSource	if	storing	trans	logs	in	DB,	etc.):

1.	 find	.	-type	f	-name	"*xml"	-exec	grep	-H	"<transaction"	{}	\;
2.	 Find	Liberty	versions:

1.	 find	.	-type	f	-name	"*messages*log*"	-exec	grep	-H	"product	=	"	{}	\;	|	sed
's/.*:product	=	//g'	|	sort	|	uniq

3.	 Find	Java	versions:
1.	 find	.	-type	f	-name	"*messages*log*"	-exec	grep	-H	"java.runtime	=	"	{}	\;	|

sed	's/.*:java.runtime	=	//g'	|	sort	|	uniq
4.	 Find	operating	system	versions:

1.	 find	.	-type	f	-name	"*messages*log*"	-exec	grep	-H	"os	=	"	{}	\;	|	sed
's/.*:os	=	//g'	|	sort	|	uniq

5.	 Review	JVM	parameters:
1.	 find	.	-type	f	-name	"*jvm.options*"	-exec	grep	-Hn	"."	{}	\;

6.	 Review	server.xml	configuration	for	best	practices
7.	 Find	warnings	and	errors:

1.	 find	.	-type	f	-name	"*messages*log*"	-exec	grep	-H	"	[W|E]	"	{}	\;	>
messages_warnings_errors.txt

1.	 awk	'{print	$7}'	sysout_warnings_errors.txt	|	grep	"[WE]:$"	|	sort	|	uniq
-c	|	sort	-nr	|	head	-10

8.	 Find	log	message	rate:
1.	 find	.	-type	f	\(-name	"*SystemOut*log*"	-or	-name	"messages*log*"	\)	-exec

grep	"^\[.*"	{}	\;	|	awk	'{print	$1,$2}'	|	sed	's/:[0-9][0-9][0-9]$//g'	|	sed
's/\[//g'	|	sort	|	uniq	-c

9.	 Review	operating	system	statistics

https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_setup_dump_server.html

			

Java	Health	Check

Gather:

1.	 Gather	10	thread	dumps	about	30	seconds	apart	on	one	JVM	during	normal	load;	for	example	create	a
script	and	pass	the	PID	as	an	argument	and	then	upload	stdout:

#!/bin/sh
for	i	in	$(seq	1	10);	do
		kill	-3	$1
		sleep	30
done

2.	 Gather	and	upload	all	JVM	and	application	logs	for	one	JVM
3.	 If	you	would	like	to	review	Java	heap	utilization,	gather	a	core	dump	(J9	JVM)	or	heapdump	(HotSpot

JVM)	(note	that	this	will	pause	the	JVM	for	dozens	of	seconds	so	it	should	be	done	at	off-peak	times
and	it	may	have	sensitive	contents)

4.	 If	you	would	like	to	gather	sampling	profiler	data	data,	capture	and	upload	5	minutes	worth	of	data.

Analyze:

1.	 Find	JVM	diagnostics:
1.	 find	.	-type	f	\(-name	"*javacore*txt"	-or	-name	"*phd"	-or	-name	"*dmp"	-or

-name	"*trc"	-or	-name	"*hcd"	\\)
2.	 find	.	-type	f	\(-name	"*stderr*log*"	-or	-name	"*console*log*"	\)	-exec	grep

-H	JVM	{}	\;
2.	 Find	longest	GC	pauses:

1.	 find	.	-type	f	\(-name	"*verbosegc*log*"	-or	-name	"*stderr*log*"	-or	-name
"*console*log*"	\)	-exec	grep	-H	exclusive-end	{}	\;	|	sed	's/:</	</g'	|	awk
'{print	$(NF-1),$(NF-2),$1}'	|	sed	's/"//g'	|	sed	's/timestamp=//g'	|	sed
's/durationms=//g'	|	sort	-nr	|	head

3.	 Find	verbosegc	warnings:
1.	 find	.	-type	f	\(-name	"*verbosegc*log*"	-or	-name	"*stderr*log*"	-or	-name

"*console*log*"	\)	-exec	grep	-H	"<warning"	{}	\;
4.	 Find	if	verbose	classloading	is	enabled:

1.	 find	.	-type	f	\(-name	"*stderr*log*"	-or	-name	"*console*log*"	\)	-exec	grep
-H	"class	load:"	{}	\;

			

IBM	HTTP	Server	and	WAS	Plugin	Health	Check

Gather	on	at	least	one	node	(ideally,	all):

1.	 httpd.conf	and	any	included	*conf	files
2.	 plugin-cfg.xml
3.	 access.log	&	error.log
4.	 http_plugin.log

Analyze:

1.	 Find	logging	configuration:
1.	 find	.	-type	f	-name	"*conf*"	-exec	grep	-H	-e	LogFormat	-e	CustomLog	{}	\;	|

grep	-v	-e	":#"	-e	/templates/
2.	 Find	if	IHS	threads	are	saturated	or	nearly	saturated:

1.	 find	.	-type	f	-name	"*error_log*"	-exec	grep	-H	mpmstats	{}	\;	|	grep	"rdy	.	"
3.	 Find	HTTP	5XX	errors:

1.	 find	.	-type	f	-name	"*access_log*"	-exec	grep	-H	"HTTP/1.1\"	5"	{}	\;
4.	 Find	any	non-informational	entries	in	WAS	plugin	log:

1.	 find	.	-type	f	-name	"*http_plugin*log*"	-exec	grep	-H	"."	{}	\;
5.	 Find	key	WAS	Plugin	configuration:

1.	 find	.	-type	f	-name	plugin-cfg.xml	-not	-path	"*templates*"	-exec	grep	-Hn	-e
ServerIOTimeout	-e	ConnectTimeout	{}	\;

			

Linux	Configuration	Health	Check

Gather	the	following	as	root	and	upload	healthcheck_linux*.txt:

date	&>	healthcheck_linux_$(hostname).txt
echo	"===	hostname	==="	&>>	healthcheck_linux_$(hostname).txt
hostname	&>>	healthcheck_linux_$(hostname).txt
echo	"===	uname	==="	&>>	healthcheck_linux_$(hostname).txt
uname	-a	&>>	healthcheck_linux_$(hostname).txt
echo	"===	cmdline	==="	&>>	healthcheck_linux_$(hostname).txt
cat	/proc/cmdline	&>>	healthcheck_linux_$(hostname).txt
echo	"===	cpuinfo	==="	&>>	healthcheck_linux_$(hostname).txt
cat	/proc/cpuinfo	&>>	healthcheck_linux_$(hostname).txt
echo	"===	lscpu	==="	&>>	healthcheck_linux_$(hostname).txt
lscpu	&>>	healthcheck_linux_$(hostname).txt
echo	"===	meminfo	==="	&>>	healthcheck_linux_$(hostname).txt
cat	/proc/meminfo	&>>	healthcheck_linux_$(hostname).txt
echo	"===	sysctl	==="	&>>	healthcheck_linux_$(hostname).txt
sysctl	-a	&>>	healthcheck_linux_$(hostname).txt
echo	"===	messages	==="	&>>	healthcheck_linux_$(hostname).txt
cat	/var/log/messages	&>>	healthcheck_linux_$(hostname).txt
echo	"===	syslog	==="	&>>	healthcheck_linux_$(hostname).txt
cat	/var/log/syslog	&>>	healthcheck_linux_$(hostname).txt
echo	"===	journal	==="	&>>	healthcheck_linux_$(hostname).txt
journalctl	--since	"7	days	ago"	&>>	healthcheck_linux_$(hostname).txt
echo	"===	netstat	==="	&>>	healthcheck_linux_$(hostname).txt
netstat	-s	&>>	healthcheck_linux_$(hostname).txt
echo	"===	nstat	==="	&>>	healthcheck_linux_$(hostname).txt
nstat	-asz	&>>	healthcheck_linux_$(hostname).txt
echo	"===	top	==="	&>>	healthcheck_linux_$(hostname).txt
top	-b	-d	1	-n	2	&>>	healthcheck_linux_$(hostname).txt
echo	"===	top	-H	==="	&>>	healthcheck_linux_$(hostname).txt
top	-H	-b	-d	1	-n	2	&>>	healthcheck_linux_$(hostname).txt
echo	"===	ps	==="	&>>	healthcheck_linux_$(hostname).txt
ps	-elfyww	&>>	healthcheck_linux_$(hostname).txt
echo	"===	iostat	==="	&>>	healthcheck_linux_$(hostname).txt
iostat	-xm	1	2	&>>	healthcheck_linux_$(hostname).txt
echo	"===	ip	addr	==="	&>>	healthcheck_linux_$(hostname).txt
ip	addr	&>>	healthcheck_linux_$(hostname).txt
echo	"===	ip	-s	==="	&>>	healthcheck_linux_$(hostname).txt
ip	-s	link	&>>	healthcheck_linux_$(hostname).txt
echo	"===	ss	summary	==="	&>>	healthcheck_linux_$(hostname).txt
ss	--summary	&>>	healthcheck_linux_$(hostname).txt
echo	"===	ss	==="	&>>	healthcheck_linux_$(hostname).txt
ss	-amponeti	&>>	healthcheck_linux_$(hostname).txt
echo	"===	nstate	==="	&>>	healthcheck_linux_$(hostname).txt
nstat	-saz	&>>	healthcheck_linux_$(hostname).txt
echo	"===	netstat	-i	==="	&>>	healthcheck_linux_$(hostname).txt
netstat	-i	&>>	healthcheck_linux_$(hostname).txt
echo	"===	netstat	-s	==="	&>>	healthcheck_linux_$(hostname).txt
netstat	-s	&>>	healthcheck_linux_$(hostname).txt
echo	"===	netstat	==="	&>>	healthcheck_linux_$(hostname).txt
netstat	-anop	&>>	healthcheck_linux_$(hostname).txt
echo	"===	systemd-cgtop	==="	&>>	healthcheck_linux_$(hostname).txt
systemd-cgtop	-b	--depth=5	-d	1	-n	2	&>>	healthcheck_linux_$(hostname).txt
echo	"===	journalctl	-b	==="	&>>	healthcheck_linux_$(hostname).txt
journalctl	-b	|	head	-2000	&>>	healthcheck_linux_$(hostname).txt
echo	"===	journalctl	-b	-n	==="	&>>	healthcheck_linux_$(hostname).txt

journalctl	-b	-n	2000	&>>	healthcheck_linux_$(hostname).txt
echo	"===	journalctl	warning	==="	&>>	healthcheck_linux_$(hostname).txt
journalctl	-p	warning	-n	500	&>>	healthcheck_linux_$(hostname).txt
echo	"===	ulimit	==="	&>>	healthcheck_linux_$(hostname).txt
ulimit	-a	&>>	healthcheck_linux_$(hostname).txt
echo	"===	df	-h	==="	&>>	healthcheck_linux_$(hostname).txt
df	-h	&>>	healthcheck_linux_$(hostname).txt
echo	"===	systemctl	list-units	==="	&>>	healthcheck_linux_$(hostname).txt
systemctl	list-units	&>>	healthcheck_linux_$(hostname).txt
echo	"===	systemd-cgls	==="	&>>	healthcheck_linux_$(hostname).txt
systemd-cgls	&>>	healthcheck_linux_$(hostname).txt
echo	"===	pstree	==="	&>>	healthcheck_linux_$(hostname).txt
pstree	-pT	&>>	healthcheck_linux_$(hostname).txt

			

IBM	Visual	Configuration	Explorer	(VCE)

The	IBM	Visual	Configuration	Explorer	(VCE)	tool	is	no	longer	publicly	available.

			

Log	Analysis

IBM	Trace	and	Request	Analyzer	for	WAS	(TRA)

https://www.ibm.com/support/pages/ibm-trace-and-request-analyzer-websphere-application-server

			

IBM	Support	Assistant	5

Log	Analysis

This	section	has	been	moved	to	the	IBM	Support	Assistant	chapter.

			

Resiliency
Strategies	to	increase	resiliency:

Application	development	practices:
MicroServices	fault	tolerance
Timeout	non-critical	functions	and	gracefully	degrade	subsets	of	the	HTTP	response

Increase	caching	to	reduce	workload	including:
HTTP	response	caching
Servlet	caching
Content	delivery	networks	(CDNs)
Caching	products

Proactive	monitoring	of	problems:
tWAS:	Hung	thread	detection
Liberty:	requestTiming

Optimize	existing	applications	with	a	sampling	profiler
Tune	timeouts	to	the	maximum	acceptable	user	response	time	for	all	transactions	plus	20%:

IHS:	ServerIOTimeout	and	per-URL	timeouts	with	websphere-serveriotimeout
React	to	excessive	response	times:

tWAS	on	z/OS:	zWLM	service	classes

https://www.ibm.com/support/pages/ibm-trace-and-request-analyzer-websphere-application-server
https://openliberty.io/guides/microprofile-fallback.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rwsv_plugincfg.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezwlm.html

tWAS	on	other	OSes:	IHS	with	Intelligent	Management	for	Web	servers	and	excessive	response
time	health	policies

Auto-scaling:
Cloud/OpenShift
tWAS	on	z/OS:	Minimum	and	maximum	servants
tWAS	on	other	OSes:	Dynamic	cluster	autoscaling	using	Intelligent	Management	and	the	Java
On	Demand	Router
Liberty:	Autoscaling	with	Collectives	and	Intelligent	Management	for	Web	Servers

	

Major	Tools
This	chaper	will	cover	what	we	consider	the	most	important	performance	analysis	tools	for	the	majority	of
situations.	We	cover	other	tools	in	other	chapters	and	other	tools	may	be	the	most	important	performance
tool	for	a	particular	situation;	however,	for	these	tools	we	will	generally	cover	them	in	more	depth.

	

Sub-chapters
Garbage	Collection	and	Memory	Visualizer	(GCMV)
IBM	Thread	and	Monitor	Dump	Analyzer	(TMDA)
Eclipse	Memory	Analyzer	Tool
IBM	Java	Health	Center
OpenJDK	Mission	Control
Eclipse
Apache	JMeter
Wireshark
IBM	Support	Assistant
gnuplot
Python
R	Project
Apache	Bench
awk

	

Garbage	Collection	and	Memory	Visualizer	(GCMV)
The	IBM	Garbage	Collection	and	Memory	Visualizer	(GCMV)	tool	is	used	to	analyze	Java	memory	usage
using	the	output	of	verbose	garbage	collection.	It	parses	both	IBM	Java,	OpenJ9	and	HotSpot	Java	verbose
garbage	collection	log	files.	For	IBM	Java	and	OpenJ9	in	particular,	it	has	an	advanced	engine	which
provides	automated	analysis	and	recommendations	from	the	data.

	

Installation

See	the	download	instructions.

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/cwve_implugin.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/crun_servants.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/twve_odrdynamiccluster.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_wve_autoscaling.html
https://www.ibm.com/support/pages/java-sdk-monitoring-and-post-mortem
https://www.ibm.com/support/pages/garbage-collection-and-memory-visualizer

	

Basic	Usage

Click	on	File	}	Load	File	and	and	load	the	verbosegc	file

GCMV	parses	and	plots	various	log	types	including	Verbose	GC	logs,	javacore.txt	verbosegc	flight	recorder,
-Xtgc	output,	and	native	memory	logs	(output	from	ps,	svmon	and	Perfmon).

	

Features	and	Benefits

GCMV	uses	a	powerful	statistical	analysis	engine	which	provides	guidance	on	improvements	in	these	areas:

Memory	Leak	Detection
Detect	Java	heap	exhaustion	and	memory	leaks
Detect	"native"	(malloc)	heap	exhaustion	and	memory	leaks

Optimizing	garbage	collection	performance
Determine	garbage	collection	overhead
Detect	long	or	frequent	garbage	collection	cycles	and	causes
Recommend	settings	to	avoid	long	or	frequent	garbage	collection	cycles
Recommend	optimum	garbage	policy

Fine	tuning	of	Java	heap	size
Determine	peak	and	average	memory	usage
Recommend	Java	heap	settings

GCMV	provides	a	flexible	user	interface,	making	it	possible	to	carry	out	further	analysis	of	the	data	and	to
"drill	down"	into	the	causes	of	trends	or	data	points	of	interest.

The	GCMV	graphical	interface	provides	the	following	capabilities:

Raw	log,	tabulated	data	and	graph	views
Ability	to	zoom	and	crop	graphs
Ability	to	select	data	points	in	line	plots	and	view	in	raw	data
Customize	the	graph	by	adding/removing	data	and	changing	display	units
Compare	output	from	multiple	logs
Save	data	to	jpeg	or	.csv	files	for	export	to	spreadsheets
Templates	allow	configuration	to	be	saved
Support	for	compressed	files	and	rolling	logs

	

Analysis

https://www.ibm.com/support/pages/garbage-collection-and-memory-visualizer

Primarily,	you	will	review	the	line	plot	to	observe	garbage	collection	behavior,	and	click	on	the	Report	tab	to
review	the	proportion	of	time	spent	in	garbage	collection.

Observe	in	the	following	example	that	towards	the	end	of	the	graph,	the	"Used	heap	(after	global	collection)"
-	the	brown	line	-	which	is	the	amount	of	live	Java	heap	after	a	full	garbage	collection	finishes,	has	a	pattern
where	it	doesn't	decrease	much	and	it's	near	the	heap	size	(blue	line).	This	also	correlates	with	a	persistent
increase	in	the	"Total	pause	time"	-	the	dark	line.	These	are	the	classic	signs	of	heap	exhaustion.

Proportion	of	time	in	garbage	collection:

		

Cropping	Data	Analysis

In	general,	the	proportion	of	time	in	garbage	collection	should	be	less	than	10%	and	ideally	less	than	1%.	It
is	important	to	analyze	the	proportion	of	time	in	GC	for	times	of	interest;	however,	zooming	does	not	crop
the	data	analysis.	To	do	so,	specify	a	minimum	and	maximum	value	for	the	X-axis	and	then	click	on	the
Report	tab	again	to	update	the	data	analysis	and	review	the	proportion	of	time	in	GC:

Hover	your	mouse	over	the	approximate	start	and	end	points	of	the	section	of	concern	and	note	the	times	of
those	points	(in	terms	of	your	selected	X	Axis	type):

Enter	each	of	the	values	in	the	minimum	and	maximum	input	boxes	and	press	Enter	on	your	keyboard	in
each	one	to	apply	the	values.	The	tool	will	show	vertical	lines	with	triangles	showing	the	area	of	the	graph
that	you've	focused	on.

Click	on	the	"Report"	tab	at	the	bottom	and	observe	the	proportion	of	time	spent	in	garbage	collection	for
just	this	period	(in	this	example,	87%	which	is	a	problem).

		

Customizing	the	Views

Adding	and	removing	line	plots

Check	or	uncheck	line	plots	from	the	"Data	Selector"	tab.	For	example,	it	is	often	useful	to	select	VGC	Pause
}	Total	pause	time,	and	VGC	Heap	}	Used	heap	(after	global	collection).

		

X-axis

It	is	often	useful	to	change	the	X-axis	to	date/time:

		

Zooming

You	may	zoom	into	any	part	of	the	graph,	or	reset	the	zoom	in	the	Zoom	view.	Note	that	zooming	does	not

affect	the	report	(see	the	cropping	section	above	for	how	to	do	that):

		

Comparing	Different	Runs

First,	load	the	baseline	verbosegc	as	normal.	Next,	right	click	anywhere	in	the	plot	area	and	click	'Compare
File...':

Next,	ensure	that	the	X-axis	uses	a	relative	format	such	as	hours,	instead	of	date.	Otherwise,	you'll	just	end
up	essentially	combining	the	two	verbosegc	files	with	a	date	gap	in	between	and	so	you	won't	be	able	to
visualize	any	differences.

Finally,	zoom	in	to	the	part	where	they	overlap	(i.e.	one	might	be	longer	than	another,	so	cut	the	extra	off).
Important	note:	GCMV's	zoom	feature	is	only	a	different	visualization	of	the	line	plot	--	it	does	not	affect
GCMV's	report	tab.	That	means	that	if	something	went	wrong	outside	your	zoom	which	you	don't	care
about,	zooming	in	to	avoid	that	section	will	not	disregard	that	errant	data	in	the	report	tab	(for	things	such	as
proportion	of	time	spent	in	GC,	largest	allocation,	etc.).	To	do	this,	you'll	also	want	to	change	the	Minimum
and	Maximum	X	values	in	the	Axes	view	to	approximately	match	your	zoom.	It	is	easiest	to	first	change	the
X-axis,	at	which	point	GCMV	will	gray	out	the	disregarded	data.	Then,	you	can	zoom	around	the	non-
disregarded	data	using	your	cursor.

For	each	series,	there	will	be	a	solid	line	for	the	baseline	verbosegc	and	a	dashed	line	of	the	same	color	for
the	compared	verbosegc.	When	you	click	on	the	report	tab,	GCMV	will	create	a	column	for	each	verbosegc
for	easier	comparison:

In	this	case,	we	can	see	that,	for	example,	the	proportion	of	time	spent	in	GC	went	from	7.82%	to	1.48%	(the
native_stderr.log	was	the	newer	one).	Many	of	the	other	statistics	got	better.	In	this	case,	we	can	say	that	the
tuning	we	did	(increasing	the	nursery	size)	was	very	beneficial,	all	other	things	being	equal.

Now	one	very	important	consideration	is	"all	other	things	being	equal."	You	have	to	be	very	careful
comparing	verbosegc.	If,	for	example,	a	different	amount	or	rate	of	work	came	into	these	independent	runs
(for	example,	a	different	test	was	run,	or	one	day	was	a	workday	and	another	a	weekend	with	less	work,	etc.),
then	it	would	be	much	more	difficult	to	conclude	anything.	One	obvious	sign	of	this	is	that	you're	tuning
something	like	the	nursery,	and	the	overall	Java	heap	usage	is	magnitudes	different.	The	point	is:	carefully
control	your	experiment	to	hold	all	other	variables	constant	(and	verify	using	data	such	as	request	count,

response	times,	etc.).

	

Headless	Mode

Default	report	where	$FILE	is	an	absolute	path	to	the	verbosegc	file	and	$OUTPUDIR	is	an	absolute	path	to	the
output	directory	(no	sub-directory	will	be	made):

gcmv	-consoleLog	-nosplash	-rc	-display	1024x768	-application	com.ibm.java.diagnostics.visualizer.headless.application	-f	"$FILE"	-o	"$OUTPUTDIR"	-p	"DEFAULT_TEMPLATES"	-generateTableData

You	can	create	whatever	line	plot	you	want	by	loading	the	GCMV	GUI,	loading	a	verbosegc,	selecting	the
plots	you're	interested	in,	and	then	Right	Click	}	Export	current	settings	as	template...	}	Save	as	an	epf	file

Then	specify	that	epf	file;	for	example:

gcmv	-consoleLog	-nosplash	-rc	-display	1024x768	-application	com.ibm.java.diagnostics.visualizer.headless.application	-f	$(pwd)/verbosegc.log	-o	$(pwd)/gcmvreport/	-p	gcmv_pauses_and_proportion.epf

Here	is	an	example	epf	file	with	total	pause	time	and	proportion	of	time	in	GC	plots.	The	key	element	has	the
key	TupleIDsToDisplayPropertiesImpl.

<?xml	version="1.0"	encoding="UTF-8"	standalone="no"?>
<!DOCTYPE	preferences	SYSTEM	"http://java.sun.com/dtd/preferences.dtd">
<preferences	EXTERNAL_XML_VERSION="1.0">
		<root	type="user">
				<map/>
				<node	name="com">
						<map/>
						<node	name="ibm">
								<map/>
								<node	name="java">
										<map/>
										<node	name="diagnostics">
												<map/>
												<node	name="visualizer">
														<map/>
														<node	name="prefs">
																<map/>
																<node	name="coredisplayers">
																		<map>
																				<entry	key="com.ibm.java.diagnostics.visualizer.display.DisplayerRegistry.v1"	value="[com.ibm.java.diagnostics.visualizer.displayer.tabbed.TabbedDataDisplayer,	com.ibm.java.diagnostics.visualizer.displayer.structured.StructuredDataDisplayer,	com.ibm.java.diagnostics.visualizer.displayer.html.HTMLReportDisplayer,	com.ibm.java.diagnostics.visualizer.displayer.plot.ZoomingPlotDataDisplayer]"/>
																				<entry	key="LinePlotPreferenceHelperForceYAxisStartAtZero"	value="true"/>
																				<entry	key="HTMLReportPreferencesHelperSinglePlot"	value="false"/>
																				<entry	key="LinePlotPreferenceHelperImageFormat"	value="0"/>
																				<entry	key="LinePlotPreferenceHelperDrawDataLegend"	value="true"/>
																				<entry	key="LinePlotPreferenceHelperLineThickness"	value="1"/>
																				<entry	key="DisplayerPreferenceHelperEnableHovers"	value="true"/>
																				<entry	key="TabbedDataPreferenceHelperDisplayDateFirst"	value="false"/>
																				<entry	key="LinePlotPreferenceHelperPadPlots"	value="true"/>
																				<entry	key="DisplayerPreferenceHelperEnableFileViewer"	value="true"/>
																				<entry	key="LinePlotPreferenceHelperCursorFuzziness"	value="10"/>
																				<entry	key="LinePlotPreferenceHelperDrawLegend"	value="true"/>
																				<entry	key="TabbedDataPreferenceHelperLineThickness"	value=","/>
																				<entry	key="HTMLReportPreferencesHelperShowStats"	value="true"/>
																				<entry	key="LinePlotPreferenceHelperLegendPosition"	value="0"/>
																		</map>
																</node>
																<node	name="gc">
																		<map/>
																		<node	name="defaultextensions">
																				<map>
																						<entry	key="RecommendationPreferenceHelperHeapSizeJitterCountThreshold"	value="15"/>
																						<entry	key="RecommendationPreferenceHelperCriticallyHighOccupancyThreshold"	value="80"/>
																						<entry	key="RecommendationPreferenceHelperPauseThreshold"	value="5000"/>
																						<entry	key="UnitFormatPreferenceHelperDateFormat"	value=""/>
																						<entry	key="UnitFormatPreferenceHelperEnableDateFormat"	value="UnitFormatPreferenceHelperEnableDateFormat"/>

																						<entry	key="VGCParserPreferenceHelperInteropolateTimes"	value="true"/>
																						<entry	key="RecommendationPreferenceHelperHighOccupancyThreshold"	value="70"/>
																						<entry	key="RecommendationPreferenceHelperHeapSizeJitterThreshold"	value="15"/>
																						<entry	key="UnitFormatPreferencehelper.test"	value="5"/>
																						<entry	key="RecommendationPreferenceHelperSystemGCErrorThreshold"	value="5"/>
																						<entry	key="RecommendationPreferenceHelperCompactFractionThreshold"	value="15"/>
																						<entry	key="RecommendationPreferenceHelperLeakThreshold"	value="10"/>
																						<entry	key="RecommendationPreferenceHelperRequestThreshold"	value="65536"/>
																						<entry	key="VGCParserPreferenceHelperIgnoreSystemGCs"	value="false"/>
																						<entry	key="RecommendationPreferenceHelperExcessiveTenuringThreshold"	value="1"/>
																						<entry	key="RecommendationPreferenceHelperFinalizerThreshold"	value="750"/>
																						<entry	key="RecommendationPreferenceHelperFragmentationThreshold"	value="15"/>
																						<entry	key="RecommendationPreferenceHelperLowOccupancyThreshold"	value="40"/>
																				</map>
																		</node>
																</node>
																<node	name="impl">
																		<map>
																				<entry	key="VGCLabels.flat.heap.size"	value="25,101,163"/>
																				<entry	key="OutputPropertiesImpl_axis.units_VGCAxes.moved"	value="AxisUnits.MB"/>
																				<entry	key="Colours3"	value="50,175,50"/>
																				<entry	key="UnstructuredIDsToDisplayPropertiesImpl"	value="tuning.recommendation,native.tuning.recommendation"/>
																				<entry	key="VGCLabels.unusable.heap"	value="163,100,31"/>
																				<entry	key="Colours8"	value="30,144,255"/>
																				<entry	key="OutputPropertiesImpl_axis.units_VGCAxes.time.from.start"	value="AxisUnits.date"/>
																				<entry	key="Colours0"	value="0,175,175"/>
																				<entry	key="com.ibm.java.diagnostics.visualizer.impl.extensions.PostProcessorRegistry.v1"	value="[com.ibm.java.diagnostics.visualizer.postprocessor.vgc.analysis.RollingAveragesPostProcessor,	com.ibm.java.diagnostics.visualizer.gc.solarissupport.postprocessor.DerivedOraclePostProcessor,	com.ibm.java.diagnostics.visualizer.postprocessor.vgc.analysis.UnitSelectingPostProcessor,	com.ibm.java.diagnostics.visualizer.postprocessor.vgc.analysis.DerivedVGCDataPostProcessor]"/>
																				<entry	key="Colours5"	value="255,192,203"/>
																				<entry	key="TupleIDsToDisplayPropertiesImpl"	value="VGCLabels.jvm.restarts,VGCLabels.proportion.gc,VGCLabels.pause.times.with.exclusive.access,VGCLabels.warning.count"/>
																				<entry	key="OutputPropertiesImpl_axis.units_VGCAxes.percent"	value="AxisUnits.percent.sign"/>
																				<entry	key="OutputPropertiesImpl_axis.units_VGCAxes.time"	value="AxisUnits.ms"/>
																				<entry	key="com.ibm.java.diagnostics.visualizer.impl.extensions.ParserRegistry.v1"	value="[com.ibm.java.diagnostics.visualizer.gc.solarissupport.parser.SunVGCParser,	com.ibm.java.diagnostics.visualizer.gc.i5classic.parser.I5ClassicParser,	com.ibm.java.diagnostics.visualizer.parser.javadump.JavaDumpParser,	com.ibm.java.diagnostics.visualizer.memory.parser.PsNativeParser,	com.ibm.java.diagnostics.visualizer.memory.parser.PerfMonParser,	com.ibm.java.diagnostics.visualizer.gc.realtime.parser.RealTimeParserV2,	com.ibm.java.diagnostics.visualizer.memory.parser.SVMonParser,	com.ibm.java.diagnostics.visualizer.gc.i5V6r1.parser.I5V6r1Parser,	com.ibm.java.diagnostics.visualizer.gc.realtime.parser.RealTimeParser,	com.ibm.java.diagnostics.visualizer.parser.vgc.sovereign.SovereignVGCParser,	com.ibm.java.diagnostics.visualizer.gc.v8support.parser.V8Parser,	com.ibm.java.diagnostics.visualizer.gc.hp.parser.HPVGCParser,	com.ibm.java.diagnostics.visualizer.gc.iseriessupport.parser.ISeriesVGCParser,	com.ibm.java.diagnostics.visualizer.parser.vgc.j926.J926VGCParser,	com.ibm.java.diagnostics.visualizer.gc.i5V5r4.parser.I5V5r4Parser,	com.ibm.java.diagnostics.visualizer.parser.tgc.TGCParserImpl,	com.ibm.java.diagnostics.visualizer.gc.solarissupport.parser.OracleG1VGCParser,	com.ibm.java.diagnostics.visualizer.parser.vgc.j9.J950VGCParser]"/>
																				<entry	key="VGCLabels.proportion.gc"	value="255,38,0"/>
																				<entry	key="OutputPropertiesImpl_axis.units_VGCAxes.copied"	value="AxisUnits.MB"/>
																				<entry	key="Colours2"	value="255,0,0"/>
																				<entry	key="Colours7"	value="165,42,42"/>
																				<entry	key="NumColours"	value="10"/>
																				<entry	key="Colours4"	value="255,0,255"/>
																				<entry	key="VGCLabels.live.normal.heap.after.gc"	value="212,16,104"/>
																				<entry	key="OutputPropertiesImpl_axis.units_VGCAxes.data"	value="AxisUnits.MB"/>
																				<entry	key="OutputPropertiesImpl_axis.units_VGCAxes.gc.type"	value="AxisUnits.collection.type"/>
																				<entry	key="Colours9"	value="255,165,0"/>
																				<entry	key="VGCLabels.gc.rate"	value="65,53,157"/>
																				<entry	key="VGCLabels.pause.times.with.exclusive.access"	value="121,128,255"/>
																				<entry	key="StructuredIDsToDisplayPropertiesImpl"	value="summary,quantum.pause.summary"/>
																				<entry	key="Colours1"	value="0,0,255"/>
																				<entry	key="SourcePreferenceHelperBufferSize"	value="1024"/>
																				<entry	key="VGCLabels.live.heap.after.global.gc"	value="158,177,141"/>
																				<entry	key="VGCLabels.jvm.restarts"	value="191,228,69"/>
																				<entry	key="OutputPropertiesImpl_axis.units_VGCAxes.number"	value="AxisUnits.100s"/>
																				<entry	key="Colours6"	value="173,216,230"/>
																				<entry	key="OutputPropertiesImpl_axis.units_VGCAxes.gc.scope"	value="AxisUnits.region"/>
																				<entry	key="VGCLabels.free.flat.heap"	value="50,26,47"/>
																				<entry	key="OutputPropertiesImpl_axis.units_VGCAxes.heap"	value="AxisUnits.MB"/>
																		</map>
																</node>
														</node>
												</node>
										</node>
								</node>
						</node>
				</node>
		</root>
</preferences>

Here's	an	example	way	to	run	this	over	many	verbosegc	files:

for	i	in	*/verbosegc*.log;	do	pushd	$(dirname	$i);	mkdir	$(basename	$i	.log);	~/work/gcmv/V2.8.7_20231127/IBM\	Garbage\	Collection\	and\	Memory\	Visualizer.app/Contents/MacOS/gcmv	-consoleLog	-nosplash	-rc	-display	1024x768	-application	com.ibm.java.diagnostics.visualizer.headless.application	-f	$(readlink	-f	$(basename	$i))	-o	$(pwd)/$(basename	$i	.log)/	-p	~/work/gcmv/gcmv_pauses_and_proportion.epf;	popd;	done

	

References

General	Documentation
Lab	demonstrating	GCMV
Direct	Eclipse	update	site

	

IBM	Thread	and	Monitor	Dump	Analyzer	(TMDA)

Overview

The	IBM	Thread	and	Monitor	Dump	Analyzer	(TMDA)	tool	analyzes	Java	thread	dumps,	extracting	out
thread	stacks	and	monitors	and	displaying	them	in	a	GUI:	https://www.ibm.com/support/pages/ibm-thread-
and-monitor-dump-analyzer-java-tmda

Thread	dumps	are	primarily	used	in	performance	analysis	as	a	low	frequency,	sampling	profiler.	They	are	a
lightweight	and	generally	non-intrusive	way	to	get	a	picture	of	what	the	JVM	is	doing.	For	more	details
about	profilers,	see	the	Java	Profilers	chapter.	The	IBM	Java	and	HotSpot	Java	troubleshooting	sections	list
all	of	the	ways	to	generate	thread	dumps.

Use	TMDA	to	help	you:

Get	a	picture	of	what	the	JVM	is	doing
See	how	threads	are	moving	(or	not	moving)	over	time	using	the	thread	comparison	view
Check	for	deadlocks	or	lock	contention

For	a	lab	demonstrating	TMDA,	see
https://github.com/IBM/webspherelab/blob/main/WAS_Troubleshooting_Perf_Lab.md#ibm-java-and-
openj9-thread-dumps

	

Features	and	Benefits

TMDA	displays	thread	dumps	in	an	easy-to-navigate	GUI	view:

Color	code	threads	based	on	run	state
Summarize	threads	by	the	top	stack	frames
Show	a	tree	view	of	monitors
Analyze	native	memory	information	in	IBM	Javacores

	

Installation

See	the	download	instructions.

	

https://www.ibm.com/docs/en/mon-diag-tools?topic=monitoring-diagnostic-tools-garbage-collection-memory-visualizer
https://github.com/IBM/webspherelab/blob/main/WAS_Troubleshooting_Perf_Lab.md#garbage-collection
https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/
https://www.ibm.com/support/pages/ibm-thread-and-monitor-dump-analyzer-java-tmda
https://github.com/IBM/webspherelab/blob/main/WAS_Troubleshooting_Perf_Lab.md#ibm-java-and-openj9-thread-dumps
https://www.ibm.com/support/pages/ibm-thread-and-monitor-dump-analyzer-java-tmda
https://www.ibm.com/support/pages/ibm-thread-and-monitor-dump-analyzer-java-tmda

Usage

1.	 Click	the	Open	Thread	Dumps	button	to	load	the	thread	dump	files:

2.	 Select	one	or	more	thread	dumps	from	the	list	and	click	on	Analysis.

3.	 You	can	do	the	following	analysis	:
1.	 Native	memory	analysis
2.	 Thread	detail	analysis
3.	 Details	of	the	thread	monitor

	

Compare	threads	from	different	files

Select	one	or	more	thread	dumps	in	the	thread	dump	list	and	click	the	Compare	Threads	button	(also	works
for	a	single	thread	dump):

There	will	be	a	lot	of	threads	that	will	be	irrelevant	in	90%	of	cases.	Focus	on	the	threads	where	your
application	work	occurs,	such	as	the	WebContainer	thread	pool.	In	this	example,	all	of	the	threads	are
waiting	for	work	(either	parked	in	the	WAS	BoundedBuffer	or	in	IBM	AIO	code	waiting	for	the	next	event).
Remember	that	only	the	full	stack	is	meaningful.	In	some	cases,	a	parked	thread,	or	a	thread	waiting	in
Object.wait	may	be	a	problem,	so	it's	best	to	look	methodically	through	the	stacks.

Key	things	to	look	for	are:

Are	there	any	patterns	in	the	stacks?	For	example,	do	you	see	a	particular	application	stack	frame
always	at	the	top?	Or	do	you	see	a	particular	application	stack	frame	somewhere	in	the	middle	that
suggests	that	one	particular	function	is	slow?
Are	some	or	most	of	the	threads	waiting	on	a	backend	service	such	as	a	database	or	web	service?	If	so,
can	you	figure	out	from	the	stacks	if	these	are	coming	from	a	particular	application	function?

Monitor	analysis	is	also	important	to	find	Java	lock	bottlenecks.	Click	the	Monitor	Detail	or	Compare
Monitors	buttons	to	explore	the	hierarchy	of	blocked	threads.	Remember	that	some	blocked	threads	are
normal,	such	as	threads	in	a	thread	pool	waiting	for	the	next	piece	of	work.

	

Thread	States

On	versions	of	IBM	Java	<	Java	8,	Java	7,	Java	6.1,	and	Java	6	SR16	FP4,	the	javacore.txt	thread	dump
shows	threads	which	are	effectively	running	(R)	as	waiting	(CW)	in	TMDA.	This	is	because	the	JVM	uses	a
cooperative	mechanism	to	try	to	quiesce	running	threads	for	the	duration	of	the	Javacore	to	reduce	the
chances	of	problems	creating	the	javacore	itself.	TMDA	naïvely	reports	the	thread	dump	state	without	taking
this	into	account.	This	is	no	longer	an	issue	on	the	newer	versions	of	IBM	Java	since	the	javacore.txt	file
reports	the	"actual"	state	(right	before	the	javacore	started).

	

Headless

To	generate	an	HTML	report	in	headless	mode,	pass	an	OS-path-separated	list	of	files	(Unix=:;	Windows=;)
followed	by	an	HTML	output	file	name;	for	example:

java	-jar	jca*jar	javacore1.txt:javacore2.txt:javacore3.txt	tmdaheadless.html

	

Eclipse	Memory	Analyzer	Tool

Overview

The	Eclipse	Memory	Analyzer	Tool	(MAT)	is	a	free	and	open	source	Java	heapdump	analysis	tool	for	issues
such	as	OutOfMemoryErrors	and	heap	sizing.	Also	review	the	MAT	documentation.

	

Standalone	Installation

If	you	are	reading	dumps	produced	by	a	HotSpot	JVM,	then	you	can	simply	use	 the	download	from
eclipse.org.

If	you	are	reading	dumps	produced	by	IBM	Java	or	IBM	Semeru	Runtimes,	then	you	must	have	the	free	IBM
DTFJ	Eclipse	Plugin	installed.	IBM	provides	a	build	of	MAT	with	the	plugin	pre-installed	(as	well	as	the
additional	IBM	Extensions	for	Memory	Analyzer):

	

Usage

1.	 Click	File	}	Open	Heap	Dump...	and	select	the	dump.	By	default,	only	files	with	known	dump	file
extensions	are	shown.

2.	 Note	that	the	parser	type	is	determined	by	the	file	extension,	so	it	is	important	to	have	the	right
extension:	PHD	Heapdump	(.phd),	Operating	system	core	dump	(.dmp),	or	HPROF	heapdump
(.hprof).

		

First	Dialog

After	a	dump	is	loaded,	a	dialog	will	appear	suggesting	to	run	various	reports	such	as	the	leak	suspects
report.	In	general,	the	Leak	Suspects	report	is	recommended:

https://www.eclipse.org/mat/
https://help.eclipse.org/latest/topic/org.eclipse.mat.ui.help/welcome.html
https://eclipse.dev/mat/downloads.php
https://www.ibm.com/support/pages/eclipse-memory-analyzer-tool-dtfj-and-ibm-extensions
https://www.ibm.com/support/pages/eclipse-memory-analyzer-tool-dtfj-and-ibm-extensions

		

Leak	Suspects	Report

The	leak	suspects	report	runs	various	heuristics	and	reports	suspected	objects	retaining	a	large	portion	of	the
Java	heap.	The	first	paragraph	of	each	suspect	summarizes	the	suspicion	and	any	subsequent	paragraphs	and
links	provide	details.	Review	all	of	the	suspects	retaining	a	large	proportion	of	the	Java	heap.

https://help.eclipse.org/latest/topic/org.eclipse.mat.ui.help/tasks/runningleaksuspectreport.html

		

Common	Tasks

The	Overview	tab	shows:

A)	How	much	heap	is	used	at	the	time	of	the	dump	(MAT	performs	a	full	garbage	collection	when	loading
the	dump,	so	this	does	not	include	any	garbage)

B)	The	largest	dominator	objects

C)	If	the	IBM	Extensions	for	Memory	Analyzer	are	installed,	a	link	to	the	WAS	Overview	report	that	will

provide	a	WAS-centric	view	of	the	dump

D)	A	histogram	shows	the	heap	usage	by	class

E)	The	dominator	tree	shows	the	heap	usage	by	dominator	objects	in	an	expandable	tree	view

F)	Top	consumers	shows	heap	usage	by	package.

G)	Open	Query	Browser	provides	many	advanced	ways	to	look	at	the	data,	and	also	most	of	the	IBM
Extensions	for	Memory	Analyzer	plugins

H)	The	leak	suspects	report	will	search	for	likely	causes	of	a	leak	in	the	dump.

		

Heapdump	Theory

Retained	Heap:	It	is	guaranteed	that	all	objects	below	an	entry	are	retained	or	kept	alive	by	the	parent.	If	you
assume	that	object	is	removed,	then	the	rest	have	been	GCed.

The	retained	set	includes	the	objects	referenced	by	the	fields	on	the	given	objects	and	all	objects	which	are
lifetime-dependent	on	them,	i.e.	which	would	be	garbage	collected	if	the	references	at	the	given	fields	at	the
given	objects	would	be	nulled.

The	dominator	tree	is	a	transformation	of	the	graph	which	creates	a	spanning	tree	(all	objects	in	the	graph	are
also	in	the	dominator	tree),	removes	cycles,	and	models	the	keep-alive	dependencies.	Object	domination	is
equivalent	to	object	retention,	i.e.	the	set	of	objects	dominated	by	some	object	are	the	same	as	the	retained
set	of	that	object.

A	garbage	collection	root	is	an	object	which	has	a	reference	to	it	from	outside	the	heap	(for	example,	stacks
and	registers	of	the	JVM	threads,	JNI,	and	other	internal	data	structures).

https://help.eclipse.org/latest/topic/org.eclipse.mat.ui.help/concepts/dominatortree.html

	

Retained	Sets

The	retained	set	of	an	object	is	the	set	of	objects	that	are	lifetime-dependent	on	it:

Retained	set	of	X	is	the	set	of	objects	which	would	be	removed	by	GC	when	X	is	garbage
collected.

When	most	people	talk	about	the	"size"	of	a	set	of	objects	X,	they	are	really	talking	about	the	retained	set	of
the	set	of	objects	X,	i.e.	if	nothing	referenced	X,	then	those	objects	could	be	garbage	collected	and	the
number	of	bytes	representing	the	retained	set	of	X	would	be	freed.

Therefore,	if	you	want	to	know	how	much	memory	a	set	of	objects	retain,	click	Open	Query	Browser	}	Java
Basics	}	Show	as	Histogram,	specify	the	objects,	and	then	click	"Calculate	retained	size"	and	select	either	of
the	two	options.	For	example,	one	common	cause	of	excessive	heap	usage	is	by
org.apache.jasper.runtime.BodyContentImpl	objects	due	to	the	default	behavior	of
com.ibm.ws.jsp.limitBuffer=false.	If	we	want	to	see	how	much	these	buffers	are	retaining,	we	can	show	a
histogram	for	BodyContentImpl	and	calculate	a	precise	retained	size,	in	this	example	291MB:

https://help.eclipse.org/latest/topic/org.eclipse.mat.ui.help/concepts/shallowretainedheap.html

Class	Name																															|	Objects	|	Shallow	Heap	|	Retained	Heap
--
org.apache.jasper.runtime.BodyContentImpl|					306	|					16.73	KB	|					291.90	MB
--

Another	way	to	do	this	is	to	simply	open	the	class	Histogram	and	then	filter	in	the	Class	Name	column	and
calculate	the	retained	size:

One	useful	technique	when	first	analyzing	a	heapdump	is	to	open	the	class	histogram,	calculate	minimum
retained	sizes	(you	probably	don't	want	to	do	precise	as	there	may	be	many	classes),	and	then	sort	by	the

"Retained	Heap"	column.	It's	important	to	note	that	each	retained	heap	value	is	exclusive	of	the	other	values,
so	don't	add	this	column	up.	For	example,	we	may	see	that	char[]	retain	hundreds	of	MB	and
BodyContentImpl	objects	retain	hundreds	of	MB,	but	in	this	example,	the	BodyContentImpl	objects	retain
the	char[]	objects.

It's	nice	to	know	how	"big"	a	set	of	objects	is	but	it's	even	better	to	get	a	class	histogram	of	what	is	in	that
retained	set.	To	do	that,	either	right	click	on	a	set	of	objects	and	select	"Show	Retained	Set,"	or	use	Open
Query	Browser	}	Show	Retained	Set	and	specify	the	objects.	One	tip	is	that	you	can	use	wildcards,	so	if	you
want	to	know	how	much	memory	is	retained	by	some	set	of	classes	(e.g.	everything	made	by	one	vendor),
simply	do	com.example.*	and	review	the	sum	of	shallow	heaps	(in	this	example,	we	can	say	org.apache
classes	retain	321MB).

It's	important	to	understand	the	limitations	of	retained	sets.	Complex	object	graphs	often	complicate	retained
sets.	For	example,	WAS	classes	such	as	com.ibm.ws.webcontainer.httpsession.MemorySessionContext	hold
all	HTTP	sessions,	so	you	may	think	that	you	can	get	the	size	of	all	HTTP	sessions	by	simply	looking	at	the
retained	set	of	this	class.	However,	let's	say	WebContainer	threads	are	currently	working	on	some	set	of
HTTP	sessions	at	the	time	of	the	heapdump.	In	that	case,	those	sessions	are	not	part	of	the	retained	set	of
MemorySessionContext	because	there	are	references	to	those	objects	from	outside	MemorySessionContext.
For	specific	situations,	MAT	has	a	Customized	Retained	Set	query	where	you	can	explicitly	say	which
objects	to	exclude	from	the	set	of	incoming	references	(in	this	example,	you	would	specify
MemorySessionContext	and	specify	the	set	of	application	objects	that	reference	these	sessions	as	the	exclude
list).	An	alternative	way	to	answer	the	question	of	how	big	all	the	session	are	is	to	calculate	the	retained	set
of	all	of	the	actual	session	objects	instead	of	the	map	that	contains	them.

	

Class	Histogram

Sometimes	you'll	see	a	dump	where	there	are	no	obvious	causes	of	high	memory	usage	in	the	dominator	tree
nor	the	top	consumers	report.	For	example,	here	is	a	dump	retaining	4.2GB	of	Java	heap	without	any	large

dominators:

The	top	consumers	report	is	equally	uninteresting:

The	leak	suspects	report	is	slightly	more	interesting.	The	suspect	is	a	set	of	730	instances	of	HashMap
retaining	2.26GB;	however,	each	individual	HashMap	is	no	more	than	57MB:

Where	do	we	go	from	here?	We	know	it's	something	in	HashMaps	but	there	isn't	a	particular	HashMap	to
look	at.	Let's	go	to	the	class	histogram	which	shows	heap	usage	grouped	by	class:

Click	the	little	calculator	and	select	"Calculate	Minimum	Retained	Size	(quick	approx)"	to	see	approximately
how	much	each	class	and	its	instances	retain.

Next,	right	click	on	HashMap	and	select	"Show	Objects	by	class	}	incoming	references."	This	will	show	all
of	the	objects	that	have	references	to	these	HashMaps	and	group	the	objects	by	class:

As	we	expand	the	top	level	element,	again	we'll	want	to	calculate	minimum	retained	size	and	look	for	the
class	and	its	instances	that	retains	the	most.	In	this	case,	it	is	a	set	of	4,933	instances	of	PageContextImpl
retaining	about	2GB	of	heap.

This	is	far	enough,	but	just	one	last	step	will	be	interesting	which	is	to	right	click	on	PageContextImpl	and
choose	Show	Retained	Set:

This	shows	a	histogram	by	class	of	the	set	of	objects	retained	by	the	selection.	We	can	see	that	most	of	the
memory	held	by	the	PageContextImpl	and	HashMap	objects	is	character	arrays.	This	lines	up	with	the
histogram	we	saw	for	the	whole	heap	above,	and	we	could	have	just	as	quickly	gotten	to	the	root	cause	by
simply	starting	at	the	histogram	and	showing	incoming	references	by	class	on	the	top	element.

		

Objects	Held	by	Thread	Stack	Frames

Load	an	J9	Java	system	dump	or	a	recent	Java	HPROF	dump	and	open	Thread	Overview	and	Stacks:

Expand	the	relevant	stack	frames	and	review	the	stack	frame	locals:

		

Comparing	Heap	Dumps

Acquire	two	or	more	heap	dumps	from	the	same	run	of	the	same	JVM	process,	load	both	heap	dumps	in
MAT,	open	the	Histogram	in	the	latest	heap	dump	and	then	use	the	Compare	to	another	Heap	Dump	button:

This	will	show	a	comparison	of	the	class	histograms	between	the	two	dumps,	sorted	by	shallow	size.	In	the
example	below,	the	latest	dump	has	20MB	more	of	byte	arrays,	although	there	are	19,145	fewer	of	them	(this
means	that	the	average	size	of	a	byte	array	has	increased).	As	with	class	histograms	in	general,	you	often
want	to	skip	past	primitives,	Strings,	and	collections,	in	this	case	taking	us	to	21,998	more	instances	of
RemovedEntry,	taking	up	703,995	more	bytes	of	shallow	heap.	At	this	point,	there	is	no	science	to
discovering	the	leak	(unless	it's	obvious),	but	one	approach	would	be	to	see	if	the	"uncommon"	classes	are
holding	the	"common"	classes;	i.e.	do	the	RemovedReaper	and	TTLHeapEntry	objects	retain	HashMap
entries?	We	can	see	just	by	the	object	counts	that	it	is	likely,	and	therefore,	those	uncommong	objects	are	a
leak	suspect.

Note	that	object	addresses	and	identifiers	may	change	between	dumps:

Object	IDs	which	are	provided	in	the	heap	dump	formats	supported	by	MAT	are	just	the
addresses	at	which	the	objects	are	located.	As	objects	are	often	moved	and	reordered	by	the
JVM	during	a	GC	these	addressed	change.	Therefore	they	cannot	be	used	to	compare	the
objects.	This	basically	means	that	if	one	compares	two	different	heap	dumps	(although	from	the
same	process)	it	is	not	possible	to	point	to	the	concrete	objects	different	between	the	two	heap
dumps.	However,	one	can	still	perform	comparison	on	the	aggregated	results	(e.g.	the	class
histogram)	and	analyze	how	the	amount	of	object	and	the	memory	they	take	has	changed.

https://help.eclipse.org/latest/topic/org.eclipse.mat.ui.help/tasks/comparingdata.html

MAT	also	has	extended	differencing	capabilities	beyond	the	class	histogram	with	the	compare	basket.

	

Why	are	some	Java	objects	alive?

For	a	discussion	of	the	Merge	Shortest	Paths	to	GC	roots	query,	see
https://www.ibm.com/support/pages/node/1074993

	

Object	Query	Language	(OQL)

The	Object	Query	Language	(OQL)	is	similar	to	SQL	and	provides	a	powerful	way	to	query	the	heap	dump:

Select	java.io.File	objects	that	contain	a	string	in	their	path:

select	*	from	java.io.File	f	where	toString(f.path).contains("IBM")

Select	all	threads	that	contain	something	in	their	name:

SELECT	OBJECTS	x	FROM	INSTANCEOF	java.lang.Thread	x	WHERE	x.toString().contains("WebContainer")

Select	instances	of	some	class	which	have	a	retained	size	>	24	bytes:

select	*	from	instanceof	com.ibm.MyClass	s	where	s.@retainedHeapSize	>	24

Select	non-viewed,	non-phantomed	DirectByteBuffers:

SELECT	k,	k.capacity	FROM	java.nio.DirectByteBuffer	k	WHERE	((viewedBuffer=null)and(inbounds(k).length>1))

Select	dominators	of	all	instances	of	some	class:

SELECT	DISTINCT	OBJECTS	dominatorof(x)	FROM	java.lang.String	x

https://help.eclipse.org/latest/topic/org.eclipse.mat.ui.help/tasks/comparingdata.html
https://www.ibm.com/support/pages/node/1074993
https://help.eclipse.org/latest/topic/org.eclipse.mat.ui.help/reference/oqlsyntax.html

Select	dominator	names	of	Strings:

SELECT	classof(dominatorof(s)).@name,	s	FROM	java.lang.String	s	WHERE	dominatorof(s)	!=	NULL

Select	all	Strings	with	dominators	of	a	particular	type:

SELECT	*	FROM	java.lang.String	s	WHERE	dominatorof(s)	!=	NULL	and	classof(dominatorof(s)).@name	=	"com.ibm.Test"

Select	all	class	instances	of	a	particular	type:

SELECT	OBJECTS	c	FROM	INSTANCEOF	java.lang.Class	c	WHERE	c.@displayName.contains("class	org.apache.commons.logging.impl.Jdk14Logger	")

Select	a	field	from	static	class	instances:

SELECT	c.controller	FROM	INSTANCEOF	java.lang.Class	c	WHERE	c.@displayName.contains("class	com.ibm.ws.management.util.PlatformHelperImpl	")

Selecting	information	from	static	class	instances:

No	better	way	to	select	attributes	of	a	static	class	instance.	Using	classof()	doesn't	help	because	there	could
be	zero	instances	of	a	class.	The	following	example	checks	if	the	JVM	is	a	z/OS	control	region.	The	trailing
space	character	within	the	double	quotes	is	important	for	accuracy.

SELECT	c.controller	FROM	INSTANCEOF	java.lang.Class	c	WHERE
c.@displayName.contains("class	com.ibm.ws.management.util.PlatformHelperImpl	")

	

SoftReferences

Even	if	you	observe	increasing	heap	utilization	after	global	collection	over	time:

It	is	possible	that	this	is	caused	by	SoftReferences	being	allocated	faster	than	they're	being	garbage
collected.	If	this	is	the	case,	the	JVM	will	clean	up	garbage	SoftReferences	if	necessary:

All	soft	references	to	softly-reachable	objects	are	guaranteed	to	have	been	cleared	before	the
virtual	machine	throws	an	OutOfMemoryError.	Otherwise	no	constraints	are	placed	upon	the
time	at	which	a	soft	reference	will	be	cleared	or	the	order	in	which	a	set	of	such	references	to
different	objects	will	be	cleared.	Virtual	machine	implementations	are,	however,	encouraged	to

https://help.eclipse.org/latest/topic/org.eclipse.mat.ui.help/reference/propertyaccessors.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ref/SoftReference.html

bias	against	clearing	recently-created	or	recently-used	soft	references.

The	rate	at	which	soft	references	are	cleared	is	controlled	with	-XsoftrefthresholdX	(J9	Java)	and	-
XX:SoftRefLRUPolicyMSPerMB=X	(HotSpot	Java).

In	MAT,	you	can	see	how	much	memory	is	only	softly	retained	with	Java	Basics	}	References	}	Soft
references	statistics	and	review	the	Total	line	of	the	Shallow	Heap	column	in	the	Only	Softly	Retained	tab:

		

Headless	Mode

Leak	suspects	report:

./MemoryAnalyzer	-consoleLog	-nosplash	-application	org.eclipse.mat.api.parse	$DUMP	org.eclipse.mat.api:suspects	-vmargs	-Xmx4g

Arbitrary	query	in	text	format:

./MemoryAnalyzer	-consoleLog	-nosplash	-application	org.eclipse.mat.api.parse	$DUMP	-command=histogram	-format=txt	-unzip	org.eclipse.mat.api:query	-vmargs	-Xmx4g

Output:	cat	(basename	$DUMP	.dmp)_Query/pages/Query_Command2.txt

https://help.eclipse.org/latest/topic/org.eclipse.mat.ui.help/reference/inspections/query_report.html

	

Index	Files

Most	of	the	index	files	are	divided	into	compressed	pages	of	bytes	held	by	soft	references,	so	when	memory
is	short	they	can	be	discarded	and	then	reloaded,	so	you	would	have	to	ensure	the	soft	references	weren't
cleared	if	you	skipped	writing	the	files.	The	index	writers	create	the	pages	and	write	them	to	disk,	but	then
pass	the	pages	and	the	file	across	the	reader,	so	provided	the	pages	are	present	the	file	might	not	be	needed.

The	parser	builds	some	index	files,	then	the	garbage	cleaner	removes	unreachable	objects	and	rewrites	the
indexes	with	the	new	identifiers	and	also	builds	some	new	index	files	including	the	inbound	index.	The
inbound	index	does	have	an	intermediate	stage	which	is	written	to	disk	-	the	.log	files,	which	are	not	held	in
memory.	The	rewriting	also	writes	some	of	the	index	files	in	a	different	format	e.g.	the	outbound	index	is
written	in	order	so	that	it	just	extends	to	the	start	of	the	outbound	references	for	the	next	index.

The	dominator	tree	stage	releases	all	the	index	files	as	it	needs	a	lot	of	space	(at	least	7	int	arrays	the	size	of
the	number	of	objects	in	the	dump).	You	would	need	to	make	sure	you	had	enough	memory	to	hold
everything.

If	MAT	is	unexpectedly	not	reading	index	files,	check	the	timestamps	(e.g.	if	transferred	from	another
system).	MAT	decides	to	reload	the	dump	if	the	last	modified	time	of	the	index	file	($DUMPFILE.index)	is
less	than	the	last	modified	time	of	the	dump	file.	This	happened	once	when	receiving	files	from	England	and
when	extracting	the	zip	file,	there	was	no	time	zone	conversion,	so	the	last	modified	time	was	hours	into	the
"future."	Every	time	loading	the	dump,	the	index	file	would	still	not	be	newer	than	the	dump	file.	To	get
around	this,	manually	update	the	last	modified	time	to	something	before	the	last	modified	time	of	the	index
file:

touch	-t	201201050000	core.20120106.144823.2163332.0001.dmp

	

Unreachable	Objects

By	default,	MAT	performs	a	full	garbage	collection	when	it	first	loads	a	heapdump.	On	the	Overview	tab,	if
there	was	any	garbage,	there	will	be	a	link	to	the	Unreachable	Objects	Histogram,	which	will	provide	a
histogram	of	the	garbage	collected.

When	using	a	generational	garbage	collector	(gencon,	balanced,	ParallelOld,	CMS,	G1GC,	etc.),	trash	often
builds	up	in	the	old	generation	until	a	full	collection	runs	(specifically,	what	are	essentially	short-lived
objects	survive	enough	collections	to	be	tenured).	Sometimes,	it's	interesting	to	look	in	the	trash	because	this
gives	a	sense	of	object	allocations	over	time.	By	analyzing	the	unreachable	objects	histogram,	you	will	see
the	number	and	shallow	sizes	of	objects	in	the	trash	by	class.	To	do	a	deeper-dive	into	the	trash:

1.	 Load	the	original	heapdump	in	the	Memory	Analyzer	Tool	(MAT)
2.	 Copy	the	heapdump	on	your	filesystem	and	append	something	to	the	name	(before	the	extension)	like

_unreachable
3.	 In	MAT,	click	Window	}	Preferences	}	Memory	Analyzer	}	Check	"Keep	unreachable	objects"
4.	 Load	the	_unreachable	heapdump	in	MAT
5.	 Click	the	Histogram	button
6.	 Click	the	Compare	to	another	heapdump	button	and	choose	the	first	heapdump	as	the	baseline

This	is	a	way	to	essentially	trick	MAT	into	thinking	that	it's	comparing	two	different	dumps,	whereas	it's
actually	comparing	a	dump	with	trash	and	without,	giving	a	clean	way	to	understand	a	histogram	(by	class)	of
what's	in	the	trash.	From	there,	you'll	have	to	get	creative	to	explore	further.	For	example,	take	the	largest
class,	explore	incoming	references	by	class,	calculate	the	minimum	retained	set,	and	compare	between	the
two	dumps	to	find	which	subsets	are	trash.

Remember	to	uncheck	the	"keep	unreachable	objects"	checkbox	before	you	close	MAT,	because	you	might

https://wiki.eclipse.org/index.php/MemoryAnalyzer/FAQ#How_to_analyse_unreachable_objects

forget	and	get	strange	analyses	the	next	time	you	load	a	dump	(this	comes	from	experience).

The	value	of	this	approach	over	simply	clicking	"Unreachable	objects	histogram"	is	that	now	you	can	do
some	cross-dump	comparisons	of	each	class	(although	subsetting	is	still	conceptual/manual).

	

Source	Code

The	MAT	source	code	is	here:	https://git.eclipse.org/c/mat/org.eclipse.mat.git

	

IBM	Extensions	for	Memory	Analyzer	(IEMA)

The	IBM	Extensions	for	Memory	Analyzer	(IEMA)	are	a	set	of	product	specific	extensions	for	MAT	and	are
available	for	free	as	optional	plugins.

	

Installation

The	IEMA	plugins	may	be	added	to	an	existing	MAT	installation:

1.	 Click	Help	}	Install	New	Software...
2.	 Click	the	"Add..."	button.	Enter	"IBM	Tools	IEMA"	and	Location:

https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/iema/
3.	 Check	the	additional	"IBM	Monitoring	and	Diagnostic	Tools",	install	the	plugins	and	restart	Eclipse.

	

Offline	installation	of	MAT,	DTFJ,	and	IEMA

1.	 Download	MAT	from	https://www.eclipse.org/mat/downloads.php

2.	 Unzip	MAT

3.	 Open	a	terminal	to	the	MAT	directory	and	run	the	following	commands	(or	Windows	equivalents):

$	mkdir	-p	/home/was/Downloads/eclipseupdatesites/dtfj/
$./MemoryAnalyzer	-application	org.eclipse.equinox.p2.metadata.repository.mirrorApplication	-source	https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/dtfj/	-destination	"file:/home/was/Downloads/eclipseupdatesites/dtfj/"	-ignoreErrors
$./MemoryAnalyzer	-application	org.eclipse.equinox.p2.artifact.repository.mirrorApplication	-source	https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/dtfj/	-destination	"file:/home/was/Downloads/eclipseupdatesites/dtfj/"	-ignoreErrors
$	mkdir	/home/was/Downloads/eclipseupdatesites/iema/
$./MemoryAnalyzer	-application	org.eclipse.equinox.p2.metadata.repository.mirrorApplication	-source	https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/iema/	-destination	"file:/home/was/Downloads/eclipseupdatesites/iema/"	-ignoreErrors
$./MemoryAnalyzer	-application	org.eclipse.equinox.p2.artifact.repository.mirrorApplication	-source	https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/iema/	-destination	"file:/home/was/Downloads/eclipseupdatesites/iema/"	-ignoreErrors

4.	 Package	MAT	and	the	update	sites	and	copy	to	your	target	machine,	then	launch	MAT	and	add	and
install	each	local	update	site	to	add	DTFJ	and	IEMA	separately.	For	details,	see	Eclipse	Offline	Update
Site	Installation.

	

Debugging	MAT

Tracing	MAT

See	https://wiki.eclipse.org/MemoryAnalyzer/FAQ#Enable_Debug_Output

	

https://git.eclipse.org/c/mat/org.eclipse.mat.git
https://www.ibm.com/support/pages/java-sdk-monitoring-and-post-mortem
https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/iema/
https://www.eclipse.org/mat/downloads.php
https://wiki.eclipse.org/MemoryAnalyzer/FAQ#Enable_Debug_Output

Dark	Matter	Warnings

In	general,	messages	of	the	following	form	suggest	core	dump	corruption	and	one	should	ensure	that	the	core
dump	was	taken	with	exclusive	access	and	the	file	isn't	truncated;	however,	there	are	cases	where	they	may
be	benign:

!MESSAGE	Problem	getting	superclass	for	class	corruptClassName@0xffffffffffffffff	at	0xffffffffffffffff
!STACK	0
com.ibm.j9ddr.view.dtfj.DTFJCorruptDataException:	J9DDRCorruptData	[as=minidump	:	0	Message:	Memory	Fault	reading	0x00000000	:		Address:	0x0]
				at	com.ibm.j9ddr.view.dtfj.J9DDRDTFJUtils.newCorruptDataException(J9DDRDTFJUtils.java:105)
				at	com.ibm.j9ddr.view.dtfj.J9DDRDTFJUtils.handleAsCorruptDataException(J9DDRDTFJUtils.java:225)
				at	com.ibm.j9ddr.vm29.view.dtfj.java.DTFJJavaClass.getName(DTFJJavaClass.java:318)
				at	org.eclipse.mat.dtfj.DTFJIndexBuilder.getSuperclass(DTFJIndexBuilder.java:8258)
				at	org.eclipse.mat.dtfj.DTFJIndexBuilder.fill(DTFJIndexBuilder.java:1450)
				at	org.eclipse.mat.parser.internal.SnapshotFactoryImpl.parse(SnapshotFactoryImpl.java:273)
				at	org.eclipse.mat.parser.internal.SnapshotFactoryImpl.openSnapshot(SnapshotFactoryImpl.java:167)
				at	org.eclipse.mat.snapshot.SnapshotFactory.openSnapshot(SnapshotFactory.java:147)
				at	org.eclipse.mat.ui.snapshot.ParseHeapDumpJob.run(ParseHeapDumpJob.java:95)
				at	org.eclipse.core.internal.jobs.Worker.run(Worker.java:63)
Caused	by:	com.ibm.j9ddr.NullPointerDereference:	Memory	Fault	reading	0x00000000	:	
				at	com.ibm.j9ddr.vm29.pointer.AbstractPointer.getShortAtOffset(AbstractPointer.java:463)
				at	com.ibm.j9ddr.vm29.pointer.generated.J9UTF8Pointer.length(J9UTF8Pointer.java:166)
				at	com.ibm.j9ddr.vm29.pointer.helper.J9UTF8Helper.stringValue(J9UTF8Helper.java:32)
				at	com.ibm.j9ddr.vm29.pointer.helper.J9ClassHelper.getName(J9ClassHelper.java:88)
				at	com.ibm.j9ddr.vm29.view.dtfj.java.DTFJJavaClass.getName(DTFJJavaClass.java:315)
				...	7	more

!MESSAGE	Corrupt	data	reading	declared	fields	at	0x0	:	J9DDRCorruptData	[as=minidump	:	0	Message:	Memory	Fault	reading	0x00000000	:		Address:	0x0]	from	class	com.ibm.j9ddr.view.dtfj.DTFJCorruptDataException:	J9DDRCorruptData	[as=minidump	:	0	Message:	Memory	Fault	reading	0x00000000	:		Address:	0x0]	at	0xffffffffffffffff
!STACK	0
com.ibm.dtfj.image.CorruptDataException:	J9DDRCorruptData	[as=minidump	:	0	Message:	Memory	Fault	reading	0x00000000	:		Address:	0x0]
								at	org.eclipse.mat.dtfj.DTFJIndexBuilder.isCorruptData(DTFJIndexBuilder.java:4970)
								at	org.eclipse.mat.dtfj.DTFJIndexBuilder.exploreObject(DTFJIndexBuilder.java:6995)
								at	org.eclipse.mat.dtfj.DTFJIndexBuilder.processHeapObject(DTFJIndexBuilder.java:3666)
								at	org.eclipse.mat.dtfj.DTFJIndexBuilder.fill(DTFJIndexBuilder.java:2107)	[...]

!MESSAGE	Invalid	array	element	reference	0x60457f240	of	type	?	found	at	index	0	in	array	of	type	[Ljava/util/concurrent/ConcurrentHashMap$Node;	length	16	at	address	0x60358a448	while	finding	outbound	references

Such	cases	may	be	when	an	object	is	"dark	matter":	its	class	has	been	garbage	collected,	but	the	instance	still
exists	in	an	old	region.	This	may	occur	because	of	performance	optimizations	when	there's	not	enough
memory	pressure	to	fully	clean	everything.	This	most	commonly	occurs	with	generated	method	accessors
created	through	reflection.

This	isn't	easy	to	diagnose	because	the	above	exception	occurs	as	part	of	class	and	superclass	processing	of
that	object	so	you	don't	even	have	the	object	address.	If	you	enable	MAT	tracing,	find	the	exceptions	above,
scroll	up	and	you	may	see	a	message	such	as:

found	object	106930	corruptClassName@0xffffffffffffffff	at	0x603953fa0	clsId	0

In	the	above	example,	the	object	address	is	0x603953fa0.

Once	you	do	have	the	object	address,	open	jdmpview	with	the	core,	run	!j9object	0x$address,	take	the
second	address	in	the	error	message	(clazz	=	0x$address2),	run	!j9class	0x$address2	and	if	you	see
class	J9Object*	classObject	=	!j9object	0xFFFFFFFFFFFFFFFF<FAULT> 	with	the	specific	value
0xFFFFFFFFFFFFFFFF,	then	this	object's	class	has	been	garbage	collected.	Note	that	this	will	usually	mean
that	MAT	will	discard	it	as	it's	not	strongly	retained.	This	can	be	confirmed	in	jdmpview	with
!isobjectalive	0x$address.

	

References

Eclipse	MAT	Documentation
Eclipse	MAT	Downloads

https://github.com/eclipse/openj9/issues/10537
https://help.eclipse.org/latest/topic/org.eclipse.mat.ui.help/gettingstarted/basictutorial.html
https://www.eclipse.org/mat/downloads.php

Lab	demonstrating	MAT
Why	are	some	Java	objects	alive?
Video:	Eclipse	Memory	Analyzer	Tool
MAT	source	code

	

IBM	Java	Health	Center
IBM	Monitoring	and	Diagnostics	for	Java	-	Health	Center	is	a	profiler	for	IBM	Java.	It	includes	a	statistical
CPU	profiler	that	samples	Java	stacks	that	are	using	CPU.	Recent	versions	generally	have	an	overhead	of	less
than	1%	and	are	suitable	for	production	use	and	may	be	enabled	dynamically	without	restarting	the	JVM.

	

Client	Installation

See	the	download	instructions.

	

Agent	Installation

The	Health	Center	agent	is	pre-packaged	with	IBM	Java	8	(on	Linux,	AIX,	Windows,	and	z/OS)	and	IBM
Semeru	Runtimes	11	(on	z/OS).	See	the	informal	instructions	for	other	versions	of	IBM	Semeru	Runtimes.

	

Agent	Usage

There	are	two	ways	to	enable	the	Health	Center	agent:	1)	a	live	socket	mode	or	2)	a	headless	mode	that
produces	HCD	files.	In	general,	we	recommend	the	headless	mode	at	startup	(optionally	for	a	limited
duration)	or	dynamically	enabled	at	runtime	(optionally	for	a	limited	duration).

	

Health	Center	Recipe

1.	 Open	Garbage	Collection	View	}	Right	Click	}	Change	units	}	X	axis	}	Date
2.	 Observe	the	garbage	collection	to	see	roughly	when	there	was	significant	activity	and	mouse	over	the

start	and	end	times.	Take	these	times	and	crop	the	data	in	the	menu	}	Data	}	Crop	Data
3.	 Observe	the	proportion	of	time	spent	in	garbage	collection	%	in	the	GC	Summary	view
4.	 Switch	to	the	CPU	view	and	observe	the	average	and	maximum	CPU	%
5.	 Switch	to	the	Locking	view	and	sort	by	Slow.	If	the	number	of	gets	or	average	hold	times	are	high	for

the	top	hitters,	review	the	lock	Name
6.	 Switch	to	the	Profiling	view
7.	 Sort	by	self	%	(default	sort)	and	observe	the	top	10	methods	or	so.	If	a	single	method	self	%	is	greater

than	5-10%,	this	is	concerning.	Click	on	each	one	and	observe	the	Invocation	paths.
8.	 Sort	by	tree	%.	Usually	the	first	one	will	be	something	like	Thread.run	or	Worker.run.	Select	this	and

change	to	the	Called	methods	view.	Expand	the	largest	tree	items	until	there	is	a	large	"drop;"	for
example,	if	methods	are	100,	99,	100,	100,	etc.,	and	then	suddenly	there	is	a	drop	to	one	method	with

https://github.com/IBM/webspherelab/blob/main/WAS_Troubleshooting_Perf_Lab.md#heap-dumps
https://www.ibm.com/support/pages/why-are-some-java-objects-alive
https://www.youtube.com/watch?v=sLoifF_YA4w
https://git.eclipse.org/c/mat/org.eclipse.mat.git/tree/
https://www.ibm.com/support/pages/java-sdk-monitoring-and-post-mortem
https://www.ibm.com/support/pages/health-center-client
https://www.ibm.com/support/pages/health-center-client
https://github.com/eclipse-openj9/openj9/issues/1538#issuecomment-577894672

60%	and	one	with	40%,	this	is	usually	an	indication	of	a	major	divergence	in	general	application
activity.	Continue	as	needed	until	something	interesting	comes	up	(this	is	an	art	more	than	a	science).

	

Overhead

In	general,	the	overhead	of	Health	Center	is	between	0.4	to	3%,	depending	on	the	mode.	In	the	headless
mode,	the	overhead	is	about	1%;	however,	if	files	roll	over,	this	involves	zipping	files	together	and	that	has	a
momentary	impact,	which	averaged	out	can	increase	overhead	up	to	3%.	The	socket	mode	has	the	lowest
overhead	of	about	0.4%.

		

Gathering	Data

There	are	two	ways	to	gather	HealthCenter	data:

1.	 Headless	mode:	writes	data	to	local	.hcd	files	with	the	HealthCenter	agent	enabled	in	headless	mode.
2.	 Socket	mode:	direct	TCP	connection	from	a	HealthCenter	client	to	a	JVM	with	the	HealthCenter	agent

enabled	and	data	is	streamed	to	the	client	(there	is	an	option	to	export	streamed	data	to	an	hcd	file).

In	general,	headless	mode	is	preferred	for	production	usage	to	avoid	connectivity/firewall	issues	and	doesn't
require	direct	human	involvement.

Review	Health	Center	agent	configuration	properties.

Warning:	Health	Center	enables	J9	-Xtrace	under	the	covers	which	uses	additional	native	memory	on	each
thread	based	on	-Xtrace:buffers.	If	you	have	a	lot	of	threads	and	native	memory	constraints	(RAM	or	virtual),
this	may	cause	native	OutOfMemoryErrors,	so	it's	always	best	to	test	Health	Center	with	a	stress	test	in	a	test
environment	before	using	in	production.	This	risk	may	be	exacerbated	with	Liberty	which	defaults	to	an
unlimited	maximum	thread	pool	designed	to	maximize	throughput,	so	Liberty	users	should	consider	capping
this	with	<executor	maxThreads="N"	/>	based	on	available	native	memory.

	

Headless	mode

See	the	four	different	recipes	of	enabling	headless	mode:

https://www.ibm.com/docs/en/mon-diag-tools?topic=agent-health-center-configuration-properties
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xtrace
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xtrace#buffers

Enable	at	Startup
Enable	at	Startup	of	Limited	Duration
Enable	at	Runtime
Enable	at	Runtime	of	Limited	Duration

	

Socket	mode

Socket	mode	may	be	enabled	during	restart	or	dynamically	similar	to	above	although	omit	level=headless.

When	using	the	socket	mode,	by	default	Health	Center	uses	CORBA	as	the	communication	protocol.
Another	option	is	to	use	JRMP	with	-
Dcom.ibm.java.diagnostics.healthcenter.agent.transport=jrmp.	Both	methods	are	similar	in
performance	although	JRMP	has	a	built-in	reaper	thread	that	runs	approximately	once	an	hour	which	calls
System.gc.

	

Enabling	Health	Center	Dynamically

As	partly	covered	in	the	above	topics,	Health	Center	may	be	enabled	dynamically.

	

Disabling	Health	Center

After	data	collection	has	started,	there	are	two	ways	to	disable	data	collection:

1.	 When	configuring	headless	mode	(either	on	restart	or	dynamically),	use	the	configuration	properties	to
stop	collection	after	some	point.	For	example	(in	minutes):

-Dcom.ibm.java.diagnostics.healthcenter.headless.run.duration=30	-Dcom.ibm.java.diagnostics.healthcenter.headless.run.number.of.runs=1

To	skip	some	amount	of	profiling	(e.g.	startup),	use,	for	example	(in	minutes):

-Dcom.ibm.java.diagnostics.healthcenter.headless.delay.start=5		

2.	 In	socket	mode,	in	the	HealthCenter	client,	open	the	"Configure	Collection	of	Data"	screen	and
uncheck	all	boxes	which	will	send	a	command	to	the	agent	to	turn	off	most	collection.

	

Analyzing	Data

1.	 Start	Eclipse	with	Health	Center	installed
2.	 In	Eclipse	}	Window	}	Perspective	}	Open	Perspective	}	Other...	}	Health	Center	Status	Summary
3.	 Click	File	}	Load	Data...	to	load	an	HCD	file,	or	File	}	New	Connection...	to	connect	to	a	running

Health	Center	agent.

https://www.ibm.com/docs/en/mon-diag-tools?topic=sma-starting-health-center-agent-after-starting-application-java-applications-only

WARNING:	The	HealthCenter	client	may	quietly	drop	older	data	if	its	Java	heap	is	nearly	full,	so	use	a	very
large	heap	when	analyzing.	(This	is	because	it	was	originally	designed	for	socket	mode	which	streams	data
in).

	

Profiling	View

Click	the	Profiling	link.	By	default,	the	list	is	sorted	by	self	percentage	which	will	show	very	hot	methods.

The	Self	(%)	column	reports	the	percent	of	samples	where	a	method	was	at	the	top	of	the	stack.	The	Tree
(%)	column	reports	the	percent	of	samples	where	a	method	was	somewhere	else	in	the	stack.	In	this	example,
WAS	NCSA	access	logging	was	sampled	more	than	2%	of	the	time,	and	the	next	largest	single	sample	is
java.lang.String.regionMatches.	If	we	click	on	this	row,	we	can	expand	the	"Invocation	Paths"	to	see	which
methods	call	this	method.	In	this	example,	this	1%	of	samples	was	mostly	called	by	JSF	HTML	rendering
from	the	application.

If	you	sort	by	Tree	%,	skip	the	framework	methods	from	Java	and	WAS,	and	find	the	first	application
method.	In	this	example,	about	47%	of	total	samples	was	consumed	by
com.ibm.websphere.samples.daytrader.web.TradeAppServlet.performTask	and	all	of	the	methods	it	called.
The	"Called	Methods"	view	may	be	further	reviewed	to	investigate	the	details	of	this	usage.

		

Updating	to	the	latest	agent

1.	 Stop	the	application	servers	and	node	agents	(and	DMGR	if	on	that	node).
2.	 Install	the	Health	Center	Eclipse	client	and	access	the	local	help	content	to	download	the	latest	agent.
3.	 After	updating	the	files,	make	sure	to	chown	them	to	the	user	that	runs	WAS.
4.	 Re-start	the	application	servers.

	

Platform-Specific	Agent	Update	Notes

On	AIX,	if	you	had	previously	run	Health	Center,	even	if	you	stop	all	JVMs,	you	will	probably	see	this	error
extracting	libhealthcenter.so:

tar:	0511-188	Cannot	create	./jre/lib/ppc64/libhealthcenter.so:	Cannot	open	or	remove	a	file	containing	a	running	program.

By	default,	AIX	will	keep	shared	libraries	in	memory	even	after	all	JVMs	referencing	that	library	have
stopped.	To	remove	the	shared	library	from	memory,	you	may	either	reboot	the	box	or	more	simply,	run	the
slibclean	command	(see	also	genkld	and	genld).	This	should	be	safe	to	run	because	it	only	affects	shared
libraries	that	have	no	current	load	or	use	counts:

https://www.ibm.com/docs/en/mon-diag-tools?topic=center-installing-health-monitoring-agent
https://www.ibm.com/docs/en/aix/7.2?topic=s-slibclean-command

The	slibclean	command	unloads	all	object	files	with	load	and	use	counts	of	0.	It	can	also	be	used
to	remove	object	files	that	are	no	longer	used	from	both	the	shared	library	region	and	in	the
shared	library	and	kernel	text	regions	by	removing	object	files	that	are	no	longer	required.

Now	you	should	be	able	to	overwrite	libhealthcenter.so.

You	may	also	find	that	healthcenter.jar	has	open	file	handles	(e.g.	lsof)	in	Java	processes	even	if
healthcenter	was	not	enabled.	This	is	because	healthcenter.jar	is	in	the	ext	JRE	directory	which	is
searched	as	part	of	some	classpath	operations.	If	you	take	a	system	dump,	you	will	find	a
java.util.jar.JarFile	object	with	a	name	field	that	includes	healthcenter.jar,	and	this	JarFile	object
probably	has	a	native	file	handle	open	(although	you	will	not	find	a	java.io.File	object	with	that	path).	In
theory,	it	should	be	safe	to	overwrite	healthcenter.jar	even	if	running	processes	have	open	file	handles	to
it	because	the	JAR	file	will	not	be	read	by	those	JVMs	that	do	not	have	healthcenter	enabled.

	

Point	to	a	different	agent	installation	directory

It	is	possible	to	update	to	the	latest	agent	without	modifying	the	binaries	in	the	WAS	folder:

1.	 Extract	the	agent	ZIP	into	any	directory;	for	example,	/opt/healthcenter/agent/
2.	 Take	a	javacore	of	the	running	target	server	and	find	the	last	value	of	-Djava.ext.dirs	(note	that

there	may	be	multiple	instances,	so	always	take	the	last	value).	For	example:	-
Djava.ext.dirs=/opt/local/was85/tivoli/tam:/opt/local/was85/java/jre/lib/ext

3.	 Prepend	the	path	to	the	ext	folder	under	the	expanded	HealthCenter	agent	directory	to	-
Djava.ext.dirs.	For	example:	-
Djava.ext.dirs=/opt/healthcenter/agent/jre/lib/ext:/opt/local/was85/tivoli/tam:/opt/local/was85/java/jre/lib/ext

4.	 Append	this	parameter	as	well	as	the	following	parameters	(replacing	the	path	to	the	HealthCenter
agent)	to	the	generic	JVM	arguments:	-
Djava.ext.dirs=/opt/healthcenter/agent/jre/lib/ext:/opt/local/was85/tivoli/tam:/opt/local/was85/java/jre/lib/ext
-agentpath:/opt/healthcenter/agent/jre/bin/libhealthcenter.so	-
Dcom.ibm.java.diagnostics.healthcenter.agent.properties.file=/opt/healthcenter/agent/jre/lib/healthcenter.properties

5.	 Append	this	parameter	to	the	"Claspath"	textbox	on	the	same	page	as	the	generic	JVM	arguments
(replacing	the	path	to	the	HealthCenter	agent):
/opt/healthcenter/agent/jre/lib/ext/healthcenter.jar

6.	 Add	the	necessary	HealthCenter	arguments	described	above	to	enable	it.
7.	 Restart	the	JVM.

	

Low	mode

-Xhealthcenter:level=low	disables	method	profiling	since	this	has	the	highest	overhead	and	creates	the
most	data.	This	would	be	useful	if	you	wanted	something	else	from	health	center	(e.g.	garbage	collection,
native	memory,	etc.)	with	less	overhead.

You	may	also	disable	thread	stack	capturing	to	reduce	overhead	further:	-
Dcom.ibm.diagnostics.healthcenter.data.threads=off

Low	mode	cannot	be	combined	with	headless	(e.g.	-Xhealthcenter:level=low,level=headless),	so	the
way	to	do	it	is	to	use	headless	mode	and	then:	In	jre/lib/ext	there	is	a	file	called	healthcenter.jar.	If
you	unpack	that	you	will	find	a	file	called	TRACESourceConfiguration.properties	and	this	is	what	defines
which	data	is	switched	on	by	trace.	When	we	run	in	low	mode,	we	turn	off	one	of	the	profiling	trace	points.
You	can	do	this	manually	by	editing	this	file	and	finding	the	entry	j9jit.16=on	and	then	changing	it	to
j9jit.16=off.	If	you	repackage	the	jar	up	you	should	find	that	the	amount	of	trace	generated	is	a	lot	less
(but	you	won't	get	method	profiling).

	

Hexadecimal	Method	Names

Sometimes	you	may	see	addresses	(0x0123ABCD)	instead	of	method	names.	This	usually	occurs	for	methods
loaded	very	early	in	the	JVM	such	as	classloading	methods.

This	issue	is	generally	resolved	by	starting	HealthCenter	from	JVM	startup	or	by	using	newer	agents,	so	test
upgrading	the	agent.

Warning:	Health	Center	is	sometimes	recommended	with	-Xtrace:buffers={2m,dynamic}	to	reduce	the
probability	of	losing	method	name	translations	but	note	that	this	further	increases	native	memory	demands.

To	investigate,	use	the	option	-Dcom.ibm.diagnostics.healthcenter.logging.methodlookup=debug	and
upload	stdout/stderr.

	

Health	Center	Details

In	one	of	the	largest	customer	production	situations,	health	center	wrote	about	5GB	per	hour	of	data	to	the
filesystem.

	

Docker

To	use	Health	Center	through	Docker	with	JRMP	and	the	GUI	client,
java.rmi.server.hostname=9.140.104.32	which	is	the	IP	address	of	the	machine	doing	the	docker	run	and	run
with:	docker	run	-p	1972:1972	myDockerContainer

FROM	ibmjava:sdk
RUN	mkdir	/opt/app
COPY	HelloWorld.java	/opt/app
WORKDIR	/opt/app
RUN	javac		HelloWorld.java
EXPOSE	1972
CMD	["java","-Dcom.sun.management.jmxremote","-Dcom.sun.management.jmxremote.authenticate=false","-Dcom.sun.management.jmxremote.ssl=false","-Dcom.sun.management.jmxremote.rmi.port=1972","-Djava.rmi.server.hostname=9.140.104.32","-Dcom.sun.management.jmxremote.local.only=false","-Xhealthcenter:transport=jrmp","HelloWorld"]

	

Gathering	HCD	at	Runtime

1.	 Go	to	the	current	working	directory	(cwd)	of	the	process.	For	example,	for	tWAS,	that's	normally
/opt/IBM/WebSphere/AppServer/profiles/${PROFILE}/

2.	 Underneath	the	cwd,	there	should	be	a	temporary	directory	that	HealthCenter	created.	This	is	normally
named	tmp_${NUMBER1}_${NUMBER2}_.	If	this	directory	is	not	found	under	the	profiles	directory,
check	under	/tmp.	If	it's	still	not	found,	use	lsof	to	search	for	the	trace	file:	lsof	-p	${PID}	|	grep
"trace$"

3.	 Copy	the	contents	of	this	directory	to	a	temporary	directory.	For	example:

mkdir	/tmp/hc
cp	tmp*_/*	/tmp/hc/

4.	 Go	to	the	temporary	directory.	For	example:	cd	/tmp/hc/
5.	 Zip	up	the	files	in	this	directory	(if	you	don't	have	the	zip	utility,	you	can	use	the	jar	utility	in	the	JDK

which	also	creates	a	zip	file):

zip	hctmp.hcd	*

	

HCD	File	Name

The	HCD	file	name	is	of	the	form
${dir}/${prefix}healthcenter${startday}${startmonth}${startyear}_${starthour}${startminutes}${startsseconds}_${pid}_${filenumber}.hcd
The	temporary	directory	name	is	of	the	form
${dir}/tmp_${startday}${startmonth}${startyear}_${starthour}${startminutes}${startsseconds}_

By	default,	${dir}	is	the	current	working	directory	but	may	be	overridden	with	-
Dcom.ibm.java.diagnostics.healthcenter.headless.output.directory=somedir.

By	default,	${prefix}	is	blank	but	may	be	set	with	-
Dcom.ibm.java.diagnostics.healthcenter.headless.filename=someprefix.	If	this	is	set,	an	_	is
automatically	appended	to	the	prefix;	therefore,	the	file	will	be	${prefix}_healthcenter....	On	WAS
traditional,	if	this	is	set	in	the	generic	JVM	arguments,	the	name	of	the	WAS	JVM	may	be	set	with	-
Xhealthcenter:level=headless	-
Dcom.ibm.java.diagnostics.healthcenter.headless.filename=${WAS_SERVER_NAME}.

	

Agent	Version

To	find	out	the	agent	version	from	the	JDK,	extract	hcversion.properties	(version.properties	on	older
JDKs)	from	healthcenter.jar:

$	jar	xf	healthcenter.jar	hcversion.properties	&&	cat	hcversion.properties	&&	rm	hcversion.properties
jar.version=3.0.17.20190121

	

Disabling	Components

Particular	Health	Center	components	may	be	disabled	with	off	system	properties.	For	example:

-Dcom.ibm.diagnostics.healthcenter.data.classes=off
-Dcom.ibm.diagnostics.healthcenter.data.cpu=off
-Dcom.ibm.diagnostics.healthcenter.data.gc=off
-Dcom.ibm.diagnostics.healthcenter.data.io=off
-Dcom.ibm.diagnostics.healthcenter.data.jit=off
-Dcom.ibm.diagnostics.healthcenter.data.memory=off
-Dcom.ibm.diagnostics.healthcenter.data.profiling=off
-Dcom.ibm.diagnostics.healthcenter.data.threads=off

	

Diagnostic	Traces

Log	trace	engine	configuration	processing:

-Dcom.ibm.diagnostics.healthcenter.logging.TraceDataProvider=debug

Headless	file	processing:

-Dcom.ibm.diagnostics.healthcenter.logging.headless=debug

Investigating	MBean	authentication/authorization:

-Dcom.ibm.java.diagnostics.healthcenter.agent.debug=true

Then	set	diagnostic	trace	using	the	product	trace	mechanism,	or	-Djava.util.logging.config.file:
com.ibm.java.diagnostics.healthcenter.agent=all

https://www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.healthcenter.doc/topics/enablingagentlate.html
https://www.ibm.com/docs/en/mon-diag-tools?topic=application-securing-health-center

com.ibm.java.diagnostics.healthcenter.agent.mbean.HCLaunchMBean=all
Others:

-Dcom.ibm.diagnostics.healthcenter.logging.Port=debug
-Dcom.ibm.diagnostics.healthcenter.logging.ClassHistogram=debug
-Dcom.ibm.diagnostics.healthcenter.logging.cpuplugin=debug

	

Large	Memory	Allocations

Health	Center	may	be	configured	to	track	large	memory	allocations	based	on	a	number	of	bytes.	For
example,	to	track	allocations	greater	than	10MB:

-Dcom.ibm.java.diagnostics.healthcenter.allocation.threshold.low=10485760

Note	that,	under	the	covers,	this	will	cause	Health	Center	to	configure	-Xdump.	For	example:

-Xdump:silent:events=allocation,filter=#10485760...

This	will	not	produce	any	output	files	and	will	only	be	tracked	by	Health	Center;	however,	this	will	silently
increment	the	diagnostic	artifact	ID	every	time	such	an	allocation	occurs.	This	may	explain	very	large	artifact
numbers	in	other	produced	files	such	as	javacores,	etc.

	

Health	Center	Thread	Stacks

The	profiler	in	Health	Center	is	only	aware	of	threads	that	use	CPU,	so	if	a	thread	is	waiting	on	a	database,
for	example,	it	will	not	show	up	in	Health	Center.	However,	starting	with	the	Health	Center	agent	version
2.2,	it	periodically	captures	every	thread	stack.	The	Health	Center	client	has	minimal	capabilities	to	display
this	information;	however,	you	can	use	the	Health	Center	API	to	read	an	HCD	file	and	print	these	stacks:

import	java.io.File;
import	java.io.PrintWriter;
import	java.lang.Thread.State;
import	java.lang.management.LockInfo;
import	java.lang.management.MonitorInfo;
import	java.text.SimpleDateFormat;
import	java.util.ArrayList;
import	java.util.Comparator;
import	java.util.Date;
import	java.util.HashMap;
import	java.util.List;
import	java.util.Map;
import	java.util.Map.Entry;

import	com.ibm.java.diagnostics.healthcenter.api.HealthCenter;
import	com.ibm.java.diagnostics.healthcenter.api.factory.HealthCenterFactory;
import	com.ibm.java.diagnostics.healthcenter.api.threads.ThreadData;
import	com.ibm.java.diagnostics.healthcenter.api.threads.ThreadsData;

public	class	HealthCenterThreadDumpAnalyzer	{
		private	static	final	SimpleDateFormat	threadDumpDate	=	new	SimpleDateFormat("yyyy-MM-dd	HH:mm:ss");

		public	static	void	main(String[]	args)	throws	Throwable	{
				if	(args	==	null	||	args.length	==	0)	{
						System.err.println("usage:	HealthCenterThreadDumpAnalyzer	${HCDFILE}");
						return;
				}

				File	file	=	new	File(args[0]);

				message("Loading	"	+	file.getAbsolutePath());

https://www.ibm.com/docs/en/mon-diag-tools?topic=center-using-health-api

				HealthCenter	hc	=	HealthCenterFactory.connect(file);

				message("Getting	all	thread	dumps");

				ThreadsData	threadsData	=	hc.getThreadsData();
				HashMap<Long,	ThreadData[]>	threadDumps	=	threadsData.getAllThreads();
				List<Entry<Long,	ThreadData[]>>	sortedThreadDumps	=	new	ArrayList<>();
				for	(Entry<Long,	ThreadData[]>	entry	:	threadDumps.entrySet())	{
						sortedThreadDumps.add(entry);
				}
				sortedThreadDumps.sort(new	Comparator<Entry<Long,	ThreadData[]>>()	{
						@Override
						public	int	compare(Entry<Long,	ThreadData[]>	x,	Entry<Long,	ThreadData[]>	y)	{
								return	x.getKey().compareTo(y.getKey());
						}
				});

				message("Processing	all	"	+	sortedThreadDumps.size()	+	"	thread	dumps");

				try	(PrintWriter	out	=	new	PrintWriter(new	File(file.getParentFile(),	file.getName()	+	"_threads.txt")))	{
						for	(Entry<Long,	ThreadData[]>	threadDump	:	sortedThreadDumps)	{
								out.println(threadDumpDate.format(new	Date(threadDump.getKey())));
								out.println("Full	thread	dump	Java:");
								out.println();

								ThreadData[]	threads	=	threadDump.getValue();
								Map<String,	String>	contendedMonitorOwners	=	new	HashMap<>();
								for	(int	i	=	0;	i	<	threads.length;	i++)	{
										ThreadData	thread	=	threads[i];
										if	(thread.getContendedMonitor()	!=	null	&&	!thread.getContendedMonitor().isEmpty()
														&&	thread.getContendedMonitorOwner()	!=	null
														&&	!thread.getContendedMonitorOwner().isEmpty())	{
												contendedMonitorOwners.put(thread.getContendedMonitorOwner(),	thread.getContendedMonitor());
										}
								}

								for	(int	i	=	0;	i	<	threads.length;	i++)	{
										ThreadData	thread	=	threads[i];
										String	threadName	=	thread.getName();

										String	nid	=	String.format("%08x",	threadName.hashCode());
										nid	=	"0"	+	nid.substring(1);

										out.println("\""	+	threadName	+	"\"	#"	+	i	+	"	daemon	prio=9	os_prio=0	tid=0x"
														+	String.format("%016x",	threadName.hashCode())	+	"	nid=0x"	+	nid	+	"	"
														+	getThreadDumpThreadState(thread.getState())	+	"	[0x0000000000000000]");

										out.println("			java.lang.Thread.State:	"	+	thread.getState());

										StackTraceElement[]	threadStack	=	thread.getStackTrace();

										if	(threadStack	!=	null)	{
												boolean	firstFrame	=	true;
												for	(StackTraceElement	frame	:	threadStack)	{
														out.println("			at	"	+	frame);

														if	(firstFrame)	{
																firstFrame	=	false;

																if	(thread.getContendedMonitor()	!=	null	&&	!thread.getContendedMonitor().isEmpty())	{
																		String	contendedMonitor	=	thread.getContendedMonitor();
																		writeContendedMonitor(out,	contendedMonitor,	true);
																}
														}
												}

												for	(MonitorInfo	monitor	:	thread.getLockedMonitors())	{
														out.println("			-	locked	"	+	monitor);

														throw	new	IllegalStateException("Not	implemented	"	+	monitor);
												}

												for	(LockInfo	lock	:	thread.getLockedSynchronizers())	{
														out.println("			-	locked	"	+	lock);
														throw	new	IllegalStateException("Not	implemented	"	+	lock);
												}

												for	(String	ownedMonitor	:	thread.getOwnedMonitors())	{
														int	space	=	ownedMonitor.indexOf('	');
														if	(space	!=	-1)	{
																ownedMonitor	=	ownedMonitor.substring(0,	space);
														}
														out.println("			-	locked	<0x"	+	String.format("%016x",	ownedMonitor.hashCode())	+	">	(a	"
																		+	ownedMonitor	+	")");
												}

												String	contendedMonitor	=	contendedMonitorOwners.get(threadName);
												if	(contendedMonitor	!=	null)	{
														writeContendedMonitor(out,	contendedMonitor,	false);
												}
										}

										out.println();
								}

								out.println();
						}
				}

				message("Finished	processing");
				System.exit(0);
		}

		private	static	void	writeContendedMonitor(PrintWriter	out,	String	contendedMonitor,	boolean	waiting)	{
				String	className	=	contendedMonitor.substring(0,	contendedMonitor.indexOf('@'));
				String	identityHashCode	=	contendedMonitor.substring(contendedMonitor.indexOf('@')	+	1);
				out.println("			-	"	+	(waiting	?	"waiting	to	lock"	:	"locked")	+	"	<0x"
								+	String.format("%016x",	Long.parseLong(identityHashCode,	16))	+	">	(a	"	+	className	+	")");
		}

		public	static	String	getThreadDumpThreadState(State	threadState)	{
				switch	(threadState)	{
				case	BLOCKED:
						return	"waiting	for	monitor	entry";
				case	NEW:
						return	"new";
				case	RUNNABLE:
						return	"runnable";
				case	TERMINATED:
						return	"terminate";
				case	TIMED_WAITING:
						return	"waiting	on	condition";
				case	WAITING:
						return	"waiting	on	condition";
				default:
						throw	new	IllegalStateException("Not	implemented	for	"	+	threadState);
				}
		}

		public	static	void	message(String	message)	{
				System.out.println("["	+	new	Date()	+	"]	"	+	message);
		}
}

By	default,	Health	Center	captures	full	stacks.	If	this	appears	to	be	a	performance	impact,	you	can	limit	this
with	-Dcom.ibm.java.diagnostics.healthcenter.thread.stack.depth=${MAXDEPTH}

The	default	thread	stack	collection	interval	is	30	seconds.	This	can	be	changed	with	-

Dcom.ibm.java.diagnostics.healthcenter.thread.collection.interval=${SECONDS}

To	disable	collection	of	thread	stacks:	-Dcom.ibm.diagnostics.healthcenter.data.threads=off

	

References

General	documentation
Lab	demonstrating	Health	Center

	

OpenJDK	Mission	Control
JDK	Flight	Recorder	(JFR)	is	an	agent	in	the	HotSpot	JVM	that	provides	a	low-overhead,	production-ready
sampling	profiler	and	monitoring	tool.	JFR	is	very	similar	to	the	IBM	Java	Health	Center	agent	for	the	J9
JVM.

JDK	Mission	Control	(JMC)	is	a	project	by	OpenJDK	that	provides	a	GUI	client	to	review	JFR	collections.

Review	the	JMC	User	Guide.

	

Recording	data	with	the	agent

There	are	various	HotSpot	JVM	options	to	produce	JFR	recordings.	Summaries:

Enabled	at	startup

	

Starting	the	client

Various	downloads	of	the	JMC	client	are	available	including	from	Eclipse	Adoptium.

	

Open	JFR	File

Click	File	}	Open	File...	}	Select	the	*.jfr	file

Time	Zones

The	data	stored	in	JFR	files	are	in	UTC	time.	The	time	zone	displayed	in	JMC	are	in	local	time.	If	the	local
time	where	the	JFR	files	were	produced	does	not	match	the	local	time	of	the	JMC	client	machine,	then	you
may	set	the	time	zone	when	launching	JMC	using	the	time	zone	name;	for	example:

-vmargs
-Duser.timezone=America/New_York

	

Eclipse
Eclipse	is	a	free	open	source	project	that's	used	to	run	many	of	the	major	tools	in	this	cookbook:

https://www.ibm.com/docs/en/mon-diag-tools?topic=monitoring-diagnostic-tools-health-center
https://github.com/IBM/webspherelab/blob/main/WAS_Troubleshooting_Perf_Lab.md#health-center
https://wiki.openjdk.org/display/jmc/Overview
https://github.com/openjdk/jmc
https://openjdk.org/projects/jmc/
https://docs.oracle.com/en/java/java-components/jdk-mission-control/8/user-guide/jdk-mission-control-users-guide.pdf
https://docs.oracle.com/en/java/java-components/jdk-mission-control/
https://github.com/openjdk/jmc?tab=readme-ov-file#downloading-builds
https://adoptium.net/jmc/
https://bugs.openjdk.org/browse/JMC-6896
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

https://www.eclipse.org/downloads/

	

Launching	Notes

1.	 To	print	console	logging,	edit	the	ini	file	and	add	the	following	to	lines	above	any	-vm	and	-vmargs
lines.	For	example:

-startup
plugins/org.eclipse.equinox.launcher_1.5.700.v20200207-2156.jar
--launcher.library
plugins/org.eclipse.equinox.launcher.win32.win32.x86_64_1.1.1200.v20200508-1552
-debug
-consoleLog
-vmargs
-Xmx8G

2.	 To	print	console	logging	from	a	terminal	without	launching	a	separate	terminal,	launch	the	program
using	eclipsec	rather	than	eclipse	or	the	prudct's	executable.	For	example:

./eclipsec	-debug	-consoleLog

3.	 To	specify	a	particular	ini	file	rather	than	the	one	in	the	product's	directory,	use	a	terminal	to	launch
with	the	--launcher.ini	argument.	For	example:

./eclipsec	--launcher.ini	/tmp/eclipse.ini

4.	 To	modify	the	JVM	arguments	from	the	command	line	instead	of	the	ini	file,	use	.	For	example:

.\eclipsec.exe	-debug	-consoleLog	-vmargs	"-Djava.io.tmpdir=%TEMP%"

5.	 To	use	JVM	arguments	from	both	the	command	line	and	the	ini	file,	add	--launcher.appendVmargs
in	the	ini	file.	For	example:

-startup
plugins/org.eclipse.equinox.launcher_1.5.700.v20200207-2156.jar
--launcher.library
plugins/org.eclipse.equinox.launcher.win32.win32.x86_64_1.1.1200.v20200508-1552
--launcher.appendVmargs
-debug
-consoleLog
-vmargs
-Xmx8G

6.	 To	change	the	workspace	directory,	use	the	-data	argument.	For	example:

.\eclipsec.exe	--launcher.ini	C:\eclipse.ini	-data	"%APPDATA%\Memory	Analyzer"	-vmargs	"-Djava.io.tmpdir=%TEMP%"

7.	 To	use	system	properties	such	as	the	user	home	directory:

-data
@user.home/myapp-workspace

	

Example	Windows	Launch	Script

Also	add	--launcher.appendVmargs	to	the	ini	file	after	the	launcher.library+plugins/	lines.

::	Launcher	script
::	Comments	start	with	::

@echo	off

set	TITLE=Memory	Analyzer	Tool	Launcher

https://www.eclipse.org/downloads/

title	%TITLE%
echo	%TITLE%

set	PATH=C:\IEMA\jre\bin;%PATH%

echo	Launching	the	tool.	This	may	take	a	few	minutes	depending	on	available	resources.
C:\IEMA\eclipsec.exe	--launcher.ini	"C:\IEMA\MemoryAnalyzer.ini"	-data	"%APPDATA%\MAT"	-consoleLog	-vmargs	"-Djava.io.tmpdir=%TEMP%"	"-Xshareclasses:name=mat,cacheDir=%APPDATA%\sharedclasses\mat"

echo(
echo	Tool	completed.	Press	any	key	to	end	this	prompt.
echo(

pause

	

Setting	the	Java	Virtual	Machine	that	Eclipse	Uses

Some	tool	usages	require	IBM	Java	to	properly	run	the	analysis	(e.g.	IBM	MAT,	IBM	Java	Health	Center,
etc.).	You	may	specify	the	JVM	that	Eclipse	uses	in	the	eclipse.ini	file.	Above	the	-vmargs	line,	add	the
following	two	lines,	replacing	the	path	to	IBM	Java	that	you	installed:

-vm
/opt/IBM/Java/ibm-java-x86_64-80/bin/

For	Windows,	IBM	Java	provides	a	pre-packaged	Eclipse	Neon	with	IBM	Java	already	configured

1.	 Open	a	browser	to	https://developer.ibm.com/javasdk/downloads/#tab_eclipse

2.	 If	you	are	running	Windows	32-bit,	click	on	the	"Windows	on	Intel"	link:

1.	 https://www.ibm.com/services/forms/preLogin.do?
source=idpe&S_TACT=105AGX05&S_CMP=JDK&lang=en_US&S_PKG=win32-6.3.20

3.	 If	you	are	running	Windows	64-bit,	click	on	the	"Windows	on	AMD64/EMT64T"	link:

1.	 https://www.ibm.com/services/forms/preLogin.do?
source=idpe&S_TACT=105AGX05&S_CMP=JDK&lang=en_US&S_PKG=win64-6.3.20

4.	 The	download	will	require	you	to	either	register	for	a	free	IBM	ID	or	use	the	"Proceed	without	an	IBM
id"	button	and	enter	your	information.

5.	 When	you	get	to	the	download	page,	the	default	option	is	to	use	the	"Download	Director"	to	download
the	file	which	is	a	Java	applet	that	downloads	more	quickly	by	using	multiple	sockets;	however,	you
may	choose	the	simpler	option	of	a	direct	link	by	click	on	the	"Download	using	http"	tab.

6.	 Extract	the	.zip	file	into	a	directory	of	your	choice.

7.	 Go	to	the	"eclipseDevelopmentPackage\eclipse"	subdirectory	and	launch	eclipse.exe.

	

IBM	Java	on	Linux

1.	 Open	a	browser	to	https://developer.ibm.com/javasdk/downloads/#tab_sdk8

2.	 If	you	are	running	Linux	32-bit,	under	the	"Linux	on	Intel"	heading,	click	on	the	first	"Simple	unzip
with	license"	link.

3.	 If	you	are	running	Linux	64-bit,	under	the	"Linux	on	AMD64/EMT64T"	heading,	click	on	the	first
"Simple	unzip	with	license"	link.

https://developer.ibm.com/javasdk/downloads/#tab_eclipse
https://www.ibm.com/services/forms/preLogin.do?source=idpe&S_TACT=105AGX05&S_CMP=JDK&lang=en_US&S_PKG=win32-6.3.20
https://www.ibm.com/services/forms/preLogin.do?source=idpe&S_TACT=105AGX05&S_CMP=JDK&lang=en_US&S_PKG=win64-6.3.20
https://developer.ibm.com/javasdk/downloads/#tab_sdk8

4.	 Download	the	package	to	any	directory,	most	commonly	/opt/IBM/Java

5.	 From	the	terminal,	add	execute	permissions	and	then	run	ibm-java-sdk-8.0-3.21-x86_64-
archive.bin:

	chmod	+x	./ibm-java-sdk-8.0-3.21-x86_64-archive.bin		
	./ibm-java-sdk-8.0-3.21-x86_64-archive.bin

	

Eclipse	Maximum	Heap	Size

The	maximum	heap	size	for	Eclipse	may	be	set	in	the	"-vmargs"	section	of	the	eclipse.ini	file.

	

Offline	Update	Site	Installation

1.	 Using	any	Eclipse	installation,	run	metadata.repository.mirrorApplication	and
artifact.repository.mirrorApplication	for	each	update	site.	For	example:

Windows:

>	mkdir	C:\eclipseupdatesites\dtfj\
>	.\eclipse.exe	-application	org.eclipse.equinox.p2.metadata.repository.mirrorApplication	-source	https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/dtfj/	-destination	"file:/C:/eclipseupdatesites/dtfj/"	-ignoreErrors
>	.\eclipse.exe	-application	org.eclipse.equinox.p2.artifact.repository.mirrorApplication	-source	https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/dtfj/	-destination	"file:/C:/eclipseupdatesites/dtfj/"	-ignoreErrors

Linux:

$	mkdir	-p	/tmp/eclipseupdatesites/dtfj/
$./eclipse	-application	org.eclipse.equinox.p2.metadata.repository.mirrorApplication	-source	https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/dtfj/	-destination	"file:/tmp/eclipseupdatesites/dtfj/"	-ignoreErrors
$./eclipse	-application	org.eclipse.equinox.p2.artifact.repository.mirrorApplication	-source	https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/dtfj/	-destination	"file:/tmp/eclipseupdatesites/dtfj/"	-ignoreErrors

2.	 Transfer	the	downloaded	upatesites	above	to	the	target	machine.

3.	 For	each	updatesite	folder:

1.	 In	Eclipse,	click	Help	}	Install	New	Software...
2.	 Click	the	"Add..."	button.
3.	 Enter	"Local	$NAME"	(for	example,	Local	DTJF)	for	the	name,	click	"Local..."	and	select	the

update	site	folder.
4.	 After	you	click	OK,	Eclipse	will	automatically	select	the	new	update	site	and	load	available

plugins	from	which	you	can	select	the	plugins.

	

Apache	JMeter
Apache	JMeter	(http://jmeter.apache.org/)	has	a	bit	of	a	learning	curve	but	generally	has	all	the	features
needed	to	do	performance	testing.	Writing	and	maintaining	realistic	test	suites	can	be	time	consuming,
particularly	because	even	minor	changes	to	an	application	can	break	the	test	flow	and	assumptions.
Nevertheless,	it	is	critical	to	have	realistic	testing.	You	can	have	different	tiers	of	tests,	from	simple	smoke
tests	to	incredibly	realistic	user	flows,	with	the	latter	being	more	brittle.

For	a	lab	demonstrating	JMeter,	see	https://hub.docker.com/r/kgibm/fedorawasdebug

Download	the	JMeter	binary	(http://jmeter.apache.org/download_jmeter.cgi),	unzip,	change	directory	to	bin,
and	run	jmeter.	You	will	start	with	a	blank	test	plan	and	workbench.	In	general,	you	should	do	most	of	your
work	in	the	test	plan	and	the	workbench	is	only	used	for	some	copy/paste	operations.	Right	click	on	the	test
plan	and	use	the	context	menus	to	build	it.	Here	are	some	general	tips:

http://jmeter.apache.org/
https://hub.docker.com/r/kgibm/fedorawasdebug
http://jmeter.apache.org/download_jmeter.cgi

As	you	change	fields	and	navigate,	the	changes	you	make	are	persistent	within	the	GUI;	however,	you
should	save	your	plan	and	periodically	re-save	as	you	make	changes.
Try	to	use	variables	as	much	as	possible	so	that	your	test	is	more	flexible.

See	a	sample	JMeter	script	at
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/jmeter/sample_test_plan.jmx,
a	screenshot	of	which	is	below.	Here	are	the	highlights:

A	"User	Defined	Variables"	configuration	element	defines	some	global	variables	such	as	the	scheme,
host,	port,	number	of	threads,	etc.
An	"HTTP	Request	Defaults"	configuration	element	defines	the	default	parameters	of	the	HTTP
client.	In	particular,	note	that	"Retrieve	All	Embedded	Resources"	and	"Use	concurrent	pool"	are
checked	to	instruct	the	client	to	retrieve	things	such	as	images,	CSS,	and	JS	resources	from	resulting
HTML	files	to	more	closely	mimic	real	world	behavior.
An	"HTTP	Header	Manager"	configuration	element	with	a	header	name	of	"Authorization"	and	a
value	of	"Basic	..."	shows	how	to	add	an	HTTP	header	to	perform	basic	authorization	on	every	request.
Notice	that	the	element	is	grayed	out,	signifying	that	the	element	is	disabled.	To	enable	it,	right	click
and	click	Enable	or	Toggle.	This	technique	is	often	useful	to	quickly	change	tests.
A	"Poisson	Random	Timer"	timer	element	pauses	each	thread	for	a	random	period	of	time	between
requests	with	most	times	occurring	near	the	specified	value	in	the	configuration.
A	"Thread	Group"	threads	element	that	will	perform	the	actual	HTTP	requests	with	a	certain
concurrency	and	for	a	certain	number	of	iterations.

An	"HTTP	Cookie	manager"	configuration	element	that	will	stores	cookies	for	each	thread.
An	"HTTP	Request"	sampler	element	that	will	do	the	actual	HTTP	request.	Since	we've	set	up
HTTP	Request	Defaults	above,	we	only	need	to	change	what's	unique	to	this	request,	in	the	first
example	just	the	path	/.

A	"Response	Assertion"	assertion	element	that	will	fail	the	request	if	it	doesn't	see	the
specified	value	in	the	response.	It	is	useful	to	add	these	to	all	responses	to	ensure	that	there
are	no	functional	errors	in	the	application.
An	"XPath	Extractor"	post	processor	element	which	will	extract	content	from	the	response
into	variables	for	use	in	subsequent	requests.	We	check	"Use	tidy	(tolerant	parser)"
because	most	HTML	is	not	well	formed	XML.	We	set	the	reference	name	to	the	variable
that	we	want	to	hold	the	extraction,	and	the	XPath	query	to	perform	the	extraction.	Other
useful	post	processors	are	the	regular	expression	extractor.

An	"HTTP	Request"	sampler	element	that	will	do	an	HTTP	request	to	the	contents	of	the
variable	that	we	extracted	from	the	previous	response.

A	"Summary	Report"	listener	element	that	will	provide	basic	statistics	on	the	test	results.
A	"Graph	Results"	listener	element	that	will	provide	the	same	statistics	as	the	summary	report	in	graph
form	over	time.
A	"View	Results	Tree"	listener	element	that	will	provide	the	full	request	and	response	of	every	sample.
This	is	useful	during	test	design	and	should	be	toggled	off	otherwise.
Make	a	habit	to	change	the	"Name"	of	each	element	to	describe	what	it's	doing.	The	name	will	be
reflected	in	the	tree	on	the	left.
To	start	the	test,	click	the	simple	green	arrow.
As	the	test	is	running,	the	number	of	threads	executing	is	in	the	top	right	corner.	You	can	also	click
any	of	the	listener	elements	to	see	a	live	view	of	the	statistics,	graph,	or	results	tree.
To	stop	the	test,	click	the	shutdown	red	X	button	(the	stop	button	terminates	threads	and	should	be
avoided).
After	stopping	a	test,	you	may	want	to	clear	the	previous	results	before	starting	a	new	iteration.	Click
the	clear	all	brooms	icon	to	reset	the	listeners.

https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/jmeter/sample_test_plan.jmx

		

Wireshark
Wireshark	is	an	open	source	program	to	perform	analysis	on	capture	packets.	Wireshark	supports	the	packet
formats	of	most	operating	systems.

	

Wireshark	Recipe

1.	 Check	capture	statistics
2.	 Check	for	packet	loss:	tcp.analysis.retransmission
3.	 Statistics	}	Protocol	Hierarchy.	Note	percentages	of	packet	types.
4.	 Statistics	}	IO	Graphs	}	Change	"Y	Axis"	for	"All	Packets"	to	"Bytes".	Note	the	utilization	over	time.
5.	 Statistics	}	DNS	}	Service	Stats	}	request-response	time	(msec)	}	Average	/	Max	Val
6.	 Statistics	}	Service	Response	Time	}	LDAP

	

Common	Terms	and	Concepts

A	frame	is	basically	a	packet.
A	conversation	is	the	set	of	packets	between	two	endpoints.
An	endpoint	is	a	logical	endpoint	of	a	protocol	or	network	layer.	For	most	purposes,	focusing	on	an	IP
endpoint,	i.e.	an	IP	address.
Following	a	TCP	or	HTTP	stream	means	extracting	the	subset	of	a	conversation,	from	the	point	of
view	of	an	application.	For	most	purposes,	focusing	on	a	TCP	stream,	i.e.	SYN	}	SYN/ACK	}	ACK	}
...	}	FIN	}	FIN/ACK	}	ACK
There	is	no	way	with	a	single	capture	to	know	how	long	it	took	for	the	packet	to	be	transmitted.	This
requires	a	correlated	packet	capture	on	the	other	side	where	the	packet	was	sent	from/to.
Timestamp	of	packet	is:

For	an	incoming	packet,	the	timestamp	is	when	the	capture	mechanism	is	handed	the	packet
from	its	way	from	the	NIC	to	the	client.	This	would	include	any	transition	time	over	the	NIC.
For	an	outgoing	packet,	the	timestamp	is	when	the	capture	mechanism	is	handed	the	packet
from	its	way	from	the	client	to	the	NIC,	before	it	hits	the	NIC.

	

Time	zones

By	default,	Wireshark	shows	relative	timestamps	(seconds	since	beginning	of	capture).	It's	often	useful	to

https://www.wireshark.org/
https://www.wireshark.org/docs/wsug_html_chunked/ChStatIOGraphs.html

show	absolute	timestamps	to	correlate	to	other	logs.	For	the	most	common	capture	formats	such	as	libpcap,
the	timestamps	in	the	capture	are	stored	as	UTC.	To	show	these	UTC	timestamps,	click	View	}	Time
Display	Format	}	UTC	Date	and	Time	of	Day.

To	show	absolute	timestamps	in	the	local	timezone	of	the	system	where	the	packets	were	captured,	if	the
local	timezone	of	the	system	running	Wireshark	does	not	match	the	capture	system,	then	Wireshark	must	be
launched	from	a	terminal	after	setting	the	appropriate	TZ	environment	variable	value.

When	launching	Wireshark	from	POSIX	systems	such	as	Linux,	this	is	just	a	matter	of	using	the	Olson	time
zone	ID;	for	example:

TZ=Asia/Tokyo	wireshark

On	Windows,	the	TZ	environment	variable	does	not	support	Olson	time	zone	database	names	and	instead	you
must	specify	an	absolute	time	zone	offset	and	this	offset	is	the	opposite	of	the	colloquial	offset:

Take	care	in	computing	the	sign	of	the	time	difference.	Because	the	time	difference	is	the	offset
from	local	time	to	UTC	(rather	than	the	reverse),	its	sign	may	be	the	opposite	of	what	you	might
intuitively	expect.	For	time	zones	ahead	of	UTC,	the	time	difference	is	negative;	for	those
behind	UTC,	the	difference	is	positive.

For	example,	Tokyo's	colloquial	UTC	offset	is	UTC+9;	however,	on	Windows,	the	TZ	environment	variable
must	be	specified	as	UTC-9:

>	set	TZ=JST-9
>	"C:\Program	Files\Wireshark\Wireshark.exe"

If	the	local	timezone	does	not	have	daylight	savings	time,	or	you	do	not	expect	that	the	capture	overlaps	a
daylight	savings	time	transition,	you	may	simply	use	the	offset	from	UTC	instead	of	looking	up	the	three-
letter	time	zone	name;	for	example,	for	Tokyo:

>	set	TZ=UTC-9
>	"C:\Program	Files\Wireshark\Wireshark.exe"

If	the	local	timezone	has	daylight	savings	time	and	the	capture	overlaps	a	daylight	savings	time	transition,
then	the	daylight	savings	time	three-letter	code	should	be	appended.	For	example,	for	America/New_York:

>	set	TZ=EST5EDT
>	"C:\Program	Files\Wireshark\Wireshark.exe"

After	launching	Wireshark	with	the	proper	TZ	envar,	click	View	}	Time	Display	Format	}	Date	and	Time	of
Day	to	see	the	timestamp	in	the	local	timezone	of	the	capture	system.

	

Capture	Statistics

Statistics	}	Capture	File	Properties:

1.	 Review	the	times	(First	packet	and	Last	packet)	and	length	of	the	packet	capture	(Elapsed)	to	see
if	it's	relevant	to	the	issue	and/or	representative.

2.	 Review	the	number	of	packets	with	Packets.
3.	 Review	the	average	throughput	with	Average	bytes/s.
4.	 Review	the	Dropped	Packets	value,	if	any.

Example:

First	packet:	2020-08-11	19:47:58
Last	packet:	2020-08-11	19:51:44
Elapsed:	00:03:45

https://www.wireshark.org/docs/wsug_html_chunked/ChAdvTimezones.html#_wireshark_and_time_zones
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=ctzs-time-zone-ids-that-can-be-specified-usertimezone-property
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/tzset?view=vs-2019

[...]

Packets:	5693
Time	span,	s:	225.694
Average	pps:	25.2
Average	packet	size,	B:	538
Bytes:	3064080
Average	bytes/s:	13	k
Average	bits/s:	108	k

In	addition,	review	Statistics	}	Summary

	

Packet	Loss

In	general,	TCP	retransmissions	indicate	packet	loss;	however,	Wireshark	must	infer	retransmissions	and
there	may	be	cases	of	"benign"	retransmissions	(e.g.	some	cooked	captures).	This	is	why	Wireshark	reports
TCP	retransmissions	as	"suspected".	The	only	way	to	know	for	sure	if	there	is	packet	loss	is	to	capture
network	traces	on	two	sides	of	a	conversation	and	compare	TCP	sequence	numbers	on	each	stream.

With	that	said,	you	may	guess	that	there	may	be	packet	loss	with	the	following	technique:

1.	 Find	TCP	retransmissions:
1.	 Analyze	}	Expert	Information.	If	you	want	to	check	for	a	particular	source/destination,	apply

that	display	filter	first	(e.g.	ip.addr	==	10.20.30.100)	and	then	check	Limit	to	Display
filter	in	the	Expert	Information	dialog.	Review	the	count	of	Note:	This	frame	is	a
(suspected)	retransmission	(separately,	consider	ACKed	Lost	Packet,	Previous	Segment
Lost	and	Out	of	Order).

2.	 tcp.analysis.retransmission	filter.	If	you	want	to	check	for	a	particular	source/destination,
add	those	filters;	for	example,	ip.addr	==	10.20.30.100	&&	tcp.analysis.retransmission

3.	 Some	versions	of	Wireshark	show	a	Dropped	packet	count	in	the	bottom	of	the	window	next	to
the	Packet/Display	counts.

2.	 Take	the	count	of	TCP	retransmissions	and	divide	by	the	total	packet	count	(if	using	a	display	filter,
divide	by	the	displayed	packet	count).	The	total	number	of	packets	and	total	number	of	filtered	packets
is	shown	at	the	bottom	of	Wireshark:	Packets:	X	*	Displayed:	Y	(Z%).

	

TCP	Streams

Within	each	loaded	capture,	Wireshark	generates	a	unique	identifier	for	each	TCP	stream.	A	TCP	stream
uniquely	identifies	a	particular	socket	through	the	four-tuple:	(Source	IP,	Source	Port,	Destination	IP,
Destination	Port).	This	is	visible	in	the	packet	details	view	under	Transmission	Control	Protocol	}	[Stream
Index:	X].

To	filter	on	a	particular	stream,	use	the	filter	tcp.stream	==	X	or	right	click	on	a	packet	and	select	Follow	}
TCP	Stream.

It	may	also	be	useful	to	add	tcp.stream	as	a	custom	column	to	quickly	differentiate	different	conversations:

	

Useful	Filters

1.	 An	IP	address	is	either	the	source	or	the	destination:

ip.addr	==	10.20.30.100

2.	 A	port	is	either	the	source	or	the	destination:

tcp.port	==	443

3.	 TCP	handshakes	(assuming	the	default	of	relative	sequence	numbers):

tcp.flags.syn	==	1	||	(tcp.seq	==	1	&&	tcp.ack	==	1	&&	tcp.len	==	0	&&	tcp.flags.fin	!=	1)

4.	 TCP	RST	packets	may	be	a	sign	of	a	problem	or	they	may	be	normal.	Some	applications	use	a	RST
packet	for	normal	socket	closure	instead	of	a	full-duplex	FIN	exchange.

tcp.connection.rst

	

Find	SYNs	without	SYN/ACKs

To	find	streams	that	failed	to	establish	a	connection:

1.	 Filter	to	tcp.flags.syn	==	1
2.	 Click	Statistics	}	Conversations
3.	 Check	Limit	to	display	filter
4.	 Select	the	TCP	tab
5.	 Conversations	with	outgoing	SYNs	but	no	incoming	SYNs	may	be	suspects	(except	for	those	at	the

end	of	the	capture).	Conversations	with	greater	than	1	SYN	may	also	be	suspects	of	retransmissions
during	connect.

https://wiki.wireshark.org/TCP_Relative_Sequence_Numbers

	

Analyzing	Sequence	Numbers

For	a	particular	stream,	the	relative	sequence	number	(tcp.seq)	on	a	packet	represents	how	many	bytes	of
TCP	data	have	been	sent	since	the	start	of	the	socket.	The	relative	next	sequence	number	(tcp.nxtseq)	is	the
expected	relative	sequence	number	of	the	next	outbound	packet	which	is	the	current	sequence	number	plus
the	current	TCP	payload	size.	This	is	useful	to	know	what	to	expect	as	the	receiver's	acknowledgment
number	(discussed	below).

In	the	following	example,	frame	23	is	selected	which	is	the	first	packet	of	an	outbound	HTTP	request.	The
current	relative	sequence	number	is	1	because	the	socket	was	just	established.	The	relative	next	sequence
number	is	399	because	it	will	be	1	+	398	(the	TCP	payload	size	highlighted	in	blue).

The	relative	acknowledgment	number	(tcp.ack)	represents	how	many	bytes	have	been	successfully
received.	In	the	same	example	stream,	the	ACK	packet	(frame	24)	that's	acknowledging	receiving	the	HTTP
request	has	an	acknowledgment	number	of	399	which	matches	the	relative	next	sequence	number	from
above:

To	visualize	this	back-and-forth,	filter	to	a	stream	(e.g.	tcp.stream	==	7	as	in	the	example	above),	click
Statistics	}	Flow	Graph,	check	"Limit	to	display	filter",	and	change	"Flow	type"	to	"TCP	Flows":

		

Time	Sequence	Graph	(tcptrace)

A	Time	Sequence	Graph	visualizes	a	TCP	stream	over	time	in	one	direction.	Select	a	packet	}	Wireshark
Menu	}	Statistics	}	TCP	Stream	Graphs	}	Time	Sequence	(tcptrace).	Click	Switch	Direction	to	change
directions.	The	sequence	number	represents	total	bytes	sent	so	this	is	a	useful	way	to	visualize	how	data	is
sent	over	a	stream:

The	slope	of	the	line	is	network	throughput/bandwidth.	The	vertical	I-beams	show	bytes	per	packet.	The	plot
below	the	I-beams	are	the	ACKs.	The	top	plot	shows	the	client's	receive	window.	If	there	is	a	significant
difference	between	plots,	there	may	be	an	issue	in	the	sending	side	such	as	an	application	send	bottleneck	or
congestion	algorithm	throttling.

	

TLS	Encrypted	Alert

A	TLS	Encrypted	Alert	indicates	a	normal	closure	or	an	error:

The	"close_notify"	alert	is	used	to	indicate	orderly	closure	of	one	direction	of	the	connection.
Upon	receiving	such	an	alert,	the	TLS	implementation	SHOULD	indicate	end-of-data	to	the
application.

Error	alerts	indicate	abortive	closure	of	the	connection	(see	Section	6.2).

The	type	and	details	of	the	alert	are	encrypted.	If	a	TLS	Encrypted	Alert	is	followed	by	a	FIN,	then	it	is
likely	a	normal	close_notify.

	

Visualize	TCP	Response	Times

There	is	no	concept	of	a	TCP	response	time.	A	TCP	stream	has	two	pipes	and	they	act	independently.	Some
layers	above	TCP,	such	as	HTTP,	do	have	the	concept	of	requests	and	responses	and	thus	provide	fields	like

https://tools.ietf.org/html/rfc8446#page-85

http.time	which	can	help	understand	response	times.	Other	protocols	provide	filters	under	the	Service
Response	Time	dialog.

Nevertheless,	if	your	protocol	does	have	the	concept	of	requests	and	responses	but	does	not	have	a	response
time	field	(or	you	can't	see	it	because	of	encryption),	you	can	approximate	response	times	by	looking	at
tcp.time_delta	which	is	the	"Time	since	previous	frame	in	this	TCP	stream".	Be	careful	though	when
interpreting	this:

1.	 A	request	may	be	followed	by	an	ACK-only	packet	before	the	response,	so	you	cannot	assume	that
tcp.time_delta	is	roughly	equivalent	to	"time	until	first	byte	of	the	response".	The	probability	of	this
increases	with	longer	response	times.

2.	 A	request	may	be	chunked	into	multiple	frames	in	which	case	the	tcp.time_delta	of	the	response	is
only	the	time	since	the	last	frame,	not	necessarily	since	the	start	of	the	request.

3.	 A	response	may	be	chunked	into	multiple	frames,	so	if	you	are	filtering	to	just	a	response	port	to
approximate	only	looking	at	potential	response	times,	you	may	also	see	the	time	between	chunks.
(Relatedly,	the	client	may	be	sending	ACK	packets	between	chunks.)

4.	 If	a	socket	is	re-used	(e.g.	HTTP	keepalive),	then	there	may	be	large	tcp.time_delta	values	which
are	actually	idle	time	between	requests.

With	those	caveats	in	mind,	you	may	graph	these	"potential	response	times":

1.	 Filter	to	the	conversations	of	interest.	Approximating	"potential	response	times"	may	be	best	done	by
filtering	to	the	source	port	of	the	server	(e.g.	tcp.srcport	==	80)	and	maybe	remove	handshakes,	etc.

2.	 Statistics	}	I/O	Graph
3.	 If	it's	a	large	capture,	wait	for	the	initial	load	to	complete	(there's	a	small	Loading	progress	bar	in	the

bottom	right).
4.	 Delete	the	All	Packets	and	TCP	Errors	rows	by	selecting	them	and	clicking	the	minus	button.
5.	 In	the	Filtered	Packets	row,	change	the	Y	Axis	column	to	AVG(Y	Field)	and	the	Y	Field	column

to	tcp.time_delta
6.	 If	it's	a	large	capture,	wait	for	the	load	to	complete.
7.	 Note	that	the	y-axis	units	(e.g.	us,	ms,	s,	etc.)	will	change	based	on	the	data.

Example:

https://www.wireshark.org/docs/wsug_html_chunked/ChStatSRT.html
https://www.wireshark.org/docs/dfref/t/tcp.html
https://github.com/IBM/webspherelab/raw/main/supplemental/exampledata/liberty/tcpdump/daytrader.pcapng.gz

	

HTTP	Streams

HTTP/1.0	and	HTTP/1.1	streams	provide	filters	through	http.	In	particular,	http.time	provides	the	HTTP
response	time.	HTTP/2.0	provides	filters	through	http2	and	HTTP/3.0	provides	filters	through	http3
although,	as	of	this	writing,	neither	have	a	time	field.

For	HTTP/1.0	and	HTTP/1.1,	the	frames	are	only	dissected	as	such	if	traffic	is	non-TLS	(or	TLS	traffic	is
decrypted)	and	the	port	is	configured	in	the	HTTP	protocol:

https://www.wireshark.org/docs/dfref/h/http.html
https://www.wireshark.org/docs/dfref/h/http2.html
https://www.wireshark.org/docs/dfref/h/http3.html

	

Visualize	HTTP	Response	Times

1.	 Filter	to	http.time	to	ensure	HTTP	dissection	is	working	(see	details	in	the	HTTP	Streams	section).
2.	 Statistics	}	I/O	Graph
3.	 If	it's	a	large	capture,	wait	for	the	initial	load	to	complete	(there's	a	small	Loading	progress	bar	in	the

bottom	right).
4.	 Delete	the	All	Packets	and	TCP	Errors	rows	by	selecting	them	and	clicking	the	minus	button.
5.	 In	the	Filtered	Packets	row,	change	the	Y	Axis	column	to	AVG(Y	Field)	and	the	Y	Field	column

to	http.time
6.	 If	it's	a	large	capture,	wait	for	the	load	to	complete.
7.	 Note	that	the	y-axis	units	(e.g.	us,	ms,	s,	etc.)	will	change	based	on	the	data.

Example:

https://github.com/IBM/webspherelab/raw/main/supplemental/exampledata/liberty/tcpdump/daytrader.pcapng.gz

	

Finding	problems	or	delays	in	the	network

Use	filters	like	tcp.time_delta	>	1	where	the	number	is	in	seconds	although	note	there	may	be
normal	delays	for	idle,	keepalive	sockets,	for	example.
Ensure	all	suspect	servers	have	synchronized	clocks	(NTP,	etc.).
Run	a	few	minutes	of	pings	and	note	the	average	latency	between	servers.
Capture	network	trace	from	both	servers.	The	network	trace	should	include	both	incoming	and
outgoing	packets,	to	and	from	the	other	servers.	If	they	are	unidirectional,	it	turns	out	merging	network
traces	from	two	different	servers	is	very	dangerous.	Basically,	a	lot	of	information	such	as	DUP	ACKs,
etc.,	is	inferred	from	the	sequence	of	packets,	and	combining	multiple	systems'	traces	can	have
unintended	consequences.	In	my	case,	it	actually	generated	TCP	retransmits	when	they	did	not	exist.
In	Wireshark

Select	View	}	Time/Display	Format	}	Date	and	Time	of	Day
Also,	add	a	column	for	"Delta	time	(Displayed)"

Open	the	first	capture.	Basically,	we	will	use	the	frame.time_delta_displayed	column	we	added

above	to	find	the	delays.	However,	the	column	is	non-sensical	with	interleaved	TCP	streams.	So	what
you	have	to	do	is	basically	filter	by	each	stream	(using	either	"Follow	TCP	stream"	on	a	suspect
packet,	or	finding	all	unique	src/destination	port	combos,	etc.).
Once	you	have	a	single	TCP	stream,	then	the	frame.time_delta_displayed	is	the	time	between
packets	on	that	stream.	Sort	by	this	column,	descending.
If	there	are	any	big	delays	(larger	than	the	max	latency),	then	note	a	few	of	those	frames.	Re-sort	by
frame	number	and	see	what	was	happening	right	before	that	frame.
Note	that	a	TCP	"stream"	within	a	TCP	"conversation"	is	just	the	unique	combination	of	Source	IP,
Source	Port,	Destination	IP,	and	Destination	Port.	TCP	is	multiplexing	so	multiple	sockets	can	be
opened	between	two	IPs.	What	this	also	means	is	that	if	the	communication	stream	is	persistent	(e.g.
connection	pooling),	then	the	stream	is	never	torn	down	(FIN	}	FIN/ACK	}	ACK),	so	there	may	be
large	gaps	between	packets	on	that	stream	which	may	just	be	the	time	between	two	units	of	work	on
that	stream.
Note	any	errors	within	Wireshark.	Research	each	error	carefully	as	some	may	be	benign	(e.g.	TCP
Checksum	Offloading).
Do	the	same	thing	on	the	other	end	and	compare	the	time	stamps.	Remember	that	the	timestamps	in	a
packet	capture	are	the	time	at	which	the	capturer	is	handed	the	packet.	For	an	outgoing	packet,	this
occurs	before	the	packet	hits	the	NIC.	For	an	incoming	packet,	this	occurs	after	the	packet	has	been
processed	by	the	NIC	and	handed	off	to	the	kernel.
Any	time	difference	between	when	server	A	receives	the	response	from	server	B	(from	server	A's
packet	capture),	and	when	server	B	sends	the	pack	to	server	B	(from	server	B's	packet	capture)	would
be	the	latency.	Any	other	time	would	mean	the	time	taken	to	process	on	server	B.
Also,	to	find	any	clock	difference,	pick	any	TCP	conversation	handshake.	The	SYN/ACK	must	come
after	the	SYN	and	before	the	ACK,	so	you	can	shift	one	packet	capture	or	the	other	(using	editcap	-t)
to	line	up	with	the	other.	For	example,	when	server	B	is	sending	the	SYN/ACK	and	it	is	behind	the
SYN,	use	the	following	to	time	shift	server	B's	packet	capture:	(((ACK	-	SYN)	/	2)	+	SYN)	-
(SYNACK)

	

Finding	gaps	within	an	IP	conversation	in	a	network	capture

https://www.wireshark.org/docs/dfref/f/frame.html
frame.time_delta	}	Time	delta	between	the	current	packet	and	the	previous	packet	in	the
capture	(regardless	of	any	display	filters).
frame.time_delta_displayed	}	Time	delta	between	the	current	packet	and	the	previous	packet
in	the	current	display.
frame.time_relative	}	Time	delta	between	the	current	packet	and	the	first	packet	in	the
capture	(regardless	of	any	display	filters),	or	if	there	is	a	time	reference,	that	reference	time.

To	find	gaps	within	an	IP	conversation:
First	add	frame.time_delta_displayed	column:	Edit	}	Preferences	}	User	Interface	}
Columns	}	Add	}	Field	Type	=	Delta	Time	Displayed.
To	find	gaps,	apply	some	logical	grouping	to	the	packets	so	that	they	are	all	related,	e.g.	right
click	on	the	SYN	of	the	incoming/outgoing	packet	and	click	"Follow	TCP	Stream."	Close	the
window	that	pops	up	and	now	Wireshark	is	filtered	to	that	particular	tcp	stream	(e.g.	"tcp.stream
eq	5").	(This	could	also	be	done	just	with	the	conversation,	not	just	the	stream).
The	Delta	Time	Displayed	is	the	delta	time	between	that	packet	and	the	previous	packet	in	that
stream	--	i.e.	the	gap	between	packets	in	that	conversation.
Another	interesting	thing	to	do	is	to	colorize	large	differences	in	frame.time_delta_displayed:
View	}	Coloring	Rules	}	New	}	Filter:	frame.time_delta_displayed	>=	.1

The	following	tshark	Lua	script	searches	network	packet	captures	for	anomalous	TCP	delays	in
handshakes	(long	response	time	to	a	SYN,	response	not	a	SYN/ACK,	missing	response	to	a	SYN,
duplicate	SYN)	and	delays	between	packets	after	a	handshake.	The	latter	is	disabled	by	default
because	connections	are	often	re-used,	so	there	may	be	legitimate	delays	between	the	end	of	one	part
of	a	conversation	and	the	beginning	of	another,	so	that	requires	more	delicate	analysis.

	

https://www.wireshark.org/docs/dfref/f/frame.html
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/wireshark/tcpanomalies.lua

TCP	Checksum	Offloading	Errors

TCP	Checksum	Offloading:	Checksum	offloading	is	when	the	OS	network	driver	does	not	perform	a
checksum,	but	instead	fills	the	checksum	with	0	or	garbage,	and	then	"offloads"	the	checksum	processing	to
the	physical	NIC	card	which	then	itself	does	the	checksum	and	puts	it	in	the	packet	before	sending	it	off.
Thus	a	capture	will	get	a	garbage	checksum.	Checksum	offloading	errors	within	Wireshark	are	only	benign
if	the	packets	are	outgoing.	Two	ways	to	avoid	are:	1)	turn	off	the	OS	checksum	offloading	(not	always
possible	or	simple,	and	could	significantly	impact	performance),	or	2)	turn	off	checksum	validation	in
Wireshark.	For	2:	Edit	}	Preferences	}	Protocols	}	TCP	}	Uncheck	"Check	the	validity	of	the	TCP	checksum
when	possible."

https://www.wireshark.org/docs/wsug_html_chunked/ChAdvChecksums.html
https://www.wireshark.org/faq.html#q11.1
https://wiki.wireshark.org/TCP_Checksum_Verification
https://wiki.wireshark.org/TCP_Reassembly

	

tshark

Example	usage:

TCP	packets:

TZ=UTC	tshark	-t	ud	-T	fields	-e	frame.number	-e	_ws.col.Time	-e	ip.src	-e	tcp.srcport	-e	ip.dst	-e	tcp.dstport	-e	tcp.stream	-e	frame.len	-e	_ws.col.Protocol	-e	_ws.col.Info	-r	*pcap*

Apply	a	filter	using	-Y

	

TCP	Handshakes

TZ=UTC	tshark	-t	ud	-T	fields	-e	frame.number	-e	_ws.col.Time	-e	ip.src	-e	tcp.srcport	-e	ip.dst	-e	tcp.dstport	-e	tcp.stream	-e	frame.len	-e	_ws.col.Protocol	-e	_ws.col.Info	-r	*pcap*	-Y	"tcp.flags.syn	==	1"

Retransmitted	TCP	handshakes:

TZ=UTC	tshark	-t	ud	-T	fields	-e	frame.number	-e	_ws.col.Time	-e	ip.src	-e	tcp.srcport	-e	ip.dst	-e	tcp.dstport	-e	tcp.stream	-e	frame.len	-e	_ws.col.Protocol	-e	_ws.col.Info	-r	*pcap*	-Y	"tcp.flags.syn	==	1	&&	tcp.analysis.retransmission"

	

Search	for	raw	bytes

For	example,	let's	say	the	Java	Class	Libraries	are	used	to	send	an	encrypted	HTTP	POST	as	seen	in	-
Djavax.net.debug=all	output:

[5/8/24	1:04:09:851	UTC]	000000ae	id=00000000	SystemOut																																																				O	javax.net.ssl|FINE|AE|Default	Executor-thread-110|2024-05-08	01:04:09.840	UTC|Thread.java:1178|Plaintext	before	ENCRYPTION	(
		0000:	50	4f	53	54	20	2f	69	6e		73	74	61	6e	63	65	73	2f		POST..instances.
		[...]
[5/8/24	1:04:09:886	UTC]	000000ae	id=00000000	SystemOut																																																				O	javax.net.ssl|FINE|AE|Default	Executor-thread-110|2024-05-08	01:04:09.875	UTC|Thread.java:1178|Raw	write	(
		0000:	17	03	03	09	31	00	00	00		00	00	00	00	01	9f	70	9e	1.........p.
		[...]

Then	we	can	search	for	the	first	bytes	of	the	Raw	write:

$	TZ=UTC	tshark	-t	ud	-T	fields	-e	frame.number	-e	_ws.col.Time	-e	ip.src	-e	tcp.srcport	-e	ip.dst	-e	tcp.dstport	-e	tcp.stream	-e	frame.len	-e	_ws.col.Protocol	-e	_ws.col.Info	-r	liberty.pcapng	-Y	"frame	contains	170303093100000000000000019f709e"
9714				2024-05-08	01:04:09.764567		192.168.1.161			59969			173.223.234.52		443	52		1514				TCP	[TCP	segment	of	a	reassembled	PDU]

	

DNS	response	times	greater	than	10ms

https://www.wireshark.org/docs/wsug_html_chunked/ChAdvChecksums.html
https://www.wireshark.org/faq.html#q11.1
https://wiki.wireshark.org/TCP_Checksum_Verification
https://wiki.wireshark.org/TCP_Reassembly

TZ=UTC	tshark	-t	ud	-T	fields	-e	frame.number	-e	_ws.col.Time	-e	ip.src	-e	ip.dst	-e	frame.len	-e	dns.time	-e	_ws.col.Protocol	-e	_ws.col.Info	-r	*pcap*	-Y	"dns.time	>=	0.01"

	

capinfos

To	get	basic	statistics	for	a	pcap	file:

$	TZ=UTC	capinfos	*pcap
File	name:											[...].pcap
File	type:											Wireshark/tcpdump/...	-	pcap
File	encapsulation:		Linux	cooked-mode	capture
File	timestamp	precision:		microseconds	(6)
Packet	size	limit:			file	hdr:	262144	bytes
Number	of	packets:			1,326	k
File	size:											763	MB
Data	size:											742	MB
Capture	duration:				3504.180516	seconds
First	packet	time:			2024-01-30	11:42:32.725851
Last	packet	time:				2024-01-30	12:40:56.906367
Data	byte	rate:						211	kBps
Data	bit	rate:							1,694	kbps
Average	packet	size:	559.78	bytes
Average	packet	rate:	378	packets/s
SHA256:														[...]
RIPEMD160:											[...]
SHA1:																[...]
Strict	time	order:			False
Number	of	interfaces	in	file:	1
Interface	#0	info:
																					Encapsulation	=	Linux	cooked-mode	capture	(25	-	linux-sll)
																					Capture	length	=	262144
																					Time	precision	=	microseconds	(6)
																					Time	ticks	per	second	=	1000000
																					Number	of	stat	entries	=	0
																					Number	of	packets	=	1326022

	

editcap

editcap:	https://www.wireshark.org/docs/man-pages/editcap.html

	

Split	packet	capture	by	time

Example	of	1	minute	per	file:

editcap	-i	60	input.pcap	output.pcap

	

Lua	Scripts

tshark	supports	Lua	scripts	to	perform	automated	analysis.

$	cat	file.lua
print("hello	world!")
$	tshark	-X	lua_script:file.lua

Example	scripts:

General	LUA	Examples

https://www.wireshark.org/docs/man-pages/editcap.html
https://wiki.wireshark.org/Lua
https://wiki.wireshark.org/Lua/Examples

Check	for	common	TCP	anomalies	and	long	delays

	

Decrypt	SSL/TLS	Traffic

Using	a	Log	File	with	Per-Session	Secrets

	

Decrypting	Java	TLS	Traffic

For	Wireshark	to	decrypt	TLS	communications	in	a	network	trace	for	any	modern	TLS	cipher	suite	(i.e.
ephemeral	key	exchange/non-RSA),	it	needs	either	the	client	or	server	to	log	per-session	secret	keys	to	a	de-
facto	standard	NSS	Key	Log	file	which	is	then	configured	in	Wireshark	or	embedded	in	the	network	capture
with	editcap	--inject-secrets .	This	NSS	Key	Log	file	output	is	implemented	in	various	programs	and
libraries	most	often	by	launching	the	executable	with	the	environment	variable	SSLKEYLOGFILE	set	to	a	file
path.	Programs	and	libraries	offering	support	include	curl,	OpenSSL,	libressl,	BoringSSL,	GnuTLS,
wolfSSL,	some	builds	of	Firefox,	some	builds	of	Chrome,	and	others.

In	older	versions	of	Java,	-Djavax.net.debug=ssl,keygen	trace	would	print	the	client	nonce	and	master
secret	which	could	be	converted	to	the	NSS	Key	Log	file	format.	However,	newer	versions	of	Java	seem	to
have	eliminated	this	as	part	of	the	transition	to	TLS1.3	where	the	entire	javax.net.debug	logging	code	was
overhauled.

Amazon	submitted	a	patch	to	add	NSS	Key	Log	file	support	for	the	request	for	enhancement	with	a	-
Djavax.net.debug.keylog	option	but	this	was	denied	because	a	compatibility	and	specification	request
(CSR)	was	required,	there	were	some	suggestions	of	architecting	the	solution	to	make	it	more	generic
(arguably,	over-architecting	for	a	purely	diagnostic	function),	and	there	were	also	some	concerns	about
security	although	these	do	not	make	much	sense	because	-Djavax.net.debug	already	supports	logging	fully
decrypted	data.	Therefore,	the	pull	request	languished	and,	as	it	stands	in	2024,	although	-
Djavax.net.debug	can	write	fully	decrypted	data,	there	are	no	capabilities	in	Java	to	print	the	required
secrets	for	decryption	of	network	traces	for	modern	TLS	cipher	suites.

There	are	some	open	source	Java	agents	that	may	be	used	at	startup	or	attached	dynamically	to	add	such
output	such	as	https://github.com/neykov/extract-tls-secrets	(Apache	2.0	license).	Alternatively,	if	the	other
half	of	the	communication	is	non-Java	based	(e.g.	a	client	web	browser),	then	it	might	be	possible	to	enable
SSLKEYLOGFILE	there	or	simply	use	a	browser's	network	console	to	capture	traffic	and	then	export	to	a	HAR
file.

Another	approach	is	to	use	-Djavax.net.debug=all	and	then	find	the	raw	encrypted	writes	in	the	resulting
log	file	and	search	for	the	raw	bytes	in	the	network	capture	and	correlate	by	time.

	

Using	SSLKEYLOGFILE

Some	builds	of	programs	and	libraries	such	as	Firefox,	Chrome,	curl	and	others	support	the	SSLKEYLOGFILE
environment	variable	which	is	a	path	to	a	log	file	that	is	created	by	said	programs	with	per-session	secret
information	on	each	SSL/TLS	transaction	that	can	be	used	by	Wireshark	to	decrypt	traffic.

1.	 When	using	a	browser,	ensure	that	all	instances	of	the	browser	program	are	first	closed.
2.	 Open	a	terminal	or	command	prompt	and	set	SSLKEYLOGFILE	to	some	file.	For	example,	Linux/macOS:

export	SSLKEYLOGFILE=/tmp/tlssecrets.log

Or	Windows:

https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/wireshark/tcpanomalies.lua
https://www.ietf.org/archive/id/draft-thomson-tls-keylogfile-00.html
https://wiki.wireshark.org/TLS#preference-settings
https://everything.curl.dev/usingcurl/tls/sslkeylogfile
https://github.com/openjdk/jdk/pull/2896
https://bugs.openjdk.org/browse/JDK-8262880
https://wiki.openjdk.org/display/csr/Main
https://github.com/openjdk/jdk/pull/2896#pullrequestreview-609965218
https://github.com/openjdk/jdk/pull/2896#issuecomment-802808343
https://github.com/openjdk/jdk/pull/2896#issuecomment-802886691
https://github.com/neykov/extract-tls-secrets
https://www.ietf.org/archive/id/draft-thomson-tls-keylogfile-00.html

set	SSLKEYLOGFILE=C:\tlssecrets.log

3.	 Launch	the	browser	from	the	terminal	or	command	prompt.	For	example,	Linux:

firefox

macOS:

open	-a	Firefox

Windows:

"C:\Program	Files\Mozilla	Firefox\firefox.exe"

4.	 Start	the	network	trace
5.	 Navigate	to	the	server	to	reproduce	the	problem.
6.	 If	sending	to	support,	send	both	the	network	trace	output	and	the	SSLKEYLOGFILE	file.	Optionally,

you	may	embed	the	SSLKEYLOGFILE	file	into	the	capture	with:

editcap	--inject-secrets	tls,tlssecrets.log	original.pcap	original_with_secrets.pcapng	

To	analyze	and	decrypt	the	network	trace:

1.	 If	the	SSLKEYLOGFILE	has	not	been	embedded,	in	Wireshark,	set	the	path	in	Preferences	}
Protocols	}	TLS	}	(Pre)-Master-Secret	log	filename

	

Ports	and	Heuristics

In	general,	Wireshark	uses	two	mechanisms	to	decide	whether	a	protocol	dissector	should	dissect	packets:
ports	and	heuristics.

Ports	are	usually	specified	on	a	per-protocol	basis	under	Edit	}	Preferences	}	Protocols.	For	example,	if
HTTP	traffic	is	running	on	a	"non-standard"	port,	you	may	add	the	additional	ports	to	the	HTTP	protocol.

Heuristics	are	optionally	implemented	by	protocols	to	guess	that	a	stream	is	of	the	protocol's	type.	Some
protocols	do	not	expose	an	option	to	disable	their	heuristic,	in	which	case	the	protocol	may	be	disabled	under
Analyze	}	Enabled	Protocols.

	

Working	with	Wireshark	Source

Launching	Wireshark	in	GDB:

$	libtool	--mode=execute	gdb	-ex=run	-ex=quit	./wireshark
$	libtool	--mode=execute	gdb	-ex=run	-ex=quit	--args	./wireshark	file.pcap
$	libtool	--mode=execute	gdb	-ex=run	-ex=quit	--args	./wireshark	-R	'tcp.stream	==	3'	file.pcap

Abort	on	a	dissector	bug:

export	WIRESHARK_ABORT_ON_DISSECTOR_BUG=1

	

Custom	Dissector

For	a	template,	see	doc/packet-PROTOABBREV.c.	To	compile	into	Wireshark,	add	the	file	into
epan/dissectors,	and	add	its	name	to	DISSECTOR_SRC	in	epan/dissectors/Makefile.common.	See
doc/README.developer	and	doc/README.dissector.

https://www.ibm.com/support/pages/capture-network-trace

	

IBM	Interactive	Diagnostic	Data	Explorer
The	IBM	Interactive	Diagnostic	Data	Explorer	(IDDE)	tool	is	no	longer	actively	maintained.	Instead,	use	the
command	line	jdmpview	tool	from	IBM	Java	or	OpenJ9.

	

IBM	Support	Assistant	(ISA)
IBM	Support	Assistant	(ISA)	5	provides	a	case	management	system	along	with	various	diagnostic	tools.	ISA
is	an	"as-is"	tool	with	best	effort	support	through	esupport@us.ibm.com.	Some	of	the	bundled	tools	are	not
as	recent	as	direct	downloads	of	the	latest	versions	from	each	tool's	downlod	page.

Download
Documentation

	

Installation

Use	the	Download	link

	

Log	Analysis

ISA	5	includes	a	log	analysis	engine	called	Phase	1	Problem	Determination	(P1PD)	that	finds	common
warnings	and	errors	and	proposes	various	solutions	through	the	"Scan	Logs"	button:

1.	 In	the	top	left,	click	Cases	>	Add
2.	 Enter	a	Summary	and	click	the	green	checkbox
3.	 Click	the	"<	Cases"	button	at	the	top	right	of	the	pop-up	to	hide	it
4.	 Your	case	should	now	be	selected	in	the	cases	dropdown	box
5.	 In	the	Files	tab,	click	the	Add	files	button	and	select	any	log	files	such	as	SystemOut.log,	a	ZIP	file	of

logs,	etc.
6.	 If	you	uploaded	a	ZIP	file,	right	click	it	and	select	Unpack
7.	 Click	the	"Scan	this	Case"	button	in	the	top	right	and	click	Submit
8.	 Once	the	scan	completes,	click	the	"Overview"	and	"Symptoms"	tabs	to	review	the	log	analysis.

	

Starting	ISA5

1.	 Run	the	start_isa.bat	or	start_isa.sh	script	in	the	ISA5	installation	directory.	The	script	will	start
three	different	WebSphere	Liberty	Java	processes	for	ISA	and	some	tools.	When	the	script	prints,
Press	ENTER	to	finish...,	you	may	press	ENTER	and	the	start	script	will	finish.	Pressing	ENTER	will
not	stop	the	servers	(there's	a	separate	stop_isa.bat/stop_isa.sh	script	for	that).	So,	feel	free	to
press	ENTER;	nothing	will	happen	and	you'll	get	your	terminal	back	or	close	the	window.

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=tools-dump-viewer
https://www.eclipse.org/openj9/docs/tool_jdmpview/
mailto:esupport@us.ibm.com
https://www.ibm.com/support/pages/compressed-file-installation-ibm-support-assistant-50-team-server
https://www.ibm.com/docs/en/support-assistant/5.0.0
https://www.ibm.com/support/pages/compressed-file-installation-ibm-support-assistant-50-team-server
https://www.ibm.com/docs/en/support-assistant/5.0.0?topic=start-automated-problem-analysis-scan

2.	 Open	a	browser	and	go	to	http://localhost:10911/isa5	(replace	localhost	with	the	target	hostname	if
running	remotely)

3.	 You	may	create	cases	and	upload	and	interact	with	files,	or	you	may	immediately	run	tools	through	the
Tools	tab.	For	example:

http://localhost:10911/isa5

	

Java	Web	Start	Tools

All	of	the	tools	with	[Desktop]	in	the	name	are	GUI	tools	launched	through	Java	Web	Start.	When	first
launching	each	tool,	you	may	receive	a	warning	such	as	the	following	which	you	can	click	Continue
through:

There	may	be	long	delays	while	launching	tools	using	JWS.	On	some	versions	of	Linux,	there	is	a	known
issue,	seemingly	with	SWT-based	applications	such	as	HealthCenter,	where	the	program	becomes	hung	and
never	launches.	It	appears	this	is	a	race	condition	in	SWT	and	it	is	usually	worked	around	by	enabling	the
Java	Console	in	the	Java	ControlPanel	application	of	the	Java	on	the	path.

	

Specifying	the	Java	Maximum	Heap	Size

Most	of	the	Desktop	JWS	tools	allow	you	to	specify	the	maximum	Java	heap	size	in	a	small	browser	popup
overlay	when	launching	the	tool:

		

gnuplot
This	cookbook	references	scripts	that	use	the	open	source	gnuplot	tool	to	generate	graphs:
http://www.gnuplot.info/

	

graphcsv.gpi

The	primary	gnuplot	script	used	is	at
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/gnuplot/graphcsv.gpi

This	is	combined	with	the	following	script	to	generate	the	multiplot	commands:
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/gnuplot/graphcsv.sh

Some	common	things	you	may	consider	changing:

1.	 Uncomment	the	following	line	in	graphcsv.gpi	to	produce	a	text-based	graph	to	the	console:
#set	terminal	dumb

2.	 Uncomment	the	following	lines	in	graphcsv.gpi	to	produce	a	PNG:
#set	terminal	png
#set	output	"output.png"

3.	 Remove	"pause	-1"	from	graphcsv.sh	to	disable	the	requirement	to	hit	Ctrl+C	after	the	graph	is
produced	(this	is	particularly	useful	for	#1	and	#2	above)

	

Test	Graphing

Test	graphing	with	the	following	set	of	commands:

$	cat	>	data.csv
Time	(UTC),CPU,Runqueue,Blocked,MemoryFree,PageIns,ContextSwitches,Wait,Steal
2014-10-15	16:12:11,20,0,0,12222172,0,2549,0,0
2014-10-15	16:12:12,27,1,0,12220732,0,3619,0,0
2014-10-15	16:12:13,30,0,0,12220212,0,2316,0,0
Ctrl+D
$	gnuplot	-e	"\
>	set	timefmt	'%Y-%m-%d	%H:%M:%S';
>	set	xdata	time;
>	set	style	data	lines;
>	set	format	y	'%.0f';
>	set	datafile	sep	',';
>	set	key	autotitle	columnhead;
>	set	multiplot	layout	4,2	scale	1.0,0.8;
>	plot	'data.csv'	using	1:2;
>	plot	'data.csv'	using	1:3;
>	plot	'data.csv'	using	1:4;
>	plot	'data.csv'	using	1:5;
>	plot	'data.csv'	using	1:6;
>	plot	'data.csv'	using	1:7;

http://www.gnuplot.info/
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/gnuplot/graphcsv.gpi
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/gnuplot/graphcsv.sh

>	plot	'data.csv'	using	1:8;
>	plot	'data.csv'	using	1:9;
>	unset	multiplot;
>	pause	-1;"
Warning:	empty	y	range	[0:0],	adjusting	to	[-1:1]
Warning:	empty	y	range	[0:0],	adjusting	to	[-1:1]
Warning:	empty	y	range	[0:0],	adjusting	to	[-1:1]
Warning:	empty	y	range	[0:0],	adjusting	to	[-1:1]

Example	output:

For	a	simpler,	one-plot	graph:

$	gnuplot	-e	"\
>	set	timefmt	'%Y-%m-%d	%H:%M:%S';
>	set	xdata	time;
>	set	style	data	lines;
>	set	format	y	'%.0f';
>	set	datafile	sep	',';
>	set	key	autotitle	columnhead;
>	plot	'data.csv'	using	1:2;
>	pause	-1;"

Output:

		

Python
Python	is	a	dynamic	programming	language	particularly	suited	for	mathematical	applications	(similar	to	the
R	Project).

	

Starting	an	Interactive	Python	Session

Start	an	interactive	python	session	with	the	command	python	from	a	terminal.	In	some	environments,	both
python	version	2	and	version	3	are	installed,	and	the	command	python3	should	be	used	to	ensure	the	latest
Python	is	used.

$	python
Python	3.9.10	(main,	Jan	15	2022,	11:48:04)	
[Clang	13.0.0	(clang-1300.0.29.3)]	on	darwin
Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.
>>>	print("Hello	World")
Hello	World
>>>	

Use	the	command	quit()	to	exit.

https://www.python.org/

	

Seaborn

Seaborn	is	one	useful	graphing	library.	Install	with	pip	install	seaborn.

	

Histogram

histplot	creates	a	histogram.

import	seaborn	as	sns
import	matplotlib
import	matplotlib.pyplot	as	plt
import	pandas	as	pd
sns.set_theme()

column	=	"flipper_length_mm"
data	=	sns.load_dataset("penguins")
#	data	=	pd.read_csv("data.csv")
#	data	=	pd.DataFrame(data={column:	[0,1,2]})

axes	=	sns.histplot(data,	x=column,	kde=True)
axes.ticklabel_format(style='plain')
axes.get_xaxis().set_major_formatter(matplotlib.ticker.StrMethodFormatter('{x:,.0f}'))
axes.get_yaxis().set_major_formatter(matplotlib.ticker.StrMethodFormatter('{x:,.0f}'))
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('image.png')
plt.show()

	

Empirical	Cumulative	Distribution	Function

ecdfplot	creates	an	empirical	Cumulative	Distribution	Function	(eCDF)	graph.

import	seaborn	as	sns
import	matplotlib
import	matplotlib.pyplot	as	plt
import	pandas	as	pd
sns.set_theme()

column	=	"flipper_length_mm"
data	=	sns.load_dataset("penguins")
#	data	=	pd.read_csv("data.csv")
#	data	=	pd.DataFrame(data={column:	[0,1,2]})

axes	=	sns.ecdfplot(data,	x=column)
axes.ticklabel_format(style='plain')
axes.get_xaxis().set_major_formatter(matplotlib.ticker.StrMethodFormatter('{x:,.0f}'))
axes.get_yaxis().set_major_formatter(matplotlib.ticker.StrMethodFormatter('{x:,.0f}'))
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('image.png')
plt.show()

	

R	Project
This	cookbook	may	generate	graphs	and	calculate	statistics	using	the	free	R	project:	http://www.r-

https://seaborn.pydata.org/tutorial/introduction.html
https://seaborn.pydata.org/generated/seaborn.histplot.html#seaborn.histplot
https://seaborn.pydata.org/generated/seaborn.ecdfplot.html
https://en.wikipedia.org/wiki/Empirical_distribution_function
http://www.r-project.org/

project.org/.

This	cookbook	originally	predominantly	used	the	R	project	along	with	the	xts	and	zoo	libraries,	but	there
have	been	some	major	regressions	in	the	xts	library	and	at	the	time	of	this	writing,	it	was	in	the	process	of	a
major	overhaul.	After	some	research,	the	general	approach	has	switched	from	R	to	gnuplot.	R	is	still	great
for	its	statistical	capabilities,	and	gnuplot	has	a	lot	of	warts,	particularly	around	margins	with	multiplot,	de-
duplicating	X-axes,	etc.,	but	gnuplot	is	a	solid	tool	that's	been	around	for	a	while	and	the	core	of	it	is	suited
for	the	cookbook's	simple	needs.	Perl	scripts	continue	to	do	the	heavy	lifting	of	converting	raw	data	into	a
CSV	so	it's	often	just	a	matter	of	passing	the	CSVs	to	gnuplot	instead	of	R.

R	is	designed	to	work	on	Unix,	Windows,	and	Mac.	R	is	normally	distributed	with	operating	system	package
managers	(e.g.	"yum	install	R"	with	epel.repo	enabled=1	in	RHEL),	or	you	can	download	binary	or	source
packages	from	https://cran.rstudio.com/.

To	run	R	from	the	command	line,	simply	type	R	and	you'll	be	in	a	read-evaluate-print-loop	(REPL).	Some
basic	commands	you'll	need:

q()	to	quit	(usually	type	'n'	to	discard	the	workspace)
?CMD	to	get	help	on	CMD

We'll	be	using	some	external	packages	so	the	first	time	you	use	R,	you'll	need	to	install	them:

>	install.packages(c("xts",	"xtsExtra",	"zoo",	"txtplot"),	repos=c("http://cran.us.r-project.org","http://R-Forge.R-project.org"))

R	has	its	own	package	management	system	and	this	will	download	the	specified	third	party	packages	from
the	web.

	

Install	Package	from	Source

>	install.packages("http://download.r-forge.r-project.org/src/contrib/xtsExtra_0.0-1.tar.gz",	repos=NULL,	type="source")

Another	example:

$	svn	checkout	--revision	850	svn://svn.r-forge.r-project.org/svnroot/xts/
$	R
>	install.packages("xts/pkg/xts",	repos=NULL,	type="source")
>	install.packages("xts/pkg/xtsExtra",	repos=NULL,	type="source")

	

Graphing	CSV	Data

An	example	script	is	provided	which	graphs	arbitrary	time	series	data	in	a	comma	separated	value	(CSV)	file
using	plot.xts.	The	script	expects	the	first	column	to	be	a	time	column	in	the	following	format:	YYYY-MM-
DD	HH:MM:SS

For	example,	with	the	following	CSV	file:

Time,	Lines,	Bytes
2014-12-04	13:32:00,	1043,	12020944
2014-12-04	13:33:00,	212,	2737326
2014-12-04	13:34:00,	604,	139822275
2014-12-04	13:35:00,	734,	190323333
2014-12-04	13:36:00,	1256,	126198301
2014-12-04	13:37:00,	587,	72622048
2014-12-04	13:38:00,	1777,	237571451

Optionally	export	environment	variables	to	control	the	output:

$	export	INPUT_TITLE="Data"

http://stackoverflow.com/questions/28570289/why-does-r-xts-plot-only-show-a-single-column-with-nc-2
https://cran.rstudio.com/

$	export	INPUT_PNGWIDTH=600
$	export	INPUT_PNGHEIGHT=300
$	export	TZ=UTC

Run	the	example	script	with	the	input	file:

$	git	clone	https://github.com/kgibm/problemdetermination
$	R	--silent	--no-save	-f	problemdetermination/scripts/r/graphcsv.r	<	test.csv

The	script	generates	a	PNG	file	in	the	same	directory:

		

Package	Versions

Display	loaded	package	versions:

>	library(xts,	warn.conflicts=FALSE)
>	library(xtsExtra,	warn.conflicts=FALSE)
>	sessionInfo()
R	version	3.1.2	(2014-10-31)
Platform:	x86_64-redhat-linux-gnu	(64-bit)
...
attached	base	packages:
[1]	stats					graphics		grDevices	utils					datasets		methods			base					

other	attached	packages:
[1]	xtsExtra_0.0-1	xts_0.9-7

	

Test	Graphing

Test	graphing	with	the	following	set	of	commands:

$	R
library(zoo)
library(xts)
library(xtsExtra)
sessionInfo()
timezone	=	"UTC"
Sys.setenv(TZ=timezone)
sampleData	=	"Time	(UTC),CPU,Runqueue,Blocked,MemoryFree,PageIns,ContextSwitches,Wait,Steal
2014-10-15	16:12:11,20,0,0,12222172,0,2549,0,0
2014-10-15	16:12:12,27,1,0,12220732,0,3619,0,0
2014-10-15	16:12:13,30,0,0,12220212,0,2316,0,0"
data	=	as.xts(read.zoo(text=sampleData,	format="%Y-%m-%d	%H:%M:%S",	header=TRUE,	sep=",",	tz=timezone))

plot.xts(data,	main="Title",	minor.ticks=FALSE,	yax.loc="left",	auto.grid=TRUE,	nc=2)

	

Common	Use	Case

>	options(scipen	=	999)
>	x	=	read.csv("tcpdump.pcap.csv")
>	x	=	na.omit(x[,"tcp.analysis.ack_rtt"])
>	summary(x)
					Min.			1st	Qu.				Median						Mean						3rd	Qu.						Max.
0.0000020	0.0000050	0.0000070	0.0001185	0.0002290	0.1222000
>	sum(x)
[1]	58.69276
>	length(x)
[1]	306702
>	quantile(x,	0.99)
					99%
0.000388
>	plot(density(x[x	<	quantile(x,	0.99)]))

	

Example	graphing	mpmstats	data

As	an	example,	this	will	show	how	to	graph	IBM	HTTP	Server	mpmstats	data.	This	is	a	very	simple	but
powerful	httpd	extension	that	periodically	prints	a	line	to	error_log	with	a	count	of	the	number	of	threads	that
are	ready,	busy,	keepalive,	etc.	Here's	an	example:

[Wed	Jan	08	16:59:26	2014]	[notice]	mpmstats:	rdy	48	bsy	3	rd	0	wr	3	ka	0	log	0	dns	0	cls	0

The	default	interval	is	10	minutes	although	I	recommend	customers	set	it	to	30	seconds	or	less.	Typically,
look	at	bsy	as	this	is	an	indication	of	the	number	of	requests	waiting	for	responses	from	WAS.

First,	we'll	convert	this	into	CSV	format	using	sed:

OUTPUT=error_log.csv;	echo	Time,rdy,bsy,rd,wr,ka,log,dns,cls	>	${OUTPUT};	grep	"mpmstats:	rdy	"	error_log	|	sed	-n	"s/\[[^]\+	\([^]\+\)	\([0-9]\+\)	\([^]\+\)	\([0-9]\+\)\]	\(.*\)/\1:\2:\4:\3	\5/p"	|	tr	'	'	','	|	cut	-d	","	-f	1,5,7,9,11,13,15,17,19	>>	${OUTPUT};

Example:

Time,rdy,bsy,rd,wr,ka,log,dns,cls
Jan:08:2014:16:59:26,48,3,0,3,0,0,0,0

Now,	we're	ready	to	pipe	error_log.csv	into	an	R	script	that	generates	a	PNG	graph	and	an	ASCII	art	graph.
Here	is	the	script	(save	as	mpmstats.r):

require(xts,	warn.conflicts=FALSE)
require(xtsExtra,	warn.conflicts=FALSE)
require(zoo,	warn.conflicts=FALSE)
require(txtplot,	warn.conflicts=FALSE)

pngfile	=	"output.png"
pngwidth	=	600
asciiwidth	=	120

mpmtime	=	function(x,	format)	{	as.POSIXct(paste(as.Date(substr(as.character(x),1,11),
format="%b:%d:%Y"),	substr(as.character(x),13,20),	sep="	"),	format=format,	tz="UTC")	}
data	=	as.xts(read.zoo(file="stdin",	format	=	"%Y-%m-%d	%H:%M:%S",	header=TRUE,
sep=",",	FUN	=	mpmtime))
x	=	sapply(index(data),	function(time)	{as.numeric(strftime(time,	format	=	"%H%M"))})
txtplot(x,	data[,2],	width=asciiwidth,	xlab="Time",	ylab="mpmstats	bsy")
png(pngfile,	width=pngwidth)

plot.xts(data,	main="mpmstats",	minor.ticks=FALSE,	yax.loc="left",	auto.grid=TRUE,
ylim="fixed",	nc=2)

And	we	run	like	so:

$	cat	error_log.csv	|	R	--silent	--no-save	-f	mpmstats.r	2>/dev/null

This	produces	the	following	ASCII	art	graph.	The	x-axis	requires	integers	so	we	convert	the	time	into
HHMM	(hours	and	minutes	of	the	day	on	a	24	hour	clock).

If	you	only	wanted	bsy	in	the	graph,	just	take	a	subset	of	data	in	the	plot.xts	line:

plot.xts(data[,2:2],	main...

	

Apache	Bench
httpd	and	IHS	ship	with	a	cool	little	command	line	utility	called	Apache	Bench	(ab).	At	its	simplest,	you	pass
the	number	of	requests	you	want	to	send	(-n),	at	what	concurrency	(-c)	and	the	URL	to	benchmark.	ab	will
return	various	statistics	on	the	responses	(mean,	median,	max,	standard	deviation,	etc.).	This	is	really	useful
when	you	want	to	"spot	check"	backend	server	performance	or	compare	two	different	environments,	because
you	do	not	need	to	install	complex	load	testing	software,	and	since	IHS	usually	has	direct	access	to	WAS,
you	do	not	have	to	worry	about	firewalls,	etc.

Below	is	an	example	execution.

$	cd	$IHS/bin/
$./ab	-n	1000	-c	10	http://ibm.com/
This	is	ApacheBench,	Version	2.0.40-dev	<$Revision:	16238	$>	apache-2.0
Copyright	1996	Adam	Twiss,	Zeus	Technology	Ltd,	http://www.zeustech.net/
Copyright	2006	The	Apache	Software	Foundation,	http://www.apache.org/

Benchmarking	ibm.com	(be	patient)
Completed	100	requests
Completed	200	requests
Completed	300	requests
Completed	400	requests
Completed	500	requests
Completed	600	requests
Completed	700	requests
Completed	800	requests
Completed	900	requests
Finished	1000	requests

Server	Software:								IBM_HTTP_Server
Server	Hostname:								ibm.com
Server	Port:												80

Document	Path:										/
Document	Length:								227	bytes

Concurrency	Level:						10
Time	taken	for	tests:			22.452996	seconds
Complete	requests:						1000
Failed	requests:								0
Write	errors:											0
Non-2xx	responses:						1000
Total	transferred:						455661	bytes
HTML	transferred:							227000	bytes
Requests	per	second:				44.54	[#/sec]	(mean)
Time	per	request:							224.530	[ms]	(mean)
Time	per	request:							22.453	[ms]	(mean,	across	all	concurrent	requests)
Transfer	rate:										19.77	[Kbytes/sec]	received

http://publib.boulder.ibm.com/httpserv/manual70/programs/ab.html

Connection	Times	(ms)
														min		mean[+/-sd]	median			max
Connect:						101		107			4.1				106					136
Processing:			107		115			6.0				114					186
Waiting:						106		115			5.9				114					185
Total:								208		223			7.3				221					292

Percentage	of	the	requests	served	within	a	certain	time	(ms)
		50%				221
		66%				224
		75%				226
		80%				228
		90%				232
		95%				237
		98%				245
		99%				247
	100%				292	(longest	request)

The	key	things	to	look	at	are:

1.	 Time	taken	for	tests:	This	is	how	long	it	took	for	all	requests	finish.	When	comparing	two
environments,	if	your	mean	and	median	are	similar	but	total	time	is	worse	in	one	case,	this	may
suggest	queueing	effects.

2.	 Failed	requests,	write	errors,	and	Non-2xx	responses:	These	may	indicate	some	problem.	See	below
for	a	caveat	on	"Failed	requests."

3.	 Requests	per	second:	Throughput.
4.	 Total:	Look	at	min,	mean,	median,	max	and	sd	(standard	deviation).	Usually	the	mean	is	the	place	to

start.
5.	 Percentage	of	the	requests	served	within	a	certain	time:	Response	times	on	a	percentile	basis.	Many

customers	look	at	95%,	but	this	is	arbitrary	and	usually	based	on	what	percentage	of	requests	are
expected	to	have	errors	or	do	weird	behavior.

Some	important	notes:

1.	 ab	has	odd	behavior	in	that	it	counts	requests	with	varying	Content-Length	headers	as	"Failed	requests"
due	to	"length;"	for	example:

Complete	requests:	200
Failed	requests:	199
(Connect:	0,	Length:	199,	Exceptions:	0)

It	is	common	to	have	different	content	lengths,	so	usually	this	can	be	disregarded	(only	if	the	"Length"
number	counts	all	the	"failed"	requests).	There	is	a	patch	for	this,	but	it	has	never	made	it	into	the	core
code:	https://issues.apache.org/bugzilla/show_bug.cgi?id=27888.

2.	 Non-2xx	responses	may	or	may	not	be	okay.	HTTP	status	codes	are	usually	okay	if	they	are	304	(Not
Modified),	for	example.	They	are	usually	not	okay	if	they	are	4xx	or	5xx.	To	get	details	on	the
response	code,	use	"-v	2"	which	will	print	a	warning	for	non-2xx	response	codes	and	list	what	the	code
was.

3.	 ab	is	not	a	browser,	so	when	you	request	a	page,	ab	will	not	fetch	any	resources	within	the	page	such	as
images,	scripts,	iframes,	etc.

	

awk
awk	is	a	POSIX	standard	tool	to	do	line-by-line	manipulation	of	text.	For	example,	to	print	the	4th	column	in
all	piped-in	lines:

$	cat	input	|	awk	'{print	$4}'

https://issues.apache.org/bugzilla/show_bug.cgi?id=27888
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html

	

Pre-defined	Variables

Records:

1.	 awk	splits	the	input	into	records	using	the	record	separator	(RS).	This	defaults	to	a	newline	(\n)
meaning	each	line	is	a	record.

2.	 $0	represents	the	entire	record.

Fields:

1.	 Each	record	($0)	is	split	into	fields	using	the	field	separator	(FS).
2.	 The	field	separator	FS	defaults	to	whitespace.	It	may	be	changed	with	awk	-F	$SEP	or	with	FS="$SEP"

during	execution	(most	often	in	a	BEGIN	block).	POSIX	awk	only	supports	a	single-character	FS.
3.	 $N	represents	the	N-th	field	for	each	line	starting	with	$1	being	the	first	field	and	so	on.
4.	 NF	represents	the	number	of	fields.	This	may	be	used	in	expressions.	For	example,	the	last	field	is

$(NF),	the	second-to-last	is	$(NF-1)	and	so	on.
5.	 Any	time	$0	is	modified,	the	fields	are	re-calculated.	For	example,	gsub(/"/,	"");	affects	$0	since

no	third	parameter	is	specified,	removes	double	quotes	from	$0,	and	re-calculates	the	fields.

	

Basic	capabilities

1.	 Arithmetic	functions
2.	 Strings	are	concatenated	with	whitespace	instead	of	an	operator.	For	example,	to	append	a	period:

mystr	=	mystr	".";
3.	 There	is	no	concept	of	NULL,	so	to	unset	a	variable,	just	set	it	to	a	blank	string	(this	will	evaluate	to	false

in	an	if):	myvar	=	"";;
4.	 awk	assigns	by	value	instead	of	by	reference,	so	to	duplicate	a	string,	just	assign	to	a	new	variable;	for

example,	str2	=	str1;.
5.	 When	doing	arithmetic	logic	(e.g.	{	if	($1	>	5)	{	print	$0;	}	}),	always	add	0	to	the	coerced

string	to	avoid	strange	evaluations	(e.g.	{	if	($1	+	0	>	5)	{	print	$0;	}	}).

	

String	functions

String	functions:

1.	 String	length:	length(mystr)
2.	 Split	string	mystr	into	array	pieces	using	a	split	regex:	n	=	split(mystr,	pieces,	/	/); 	with	n

being	the	number	of	resulting	elements	in	pieces
The	resulting	array	is	1-indexed,	so	the	first	piece	is	pieces[1].

3.	 Find	all	instances	of	a	regex	in	a	string	and	replace:	gsub(/regex/,	"replace",	string);
4.	 Return	a	substring	of	string	starting	from	a	1-based	index	position:	newstring	=	substr(string,

i);
1.	 A	third	parameter	may	be	specified	for	the	maximum	substring	length.

5.	 Find	1-based	index	of	the	position	of	the	first	match	of	regex	in	a	string	or	0	if	not	found:	i	=
match(string,	regex);

6.	 Trim	whitespace:

function	trimWhitespace(str)	{
		gsub(/[\t\n\r]+/,	"",	str);
		return	str;
}

	

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html#tag_20_06_13_12
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html#tag_20_06_13_13

Arrays

1.	 Associative	arrays	don't	need	to	be	initialized:	mymap["key"]="value";
2.	 Array	length:

function	arrayLength(array)	{
		l	=	0;
		for	(i	in	array)	l++;
		return	l;
}

3.	 Loop	through	an	array:	for	(key	in	array)	{	item=array[key];	}
1.	 If	the	array	was	created	from	split,	looping	through	may	not	be	in	order,	so	instead	do:

l=arrayLength(pieces);	for	(i=1;	i<=l;	i++)	{	item=array[i];	}
4.	 To	clear	an	array:	delete	myarray;
5.	 If	an	array	is	created	from	a	function	such	as	split,	then	"indexing	into	it"	starts	at	1:

split("1,2,3",	pieces,	/,/);	print	pieces[1];
6.	 Awk	cannot	return	an	array	from	a	function.	Instead,	use	a	global	variable	(and	delete	the	array	at	the

beginning	of	the	function).
7.	 POSIX	awk	has	limited	support	for	multi-dimensional	arrays;	however,	you	can	add	some	additional

loops:

function	array2d_tokeys(array)	{
		delete	a2d2k;
		for	(key	in	array)	{
				split(key,	pieces,	SUBSEP);
				if	(length(a2d2k[pieces[1]])	==	0)	{
						a2d2k[pieces[1]]	=	pieces[2];
				}	else	{
						a2d2k[pieces[1]]	=	a2d2k[pieces[1]]	SUBSEP	pieces[2];
				}
		}
}
	
function	array2d_print_bykeys(original_array,	a2d2k_array)	{
		for	(key	in	a2d2k_array)	{
				split(a2d2k_array[key],	pieces,	SUBSEP);
				for	(piecesKey	in	pieces)	{
						print	key	","	pieces[piecesKey]	"	=	"	original_array[key,	pieces[piecesKey]];
				}
		}
}

function	play()	{
		my2darray["key1",	"subkey1"]	=	"val1";
		my2darray["key1",	"subkey2"]	=	"val2";
		my2darray["key2",	"subkey1"]	=	"val3";
		my2darray["key2",	"subkey2"]	=	"val4";
		array2d_tokeys(my2darray);
		array2d_print_bykeys(data,	a2d2k);
}

	

Tips

1.	 POSIX	awk	gsub	doesn't	support	backreferences	other	than	the	entire	match.	However,	you	can
accomplish	this	with	multiple	statements	by	replacing	with	something	unique	which	then	you	search
for.	For	example,	in	the	string	"01/01/2020:00:00:00",	to	replace	the	first	colon	with	a	space:

	gsub(/\/....:/,	"&@@",	$0);
	gsub(/:@@/,	"	",	$0);
	print	$0;

2.	 Get	current	file	name	(or	-	for	stdin):	FILENAME

3.	 Get	line	number	for	the	current	file:	FNR

4.	 Run	something	at	the	beginning	of	each	file:	FNR	==	1	{	print;	}

5.	 Run	something	at	the	end	of	each	file:

FNR	==	1	{
		if	(!firstFNR)	{
				firstFNR	=	1;
		}	else	{
				endOfFile(0);
		}
		fname	=	FILENAME;
}

END	{
		endOfFile(1);
}

function	endOfFile(lastFile)	{
		print("Finished	"	fname);
		if	(lastFile)	{
				print("Finished	all	files");
		}
}

6.	 Get	line	number	for	all	processed	lines	so	far:	NR

7.	 Print	something	to	stderr:	print("WARNING:	some	warning")	>	"/dev/stderr";

8.	 Change	the	return	code:	END	{	exit	1;	}

9.	 Skip	blank	lines:	NF	>	0

10.	 Execute	a	shell	command	based	on	each	line:	{	system("ip	route	change	"	$0	"	quickack	1");
}

11.	 Execute	a	shell	command	and	read	results	into	a	string	variable:	cmd	=	"uname";	cmd	|	getline	os;
close(cmd);

12.	 Don't	process	remaining	patterns	for	a	line	("The	next	statement	shall	cause	all	further	processing	of
the	current	input	record	to	be	abandoned"):

/pattern1/	{
		#	do	some	processing
		print;
		
		next;	#	don't	run	the	catch-all	pattern
}

{	print;	}

13.	 A	common	way	to	send	a	list	of	files	to	awk	is	with	find;	for	example,	find	.	-type	f	-print0	|
xargs	-0	~/myscript.awk.	However,	xargs	is	limited	in	how	many	arguments	it	can	pass	to	the
program;	if	the	limit	is	exceeded,	xargs	executes	the	program	multiple	times	thus	the	awk	script
cannot	store	global	state	for	all	files	or	execute	a	single	BEGIN	or	END	block.	An	alternative	is	to	cat
everything	into	awk	(e.g.	find	.	-type	f	-print0	|	xargs	-0	cat	|	~/myscript.awk)	but	then
FILENAME	and	FNR	are	lost.	Instead,	you	can	drop	xargs	and	have	the	awk	script	modify	ARGV
dynamically:

The	arguments	in	ARGV	can	be	modified	or	added	to;	ARGC	can	be	altered.	As	each
input	file	ends,	awk	shall	treat	the	next	non-null	element	of	ARGV,	up	to	the	current	value
of	ARGC-1,	inclusive,	as	the	name	of	the	next	input	file.	Thus,	setting	an	element	of
ARGV	to	null	means	that	it	shall	not	be	treated	as	an	input	file.	The	name	'-'	indicates	the

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html#tag_20_06_13_03

standard	input.	If	an	argument	matches	the	format	of	an	assignment	operand,	this
argument	shall	be	treated	as	an	assignment	rather	than	a	file	argument.	\

So	execution	goes	from:

find	.	-type	f	-print0	|	xargs	-0	~/checkissues.awk

To:

find	.	-type	f	|	~/checkissues.awk

Here's	the	awk	snippet	that	does	the	ARGV	modification:

#	xargs	allows	a	limited	number	of	arguments,	but	POSIX	awk	allows
#	us	to	add	files	to	process	by	adding	to	ARGV:
#	https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html#tag_20_06_13_03
FILENAME	==	"-"	{
		ARGV[ARGC]	=	$0;
		ARGC	+=	1;
		#	No	need	to	process	any	of	the	other	patterns	for	this	line:
		next;
}

	

Concatenate	all	lines	into	a	single,	space-delimited	output

awk	'{	printf("%s	",	$0);	}	END	{	printf("\n");	}'	$FILE

	

Parse	hex	string	to	decimal

#!/usr/bin/awk	-f

#	Create	hex	character	}	decimal	map,	e.g.	hexhcars["A"]	=	10,	etc.
BEGIN	{
		for	(i=0;	i<16;	i++)	{
				hexchars[sprintf("%x",	i)]	=	i;
				hexchars[sprintf("%X",	i)]	=	i;
		}
}

function	trimWhitespace(str)	{
		gsub(/[\t\n\r]+/,	"",	str);
		return	str;
}

#	Return	1	if	str	is	a	number	(unknown	radix),
#	2	if	hex	(0x	prefix	or	includes	[a-fA-F]),
#	and	0	if	number	not	matched	by	regexes.
#	str	is	trimmed	of	whitespace.
function	isNumber(str)	{
		str	=	trimWhitespace(str);
		if	(length(str)	>	0)	{
				if	(str	~	/^[+-]?[0-9]+(\.[0-9]+)?([eE][+-]?[0-9]+)?$/	||	str	~	/^(0[xX])?[0-9a-fA-F]+$/)	{
						if	(str	~	/^0[xX]/	||	str	~	/[a-fA-F]/)	{
								return	2;
						}	else	{
								return	1;
						}
				}
		}
		return	0;
}

#	If	str	is	a	hexadecimal	number	(0x	prefix	optional),	then	return	its	decimal	value;
#	otherwise,	return	-1.
#	str	is	trimmed	of	whitespace.
function	parseHex(str)	{
		numResult	=	isNumber(str);
		if	(numResult	==	1	||	numResult	==	2)	{
				str	=	trimWhitespace(str);
				if	(str	~	/^0[xX]/)	{
						str	=	substr(str,	3);
				}
				result	=	0;
				for	(i=1;	i<=length(str);	i++)	{
						result	=	(result	*	16)	+	hexchars[substr(str,	i,	1)];
				}
				return	result;
		}
		return	-1;
}

#	If	str	is	a	decimal	number,	then	return	its	decimal	value;
#	otherwise,	return	-1.
#	str	is	trimmed	of	whitespace.
function	parseDecimal(str)	{
		if	(isNumber(str)	==	1)	{
				return	trimWhitespace(str)	+	0;
		}
		return	-1;
}

	

Calculate	a	Pearson	correlation	coefficient	between	two	columns	of	numbers

#!/usr/bin/awk	-f
#	usage:	pearson.awk	file
#			Calculate	pearson	correlation	(r)	between	two	columns	(defaults	to	first	two	columns).	This	will	skip	any	rows	that	have	non-number	values.
#			Background:
#					https://ocw.mit.edu/resources/res-6-012-introduction-to-probability-spring-2018/part-i-the-fundamentals/the-correlation-coefficient/
#					https://ocw.mit.edu/resources/res-6-012-introduction-to-probability-spring-2018/part-i-the-fundamentals/interpreting-the-correlation-coefficient/
#
#	Example:
#			$	pearson.awk	-v	x_right=3	-v	y_right=4	access_log
#
#	Options:
#			Column	offset	of	X	values	starting	from	the	left	(1	is	the	first	column,	2	is	second,	etc.):
#					-v	x_left=N
#			Column	offset	of	X	values	from	the	right	(0	is	the	last	column,	1	is	second-to-last,	etc.):
#					-v	x_right=N
#			Column	offset	of	Y	values	starting	from	the	left	(1	is	the	first	column,	2	is	second,	etc.):
#					-v	y_left=N
#			Column	offset	of	Y	values	from	the	right	(0	is	the	last	column,	1	is	second-to-last,	etc.):
#					-v	y_right=N
#			Suppress	warnings	about	lines	being	skipped:
#					-v	suppress_skip_warnings=1
#			For	debugging,	print	out	just	values	and	those	that	are	just	numbers:
#					-v	debug_values=1
BEGIN	{
		if	(ARGC	==	1)	{
				print("ERROR:	no	file	specified")	>	"/dev/stderr";
				exit	1;
		}	else	if	(ARGC	==	2)	{
				#	Make	sure	they're	not	using	stdin;	we	can't	double	proces	that
				if	(ARGV[ARGC	-	1]	==	"-")	{
						print("ERROR:	standard	file	must	be	used	instead	of	stdin")	>	"/dev/stderr";
						exit	1;
				}
				#	Duplicate	the	file	name	to	process	data	twice:	once	to	calculate	the	means	and	the	second	time
				#	to	calculate	the	pearson	correlation.

				ARGV[ARGC]	=	ARGV[ARGC	-	1];
				ARGC++;
		}	else	{
				print("ERROR:	only	one	file	supported")	>	"/dev/stderr";
				exit	1;
		}
		if	(length(x_left)	==	0	&&	length(x_right)	==	0)	{
				x_left	=	1;
		}	else	if	(length(x_left)	>	0	&&	length(x_right)	>	0)	{
				print("ERROR:	only	one	of	the	x_left	or	x_right	values	should	be	specified")	>	"/dev/stderr";
				exit	1;
		}
		if	(length(y_left)	==	0	&&	length(y_right)	==	0)	{
				y_left	=	2;
		}	else	if	(length(y_left)	>	0	&&	length(y_right)	>	0)	{
				print("ERROR:	only	one	of	the	y_left	or	y_right	values	should	be	specified")	>	"/dev/stderr";
				exit	1;
		}
}
FNR	==	1	{
		file_number++;
}
function	checkNumber(str)	{
		if	(str	~	/^[+-]?[0-9]+(\.[0-9]+)?([eE][+-]?[0-9]+)?$/)	{
				return	str	+	0;
		}	else	{
				return	"NaN";
		}
}
function	getX()	{
		if	(x_left)	{
				result	=	$(x_left);
		}	else	if	(x_right)	{
				result	=	$(NF	-	x_right);
		}	else	{
				print("ERROR:	invalid	argument	specifying	X	column")	>	"/dev/stderr";
				return	"NaN";
		}
		return	checkNumber(result);
}
function	getY()	{
		if	(y_left)	{
				result	=	$(y_left);
		}	else	if	(y_right)	{
				result	=	$(NF	-	y_right);
		}	else	{
				print("ERROR:	invalid	argument	specifying	Y	column")	>	"/dev/stderr";
				return	"NaN";
		}
		return	checkNumber(result);
}
function	areNumbers(x,	y)	{
		return	x	!=	"NaN"	&&	y	!=	"NaN";
}
function	skipWarn()	{
		if	(length($0)	>	0	&&	!suppress_skip_warnings)	{
				print("WARNING:	skipping	line	"	FNR	"	because	both	numbers	not	found:	"	$0)	>	"/dev/stderr";
		}
}
#	Skip	blank	lines	or	errant	lines	without	at	least	two	columns
NF	<	2	{
		if	(file_number	==	1)	{
				skipWarn();
		}
		next;
}
#	First	pass	of	the	file:	calculate	sums
file_number	==	1	{
		x	=	getX();

		y	=	getY();
		if	(areNumbers(x,	y))	{
				count++;
				x_sum	+=	x;
				y_sum	+=	y;
				if	(debug_values)	{
						print	x,	y;
				}
		}	else	{
				skipWarn();
		}
}
#	First	pass	of	the	file:	calculate	the	means	at	the	end	of	the	file
file_number	==	2	&&	FNR	==	1	{
		x_mean	=	x_sum	/	count;
		y_mean	=	y_sum	/	count;
}
#	Second	pass	of	the	file:	add	to	the	variance/covariance	sums
file_number	==	2	{
		x	=	getX();
		y	=	getY();
		if	(areNumbers(x,	y))	{
				x_diff_from_mean	=	(x	-	x_mean);
				x_variance_sum	+=	x_diff_from_mean	*	x_diff_from_mean;
				y_diff_from_mean	=	(y	-	y_mean);
				y_variance_sum	+=	y_diff_from_mean	*	y_diff_from_mean;
				covariance_sum	+=	x_diff_from_mean	*	y_diff_from_mean;
		}
}
#	Finally,	calculate	everything	and	print
END	{
		if	(count	>	0	&&	!debug_values)	{
				x_variance	=	(x_variance_sum	/	count);
				x_stddev	=	sqrt(x_variance);
				y_variance	=	(y_variance_sum	/	count);
				y_stddev	=	sqrt(y_variance);
				covariance	=	covariance_sum	/	count;
				if	(x_stddev	==	0)	{
						print("ERROR:	X	standard	deviation	is	0")	>	"/dev/stderr";
						exit	1;
				}	else	if	(y_stddev	==	0)	{
						print("ERROR:	Y	standard	deviation	is	0")	>	"/dev/stderr";
						exit	1;
				}
				pearson	=	covariance	/	(x_stddev	*	y_stddev);
				printf("x	sum	=	%.2f,	count	=	%d,	mean	=	%.2f,	variance	=	%.2f,	stddev	=	%.2f\n",	x_sum,	count,	x_mean,	x_variance,	x_stddev);
				printf("y	sum	=	%.2f,	count	=	%d,	mean	=	%.2f,	variance	=	%.2f,	stddev	=	%.2f\n",	y_sum,	count,	y_mean,	y_variance,	y_stddev);
				printf("covariance	=	%.2f\n",	covariance);
				printf("pearson	correlation	coefficient	(r)	=	%.2f\n",	pearson);
				printf("coefficient	of	determination	(r^2)	=	%.2f\n",	(pearson	*	pearson));
		}
}

	

IBM	Memory	Analyzer	Tool	(MAT)
This	page	has	been	moved	to	Eclipse	Memory	Analyzer	Tool.	The	IBM	MAT	tool	used	to	be	a	supported
repackaging	of	Eclipse	MAT;	instead,	use	the	open	source	Eclipse	Memory	Analyzer	Tool	along	with	the
IBM	DTFJ	Eclipse	Plugin	to	parse	J9	heapdumps	and	core	dumps.

	

Web	Servers

https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/dtfj/

Web	Servers	Recipe
1.	 The	maximum	concurrency	variables	(e.g.	MaxClients	for	IHS)	are	the	key	tuning	variables.	Ensure

such	variables	are	not	saturated	through	tools	such	as	mpmstats	or	mod_status,	while	at	the	same	time
ensuring	that	the	backend	server	resources	(e.g.	CPU,	network)	are	not	saturated	(this	can	be	done	by
scaling	up	the	backend,	sizing	thread	pools	to	queue,	optimizing	the	backend	to	be	faster,	or	limiting
maximum	concurrent	incoming	connections	and	the	listen	backlog).

2.	 Clusters	of	web	servers	are	often	used	with	IP	sprayers	or	caching	proxies	balancing	to	the	web
servers.	Ensure	that	such	IP	sprayers	are	doing	"sticky	SSL"	balancing	so	that	SSL	Session	ID	reuse
percentage	is	higher.

3.	 Load	should	be	balanced	evenly	into	the	web	servers	and	back	out	to	the	application	servers.	Compare
access	log	hit	rates	for	the	former,	and	use	WAS	plugin	STATS	trace	to	verify	the	latter.

4.	 Review	snapshots	of	thread	activity	to	find	any	bottlenecks.	For	example,	in	IHS,	increase	the
frequency	of	mpmstats	and	review	the	state	of	the	largest	number	of	threads.

5.	 Review	the	keep	alive	timeout.	The	ideal	value	is	where	server	resources	(e.g.	CPU,	network)	are	not
saturated,	maximum	concurrency	is	not	saturated,	and	the	average	number	of	keepalive	requests	has
peaked	(in	IHS,	review	with	mpmstats	or	mod_status).

6.	 Check	the	access	logs	for	HTTP	response	codes	(e.g.	%s	for	IHS)	>=	400.
7.	 Check	the	access	logs	for	long	response	times	(e.g.	%D	for	IHS).
8.	 For	the	WebSphere	Plugin,	consider	setting	ServerIOTimeoutRetry="0"	to	avoid	retrying	requests

that	time	out	due	to	ServerIOTimeout	(unless	ServerIOTimeout	is	very	short).
9.	 Enable	mod_logio	and	add	%^FB	to	LogFormat	for	time	until	first	bytes	of	the	response

10.	 Review	access	and	error	logs	for	any	errors,	warnings,	or	high	volumes	of	messages.
11.	 Check	http_plugin.log	for	ERROR:	ws_server:	serverSetFailoverStatus:	Marking	.*	down
12.	 Use	WAS	plugin	DEBUG	or	TRACE	logging	to	dive	deeper	into	unusual	requests	such	as	slow	requests,

requests	with	errors,	etc.	Use	an	automated	script	for	this	analysis.

Also	review	the	operating	systems	chapter.

	

General
"Web	servers	like	IBM	HTTP	Server	are	often	used	in	front	of	WebSphere	Application	Server	deployments
to	handle	static	content	or	to	provide	workload	management	(WLM)	capabilities.	In	versions	of	the
WebSphere	Application	Server	prior	to	V6,	Web	servers	were	also	needed	to	effectively	handle	thousands	of
incoming	client	connections,	due	to	the	one-to-one	mapping	between	client	connections	and	Web	container
threads...	In	WebSphere	Application	Server	V6	and	later,	this	is	no	longer	required	with	the	introduction	of
NIO	and	AIO.	For	environments	that	use	Web	servers,	the	Web	server	instances	should	be	placed	on
dedicated	systems	separate	from	the	WebSphere	Application	Server	instances.	If	a	Web	server	is	collocated
on	a	system	with	a	WebSphere	Application	Server	instance,	they	will	effectively	share	valuable	processor
resources,	reducing	overall	throughput	for	the	configuration."

Locating	the	web	server	on	a	different	machine	from	the	application	servers	may	cause	a	significant
throughput	improvement	(in	one	benchmark,	27%).

	

IBM	HTTP	Server
The	IBM	HTTP	Server	is	based	on	the	open	source	Apache	httpd	code	with	IBM	enhancements.	General
performance	tuning	guidelines:	http://publib.boulder.ibm.com/httpserv/ihsdiag/ihs_performance.html

	

Multi-Processing	Modules	(MPM)

https://github.com/covener/plugin-tools/blob/master/scanplugin.pl
http://publib.boulder.ibm.com/httpserv/ihsdiag/ihs_performance.html

Requests	are	handled	by	configurable	multi-processing	modules	(MPMs)
(http://publib.boulder.ibm.com/httpserv/manual70/mpm.html,
http://publib.boulder.ibm.com/httpserv/manual70/mod/).	The	most	common	are:

worker:	This	is	the	default,	multi-threaded	and	optionally	multi-process	MPM.
(http://publib.boulder.ibm.com/httpserv/manual70/mod/worker.html)
event:	Built	on	top	of	worker	and	designed	to	utilize	more	asynchronous	operating	system	APIs
(http://publib.boulder.ibm.com/httpserv/manual70/mod/event.html)
prefork:	A	single	thread/process	for	each	request.	Not	recommended.	Generally	used	for	unthread	safe
or	legacy	code.

This	is	the	default	configuration	on	distributed	platforms	other	than	Windows:

#	ThreadLimit:	maximum	setting	of	ThreadsPerChild
#	ServerLimit:	maximum	setting	of	StartServers
#	StartServers:	initial	number	of	server	processes	to	start
#	MaxClients:	maximum	number	of	simultaneous	client	connections
#	MinSpareThreads:	minimum	number	of	worker	threads	which	are	kept	spare
#	MaxSpareThreads:	maximum	number	of	worker	threads	which	are	kept	spare
#	ThreadsPerChild:	constant	number	of	worker	threads	in	each	server	process
#	MaxRequestsPerChild:	maximum	number	of	requests	a	server	process	serves
<IfModule	worker.c>
ThreadLimit									25
ServerLimit									64
StartServers									1
MaxClients									600
MinSpareThreads					25
MaxSpareThreads					75
ThreadsPerChild					25
MaxRequestsPerChild		0

Out	of	the	box,	IBM	HTTP	Server	supports	a	maximum	of	600	concurrent	connections.
Performance	will	suffer	if	load	dictates	more	concurrent	connections,	as	incoming	requests	will
be	queued	up	by	the	host	operating	system...

First	and	foremost,	you	must	determine	the	maximum	number	of	simultaneous	connections
required	for	this	Web	server.	Using	mod_status	or	mod_mpmstats	(available	with	ihsdiag)	to
display	the	active	number	of	threads	throughout	the	day	will	provide	some	starting	data.

There	are	3	critical	aspects	to	MPM	(Multi-processing	Module)	tuning	in	IBM	HTTP	Server.

1.	 Configuring	the	maximum	number	of	simultaneous	connections	(MaxClients	directive)
2.	 Configuring	the	maximum	number	of	IBM	HTTP	Server	child	processes

(ThreadsPerChild	directive)
3.	 Less	importantly,	configuring	the	ramp-up	and	ramp-down	of	IBM	HTTP	Server	child

processes	(MinSpareThreads,	MaxSpareThreads,	StartServers)

The	first	setting	(MaxClients)	has	the	largest	immediate	impact,	but	the	latter	2	settings	help
tune	IBM	HTTP	Server	to	accommodate	per-process	features	in	Apache	modules,	such	as	the
WebSphere	Application	Server	Web	server	plug-in.

http://www-304.ibm.com/support/docview.wss?uid=swg21167658

This	is	the	default	configuration	on	Windows:

ThreadLimit									600
ThreadsPerChild					600
MaxRequestsPerChild		0

In	general,	recommendations	for	a	high	performance,	non-resource	constrained	environment:

If	using	TLS,	then	ThreadsPerChild=100,	decide	on	MaxClients,	and	then
ServerLimit=MaxClients/ThreadsPerChild;	otherwise,	ThreadsPerChild=MaxClients	and

http://publib.boulder.ibm.com/httpserv/manual70/mpm.html
http://publib.boulder.ibm.com/httpserv/manual70/mod/
http://publib.boulder.ibm.com/httpserv/manual70/mod/worker.html
http://publib.boulder.ibm.com/httpserv/manual70/mod/event.html
http://www-304.ibm.com/support/docview.wss?uid=swg21167658

ServerLimit=1.
StartServers=ServerLimit
MinSpareThreads=MaxSpareThreads=MaxClients
MaxRequestsPerChild=0
Test	the	box	at	peak	concurrent	load	(MaxClients);	for	example:	${IHS}/bin/ab	-c	${MaxClients}	-n
${MaxClients*10}	-i	https://localhost/

Note	that	the	default	configuration	does	not	follow	the	MaxClients	=	(ServerLimit	*	ThreadsPerChild)
formula	because	it	gives	the	flexibility	to	dynamically	increase	MaxClients	up	to	the	ceiling	of	ServerLimit	*
ThreadsPerChild	and	gracefully	restart	IHS	without	destroying	existing	connections	or	waiting	for	them	to
drain.	This	is	a	useful	capability	but	few	customers	take	advantage	of	it	and	it's	usually	best	to	follow	the
formula	to	reduce	any	confusion.

Note	that	the	message	"Server	reached	MaxClients	setting"	in	the	error_log	will	only	be	shown	once	per
running	worker	process.

IBM	HTTP	Server	typically	uses	multiple	multithreaded	processes	for	serving	requests.	Specify
the	following	values	for	the	properties	in	the	web	server	configuration	file	(httpd.conf)	to
prevent	the	IBM	HTTP	Server	from	using	more	than	one	process	for	serving	requests.

ServerLimit											1
ThreadLimit											1024
StartServers										1
MaxClients												1024
MinSpareThreads							1
MaxSpareThreads							1024
ThreadsPerChild							1024
MaxRequestsPerChild			0

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_plugin.html

Note	that	when	TLS	processing	is	enabled,	there	is	some	inter-process	contention	(buffers,	etc.)	so	more
processes	and	less	processes	per	threads	may	be	faster:
http://publib.boulder.ibm.com/httpserv/ihsdiag/ihs_performance.html#Linux_Unix_ThreadsPerChild

	

MinSpareThreads,	MaxSpareThreads

The	MinSpareThreads	and	MaxSpareThreads	options	are	used	to	reduce	memory	utilization	during	low
traffic	volumes.	Unless	this	is	very	important,	set	both	of	these	equal	to	MaxClients	to	avoid	time	spent
destroying	and	creating	threads.

	

MaxRequestsPerChild

The	MaxRequestsPerChild	option	recycles	a	thread	after	it	has	processed	the	specified	number	of	requests.
Historically,	this	was	used	to	prevent	a	leaking	thread	from	using	too	much	memory;	however,	it	is	generally
recommended	to	set	this	to	0	and	investigate	any	observed	leaks.

	

Windows

Although	IHS	is	supported	on	Windows	64-bit,	it	is	only	built	as	a	32-bit	executable.	So	in	all	cases	on
Windows,	IHS	is	limited	to	a	32-bit	address	space.	IHS	on	Windows	also	only	supports	a	single	child	process
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_plugin.html
IHS	on	Windows	is	not	/LARGEADDRESSAWARE,	so	it	cannot	utilize	the	extra	space	afforded	by	the

https://localhost/
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_plugin.html
http://publib.boulder.ibm.com/httpserv/ihsdiag/ihs_performance.html#Linux_Unix_ThreadsPerChild
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_plugin.html

/3GB	switch.	After	APAR	PI04922	Windows	services	created	with	the	httpd-la.exe	binary	are	large	address
aware	(which	does	not	depend	on	/3GB	boot	time	option):	http://www-01.ibm.com/support/docview.wss?
uid=swg1PI04922

Note	also	on	Windows	that	there	is	no	MaxClients.	It	is	set	implicitly	to	ThreadsPerChild.

	

IBM	HTTP	Server	for	z/OS

Details:	http://www-01.ibm.com/support/docview.wss?uid=tss1wp101170&aid=1

Consider	using	AsyncSockets=yes	in	httpd.conf

	

Access	Log,	LogFormat

The	access	log	is	enabled	by	default	and	writes	one	line	for	every	processed	request	into	logs/access.log.	The
format	of	the	line	is	controlled	with	the	LogFormat	directive	in	httpd.conf:
http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_log_config.html

The	access	log	is	defined	with	the	CustomLog	directive,	for	example:

CustomLog	logs/access_log	common

The	last	part	(e.g.	"common")	is	the	name	of	the	LogFormat	to	use.	Here	is	the	default	"common"
LogFormat:

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common

You	can	either	modify	this	line	or	add	a	new	LogFormat	line	with	a	new	name	and	change	the	CustomLog	to
point	to	the	new	one.

We	recommend	adding	at	least	%D	to	give	the	total	response	time	(in	microseconds).

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	%D"	common

Here	are	some	other	commonly	useful	directives:

Print	the	time	taken	to	serve	the	request,	in	microseconds:	%D
Print	the	time	taken	to	serve	the	request,	in	seconds:	%T
Print	the	contents	of	the	cookie	JSESSIONID	in	the	request	sent	to	the	server	(also	includes	the	clone
ID	that	the	cookie	wants	the	request	to	go	back	to):	%{JSESSIONID}C
Print	the	contents	of	the	cookie	JSESSIONID	in	the	response	sent	to	the	client:	%{JSESSIONID}o
View	and	log	the	SSL	cipher	negotiated	for	each	connection:	\"SSL=%{HTTPS}e\"	\"%
{HTTPS_CIPHER}e\"	\"%{HTTPS_KEYSIZE}e\"	\"%{HTTPS_SECRETKEYSIZE}e\"
Print	the	host	name	the	request	was	for	(useful	when	the	site	serves	multiple	hosts	using	virtual	hosts):
%{Host}i

	

Time	until	first	response	bytes	(%^FB)

mod_logio	allows	the	%^FB	LogFormat	option	to	print	the	microseconds	between	when	the	request	arrived
and	the	first	byte	of	the	response	headers	are	written.	For	example:

LoadModule	logio_module	modules/mod_logio.so
LogIOTrackTTFB	ON
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	%D	\"%{WAS}e\"	%X	%I	%O	%^FB"	common

http://www-01.ibm.com/support/docview.wss?uid=swg1PI04922
http://www-01.ibm.com/support/docview.wss?uid=tss1wp101170&aid=1
http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_log_config.html
https://publib.boulder.ibm.com/httpserv/manual24/mod/mod_logio.html

	

Access	Log	Response	Times	(%D)

It	is	recommended	to	use	%D	in	the	LogFormat	to	track	response	times	(in	microseconds).	The	response	time
includes	application	time,	queue	time,	and	network	time	from/to	the	end-user	and	to/from	the	application.

Note	that	the	time	(%t)	represents	the	time	the	request	arrived	for	HTTPD	>=	2.0	and	the	time	the	response
was	sent	back	for	HTTPD	<	2.0.

	

Access	Log	WAS	Plugin	Server	Name	(%{WAS}e)

If	using	the	IBM	WAS	plugin,	you	can	get	the	name	of	the	application	server	that	handled	the	request
(http://publib.boulder.ibm.com/httpserv/ihsdiag/WebSphere61.html#LOG).	The	plugin	sets	an	internal,	per-
request	environment	variable	on	the	final	transport	it	used	to	satisfy	a	request:	%{WAS}e.	It	is	fixed	length
so	it	has	the	first	N	characters	of	host/IP	but	always	includes	the	port.	The	%{WAS}e	syntax	means	log	the
environment	variable	(e)	named	'WAS'.

	

Client	ephemeral	port

The	client's	ephemeral	port	is	critical	to	correlate	an	access	log	entry	to	network	trace	since	a	socket	is
uniquely	identified	by	the	tuple	(client	IP,	client	port,	httpd	IP,	httpd	port).	The	client's	ephemeral	port	may
be	logged	with	%{remote}p.

	

Commonly	useful	LogFormat

Putting	everything	together,	a	commonly	useful	LogFormat	for	IBM	HTTP	Server	is:

LoadModule	logio_module	modules/mod_logio.so
LogIOTrackTTFB	ON
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	%D	\"%{WAS}e\"	%X	%I	%O	%^FB	%{remote}p	%p"	common

	

Edge	Side	Includes	(ESI)

The	web	server	plug-in	contains	a	built-in	ESI	processor.	The	ESI	processor	can	cache	whole
pages,	as	well	as	fragments,	providing	a	higher	cache	hit	ratio.	The	cache	implemented	by	the
ESI	processor	is	an	in-memory	cache,	not	a	disk	cache,	therefore,	the	cache	entries	are	not	saved
when	the	web	server	is	restarted.

When	a	request	is	received	by	the	web	server	plug-in,	it	is	sent	to	the	ESI	processor,	unless	the
ESI	processor	is	disabled.	It	is	enabled	by	default.	If	a	cache	miss	occurs,	a	Surrogate-
Capabilities	header	is	added	to	the	request	and	the	request	is	forwarded	to	the	WebSphere
Application	Server.	If	servlet	caching	is	enabled	in	the	application	server,	and	the	response	is
edge	cacheable,	the	application	server	returns	a	Surrogate-Control	header	in	response	to	the
WebSphere	Application	Server	plug-in.

The	value	of	the	Surrogate-Control	response	header	contains	the	list	of	rules	that	are	used	by	the
ESI	processor	to	generate	the	cache	ID.	The	response	is	then	stored	in	the	ESI	cache,	using	the
cache	ID	as	the	key.	For	each	ESI	"include"	tag	in	the	body	of	the	response,	a	new	request	is
processed	so	that	each	nested	include	results	in	either	a	cache	hit	or	another	request	that	forwards

http://publib.boulder.ibm.com/httpserv/ihsdiag/WebSphere61.html#LOG
https://publib.boulder.ibm.com/httpserv/manual70/mod/mod_log_config.html

to	the	application	server.	When	all	nested	includes	have	been	processed,	the	page	is	assembled
and	returned	to	the	client.

The	ESI	processor	is	configurable	through	the	WebSphere	web	server	plug-in	configuration	file
plugin-cfg.xml.	The	following	is	an	example	of	the	beginning	of	this	file,	which	illustrates	the
ESI	configuration	options.

				<Property	Name="esiEnable"	Value="true"/>
				<Property	Name="esiMaxCacheSize"	Value="1024"/>
				<Property	Name="esiInvalidationMonitor"	Value="false"/>

...	The	second	option,	esiMaxCacheSize,	is	the	maximum	size	of	the	cache	in	1K	byte	units.	The
default	maximum	size	of	the	cache	is	1	megabyte.

If	the	first	response	has	a	Content-Length	response	header,	the	web	server	plug-in	checks	for	the
response	size.	If	the	size	of	the	response	body	is	larger	than	the	available	ESI	caching	space,	the
response	passes	through	without	being	handled	by	ESI.

Some	parent	responses	have	nested	ESI	includes.	If	a	parent	response	is	successfully	stored	in
the	ESI	cache,	and	any	subsequent	nested	include	has	a	Content-length	header	that	specifies	a
size	larger	than	the	available	space	in	the	ESI	cache,	but	smaller	than	the	value	specified	for
esiMaxCacheSize	property,	the	plug-in	ESI	processor	evicts	other	cache	elements	until	there	is
enough	space	for	the	nested	include	in	the	ESI	cache.

The	third	option,	esiInvalidationMonitor,	specifies	if	the	ESI	processor	should	receive
invalidations	from	the	application	server...	There	are	three	methods	by	which	entries	are
removed	from	the	ESI	cache:	first,	an	entry	expiration	timeout	occurs;	second,	an	entry	is	purged
to	make	room	for	newer	entries;	or	third,	the	application	server	sends	an	explicit	invalidation	for
a	group	of	entries.	For	the	third	mechanism	to	be	enabled,	the	esiInvalidationMonitor	property
must	be	set	to	true	and	the	DynaCacheEsi	application	must	be	installed	on	the	application	server.
The	DynaCacheEsi	application	is	located	in	the	installableApps	directory	and	is	named
DynaCacheEsi.ear.	If	the	ESIInvalidationMonitor	property	is	set	to	true	but	the	DynaCacheEsi
application	is	not	installed,	then	errors	occur	in	the	web	server	plug-in	and	the	request	fails.

This	ESI	processor	is	monitored	through	the	CacheMonitor	application.	For	the	ESI	processor
cache	to	be	visible	in	the	CacheMonitor,	the	DynaCacheEsi	application	must	be	installed	as
described	above,	and	the	ESIInvalidationMonitor	property	must	be	set	to	true	in	the	plugin-
cfg.xml	file.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_esiedgecaching.html

If	you're	not	using	the	ESI	cache,	disable	it	as	it	has	some	expensive	operations	in	computing	hashes	for	each
request:	Administrative	Console	->	Servers	>	Web	Servers	>	web_server_name	>	Plug-in	properties	>
Caching	->	Uncheck	"Enable	ESI,"	and	then	re-generate	and	re-propagate	plugin.	ESI	processing	can	also
cause	underisable	buffering	in	the	WAS	Plug-in.

Elliptic	Curve	Cryptography	(ECC)	is	available	in	TLS	1.2	and	may	be	a	faster	algorithm	than	RSA	for	SSL
signature	and	key	exchange	algorithms.	As	of	2012,	ECC	ciphers	are	not	supported	by	most	major	web
browsers,	but	they	are	supported	by	Java	7,	OpenSSL,	and	GSKit.	ECC	ciphers	start	with	TLS_EC	and	are
available	starting	in	IHS	8.0.0.6

	

KeepAlive

KeepAlive	allows	the	client	to	keep	a	socket	open	between	requests,	thus	potentially	avoiding	TCP
connection	setup	and	tear	down.	For	example,	let's	say	a	client	opens	a	TCP	connection	and	requests	an
HTML	page.	This	HTML	page	contains	one	image.	With	KeepAlive,	after	the	HTML	response	has	been
parsed	and	the	image	found,	the	client	will	re-use	the	previous	TCP	connection	to	request	the	image.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_esiedgecaching.html

(http://publib.boulder.ibm.com/httpserv/manual70/mod/core.html#keepalive)

When	using	mod_event	on	Linux	for	IHS	>=	9	or	z/OS	for	IHS	>=	8.5.5,	KeepAlive	sockets	do	not	count
towards	MaxClients.	Elsewhere	and	with	mod_worker,	KeepAlive	sockets	do	count	towards	MaxClients.

In	the	latter	case,	KeepAliveTimeout	(default	5	seconds)	is	a	balance	between	latency	(a	higher
KeepAliveTimeout	means	a	higher	probability	of	connection	re-use)	and	the	maximum	concurrently	active
requests	(because	a	KeepAlive	connection	counts	towards	MaxClients	for	its	lifetime).

Starting	with	IHS	9	and	8.5.5.18,	KeepAliveTimeout	may	be	set	to	ms;	for	example,	"KeepAliveTimeout
5999ms".	When	done	in	this	format,	IHS	will	round	up	and	time-out	in	roughly	6	seconds	(in	this	example);
however,	it	will	send	back	a	Keep-Alive	timeout	response	header	rounded	down	to	5	seconds	(in	this
example).	This	is	useful	to	avoid	race	conditions	for	clients	who	don't	first	try	doing	a	read	on	a	socket
before	doing	a	write	in	which	case	IHS	might	time-out	half	of	the	socket	right	as	the	client	tries	to	re-use	it
and	thus	the	response	will	fail.

	

Checking	incoming	connection	re-use

The	%X	LogFormat	option	will	show	+	if	a	connection	is	kept-alive	and	available	for	re-use.

The	%k	LogFormat	option	will	show	the	number	of	keepalive	requests	handled	by	the	connection	used	to
serve	this	response.	If	this	number	is	consistently	0,	then	the	client	is	not	re-using	connections	or	something
is	not	allowing	the	client	connection	to	be	re-used.

	

Gzip	compression

mod_deflate	can	be	used	to	use	gzip	compression	on	responses:
http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_deflate.html

	

mod_mpmstats

mpmstats	is	a	very	lightweight	but	powerful	httpd	extension	that	periodically	prints	a	line	to	error_log	with	a
count	of	the	number	of	threads	that	are	ready,	busy,	keepalive,	etc.	Here's	an	example:

[Wed	Jan	08	16:59:26	2014]	[notice]	mpmstats:	rdy	48	bsy	3	rd	0	wr	3	ka	0	log	0	dns	0	cls	0

On	z/OS,	ensure	PI24990	is	installed.

The	default	mpmstats	interval	is	10	minutes	although	we	recommend	setting	it	to	30	seconds	or	less:

<IfModule	mod_mpmstats.c>
#	Write	a	record	every	10	minutes	(if	server	isn't	idle).
#	Recommendation:	Lower	this	interval	to	60	seconds,	which	will
#	result	in	the	error	log	growing	faster	but	with	more	accurate
#	information	about	server	load.
ReportInterval	600
</IfModule>

As	covered	in	the	mod_mpmstats	link	above,	some	of	the	key	statistics	are:

rdy	(ready):	the	number	of	web	server	threads	started	and	ready	to	process	new	client	connections
bsy	(busy):	the	number	of	web	server	threads	already	processing	a	client	connection
rd	(reading):	the	number	of	busy	web	server	threads	currently	reading	the	request	from	the	client
wr	(writing):	the	number	of	busy	web	server	threads	that	have	read	the	request	from	the	client	but	are

http://publib.boulder.ibm.com/httpserv/manual70/mod/core.html#keepalive
https://httpd.apache.org/docs/current/mod/mod_log_config.html
https://httpd.apache.org/docs/current/mod/mod_log_config.html
http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_deflate.html
https://publib.boulder.ibm.com/httpserv/ihsdiag/2.0/mod_mpmstats.html

either	processing	the	request	(e.g.,	waiting	on	a	response	from	WebSphere	Application	Server)	or	are
writing	the	response	back	to	the	client
ka	(keepalive):	the	number	of	busy	web	server	threads	that	are	not	processing	a	request	but	instead	are
waiting	to	see	if	the	client	will	send	another	request	on	the	same	connection;	refer	to	the
KeepAliveTimeout	directive	to	decrease	the	amount	of	time	that	a	web	server	thread	remains	in	this
state

If	mpmstats	is	enabled,	when	the	server	is	approaching	MaxClients,	a	message	is	printed	by	mpmstats	(this	is
in	addition	to	the	server	reached	MaxClients	setting 	message	printed	by	the	server	itself).

[notice]	mpmstats:	approaching	MaxClients	(48/50)

By	default,	the	mpmstats	threshold	is	90%	and	may	be	increased	with	MPMStatsBusyThreshold.

The	mpmstats	message	will	be	repeated	if	the	situation	occurs	again	after	clearing,	whereas	the	server
message	will	only	appear	once	per	process	lifetime.

	

TrackHooks

In	recent	versions,	TrackHooks	may	be	used	to	get	per	module	response	times,	check	for	long-running
modules,	and	track	response	times	of	different	parts	of	the	request	cycle
(http://publib.boulder.ibm.com/httpserv/ihsdiag/mpmstats_module_timing.html#loghooks):

Recommended	mpmstats	configuration

<IfModule	mod_mpmstats.c>
#	Write	a	record	to	stderr	every	10	seconds	(if	server	isn't	idle).
ReportInterval	10
TrackHooks	allhooks
TrackHooksOptions	millis	permodule	logslow
TrackModules	On
SlowThreshold	10
</IfModule>

Add	the	following	to	your	LogFormat:

%{TRH}e	%{TCA}e	%{TCU}e	%{TPR}e	%{TAC}e	%{RH}e

The	final	LogFormat	line	will	most	commonly	look	like	this:

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	%{TRH}e	%{TCA}e	%{TCU}e	%{TPR}e	%{TAC}e	%{RH}e	%{WAS}e	%D"	common

The	above	requires	that	mod_status	and	ExtendedStatus	are	enabled	which	enables	additional	statistics-
gathering	infrastructure	in	Apache:

LoadModule	status_module	modules/mod_status.so
<IfModule	mod_status.c>
ExtendedStatus	On
</IfModule>

As	long	as	the	configuration	does	not	use	a	"<Location	/server-status>	[...]	SetHandler	server-status	[...]
</Location>"	block,	then	there	is	no	additional	security	exposure	by	loading	mod_status	and	enabling
ExtendedStatus	(unless	AllowOverride	!=	ALL	and	someone	creates	a	.htaccess	file	that	enables	it).

	

mod_smf

On	z/OS,	mod_smf	provides	additional	SMF	statistics:

https://www.ibm.com/support/pages/apar/PH24265
http://publib.boulder.ibm.com/httpserv/ihsdiag/mpmstats_module_timing.html#loghooks

http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_smf.html

	

Status	Module

There	is	a	status	module	that	can	be	enabled	in	IHS.	It	is	not	enabled	by	default	(or	it	hasn't	been	in	the	past).
However,	it	does	present	some	interesting	real	time	statistics	which	can	help	in	understanding	if	requests	are
backing	up	or	if	the	site	is	humming	along	nicely.	It	helps	provide	a	second	data	point	when	trying	to
troubleshoot	production	problems.	Most	enterprise	organizations	will	want	to	make	sure	the	URL
http://your.server.name/server-status?refresh=N	to	access	the	statistics	are	protected	by	a	firewall
and	only	available	to	the	system	administrators.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.ihs.doc/ihs/rihs_ciphspec.html

	

IHSDiag

Use	ihsdiag	to	take	thread	dumps	to	understand	what	IHS	threads	are	doing	in	detail:
http://publib.boulder.ibm.com/httpserv/ihsdiag/http://publib.boulder.ibm.com/httpserv/ihsdiag/

	

Fast	Response	Cache	Accelerator

FRCA	is	deprecated.

FRCA/AFPA	was	deprecated	starting	in	V7.0	[and]	its	use	is	discouraged.	Instead,	it	is
recommended	to	use	the	IBM	HTTP	Server	default	configuration	to	serve	static	files...	If	CPU
usage	with	the	default	configuration	is	too	high,	the	mod_mem_cache	module	can	be	configured
to	cache	frequently	accessed	files	in	memory,	or	multiple	web	servers	can	be	used	to	scale	out
horizontally.	Additional	options	include	the	offloading	of	static	files	to	a	Content	Delivery
Network	(CDN)	or	caching	HTTP	appliance,	or	to	use	the	caching	proxy	component	of
WebSphere	Edge	Server	in	WebSphere	Application	Server	Network	Deployment	(ND).

	

Websphere	Plugin

ServerIOTimeout

Set	a	timeout	value,	in	seconds,	for	sending	requests	to	and	reading	responses	from	the
application	server.

If	you	set	the	ServerIOTimeout	attribute	to	a	positive	value,	this	attempt	to	contact	the	server
ends	when	the	timeout	occurs.	However,	the	server	is	not	[marked	down].

If	you	set	the	ServerIOTimeout	attribute	to	a	negative	value,	the	server	is	[marked	down]
whenever	a	timeout	occurs...

If	a	value	is	not	set	for	the	ServerIOTimeout	attribute,	the	plug-in,	by	default,	uses	blocked	I/O
to	write	requests	to	and	read	responses	from	the	application	server,	and	does	not	time	out	the
TCP	connection...

Setting	the	ServerIOTimeout	attribute	to	a	reasonable	value	enables	the	plug-in	to	timeout	the
connection	sooner,	and	transfer	requests	to	another	application	server	when	possible...

http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_smf.html
http://httpd.apache.org/docs/2.2/mod/mod_status.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.ihs.doc/ihs/rihs_ciphspec.html
http://publib.boulder.ibm.com/httpserv/ihsdiag/
http://publib.boulder.ibm.com/httpserv/ihsdiag/
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.ihs.doc/ihs/cihs_caoprestrict.html?cp=SSAW57_8.5.5&lang=en

The	default	value	is	900,	which	is	equivalent	to	15	minutes.

The	ServerIOTimeout	limits	the	amount	of	time	the	plug-in	waits	for	each	individual	read	or
write	operation	to	return.	ServerIOTimeout	does	not	represent	a	timeout	for	the	overall	request.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rwsv_plugincfg.html

It	is	generally	recommended	to	set	a	non-zero	value	for	ServerIOTimeout.	The	value	should	be	greater	than
the	maximum	expected	response	time	for	all	legitimate	requests.

In	recent	versions	of	WAS,	the	global	ServerIOTimeout	can	be	overidden	for	specific	URLs	(http://www-
01.ibm.com/support/docview.wss?uid=swg1PM94198):

SetEnvIf	Request_URI	"\.jsp$"	websphere-serveriotimeout=10

By	default,	if	a	ServerIOTimeout	pops,	then	the	plugin	will	re-send	non-affinity	(http://www-
01.ibm.com/support/docview.wss?uid=swg21450051)	requests	to	the	next	available	server	in	the	cluster.	If,
for	example,	the	request	exercises	a	bug	in	the	application	that	causes	an	OutOfMemoryError,	then	after	each
timeout,	the	request	will	be	sent	to	all	of	the	other	servers	in	the	cluster,	and	if	the	behavior	is	the	same,	then
effectively	it	will	lead	to	a	complete,	cascading	failure.	This	behavior	can	be	controlled	with
ServerIOTimeoutRetry:

ServerIOTimeoutRetry	specifies	a	limit	for	the	number	of	times	the	HTTP	plugin	retries	an
HTTP	request	that	has	timed	out,	due	to	ServerIOTimeout.	The	default	value,	-1,	indicates	that
no	additional	limits	apply	to	the	number	of	retries.	A	0	value	indicates	there	are	no	retries.
Retries	are	always	limited	by	the	number	of	available	servers	in	the	cluster.	Important:	This
directive	does	not	apply	to	connection	failures	or	timeouts	due	to	the	HTTP	plug-in
ConnectTimeout.
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rwsv_plugincfg.html

The	resolution	of	ServerIOTimeout	may	be	affected	by	MaxSpareThreads.	If	ServerIOTimeout	is	taking
longer	than	expected	to	fire,	review	the	recommendations	on	MaxSpareThreads	above	and	consider
configuring	it	so	that	threads	are	not	destroyed.

	

Retries

When	will	the	WAS	Plug-in	retry	a	request:
http://publib.boulder.ibm.com/httpserv/ihsdiag/plugin_questions.html#retry

	

Load	Distribution

Use	LogLevel="Stats"	to	print	load	distribution	in	the	plugin	log	after	each	request	(see	page	28):
http://www-01.ibm.com/support/docview.wss?uid=swg27020055&aid=1

There	is	an	option	called	BackupServers	which	was	used	with	WAS	version	5	for	DRS	HTTP	session
failover,	so	this	option	is	generally	not	used	any	more.

Common	causes	of	different	distribution	include	differing	network	performance,	retransmission	rates,	or
packet	loss,	different	network	paths,	and/or	different	DNS	resolution	times.

	

MaxConnections

MaxConnections	limits	the	number	of	connections	the	WAS	Plug-in	will	open	to	a	single

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rwsv_plugincfg.html
http://www-01.ibm.com/support/docview.wss?uid=swg1PM94198
http://www-01.ibm.com/support/docview.wss?uid=swg21450051
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rwsv_plugincfg.html
http://publib.boulder.ibm.com/httpserv/ihsdiag/plugin_questions.html#retry
http://www-01.ibm.com/support/docview.wss?uid=swg27020055&aid=1

application	server	from	a	single	webserver	child	process.	In	practice,	the	per-process	limitation
severely	limits	the	ability	to	pick	a	useful	number.

Crossing	MaxConnections	does	not	result	in	a	markdown.
MaxConnections	applies	even	to	affinity	requests.
It	is	usually	better	to	drastically	reduce	the	TCP	listen	backlog	in	the	application	server
and	reject	workload	that	way"

https://publib.boulder.ibm.com/httpserv/ihsdiag/plugin_questions.html#maxconns

In	addition:

The	use	of	the	MaxConnections	parameter	in	the	WebSphere	plug-in	configuration	is	most
effective	when	IBM	HTTP	Server	2.0	and	above	is	used	and	there	is	a	single	IHS	child	process.
However,	there	are	some	operational	tradeoffs	to	using	it	effectively	in	a	multi-process
webserver	like	IHS.

It	is	usually	much	more	effective	to	actively	prevent	backend	systems	from	accepting	more
connections	than	they	can	reliably	handle,	performing	throttling	at	the	TCP	level.	When	this	is
done	at	the	client	(HTTP	Plugin)	side,	there	is	no	cross-system	or	cross-process	coordination
which	makes	the	limits	ineffective.

Using	MaxConnections	with	more	then	1	child	processes,	or	across	a	webserver	farm,	introduces
a	number	of	complications.	Each	IHS	child	process	must	have	a	high	enough	MaxConnections
value	to	allow	each	thread	to	be	able	to	find	a	backend	server,	but	in	aggregate	the	child
processes	should	not	be	able	to	overrun	an	individual	application	server."

https://publib.boulder.ibm.com/httpserv/ihsdiag/ihs_performance.html#MAXCONN

When	MaxConnections	is	reached,	an	affinity	or	non-affinity	request	will	print	the	following	to
http_plugin.log:

WARNING:	ws_server_group:	serverGroupCheckServerStatus:	Server	$server	has	reached	maximum	connections	and	is	not	selected

To	monitor	MaxConnections	usage,	consider	using	LogLevel="Stats".	If	the	resulting	logging	needs	to	be
filtered,	consider	using	piped	logging	to	a	script	and	filter	as	needed.	An	alternative	monitoring	option	is	to
look	at	network	sockets	(e.g.	Linux	ss);	however,	connections	are	pooled	so	this	doesn't	give	insight	into
actively	used	connections.

	

WebSphere	Caching	Proxy	(WCP)
The	WebSphere	Caching	Proxy	(WCP)	is	optimized	to	store	and	serve	cacheable	responses	from	a	backend
application.	WCP	is	primarily	configured	through	the	ibmproxy.conf	file:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.edge.doc/cp/admingd45.html

The	CacheQueries	directive	may	be	specified	multiple	times	with	different	patterns	of	URLs	whose	content
may	be	cached.	URL	patterns	may	be	excluded	with	the	NoCaching	directive.

CacheQueries	PUBLIC	http://*/*
NoCaching	http://*/files/form/anonymous/api/library/*/document/*/media/*

HTTP	responses	may	be	GZIP	compressed	based	on	MIME	type:

CompressionFilterEnable	/opt/ibm/edge/cp/lib/mod_z.so
CompressionFilterAddContentType	text/html

The	CacheMemory	directive	specifies	the	maximum	amount	of	native	memory	each	WCP	process	may	use
for	in-memory	caching.	This	will	be	limited	by	the	operating	system,	whether	the	process	is	32-bit	or	64-bit,

https://publib.boulder.ibm.com/httpserv/ihsdiag/plugin_questions.html#maxconns
https://publib.boulder.ibm.com/httpserv/ihsdiag/ihs_performance.html#MAXCONN
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/rwsv_plugincfg.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.edge.doc/cp/admingd45.html

shared	libraries,	and	other	constraints.

CacheMemory	1000	M

WCP	has	a	thread	pool	which	should	match	or	exceed	MaxClients	in	downstream	web	server(s)	for	example.

MaxActiveThreads	700

In	general,	it	is	recommended	to	pool	the	connections	to	the	backend	servers	(such	as	web	servers)	to	avoid
the	cost	of	constantly	establishing	and	closing	those	connections.

ServerConnPool	on

The	time	idle	connections	in	this	pool	are	held	open	is	controlled	with	ServerConnTimeout	and
ServerConnGCRun.

By	default,	WCP	will	not	cache	responses	with	expiration	times	within	the	CacheTimeMargin.	If	you	have
available	memory,	disable	this:

CacheTimeMargin	0

	

Load	Balancers
Some	load	balancers	are	configured	to	keep	affinity	between	the	client	IP	address	and	particular	web	servers.
This	may	be	useful	to	simplify	problem	determination	because	the	set	of	requests	from	a	user	will	all	be	in
one	particular	web	server.	However,	IP	addresses	do	not	always	uniquely	identify	a	particular	user	(e.g.
NAT),	so	this	type	of	affinity	can	distort	the	distribution	of	requests	coming	into	the	web	servers	and	it	is	not
functionally	required	because	the	WAS	plugin	will	independently	decide	how	to	route	the	request,	including
looking	at	request	headers	such	as	the	JSESSIONID	cookie	if	affinity	is	required	to	a	particular	application
server.

Load	balancers	often	have	a	probe	function	which	will	mark	down	back-end	services	if	they	are	not
responsive	to	periodic	TCP	or	HTTP	requests.	One	example	of	this	happening	was	due	to	the	load	balancer
performing	TLS	negotiation,	exhausting	its	CPU,	and	then	not	having	enough	juice	to	process	the	response
quickly	enough.

	

WebSphere	Load	Balancer

WebSphere	Edge	Components	Load	Balancer	balances	the	load	of	incoming	requests.	It	is	sometimes	called
eLB	for	Edge	Load	Balancer	or	ULB	for	Userspace	Load	Balancer	(in	contrast	to	the	older	"IPv4"	version
that	required	kernel	modules	on	every	platform).

There	is	a	IBM	WebSphere	Edge	Load	Balancer	for	IPv4	and	IPv6	Data	Collection	Tool	to	investigate	LB
issues.

	

nginx

Containers

	

Forward	Proxy	One-liner

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=guide-product-overview
https://www.ibm.com/support/pages/ibm-websphere-edge-load-balancer-ipv4-and-ipv6-data-collection-tool

1.	 docker	run	--rm	--entrypoint	/bin/sh	--name	nginx	-p	8080:80	-it	nginx	-c	"printf
'server	{	listen	80	default_server;	listen	[::]:80	default_server;	server_name	_;
location	/	{	resolver	%s;	proxy_pass	\$scheme://\$http_host\$request_uri;	}	}'
\$(awk	'/nameserver/	{print	\$2}'	/etc/resolv.conf)	>
/etc/nginx/conf.d/default.conf;	cat	/etc/nginx/conf.d/default.conf;	/docker-
entrypoint.sh	nginx	-g	'daemon	off;';"

2.	 curl	--proxy	http://localhost:8080/	http://example.com/

To	print	debug	to	stdout,	sed	the	log	level	to	debug	and	use	the	-debug	nginx	binary:	docker	run	--rm	--
entrypoint	/bin/sh	--name	nginx	-p	8080:80	-it	nginx	-c	"printf	'server	{	listen	80
default_server;	listen	[::]:80	default_server;	server_name	_;	location	/	{	resolver	%s;
proxy_pass	\$scheme://\$http_host\$request_uri;	}	}'	\$(awk	'/nameserver/	{print	\$2}'
/etc/resolv.conf)	>	/etc/nginx/conf.d/default.conf;	cat	/etc/nginx/conf.d/default.conf;
sed	-i	's/notice/debug/g'	/etc/nginx/nginx.conf;	/docker-entrypoint.sh	nginx-debug	-g
'daemon	off;';"

	

HAProxy

Keep-Alive

The	default	http-reuse	strategy	is	safe.	Consider	whether	aggressive	or	always	are	acceptable	(as
discussed	in	the	manual	and	blog)	as	they	generally	provide	better	performance.

	

Applications
Sub-chapters

HTTP	Standard
HTTP2	Standard
Java	Standard	Edition
Jakarta	Enterprise	Edition
Java	Enterprise	Edition
Eclipse	MicroProfile
Maven
Spring
Hibernate
Cloud	Native
Go
Swing
Apache	CXF
Apache	HttpClient
Rational	Application	Developer
HTML
Transport	Layer	Security

	

Java	Standard	Edition	(JSE)

Best	Practices

https://cbonte.github.io/haproxy-dconv/2.4/configuration.html#http-reuse
https://cbonte.github.io/haproxy-dconv/2.4/configuration.html#http-reuse
https://www.haproxy.com/blog/http-keep-alive-pipelining-multiplexing-and-connection-pooling/

Avoid	the	costs	of	object	creation	and	manipulation	by	using	primitive	types	for	variables
Cache	frequently-used	objects	to	reduce	the	amount	of	garbage	collection	needed,	and	avoid	the	need
to	re-create	the	objects.
Group	native	operations	to	reduce	the	number	of	Java	Native	Interface	(JNI)	calls	when	possible.
Use	synchronized	methods	only	when	necessary	to	limit	the	multitasking	in	the	JVM	and	operating
system.
Avoid	invoking	the	garbage	collector	unless	necessary.	If	you	must	invoke	it,	do	so	only	during	idle
time	or	some	noncritical	phase.
Declare	methods	as	final	whenever	possible.	Final	methods	are	handled	better	by	the	JVM.
Use	the	static	final	key	word	when	creating	constants	in	order	to	reduce	the	number	of	times	the
variables	need	to	be	initialized.
Avoid	unnecessary	"casts"	and	"instanceof"	references,	because	casting	in	Java	is	done	at	run	time.
Avoid	the	use	of	vectors	whenever	possible	when	an	array	will	suffice.
Add	and	delete	items	from	the	end	of	the	vector.
Avoid	allocating	objects	within	loops.
Use	connection	pools	and	cached-prepared	statements	for	database	access.
Minimize	thread	creation	and	destruction	cycles.
Minimize	the	contention	for	shared	resources.
Minimize	the	creation	of	short-lived	objects.
Avoid	remote	method	calls.
Use	callbacks	to	avoid	blocking	remote	method	calls.
Avoid	creating	an	object	only	used	for	accessing	a	method.
Keep	synchronized	methods	out	of	loops.
Store	string	and	char	data	as	Unicode	in	the	database.
Reorder	the	CLASSPATH	so	that	the	most	frequently	used	libraries	occur	first.
Reduce	synchronization
Keep	application	logging	to	a	minimum	or	add	log	guards
Consider	using	work	areas	for	passing	around	application	state	through	JNDI:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/welc6tech_wa_tun.html

	

Synchronization

"Problem	determination...	tools	often	report	the	class	of	the	object	on	which	contention	is	occurring.	A
uniquely	named	class	for	the	object	helps	identify	where	in	the	application	code	those	objects	are	being
used."	(http://www.ibm.com/developerworks/websphere/techjournal/1111_dawson/1111_dawson.html)

Applications	that	overuse	the	synchronized	keyword	or	have	one	placed	in	a	frequently	used	method	can
often	result	in	poor	application	response	times	and/or	application	deadlocks.	Applications	should	be	written
to	be	thread	safe	(http://www.ibm.com/developerworks/java/library/j-jtp09263/index.html).

	

Strings

Unicode

Practically,	developers	are	most	interested	in	Unicode	code	points	which	map	unique	numbers	(commonly
represented	in	Unicode	with	hexadecimal	numbers	such	as	U+000041	representing	the	character	A)	to	logical
characters.	A	font	then	maps	a	logical	character	to	a	glyph	which	is	what	is	seen	on	a	computer	screen.

However,	what's	confusing	in	Java	is	that	the	char	primitive	type	is	not	the	same	as	a	logical	character.
Before	Java	5,	they	were	the	same	since	a	char	was	internally	represented	using	UTF-16	with	2	bytes	for
each	character	and	this	matched	the	original	Unicode	1.0	standard	which	only	defined	up	to	65,536
characters.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/welc6tech_wa_tun.html
http://www.ibm.com/developerworks/websphere/techjournal/1111_dawson/1111_dawson.html
http://www.ibm.com/developerworks/java/library/j-jtp09263/index.html
https://www.unicode.org/
https://www.unicode.org/charts/PDF/U0000.pdf#page=2

Java	5	and	above	support	Unicode	4.0	which	allows	up	to	1,112,064	characters.	The	first	65,536	characters
(U+000000	to	U+00FFFF)	are	referred	to	as	the	Basic	Multilingual	Plane	(BMP)	and	are	still	represented	with
a	single	char	value.	The	remaining	characters	(U+010000	to	U+10FFFF)	are	called	supplementary	characters
and	represented	with	a	pair	of	char	values	called	a	surrogate.	A	surrogate	uses	the	special	Unicode	code
point	range	of	U+00D800	to	U+00DFFF	which	was	reserved	for	use	in	UTF-16.	This	range	is	split	into	two
ranges:	a	high-surrogates	range	(U+00D800	to	U+00DBFF)	and	a	low-surrogates	range	(U+00DC00	to	U+00DFFF).
The	first	code	unit	comes	from	the	high-surrogates	range	and	the	second	code	unit	comes	from	the	low-
surrogates	range.

Encoding	and	decoding	surrogates	is	discussed	in	RFC	2781;	however,	the	Java	Character	class	provides	all
the	necessary	methods	for	interrogating	and	manipulating	surrogates	either	using	a	char[]	or	an	int.

Most	modern	file	and	wire	encodings	use	UTF-8	which	is	a	more	compact	encoding	scheme.	Java	classes
such	as	String,	InputStreamReader,	OutputStreamWriter,	etc.	transparently	handle	encoding	and	decoding	to
and	from	UTF-8.

	

java.lang.ThreadLocal

ThreadLocals	are	a	powerful	way	to	cache	information	without	incurring	cross	thread	contention	and	also
ensuring	thread	safety	of	cached	items.	When	using	ThreadLocals	in	thread	pools,	consider	ensuring	that	the
thread	pool	minimum	size	is	equal	to	the	thread	pool	maximum	size,	so	that	ThreadLocals	are	not	destroyed.
(http://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html)

Note	that	ThreadLocals	may	introduce	classloader	leaks	if	the	ThreadLocal	object	(or	an	object	it	references)
is	loaded	from	an	application	classloader	which	is	restarted	without	the	JVM	being	restarted.	In	this	case,	the
only	way	to	clear	ThreadLocals	is	to	allow	those	threads	to	be	destroyed	or	the	ThreadLocal	values	to	be
updated	to	a	class	from	the	new	classloader	(this	can	be	done	with	a	module	listener).

	

Migrating	to	Java	11

See	the	following	links:

https://developer.ibm.com/tutorials/migration-to-java-11-made-easy/
https://openliberty.io/blog/2019/02/06/java-11.html

	

Printing	timestamps

For	debugging,	as	an	alternative	to	java.util.logging	or	other	logging	mechanisms,	you	may	use
SimpleDateFormat	to	print	the	timestamps	with	milliseconds	and	the	thread	ID.	Use	ThreadLocal	because
SimpleDateFormat	is	not	thread	safe.	For	example:

import	java.text.SimpleDateFormat;
import	java.util.Date;

public	final	class	CustomLogger	{
				public	static	final	ThreadLocal<SimpleDateFormat>	DATE_FORMATTER	=	new	ThreadLocal<SimpleDateFormat>()	{
								@Override
								protected	SimpleDateFormat	initialValue()	{
												return	new	SimpleDateFormat("yyyy-MM-dd	HH:mm:ss.SSS	Z");
								}
				};

				public	static	void	log(String	str)	{
								System.out.println("["	+	DATE_FORMATTER.get().format(new	Date())	+	"	thr	0x"

https://www.oracle.com/technical-resources/articles/javase/supplementary.html
https://tools.ietf.org/html/rfc2781.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Character.html
https://www.oracle.com/technical-resources/articles/javase/supplementary.html#Modified_UTF-8
http://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://developer.ibm.com/tutorials/migration-to-java-11-made-easy/
https://openliberty.io/blog/2019/02/06/java-11.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

																+	Long.toHexString(Thread.currentThread().getId())	+	"]:	"	+	str);
				}

				public	static	void	main(String...	args)	throws	Throwable	{
								log("Hello	World");
				}
}

Example	output:

[2021-03-08	09:42:02.543	-0800	thr	0x1]:	Hello	World

	

Speculative	Tracing

Intermittent	performance	problems	are	one	of	the	most	difficult	type	of	performance	problems.	If	the	issues
can't	be	reproduced	easily,	then	they	may	be	difficult	to	capture	much	data	for.	Often,	running	the	necessary
tracing	all	the	time	may	be	too	expensive	(even	with	optimization	technologies	such	as	High	Performance
Extensible	Logging	or	Binary	Logging).	If	you've	exhausted	all	other	performance	techniques	(tracing	to
RAM,	thread	sampling,	request	metrics,	PMI,	and	the	like),	then	you	may	consider	tracing	instead.

The	first	stage	in	finding	intermittent	performance	problems	using	tracing	is	to	isolate	the	location(s)	of	the
problems.	This	is	the	most	iterative	and	time-consuming	stage.	One	way	to	do	this	is	to	start	with	the
outermost	component	that	demonstrates	the	symptom	and	then	slowly	isolate	down.	For	example,	if	all	that's
known	is	that	HTTP	requests	are	intermittently	slow,	then	you	may	start	with	the	servlet	(or	if	it's	proved	to
be	outside	that,	the	container	itself).	If	lightweight	tracing	doesn't	exist,	then	it	must	be	added.	Below	is	a
Java	example	which	speculatively	monitors	how	long	a	method	takes,	and	if	the	duration	exceeds	some
configurable	threshold,	the	speculative	traces	are	dumped,	thus	allowing	one	iteration	of	isolation.	This	code
is	most	efficient	when	run	within	fixed-sized	thread	pools.

private	static	final	int	SPECULATIVE_DURATION_THRESHOLD	=	Integer.parseInt(System.getProperty("SPECULATIVE_DURATION_THRESHOLD",	"-1"));
private	static	final	boolean	SPECULATIVE_TRACE_ENABLED	=	SPECULATIVE_DURATION_THRESHOLD	==	-1	?	false	:	true;
private	static	ThreadLocal<ArrayList<String>>	speculativeTraces	=	new	ThreadLocal<ArrayList<String>>()	{
		@Override
		protected	ArrayList<String>	initialValue()	{
				return	new	ArrayList<String>(8);
		}
};

public	void	foo()	{
		final	long	methodStartTime	=	SPECULATIVE_TRACE_ENABLED	?	System.currentTimeMillis()	:	-1;
		final	ArrayList<String>	spec	=	SPECULATIVE_TRACE_ENABLED	?	speculativeTraces.get()	:	null;
		if	(SPECULATIVE_TRACE_ENABLED)	{
				spec.clear();
				spec.add(methodStartTime	+	"	started");
		}

		doWork1();

		if	(SPECULATIVE_TRACE_ENABLED)	{
				spec.add(System.currentTimeMillis()	+	"	doWork1	finished");
		}

		doWork2();

		if	(SPECULATIVE_TRACE_ENABLED)	{
				spec.add(System.currentTimeMillis()	+	"	doWork2	finished");
		}

		doWork3();

		if	(SPECULATIVE_TRACE_ENABLED)	{
				final	long	methodDuration	=	System.currentTimeMillis()	-	methodStartTime;
				if	(methodDuration	>=	SPECULATIVE_DURATION_THRESHOLD)	{

						System.out.println("Speculative	tracing	threshold	("	+	SPECULATIVE_DURATION_THRESHOLD	+	"	ms)	exceeded	with	a	call	of	"	+	methodDuration	+	"	ms");
						for	(String	speculativeTrace	:	spec)	{
								System.out.println(speculativeTrace);
						}
						System.out.println("Speculative	tracing	set	end	at	"	+	System.currentTimeMillis());
				}
		}
}

	

Sampled	Timing	Calls

ThreadLocals	may	be	used	to	sample	long	method	call	execution	times	and	print	out	sampled	durations:

				private	static	final	int	SAMPLE_COUNTPERTHREAD_FOO	=	Integer.getInteger("samplecountperthread.foo",	1000);
				private	static	final	int	THRESHOLD_FOO	=	Integer.getInteger("threshold.foo",	0);
				private	static	final	String	SAMPLE_MESSAGE_FOO	=	"Sampled	duration	(threshold="	+	THRESHOLD_FOO	+	",	rate="
																				+	SAMPLE_COUNTPERTHREAD_FOO	+	"	calls	per	thread)	in	ms	of	foo	=	";

				private	static	final	AtomicInteger	calls_foo	=	new	AtomicInteger(0);

				public	void	foo()	{
								final	boolean	doSample	=	(calls_foo.incrementAndGet()	%	SAMPLE_COUNTPERTHREAD_FOO)	==	0;
								final	long	startTime	=	doSample	?	System.currentTimeMillis()	:	-1;

								doLongWork();

								if	(doSample)	{
												final	long	diff	=	System.currentTimeMillis()	-	startTime;
												if	(diff	>=	THRESHOLD_FOO)	{
																System.out.println(SAMPLE_MESSAGE_FOO	+	diff);
												}
								}
				}

				private	void	doLongWork()	{
								//	...
				}

	

Always	Timing	Calls

As	an	alternative	to	sampling,	you	may	add	code	to	time	all	calls	and	then	print	details	if	they	are	above
some	threshold:

				private	static	final	int	THRESHOLD_FOO	=	Integer.getInteger("threshold.foo",	0);
				private	static	final	String	TIMING_MESSAGE_FOO	=	"Duration	(threshold="	+	THRESHOLD_FOO	+	")	in	ms	of	foo	=	";
				
				public	void	foo()	{
								final	long	startTime	=	System.currentTimeMillis();
								
								doLongWork();
								
								final	long	diff	=	System.currentTimeMillis()	-	startTime;
								if	(diff	>=	THRESHOLD_FOO)	{
												System.out.println(TIMING_MESSAGE_FOO	+	diff);
								}
				}
				
				private	void	doLongWork()	{
								//	...
				}

	

Request	Heap	Dump

				public	static	String	requestHeapDump()
												throws	IllegalAccessException,	IllegalArgumentException,	java.lang.reflect.InvocationTargetException,
												NoSuchMethodException,	SecurityException,	ClassNotFoundException,
												javax.management.InstanceNotFoundException,	javax.management.MalformedObjectNameException,
												javax.management.ReflectionException,	javax.management.MBeanException	{
								String	jvm	=	System.getProperty("java.vendor");
								if	("IBM	Corporation".equals(jvm))	{
												return	requestJ9SystemDump();
								}	else	if	("Eclipse	Adoptium".equals(jvm))	{
												return	requestHPROFDump(true);
								}	else	{
												throw	new	UnsupportedOperationException("Unknown	JVM	vendor	"	+	jvm);
								}
				}

				public	static	String	requestJ9SystemDump()
												throws	IllegalAccessException,	IllegalArgumentException,	java.lang.reflect.InvocationTargetException,
												NoSuchMethodException,	SecurityException,	ClassNotFoundException	{
								return	(String)	Class.forName("com.ibm.jvm.Dump").getMethod("triggerDump",	new	Class<?>[]	{	String.class	})
																.invoke(null,	new	Object[]	{	"system:request=exclusive+prepwalk"	});
				}

				public	static	String	requestHPROFDump(boolean	performFullGC)
												throws	javax.management.InstanceNotFoundException,	javax.management.MalformedObjectNameException,
												javax.management.ReflectionException,	javax.management.MBeanException	{
								String	filename	=	"dump"	+	new	java.text.SimpleDateFormat("yyyyMMdd.HHmmss").format(new	java.util.Date())
																+	".hprof";
								java.lang.management.ManagementFactory.getPlatformMBeanServer().invoke(
																new	javax.management.ObjectName("com.sun.management:type=HotSpotDiagnostic"),	"dumpHeap",
																new	Object[]	{	filename,	performFullGC	},
																new	String[]	{	String.class.getName(),	boolean.class.getName()	});
								return	new	java.io.File(filename).getAbsolutePath();
				}

	

Request	J9	Thread	Dump

public	class	DiagnosticThreadDump	{
				private	static	final	boolean	QUIET	=	Boolean.parseBoolean(System.getProperty("Diagnostics.Quiet",	"false"));
				private	static	final	Class<?>	j9Dump;
				private	static	final	java.lang.reflect.Method	j9triggerDump;

				static	{
								j9Dump	=	loadJ9Dump();
								j9triggerDump	=	loadJ9TriggerDump(j9Dump);
				}

				private	static	Class<?>	loadJ9Dump()	{
								try	{
												return	Class.forName("com.ibm.jvm.Dump");
								}	catch	(Throwable	t)	{
												if	(!QUIET)	{
																t.printStackTrace();
												}
												return	null;
								}
				}

				private	static	java.lang.reflect.Method	loadJ9TriggerDump(Class<?>	c)	{
								if	(c	!=	null)	{
												try	{
																return	c.getMethod("triggerDump",	new	Class<?>[]	{	String.class	});
												}	catch	(Throwable	t)	{
																if	(!QUIET)	{
																				t.printStackTrace();

																}
												}
								}
								return	null;
				}

				public	static	String	requestJ9ThreadDump()	{
								try	{
												return	(String)	j9triggerDump.invoke(null,	new	Object[]	{	"java:request=exclusive+prepwalk"	});
								}	catch	(Throwable	t)	{
												if	(QUIET)	{
																return	null;
												}	else	{
																throw	new	RuntimeException(t);
												}
								}
				}

				public	static	void	main(String[]	args)	throws	Throwable	{
								requestJ9ThreadDump();
				}
}

	

Request	J9	System	Dump

public	class	DiagnosticSystemDump	{
				private	static	final	boolean	QUIET	=	Boolean.parseBoolean(System.getProperty("Diagnostics.Quiet",	"false"));
				private	static	final	Class<?>	j9Dump;
				private	static	final	java.lang.reflect.Method	j9triggerDump;

				static	{
								j9Dump	=	loadJ9Dump();
								j9triggerDump	=	loadJ9TriggerDump(j9Dump);
				}

				private	static	Class<?>	loadJ9Dump()	{
								try	{
												return	Class.forName("com.ibm.jvm.Dump");
								}	catch	(Throwable	t)	{
												if	(!QUIET)	{
																t.printStackTrace();
												}
												return	null;
								}
				}

				private	static	java.lang.reflect.Method	loadJ9TriggerDump(Class<?>	c)	{
								if	(c	!=	null)	{
												try	{
																return	c.getMethod("triggerDump",	new	Class<?>[]	{	String.class	});
												}	catch	(Throwable	t)	{
																if	(!QUIET)	{
																				t.printStackTrace();
																}
												}
								}
								return	null;
				}

				public	static	String	requestJ9SystemDump()	{
								try	{
												return	(String)	j9triggerDump.invoke(null,	new	Object[]	{	"system:request=exclusive+prepwalk"	});
								}	catch	(Throwable	t)	{
												if	(QUIET)	{
																return	null;
												}	else	{

																throw	new	RuntimeException(t);
												}
								}
				}

				public	static	void	main(String[]	args)	throws	Throwable	{
								requestJ9SystemDump();
				}
}

	

Requesting	Thread	Dumps,	Heap	Dumps,	and	System	Dumps

The	following	example	code	shows	how	to	request	a	thread	dump	(IBM	Java	only),	heap	dump	or	system
dump:

/**
*	These	are	handled	in	synchronized	methods	below.
*/
private	static	int	threadDumpsTaken	=	0,	heapDumpsTaken	=	0,	coreDumpsTaken	=	0;

private	static	final	int	maxThreadDumps	=	Integer.parseInt(System.getProperty("MAXTHREADDUMPS",	"-1"));
private	static	final	int	maxHeapDumps	=	Integer.parseInt(System.getProperty("MAXHEAPDUMPS",	"1"));
private	static	final	int	maxCoreDumps	=	Integer.parseInt(System.getProperty("MAXCOREDUMPS",	"1"));

private	static	final	boolean	isIBMJava;
private	static	final	Class<?>	ibmDumpClass;
private	static	final	java.lang.reflect.Method	ibmJavacoreMethod;
private	static	final	java.lang.reflect.Method	ibmHeapDumpMethod;
private	static	final	java.lang.reflect.Method	ibmSystemDumpMethod;
private	static	final	Class<?>	hotSpotMXBeanClass;
private	static	final	Object	hotspotMXBean;
private	static	final	java.lang.reflect.Method	hotspotMXBeanDumpHeap;
private	static	final	java.text.SimpleDateFormat	hotspotDateFormat	=	new	java.text.SimpleDateFormat("yyyyMMdd'T'HHmmss");

static	{
		try	{
				isIBMJava	=	isIBMJava();
				ibmDumpClass	=	isIBMJava	?	Class.forName("com.ibm.jvm.Dump")	:	null;
				ibmHeapDumpMethod	=	isIBMJava	?	ibmDumpClass.getMethod("HeapDump")	:	null;
				ibmJavacoreMethod	=	isIBMJava	?	ibmDumpClass.getMethod("JavaDump")	:	null;
				ibmSystemDumpMethod	=	isIBMJava	?	ibmDumpClass.getMethod("SystemDump")	:	null;
				hotSpotMXBeanClass	=	isIBMJava	?	null	:	getHotSpotDiagnosticMXBeanClass();
				hotspotMXBean	=	isIBMJava	?	null	:	getHotSpotDiagnosticMXBean();
				hotspotMXBeanDumpHeap	=	isIBMJava	?	null	:	getHotSpotDiagnosticMXBeanDumpHeap();
		}	catch	(Throwable	t)	{
				throw	new	RuntimeException("Could	not	load	Java	dump	classes",	t);
		}
}

public	static	boolean	isIBMJava()	{
		try	{
				//	We	could	use	System.getProperty,	but	that	requires	elevated	permissions	in	some	cases.
				Class.forName("com.ibm.jvm.Dump");
				return	true;
		}	catch	(Throwable	t)	{
				return	false;
		}
}

private	static	Class<?>	getHotSpotDiagnosticMXBeanClass()	throws	ClassNotFoundException	{
		return	Class.forName("com.sun.management.HotSpotDiagnosticMXBean");
}

private	static	Object	getHotSpotDiagnosticMXBean()	throws	ClassNotFoundException,	java.io.IOException	{
		javax.management.MBeanServer	server	=	java.lang.management.ManagementFactory.getPlatformMBeanServer();
		return	java.lang.management.ManagementFactory.newPlatformMXBeanProxy(server,

						"com.sun.management:type=HotSpotDiagnostic",	hotSpotMXBeanClass);
}

private	static	java.lang.reflect.Method	getHotSpotDiagnosticMXBeanDumpHeap()	throws	NoSuchMethodException,	SecurityException	{
		return	hotSpotMXBeanClass.getMethod("dumpHeap",	String.class,	boolean.class);
}

public	static	synchronized	void	requestThreadDump()	{
		if	(maxThreadDumps	==	-1	||	(maxThreadDumps	>	-1	&&	threadDumpsTaken++	<	maxThreadDumps))	{
				try	{
						ibmJavacoreMethod.invoke(ibmDumpClass);
				}	catch	(Throwable	t)	{
						throw	new	RuntimeException(t);
				}
		}
}

public	static	synchronized	void	requestHeapDump()	{
		if	(maxHeapDumps	==	-1	||	(maxHeapDumps	>	-1	&&	heapDumpsTaken++	<	maxHeapDumps))	{
				try	{
						if	(ibmHeapDumpMethod	!=	null)	{
								ibmHeapDumpMethod.invoke(ibmDumpClass);
						}	else	{
								requestHotSpotHPROF();
						}
				}	catch	(Throwable	t)	{
						throw	new	RuntimeException(t);
				}
		}
}

public	static	synchronized	void	requestCoreDump()	{
		if	(maxCoreDumps	==	-1	||	(maxCoreDumps	>	-1	&&	coreDumpsTaken++	<	maxCoreDumps))	{
				try	{
						if	(ibmSystemDumpMethod	!=	null)	{
								ibmSystemDumpMethod.invoke(ibmDumpClass);
						}	else	{
								requestHotSpotHPROF();
						}
				}	catch	(Throwable	t)	{
						throw	new	RuntimeException(t);
				}
		}
}

private	static	void	requestHotSpotHPROF()	throws	IllegalAccessException,	java.lang.reflect.InvocationTargetException	{
		String	fileName	=	"heap"	+	hotspotDateFormat.format(new	java.util.Date())	+	".hprof";
		boolean	live	=	true;
		hotspotMXBeanDumpHeap.invoke(hotspotMXBean,	fileName,	live);
}

	

java.util.logging

Example	of	how	to	use	java.util.logging:

package	com.test;

public	class	Foo	{
		private	static	final	java.util.logging.Logger	LOG	=	java.util.logging.Logger.getLogger(Foo.class.getName());

		public	void	bar(String	param1)	{
				if	(LOG.isLoggable(java.util.logging.Level.FINE))	{
						LOG.entering(Foo.class.getName(),	"bar",	param1);
				}

				//	Do	work...

				if	(LOG.isLoggable(java.util.logging.Level.FINER))	{
						LOG.finer("Work	step1	complete");
				}

				//	Do	work...

				if	(LOG.isLoggable(java.util.logging.Level.FINE))	{
						LOG.entering(Foo.class.getName(),	"bar");
				}
		}
}

For	example,	the	logging	or	trace	specification	may	control	the	logging	of	this	class	with	com.test.Foo=all

	

Finalizers

"The	Java	service	team	recommends	that	applications	avoid	the	use	of	finalizers	if	possible."
(http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/diag/understanding/mm_gc_finalizers.html

"It	is	not	possible	to	predict	when	a	finalizer	is	run...	Because	a	finalized	object	might	be	garbage	that	is
retained,	a	finalizer	might	not	run	at	all."
(http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/diag/understanding/mm_gc_finalizers_contract.html

	

XML	Parsers

One	of	the	common	misconceptions	about	writing	XML	applications	is	that	creating	a	parser
instance	does	not	incur	a	large	performance	cost.	On	the	contrary,	creation	of	a	parser	instance
involves	creation,	initialization,	and	setup	of	many	objects	that	the	parser	needs	and	reuses	for
each	subsequent	XML	document	parsing.	These	initialization	and	setup	operations	are
expensive.

In	addition,	creating	a	parser	can	be	even	more	expensive	if	you	are	using	the	JAXP	API.	To
obtain	a	parser	with	this	API,	you	first	need	to	retrieve	a	corresponding	parser	factory	--	such	as
a	SAXParserFactory	--	and	use	it	to	create	the	parser.	To	retrieve	a	parser	factory,	JAXP	uses	a
search	mechanism	that	first	looks	up	a	ClassLoader	(depending	on	the	environment,	this	can	be
an	expensive	operation),	and	then	attempts	to	locate	a	parser	factory	implementation	that	can	be
specified	in	the	JAXP	system	property,	the	jaxp.property	file,	or	by	using	the	Jar	Service
Provider	mechanism.	The	lookup	using	the	Jar	Service	Provider	mechanism	can	be	particularly
expensive	as	it	may	search	through	all	the	JARs	on	the	classpath;	this	can	perform	even	worse	if
the	ClassLoader	consulted	does	a	search	on	the	network.

Consequently,	in	order	to	achieve	better	performance,	we	strongly	recommend	that	your
application	creates	a	parser	once	and	then	reuses	this	parser	instance.

http://www.ibm.com/developerworks/library/x-perfap2/index.html#reuse

	

Apache	HttpClient

This	section	has	been	moved	to	Apache	HttpClient.

	

WeakReferences	and	SoftReferences

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/diag/understanding/mm_gc_finalizers.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/diag/understanding/mm_gc_finalizers_contract.html
http://www.ibm.com/developerworks/library/x-perfap2/index.html#reuse

A	typical	use	of	the	SoftReference	class	is	for	a	memory-sensitive	cache.	The	idea	of	a
SoftReference	is	that	you	hold	a	reference	to	an	object	with	the	guarantee	that	all	of	your	soft
references	will	be	cleared	before	the	JVM	reports	an	out-of-memory	condition.	The	key	point	is
that	when	the	garbage	collector	runs,	it	may	or	may	not	free	an	object	that	is	softly	reachable.
Whether	the	object	is	freed	depends	on	the	algorithm	of	the	garbage	collector	as	well	as	the
amount	of	memory	available	while	the	collector	is	running.
The	WeakReference	class

A	typical	use	of	the	WeakReference	class	is	for	canonicalized	mappings.	In	addition,	weak
references	are	useful	for	objects	that	would	otherwise	live	for	a	long	time	and	are	also
inexpensive	to	re-create.	The	key	point	is	that	when	the	garbage	collector	runs,	if	it	encounters	a
weakly	reachable	object,	it	will	free	the	object	the	WeakReference	refers	to.	Note,	however,	that
it	may	take	multiple	runs	of	the	garbage	collector	before	it	finds	and	frees	a	weakly	reachable
object.

http://www.ibm.com/developerworks/java/library/j-refs/

	

Logging
Always	use	a	logger	that	can	be	dynamically	modified	at	run	time	without	having	to	restart	the	JVM.

Differentiate	between	Error	logging	(which	should	go	to	SystemOut.log)	and	Audit	logging	which	has
different	requirements	and	should	not	be	contaminating	the	SystemOut.log.

Use	a	fast	disk	for	Audit	logging.

	

Jakarta	Enterprise	Edition	(JEE)
Jakarta	Enterprise	Edition	(JEE)	is	a	fully	open	source	Java	Enterprise	Edition	based	off	version	8	including	a
change	of	package	names	from	javax	to	jakarta	(due	to	trademark	issues	during	the	open-sourcing	process).
The	umbrella	project	to	manage	Jakarta	EE	is	Eclipse	Enterprise	for	Java	(EE4J)	and	various	Jakarta	EE
specifications	are	available.

Many	of	the	patterns	available	in	Java	Enterprise	Edition	remain	available	in	Jakarta	EE	and	are	not	repeated
here.

	

Jakarta	RESTful	client

1.	 Create	and	cache	the	WebTarget	instead	of	re-creating	it	for	every	call

@Path("/client-test2")
public	class	ClientTestCached	{

		private	static	WebTarget	cachedWebTarget	=	ClientBuilder.newBuilder().build().target("http://localhost:9081/endpoint");

		@GET
		@Produces(MediaType.TEXT_PLAIN)
		public	String	ping()	{
				return	cachedWebTarget.request().get(String.class);
		}
}

	

http://www.ibm.com/developerworks/java/library/j-refs/
https://projects.eclipse.org/projects/ee4j
https://jakarta.ee/specifications/platform/
https://community.ibm.com/community/user/wasdevops/blogs/joseph-mcclure/2022/03/21/microservices-best-practices-for-improved-applicat

JSON	processing

1.	 Create	and	cache	a	Factory	first,	and	then	create	the	reader,	writer,	or	object	builder	from	that	factory

@Path("/json-test2")
public	class	JsonTest2	{

		private	static	final	JsonBuilderFactory	jsonBuilderFactory	=	Json.createBuilderFactory(null);

		@GET
		@Produces(MediaType.APPLICATION_JSON)
		public	JsonObject	ping()	{
				JsonObjectBuilder	jsonObjectBuilder	=	jsonBuilderFactory.createObjectBuilder();
				return	jsonObjectBuilder.add("example",	"example").build();
		}
}

	

Java	Enterprise	Edition	(JEE)
Also	known	as	Java	Platform,	Enterprise	Edition	(Java	EE)	and	Java	2	Platform,	Enterprise	Edition	(J2EE)

	

Startup	Code

1.	 With	an	Eclipse	MicroProfile	container,	create	a	class	with	@Initialized:

import	javax.enterprise.context.ApplicationScoped;
import	javax.enterprise.context.Initialized;
import	javax.enterprise.event.Observes;

@ApplicationScoped
public	class	ApplicationInitializer	{
		public	void	onStartup(@Observes	@Initialized(ApplicationScoped.class)	Object	o)	{
				System.out.println(toString()	+	"	started");

				//	code

				System.out.println(toString()	+	"	finished");
		}
}

2.	 With	a	servlet	container,	create	a	class	with	@WebListener:

import	javax.servlet.ServletContextEvent;
import	javax.servlet.ServletContextListener;
import	javax.servlet.annotation.WebListener;

@WebListener
public	class	ApplicationInitializer	implements	ServletContextListener	{
				@Override
				public	void	contextInitialized(ServletContextEvent	sce)	{
								System.out.println(toString()	+	"	started");

								//	code

								System.out.println(toString()	+	"	finished");
				}

				@Override
				public	void	contextDestroyed(ServletContextEvent	sce)	{
				}
}

https://community.ibm.com/community/user/wasdevops/blogs/joseph-mcclure/2022/03/21/microservices-best-practices-for-improved-applicat
https://openliberty.io/docs/ref/javaee/8/#class=javax/enterprise/context/Initialized.html&package=allclasses-frame.html
https://docs.oracle.com/javaee/6/api/javax/servlet/annotation/WebListener.html

3.	 With	an	EJB	container,	create	an	EJB	with	@Startup

import	javax.annotation.PostConstruct;
import	javax.ejb.Singleton;
import	javax.ejb.Startup;

@Singleton
@Startup
public	class	ApplicationInitializer	{
				@PostConstruct
				private	void	onStartup()	{
								System.out.println(toString()	+	"	started");

								//	code
								
								System.out.println(toString()	+	"	finished");
				}
}

	

Security

A	client	will	be	authenticated	only	if	a	resource	is	protected.	You	can	use	web.xml	or	annotations	to	protect	a
web	resource.	For	JAX-RS	see
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_jaxrs_secure.html

The	application-bnd	info	is	for	authorization	after	the	authentication.

	

Web	Applications
It	is	important	to	reduce	the	number	of	resources	(images,	CSS,	Javascript,	etc.)	served	for	each	request
(caching	and	compression	are	also	important,	dealt	elsewhere	in	the	Cookbook).	You	can	use	browser	or
network	sniffing	tools	to	determine	the	largest	number	and	sizes	of	resources.	Here	are	some	examples:

1.	 Consider	combining	images	into	a	single	image	-	often	called	a	"sprite"	-	and	display	those	images
using	CSS	sprite	offset	techniques.

2.	 Consider	combining	multiple	JavaScript	files	into	a	single	file.
3.	 Consider	"minifying"	JavaScript	and	CSS	files.
4.	 Consider	compressing	or	resizing	images	more.

	

HTTP	Sessions

Individual	sessions	retaining	more	than	1MB	may	be	concerning.	Use	a	system	dump	or	heap	dump	and	a
tool	such	as	the	Memory	Analyzer	Tool	with	the	IBM	Extensions	for	Memory	Analyzer	to	deep	dive	into
session	sizes	and	contents
(http://www.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html).

If	there	is	a	logout	link,	call	javax.servlet.http.HttpSession.invalidate()	to	release	the	HTTP	session	as	early
as	possible,	reducing	memory	pressure:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cprs_best_practice.html

If	using	session	persistence,	consider	implementing	manual	update	and	sync	of	session	updates:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cprs_best_practice.html

Keep	the	amount	of	data	in	the	HTTP	session	as	small	as	possible.

https://docs.oracle.com/javaee/6/api/javax/ejb/Startup.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_jaxrs_secure.html
http://www.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cprs_best_practice.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cprs_best_practice.html

Only	touch	session	attributes	that	actually	change.	This	allows	for	administrative	changes	to	only	persist
updated	attributes	to	the	HTTP	Session	persistent	storage.

	

Database	Access

SQL	statements	should	be	written	to	use	the	parameterized	?	(question	mark)	notation.	In	order	for	the
prepared	statement	cache	to	be	used	effectively	the	parameterized	statements	will	be	reused	from	the	cache.
Consequently,	building	SQL	statements	with	the	parameters	substituted	in	will	all	look	like	different
statements	and	the	cache	will	have	little	performance	effect.

If	you	are	using	global	transactions,	use	deferred	enlistment:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdat_conpoolman.html

Make	sure	to	close	Connections,	Statements,	and	ResultSets.	In	some	databases	(e.g.
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_wastundb2.html
not	closing	all	of	these	may	cause	additional	overhead	even	if	the	objects	will	ultimately	be	closed	by	the
pools.

	

JDBC	Deadlocks

Applications	that	open	more	than	one	JDBC	connection	to	the	same	datasource	can	result	in	a	deadlock	if
there	are	not	enough	connections	in	the	connection	pool.	See	http://www-01.ibm.com/support/docview.wss?
uid=swg1JR43775	If	javacores	show	multiple	threads	waiting	for	a	connection	and	WebSphere	Application
Server	is	reporting	hung	threads	then	you	will	want	to	increase	the	number	of	connections	in	the	connection
pool	to	at	least	2n+1	where	n	=	maximum	number	of	threads	in	the	thread	pool.	Applications	that	open	more
than	2	connections	to	the	same	datasource	will	need	even	larger	pools	(3n+1,	4n+1,	etc).

To	correct	this	problem	the	application	developer	has	to	fix	the	code	to	close	a	JDBC	connection	before
opening	another	JDBC	connection.

	

Web	Services
Provide	a	jaxb.index	file	for	every	package	that	does	not	contain	an	ObjectFactory	class.	This	action	enables
the	system	to	completely	avoid	the	search	for	JAXB	classes.	This	approach	does	require	application
modification	to	account	for	the	addition	of	the	jaxb.index	files.
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cwbs_tuning_jaxbcontext.html

	

Service	Component	Architecture	(SCA)
Use	@AllowsPassByReference	if	possible	with	SCA	modules:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsca_passby_ref.html

	

Object	Caching
The	DistributedMap	and	DistributedObjectCache	interfaces	are	simple	interfaces	for	the	dynamic	cache.
Using	these	interfaces,	Java	EE	applications	and	system	components	can	cache	and	share	Java	objects	by

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdat_conpoolman.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_wastundb2.html
http://www-01.ibm.com/support/docview.wss?uid=swg1JR43775
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cwbs_tuning_jaxbcontext.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsca_passby_ref.html

storing	a	reference	to	the	object	in	the	cache.	The	default	dynamic	cache	instance	is	created	if	the	dynamic
cache	service	is	enabled	in	the	administrative	console.	This	default	instance	is	bound	to	the	global	Java
Naming	and	Directory	Interface	(JNDI)	namespace	using	the	name	services/cache/distributedmap.
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_distmap.html

Tread	with	caution.	Overly	active	distributed	maps	can	become	quite	chatty	amongst	the	JVMs	and,	in
extreme	cases,	limit	the	total	number	of	JVMs	in	the	same	distributed	map	domain	because	the	JVMs	spend
most	of	their	time	chatting	about	the	changes	that	occurred	in	the	map.

	

MDB
An	MDB	exists	within	an	EJB	project	inside	an	EAR.	For	example:

package	com.example;

import	java.time.Instant;
import	javax.ejb.ActivationConfigProperty;
import	javax.ejb.MessageDriven;
import	javax.jms.Message;
import	javax.jms.MessageListener;

@MessageDriven(activationConfig	=	{
								@ActivationConfigProperty(propertyName	=	"destination",	propertyValue	=	"jms/Queue1"),
								@ActivationConfigProperty(propertyName	=	"destinationType",	propertyValue	=	"javax.jms.Queue")	},	mappedName	=	"jms/Queue1")
public	class	AppMDB	implements	MessageListener	{
				public	void	onMessage(Message	message)	{
								System.out.println(Instant.now()	+	":	Received	"	+	message);
				}
}

This	is	accompanied	with	a	META-INF/ejb-jar.xml;	for	example:

<?xml	version="1.0"	encoding="UTF-8"?>
<ejb-jar	version="3.2"	xmlns="http://xmlns.jcp.org/xml/ns/javaee"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee	http://xmlns.jcp.org/xml/ns/javaee/ejb-jar_3_2.xsd">
		<display-name>AppMDBEJB</display-name>	
</ejb-jar>

Example	EAR	file	META-INF/application.xml:

<?xml	version="1.0"	encoding="UTF-8"?>
<application	id="Application_ID"	version="8"	xmlns="http://xmlns.jcp.org/xml/ns/javaee"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee	http://xmlns.jcp.org/xml/ns/javaee/application_8.xsd">
	<display-name>AppMDB</display-name>
	<module	id="Module_1594190856221">
				<ejb>AppMDBEJB.jar</ejb>
	</module>	
</application>	

	

JMS	Client
Example	JMS	Client	in	a	servlet:

package	com.example;

import	java.io.IOException;
import	java.io.PrintWriter;
import	java.time.Instant;

import	javax.jms.Connection;
import	javax.jms.ConnectionFactory;
import	javax.jms.MessageProducer;

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tdyn_distmap.html

import	javax.jms.Queue;
import	javax.jms.Session;
import	javax.jms.TextMessage;
import	javax.naming.InitialContext;
import	javax.servlet.ServletException;
import	javax.servlet.http.HttpServlet;
import	javax.servlet.http.HttpServletRequest;
import	javax.servlet.http.HttpServletResponse;

public	class	AppJMSProducer	extends	HttpServlet	{
				private	static	final	long	serialVersionUID	=	1L;

				protected	void	service(HttpServletRequest	request,	HttpServletResponse	response)
												throws	ServletException,	IOException	{
								String	messageStr	=	"Hello	World	@	"	+	Instant.now();
								response.setContentType("text/plain");
								PrintWriter	out	=	response.getWriter();
								out.println(Instant.now()	+	":	Started	writing");
								out.flush();

								try	{
												InitialContext	ctx	=	new	InitialContext();
												ConnectionFactory	qcf	=	(ConnectionFactory)ctx.lookup("jms/ConnectionFactory1");
												Queue	queue	=	(Queue)ctx.lookup("jms/Queue1");
												try	(Connection	connection	=	qcf.createConnection())	{
																try	(Session	session	=	connection.createSession(false,	Session.AUTO_ACKNOWLEDGE))	{
																				MessageProducer	producer	=	session.createProducer(queue);
																				TextMessage	message	=	session.createTextMessage();
																				message.setText(messageStr);
																				producer.send(message);
																}
												}
								}	catch	(Throwable	t)	{
												out.println(Instant.now()	+	":	Error:	"	+	t);
												t.printStackTrace();
								}
								out.println(Instant.now()	+	":	Finished	writing");
				}
}

For	a	Maven	project,	the	required	dependencies:

								<dependency>
												<groupId>javax.servlet</groupId>
												<artifactId>javax.servlet-api</artifactId>
												<version>3.1.0</version>
												<scope>provided</scope>
								</dependency>
								<dependency>
												<groupId>javax.jms</groupId>
												<artifactId>javax.jms-api</artifactId>
												<version>2.0</version>
												<scope>provided</scope>
								</dependency>

	

HTTP	Standard

Caching

	

Forcing	Revalidation	of	Cached	Responses

Despite	having	"must"	in	its	name,	Cache-Control:	must-revalidate	only	revalidates	(i.e.	sends	If-
Modified-Since	or	If-None-Match)	after	the	content	has	expired	(emphasis	added):

When	the	must-revalidate	directive	is	present	in	a	response	received	by	a	cache,	that	cache
MUST	NOT	use	the	entry	after	it	becomes	stale	to	respond	to	a	subsequent	request	without	first
revalidating	it	with	the	origin	server.

To	force	always	revalidating,	use	the	oddly	named	Cache-Control:	no-cache	which	does	cache	and	always
revalidates	(emphasis	added;	and	with	what	seems	like	a	gratuitous	double	negative	in	an	already	confusing
section):

If	the	no-cache	directive	does	not	specify	a	field-name,	then	a	cache	MUST	NOT	use	the
response	to	satisfy	a	subsequent	request	without	successful	revalidation	with	the	origin	server.

In	more	direct	terms	from	MDN	(emphasis	added):

must-revalidate:	Indicates	that	once	a	resource	becomes	stale,	caches	must	not	use	their
stale	copy	without	successful	validation	on	the	origin	server.
no-cache:	The	response	may	be	stored	by	any	cache,	even	if	the	response	is	normally	non-
cacheable.	However,	the	stored	response	MUST	always	go	through	validation	with	the
origin	server	first	before	using	it

If	content	is	not	often	changing,	then	such	revalidations	should	usually	return	304	Not	Modified	to	re-use
the	previously	cached	response.

	

HTTP2	Standard
The	HTTP/2	standard	is	governed	by	RFC	9113.	The	key	differences	over	HTTP/1	and	HTTP/1.1	are	header
compression	and	the	ability	to	use	a	single	TCP	connection	for	multiple,	concurrent	requests	(called	streams).

	

Flow	Control

HTTP/2	has	flow	control	in	both	directions,	on	both	the	connection	and	each	stream	in	a	connection.	This	is
independent	of	TCP	flow	control.	HTTP/2	flow	control	may	cause	performance	issues:

If	an	endpoint	cannot	ensure	that	its	peer	always	has	available	flow-control	window	space	that	is
greater	than	the	peer's	bandwidth	*	delay	product	on	this	connection,	its	receive	throughput	will
be	limited	by	HTTP/2	flow	control.	This	will	result	in	degraded	performance.

The	default	initial	window	size	for	connections	and	streams	is	65,535	bytes.	A	receiver	may	send	a
SETTINGS_INITIAL_WINDOW_SIZE	frame	to	increase	the	window	size	for	current	and	future	streams;	however,
this	does	not	apply	to	the	connection	window.	The	connection	window	may	only	be	increased	using	a
WINDOW_UPDATE	frame	on	the	connection	(stream	0).

The	window	size	is	decremented	on	both	a	stream	and	the	connection	when	sending	a	DATA	frame	(just	the
body	size).	After	receiving	a	DATA	frame,	the	receiver	sends	a	WINDOW_UPDATE	frame	on	both	the	stream	and
connection	to	increment	both	window	sizes	by	the	amount	received.

Flow	control	may	be	disabled	by	sending	a	SETTINGS_INITIAL_WINDOW_SIZE	frame	with	a	value	of
2147483647	and	a	WINDOW_UPDATE	on	the	connection	(stream	0)	with	a	value	of	2147483647,	and	then
maintain	the	window	sizes	when	receiving	DATA	frames	with	subsequent	WINDOW_UPDATE	frames,	if	needed.

	

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching#cache_validation
https://datatracker.ietf.org/doc/html/rfc2616#section-14.9.4
https://datatracker.ietf.org/doc/html/rfc2616#section-14.9.1
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://www.ietf.org/rfc/rfc9113.html
https://www.ietf.org/rfc/rfc9113.html#name-introduction
https://www.ietf.org/rfc/rfc9113.html#section-6.9.1-1
https://www.ietf.org/rfc/rfc9113.html#section-6.9-2
https://www.ietf.org/rfc/rfc9113.html#section-5.2.3-1
https://www.ietf.org/rfc/rfc9113.html#section-5.2.1-2.4
https://www.ietf.org/rfc/rfc9113.html#section-6.9.2-1
https://www.ietf.org/rfc/rfc9113.html#section-6.9.2-3
https://www.ietf.org/rfc/rfc9113.html#section-6.9.2-1
https://lists.w3.org/Archives/Public/ietf-http-wg/2023JanMar/0003.html
https://www.ietf.org/rfc/rfc9113.html#section-6.9.2-1
https://www.ietf.org/rfc/rfc9113.html#section-6.9-8
https://www.ietf.org/rfc/rfc9113.html#section-6.9.1-4
https://www.ietf.org/rfc/rfc9113.html#section-5.2.1-2.5
https://www.ietf.org/rfc/rfc9113.html#section-6.9.1-3
https://www.ietf.org/rfc/rfc9113.html#section-6.9.1-5
https://www.ietf.org/rfc/rfc9113.html#section-5.2.2-2

Eclipse	MicroProfile
Eclipse	MicroProfile	is	an	open	standard	for	Java	MicroServices	applications:	https://microprofile.io/.

Workshop	on	microServices	with	Java	and	Kubernetes	on	IBM	Cloud
Deploying	microservices	to	OpenShift	by	using	Kubernetes	Operators

	

MicroProfile	Configuration

Standardized	configuration	mechanisms:	https://microprofile.io/project/eclipse/microprofile-config

	

MicroProfile	RestClient

Type-safe	JAX-RS	client:	https://microprofile.io/project/eclipse/microprofile-rest-client

1.	 Make	RestClients	@ApplicationScoped:

By	default,	MicroProfile	Rest	Clients	have	a	scope	of	@Dependent.	When	you	inject	them
into	something	like	a	Jakarta	RESTful	endpoint,	they	inherit	the	scope	of	the	Jakarta
RESTful	class,	which	is	@RequestScoped	by	default.	This	will	cause	a	new	MicroProfile
Rest	Client	to	be	created	every	time,	which	leads	to	extra	CPU	cost	and	a	decent	amount
of	class	loading	overhead	that	will	slow	things	down.	By	making	the	MicroProfile	Rest
Client	ApplicationScoped,	the	client	is	only	created	once,	saving	a	lot	of	time.

@ApplicationScoped
@Path("/")
@RegisterRestClient(configKey="appScopedRestClient")
public	interface	AppScopedRestClient	{

		@GET
		@Path("/endpoint")
		@Produces(MediaType.TEXT_PLAIN)
		public	String	ping();
}

@Path("/mp-restclient-test2")
public	class	MicroProfileRestClientTest2	{

		@Inject	@RestClient
		private	AppScopedRestClient	appScopedClient;
	
		@GET
		@Produces(MediaType.TEXT_PLAIN)
		public	String	ping()	{
				return	appScopedClient.ping();
		}
}

	

MicroProfile	OpenTracing

Standardized	way	to	trace	JAX-RS	requests	and	responses:
https://microprofile.io/project/eclipse/microprofile-opentracing

	

https://microprofile.io/
https://developer.ibm.com/languages/java/tutorials/get-your-java-microservice-up-and-running-workshop/
https://openliberty.io/guides/cloud-openshift-operator.html
https://microprofile.io/project/eclipse/microprofile-config
https://microprofile.io/project/eclipse/microprofile-rest-client
https://community.ibm.com/community/user/wasdevops/blogs/joseph-mcclure/2022/03/21/microservices-best-practices-for-improved-applicat
https://microprofile.io/project/eclipse/microprofile-opentracing

MicroProfile	Metrics

Standardized	way	to	expose	telemetry	data:	https://microprofile.io/project/eclipse/microprofile-metrics

	

MicroProfile	OpenAPI

Standardized	way	to	expose	API	documentation:	https://microprofile.io/project/eclipse/microprofile-open-api

	

MicroProfile	Fault	Tolerance

Standardized	methods	for	fault	tolerance:	https://microprofile.io/project/eclipse/microprofile-fault-tolerance

	

MicroProfile	Health

Standardized	application	health	check	endpoint:	https://microprofile.io/project/eclipse/microprofile-health

	

MicroShed	Testing

MicroShed	Testing	helps	to	test	MicroProfile	applications.

	

Garbage	Collection	Thrashing	Health	Check	Example

import	javax.enterprise.context.ApplicationScoped;
import	org.eclipse.microprofile.health.Health;
import	org.eclipse.microprofile.health.HealthCheck;
import	org.eclipse.microprofile.health.HealthCheckResponse;

@Health
@ApplicationScoped
public	class	HealthChecker	implements	HealthCheck
{
				public	static	final	double	HEALTH_CHECK_GC_MIN_FREE	=	Double
																				.parseDouble(System.getProperty("HEALTH_CHECK_GC_MIN_FREE",	"0.05"));

				public	static	final	int	HEALTH_CHECK_GC_MIN_INTERVAL_MS	=	Integer.getInteger("HEALTH_CHECK_GC_MIN_INTERVAL_SECONDS",
																				60	*	5)	*	1000;

				private	static	long	healthCheckGcLastCheck	=	System.currentTimeMillis();

				@Override
				public	HealthCheckResponse	call()
				{
								if	(isGarbageCollectionHealthy())
								{
												return	HealthCheckResponse.named("healthCheck").up().build();
								}
								else
								{
												return	HealthCheckResponse.named("healthCheck").down().build();
								}
				}

https://microprofile.io/project/eclipse/microprofile-metrics
https://microprofile.io/project/eclipse/microprofile-open-api
https://microprofile.io/project/eclipse/microprofile-fault-tolerance
https://microprofile.io/project/eclipse/microprofile-health
https://developer.ibm.com/articles/true-to-production-testing-microprofile-jakarta-ee/

				public	static	synchronized	boolean	isGarbageCollectionHealthy()
				{
								try
								{
												final	long	now	=	System.currentTimeMillis();

												final	boolean	doCheck	=	now	>=	healthCheckGcLastCheck	+	HEALTH_CHECK_GC_MIN_INTERVAL_MS;

												healthCheckGcLastCheck	=	now;

												if	(doCheck)
												{
																final	int	checkHeapBytes	=	Math.toIntExact(
																																(long)	((double)	Runtime.getRuntime().maxMemory()	*	HEALTH_CHECK_GC_MIN_FREE));
																@SuppressWarnings("unused")
																final	byte[]	blob	=	new	byte[checkHeapBytes];
												}

												return	true;
								}
								catch	(OutOfMemoryError	oome)
								{
												return	false;
								}
				}
}

	

Maven

List	all	archetypes

All	public	archetypes	are	available	at	https://repo1.maven.org/maven2/archetype-catalog.xml.	To	list	all
versions	of	a	particular	archetypeGroupId,	search	for	it	in	this	XML	file.	For	example:

curl	-s	https://repo1.maven.org/maven2/archetype-catalog.xml	|	grep	-A	2	io.openliberty	|	grep	-v	"\-\-"	|	while	read	line1;	do	read	line2;	read	line3;	echo	"${line1}${line2}${line3}"	|	awk	'{	gsub(/<\/[^>]+>/,	":");	gsub(/<[^>]+>/,	"");	gsub(/:$/,	"");	print;	}';	done

	

Create	an	application	using	an	archetype

Example	with	the	simplest	archetype:
1.	 Create	the	project

mvn	archetype:generate	-DarchetypeGroupId=org.apache.maven.archetypes	-DarchetypeArtifactId=maven-archetype-quickstart	-DarchetypeVersion=1.4	-DgroupId=com.example	-DartifactId=myapp	-Dversion=1.0-SNAPSHOT	-B

2.	 Change	directory	to	the	project:	cd	myapp
3.	 Build	the	project:	mvn	clean	install
4.	 Run	the	project:	java	-cp	target/myapp-1.0-SNAPSHOT.jar	com.example.java.App

Example	using	a	Liberty	WAR	archetype:

mvn	archetype:generate	-DarchetypeGroupId=io.openliberty.tools	-DarchetypeArtifactId=liberty-archetype-webapp	-DarchetypeVersion=3.7.1	-DgroupId=com.example	-DartifactId=myapp	-Dversion=1.0-SNAPSHOT	-B

Example	using	a	simple	WAR	archetype:

mvn	archetype:generate	-DarchetypeGroupId=org.apache.maven.archetypes	-DarchetypeArtifactId=maven-archetype-webapp	-DarchetypeVersion=1.4	-DgroupId=com.example	-DartifactId=myapp	-Dversion=1.0-SNAPSHOT	-B

	

Run	without	tests

mvn	-DskipTests=true	clean	install

https://repo1.maven.org/maven2/archetype-catalog.xml
https://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-archetype-quickstart/
https://repo.maven.apache.org/maven2/io/openliberty/tools/liberty-archetype-webapp/
https://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-archetype-webapp/

	

Specify	an	explicit	POM

mvn	-f	mypom.xml	clean	install

	

Run	specific	modules

mvn	-pl	module1,module2,moduleN	-amd	clean	install

	

Install	Loose	JAR

To	install	a	loose	JAR	into	the	local	Maven	repository:

mvn	install:install-file	-Dfile=$JARPATH	-DgroupId=$GROUP	-DartifactId=$ARTIFACT	-Dversion=1.0-SNAPSHOT	-Dpackaging=jar	-DgeneratePom=true

Then	this	may	be	depended	on:

<dependency>
		<groupId>$GROUP</groupId>
		<artifactId>$ARTIFACT</artifactId>
		<version>1.0-SNAPSHOT</version>
</dependency>

	

Standalone	JAR

Simple	pom.xml

Build	with	mvn	clean	package

<?xml	version="1.0"	encoding="UTF-8"?>
<project	xmlns="http://maven.apache.org/POM/4.0.0"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http://maven.apache.org/xsd/maven-4.0.0.xsd">
		<modelVersion>4.0.0</modelVersion>

		<groupId>com.example</groupId>
		<artifactId>MyStandaloneJAR</artifactId>
		<version>0.1.20210101</version>

		<name>MyStandaloneJAR</name>

		<properties>
				<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
				<maven.compiler.source>1.8</maven.compiler.source>
				<maven.compiler.target>1.8</maven.compiler.target>
		</properties>

		<dependencies>
				<dependency>
						<groupId>junit</groupId>
						<artifactId>junit</artifactId>
						<version>4.13.1</version>
						<scope>test</scope>
				</dependency>
		</dependencies>
</project>

With	the	following	directory	structure:

├──	README.md
├──	pom.xml
├──	src
│			├──	main
│			│			├──	java
│			│			│			└──	com
│			│			│							└──	example
│			│			│											├──	App.java
│			│			└──	resources
│			│							├──	screenshot1.png
│			└──	test
│							└──	java
│											└──	com
│															└──	ibm
│																			└──	AppTest.java

	

Package	dependencies	in	the	JAR

Also	called	an	uber-JAR	or	fat-JAR.

		<build>
				<plugins>
						<plugin>
								<groupId>org.apache.maven.plugins</groupId>
								<artifactId>maven-assembly-plugin</artifactId>
								<version>3.3.0</version>
								<configuration>
										<descriptorRefs>
												<descriptorRef>jar-with-dependencies</descriptorRef>
										</descriptorRefs>
										<appendAssemblyId>false</appendAssemblyId>
										<archive>
												<manifest>
														<mainClass>com.example.CommandLineRunner</mainClass>
												</manifest>
										</archive>
								</configuration>
								<executions>
										<execution>
												<id>assemble-all</id>
												<phase>package</phase>
												<goals>
														<goal>single</goal>
												</goals>
										</execution>
								</executions>
						</plugin>
				</plugins>
		</build>

Runnable	JAR	specified	with	the	main	class	in	mainClass.

	

Dependency	to	a	packaged	JAR

				<dependency>
						<groupId>com.example</groupId>
						<artifactId>j2ee.jar</artifactId>
						<version>1.0-SNAPSHOT</version>
						<scope>system</scope>
						<systemPath>${basedir}/lib/j2ee.jar</systemPath>

				</dependency>

If	packaging	dependencies,	create	assembly.xml:

<?xml	version="1.0"	encoding="UTF-8"?>
<assembly
		xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0"
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0	http://maven.apache.org/xsd/assembly-1.1.0.xsd">
		<id>jar-with-all-dependencies</id>
		<formats>
				<format>jar</format>
		</formats>
		<includeBaseDirectory>false</includeBaseDirectory>
		<dependencySets>
				<dependencySet>
						<outputDirectory>/</outputDirectory>
						<useProjectArtifact>true</useProjectArtifact>
						<unpack>true</unpack>
						<scope>runtime</scope>
				</dependencySet>
				<dependencySet>
						<outputDirectory>/</outputDirectory>
						<unpack>true</unpack>
						<scope>system</scope>
				</dependencySet>
		</dependencySets>
</assembly>

Then	modify	the	assembly	plugin:

								<configuration>
										<descriptors>
												<descriptor>${basedir}/assembly.xml</descriptor>
										</descriptors>
								</configuration>

	

Spring
Consider	the	WebSphere	Application	Sever	and	Spring	Framework	versioning	compatibility

	

JMS

Session	Concurrency

Most	Spring	applications	use	org.springframework.jms.listener.DefaultMessageListenerContainer	to	drive
MDBs/MDPs;	for	example:

<bean	id="jmsContainer"	class="org.springframework.jms.listener.DefaultMessageListenerContainer">
		<property	name="connectionFactory"	ref="connectionFactory"/>
		<property	name="destination"	ref="destination"/>
		<property	name="messageListener"	ref="messageListener"/>
		<property	name="concurrentConsumers"	value="50"	/>
		<property	name="maxConcurrentConsumers"	value="50"	/>
</bean>

concurrentConsumers	is	the	minimum	size	of	the	pool	and	maxConcurrentConsumers	is	the	maximum	size.

However,	this	may	cause	issues	because	JEE	environments	do	not	allow	more	than	one	JMS	session	per
connection:

https://www.ibm.com/support/pages/node/6612943
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-receiving-async-message-listener-adapter
https://javaee.github.io/javaee-spec/download/JavaEE8_Platform_Spec_FinalRelease.pdf#page=197

Application	components	in	the	web	and	EJB	containers	must	not	attempt	to	create	more	than	one
active	(not	closed)	Session	object	per	connection.

By	default,	DefaultMessageListenerContainer	uses	a	cache	level	of	CACHE_AUTO	which,	in	the	absence	of
a	Spring-detected	transaction	manager,	is	set	to	CACHE_CONSUMER	and	this	may	cause	Spring	to	create
multiple	sessions	per	connection.

This	may	be	disabled	with	cacheLevel=0:

<bean	id="jmsContainer"	class="org.springframework.jms.listener.DefaultMessageListenerContainer">
		<property	name="connectionFactory"	ref="connectionFactory"/>
		<property	name="destination"	ref="destination"/>
		<property	name="messageListener"	ref="messageListener"/>
		<property	name="concurrentConsumers"	value="50"	/>
		<property	name="maxConcurrentConsumers"	value="50"	/>
		<property	name="cacheLevel"	value="0"	/>
</bean>

	

Weaving

Spring	supports	Aspect-Oriented	Programming	(AOP)	(https://docs.spring.io/spring/docs/current/spring-
framework-reference/core.html).	Spring	with	AOP	and	AspectJ	requires	either	compile-time	weaving	or
runtime-weaving	(https://www.eclipse.org/aspectj/doc/released/devguide/printable.html).	In	general,	it	is
preferable	to	use	compile-time	weaving	to	avoid	runtime	performance	overhead.	Such	runtime	overhead	is
usually	evident	during	application	startup	with	profiling	showing	hotspots	in	methods	such	as	org.aspectj.*
and	org.springframework.aop.aspectj.*.

	

Hibernate

Object-Relational	Mapping	(ORM)

Which	database	connection	pool	(e.g.	Hibernate-provided,	WAS,	etc.)	is	used	depends	on	Hibernate
configuration:	https://github.com/hibernate/hibernate-
orm/blob/master/documentation/src/main/asciidoc/userguide/chapters/jdbc/Database_Access.adoc#connectionprovider

The	most	common	configurations	are	hibernate.connection.datasource	(WAS)	and	hibernate.c3p0.*.

	

c3p0

Prepared	statement	maximum	cache	size:	hibernate.c3p0.max_statements	or	c3p0.maxStatements

	

Cloud	Native
The	cloud	native	programming	model	is	the	"interface"	that	Kubernetes	and	microServies	applications
implement	"to	build	and	run	scalable	applications	in	modern,	dynamic	environments	such	as	public,	private,
and	hybrid	clouds.	Containers,	service	meshes,	microservices,	immutable	infrastructure,	and	declarative	APIs
exemplify	this	approach".

In	contrast,	cloud	enabled	applications	are	traditional	applications	that	have	been	changed	to	run	in	a	cloud
environment.

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jms/listener/DefaultMessageListenerContainer.html#CACHE_AUTO
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jms/listener/DefaultMessageListenerContainer.html#CACHE_CONSUMER
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jms/listener/DefaultMessageListenerContainer.html#CACHE_NONE
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html
https://www.eclipse.org/aspectj/doc/released/devguide/printable.html
https://github.com/hibernate/hibernate-orm/blob/master/documentation/src/main/asciidoc/userguide/chapters/jdbc/Database_Access.adoc#connectionprovider
https://github.com/hibernate/hibernate-orm/blob/master/documentation/src/main/asciidoc/userguide/chapters/jdbc/Database_Access.adoc#using-c3p0
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://www.ibm.com/cloud/learn/cloud-native#toc-cloud-nati-91e-_4sn

	

Twelve-factor	methodology

The	twelve-factor	methodology	describes	best	practices	for	building	software-as-a-service	applications	such
as	using	declarative	formats,	maximizing	portability,	designed	for	cloud	platforms,	enabling	continuous
deployment	and	scaling.

	

Build	to	Manage

Build	to	manage	is	the	idea	of	integrating	logging,	monitoring,	and	management	capabilities	into	the	DevOps
pipeline.

	

Srangler	Pattern

The	strangler	pattern	incrementally	migrates	a	monolithic	application	to	microservices	using	a	strangler
interface	to	dispatch	subsets	of	behavior	to	microservices.

	

Backend	for	Frontend

The	Backend	for	Frontend	(BFF)	pattern	uses	intermediate	microservices	applications	to	connect	a	frontend
to	a	backend.	Complex	backend	systems	are	exposed	to	different	frontends	using	different	services	without	a
monolothic	API	that	attempts	to	serve	all	clients	equally.

	

Entity	and	Aggregate

The	Entity	and	Aggregate	pattern	uses	microservices	that	aggregates	lifecycle	operations	on	a	set	of
dependent	entities.

	

Adapter	Microservice

The	Adapter	microservice	pattern	wraps	and	translates	existing	services	into	an	entity-based	REST	interface.

	

Go

Basics

If	you	receive	"cannot	find	package"	errors	when	importing	a	package,	either	export	GO111MODULE=on
or	create	a	module	with	go	mod	init	$MODULE

	

Hello	World

https://12factor.net/
https://www.ibm.com/garage/method/practices/code/build-to-manage/
https://www.ibm.com/cloud/architecture/architectures/event-driven-strangler-pattern/
https://developer.ibm.com/depmodels/microservices/patterns/create-backend-for-frontend-application-architecture/
https://www.ibm.com/cloud/blog/using-microservice-application-patterns
https://www.ibm.com/cloud/blog/using-microservice-application-patterns

helloworld.go:

package	main

import	"fmt"

func	main()	{
				fmt.Println("Hello,	World!")
}

Run:

$	go	run	helloworld.go	
Hello,	World!

	

Thread	Dump

Built-in	thread	dump

By	default,	Go	handles	the	SIGQUIT	signal	by	printing	a	stack	trace	to	stdout/stderr	although	then	it	kills
itself:

A	SIGQUIT,	SIGILL,	SIGTRAP,	SIGABRT,	SIGSTKFLT,	SIGEMT,	or	SIGSYS	signal	causes
the	program	to	exit	with	a	stack	dump.

	

Manually	generated	thread	dump

A	thread	dump	may	be	manually	generated	by	first	calling	pprof.Lookup	on	the	goroutine	profile	and	then
writing	that	to	a	file	with	Profile.WriteTo.

	

Heap	Dump

Manually	generated	heap	dump

A	heap	dump	may	be	manually	generated	by	calling	debug.WriteHeapDump.

	

Analyzing	a	Heap	Dump	from	a	Core	Dump

If	you	have	a	core	dump,	its	heap	may	be	analyzed	with	viewcore.

However,	viewcore	requires	that	the	executable	does	not	have	stripped	symbols.

In	addition,	viewcore	is	not	very	actively	maintained	and	there	are	known	issues	as	of	this	writing,	so,	in
general,	it's	better	to	use	debug.WriteHeapDump	instead	if	possible.

	

Building	viewcore

git	clone	https://github.com/golang/debug
cd	debug

https://pkg.go.dev/os/signal
https://pkg.go.dev/runtime/pprof#Lookup
https://pkg.go.dev/runtime/pprof#Profile
https://pkg.go.dev/runtime/pprof#Profile.WriteTo
https://pkg.go.dev/runtime/debug#WriteHeapDump
https://github.com/golang/debug/blob/master/cmd/viewcore/main.go
https://github.com/golang/go/issues/64431
https://github.com/golang/go/issues/64431#issuecomment-1832161632

CGO_ENABLED=0	go	build	golang.org/x/debug/cmd/viewcore

	

Running	viewcore

./viewcore	core.dmp	--exe	targetexe

viewcore	commands

Available	Commands:
		breakdown			print	memory	use	by	class
		goroutines		list	goroutines
		help								Help	about	any	command
		histogram			print	histogram	of	heap	memory	use	by	Go	type
		html								start	an	http	server	for	browsing	core	file	data	on	the	port	specified	with	-port
		mappings				print	virtual	memory	mappings
		objects					print	a	list	of	all	live	objects
		objgraph				dump	object	graph	(dot)
		overview				print	a	few	overall	statistics
		reachable			find	path	from	root	to	an	object
		read								read	a	chunk	of	memory

	

Additional	debugging

If	additional	debugging	information	is	required,	consider	compiling	the	target	program	without	optimizations
and	inlining:

make	build	GOFLAGS="-gcflags=all='-N	-l'"

	

Signal	processing

Go	allows	a	program	to	handle	various	POSIX	signals:

The	functions	in	this	package	allow	a	program	to	change	the	way	Go	programs	handle	signals.

It	also	applies	to	some	signals	that	otherwise	cause	no	action:	SIGUSR1,	SIGUSR2

Therefore,	it's	valuable	for	any	Go	program	to	add	a	SIGUSR1	handler	to	write	a	thread	dump	and	a	SIGUSR2
handler	to	write	a	heapdump.	For	example:

usr1	:=	make(chan	os.Signal,	1)
signal.Notify(usr1,	unix.SIGUSR1)

usr2	:=	make(chan	os.Signal,	1)
signal.Notify(usr2,	unix.SIGUSR2)

go	func()	{
				for	{
								select	{
								case	<-	usr1:
												f,	err	:=	os.Create("threaddump_"	+	time.Now().Format(time.RFC3339)	+	".txt")
												if	err	!=	nil	{
																//	TODO	handle	error
																continue
												}
												err	=	pprof.Lookup("goroutine").WriteTo(f,	2)
												if	err	!=	nil	{
																//	TODO	handle	error
																continue

https://pkg.go.dev/os/signal

												}
								case	<-	usr2:
												f,	err	:=	os.Create("heapdump_"	+	time.Now().Format(time.RFC3339)	+	".bin")
												if	err	!=	nil	{
																//	TODO	handle	error
																continue
												}
												debug.WriteHeapDump(f.Fd())
								}
				}
}()

	

Link	options

Stripping	symbols

Though	not	recommended	for	maintainability,	it	is	common	to	use	the	-s	-w	link	options;	for	example:

go	build	-ldflags="-s	-w"

This	strips	debugging	symbols	from	the	final	executable:

-s
		Omit	the	symbol	table	and	debug	information.
-w
		Omit	the	DWARF	symbol	table.

Although	stripping	symbols	is	done	for	non-debug	builds	of	some	common	executables	such	as	kubelet,
unless	the	size	difference	is	very	large	or	there	are	security	concerns	about	reverse	engineering,	it	is
generally	a	net	positive	for	maintenance	to	retain	symbols	by	removing	the	-s	-w	link	options.	This	will
allow	crash	debugging,	viewcore,	some	native	stack	walking	tools,	and	it	is	not	expected	to	have	a
performance	impact	to	retain	symbols.

	

Swing

Focus

Review	the	focus	specification	and	focus	tutorial.

When	needing	to	control	focus	on	window/dialog	open,	if	possible,	avoid	the	use	of	requestFocus
completely	and	use	a	custom	FocusTraversalPolicy	with	an	overridden	getDefaultComponent.	Otherwise,	use
requestFocusInWindow	instead	of	requestFocus	or	grabFocus:

requestFocus():	Note	that	the	use	of	this	method	is	discouraged	because	its	behavior	is
platform	dependent.	Instead	we	recommend	the	use	of	requestFocusInWindow().

grabFocus():	Client	code	should	not	use	this	method;	instead,	it	should	use
requestFocusInWindow().

In	general,	avoid	performing	cross-window	focus	requests:

There	is	no	foolproof	way,	across	all	platforms,	to	ensure	that	a	window	gains	the	focus.	[...]	If
you	want	to	ensure	that	a	particular	component	gains	the	focus	the	first	time	a	window	is
activated,	you	can	call	the	requestFocusInWindow	method	on	the	component	after	the
component	has	been	realized,	but	before	the	frame	is	displayed.	Alternatively,	you	can	apply	a
custom	FocusTraversalPolicy	to	the	frame	and	call	the	getDefaultComponent	method	to

https://pkg.go.dev/cmd/link
https://github.com/kubernetes/kubernetes/blob/3c268b752448f66ba8338cb62ff9a4a14f77873b/hack/lib/golang.sh#L887
https://docs.oracle.com/javase/8/docs/api/java/awt/doc-files/FocusSpec.html
https://docs.oracle.com/javase/tutorial/uiswing/misc/focus.html
https://docs.oracle.com/javase/8/docs/api/java/awt/FocusTraversalPolicy.html
https://docs.oracle.com/javase/8/docs/api/java/awt/FocusTraversalPolicy.html#getDefaultComponent-java.awt.Container-
https://docs.oracle.com/javase/8/docs/api/javax/swing/JComponent.html#requestFocusInWindow--
https://docs.oracle.com/javase/8/docs/api/javax/swing/JComponent.html#requestFocus--
https://docs.oracle.com/javase/8/docs/api/javax/swing/JComponent.html#grabFocus--
https://docs.oracle.com/javase/tutorial/uiswing/misc/focus.html

determine	which	component	will	gain	the	focus.

	

Hello	World

import	java.awt.Component;
import	java.awt.event.ActionEvent;
import	java.awt.event.ActionListener;
import	javax.swing.BoxLayout;
import	javax.swing.JButton;
import	javax.swing.JFrame;
import	javax.swing.JLabel;
import	javax.swing.JPanel;
import	javax.swing.SwingUtilities;
import	javax.swing.border.EmptyBorder;

public	class	SwingHelloWorld	{
				public	static	void	main(String[]	args)	{
								SwingUtilities.invokeLater(new	Runnable()	{
												@Override
												public	void	run()	{
																new	SwingHelloWorld().createAndShowMainFrame();
												}
								});
				}
				
				private	int	clicked	=	0;

				private	void	createAndShowMainFrame()	{
								JFrame	frame	=	new	JFrame("Frame");
								frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

								JPanel	panel	=	new	JPanel();
								panel.setLayout(new	BoxLayout(panel,	BoxLayout.Y_AXIS));

								JLabel	label1	=	new	JLabel("Hello	World");
								label1.setBorder(new	EmptyBorder(10,	10,	10,	10));
								label1.setAlignmentX(Component.CENTER_ALIGNMENT);
								
								JLabel	label2	=	new	JLabel("Clicked:	"	+	clicked);
								label2.setBorder(new	EmptyBorder(10,	10,	10,	10));
								label2.setAlignmentX(Component.CENTER_ALIGNMENT);

								JButton	button	=	new	JButton("Button");
								button.setAlignmentX(Component.CENTER_ALIGNMENT);
								button.addActionListener(new	ActionListener()	{
												@Override
												public	void	actionPerformed(ActionEvent	e)	{
																label2.setText("Clicked:	"	+	(++clicked));
												}
								});
								
								panel.add(label1);
								panel.add(button);
								panel.add(label2);

								frame.getContentPane().add(panel);

								frame.pack();
								frame.setVisible(true);
				}
}

	

Apache	CXF

Apache	CXF	is	a	Java	framework	for	executing	and	processing	JAX-RS	or	JAX-WS	web	services.	The
source	is	available	at	https://github.com/apache/cxf.

	

JDKBugHacks

CXF	(used	by	WAS)	may	intitiate	periodic	full	garbage	collections	through	calls	to
sun/misc/GC.currentLatencyTarget.	These	calls	are	generally	not	required	as	it	was	a	workaround	for
bugs	in	older	JDKs	and	this	GC	function	may	be	disabled	with:

-Dorg.apache.cxf.JDKBugHacks.gcRequestLatency=true

	

Apache	HttpClient
Apache	HttpClient	is	an	open	source	Java	HTTP	client.

	

Connection	Pooling

Use	PoolingHttpClientConnectionManager	to	utilize	a	pool	of	connections.	A	connection	pool	defaults	to	25
total	maximum	connections	and	5	maximum	connections	per	route.	Change	these	values	by	calling
setMaxTotal	and	setDefaultMaxPerRoute,	respectively.	Then	call	HttpClients.custom()	followed	by
setConnectionManager	to	use	the	pooled	connection	manager	and	finally	call	build	to	get	the	connection.

	

Keep-Alive

Keep-alive	behavior	is	configured	with	HttpClientBuilder.setConnectionReuseStrategy	and
HttpClientBuilder.setKeepAliveStrategy.

The	default	implementation	of	the	former	is	DefaultConnectionReuseStrategy	which	uses	keep-alive
unless	common	response	headers	like	Connection:	close	are	processed.

The	default	implementation	of	the	latter	is	DefaultConnectionKeepAliveStrategy	which	uses	keep-alive
for	an	unlimited	time	unless	the	Keep-Alive	response	header	is	specified.

	

User	Token	Handler

The	default	user	token	handler	stores	state	about	a	user	principal	from	the	execution	context	or	mutual	TLS
authentication	session	into	a	connection,	if	available.	This	means	that	such	connections	cannot	be	re-used	by
different	user	principals	and	thus	may	severely	limit	connection	pool	re-use.	Alternatively,	you	may	call
setUserTokenHandler	with	NoopUserTokenHandler.INSTANCE	to	avoid	this	behavior	if	the	security
implications	are	acceptable.

	

Example

1.	 Add	dependencies	to	pom.xml:
https://search.maven.org/artifact/org.apache.httpcomponents.client5/httpclient5

https://cxf.apache.org/
https://github.com/apache/cxf
https://github.com/apache/cxf/blob/cxf-3.4.1/core/src/main/java/org/apache/cxf/common/logging/JDKBugHacks.java#L118
https://hc.apache.org/httpcomponents-client-ga/
https://github.com/apache/httpcomponents-client
https://hc.apache.org/httpcomponents-client-ga/current/httpclient5/apidocs/org/apache/hc/client5/http/impl/io/PoolingHttpClientConnectionManager.html
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClientConfiguration#HttpClientConfiguration-Connectionmanagementandconfiguration
https://hc.apache.org/httpcomponents-client-ga/current/httpclient5/apidocs/constant-values.html#org.apache.hc.client5.http.impl.io.PoolingHttpClientConnectionManager.DEFAULT_MAX_TOTAL_CONNECTIONS
https://hc.apache.org/httpcomponents-client-ga/current/httpclient5/apidocs/org/apache/hc/client5/http/impl/io/PoolingHttpClientConnectionManager.html#setMaxTotal(int)
https://hc.apache.org/httpcomponents-client-ga/current/httpclient5/apidocs/org/apache/hc/client5/http/impl/io/PoolingHttpClientConnectionManager.html#setDefaultMaxPerRoute(int)
https://hc.apache.org/httpcomponents-client-ga/current/httpclient5/apidocs/org/apache/hc/client5/http/impl/classic/HttpClients.html#custom()
https://hc.apache.org/httpcomponents-client-ga/current/httpclient5/apidocs/org/apache/hc/client5/http/impl/classic/HttpClientBuilder.html#setConnectionManager(org.apache.hc.client5.http.io.HttpClientConnectionManager)
https://hc.apache.org/httpcomponents-client-ga/current/httpclient5/apidocs/org/apache/hc/client5/http/impl/classic/HttpClientBuilder.html#build()
https://hc.apache.org/httpcomponents-client-5.1.x/current/httpclient5/apidocs/org/apache/hc/client5/http/impl/classic/HttpClientBuilder.html#setConnectionReuseStrategy(org.apache.hc.core5.http.ConnectionReuseStrategy)
https://hc.apache.org/httpcomponents-client-5.1.x/current/httpclient5/apidocs/org/apache/hc/client5/http/impl/classic/HttpClientBuilder.html#setKeepAliveStrategy(org.apache.hc.client5.http.ConnectionKeepAliveStrategy)
https://hc.apache.org/httpcomponents-core-5.1.x/current/httpcore5/apidocs/org/apache/hc/core5/http/impl/DefaultConnectionReuseStrategy.html
https://github.com/apache/httpcomponents-core/blob/master/httpcore5/src/main/java/org/apache/hc/core5/http/impl/DefaultConnectionReuseStrategy.java
https://hc.apache.org/httpcomponents-client-5.1.x/current/httpclient5/apidocs/org/apache/hc/client5/http/impl/DefaultConnectionKeepAliveStrategy.html
https://github.com/apache/httpcomponents-client/blob/master/httpclient5/src/main/java/org/apache/hc/client5/http/impl/DefaultConnectionKeepAliveStrategy.java
https://hc.apache.org/httpcomponents-client-ga/current/httpclient5/apidocs/org/apache/hc/client5/http/impl/DefaultUserTokenHandler.html
https://hc.apache.org/httpcomponents-client-ga/current/httpclient5/apidocs/org/apache/hc/client5/http/impl/classic/HttpClientBuilder.html#setUserTokenHandler(org.apache.hc.client5.http.UserTokenHandler)
https://hc.apache.org/httpcomponents-client-ga/current/httpclient5/apidocs/index.html?org/apache/hc/client5/http/package-summary.html
https://search.maven.org/artifact/org.apache.httpcomponents.client5/httpclient5

		<dependencies>
				<dependency>
						<groupId>org.apache.httpcomponents.client5</groupId>
						<artifactId>httpclient5</artifactId>
						<version>5.1.3</version>
				</dependency>
				<dependency>
						<groupId>org.slf4j</groupId>
						<artifactId>slf4j-api</artifactId>
						<version>1.7.36</version>
				</dependency>
				<dependency>
						<groupId>org.slf4j</groupId>
						<artifactId>slf4j-simple</artifactId>
						<version>1.7.36</version>
				</dependency>
		</dependencies>

2.	 Add	client	code:

package	com.example.java;

import	org.apache.hc.client5.http.classic.methods.HttpGet;
import	org.apache.hc.client5.http.impl.classic.CloseableHttpClient;
import	org.apache.hc.client5.http.impl.classic.CloseableHttpResponse;
import	org.apache.hc.client5.http.impl.classic.HttpClients;
import	org.apache.hc.client5.http.impl.io.PoolingHttpClientConnectionManager;
import	org.apache.hc.client5.http.impl.io.PoolingHttpClientConnectionManagerBuilder;
import	org.apache.hc.core5.http.io.entity.EntityUtils;

public	class	App	{
		public	static	final	int	MAX_HTTP_CLIENT_OUTBOUND_CONNECTIONS_TOTAL	=	Integer
						.getInteger("MAX_HTTP_CLIENT_OUTBOUND_CONNECTIONS_TOTAL",	100);

		public	static	final	int	MAX_HTTP_CLIENT_OUTBOUND_CONNECTIONS_PER_ROUTE	=	Integer
						.getInteger("MAX_HTTP_CLIENT_OUTBOUND_CONNECTIONS_PER_ROUTE",	MAX_HTTP_CLIENT_OUTBOUND_CONNECTIONS_TOTAL);

		public	static	final	PoolingHttpClientConnectionManager	HTTP_CLIENT_CONNECTION_MANAGER	=	PoolingHttpClientConnectionManagerBuilder
						.create().setMaxConnTotal(MAX_HTTP_CLIENT_OUTBOUND_CONNECTIONS_TOTAL)
						.setMaxConnPerRoute(MAX_HTTP_CLIENT_OUTBOUND_CONNECTIONS_PER_ROUTE).build();

		public	static	void	main(String[]	args)	throws	Throwable	{
				try	(CloseableHttpClient	httpClient	=	HttpClients.custom()
								.setConnectionManager(HTTP_CLIENT_CONNECTION_MANAGER)
								.setConnectionManagerShared(true)
								.build())	{
						try	(CloseableHttpResponse	response	=	httpClient.execute(new	HttpGet("https://example.org/")))	{
								System.out.println(response.getCode()	+	"	"	+	EntityUtils.toString(response.getEntity()));
						}
				}
		}
}

	

Debugging	HttpClient

Try:

-Dorg.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog	
-Dorg.apache.commons.logging.simplelog.showdatetime=true	
-Dorg.apache.commons.logging.simplelog.log.org.apache.http=DEBUG	
-Dorg.apache.commons.logging.simplelog.log.org.apache.http.wire=ERROR	
-Dorg.apache.commons.logging.simplelog.log.org.apache.http.headers=ERROR

	

Rational	Application	Developer
Rational	Application	Developer	(RAD)	is	an	Eclipse-based	development	environment.

	

Tuning	the	workspace

Review	the	many	ways	to	tune	RAD	performance:	http://www-
01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.performance.doc/topics/cperformancetips.html

The	configuration	changes	listed	below	can	be	done	to	improve	RAD's	performance	depending	on	individual
needs.	Some	of	these	tips	have	been	integrated	to	the	product	into	the	Workspace	performance	tuning
feature,	available	by	clicking	Help	>	Performance	>	Workspace	performance	tuning.

If	you	already	have	some	projects	in	the	workspace,	published	or	not	into	WebSphere	Application
Server	v7.0	to	8.5.5,	you	could	start	by	using	the	Workspace	performance	tuning	tool.
The	table	in	the	Performance	Tips	at	the	Knowledge	Center	summarizes	the	tips,	points	out	the	type	of
improvement	and	how	frequently	any	of	these	configuration	changes	are	considered.	The	table	below
suggests	which	configurations	might	be	useful	for	a	few	typical	conditions	you	could	have	in	your
workspace.	This	does	not	mean	the	tip	is	exclusive	for	that	condition	though.
Most	of	these	tips	can	be	used	also	in	WDT.	Look	below	the	table	for	a	brief	description	of	each	task.
A	special	note	is	done	on	those	that	are	only	for	RAD.

Condition Tip
Many	projects	and/or	files	in
the	workspace

Convert	projects	to	binary	form;	Closing	Projects;	Validation;	Automatically
build	and	refresh	the	workspace;	Links;	Plug-ins	activated	on	startup

Workspace	is	old	/	has	had
many	changes Fresh	workspaces

Limited	resources
Do	not	install	features	that	are	not	required;	Remote	test	server;	Restarting
Rational	Application	Developer;	JVM	tuning;	JVM	tuning	-	shared	classes;
Capabilities;	Reducing	memory;	Quick	Diff;	Label	decorations

Constantly	modifying
projects	published	to	WAS
7.0	to	8.5.5	traditional
profile

Publishing	and	annotations;	Server	configuration	options;	Server	Startup
Options	(Admin	Console);	Restarting	projects

General	tips Defragmenting;	Antivirus	software;	Task	Manager
	

Automatically	build	and	refresh	the	workspace

When	"Build	Automatically"	is	enabled,	each	time	files	are	saved,	a	build	is	triggered,	which	makes	the	save
operation	itself	take	longer.

"Refresh	Automatically"	is	only	useful	if	constantly	working	with	external	editors	to	modify	files	in	the
workspace.	If	not,	this	will	only	spend	resources	in	monitoring	for	changes	caused	by	external	processes.

RAD:	Make	sure	that	"Build	Automatically"	and	"Refresh	Automatically"	options	are	disabled	in	Window	>
Preferences	>	General	>	Workspace.

WDT:	"Build	Automatically"	exists	in	the	same	wizard,	but	there	are	two	options	instead	of	"Refresh
Automatically":	"Refresh	using	native	hooks	or	polling"	and	"Refresh	on	access"
(http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.user/tasks/tasks-52.htm?cp=0_3_3_8).	"Refresh
on	access"	gets	activated	only	when	a	file	is	opened.	Make	sure	to	have	at	least	"Build	Automatically"	and
"Refresh	using	native	hooks	or	polling"	disabled.

https://www.ibm.com/support/knowledgecenter/SSRTLW_9.7.0/com.ibm.rad.nav.doc/helpindex_rad.html
http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.performance.doc/topics/cperformancetips.html
http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.user/tasks/tasks-52.htm?cp=0_3_3_8

	

Convert	projects	to	binary	form

If	a	workspace	is	large	and	has	a	lot	of	projects	that	are	not	frequently	updated,	convert	those	to	binary	form.
This	will	reduce	memory	footprint	and	speed	up	development	tasks:
http://www.ibm.com/developerworks/rational/library/07/0619_karasiuk_sholl/

	

Capabilities

By	disabling	capabilities,	you	can	prevent	invoking	an	unneeded	function	and	save	time	and	memory
resources	by	not	having	a	plugin	you	don't	need	loaded.	You	can	enable/disable	capabilities	at	Window	>
Preferences	>	General	>	Capabilities.

	

Closing	Projects

Any	projects	in	the	workspace	that	are	not	being	modified	or	needed	as	dependencies	of	other	projects
should	be	deleted	or	closed.	While	they	remain	open,	time	and	memory	are	consumed	in	constantly	building
and	validating	their	source	code.

To	close	it:	right	click	the	project	and	select	Close	Project.

	

Defragmenting

Defragmenting	helps	with	the	startup	of	the	product,	and	also	with	some	I/O	intensive,	like	build	and
validation.	Only	available	in	Windows.

	

Do	not	install	features	that	are	not	required

This	will	reduce	memory	footprint	and	also	save	time	that	could	be	consumed	during	activation	of	plugins.

	

Plug-ins	activated	on	startup

There	are	plug-ins	in	RAD	that	need	to	always	be	activated	on	startup	in	order	to	enable	some	functions.	One
of	these	plug-ins	is	the	IBM	Common	Migration	UI,	which,	when	migrating	resources	into	the	workspace,
detects	and	suggest	changes	to	those	projects	if	needed.	If	you	have	already	performed	the	migration	and	are
working	with	a	large	workspace,	you	can	opt	to	disable	the	IBM	Common	Migration	UI	by	clearing	its
option	in	Window	>	Preferences	>	General	>	Startup	and	Shutdown

	

Fresh	workspaces

In	some	cases,	where	a	workspace	is	old,	the	workspace	metadata	can	accumulate	and	impact	performance.
Creating	a	new	workspace	can	help	with	this,	but	is	important	to	note	that	if	you've	set	preferences	in	your
workspace,	you	will	need	to	set	them	again	on	the	new	workspace.	You	may	also	export	the	preferences	and
import	them	into	the	new	workspace.

http://www.ibm.com/developerworks/rational/library/07/0619_karasiuk_sholl/

	

JVM	tuning

The	location	of	the	JVM	tuning	parameters	is	the	eclipse.ini	file	in	the	installation	directory.

RAD	Comes	tuned	for	what's	been	considered	the	average	workspace.

	

JVM	tuning	-	shared	classes

Can	improve	product's	startup	time.	Note:	Only	applies	to	IBM	JVM.	RAD	on	the	MAC	ships	the	Oracle
JVM.

	

Label	decorations

Label	Decorations	allow	additional	information	to	be	displayed	in	an	item's	label	and	icon.	Disabling	all	or
some	decorations	can	have	a	little	improvement	in	performance.
http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.user/reference/ref-decorations.htm?cp=0_4_1_33

	

Links	(The	Link	Indexer)

The	Link	Indexer	monitors	hyperlinks.	It	can	be	disabled	by	clearing	Supply	link	results	to	Java	search	in
Window	>	Preferences	>	Web	>	Links.	Or	you	can	just	exclude	some	resources	from	indexing.	Some
activities	like	link	refactoring	depend	on	this	function	to	work	appropriately.	As	a	possible	rule	of	thumb:	if
there's	a	lot	of	hyperlinks	in	the	workspace	and	you	won't	be	refactoring,	you	can	disable	this.

	

Publishing	and	annotations

RAD:	This	task	can	also	be	done	automatically	using	the	Workspace	performance	tuning	tool.

For	Web	2.5	applications	that	do	not	contain	annotations,	you	can	reduce	the	time	to	publish	by	setting	the
metadata-complete	property	on	the	WebContent/WEB-INF/web.xml	file	to	true.

If	a	project	contains	annotations,	you	can	use	the	directives	com.ibm.ws.amm.scan.context.filter.archives
and	com.ibm.ws.amm.scan.context.filter.packages	to	prevent	the	server	to	scan	certain	JAR	files	or
packages
(http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/xrun_jvm.html

	

Quick	Diff

You	can	get	a	small	performance	improvement	by	disabling	Quick	Diff:	Window	>	Preferences	>	General	>
Editors	>	Text	Editors	>	Quick	Diff.	Quick	Diff	displays	a	marker	on	the	editor	indicating	changes	done
since	last	file	save.

	

Remote	test	server

http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.user/reference/ref-decorations.htm?cp=0_4_1_33
http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/xrun_jvm.html

You	can	run	the	test	server	on	the	second	system	to	free	up	resources	on	your	development	machine.

Reference:	http://www-
01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.servertools.doc/topics/twcrtins_v6.html	for
how	to	create	a	server	and
http://www.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/tremote_start.htm
for	how	to	enable	a	server	to	be	started	remotely.

	

Restarting	projects

http://www-
01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.performance.doc/topics/crestartprj.html

	

Server	configuration	options

http://www-
01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.performance.doc/topics/cserverstartup.html

	

Server	Startup	Options	(Admin	Console)

To	improve	server	startup	performance,	ensure	that	the	Run	in	development	mode	and	Parallel	start	are
selected.	Also	remove	applications	that	are	not	required	from	the	installed	applications	list.	http://www-
01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.performance.doc/topics/cserverstartupadmin.html

	

Reducing	memory

RAD	only:	Click	Help	>	Performance	>	Reduce	Memory

	

Restarting	Rational	Application	Developer

As	with	other	applications,	some	memory	can	be	freed	up	by	restarting	it,	but	some	considerations	should	be
taken	if	the	workspace	is	really	large:

Consider	disabling	automatic	builds.
Suspend	all	validators.
Consider	disabling	link	indexer.

	

Validation

You	can	reduce	the	build	time	by	disabling	some	or	all	validators	at	Window	>	Preferences	>	Validation.
When	disabling	a	validator,	error	messages,	warnings	are	not	shown.	http://www-
01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.performance.doc/topics/cprefvalidation.html

	

http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.servertools.doc/topics/twcrtins_v6.html
http://www.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/tremote_start.htm
http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.performance.doc/topics/crestartprj.html
http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.performance.doc/topics/cserverstartup.html
http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.performance.doc/topics/cserverstartupadmin.html
http://www-01.ibm.com/support/knowledgecenter/SSRTLW_9.0.0/com.ibm.performance.doc/topics/cprefvalidation.html

Workspace	performance	tuning

The	Workspace	performance	tuning	tool	implements	a	series	of	tasks	that	examine	the	workspace	and
make	recommendations	for	changes	(or	in	some	cases,	do	the	actual	changes)	to	have	a	better	performance.

http://www.ibm.com/support/knowledgecenter/SSRTLW_9.1.1/com.ibm.performance.doc/topics/tscanwrkspc.html

	

HTML
HTML	specification

	

Example	HTML5	Page

<!DOCTYPE	html>
<html	lang="en">
		<head>
				<title>Title</title>
				<meta	charset="UTF-8">
				<meta	name="theme-color"	content="#ffffff">
				<meta	name="viewport"	content="width=device-width,	initial-scale=1">
				<meta	name="description"	content="Page	description">
				<style	type="text/css">
						body	{
								margin:	40px	auto;
								max-width:	650px;
								line-height:	1.6;
								font-size:	18px;
								color:	#444;
								padding:0	10px;
						}
						
						h1,	h2,	h3	{
								line-height:1.2;
						}
				</style>
		</head>
		<body>
				<h1>Heading</h1>
				<p>Paragraph</p>
		</body>
</html>

	

Transport	Layer	Security
Transport	Layer	Security	(TLS)	is	a	standard	used	to	encrypt	network	communication.	The	predecessor	is
Secure	Sockets	Layer	(SSL).

TLS	uses	public-private	key	cryptography	during	a	handshake	in	which	everyone	sees	the	public	key	and	can
encrypt	messages	using	this	public	key,	but	only	the	owner	of	the	private	key	(the	server)	may	decrypt	such
messages.	This	key	exchange	process	is	called	asymmetric	encryption	and	is	relatively	slow.	The	encrypted
handshake	is	used	to	agree	on	a	shared,	secret	key	which	each	side	then	uses	to	encrypt	and	decrypt	the
messages	after	the	handshake.	This	is	called	symmetric	encryption	which	is	relatively	faster.	The
combination	of	the	asymmetric	handshake	algorithm	and	symmetric	data	encryption	algorithm	is	called	the
cipher	suite	and	the	suite	used	must	be	agreed	upon	during	the	handshake.

http://www.ibm.com/support/knowledgecenter/SSRTLW_9.1.1/com.ibm.performance.doc/topics/tscanwrkspc.html
https://html.spec.whatwg.org/

	

RSA	Key	Exchange

One	side,	the	server,	generates	a	private	and	public	key	certificate	pair.	When	the	user	starts	a	handshake
with	the	server	(e.g.	a	user's	browser	going	to	a	website),	the	user	sends	a	randomly	generated	number
("client	random")	and	the	server	responds	with	the	public	key	and	its	own	randomly	generated	number
("server	random").	The	user	encrypts	a	randomly	generated	number	("premaster	secret")	with	the	public	key
and	sends	it	to	the	server.	The	server	uses	its	matching	private	key	to	decrypt	the	premaster	secret.	The	user
and	server	independently	use	the	premaster	secret,	the	"client	random,"	and	"server	random"	numbers	to
generate	a	shared	key	("session	key")	which	is	then	used	during	symmetric	encryption.

	

Ephemeral	Diffie-Hellman	Key	Exchange

One	side,	the	server,	generates	a	private	and	public	key	certificate	pair.	When	the	user	starts	a	handshake
with	the	server	(e.g.	a	user's	browser	going	to	a	website),	the	user	sends	a	randomly	generated	number
("client	random")	and	the	server	responds	with	its	own	randomly	generated	number	("server	random")	along
with	a	message	encrypted	using	its	private	key	that	contains	the	Diffie-Hellman	(DH)	parameter,	the	client
random,	and	the	server	random.	The	user	decrypts	the	message	using	the	public	key	and	sends	back	its	own
DH	parameter.	The	user	and	server	independently	calculate	the	premaster	secret	using	the	DH	parameters.
The	user	and	server	independently	use	the	premaster	secret,	the	"client	random,"	and	"server	random"
numbers	to	generate	a	shared	key	("session	key")	which	is	then	used	during	symmetric	encryption.

	

Certificates

TLS	certificates	are	represented	using	the	X.509	ASN.1	DER	format.	Common	file	formats	are:

.pem	(RFC	1422):	Base-64	encoded	PEM	format	with	public	and/or	private	keys.

.cer,	.crt,	.cert,	.key,	and	.der:	Same	as	.pem	although	it	may	be	binary	encoded	instead	of	Base-
64.

Convert	into	PEM:

openssl	x509	-inform	der	-in	in.der	-out	out.pem

.p12	(RFC	7292):	Encrypted,	binary	encoded	PKCS#12	format	with	public	and/or	private	keys.
Convert	public	key	into	PEM:

openssl	pkcs12	-in	in.p12	-nokeys	-clcerts	-out	out.pem

Convert	private	key	into	PEM:

openssl	pkcs12	-in	in.p12	-nocerts	-out	out.pem

.jks:	Java	format	for	public	and/or	private	keys.
1.	 Convert	into	PKCS#12:

$JAVA/bin/keytool	-importkeystore	-srckeystore	in.jks	-destkeystore	out.p12	-deststoretype	PKCS12

2.	 Convert	into	PEM

There	are	also	.pub	files	which	are	public	keys	but	not	in	an	X.509	ASN.1	DER	certificate	form.

	

Keystores	and	Truststores

https://www.rfc-editor.org/rfc/rfc1422.html
https://www.rfc-editor.org/rfc/rfc7292.html

A	keystore	is	a	file	that	stores	one	or	more	certificates	(keys).	Formats	for	keystores	include	PKCS12,	JKS,
etc.

A	truststore	is	also	a	keystore	but	it's	an	informal	name	for	a	keystore	that	a	client	uses	to	signify	which
certificates	are	trusted,	such	as	when	making	outbound	TLS	calls.

	

keytool

The	keytool	command	is	part	of	the	JDK,	so	if	it's	not	on	your	PATH,	you	can	find	the	tool	inside	the	JDK
and	execute	it	directly.	keytool	is	generally	used	to	manipulate	JKS	keystore.	Note	that	starting	with	Java	9,
the	JDK	can	read	PKCS12	keystores	directly	in	addition	to	JKS	keystores.

	

Create	JKS	keystore	from	a	host	and	port

1.	 Download	the	certificate	of	your	of	the	host	and	port	into	a	temporary	file.	Replace	localhost:443
with	the	host	and	port.

keytool	-printcert	-sslserver	localhost:443	-rfc	>tempfile

2.	 Create	a	JKS	keystore	based	on	this	tempfile	certificate.	keytool	requires	a	password.

keytool	-import	-alias	truststore	-keystore	truststore.jks	-file	tempfile

3.	 Delete	the	tempfile:

rm	tempfile

If	this	is	a	truststore	with	public	keys	and	the	security	of	the	truststore	is	not	important,	this	may	be
combined	in	a	single	line	with	the	password:

keytool	-printcert	-sslserver	localhost:443	-rfc	|	keytool	-import	-noprompt	-alias	truststore	-keystore	truststore.jks	-storepass	password

	

List	JKS	keystore	certificates

keytool	-list	-keystore	truststore.jks

Use	a	global	JKS	truststore	in	a	Java	program

java	-Djavax.net.ssl.trustStore=truststore.jks	-Djavax.net.ssl.trustStorePassword=Password

	

Containers
Sub-chapters

Docker
Podman
Kubernetes
Red	Hat
OpenShift
IBM	Cloud

Amazon	Web	Services	(AWS)
Java	J9	in	Containers
HotSpot	Java	in	Containers
Liberty	in	Containers
WebSphere	Application	Server	traditional	in	Containers

	

Open	Container	Initiative
The	Open	Container	Initiative	(OCI)	is	a	standardization	of	container	formats	and	runtimes.	This	includes
runc	for	spawning	and	running	containers,	an	image	specification,	a	distribution	specification,	and	a	runtime
specification.

	

Terms
Image:	An	application	"binary"
Container:	A	running	application

	

Continuous	Integration
Continuous	Integration	(CI)	includes:

Verifies	build	integrity	by	constantly	pulling,	compiling,	packaging,	and	configuring	source	code.
Runs	tests	after	each	commit.
Run	integration	tests	to	check	interoperation	with	other	systems.

	

Continuous	Delivery
Continuous	Delivery	(CD)	includes:

Building	software	such	that	it	may	be	released	at	any	time.
Every	commit	goes	through	a	CI	pipeline.

CD	may	also	stand	for	Continuous	Deployment	which	takes	the	output	of	Continuous	Delivery	and	deploys
it	automatically,	although	this	is	too	aggressive	for	some	customers.

	

DevOps
DevOps	is	Continuous	Integration	(CI)	+	Continuous	Delivery	(CD).

	

Docker

Managing	Containers

https://opencontainers.org/
https://github.com/opencontainers/runc
https://github.com/opencontainers/image-spec/blob/master/spec.md
https://github.com/opencontainers/distribution-spec/blob/master/spec.md
https://github.com/opencontainers/runtime-spec/blob/master/spec.md

Use	the	-d	flag	to	start	the	container	in	the	background	and	then	access	its	output	with	docker	logs.

docker	run	-d	-p	80:9080	-p	443:9443	websphere-liberty:webProfile8

	

General	Commands

Print	the	container	IDs	of	all	running	containers	that	are	based	on	a	particular	tag	such	as	websphere-
liberty:webProfile8:

docker	ps	-f	"ancestor=websphere-liberty:webProfile8"	--format	"{%	raw		%}{{.ID}}{%	endraw	%}"

The	output	of	the	above	command	may	be	sub-shelled	into	other	docker	commands.	For	example,	to	"log	in"
to	a	container	based	on	a	particular	tag	(if	there's	only	one	running):

docker	exec	-it	$(docker	ps	-f	"ancestor=websphere-liberty:webProfile8"	--format	"{%	raw		%}{{.ID}}{%	endraw	%}")	bash

Some	images	do	not	have	sudo	installed	and	you	don't	know	the	root	password.	If	root	is	needed,	log	in	as
the	root	user:

docker	exec	-u	root	-it	${CONTAINERID}	bash

Print	messages.log:

docker	exec	-it	$(docker	ps	-f	"ancestor=websphere-liberty:webProfile8"	--format	"{%	raw		%}{{.ID}}{%	endraw	%}")	cat	/logs/messages.log

Tail	messages.log:

docker	exec	-it	$(docker	ps	-f	"ancestor=websphere-liberty:webProfile8"	--format	"{%	raw		%}{{.ID}}{%	endraw	%}")	tail	-f	/logs/messages.log

	

Seeing	Host	Processes

Start	the	container	with	--pid=host.	For	an	example,	see	running	htop	in	a	container	but	looking	at	the	host.

	

Seeing	Another	Container

Start	the	container	with	--pid=container:<name|id>.

	

Export	Filesystem

Export	filesystem	of	a	container:

docker	export	$CONTAINER	>	export.tar

	

Image	Size

Show	the	uncompressed	image	size	of	an	image	and	all	its	parent	images	with	docker	images.	For	example:

$	docker	images
REPOSITORY																					TAG											IMAGE	ID							CREATED										SIZE
containerdiag																		latest								3c38d16cc5e5			45	seconds	ago			9.17GB

https://docs.docker.com/engine/reference/run/#pid-settings---pid
https://docs.docker.com/engine/reference/run/#example-run-htop-inside-a-container
https://docs.docker.com/engine/reference/run/#pid-settings---pid

	

Debugging

Rooting	a	Running	Container

For	debugging	purposes,	one	can	"root"	into	any	Docker	image	which	is	useful	for	quickly	installing
something.	Example:

docker	run	-d	-p	80:9080	-p	443:9443	websphere-liberty:webProfile8
docker	exec	-u	root	-it	${CONTAINERID}	sh
		apt-get	update
		apt-get	install	vim
		vi	/config/server.xml

	

Statistics

docker	stats	shows	periodic	information	on	each	container:

CONTAINER	ID			NAME												CPU	%		MEM	USAGE	/	LIMIT				MEM	%			NET	I/O						BLOCK	I/O	PIDS
fca32e320852			serene_hodgkin		3.84%		1.868GiB	/	7.78GiB			24.01%		41MB	/	629kB	0B	/	0B			626

	

Dockerfile

A	Dockerfile	is	a	file	that	describes	how	to	build	a	Docker	image:	https://docs.docker.com/develop/develop-
images/dockerfile_best-practices/

A	Dockerfile	starts	with	a	FROM	directive	that	specifies	the	parent	image	to	inherit	from.	Subsequent
directives	are	essentially	a	script	of	actions	to	build	the	final	image	on	top	of	the	parent	image.	For	example:

FROM	fedora:latest
CMD	echo	"Hello	World"

A	searchable	list	of	public	images	is	here:	https://hub.docker.com/search?
q=&type=image&image_filter=store%2Cofficial

In	the	example	above,	the	name	before	the	colon	(e.g.	fedora)	is	the	repository	name	and	the	name	after	the
colon	(e.g.	latest)	is	the	version	of	a	particular	image	(the	combination	of	repository	name	and	version	is
called	a	tag):	https://hub.docker.com/_/fedora

The	CMD	(or	ENTRYPOINT)	directive	is	required	and	it's	the	final	executable	(and	any	arguments)	which
runs	to	start	the	image	as	a	container.	When	that	executable	ends,	the	container	also	ends.	In	the	example
above,	"Hello	World"	is	printed	and	the	container	ends.

A	Dockerfile	is	built	into	an	image	with	a	path	to	the	build	context	path	(normally	the	current	directory	with
"."):

$	docker	build	.
Sending	build	context	to	Docker	daemon		6.144kB
Step	1/2	:	FROM	fedora
	--->	8c568f104326
Step	2/2	:	CMD	echo	"Hello	World"
	--->	Using	cache
	--->	e7f19ddca071
Successfully	built	e7f19ddca071

The	image	may	be	run	by	specifying	the	container	name:

https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://hub.docker.com/search?q=&type=image&image_filter=store%252Cofficial
https://hub.docker.com/_/fedora

$	docker	run	e7f19ddca071
Hello	World

An	image	is	normally	built	with	a	tag:

$	docker	build	-t	testimage:20190304	.
Sending	build	context	to	Docker	daemon		6.144kB
Step	1/2	:	FROM	fedora:latest
	--->	8c568f104326
Step	2/2	:	CMD	echo	"Hello	World"
	--->	Using	cache
	--->	e7f19ddca071
Successfully	built	e7f19ddca071
Successfully	tagged	testimage:20190304

Then	the	human-readable	tag	may	be	used	to	run	the	image:

$	docker	run	testimage:20190304
Hello	World

The	$(docker	ps)	command	will	not	show	stopped	containers.	Instead	use	the	-a	flag:

$	docker	ps	-a
CONTAINER	ID								IMAGE																								COMMAND																			CREATED													STATUS																				PORTS															NAMES
ec4942671282								testimage:20190304			"/bin/sh	-c	'echo	\"H..."			3	seconds	ago							Exited	(0)	1	second	ago																							eloquent_kapitsa

If	a	container	naturally	stops	because	the	CMD	finishes	(as	opposed	to	a	still-running	container	stopped	with
$(docker	stop)),	then	the	only	way	to	"log	in"	and	review	the	container	is	to	commit	the	container's	disk
contents	to	a	new	image	and	then	start	that	image	with	an	alternative	CMD	that	logs	you	in	(this	new
container	should	only	be	used	for	investigation	and	grabbing	logs	because	it	does	not	contain	important
aspects	of	the	previous	container	such	as	environment	entries):

$	docker	commit	ec4942671282	testimage:20190304_run1
sha256:9e7d092f7686e126e94f03f6f6df32fe9292bdb4ee0018cdaa1cb0deaaf5c0d7
$	docker	run	-it	--entrypoint=sh	testimage:20190304_run1
sh-4.4#

A	test	image	may	run	forever	with	a	CMD	such	as:

CMD	exec	/bin/bash	-c	"trap	:	TERM	INT;	sleep	infinity	&	wait"

Another	way	to	start	a	container	and	log	in	is	to	use:

CMD	sh

And	then	run	and	allocate	an	interactive	tty:

$	docker	run	-it	testimage:20190304
sh-4.4#

	

Caching

If	a	Dockerfile	command	references	a	remote	resource	(e.g.	RUN	git	clone	or	wget),	Docker	has	no	way	to
know	when	that	remote	resource	has	changed	so	it	will	gladly	re-use	a	cached	layer	if	available.	Either	delete
that	particular	cached	layer,	or,	during	development,	consider	adding	something	trivial	that	changes	the
command	such	as	incrementing	a	numeric	value	in	an	echo	statement:

RUN	echo	"Cloning	somerepo	V1";	git	clone	somerepo

	

Secrets

Run-time	secrets	may	be	mounted	through	volumes:	https://github.com/moby/moby/issues/13490

Build-time	secrets	using	ARG,	ENV,	and	multi-stage	builds	are	generally	not	secure	because	they	are
difficult	to	completely	purge	from	things	like	the	docker	layers,	cache,	etc.	The	alternative	is	tmpfs	mounted
secrets:

https://docs.docker.com/develop/develop-images/build_enhancements/
https://medium.com/@tonistiigi/build-secrets-and-ssh-forwarding-in-docker-18-09-ae8161d066

Kubernetes	secrets:	https://kubernetes.io/docs/concepts/configuration/secret/

	

Show	Dockerfile	from	Image

There's	no	way	to	build	a	Dockerfile	from	an	image,	but	you	can	see	all	the	commands	that	were	executed	to
build	the	image	in	order.	For	example:

$	docker	history	-H	openliberty/open-liberty
IMAGE										CREATED								CREATED	BY																																						SIZE						COMMENT
086d92162c64			43	hours	ago			/bin/sh	-c	#(nop)		CMD	["/opt/ol/wlp/bin/ser...			0B								
[...]

For	the	full	commands,	add	the	--no-trunc	option.

	

Major	Linux	Flavors

		

Docker	Registries

The	default	registry	is	Docker	Hub:	https://hub.docker.com/

After	creating	an	account,	pushing	to	a	registry	involves	logging	in,	tagging	images,	and	pushing	images:

Login:	https://docs.docker.com/engine/reference/commandline/login/

$	docker	login
Login	with	your	Docker	ID	to	push	and	pull	images	from	Docker	Hub.	If	you	don't	have	a	Docker	ID,	head	over	to	https://hub.docker.com	to	create	one.
Username:	[...]
Password:

https://github.com/moby/moby/issues/13490
https://docs.docker.com/develop/develop-images/build_enhancements/
https://medium.com/@tonistiigi/build-secrets-and-ssh-forwarding-in-docker-18-09-ae8161d066
https://kubernetes.io/docs/concepts/configuration/secret/
https://hub.docker.com/
https://docs.docker.com/engine/reference/commandline/login/

Login	Succeeded

List	available	local	images:

$	docker	images
REPOSITORY										TAG																	IMAGE	ID												CREATED													SIZE
fedoradebug									20190325												2c9cb6ffea7c								5	minutes	ago							7.71GB

Tag	an	image	one	or	more	times:

$	docker	tag	2c9cb6ffea7c	kgibm/fedoradebug:20190325
$	docker	tag	2c9cb6ffea7c	kgibm/fedoradebug:latest
$	docker	images
REPOSITORY										TAG																	IMAGE	ID												CREATED													SIZE
fedoradebug									20190325												2c9cb6ffea7c								10	minutes	ago						7.71GB
kgibm/fedoradebug			20190325												2c9cb6ffea7c								10	minutes	ago						7.71GB
kgibm/fedoradebug			latest														2c9cb6ffea7c								10	minutes	ago						7.71GB

Alternatively,	tagging	can	be	done	at	build	time	with	one	or	more	-t	flags:

DOCKER_BUILDKIT=1	docker	build	--secret	id=remotepassword,src=remotepassword.txt	-t	kgibm/fedoradebug:20190325	-t	kgibm/fedoradebug:latest	.

Push	to	the	registry:	https://docs.docker.com/engine/reference/commandline/push/

docker	push	kgibm/fedoradebug

	

Docker	Compose

Docker	compose	is	a	simple	way	to	build	multiple	containers	together:
https://docs.docker.com/compose/compose-file/

Example	WAS-based	compositions:	https://github.com/kgibm/websphere_docker_examples

	

docker-compose.yml

The	docker-compose.yml	file	describes	how	to	build	and	wire	together	multiple	containers.	In	the	following
example,	there	is	a	container	that's	logically	called	"app"	with	a	Dockerfile	in	the	"./was"	sub-folder	and	this
type	of	container	will	expose	port	9443	to	other	containers,	and	there	is	a	container	that's	logically	called
"proxy"	with	a	Dockerfile	in	the	"./nginx"	sub-folder	and	this	type	of	container	will	expose	port	80	to	the
host,	and	it	"depends_on"	the	"app"	container(s)	so	that	proxy	is	only	started	after	app:

version:	"3"
services:
		app:
				build:
						context:	was
						dockerfile:	Dockerfile
				expose:
						-	"9443"
				environment:
						-	ENABLE_BASIC_LOGGING=true
		proxy:
				build:
						context:	nginx
						dockerfile:	Dockerfile
				ports:
						-	"80:80"
				depends_on:
						-	app

https://docs.docker.com/engine/reference/commandline/push/
https://docs.docker.com/compose/compose-file/
https://github.com/kgibm/websphere_docker_examples

	

docker-compose	build

The	docker-compose	build	command	builds	all	of	the	container	Dockerfiles	in	the	docker-compose.yml
file.	This	should	be	run	any	time	any	of	the	Dockerfiles	are	changed.

	

docker-compose	up

The	docker-compose	up 	command	starts	all	of	the	containers	in	the	docker-compose.yml	file.	Multiple
instances	of	a	particular	service	may	be	started.	For	example:

docker-compose	up	--scale	app=2

Use	the	-d	parameter	to	start	everything	in	the	background.	For	example:

docker-compose	up	--scale	app=2	-d

	

docker-compose	logs

If	starting	in	the	background,	tail	the	logs	after	starting:

docker-compose	logs	-t	-f

	

docker-compose	down

The	docker-compose	down	command	stop	all	of	the	containers	in	the	docker-compose.yml	file.	This	is
normally	run	after	typing	Ctrl^C	in	the	$(docker-compose	up)	window.

	

docker-compose	rm

The	docker-compose	rm 	command	deletes	stopped	containers.

	

Containerfile

A	Containerfile	is	a	generic	form	of	a	Dockerfile	and	is	largely	the	same.

	

Podman
Podman	is	a	daemonless	container	engine.	Most	of	the	command	syntax	is	the	same	as	docker.

Podman	Compose	is	similar	to	Docker	Compose.

	

https://github.com/containers/buildah/blob/main/docs/Containerfile.5.md#name
https://podman.io/whatis.html
https://github.com/containers/podman-compose

Prune	Containers

podman	stop	--all
podman	image	rm	--all
podman	system	prune	--all	--force	--external

	

Installing	on	macOS/Windows

Example	specifying	number	of	CPUs,	available	memory,	and	disk:

podman	machine	init	--cpus	4	--memory	10240	--disk-size	100

Example	also	mounting	a	host	filesystem	for	later	volume	mounts:

podman	machine	init	--cpus	4	--memory	10240	--disk-size	100	-v	/tmp:/tmp/host

Then	run	with	-v	/tmp/host:/tmp/host
On	Windows+WSL,	-v	on	the	machine	init	is	not	needed	as	/mnt/$DRIVE	are	automatically
mounted	(e.g.	/mnt/c)

On	recent	versions	of	podman	on	macOS	on	ARM,	if	there	is	a	hang	on	podman	machine	start,	try
re-creating	the	machine	with:

export	CONTAINERS_MACHINE_PROVIDER=applehv

To	use	a	different	version	of	CoreOS,	find	a	build	on	the	build	browser,	download	the	"QEMU"	file
and	point	to	the	downloaded	image	with	--image-path.	Cached	images	are	stored	in
~/.local/share/containers/podman/machine/qemu/

	

Running	on	macOS/Windows

podman	machine	start

On	Windows+WSL,	you	can	enter	the	machine	with	wsl	-d	podman-machine-default

	

Status	on	macOS/Windows

$	podman	machine	ls
NAME																					VM	TYPE					CREATED													LAST	UP												CPUS								MEMORY						DISK	SIZE
podman-machine-default*		qemu								About	a	minute	ago		Currently	running		4											8.59GB						53.69GB
$	podman	version
Client:
Version:						3.4.0
API	Version:		3.4.0
Go	Version:			go1.17.1
Built:								Thu	Sep	30	11:44:31	2021
OS/Arch:						darwin/amd64

Server:
Version:						3.3.1
API	Version:		3.3.1
Go	Version:			go1.16.6
Built:								Mon	Aug	30	13:46:36	2021
OS/Arch:						linux/amd64

	

SSH	on	macOS/Windows

https://builds.coreos.fedoraproject.org/browser?stream=stable

$	podman	machine	ssh
[...]
[core@localhost	~]$	uname	-a
Linux	localhost	5.14.9-200.fc34.x86_64	#1	SMP	Thu	Sep	30	11:55:35	UTC	2021	x86_64	x86_64	x86_64	GNU/Linux

	

Root	podman	on	macOS/Windows

By	default,	the	podman	connection	is	a	non-root	connection:

$	podman	system	connection	list
Name																									Identity																																		URI
podman-machine-default*						/Users/kevin/.ssh/podman-machine-default		ssh://core@localhost:59679/run/user/1000/podman/podman.sock
podman-machine-default-root		/Users/kevin/.ssh/podman-machine-default		ssh://root@localhost:59679/run/podman/podman.sock

To	switch	to	a	root	podman,	update	the	default	connection:

podman	system	connection	default	podman-machine-default-root

To	switch	back	to	a	non-root	podman,	update	the	default	connection:

podman	system	connection	default	podman-machine-default

	

Capabilities

List	capabilities	of	a	container:	podman	exec	-it	$CONTAINER	capsh	--print

	

Cross-compile	on	macOS

1.	 Install	qemu-user-static	(CoreOS	uses	rpm-ostree	instead	of	dnf/yum):

podman	machine	ssh	"sudo	rpm-ostree	install	qemu-user-static"

2.	 Stop	the	machine	(do	not	use	systemctl	reboot	as	suggested	in	the	output	of	the	above	command):

podman	machine	stop

3.	 Start	the	machine:

podman	machine	start

4.	 Try	to	run	some	other	architecture;	for	examples,	Fedora	supports	various	architectures:

$	podman	run	--rm	--platform	linux/amd64	-it	fedora	uname	-m
x86_64
$	podman	run	--rm	--platform	linux/arm64/v8	-it	fedora	uname	-m
aarch64
$	podman	run	--rm	--platform	linux/ppc64le	-it	fedora	uname	-m
ppc64le
$	podman	run	--rm	--platform	linux/s390x	-it	fedora	uname	-m
s390x

In	one	command:

for	p	in	linux/amd64	linux/arm64/v8	linux/ppc64le	linux/s390x;	do	podman	run	--rm	--platform	$p	-it	fedora	uname	-m;	done

	

Kubernetes

https://coreos.github.io/rpm-ostree/
https://github.com/containers/podman/issues/15976
https://github.com/docker-library/official-images#architectures-other-than-amd64
https://hub.docker.com/_/fedora/

Kubernetes	(also	known	as	k8s	or	kube)	is	an	open-source	system	for	automating	deployment,	scaling,	and
management	of	containerized	applications.

Basic	terms:

Pod:	Collection	of	one	or	more	containers	running	on	the	same	node	with	shared	resources	such	as
storage	and	IP	addresses.
Deployment:	One	or	more	pods.
Service:	Wire	together	pods	by	exposing	deployments	to	each	other.	A	service	is	basically	a	load
balancer/reverse	proxy	to	a	set	of	pods	using	a	selector	and	access	policy.	A	service	is	normally	named
service-name.namespace:port.	A	service	provides	a	permanent,	internal	host	name	for	applications
to	use.
Operator:	Manage	application	state	and	exposes	interfaces	to	manage	the	application.

	

Architecture

A	Kubernetes	cluster	is	a	set	of	nodes.	Each	node	runs	the	kubelet	agent	to	monitor	pods,	kube-proxy	to
maintain	network	rules,	and	a	container	runtime	such	as	Docker,	containerd,	CRI-O,	or	any	other	Container
Runtime	Interface	(CRI)-compliant	runtime.	Worker	nodes	run	applications	and	master	nodes	manage	the
cluster.

	

Master	Nodes

Master	nodes	collectively	called	the	control	plane	administer	the	worker	nodes.	Each	master	node	runs	etcd
for	a	highly-available	key-value	store	of	cluster	data,	cloud-controller-manager	to	interact	with	any
underlying	cloud	infrastructure,	kube-apiserver	to	expose	APIs	for	the	control	plane,	kube-scheduler	for
assigning	pods	to	nodes,	and	kube-controller-manager	to	manage	controllers	(the	last	three	may	be	called
Master	Services).

	

kubectl

kubectl	is	a	command	line	interface	to	manage	a	Kubernetes	cluster.

Links:

kubectl	Cheat	Sheet

	

Cluster	Context

kubectl	may	use	multiple	clusters.	The	available	clusters	may	be	shown	with	the	following	command	and
the	current	cluster	is	denoted	with	*:

$	kubectl	config	get-contexts
CURRENT			NAME																												CLUSTER									AUTHINFO																NAMESPACE
										default/c103-:30595/IAM#email			c103-:30595					IAM#email/c103-:30595			testodo4
*									docker-desktop																		docker-desktop		docker-desktop

The	API	endpoints	may	be	displayed	with:

$	kubectl	config	view	-o	jsonpath='{"Cluster	name\tServer\n"}{range	.clusters[*]}{.name}{"\t"}{.cluster.server}{"\n"}{end}'
Cluster	name						Server

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/#node-components
https://kubernetes.io/docs/concepts/overview/components/#control-plane-components
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/

c103-:30595					https://c103-.com:30595
docker-desktop		https://kubernetes.docker.internal:6443

	

Change	Cluster	Context

$	kubectl	config	use-context	docker-desktop
Switched	to	context	"docker-desktop".

	

Delete	Cluster	Context

$	kubectl	config	delete-context	docker-desktop
deleted	context	docker-desktop	from	~/.kube/config

	

etcd

etcd	stores	the	current	and	desired	states	of	the	cluster,	role-based	access	control	(RBAC)	rules,	application
environment	information,	and	non-application	user	data.

	

High	Availability

Run	at	least	3	master	nodes	for	high	availability	and	size	each	appropriately.

	

Objects

Kubernetes	Objects	represent	the	intended	state	of	system	resources.	Controllers	act	through	resources	to	try
to	achieve	the	desired	state.	The	spec	property	is	the	desired	state	and	the	status	property	is	the	object's
current	status.

	

Labels

Objects	may	have	metadata	key/value	pair	labels	and	objects	may	be	grouped	by	label(s)	using	selectors.

	

Resources

Kubernetes	Resources	are	API	endpoints	that	store	and	control	a	collection	of	Kubernetes	objects	(e.g.	pods).
Common	resources:

Deployment:	Collections	of	pods.	API
ReplicaSet:	Ensure	that	a	specified	number	of	replicas	of	a	pod	are	running	but	generally	Deployments
(that	include	a	ReplicaSet)	are	directly	used	instead.	API
StatefulSets:	Deployment	with	stateful	state.	API
Service:	Provides	internal	network	access	to	a	logical	set	of	pods	(Deployments	or	StatefulSets).	API
Ingress:	Provides	external	network	access	to	a	Service.	Ingress	is	also	called	a	Route.	API
ConfigMap:	Non-confidential	key-value	configuration	pairs.	API

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/best-practices/cluster-large/#size-of-master-and-master-components
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#-strong-api-groups-strong-
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#deployment-v1-apps
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#replicaset-v1-apps
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#statefulset-v1-apps
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#-strong-service-apis-strong-
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#ingress-v1-networking-k8s-io
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#configmap-v1-core

Secret:	Confidential	key-value	configuration	pairs.	API
PersistentVolume:	Persistent	storage.	API
StorageClass:	Groups	storage	by	different	classes	of	qualities-of-service	and	characteristics.	API

	

List	resource	kinds

$	kubectl	api-resources
NAME					SHORTNAMES			APIGROUP				NAMESPACED			KIND
pods					po																							true									Pod
[...]

	

Namespace

A	namespace	is	a	logical	isolatuion	unit	or	"project"	to	group	objects/resources,	policies	to	restrict	users,
constraints	to	enforce	quotas	through	ResourceQuotas,	and	service	accounts	to	automatically	manage
resources.

	

List	namespaces

$	kubectl	get	namespaces	--show-labels
NAME																			STATUS			AGE					LABELS
default																Active			8d						<none>
kube-node-lease								Active			8d						<none>
kube-public												Active			8d						<none>
kube-system												Active			8d						<none>
kubernetes-dashboard			Active			6d22h			<none>

	

Create	namespace

kubectl	create	namespace	testns1

Show	current	namespace	(if	any)

kubectl	config	view	--minify	|	grep	namespace

	

Change	current	namespace

kubectl	config	set-context	--current	--namespace=${NAMESPACE}

Reset	to	no	namespace:

kubectl	config	set-context	--current	--namespace=

	

Nodes

List	Nodes

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#secret-v1-core
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#persistentvolume-v1-core
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#storageclass-v1-storage-k8s-io
https://kubernetes.io/docs/concepts/policy/resource-quotas/

$	kubectl	get	nodes	-o	wide
NAME													STATUS			ROLES				AGE			VERSION			INTERNAL-IP				EXTERNAL-IP			OS-IMAGE									KERNEL-VERSION					CONTAINER-RUNTIME
docker-desktop			Ready				master			8d				v1.19.7			192.168.65.4			<none>								Docker	Desktop			5.10.25-linuxkit			docker://20.10.5

	

Controllers

Kubernetes	Controllers	run	a	reconciliation	loop	indefinitely	while	enabled	and	continuously	attempt	to
control	a	set	of	resources	to	reach	a	desired	state	(e.g.	minimum	number	of	pods).

	

Deployments

Deployments	define	a	collection	of	one	or	more	pods	and	configure	container	templates	with	a	name,	image,
resources,	storage	volumes,	and	health	checks,	as	well	as	a	deployment	strategy	for	how	to	create/recreate	a
deployment,	and	triggers	for	when	to	do	so.

	

List	Deployments

$	kubectl	get	deployments	--all-namespaces
NAMESPACE														NAME																								READY			UP-TO-DATE			AVAILABLE			AGE
kube-system												coredns																					2/2					2												2											8d
kube-system												metrics-server														1/1					1												1											6d22h
kubernetes-dashboard			dashboard-metrics-scraper			1/1					1												1											6d22h
kubernetes-dashboard			kubernetes-dashboard								1/1					1												1											6d22h

	

Create	Deployment

kubectl	create	deployment	${DEPLOYMENT}	--image=${FROM}	--namespace=${NAMESPACE}

For	example:

kubectl	create	deployment	liberty1	--image=openliberty/open-liberty	--namespace=testns1

	

List	pods	for	a	Deployment

kubectl	get	pods	-l=app=${DEPLOYMENT}	--namespace=${NAMESPACE}

For	example:

kubectl	get	pods	-l=app=liberty1	--namespace=testns1

With	custom	columns:

$	kubectl	get	pods	-l=app=liberty1	-o=custom-columns=NAME:.metadata.name,NAMESPACE:.metadata.namespace,STATUS:.status.phase,NODE:.spec.nodeName,STARTED:.status.startTime	--namespace=testns1
NAME																							NAMESPACE			STATUS				NODE						STARTED
liberty1-585d8dfd6-2vb6c			testns1					Running			worker2			2022-04-25T18:34:58Z

	

Delete	Deployment

kubectl	delete	deployment.apps/${DEPLOYMENT}	--namespace=${NAMESPACE}

https://kubernetes.io/docs/concepts/architecture/controller/

	

Scale	Deployment

kubectl	scale	deployment	${DEPLOYMENT}	--replicas=${PODS}	--namespace=${NAMESPACE}

	

Print	logs	for	all	pods	in	a	deployment

kubectl	logs	"--selector=app=${DEPLOYMENT}"	--prefix=true	--all-containers=true	--namespace=${NAMESPACE}

	

Pods

Create,	run,	and	remote	into	a	new	pod

kubectl	run	-i	--tty	fedora	--image=fedora	--	sh

	

Operators

Kubernetes	Operators	are	Kubernetes	native	applications	which	are	controller	pods	for	custom	resources
(CRs)	(normally	a	logical	application)	that	interact	with	the	API	server	to	automate	actions.	Operators	are
based	on	a	Custom	Resource	Definition	(CRD).

OperatorHub	is	a	public	registry	of	operators.

Operator	SDK	is	one	way	to	build	operators.

	

Operator	logs

Find	the	operator's	API	resource:

$	kubectl	api-resources	|	awk	'NR==1	||	/containerdiagnostic/'
NAME																														SHORTNAMES			APIGROUP																							NAMESPACED			KIND
containerdiagnostics																											diagnostic.ibm.com													true									ContainerDiagnostic

Then	find	the	pods	for	them:

$	kubectl	get	pods	--all-namespaces	|	awk	'NR==1	||	/containerdiag/'
NAMESPACE																						NAME																																																								READY			STATUS						RESTARTS			AGE
containerdiagoperator-system			containerdiagoperator-controller-manager-5976b5bb4c-2szb7			2/2					Running					0										19m

Print	logs	for	the	manager	container:

$	kubectl	logs	containerdiagoperator-controller-manager-5976b5bb4c-2szb7	--namespace=containerdiagoperator-system	--container=manager
[...]
2021-06-23T16:04:56.624Z				INFO				setup			starting	manager

	

Operator	Lifecycle	Manager

The	Operator	Lifecycle	Manager	(OLM)	may	be	used	to	install	and	manager	operators	in	a	Kubernetes
cluster.

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://www.openshift.com/blog/introducing-the-operator-framework
https://operatorhub.io/
https://sdk.operatorframework.io/
https://olm.operatorframework.io/

	

List	operator	catalogs

$	kubectl	get	catalogsource	--all-namespaces
NAMESPACE															NAME																			DISPLAY																TYPE			PUBLISHER			AGE
openshift-marketplace			community-operators				Community	Operators				grpc			Red	Hat					69d
openshift-marketplace			certified-operators				Certified	Operators				grpc			Red	Hat					69d
openshift-marketplace			redhat-marketplace					Red	Hat	Marketplace				grpc			Red	Hat					69d
openshift-marketplace			redhat-operators							Red	Hat	Operators						grpc			Red	Hat					69d
openshift-marketplace			ibm-operator-catalog			IBM	Operator	Catalog			grpc			IBM									61d

	

List	all	operators

$	kubectl	get	packagemanifest	--all-namespaces
NAMESPACE															NAME																															CATALOG																AGE
openshift-marketplace			ibm-spectrum-scale-csi-operator				Community	Operators				69d
openshift-marketplace			syndesis																											Community	Operators				69d
openshift-marketplace			openshift-nfd-operator													Community	Operators				69d
[...]

	

Operator	Catalogs

The	most	common	operator	catalogs	are:

Kubernetes	Community	Operators:	Hosted	at	https://operatorhub.io/	and	submitted	via	GitHub	k8s-
operatorhub/community-operators.	Must	only	use	API	objects	supported	by	the	Kubernetes	API.
OpenShift	Community	Operators:	Shown	in	OpenShift	and	OKD	and	submitted	via	GitHub	redhat-
openshift-ecosystem/community-operators-prod.	May	use	OCP-specific	resources	like	Routes,
ImageStreams,	etc.	Certified	operators	are	generally	built	in	RHEL	or	UBI.

	

CPU	and	Memory	Resource	Limits

A	container	may	be	configured	with	CPU	and/or	memory	resource	requests	and	limits.	A	request	is	the
minimum	amount	of	a	resource	that	is	required	by	(and	reserved	for)	a	container	and	is	used	to	decide	if	a
node	has	sufficient	capacity	to	start	a	new	container.	A	limit	puts	a	cap	on	a	container's	usage	of	that
resource.	If	there	are	sufficient	available	resources,	a	container	may	use	more	than	the	requested	amount	of
resource,	up	to	the	limit.	If	only	a	limit	is	specified,	the	request	is	set	equal	to	the	limit.

Therefore,	if	request	is	less	than	the	limit,	then	the	system	may	become	overcommitted.	For	resources	such
as	memory,	this	may	lead	to	the	Linux	OOM	Killer	activating	and	killing	processes	with	Killed	in
application	logs	and	kernel:	Memory	cgroup	out	of	memory:	Killed	process 	in	node	logs	(e.g.	oc
debug	node/$NODE	-t	followed	by	chroot	/host	journalctl).

	

CPU	Resources

CPU	resources	are	gauged	in	terms	of	a	vCPU/core	in	cloud	or	a	CPU	hyperthread	on	bare	metal.	The	m
suffix	means	millicpu	(or	millicore),	so	0.5	(or	half)	of	one	CPU	is	equivalent	to	500m	(or	500	millicpu),	and
CPU	resources	may	be	specified	in	either	form	(i.e.	0.5	or	500m)	although	the	general	recommendation	is	to
use	millicpu.	CPU	limits	are	evaluated	every	quota	period	per	CPU	and	this	defaults	to	100ms.

For	example,	a	CPU	limit	of	500m	means	that	a	container	may	use	no	more	than	half	of	1	CPU	in	any	100ms

https://operatorhub.io/
https://github.com/k8s-operatorhub/community-operators
https://github.com/redhat-openshift-ecosystem/community-operators-prod
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#how-pods-with-resource-limits-are-run
https://github.com/kubernetes/kubernetes/blob/v1.20.2/pkg/kubelet/apis/config/types.go#L268

period.	Values	larger	than	1000m	may	be	specified	if	there	is	more	than	one	CPU.	For	details,	review	the
Linux	kernel	CFS	bandwidth	control	documentation.

Many	recommend	using	CPU	limits.	If	containers	exhaust	node	CPU,	the	kubelet	process	may	become
resource	starved	and	cause	the	node	to	enter	the	NotReady	state.	The	throttling	metric	counts	the	number
of	times	the	CPU	limit	is	exceeded.	However,	there	have	been	cases	of	throttling	occurring	even	when	the
limit	is	not	hit,	generally	fixed	in	Linux	kernel	>=	4.14.154,	4.19.84,	and	5.3.9	(see	1,	2,	3,	and	4).	One
solution	is	to	increase	CPU	requests	and	limits	although	this	may	reduce	density	on	nodes.	Some	specify	a
CPU	request	but	without	a	limit.	Review	additional	OpenShift	guidance	on	overcommit.

	

Memory	Resources

Memory	resources	are	gauged	in	terms	of	bytes.	The	suffixes	K,	M,	G,	etc.	may	be	used	for	multiples	of
1000,	and	the	suffixes	Ki,	Mi,	Gi,	etc.	may	be	used	for	multiples	of	1024.

	

Events

View	Latest	Events

$	kubectl	get	events	--all-namespaces
NAMESPACE														LAST	SEEN			TYPE						REASON														OBJECT																																												MESSAGE
kube-system												7m8s								Normal				Scheduled											pod/metrics-server-6b5c979cf8-t8496															Successfully	assigned	kube-system/metrics-server-6b5c979cf8-t8496	to	docker-desktop
kube-system												7m6s								Normal				Pulling													pod/metrics-server-6b5c979cf8-t8496															Pulling	image	"k8s.gcr.io/metrics-server/metrics-server:v0.4.3"
[...]

	

Horizontal	Pod	Autoscaler

The	Horizontal	Pod	Autoscaler	(HPA)	scales	the	number	of	Pods	in	a	replication	controller,	deployment,
replica	set	or	stateful	set	based	on	metrics	such	as	CPU	utilization.

	

Day	X

Day	1	activities	generally	include	installation	and	configuration	activities.

Day	2	activities	generally	include	scaling	up	and	down,	reconfiguration,	updates,	backups,	failovers,	restores,
etc.

In	general,	operators	are	used	to	implement	day	1	and	day	2	activities.

	

Pod	Affinity

Example	ensuring	that	not	all	pods	run	on	the	same	node:

						affinity:
								podAntiAffinity:
										requiredDuringSchedulingIgnoredDuringExecution:
												-	labelSelector:
																matchExpressions:
																		-	key:	"app"

https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt
https://cloud.google.com/blog/products/containers-kubernetes/kubernetes-best-practices-resource-requests-and-limits
https://lore.kernel.org/lkml/1558121424-2914-1-git-send-email-chiluk+linux@indeed.com/#b
https://github.com/kubernetes/kubernetes/issues/67577
https://github.com/kubernetes/kubernetes/issues/51135
https://github.com/kubernetes/kubernetes/issues/70585
https://docs.openshift.com/container-platform/latest/nodes/clusters/nodes-cluster-overcommit.html
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

																				operator:	In
																				values:
																				-	myappname
														topologyKey:	"kubernetes.io/hostname"

	

NodePorts

Set	externalTrafficPolicy:	Local	on	a	kubernetes	service	so	that	NodePort	won't	open	on	every	Node
but	only	on	the	nodes	where	the	pods	are	actually	running.

	

Clustering

Cluster	size	limitations:	https://kubernetes.io/docs/setup/best-practices/cluster-large/#support
Without	Cluster	Federation	(Ubernetes),	clusters	should	not	span	dispersed	data	centers	and	"stretching
an	OpenShift	Cluster	Platform	across	multiple	data	centers	is	not	recommended".

	

Jobs

A	Job	may	be	used	to	run	one	or	more	pods	until	a	specified	number	have	successfully	completed.	A
CronJob	is	a	Job	on	a	repeating	schedule.	Note:

A	Replication	Controller	manages	Pods	which	are	not	expected	to	terminate	(e.g.	web	servers),
and	a	Job	manages	Pods	that	are	expected	to	terminate	(e.g.	batch	tasks).

	

List	jobs

#	kubectl	get	jobs	-o	wide
NAME								COMPLETIONS			DURATION			AGE			CONTAINERS											IMAGES																					SELECTOR
myjobname			1/1											5s									34s			myjobcontainername			kgibm/containerdiagsmall			controller-uid=5078824a-fad1-4961-af97-62d387ef2fc7

	

Create	job

printf	'{"apiVersion":	"batch/v1","kind":	"Job",	"metadata":	{"name":	"%s"},	"spec":	{"template":	{"spec":	{"restartPolicy":	"Never",	"containers":	[{"name":	"%s",	"image":	"%s",	"command":	%s}]}}}}'	myjobname	myjobcontainername	kgibm/containerdiagsmall	'["ls",	"-l"]'	|	kubectl	create	-f	-

	

Describe	job

$	kubectl	describe	job	myjobname
[...]
Start	Time:					Wed,	23	Jun	2021	08:20:59	-0700
Completed	At:			Wed,	23	Jun	2021	08:21:04	-0700
Duration:							5s
Pods	Statuses:		0	Running	/	1	Succeeded	/	0	Failed
[...]
Events:
		Type				Reason												Age			From												Message
		----				------												----		----												-------
		Normal		SuccessfulCreate		73s			job-controller		Created	pod:	myjobname-d9rr5
		Normal		Completed									68s			job-controller		Job	completed

https://kubernetes.io/docs/setup/best-practices/cluster-large/#support
https://kubernetes.io/docs/setup/best-practices/multiple-zones/
https://www.openshift.com/blog/metro-area-openshift-stretch-cluster-how-to-survive-an-outage-and-live-to-tell-about-it
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

	

Print	job	logs

$	kubectl	logs	myjobname-d9rr5
total	60
lrwxrwxrwx			1	root	root				7	Jan	26	06:05	bin	->	usr/bin
[...]

	

DaemonSets

A	DaemonSet	may	be	used	to	run	persistent	pods	on	all	or	a	subset	of	nodes.	Note:

DaemonSets	are	similar	to	Deployments	in	that	they	both	create	Pods,	and	those	Pods	have
processes	which	are	not	expected	to	terminate	(e.g.	web	servers,	storage	servers).	Use	a
Deployment	for	stateless	services,	like	frontends,	where	scaling	up	and	down	the	number	of
replicas	and	rolling	out	updates	are	more	important	than	controlling	exactly	which	host	the	Pod
runs	on.	Use	a	DaemonSet	when	it	is	important	that	a	copy	of	a	Pod	always	run	on	all	or	certain
hosts,	and	when	it	needs	to	start	before	other	Pods.

	

Services

List	Services

$	kubectl	get	services	--all-namespaces
NAMESPACE														NAME																								TYPE								CLUSTER-IP							EXTERNAL-IP			PORT(S)																		AGE
default																kubernetes																		ClusterIP			10.96.0.1								<none>								443/TCP																		8d
kube-system												kube-dns																				ClusterIP			10.96.0.10							<none>								53/UDP,53/TCP,9153/TCP			8d
kube-system												metrics-server														ClusterIP			10.102.139.243			<none>								443/TCP																		6d23h
kubernetes-dashboard			dashboard-metrics-scraper			ClusterIP			10.107.135.44				<none>								8000/TCP																	7d
kubernetes-dashboard			kubernetes-dashboard								ClusterIP			10.97.139.73					<none>								443/TCP																		7d

	

Create	Service

By	default,	services	are	exposed	on	ClusterIP	which	is	internal	to	the	cluster.

kubectl	expose	deployment	${DEPLOYMENT}	--port=${EXTERNALPORT}	--target-port=${PODPORT}	--namespace=${NAMESPACE}

For	example:

kubectl	expose	deployment	liberty1	--port=80	--target-port=9080	--namespace=testns1

To	expose	a	service	on	a	NodePort	(i.e.	a	random	port	between	30000-32767	on	each	node):

kubectl	expose	deployment	liberty1	--port=80	--target-port=9080	--type=NodePort	--namespace=testns1

Then,	access	the	service	at	the	LoadBalancer	Ingress	host	on	port	NodePort:

$	kubectl	describe	services	liberty1	--namespace=testns1
Name:																					liberty1
Namespace:																testns1
Labels:																			app=liberty1
Annotations:														<none>
Selector:																	app=liberty1
Type:																					NodePort

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

IP:																							10.107.0.163
LoadBalancer	Ingress:					localhost
Port:																					<unset>		80/TCP
TargetPort:															9080/TCP
NodePort:																	<unset>		30187/TCP
Endpoints:																10.1.0.36:9080,10.1.0.37:9080
Session	Affinity:									None
External	Traffic	Policy:		Cluster
Events:																			<none>

For	example:

$	curl	-I	http://localhost:30187/
HTTP/1.1	200	OK
[...]

	

Delete	Service

kubectl	delete	service/${DEPLOYMENT}	--namespace=${NAMESPACE}

	

Ingresses

An	Ingress	exposes	services	outside	of	the	cluster	network.	Before	creating	an	ingress,	you	must	create	at
least	one	Ingress	Controller	to	manage	the	ingress.	By	default,	no	ingress	controller	is	installed.	A	commonly
used	ingress	controller	which	is	supported	by	Kubernetes	is	the	nginx	ingress	controller.

	

Create	nginx	Ingress	controller

1.	 kubectl	apply	-f	https://raw.githubusercontent.com/kubernetes/ingress-
nginx/controller-v0.46.0/deploy/static/provider/cloud/deploy.yaml

2.	 kubectl	wait	--namespace	ingress-nginx	--for=condition=ready	pod	--
selector=app.kubernetes.io/component=controller	--timeout=120s

See	https://kubernetes.github.io/ingress-nginx/deploy/

	

Create	Ingress

printf	'{"apiVersion":"networking.k8s.io/v1","kind":"Ingress","metadata":{"name":"%s","annotations":{"nginx.ingress.kubernetes.io/rewrite-target":"/"}},"spec":{"rules":[{"http":{"paths":[{"path":"%s","pathType":"Prefix","backend":{"service":{"name":"%s","port":{"number":80}}}}]}}]}}'	"${INGRESS}"	"${PATH}"	"${SERVICE}"	|	kubectl	create	-f	-	--namespace=${NAMESPACE}

For	example:

printf	'{"apiVersion":"networking.k8s.io/v1","kind":"Ingress","metadata":{"name":"%s","annotations":{"nginx.ingress.kubernetes.io/rewrite-target":"/"}},"spec":{"rules":[{"http":{"paths":[{"path":"%s","pathType":"Prefix","backend":{"service":{"name":"%s","port":{"number":80}}}}]}}]}}'	"ingress1"	"/"	"liberty1"	|	kubectl	create	-f	-	--namespace=testns1

	

List	Ingresses

$	kubectl	get	ingresses	--all-namespaces
NAMESPACE			NAME							CLASS				HOSTS			ADDRESS					PORTS			AGE
testns1					ingress1			<none>			*							localhost			80						63s

	

https://kubernetes.io/docs/concepts/services-networking/ingress/#what-is-ingress
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://github.com/kubernetes/ingress-nginx/blob/master/README.md#readme
https://kubernetes.github.io/ingress-nginx/deploy/

Describe	Ingress

$	kubectl	describe	ingress	${INGRESS}	--namespace=${NAMESPACE}
Name:													ingress1
Namespace:								testns1
Address:										localhost
Default	backend:		default-http-backend:80	(<error:	endpoints	"default-http-backend"	not	found>)
Rules:
		Host								Path		Backends
		----								----		--------
		*											
														/			liberty1:80	(10.1.0.44:9080,10.1.0.47:9080)
Annotations:		nginx.ingress.kubernetes.io/rewrite-target:	/
Events:
		Type				Reason		Age																From																						Message
		----				------		----															----																						-------
		Normal		Sync				51s	(x2	over	93s)		nginx-ingress-controller		Scheduled	for	sync

	

Delete	Ingress

kubectl	delete	ingress/${INGRESS}	--namespace=${NAMESPACE}

	

Authentication

Kubernetes	authentication	supports	service	accounts	and	normal	users.	Normal	users	are	managed	through
external	mechanisms	rather	than	by	Kubernetes	itself:

It	is	assumed	that	a	cluster-independent	service	manages	normal	users	[...]

Kubernetes	does	not	have	objects	which	represent	normal	user	accounts.	Normal	users	cannot	be
added	to	a	cluster	through	an	API	call.

[...]	any	user	that	presents	a	valid	certificate	signed	by	the	cluster's	certificate	authority	(CA)	is
considered	authenticated.

[...]	Kubernetes	determines	the	username	from	the	common	name	field	in	the	'subject'	of	the
cert.

[...]	client	certificates	can	also	indicate	a	user's	group	memberships	using	the	certificate's
organization	fields.	To	include	multiple	group	memberships	for	a	user,	include	multiple
organization	fields	in	the	certificate.

	

List	Service	Accounts

$	kubectl	get	serviceaccounts
NAME						SECRETS			AGE
default			1									136m

	

Retrieve	Default	Service	Account	Token

The	default	service	account	token	may	be	retrieved:

$	TOKEN=$(kubectl	get	secrets	-o	jsonpath="{.items[?(@.metadata.annotations['kubernetes\.io/service-account\.name']=='default')].data.token}"	|	base64	--decode)

https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/tasks/administer-cluster/access-cluster-api/#without-kubectl-proxy

$	echo	${TOKEN}

This	may	be	then	used	in	an	API	request.	For	example:

$	curl	-X	GET	https://kubernetes.docker.internal:6443/api	--header	"Authorization:	Bearer	${TOKEN}"	--insecure
{
		"kind":	"APIVersions",
		"versions":	[
				"v1"
],
[...]

	

Role-Based	Access	Control

Role-Based	Access	Control	(RBAC)	implements	authorization	in	Kubernetes.	Roles	are	namespace-scoped
and	ClusterRoles	are	cluster-scoped.	RoleBindings	and	ClusterRoleBindings	attach	users	and/or	groups	to	a
set	of	Roles	or	ClusterRoles,	respectively.

	

List	Roles

$	kubectl	get	roles	--all-namespaces														
NAMESPACE					NAME																																				CREATED	AT
kube-public			system:controller:bootstrap-signer						2021-04-27T15:24:35Z
[...]

	

List	Role	Bindings

$	kubectl	get	rolebindings	--all-namespaces
NAMESPACE					NAME																																				ROLE																																								AGE
kube-public			system:controller:bootstrap-signer						Role/system:controller:bootstrap-signer					138m
[...]

	

List	Cluster	Roles

$	kubectl	get	clusterroles
NAME																					CREATED	AT
admin																				2021-04-27T15:24:34Z
cluster-admin												2021-04-27T15:24:34Z
edit																					2021-04-27T15:24:34Z
system:basic-user								2021-04-27T15:24:34Z
[...]

	

List	Cluster	Role	Bindings

$	kubectl	get	clusterrolebindings
NAME																ROLE																														AGE
cluster-admin							ClusterRole/cluster-admin									135m
[...]

	

Monitoring

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Show	CPU	and	memory	usage:

kubectl	top	pods	--all-namespaces
kubectl	top	pods	--containers	--all-namespaces
kubectl	top	nodes

	

Tekton	Pipelines

Tekton	pipelines	describes	CI/CD	pipelines	as	code	using	Kubernetes	custom	resources.	Terms:

Task:	set	of	sequential	steps
Pipeline:	set	of	sequential	tasks

Technologies	such	as	OpenShift	Pipelines,	Jenkins,	JenkinsX,	etc.	use	Tekton	to	implement	their	CI/CD
workflow	on	top	of	Kubernetes.

	

Appsody

Appsody	was	a	way	to	create	application	stacks	using	predefined	templates.	It	has	been	superceded	by
OpenShift	do	(odo).

	

Helm

Helm	groups	together	YAML	templates	that	define	a	logical	application	release	and	its	required	Kubernetes
resources	using	helm	charts.

	

Common	commands

Show	Helm	CLI	version:	helm	version
Show	available	options:	helm	show	values	.
Install	a	chart:	helm	install	$NAME	.
List	installed	charts:	helm	ls
Upgrade	a	chart:	helm	upgrade	$NAME	.
Rollback	an	upgrade:	helm	rollback	$NAME	1

	

Kubernetes	Dashboard

Kubernetes	Dashboard	is	a	simple	web	interface	for	Kubernetes.	Example	installation:

1.	 kubectl	apply	-f
https://raw.githubusercontent.com/kubernetes/dashboard/v2.2.0/aio/deploy/recommended.yaml

2.	 kubectl	proxy
3.	 Open	http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-

dashboard:/proxy/
4.	 Use	a	login	token	such	as	the	default	service	account	token
5.	 Change	the	namespace	at	the	top	as	needed	and	explore.

To	delete	the	dashboard,	use	the	same	YAML	as	above:	kubectl	delete	-f

https://github.com/tektoncd/pipeline
https://www.ibm.com/cloud/blog/tekton-a-modern-approach-to-continuous-delivery
https://appsody.dev/
https://appsody.dev/blogs/DevelopmentEnded
https://helm.sh/
https://helm.sh/docs/topics/charts/
https://github.com/kubernetes/dashboard
http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/

https://raw.githubusercontent.com/kubernetes/dashboard/v2.2.0/aio/deploy/recommended.yaml

	

Kubernetes	Metrics	Server

Kubernetes	Metrics	Server	provides	basic	container	resource	metrics	for	consumers	such	as	Kubernetes
Dashboard.	Example	installation:

1.	 kubectl	apply	-f	https://github.com/kubernetes-sigs/metrics-
server/releases/latest/download/components.yaml

2.	 For	a	development	installation,	allow	insecure	certificates:	kubectl	patch	deployment	metrics-
server	-n	kube-system	--type	'json'	-p	'[{"op":	"add",	"path":
"/spec/template/spec/containers/0/args/-",	"value":	"--kubelet-insecure-tls"}]'

3.	 If	using	Kubernetes	Dashboard,	refresh	the	Pods	view	after	a	few	minutes	to	see	an	overall	CPU	usage
graph	if	it	works.

To	delete	the	metrics-server,	use	the	same	YAML	as	above:	kubectl	delete	-f
https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml

	

Knative

Knative	helps	deploy	and	manage	serverless	workloads.

	

Red	Hat
Red	Hat	Container	image	search

	

Red	Hat	Universal	Base	Image

A	Red	Hat	Universal	Base	Image	(UBI)	is	a	type	of	OCI-compliant	base	operating	system	image	built	from	a
subset	of	RHEL,	free	to	use	and	distribute	with	optional	support	and	with	yum	repository	access	to	a	subset	of
RHEL	packages.

Images	available	from	DockerHub,	a	RedHat	public	registry	(registry.access.redhat.com),	or	a	Red	Hat-
authenticated	registry:

ubi	("Standard"):	OpenSSL,	microdnf,	and	utilities	like	gzip	and	vi
ubi-minimal	("Minimal"):	Minimized	binaries	and	minimal	yum	stack.
ubi-init	("Multi-service"):	Less	than	standard	but	more	than	minimal,	plus	systemd.
ubi-micro	("Micro"):	Most	minimal	image	without	even	a	package	manager.

FROM	specifications:

Red	Hat	public	registry:
registry.access.redhat.com/ubi8/ubi
registry.access.redhat.com/ubi8/ubi-minimal
registry.access.redhat.com/ubi8/ubi-init
registry.access.redhat.com/ubi8/ubi-micro

DockerHub:
redhat/ubi8

https://github.com/kubernetes-sigs/metrics-server
https://knative.dev/
https://catalog.redhat.com/software/containers/explore
https://developers.redhat.com/products/rhel/ubi
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index#differences-between-rhel-images-and-ubi-images_building-running-and-managing-containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index#redistributing-ubi-images_building-running-and-managing-containers
https://hub.docker.com/u/redhat
https://catalog.redhat.com/software/containers/ubi8/ubi/5c359854d70cc534b3a3784e
https://catalog.redhat.com/software/containers/ubi8-minimal/5c64772edd19c77a158ea216
https://catalog.redhat.com/software/containers/ubi8-init/5c6aea74dd19c77a158f0892
https://catalog.redhat.com/software/containers/ubi8-micro/601a84aadd19c7786c47c8ea

redhat/ubi8-minimal
redhat/ubi8-init
redhat/ubi8-micro

	

Run	Examples

Run	a	simple	program	on	ubi-minimal:

$	docker	run	--rm	registry.access.redhat.com/ubi8/ubi-minimal	sh	-c	'exec	5<>/dev/tcp/example.com/80;	echo	-e	"GET	/	HTTP/1.0\nHost:	example.com\n"	>&5;	cat	<&5'

	

Quay.io

Quay.io	is	a	container	registry	run	by	Red	Hat.	It	includes	"unlimited	storage	and	serving	of	public
repositories".

	

OpenShift
OpenShift	is	a	set	of	open-source	projects	and	Red	Hat	products	based	on	those	projects:

OKD	(formerly	OpenShift	Origin)	is	the	open	source,	foundational	project	of	OpenShift	and	it	is	a
pseudo-acronym	for	the	Origin	Community	Distribution	of	Kubernetes:	https://www.okd.io/
Red	Hat	OpenShift	Container	Platform	(OCP)	(formerly	OpenShift	Enterprise)	is	a	public	and/or
private	cloud	OKD:	https://www.openshift.com/products/container-platform
Red	Hat	OpenShift	Online	is	public	cloud,	self-managed	OKD	(running	on	AWS):
https://www.openshift.com/products/online/
Red	Hat	OpenShift	Dedicated	is	a	public	cloud,	Red	Hat-managed	OKD	(running	on	AWS	or	GCP):
https://www.openshift.com/products/dedicated/
Red	Hat	CodeReady	Containers	for	local	OpenShift	development.

	

Architecture

An	OpenShift	node	runs	Red	Hat	Enterprise	Linux	CoreOS	(RHCOS)	or	Red	Hat	Enterprise	Linux	(RHEL)
along	with	OpenShift	installed.

In	addition	to	Kubernetes	master	node	components,	an	OpenShift	master	node	also	runs	OpenShift	Master
Services	which	are	the	major	value-add	over	Kubernetes	(OpenShift	API	server,	Operator	Lifecycle
Management,	and	the	OpenShift	Container	Platform	Web	Console)	and	Infrastructure	Services	(a	curated	set
of	pods	including	Kubernetes	master	pods,	monitoring,	logging,	OS	tuning,	etc.).

MachineSets	are	normally	scoped	to	logical	boundaries	such	as	availability	zones	and	provide	templates	to
create	and	add	hardware	to	the	cluster.	MachineSets	are	based	on	the	Kubernetes	Cluster	API.

	

Operator	Lifecycle	Manager

Operator	Lifecycle	Manager	(OLM)	automates	keeping	the	Operator-based	workloads	and	middleware
deployed	on	the	cluster	up-to-date	(including	over-the-air	updates).

https://quay.io/plans/
https://quay.io/plans/
https://www.okd.io/
https://www.openshift.com/products/container-platform
https://www.openshift.com/products/online/
https://www.openshift.com/products/dedicated/
https://developers.redhat.com/products/codeready-containers/overview
https://github.com/kubernetes-sigs/cluster-api

	

OpenShift	Container	Platform	Web	Console

The	OpenShift	Container	Platform	Web	Console	is	the	main	OpenShift	administrative	web	interface.

	

Topology	View

Statuses:	Running,	Not	Ready,	Warning,	Failed,	Pending,	Succeeded,	Terminating,	and	Unknown
To	add	a	service	to	an	existing	application	group,	hold	Shift	and	drag	on	top	of	that	group.	This	adds
the	required	labels.

	

OpenShift	Resources

A	ReplicationController	is	functionally	equivalent	to	a	ReplicaSet.	These	control/monitor	the	number
of	pods	running	in	a	deployment.
A	BuildConfig	defines	triggers	to	start	a	new	build	and	deployment.

	

DeploymentConfigs

A	DeploymentConfig	is	similar	to	a	Kubernetes	Deployment	with	some	differences:

As	per	the	CAP	theorem,	DeploymentConfigs	prefer	consistency	whereas	Deployments	prefer
availability.	With	DeploymentConfigs,	if	a	node	running	a	deployer	pod	crashes,	you	must	manually
delete	the	node.	With	Deployments,	the	controller	manager	uses	leader	election	so	if	a	deployer	pod
crashes,	other	masters	can	act	on	the	same	Deployment	at	the	same	time	with	reconciliation.
Deployments	and	ReplicaSets	are	recommended	although	oc	new-app	uses	DeploymentConfigs	and
ReplicationControllers.	Changing	the	number	of	replicas	creates	a	new	ReplicaSet.
DeploymentConfigs	support	automatic	rollback	on	a	failure,	lifecycle	hooks,	and	custom	deployment
strategies.
Deployments	support	faster	rollouts,	proportional	scaling,	and	pausing	mid-rollout.

In	sum:

[...]	it	is	recommended	to	use	Deployments	unless	you	need	a	specific	feature	or	behavior
provided	by	DeploymentConfigs.

	

Continuous	Integration

OpenShift	implements	CI	with	Jenkins.	Jenkins	can	integrate	with	source	code	repositories	such	as	Git	by
using	a	commit	hook	to	pull	new	source	code	and	build	it	automatically.	OpenShift	Pipelines	is	built	on	top
of	the	open	source	Tekton	pipelines	project	to	define	an	application	lifecycle	which	is	used	by	Jenkins.	After
building	with	Jenkins,	the	pipeline	invokes	OpenShift's	Source-to-Image	build	(S2I)	using	compiled	source
and	a	builder	image,	builds	a	container	using	podman	build,	and	pushes	it	to	the	registry.

	

OpenShift	Service	Mesh

https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html#deployments-comparing-deploymentconfigs_what-deployments-are
https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html#deployments-design_what-deployments-are
https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html#delpoymentconfigs-specific-features_what-deployments-are
https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html#delpoyments-specific-features_what-deployments-are
https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html#deployments-comparing-deploymentconfigs_what-deployments-are

Combines	Istio,	Kiali	(UI),	and	Jaeger	(tracing)	projects	to	provide	security	and	network	segmentation	for
microservices	applications.

Istio	uses	side-car	containers	to	enhance	service-to-service	communication.	This	includes	service	discovery,
load	balancing,	failure	recovery,	metrics,monitoring,	A/B	testing,	canary	rollouts,	rate	limiting,	access
control,	and	end-to-end	authentication.

Kiali	visualizes	an	entire	graph	of	services	scheduled	within	an	instance	of	the	mesh.

	

OpenShift	Image	Registry

The	built-in	registry's	default	address	is	image-registry.openshift-image-registry.svc	at	port	5000
and	default	images	are	located	in	the	openshift	project;	for	example,	image-registry.openshift-image-
registry.svc:5000/openshift/httpd.

	

Health	Checks

Types	of	health	checks:

Liveness	check	to	see	if	the	container	is	running
Readiness	check	to	see	if	a	pod	is	ready	to	serve	requests

To	perform	a	health	check:

HTTP	check	is	good	if	response	is	between	200	-	399
TCP	Socket	check	is	good	if	a	socket	can	be	opened	to	the	container
Container	Execution	Check	is	good	if	a	command	executed	in	the	container	returns	0

	

OpenShift	Serverless

OpenShift	Serverless	uses	Knative	to	develop	serverless	applications.	It's	integrated	with	Apache	Camel	K
with	event	sources	such	as	HTTP,	Kafka,	and	AMQP	with	three	main	components:

Configuration	to	separate	code	and	configuration	following	the	Twelve-Factor	methodology.
Revision	is	a	version	of	an	application	that	is	immutable
Route	that	maps	a	URL	to	one	or	more	revisions
Service	that	creates	a	Route,	Configuration,	and	Revision

Eventing	in	Knative	supports	brokers,	triggers,	and	subscriptions.	A	broker	represents	an	event	mesh	in
which	events	can	be	sent	to	multiple	subscribers	interested	in	that	event	and	in	which	durability,	persistence,
performance,	and	other	semantics	can	be	adjusted.

	

Autoscaling

Autoscaling	configures	targeted	concurrency	for	the	applications	in	the	revision	template:

target	annotation	and/or	containerConcurrency:	Number	of	concurrent	requests	handled	by	each
revision	container.
minScale/maxScale:	Minimum	and	maximum	pods.

https://github.com/istio/istio%3E
https://docs.openshift.com/container-platform/latest/serverless/serverless-getting-started.html
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://docs.openshift.com/container-platform/latest/serverless/knative_serving/configuring-knative-serving-autoscaling.html

	

OpenShift	do	(odo)

OpenShift	do	(odo)	is	a	successor	to	Appsody	and	provides	templates	for	building	cloud-native	applications.

A	devfile	describes	a	development	environment	(specified	in	devfile.yaml).	This	devfile	instructs	how	to
push	an	application	into	a	cloud.

Links:

Installing	odo
Building	Liberty	applications	using	odo

	

Listing	devfiles

$	odo	catalog	list	components
Odo	Devfile	Components:
NAME																										DESCRIPTION																																																									REGISTRY
java-maven																				Upstream	Maven	and	OpenJDK	11																																							DefaultDevfileRegistry
java-openliberty														Open	Liberty	microservice	in	Java																																			DefaultDevfileRegistry
[...]

Links:

OpenLiberty	devfile	source

	

Create	application

1.	 Ensure	you're	logged	in	with	oc
2.	 Create	a	project	(this	creates	a	new	namespace	in	the	target	cluster;	nothing	local):

odo	project	create	testodo

3.	 Convert	an	existing	application	(not	covered	below),	clone	a	sample	application,	or	use	a	skeleton
sample	application	using	a	starter:

1.	 Clone	sample:
1.	 git	clone	https://github.com/OpenLiberty/application-stack-intro
2.	 cd	application-stack-intro
3.	 odo	create	java-openliberty	testodoserviceintro

2.	 Use	a	skeleton	starter:
1.	 mkdir	testodoservice1	&&	cd	testodoservice1
2.	 odo	create	java-openliberty	testodoservice1	--starter

4.	 Push	the	service	to	the	cloud:

odo	push

5.	 Once	the	push	is	complete,	the	URL	will	be	displayed	(or	available	later	with	odo	url	list).
6.	 For	the	application-stack-intro	sample	(but	not	the	skeleton	starter),	test	the	application	at

/api/resource:

curl	$(odo	url	list	|	awk	'NR	==	3	{print	$3;}')/api/resource

7.	 After	making	a	change,	use	odo	push	again,	or	use	odo	watch	to	automatically	push	when	changes	are
detected.

8.	 If	you	want	to	print	the	container	logs:

https://odo.dev/
https://odo.dev/docs/deploying-a-devfile-using-odo/
https://odo.dev/docs/installing-odo/
https://openliberty.io/blog/2021/01/20/open-liberty-devfile-stack.html
https://github.com/OpenLiberty/application-stack
https://github.com/OpenLiberty/application-stack/wiki/Migrating-Existing-Maven-Apps-To-Stack
https://github.com/OpenLiberty/application-stack
https://github.com/OpenLiberty/application-stack/wiki/Using-the-Default-Starter

odo	log

Or	tail	them:

odo	log	-f

9.	 Once	the	project/application	is	no	longer	needed,	delete	it	(this	will	delete	the	namespace,	stop	running
pods,	etc.):

odo	delete	testodo

	

CodeReady	Workspaces

CodeReady	Workspaces	are	based	on	Eclipse	Che	to	provide	collaborative	development	and	integrated
Continuous	Integration	and	Continuous	Deployment.

	

Red	Hat	Ansible	Automation	Platform

Ansible	provides	simple,	powerful,	and	agentless	automation	of	tasks	using	playbooks	written	in	YAML
pushed	to	servers	over	SSH.

	

Networking

Container	networking	is	based	on	integrated	Open	vSwitch	with	support	for	integration	with	a	third-party
software-defined	network	(SDN).

For	external	traffic,	DNS	resolves	to	a	Router	container	(not	to	be	confused	with	an	Ingress/Route	resource)
which	then	uses	the	openshift-sdn	overlay	network	to	route	to	internal	IPs.

	

Logging

Cluster	logging	is	managed	through	an	EFK	stack:	ElasticSearch	(log	store),	Fluentd	(send	logs	from	node	to
ElasticSearch),	and	Kibana	(web	UI	to	search	logs).

	

Application	Configuration

Application	configuration	should	be	read	from	the	environment	(e.g.	storage,	envars,	etc.)	to	allow	for
dynamic	updating	and	using	the	same	image	across	environments.

	

Environment	Variables

Envars	may	be	set	with	secrets,	ConfigMaps,	and/or	the	Downward	API.	These	may	be	set	at	different
scopes	including	a	deployment	configuration,	replication	controller,	or	build	configuration.

	

Secrets

https://developers.redhat.com/products/codeready-workspaces/overview
https://docs.openshift.com/container-platform/latest/logging/cluster-logging.html

Secrets	are	a	standardized,	base-64	encoded	(non-encrypted)	mechanism	for	mounting	data	(either	as	an
envar	or	secret	filesystem	volume)	for	an	application	such	as	a	password.	Stored	on	tmpfs.

	

ConfigMaps

ConfigMaps	populate	configuration	data	in	a	container	from	a	directory,	file,	or	literal	value.	ConfigMaps
cannot	be	shared	across	projects,	must	be	created	before	creating	a	pod,	and	updating	a	ConfigMap	does	not
update	the	pod.

	

Downward	API

The	Downward	API	allows	pods	to	access	information	about	Kubernetes	resources	through	environment
variables	and/or	volumes.

	

Persistent	Storage

Storage	volumes	are	exposed	as	PersistentVolumes	created	by	administrators.	PersistentVolumes	are
consumed	by	pods	through	PersistentVolumeClaims	using	an	access	mode:

ReadWriteOnce:	Mountable	read-write	by	only	a	single	node	at	one	time.
ReadOnlyMany:	Mountable	read-only	by	many	nodes	at	one	time.
ReadWriteMany:	Mountable	read-write	by	many	nodes	at	one	time.

Dynamically	provisioned	storage	provides	access	to	underlying	storage	infrastructure	through	plugins.

Volume	types:

emptyDir:	Empty	directory	created	at	pod	initialization	and	lost	at	the	end	of	the	pod's	life	(i.e.	non-
persistent).	Useful	for	scratch	data	shared	across	containers	in	the	same	pod.	Set	emptyDir.medium	to
Memory	to	use	tmpfs.

	

PersistentVolumeClaim

First,	create	the	PVC	with	a	name:

apiVersion:	"v1"
kind:	"PersistentVolumeClaim"
metadata:
		name:	"pvol"
spec:
		accessModes:
				-	"ReadWriteOnce"
		resources:
				requests:
						[...]

Then	associate	the	PVC	with	a	pod:

apiVersion:	"v1"
kind:	"Pod"
metadata:
		name:	"mypod"

https://docs.openshift.com/container-platform/latest/storage/dynamic-provisioning.html

		labels:
				name:	"frontendhttp"
spec:
		containers:
				-
						name:	"myfrontend"
						image:	"nginx"
						ports:
								-
										containerPort:	80
										name:	"http-server"
						volumeMounts:
								-
										mountPath:	"/var/www/html"
										name:	"pvol"
		volumes:
				-
						name:	"pvol"

	

Templates

A	template	describes	how	to	create	a	set	of	resources	with	optional	customization	and	labels	to	produce	a
configuration.

	

Prometheus

The	node-exporter	collects	metrics	from	each	node	and	sends	to	Prometheus.

The	HPA	may	use	any	Prometheus	metrics.

Resources:

Use	Sidecars	to	Send	Logs

	

Alert	Rule

1.	 Operators	}	Installed	Operators	}	Prometheus	Operator	}	Prometheus	Rule
2.	 New	PrometheusRule	instance.
3.	 Under	spec.groups,	add	YAML	with	PromQL:

spec:
		groups:
				-	name:	./example.rules
						rules:
								-	alert:	ExampleAlert
										expr:	vector(1)
				-	name:	libertyexample
						rules:
						-	alert:	heapUsageTooHigh
								expr:	base_memory_usedHeap_bytes	/	base_memory_maxHeap_bytes	>	0.9
								for:	1m
								labels:
										severity:	warning
								annotations:
										summary:	"Heap	usage	is	too	high"
										description:	"{{	$labels.instance	}}	heap	usage	is	too	high"

4.	 Change	labels	to	match	the	ruleSelector	in	the	Prometheus	YAML;	for	example:

https://openliberty.io/blog/2020/05/19/log4j-openshift-container-platform.html
https://prometheus.io/docs/prometheus/latest/querying/basics/

labels:
				prometheus:	k8s
				role:	prometheus-rulefiles

5.	 Check	status	under	Status	}	Rules
6.	 Check	if	alert	has	popped	under	Alerts

See	https://openliberty.io/blog/2020/04/15/prometheus-alertmanager-rhocp-open-liberty.html

	

YAML	Examples

Custom	Resource	Definition

apiVersion:	apiextensions.k8s.io/v1
kind:	CustomResourceDefinition
metadata:
		name:	mycrd.example.com
spec:
		group:	example.com
		names:
				kind:	MyCRD
				listKind:	MyCRDList
				plural:	mycrds
				singular:	mycrd
				shortNames:
				-	m
		scope:	Namespaced
		version:	v1

Followed	by:

oc	create	-f	mycrd.yaml

Create	a	custom	resource	from	a	CRD:

apiVersion:	example.com/v1
kind:	MyCRD
metadata:
		name:	mycr
spec:
		replicaCount:	2

Followed	by:

oc	create	-f	mycr.yaml

List	CRs:

oc	get	mycrds

Describe	a	CR:

oc	describe	mycrd	mycr

Increase	number	of	repliaces	of	a	CR:

oc	scale	mycrds	--replicas=2

Delete	a	CR:

oc	delete	mycrd	mycr

	

https://openliberty.io/blog/2020/04/15/prometheus-alertmanager-rhocp-open-liberty.html

Jenkins	BuildConfig	Pipeline

kind:	"BuildConfig"
apiVersion:	build.openshift.io/v1
metadata:
		name:	"pipeline1"
spec:
		triggers:
		-	github:
						secret:	$GHSECRET
				type:	GitHub
		-	generic:
						secret:	$OTSECRET
				type:	Generic
		strategy:
				type:	"JenkinsPipeline"
				jenkinsPipelineStrategy:
						jenkinsfile:	|
																				pipeline	{
																						agent	any
																						stages{
																								stage("Build")	{
																										steps{
																												script{
																														openshift.withCluster()	{
																																openshift.withProject()	{
																																		echo	'***	Build	Starting	***'
																																		openshift.selector('bc',	'$APP').startBuild("--wait").logs('-f')
																																		echo	'***	Build	Complete	***'
																																}
																														}
																												}
																										}
																								}
																								stage("Deploy	and	Verify	in	Development	Env"){
																										steps{
																												script{
																														openshift.withCluster()	{
																																openshift.withProject()	{
																																		echo	'***	Deployment	Starting	***'
																																		openshift.selector('dc',	'$APP').rollout().latest()
																																		echo	'***	Deployment	Complete	***'
																																}
																														}
																												}
																										}
																								}
																						}
																				}

	

OKD

OKD	(formerly	OpenShift	Origin)	is	the	open	source,	foundational	project	of	OpenShift	and	it	is	a	pseudo-
acronym	for	the	Origin	Community	Distribution	of	Kubernetes.

	

CodeReady	Containers

CodeReady	Containers	(crc)	is	a	simple,	local,	single-node	OpenShift	cluster	that	supports	OKD.	Installation
requires	a	free	Red	Hat	account.

https://docs.okd.io/latest/welcome/index.html
https://cloud.redhat.com/openshift/install/crc/installer-provisioned

	

minishift

minishift	is	a	simple,	local,	single-node	OpenShift	cluster:

Linux:	wget
https://github.com/minishift/minishift/releases/latest/download/minishift-$(curl	-s
-L	-H	"Accept:	application/json"
https://github.com/minishift/minishift/releases/latest	|	sed	's/.*tag_name":"v//g'	|
sed	's/".*//g')-linux-amd64.tgz
macOS:	brew	cask	install	minishift

	

YAML	Manifest

A	YAML	Manifest	is	a	YAML	file	used	to	manipulate	Kubernetes	and	it	has	four	required	parts:

apiVersion
kind
metadata
spec

	

oc

The	OpenShift	client	(oc)	is	the	OpenShift	command	line	interface	available	for	download	publicly	or	from	a
cluster:

https://downloads-openshift-console.${CLUSTER_DOMAIN_NAME}/
Most	common	downloads	under:

https://downloads-openshift-console.${CLUSTER_DOMAIN_NAME}/amd64/linux/oc
https://downloads-openshift-console.${CLUSTER_DOMAIN_NAME}/amd64/mac/oc
https://downloads-openshift-console.${CLUSTER_DOMAIN_NAME}/amd64/windows/oc.exe

	

Version

Print	oc	version:	oc	version

Client	Version:	openshift-clients-4.4.0-202006211643.p0-9-g9cd748327
Kubernetes	Version:	v1.17.1+45f8ddb

	

Tips

Source	tab-completion	scripts	with	each	new	installed	version	of	oc:
bash:	https://docs.openshift.com/container-
platform/latest/cli_reference/openshift_cli/configuring-cli.html
zsh:	source	<(oc	completion	zsh)	in	~/.zshrc

	

Login

https://www.okd.io/minishift/
https://docs.openshift.com/container-platform/latest/welcome/index.html
https://mirror.openshift.com/pub/openshift-v4/
https:/
https:/amd64/linux/oc
https:/amd64/mac/oc
https:/amd64/windows/oc.exe
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/configuring-cli.html

To	get	the	login	token,	go	to	the	OpenShift	console,	click	on	your	name	in	the	top	right	and	then	Copy
Login	Command.
Login:	oc	login	-u	$USER	https://api.${CLUSTER_DOMAIN_NAME}:6443

The	file	pointed	to	by	the	KUBECONFIG	envar	or	specified	with	oc	--config= 	(normally
~/.kube/config)	contains	session	authentication	information.
You	may	login	multiple	times	concurrently	by	specifying	different	KUBECONFIG	envar	or	--
config=	files	and	switch	between	the	two.

Show	logged-in	server	version:	oc	version	and	search	for	"Server	Version"
Show	logged-in	name:	oc	whoami
Show	API	address:	oc	whoami	--show-server
Show	web	console	address:	oc	whoami	--show-console
Show	login	token:	oc	whoami	--show-token
Show	current	project,	cluster,	and	user:	oc	whoami	--show-context
Show	general	status:	oc	status	--suggest
Logout:	oc	logout

	

APIs

List	available	APIs	and	versions:	oc	api-versions
List	available	resource	kinds:	oc	api-resources

NAME																																		SHORTNAMES															APIGROUP																														NAMESPACED			KIND
bindings																																																																																													true									Binding
componentstatuses																					cs																																																													false								ComponentStatus
configmaps																												cm																																																													true									ConfigMap
[...]

Describe	a	resource	kind:	oc	explain	$KIND

$	oc	explain	pod
KIND:					Pod
VERSION:		v1

DESCRIPTION:
				Pod	is	a	collection	of	containers	that	can	run	on	a	host.	This	resource	is
				created	by	clients	and	scheduled	onto	hosts.
[...]

Add	--api-version=	for	a	specific	API	version.
Describe	sub-components	of	a	resource	kind:	oc	explain	$NAME.$COMPONENT

$	oc	explain	pod.spec
KIND:					Pod
VERSION:		v1

RESOURCE:	spec	<Object>

DESCRIPTION:
				Specification	of	the	desired	behavior	of	the	pod.
[...]

	

Projects

New	Project	(and	set	to	the	current	project):	oc	new-project	$NAME
For	details,	add	--display-name="$DISPLAY"	--description="$DESCRIPTION"

Show	current	project:	oc	project
List	projects:	oc	get	projects

NAME																																																				DISPLAY	NAME			STATUS

default																																																																Active
kube-node-lease																																																								Active
kube-public																																																												Active
kube-system																																																												Active
openshift																																																														Active
openshift-apiserver																																																				Active
[...]

Change	current	project:	oc	project	$PROJECT
Delete	a	project	and	all	its	resources:	oc	delete	project	$NAME
An	explicit	project	may	be	specified	with	-n	$PROJECT
Show	deployed	applications	for	a	project:	oc	status

$	oc	status
In	project	OpenShift	Tools	(af1f-openshift-tools)	on	server	https://api.shared-na4.na4.openshift.opentlc.com:6443

http://cakephp-mysql-example-af1f-openshift-tools.apps.shared-na4.na4.openshift.opentlc.com	(svc/cakephp-mysql-example)
		dc/cakephp-mysql-example	deploys	istag/cakephp-mysql-example:latest	<-
				bc/cakephp-mysql-example	source	builds	https://github.com/sclorg/cakephp-ex.git	on	openshift/php:7.3	
						build	#1	running	for	51	seconds	-	377fe8f:	Merge	pull	request	#117	from	multi-arch/master	(Honza	Horak	<hhorak@redhat.com>)
				deployment	#1	waiting	on	image	or	update

svc/mysql	-	172.30.12.249:3306
		dc/mysql	deploys	openshift/mysql:5.7	
				deployment	#1	deployed	50	seconds	ago	-	1	pod

View	details	with	'oc	describe	<resource>/<name>'	or	list	everything	with	'oc	get	all'.

Create	an	application	from	YAML:
Create	the	YAML.	For	example,	the	following	requires	2	replicas	of	httpd:

apiVersion:	apps/v1
kind:	Deployment
metadata:
		name:	httpd-deployment
spec:
		selector:
				matchLabels:
						app:	httpd
		replicas:	2
		template:
				metadata:
						labels:
								app:	httpd
				spec:
						containers:
						-	name:	httpd
								image:	image-registry.openshift-image-registry.svc:5000/openshift/httpd
								ports:
								-	containerPort:	8080

Execute	the	YAML:	oc	create	-f	httpd.yaml
Monitor	app	deployment:	oc	get	all
Create	service	YAML.	For	example,	using	the	app=httpd	selector:

apiVersion:	v1
kind:	Service
metadata:
		name:	httpd-deployment
spec:
		ports:
		-	port:	8080
				protocol:	TCP
				targetPort:	8080
		selector:
				app:	httpd
		type:	ClusterIP

Execute	the	YAML:	oc	create	-f	httpd-service.yaml
Monitor	app	deployment:	oc	get	all
Create	a	route	YAML.	For	example,	pointing	to	the	service:

apiVersion:	route.openshift.io/v1
kind:	Route
metadata:
		name:	httpd-deployment
spec:
		port:
				targetPort:	8080
		to:
				kind:	Service
				name:	httpd-deployment

Execute	the	YAML:	oc	create	-f	httpd-route.yaml
Monitor	app	deployment:	oc	get	all
Test	the	route	using	the	public	host	port	shown	in	 oc	get	all

	

Applications

Deploy	application	to	a	project:	oc	new-app	$LANGUAGE~$URL	-n	$PROJECT
This	creates	a	DeploymentConfig	and	ReplicationController

Deploy	application	from	a	particular	image:	oc	new-app	--docker-
image=$REGISTRY/$REPO/$IMAGE:$TAG	--name=$NAME
Describe	an	application's	DeploymentConfig:	oc	describe	dc	$APP
Update	an	application's	DeploymentConfig:	oc	edit	dc	$APP
Search	for	application	images:	oc	new-app	--search	${IMAGE}
Tail	build	logs:	oc	logs	-f	build/$APP-1	-n	$PROJECT
Tag	a	built	image:	oc	tag	$APP:latest	-n	$PROJECT
List	app	tags:	oc	describe	imagestream	$APP	-n	$PROJECT
Deploy	built	app	from	one	project	to	another:	oc	new-app	$PROJECT1/$APP:$TAG	--name=$APP	-n
$PROJECT2
Create	a	route:	oc	expose	service	$APP	-n	$PROJECT
Disable	automatic	deployment:	oc	get	dc	$APP	-o	yaml	-n	$PROJECT	|	sed	's/automatic:
true/automatic:	false/g'	|	oc	replace	-f	-

	

DeploymentConfigs

Show	DeploymentConfigs'	statuses:	oc	get	dc

	

Deployments

Show	deployment	including	events/actions	that	it	took	such	as	rollout:	oc	describe	deployment
$NAME	-n	$PROJECT
Show	deployment	logs:	oc	logs	-f	deployment/$NAME	-n	$PROJECT
Show	all	deployments:	oc	status	or	oc	get	all
Scale	the	pods	of	a	deployment:	oc	scale	deployment	$NAME	--replicas=N
Show	replica	rollout	status:	oc	rollout	status	deployment	$NAME
After	an	image	is	updated,	edit	the	deployment's	container	image	tag:	oc	set	image	deployment
$NAME	CONTAINER=NEW_IMAGE	or	oc	edit	deployment	$NAME
Deployment	strategies:

Rolling	(default):	This	creates	a	new	ReplicaSet,	scales	it	up	with	the	new	image,	and	scales

down	the	ReplicaSet	with	the	old	image.	If	the	rollout	doesn't	succeed	within	10	minutes,	it's
rolled	back.	This	is	also	called	a	Canary	approach.
Recreate:	Terminate	existing	pods,	perform	actions	like	DB	migrations,	start	new	pods.

Lifecycle	hooks	may	be	done	before	(pre)	stopping	the	old	pods,	after	stopping	old	pods
but	before	starting	new	pods	(mid),	or	after	starting	the	new	pods	(post).

Blue/Green:	Create	a	separate	deployment/service,	change	the	route	to	point	to	the	new	service
when	ready,	and	delete	the	old	deployment/service.
A/B:	Split	traffic	(e.g.	50/50).

	

Resources

List	all	resources	in	a	project:	oc	get	all
Describe	a	resource:	oc	describe	${RESOURCE}

	

Nodes

List	nodes:	oc	get	nodes

NAME																																									STATUS			ROLES				AGE			VERSION
ip-10-0-129-77.us-west-1.compute.internal				Ready				master			52m			v1.17.1
ip-10-0-130-47.us-west-1.compute.internal				Ready				worker			43m			v1.17.1
ip-10-0-135-81.us-west-1.compute.internal				Ready				worker			43m			v1.17.1
ip-10-0-143-178.us-west-1.compute.internal			Ready				master			52m			v1.17.1
ip-10-0-147-232.us-west-1.compute.internal			Ready				worker			43m			v1.17.1
ip-10-0-153-32.us-west-1.compute.internal				Ready				master			52m			v1.17.1

List	more	details	of	nodes:	oc	get	nodes	-o	wide

NAME						STATUS			ROLES				AGE			VERSION			INTERNAL-IP				EXTERNAL-IP			OS-IMAGE		KERNEL-VERSION		CONTAINER-RUNTIME
ip-10-0-		Ready				master			73m			v1.17.1			10.0.129.77				<none>								Red	Hat	E	4.18.0-147.8.1.	cri-o://1.17.4-8.d
ip-10-0-		Ready				worker			64m			v1.17.1			10.0.130.47				<none>								Red	Hat	E	4.18.0-147.8.1.	cri-o://1.17.4-8.d
ip-10-0-		Ready				worker			64m			v1.17.1			10.0.135.81				<none>								Red	Hat	E	4.18.0-147.8.1.	cri-o://1.17.4-8.d
ip-10-0-		Ready				master			73m			v1.17.1			10.0.143.178			<none>								Red	Hat	E	4.18.0-147.8.1.	cri-o://1.17.4-8.d
ip-10-0-		Ready				worker			64m			v1.17.1			10.0.147.232			<none>								Red	Hat	E	4.18.0-147.8.1.	cri-o://1.17.4-8.d
ip-10-0-		Ready				master			73m			v1.17.1			10.0.153.32				<none>								Red	Hat	E	4.18.0-147.8.1.	cri-o://1.17.4-8.d

	

Machine	Sets

List	machine	sets:	oc	get	machinesets	-n	openshift-machine-api

NAME																																			DESIRED			CURRENT			READY			AVAILABLE			AGE
cluster-f1bd-4fp56-worker-us-west-1a			2									2									2							2											58m
cluster-f1bd-4fp56-worker-us-west-1c			1									1									1							1											58m

Describe	a	machineset:	oc	describe	machineset	$NAME	-n	openshift-machine-api
Change	the	type	of	instances	of	a	machine	set:

Scale	down	a	machine	set	to	0:	oc	scale	machineset	$NAME	--replicas=0	-n	openshift-
machine-api
Wait	until	replicas	is	0:	oc	get	machinesets	-n	openshift-machine-api
Wait	until	the	node	disappears:	oc	get	nodes
Change	the	instance	type:	oc	patch	machineset	$NAME	--type='merge'	--
patch='{"spec":	{	"template":	{	"spec":	{	"providerSpec":	{	"value":	{
"instanceType":	"m5.2xlarge"}}}}}}'	-n	openshift-machine-api
Scale	back	up:	oc	scale	machineset	$NAME	--replicas=1	-n	openshift-machine-api

	

https://docs.openshift.com/container-platform/latest/applications/deployments/deployment-strategies.html#deployments-lifecycle-hooks_deployment-strategies

Machines

List	machines:	oc	get	machines	-n	openshift-machine-api

NAME																																									PHASE					TYPE								REGION						ZONE									AGE
cluster-f1bd-4fp56-master-0																		Running			m4.xlarge			us-west-1			us-west-1a			52m
cluster-f1bd-4fp56-master-1																		Running			m4.xlarge			us-west-1			us-west-1c			52m
cluster-f1bd-4fp56-master-2																		Running			m4.xlarge			us-west-1			us-west-1a			52m
cluster-f1bd-4fp56-worker-us-west-1a-smf2q			Running			m4.large				us-west-1			us-west-1a			46m
cluster-f1bd-4fp56-worker-us-west-1a-x2qqz			Running			m4.large				us-west-1			us-west-1a			46m
cluster-f1bd-4fp56-worker-us-west-1c-gz2lc			Running			m4.large				us-west-1			us-west-1c			46m

Describe	a	machine:	oc	describe	machine	$NAME	-n	openshift-machine-api

Name:									cluster-f1bd-4fp56-master-0
Namespace:				openshift-machine-api
Labels:							machine.openshift.io/cluster-api-cluster=cluster-f1bd-4fp56
														machine.openshift.io/cluster-api-machine-role=master
														machine.openshift.io/cluster-api-machine-type=master
														machine.openshift.io/instance-type=m4.xlarge
														machine.openshift.io/region=us-west-1
														machine.openshift.io/zone=us-west-1a
Annotations:		machine.openshift.io/instance-state:	running
[...]
						Ami:
								Id:									ami-02b6556210798d665
						API	Version:		awsproviderconfig.openshift.io/v1beta1
						Block	Devices:
[...]
		Addresses:
				Address:					10.0.129.77
				Type:								InternalIP
				Address:					ip-10-0-129-77.us-west-1.compute.internal
				Type:								InternalDNS
				Address:					ip-10-0-129-77.us-west-1.compute.internal
				Type:								Hostname
[...]
Events:
		Type				Reason			Age																			From												Message
		----				------			----																		----												-------
		Normal		Updated		2m35s	(x12	over	55m)		aws-controller		Updated	machine	cluster-f1bd-4fp56-master-0

List	control	plane	machines:	oc	get	machines	-l	machine.openshift.io/cluster-api-machine-
type=master	-n	openshift-machine-api
List	worker	machines:	oc	get	machines	-l	machine.openshift.io/cluster-api-machine-
type=worker	-n	openshift-machine-api
List	machines	with	a	custom	query	such	as	instance	type:	oc	get	machines	-n	openshift-machine-
api	-o	jsonpath='{range	.items[*]}{"\n"}{.metadata.name}{"\t"}
{.spec.providerSpec.value.instanceType}{end}{"\n"}'	or	region:	oc	get	machines	-n
openshift-machine-api	-o	jsonpath='{range	.items[*]}{"\n"}{.metadata.name}{"\t"}
{.spec.providerSpec.value.placement.region}{end}{"\n"}'

	

Pods

List	pods	for	the	current	project:	oc	get	pods
List	all	pods:	oc	get	pods	--all-namespaces
List	pods	for	a	particular	project:

$	oc	get	pods	-n	openshift-apiserver
NAME																									READY			STATUS				RESTARTS			AGE
apiserver-77c9656b9f-c5mlr			1/1					Running			0										45m
apiserver-77c9656b9f-ddll4			1/1					Running			0										46m
apiserver-77c9656b9f-lfxvb			1/1					Running			0										45m

List	running	pods:	oc	get	pods	--field-selector	status.phase=Running
Open	a	shell	on	a	pod:	oc	rsh	$POD
Execute	a	remote	command	on	a	pod:	oc	exec	$POD	--	uptime
Copy	a	file	or	directory	from	a	pod:	oc	cp	$POD:/etc/hostname	hostname
List	all	pods:	oc	get	pods	-A

NAMESPACE																					NAME																																												READY			STATUS						RESTARTS			AGE
openshift-apiserver-operator		openshift-apiserver-operator-7f87667d89-rd9tz			1/1					Running					1										56m
openshift-apiserver											apiserver-77c9656b9f-c5mlr																						1/1					Running					0										45m
[...]

Tail	pod	updates	until	you	hit	Ctrl+C:	oc	get	pods	-w
Show	details	of	a	pod:	oc	get	pods	$POD	-o	yaml

	

Scaling

Set	number	of	pods:	oc	scale	--replicas=$N
Configure	auto-scaling:	oc	autoscale

	

Services

List	services:	oc	get	svc

Default	service	name:	_service-name.project_.svc.cluster.local

Show	details	of	a	service:	oc	get	svc	$SERVICE	-o	yaml

$	oc	get	svc	mysql	-o	yaml
[...]
spec:
		clusterIP:	172.30.12.249
		ports:
		-	name:	mysql
				port:	3306
				protocol:	TCP
				targetPort:	3306
		selector:
				name:	mysql
		sessionAffinity:	None
		type:	ClusterIP
status:
		loadBalancer:	{}

	

Routes

Expose	an	application	publicly	with	a	route:	oc	expose	service/${APP}
Add	--name=$NAME	to	specify	the	name

Create	a	secured	route:	oc	create	route
Display	all	application	routes:	oc	get	route
Display	routes	for	an	application:	oc	get	route/${APP}
Display	route	details:	oc	get	route	$ROUTE	-o	yaml
Edit	a	route	to	change	its	service:	oc	patch	route/$ROUTE	-p	'{"spec":{"to":
{"name":"$NEWSERVICE"}}}'
Display	route	URL:	oc	get	route	$ROUTE	--template='{{	.spec.host	}}'

This	can	be	combined	with	curl:	curl	http://$(oc	get	route	$ROUTE	--template='{{

.spec.host	}}')/

	

Ports

Expose	a	port	for	an	existing	pod:	oc	port-forward	$POD	$PORT:$PORT

	

Jenkins

Create	Jenkins	pipeline:	oc	new-app	jenkins-persistent	--param	MEMORY_LIMIT=2Gi	--param
ENABLE_OAUTH=true	-e	JENKINS_PASSWORD=$JENKINSPASSWORD	-n	$PROJECT

Set	pipeline	maximum	resource	usage	if	needed:	oc	set	resources	dc	jenkins	--
limits=cpu=2	--requests=cpu=1,memory=2Gi

Find	the	route	for	Jenkins:	oc	get	route	jenkins	-n	$PROJECT
Allow	a	Jenkins	app	to	access	other	projects:	oc	policy	add-role-to-user	edit
system:serviceaccount:$JENKINSPROJECT:jenkins	-n	$PROJECT
Allow	another	project	to	pull	from	a	pipeline:	oc	policy	add-role-to-group	system:image-
puller	system:serviceaccounts:$JENKINSPROJECT	-n	$PROJECT
If	you	want	to	disable	automatic	deployment	of	newly	built	application	images:	oc	set	triggers	dc
openshift-tasks	--manual

	

Jenkins	Web	Console

Retrieve	the	route	from	above	and	log-in	with	OpenShift	OAuth	credentials.	Common	tasks:

New	pipeline:	New	Item	}	Tasks	}	Pipeline	}	OK	}	Add	pipeline	code	}	Save	}	Build	Now	}	Open
Blue	Ocean
Example	pipeline:

node	{
		stage('Build	Tasks')	{
				openshift.withCluster()	{
						openshift.withProject("$PROJECT")	{
								openshift.selector("bc",	"openshift-tasks").startBuild("--wait=true")
						}
				}
		}
		stage('Tag	Image')	{
				openshift.withCluster()	{
						openshift.withProject("$PROJECT")	{
								openshift.tag("openshift-tasks:latest",	"openshift-tasks:${BUILD_NUMBER}")
						}
				}
		}
		stage('Deploy	new	image')	{
				openshift.withCluster()	{
						openshift.withProject("$PROJECT")	{
								openshift.selector("dc",	"openshift-tasks").rollout().latest();
						}
				}
		}
}

	

Quotas

List	quotas	for	a	project:	oc	get	quota	-n	$PROJECT
Get	details	of	a	quota:	oc	describe	quota	$QUOTA	-n	$PROJECT
List	cluster	resource	quotes:	oc	get	appliedclusterresourcequotas

NAME																							LABELS	SELECTOR			ANNOTATIONS	SELECTOR
clusterquota-shared-10c1			<none>												map[openshift.io/requester:...]

Show	details	of	a	cluster	resource	quota:	oc	describe	appliedclusterresourcequota	$NAME

Name:					clusterquota-shared-10c1
[...]
Resource																	Used	Hard
--------																	----	----
configmaps																		3		100
limits.cpu															500m			16
limits.memory											512Mi	45Gi
persistentvolumeclaims						0			15
pods																								1			30
requests.cpu														50m			16
requests.memory									512Mi	20Gi
requests.storage												0	50Gi
secrets																				13		150
services																				2		150

Query	drivers	of	the	resource	usage:	oc	get	pods	--field-selector=status.phase=Running	-o
json	|	jq	'.items[]	|	{name:	.metadata.name,	res:	.spec.containers[].resources}'
Change	container	memory	limits:	oc	set	resources	dc	$NAME	--limits=memory=1Gi

	

Environment	Variables

List	envars	for	a	resource:	oc	set	env	$KIND/$RESOURCE	--list
Set	envar	on	a	resource:	oc	set	env	$KIND/$RESOURCE	NAME=value
Set	envar	on	all	resources	of	a	kind:	oc	set	env	$KIND	--all	NAME=value
Set	envar	on	a	resource	from	a	secret:	oc	set	env	$KIND/$RESOURCE	--from=secret/$NAME
Delete	an	envar	with	a	dash	(-):	oc	set	env	$KIND/$RESOURCE	NAME-
Automatically	created	envars:

${SERVICE}_SERVICE_HOST
${SERVICE}_SERVICE_PORT

	

Secrets

Create	secret:	oc	create	secret	generic	$NAME
Describe	secret:	oc	describe	secrets	$NAME	or	oc	get	secret	$NAME	-o	yaml
Mount	a	secret	as	a	filesystem:	oc	set	volume	$KIND/$RESOURCE	--add	--overwrite	--
name=$VOLUME	--mount-path	$PATH	--secret-name=$SECRET

	

ConfigMaps

Create	a	ConfigMap:	oc	create	configmap	$NAME
Create	a	ConfigMap	from	a	literal	value:	oc	create	configmap	$NAME	--from-literal=KEY=value
Create	a	ConfigMap	from	a	file	of	key/value	pairs	on	each	line:	oc	create	configmap	$NAME	--
from-file=$FILE.properties
Create	a	ConfigMap	from	a	directory	of	files	with	key=filename	and	value=file	contents:	oc	create
configmap	$NAME	--from-file=$DIRECTORY
Describe	a	ConfigMap:	oc	describe	configmaps	$NAME	or	oc	get	configmaps	$NAME	-o	yaml

Consume	ConfigMap	as	an	envar	in	a	pod:

spec:
		containers:
				-	name:	$PODNAME
						image:	$IMAGE
						command:	["/bin/sh",	"-c",	"env"]
						env:
								-	name:	$LOCALKEY
										valueFrom:
												configMapKeyRef:
														name:	$CONFIGMAP
														key:	$KEY

Consume	ConfigMap	as	a	file	in	a	pod:

spec:
		containers:
				-	name:	$PODNAME
						image:	$IMAGE
						command:	["/bin/sh",	"cat",	"/etc/config/$KEYFILE"]
						volumeMounts:
						-	name:	config-volume
								mountPath:	/etc/config
		volumes:
				-	name:	config-volume
						configMap:
								name:	$CONFIGMAP

Consume	ConfigMap	as	a	file	in	a	pod	at	a	specific	sub-directory:

spec:
		containers:
				-	name:	$PODNAME
						image:	$IMAGE
						command:	["/bin/sh",	"cat",	"/etc/config/subdir/$KEYFILE"]
						volumeMounts:
						-	name:	config-volume
								mountPath:	/etc/config
		volumes:
				-	name:	config-volume
						configMap:
								name:	$CONFIGMAP
								items:
								-	key:	$KEY
										path:	subdir/special-key

	

Downward	API

Mount	Downward	API	data	in	a	pod	as	envars:

spec:
		containers:
				-	name:	$PODNAME
						image:	$IMAGE
						command:	["/bin/sh",	"-c",	"env"]
						env:
								-	name:	MY_POD_NAME
										valueFrom:
												fieldRef:
														fieldPath:	metadata.name
								-	name:	MY_POD_NAMESPACE
										valueFrom:
												fieldRef:
														fieldPath:	metadata.namespace
								-	name:	MY_CPU_REQUEST

										valueFrom:
												resourceFieldRef:
														resource:	requests.cpu
								-	name:	MY_CPU_LIMIT
										valueFrom:
												resourceFieldRef:
														resource:	limits.cpu
								-	name:	MY_MEM_REQUEST
										valueFrom:
												resourceFieldRef:
														resource:	requests.memory
								-	name:	MY_MEM_LIMIT
										valueFrom:
												resourceFieldRef:
														resource:	limits.memory

Mount	Downward	API	data	in	a	pod	as	volumes:

spec:
		containers:
				-	name:	$PODNAME
						image:	$IMAGE
						command:	["/bin/sh",	"cat",	"/downward/pod_labels"]
		volumeMounts:
				-	name:	podinfo
						mountPath:	/downward
						readOnly:	false
		volumes:
				-	name:	podinfo
						downwardAPI:	
								items:	
										-	path:	"pod_labels"	
												fieldRef:
														fieldPath:	metadata.label
										-	path:	"cpu_limit"
												resourceFieldRef:
														containerName:	client-container
														resource:	limits.cpu
										-	path:	"cpu_request"
												resourceFieldRef:
														containerName:	client-container
														resource:	requests.cpu
										-	path:	"mem_limit"
												resourceFieldRef:
														containerName:	client-container
														resource:	limits.memory
										-	path:	"mem_request"
												resourceFieldRef:
														containerName:	client-container
														resource:	requests.memor

	

BuildConfig

Show	deployment	process:	oc	logs	-f	bc/$APP

	

Common	Troubleshooting

Get	status:	oc	status	and	oc	get	all
List	pods:	oc	get	pods
SSH	into	a	pod:	oc	rsh	$POD
Execute	a	remote	command	on	a	pod:	oc	exec	$POD	--	uptime
Copy	a	file	or	directory	from	a	pod:	oc	cp	$POD:/etc/hostname	hostname

List	services:	oc	get	svc
List	all	events	sorted	by	timestamp:	oc	get	events	--sort-by='.lastTimestamp'
Use	--loglevel=10	on	any	command	for	detailed	tracing.
Access	a	particular	resource:	oc	debug	$NAME	such	as	dc/$DC	or	node/$NODE
Show	output	in	different	formats	with	-o	wide,	-o	yaml,	-o	json,	-o	jsonpath='{.spec.host}
{"\n"}'	(for	XPath-like	selection),	and	more.

	

Create	Template

Export	template	for	existing	object:	oc	export	all	--as-template=$NEWTEMPLATE

Create	a	new	configuration	from	a	template:	oc	process	-f	template.json	-v
KEY1=value1,KEY2=value2	|	oc	create	-f	-

Create	a	stored	template:	oc	create	-f	template.json

Describe	a	stored	template:	oc	describe	template	$NAME	(many	are	stored	in	-n	openshift)

Create	application	from	stored	template:	oc	new-app	--template=$TEMPLATE	--param=KEY1=value1

A	prefix/	is	not	needed	for	the	template	if	it's	in	the	openshift	project

Create	application	from	template	file:	oc	new-app	--file=template.json	--param=KEY1=value1

Generating	random	passwords:

parameters:
		-	name:	PASSWORD
				description:	"The	random	user	password"
				generate:	expression
				from:	"[a-zA-Z0-9]{12}"

	

Users

List	users:	oc	get	users
List	roles	and	users	for	a	project:	oc	get	rolebindings
List	roles	and	users	for	a	cluster:	oc	get	clusterrolebindings
Add	project	role	to	a	user:	oc	adm	policy	add-role-to-user	$ROLE	$USER
Add	cluster	role	to	a	user:	oc	adm	policy	add-cluster-role-to-user	$ROLE	$USER

	

Registry

Show	registry	pods:	oc	get	pods	-n	openshift-image-registry
Show	registry	services:	oc	get	services	-n	openshift-image-registry
Show	registry	deployments:	oc	get	deployments	-n	openshift-image-registry
Show	registry	logs:	oc	logs	deployments/image-registry	-n	openshift-image-registry
By	default,	a	registry	does	not	have	a	public	route.	If	this	is	required,	the	registry	must	be	exposed.

oc	patch	configs.imageregistry.operator.openshift.io/cluster	--patch	'{"spec":{"defaultRoute":true}}'	--type=merge

Show	registry	routes:	oc	get	routes	-n	openshift-image-registry
Allow	a	user	to	push	to	the	registry:	oc	policy	add-role-to-user	registry-editor	$USER
Allow	a	user	to	pull	from	the	registry:	oc	policy	add-role-to-user	registry-viewer	$USER
docker	login:	echo	$(oc	whoami	--show-token)	|	docker	login	-u	$(oc	whoami)	--password-

https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://docs.openshift.com/container-platform/latest/registry/securing-exposing-registry.html

stdin	default-route-openshift-image-registry.${CLUSTER_DOMAIN_NAME}
Build	image	for	the	registry	(or	tag	an	image):	docker	build	-t	$ROUTE/$PROJECT/$IMAGE	.
(where	$ROUTE	comes	from	HOST/PORT	of	oc	get	routes	-n	openshift-image-registry 	and
$PROJECT	comes	from	oc)
Push	image	to	the	registry:	docker	push	$ROUTE/$PROJECT/$IMAGE
List	image	in	the	registry:	docker	image	ls	$ROUTE/$PROJECT/$IMAGE
List	images	in	the	registry:	oc	get	images
List	image	streams:	oc	get	imagestreams

	

Volumes

Add	emptyDir	volume	to	a	deployment	config	and	create	new	deployment:	oc	set	volume	dc/$DC	-
-add	--mount-path=$LOCALPATH

	

Security

Debug	a	node

1.	 oc	get	nodes
2.	 oc	debug	nodes/$NAME
3.	 chroot	/host
4.	 oc	login	[...]

	

Debug	a	pod

1.	 oc	get	pods
2.	 oc	debug	pod/$NAME	--image	registry.access.redhat.com/ubi8/ubi:8.0

	

Cluster	management

List	nodes:	oc	get	nodes
Describe	a	node:	oc	describe	node	$NAME
Show	max	pods	of	a	node:	oc	describe	node	$NAME	|	awk	'/^Allocatable/	{	alloctable=1;	}
alloctable	&&	/pods:/	{	print;	exit;	}'
Show	cluster	CPU	usage:	oc	adm	top	node
Prepare	debugging:	oc	adm	inspect
Run	MustGather:	oc	adm	must-gather
Dump	cluster	administration	details	and	logs:	kubectl	cluster-info	dump	>	clusterdump.txt

	

Other	commands

oc	get	all	-o	name	--selector	app=${APP}:	List	all	resources	for	an	application.
oc	delete	all	--selector	app=${APP}:	Schedule	deletion	of	all	resources	related	to	an	application.
oc	rsync:	Retrieve/update	files	in	a	running	container:	<>

	

https://docs.openshift.com/container-platform/4.3/nodes/containers/nodes-containers-copying-files.html

OpenShift	Container	Platform

Recipe

1.	 Using	the	web	console:
1.	 Review	cluster	utilization
2.	 Review	high	severity	alerts
3.	 Review	USE	method	cluster	utilization	for	overall	utlization
4.	 Review	the	Cluster	Compute	Resources	Dashboard	for	high	utilization	projects
5.	 For	high	utilization	projects,	review	the	Project	Compute	Resources	Dashboard

2.	 Review	OpenShift	Container	Platform	best	practices

	

Links

Documentation

	

Best	practices

Control	plane	sizing
Minimum	control	plane	node	resource	requirements	on	bare	metal
Maximum	resources

Worker	node	sizing
Monitor	etcd	and	defragment	if	necessary

	

Web	Console

Cluster	Utilization

Administrator	}	Overview	(/dashboards)	shows	CPU,	memory,	filesystem,	and	network	utilization	for	the
cluster.	For	example:

https://docs.openshift.com/container-platform/latest/welcome/index.html
https://docs.openshift.com/container-platform/latest/scalability_and_performance/recommended-host-practices.html#master-node-sizing_
https://docs.openshift.com/container-platform/latest/installing/installing_bare_metal/installing-bare-metal.html#minimum-resource-requirements_installing-bare-metal
https://docs.openshift.com/container-platform/latest/scalability_and_performance/planning-your-environment-according-to-object-maximums.html
https://docs.openshift.com/container-platform/latest/scalability_and_performance/recommended-host-practices.html#infrastructure-node-sizing_
https://docs.openshift.com/container-platform/latest/scalability_and_performance/recommended-host-practices.html#recommended-etcd-practices_

	

Alerts

Administrator	}	Monitoring	}	Alerting	shows	various	alerts	of	different	severities.	Sort	by	severity	in
descending	order.

	

Monitoring

Grafana	USE	Method	Cluster	Dashbaord

Administrator	}	Monitoring	}	Dashboards	}	Dashboard	=	USE	Method	/	Cluster
(/monitoring/dashboards/grafana-dashboard-node-cluster-rsrc-use)	shows	detailed	cluster	utilization	with	the
USE	method.

http://www.brendangregg.com/usemethod.html

	

Grafana	USE	Method	Node	Dashbaord

Administrator	}	Monitoring	}	Dashboards	}	Dashboard	=	USE	Method	/	Node
(/monitoring/dashboards/grafana-dashboard-node-cluster-rsrc-use)	shows	detailed	cluster	utilization	with	the
USE	method.

http://www.brendangregg.com/usemethod.html

	

Cluster	Compute	Resources	Dashboard

Administrator	}	Monitoring	}	Dashboards	}	Dashboard	=	Kubernetes	/	Compute	Resources	/	Cluster
(/monitoring/dashboards/grafana-dashboard-k8s-resources-cluster)	shows	detailed	cluster	utilization	by
project.

	

Project	Compute	Resources	Dashboard

Administrator	}	Monitoring	}	Dashboards	}	Dashboard	=	Kubernetes	/	Compute	Resources	/	Namespaces
(Pods)	(/monitoring/dashboards/grafana-dashboard-k8s-resources-namespace)	shows	detailed	utilization	by
project.

	

Images

Show	images	in	the	local	registry:	Builds	}	Image	Streams

Applications

Deploy	application	from	image	in	the	local	registry:
1.	 Developer	}	Topology
2.	 Project=$PROJECT

3.	 Container	Image
4.	 Image	stream	tag	from	internal	registry
5.	 Create

	

Installation

Installer	Provisioned	Infrastructure

Installer	Provisioned	Infrastructure	(IPI)	performs	automated	infrastructure	and	product	deployment	on
Amazon	Web	Services,	Microsoft	Azure,	Google	Cloud	Platform,	Red	Hat	OpenStack	Platform,	and	Red	Hat
Virtualization.

	

User	Provisioned	Infrastructure

User	Provisioned	Infrastructure	(UPI)	is	an	installation	on	pre-existing	infrastructure	with	pre-arranged
networking,	compute,	and	storage	on	Amazon	Web	Services,	Microsoft	Azure,	Google	Cloud	Platform,
VMware	vSphere,	RedHat	Open	Stack	Platform,	IBM	z,	IBM	Power	Systems,	and	bare	metal.

	

Secrets

To	perform	installation,	pull	secrets	are	required	from	https://www.openshift.com/try.

	

Amazon	Web	Services

The	OpenShift	Installer	uses	Terraform	on	AWS	with	a	default	machine	type	of	m4.large.	The	AWS
credentials	must	have	administrator	privileges.

Pre-requisites:

1.	 Create	a	Route	53	public	domain.
2.	 Create	an	SSH	key	pair	without	a	password:	ssh-keygen	-f	~/.ssh/cluster-key

Then	run:

1.	 curl	"https://s3.amazonaws.com/aws-cli/awscli-bundle.zip"	-o	"awscli-bundle.zip"
2.	 unzip	awscli-bundle.zip
3.	 ./awscli-bundle/install	-i	/usr/local/aws	-b	/bin/aws
4.	 wget	https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.4.3/openshift-

install-linux-4.4.3.tar.gz
5.	 tar	zxvf	openshift-install-linux-*.tar.gz	-C	/usr/bin
6.	 wget	https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.4.3/openshift-

client-linux-4.4.3.tar.gz
7.	 tar	zxvf	openshift-client-linux-*.tar.gz	-C	/usr/bin
8.	 oc	completion	bash	>/etc/bash_completion.d/openshift
9.	 Create	AWS	credentials

$	mkdir	$HOME/.aws/
$	cat	<<	EOF	>>	$HOME/.aws/credentials
>	[default]
>	aws_access_key_id	=	...	access	key	...

https://www.openshift.com/try
https://github.com/openshift/installer

>	aws_secret_access_key	=	...	secret	...
>	region	=	...	region	...
>	EOF

10.	 Check	AWS	works:	aws	sts	get-caller-identity
11.	 Download	Pull	Secret	from	https://cloud.redhat.com/openshift/install/aws/installer-provisioned
12.	 openshift-install	create	cluster	--dir	$HOME/cluster-$NAME

1.	 Use	separate	steps	to	customize,	e.g.	install-config.yaml
13.	 In	another	window,	tail	-f	${HOME}/cluster-$NAME/.openshift_install.log
14.	 export	KUBECONFIG=$HOME/cluster-$NAME/auth/kubeconfig
15.	 oc	whoami
16.	 openshift-install	graph
17.	 aws	ec2	describe-instances	--output	table

	

Persistent	Storage

Persistent	storage	includes:

Raw	devices	such	as	iSCSI	and	Fibre	Channel
Enterprise	storage	such	as	NFS
Cloud-type	storage	such	as	Ceph,	AWS	EBS,	pDisk,	etc.

	

OpenShift	Online

Documentation:	https://docs.openshift.com/online/pro/welcome/index.html

	

OpenShift	Dedicated

Documentation:	https://docs.openshift.com/dedicated/latest/welcome/index.html

	

IBM	Cloud

IBM	Cloud	RedHat	OpenShift	Kubernetes	Service	(ROKS)

OpenShift	on	IBM	Cloud
Reference	WebSphere	architecture
Example	architecture

	

IBM	WebSphere	Automation

IBM	WebSphere	Automation	(WSA)	provides	a	unified	dashboard	for	all	registered	WebSphere	Application
Server	and	Liberty	installations	and	their	security	patch	status	as	well	as	automated	memory	leak	detection
with	Instana.

	

IBM	Cloud	Transformation	Advisor	(TA)

https://cloud.redhat.com/openshift/install/aws/installer-provisioned
https://docs.openshift.com/online/pro/welcome/index.html
https://docs.openshift.com/dedicated/latest/welcome/index.html
https://www.ibm.com/cloud/openshift
https://www.ibm.com/cloud/architecture/architectures/application-modernization/reference-architecture
https://www.ibm.com/cloud/architecture/architectures/deploy-retail-app-on-openshift
https://www.ibm.com/cloud/websphere-automation

IBM	Cloud	Transformation	Advisor	analyzes	existing	applications	for	modernization.

Additional	links:

Command	line	options
https://www.ibm.com/support/pages/node/318851#ta
https://community.ibm.com/community/user/imwuc/blogs/scott-johnston/2019/04/10/liberty-advisor
https://www.youtube.com/watch?v=B9_DeUcL_KU
https://github.com/IBM/transformation-advisor-sdk
https://ibm.biz/cloudta

	

Generate	reports	from	traditional	admin	console

Generating	migration	reports	with	the	console

Starting	with	tWAS	9.0.5.7	and	8.5.5.19	which	include	at	least	version	20.0.0.4	of	the	binary	scanner,	then
Liberty's	server.xml	is	generated	as	part	of	the	report.

Starting	with	tWAS	9.0.5.14	and	8.5.5.23,	wsadmin	commands	such	as
AdminTask.createTADataCollection	are	available.

	

Mono2Micro

IBM	Mono2Micro	uses	IBM	research	to	help	transform	traditional	monolithic	applications	into
microServices	applications.

Links:

Download

	

Architectures

Reactive:	https://ibm-cloud-architecture.github.io/refarch-kc/

	

Resource	Groups

Resource	groups	help	organize	production	installations	and	environments.

	

Hazelcast

The	Hazelcast	Helm	chart	may	be	used	for	functions	such	as	HTTP	session	caching:
https://github.com/IBM/charts/tree/master/community/hazelcast-enterprise

	

StockTrader	Sample	Application

https://www.ibm.com/docs/en/cta
https://www.ibm.com/support/knowledgecenter/SS5Q6W/gettingStarted/usingDataCollector.html
https://www.ibm.com/support/pages/node/318851#ta
https://community.ibm.com/community/user/imwuc/blogs/scott-johnston/2019/04/10/liberty-advisor
https://www.youtube.com/watch?v=B9_DeUcL_KU
https://github.com/IBM/transformation-advisor-sdk
https://ibm.biz/cloudta
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=applications-generating-migration-reports-console
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=wsadmin-generating-migration-reports-migration-commands
https://www.ibm.com/blogs/research/2020/07/ai-mono2micro-application-refactoring/
http://ibm.biz/Mono2Micro
https://ibm-cloud-architecture.github.io/refarch-kc/
https://cloud.ibm.com/docs/account?topic=account-account_setup#bp_resourcegroups
https://github.com/IBM/charts/tree/master/community/hazelcast-enterprise

https://developer.ibm.com/code/2018/07/23/introducing-stocktrader/
https://hub.docker.com/u/ibmstocktrader

	

IBM	Cloud	Container	Registry

IBM	container	registry	located	at	icr.io	(like	DockerHub):	https://cloud.ibm.com/docs/Registry?
topic=Registry-getting-started

Managed	through	the	IBM	Cloud	at	https://cloud.ibm.com/kubernetes/registry/main/namespaces

	

Amazon	Web	Services	(AWS)
Running	Liberty	on	AWS:	https://aws.amazon.com/quickstart/architecture/ibm-websphere-liberty/

	

Amazon	Elastic	File	System	(EFS)

Review	the	differences	between	General	Purpose	and	Max	I/O	and	monitor	PercentIOLimit	to	ensure	that	it
does	not	reach	100%.

	

Java	J9	in	Containers
IBM	and	Semeru	Java	in	Containers

	

Recipe

1.	 In	general,	tune	-XX:MaxRAMPercentage	and	-XX:InitialRAMPercentage	instead	of	-Xmx	and	-Xms,
respectively,	to	allow	for	more	flexibility	with	sizing	of	containers	at	the	host	level.	Default	values
depend	on	any	container	memory	limit.

2.	 Consider	using	-XX:+ClassRelationshipVerifier	to	improve	start-up	time.
3.	 If	using	Semeru	Java	>=	11	and	memory	in	the	pod	is	limited,	consider	using	the	remote	JITServer	on

available	platforms	to	avoid	potential	throughput	issues.

	

Container	Images

IBM	Container	Registry:
IBM	Semeru	Runtimes	Java	8	Open	Edition	on	UBI:	FROM	icr.io/appcafe/ibm-semeru-
runtimes:open-8-jre-ubi	or	FROM	icr.io/appcafe/ibm-semeru-runtimes:open-8-jdk-ubi
IBM	Semeru	Runtimes	Java	8	Open	Edition	on	Ubuntu:	FROM	icr.io/appcafe/ibm-semeru-
runtimes:open-8-jre-focal	or	FROM	icr.io/appcafe/ibm-semeru-runtimes:open-8-jdk-
focal
IBM	Semeru	Runtimes	Java	11	Certified	Edition	on	UBI:	FROM	icr.io/appcafe/ibm-semeru-
runtimes:certified-11-jre-ubi	or	FROM	icr.io/appcafe/ibm-semeru-
runtimes:certified-11-jdk-ubi
IBM	Semeru	Runtimes	Java	11	Certified	Edition	on	Ubuntu:	FROM	icr.io/appcafe/ibm-

https://developer.ibm.com/code/2018/07/23/introducing-stocktrader/
https://hub.docker.com/u/ibmstocktrader
https://cloud.ibm.com/docs/Registry?topic=Registry-getting-started
https://cloud.ibm.com/kubernetes/registry/main/namespaces
https://aws.amazon.com/quickstart/architecture/ibm-websphere-liberty/
https://aws.amazon.com/premiumsupport/knowledge-center/linux-efs-performance-modes/
https://www.eclipse.org/openj9/docs/xxusecontainersupport/
https://blog.openj9.org/2021/06/15/innovations-for-java-running-in-containers/
https://blog.openj9.org/2021/06/15/innovations-for-java-running-in-containers/

semeru-runtimes:certified-11-jre-focal	or	FROM	icr.io/appcafe/ibm-semeru-
runtimes:certified-11-jdk-focal
IBM	Semeru	Runtimes	Java	17	Certified	Edition	on	UBI:	FROM	icr.io/appcafe/ibm-semeru-
runtimes:certified-17-jre-ubi	or	FROM	icr.io/appcafe/ibm-semeru-
runtimes:certified-17-jdk-ubi
IBM	Semeru	Runtimes	Java	17	Certified	Edition	on	Ubuntu:	FROM	icr.io/appcafe/ibm-
semeru-runtimes:certified-17-jre-focal	or	FROM	icr.io/appcafe/ibm-semeru-
runtimes:certified-17-jdk-focal
See	all	tags:

curl	-s	https://icr.io/v2/appcafe/ibm-semeru-runtimes/tags/list	|	jq	.tags

DockerHub
IBM	Semeru	Runtimes:

IBM	Semeru	Runtimes	Java	8	Open	Edition	on	CentOS:	FROM	docker.io/ibm-semeru-
runtimes:open-8-jre-centos7	or	FROM	docker.io/ibm-semeru-runtimes:open-8-
jdk-centos7
IBM	Semeru	Runtimes	Java	8	Open	Edition	on	Ubuntu:	FROM	docker.io/ibm-semeru-
runtimes:open-8-jre-focal	or	FROM	docker.io/ibm-semeru-runtimes:open-8-jdk-
focal
IBM	Semeru	Runtimes	Java	11	Open	Edition	on	CentOS:	FROM	docker.io/ibm-semeru-
runtimes:open-11-jre-centos7	or	FROM	docker.io/ibm-semeru-runtimes:open-11-
jdk-centos7
IBM	Semeru	Runtimes	Java	11	Open	Edition	on	Ubuntu:	FROM	docker.io/ibm-semeru-
runtimes:open-11-jre-focal	or	FROM	docker.io/ibm-semeru-runtimes:open-11-
jdk-focal
IBM	Semeru	Runtimes	Java	17	Open	Edition	on	CentOS:	FROM	docker.io/ibm-semeru-
runtimes:open-17-jre-centos7	or	FROM	docker.io/ibm-semeru-runtimes:open-17-
jdk-centos7
IBM	Semeru	Runtimes	Java	17	Open	Edition	on	Ubuntu:	FROM	docker.io/ibm-semeru-
runtimes:open-17-jre-focal	or	FROM	docker.io/ibm-semeru-runtimes:open-17-
jdk-focal
See	all	IBM	Semeru	Runtimes	tags:

curl	-L	-s	"https://registry.hub.docker.com/v2/repositories/library/ibm-semeru-runtimes/tags?page=1&page_size=100"	|	jq	'.results[].name'

IBM	Java:
IBM	Java	8	on	Ubuntu:	FROM	docker.io/ibmjava:8-jre	or	FROM
docker.io/ibmjava:8-sdk
IBM	Java	8	on	Alpine:	FROM	docker.io/ibmjava:8-jre-alpine	or	FROM
docker.io/ibmjava:8-sdk-alpine
See	all	IBM	Java	8	tags:

curl	-L	-s	"https://registry.hub.docker.com/v2/repositories/library/ibmjava/tags?page=1&page_size=100"	|	jq	'.results[].name'

	

Run	Examples

Compile	and	run	a	simple	Java	program:

podman	run	--rm	icr.io/appcafe/ibm-semeru-runtimes:certified-17-jdk-ubi	sh	-c	"cd	/tmp;	printf	'public	class	main	{	public	static	void	main(String...	args)	throws	Throwable	{	System.out.println(\"Hello	World\");	}	}'	>	main.java	&&	javac	main.java	&&	java	-showversion	main"

Run	a	program	in	the	background	and	do	something	on	it:

podman	run	--rm	icr.io/appcafe/ibm-semeru-runtimes:certified-17-jdk-ubi	sh	-c	"cd	/tmp;	printf	'public	class	main	{	public	static	void	main(String...	args)	throws	Throwable	{	System.out.println(\"Hello	World\");	Object	o	=	new	Object();	synchronized	(o)	{	o.wait();	}	}	}'	>	main.java	&&	javac	main.java	&&	(java	main	&);	sleep	1;	jcmd	\$(jps	|	grep	-v	Jps	|	sed	's/	main//g')	Dump.java;	sleep	1;	head	javacore*txt"

To	start	an	interactive	session,	add	-it	after	--rm.	For	example:

podman	run	--rm	-it	icr.io/appcafe/ibm-semeru-runtimes:certified-17-jdk-ubi	bash

https://hub.docker.com/_/ibm-semeru-runtimes
https://hub.docker.com/_/ibm-semeru-runtimes
https://hub.docker.com/_/ibm-semeru-runtimes
https://hub.docker.com/_/ibm-semeru-runtimes
https://hub.docker.com/_/ibm-semeru-runtimes
https://hub.docker.com/_/ibm-semeru-runtimes
https://hub.docker.com/_/ibmjava
https://hub.docker.com/_/ibmjava

	

Containerfiles

IBM	Java
Semeru	Runtime	Open	Edition

	

HotSpot	Java	in	Containers

HotSpot	Java

Eclipse	Temurin	HotSpot	Java	DockerHub	images

	

Run	Examples

Compile	and	run	a	simple	Java	program:

HotSpot	Java	17:

podman	run	--rm	eclipse-temurin:17	sh	-c	"printf	'public	class	main	{	public	static	void	main(String...	args)	throws	Throwable	{	System.out.println(\"Hello	World\");	}	}'	>	main.java	&&	javac	main.java	&&	java	-showversion	main"

HotSpot	Java	11:

podman	run	--rm	eclipse-temurin:11	sh	-c	"printf	'public	class	main	{	public	static	void	main(String...	args)	throws	Throwable	{	System.out.println(\"Hello	World\");	}	}'	>	main.java	&&	javac	main.java	&&	java	-showversion	main"

HotSpot	Java	8:

podman	run	--rm	eclipse-temurin:8	sh	-c	"printf	'public	class	main	{	public	static	void	main(String...	args)	throws	Throwable	{	System.out.println(\"Hello	World\");	}	}'	>	main.java	&&	javac	main.java	&&	java	-showversion	main"

To	start	an	interactive	version	of	one	of	the	above	containers,	add	-it	after	--rm.	For	example:

podman	run	--rm	-it	eclipse-temurin:17	bash

	

Liberty	in	Containers

Recipe

1.	 Review	the	Java	in	Containers	recipes
2.	 Execute	configure.sh	as	the	last	step	in	your	Containerfile	to	make	it	fit-for-purpose	and	initialize	the

shared	class	cache.
3.	 Review	the	Configuring	Security	best	practices
4.	 If	using	IBM	or	Semeru	Java,	mount	a	shared	volume	for	the	shared	class	cache	in

${WLP_OUTPUT_DIR}/.classCache
5.	 Consider	logging	in	JSON	format	for	consumption	by	centralized	logging.
6.	 If	using	IBM	or	Semeru	Java	and	startup	time	is	highly	variable,	review	the	potential	impact	of	the

maximum	heap	size	on	the	shared	class	cache.
7.	 OpenShift:

1.	 Review	the	Application	Monitoring	options.
8.	 Review	the	Liberty	recipe
9.	 Review	the	Java	recipes

10.	 Review	the	Operating	System	Recipes

	

https://github.com/ibmruntimes/ci.docker
https://github.com/ibmruntimes/semeru-containers
https://hub.docker.com/_/eclipse-temurin/
https://github.com/WASdev/ci.docker#building-an-application-image
https://github.com/OpenLiberty/ci.docker/blob/master/SECURITY.md#configuring-security
https://github.com/WASdev/ci.docker#logging
https://github.com/OpenLiberty/open-liberty-operator/blob/master/doc/observability-deployment-rhocp4.2-4.5.adoc#how-to-deploy-kibana-dashboards-to-monitor-open-liberty-logging-events
https://github.com/WASdev/ci.docker#openj9-shared-class-cache-scc
https://github.com/OpenLiberty/open-liberty-operator/blob/main/doc/openshift-monitoring.adoc

Container	Images

IBM	Container	Registry:
OpenLiberty	on	UBI:	FROM	icr.io/appcafe/open-liberty
WebSphere	Liberty	on	UBI:	FROM	icr.io/appcafe/websphere-liberty
See	all	OpenLiberty	tags	with:

curl	-s	https://icr.io/v2/appcafe/open-liberty/tags/list	|	jq	.tags

See	all	WebSphere	Liberty	tags	with:

curl	-s	https://icr.io/v2/appcafe/websphere-liberty/tags/list	|	jq	.tags

DockerHub
OpenLiberty	on	UBI:	FROM	docker.io/openliberty/open-liberty
OpenLiberty	on	Ubuntu:	FROM	docker.io/open-liberty
WebSphere	Liberty	on	UBI:	FROM	docker.io/ibmcom/websphere-liberty
WebSphere	Liberty	on	Ubuntu:	FROM	docker.io/websphere-liberty
See	all	OpenLiberty	on	UBI	tags	with:

curl	-L	-s	"https://registry.hub.docker.com/v2/repositories/openliberty/open-liberty/tags?page=1&page_size=100"	|	jq	'.results[].name'

See	all	OpenLiberty	on	Ubuntu	tags	with:

curl	-L	-s	"https://registry.hub.docker.com/v2/repositories/library/open-liberty/tags?page=1&page_size=100"	|	jq	'.results[].name'

See	all	WebSphere	Liberty	on	UBI	tags	with:

curl	-L	-s	"https://registry.hub.docker.com/v2/repositories/ibmcom/websphere-liberty/tags?page=1&page_size=100"	|	jq	'.results[].name'

See	all	WebSphere	Liberty	on	Ubuntu	tags	with:

curl	-L	-s	"https://registry.hub.docker.com/v2/repositories/library/websphere-liberty/tags?page=1&page_size=100"	|	jq	'.results[].name'

	

Resources

https://github.com/WASdev/ci.docker.tutorials
https://openliberty.io/guides/containerize.html
https://openliberty.io/guides/kubernetes-microprofile-config.html
https://github.com/IBM/openshift-workshop-was
https://docs.microsoft.com/en-us/azure/aks/howto-deploy-java-liberty-app

	

Background

6	reasons	why	Open	Liberty	is	an	ideal	choice	for	developing	and	deploying	microservices

	

Environment

Liberty	on	Docker	changes	the	directory	of	messages.log	and	FFDC	to	/logs	using	the	LOG_DIR	envar:
https://github.com/WASdev/ci.docker/blob/46b7c0a/ga/latest/kernel/Dockerfile#L54

Liberty	on	Docker	changes	the	current	working	directory	of	the	Liberty	process	to	/opt/ibm/wlp/output	using
the	WLP_OUTPUT_DIR	envar	so	this	is	where	javacores,	etc.	will	go:
https://github.com/WASdev/ci.docker/blob/46b7c0a/ga/latest/kernel/Dockerfile#L55

https://hub.docker.com/r/openliberty/open-liberty/
https://hub.docker.com/_/open-liberty
https://hub.docker.com/r/ibmcom/websphere-liberty/
https://hub.docker.com/_/websphere-liberty
https://github.com/WASdev/ci.docker.tutorials
https://openliberty.io/guides/containerize.html
https://openliberty.io/guides/kubernetes-microprofile-config.html
https://github.com/IBM/openshift-workshop-was
https://docs.microsoft.com/en-us/azure/aks/howto-deploy-java-liberty-app
https://developer.ibm.com/articles/6-reasons-why-open-liberty-is-an-ideal-choice-for-developing-and-deploying-microservices/
https://github.com/WASdev/ci.docker/blob/46b7c0a/ga/latest/kernel/Dockerfile#L54
https://github.com/WASdev/ci.docker/blob/46b7c0a/ga/latest/kernel/Dockerfile#L55

To	use	externally	configured	JVM	parameters	(since	jvm.options	doesn't	support	variable	substitution),
consider	using	the	JVM_ARGS	envar	or	mount	the	jvm.options	file	using	a	ConfigMap.

	

Shared	Class	Cache	in	Containers

If	using	the	J9	JVM,	mount	a	shared	volume	for	the	shared	class	cache	in
${WLP_OUTPUT_DIR}/.classCache.	For	WebSphere	Liberty,	that's
/opt/ibm/wlp/output/${SERVER_NAME}/.classCache	and	for	OpenLiberty,	that's
/opt/ol/wlp/output/${SERVER_NAME}/.classCache.	If	using	the	default	server	name	of	defaultServer
and	default	${WLP_OUTPUT_DIR},	these	resolve	to:

WebSphere	Liberty:	/opt/ibm/wlp/output/defaultServer/.classCache
OpenLiberty:	/opt/ol/wlp/output/defaultServer/.classCache

	

Run	Examples

Examples:

podman	run	--rm	icr.io/appcafe/open-liberty:full-java8-ibmjava-ubi	sh	-c	"printf
'<server><featureManager><feature>jakartaee-9.1</feature><feature>microProfile-
5.0</feature></featureManager></server>'	>
/config/configDropins/overrides/override.xml	&&	sed	-i	'/<feature>.*<\/feature>/d'
/config/server.xml	&&	curl	-L
https://github.com/IBM/helloworldjsp/releases/download/0.1.20240212/helloworldjsp.war
-so	/config/dropins/helloworldjsp.war	&&	(/opt/ol/wlp/bin/server	run	defaultServer
&>	/logs/console.log	&)	&&	sleep	2	&&	tail	-99999f	/logs/messages.log	|	grep	-q
CWWKF0011I	&&	cat	/logs/messages.log	&&	/opt/ol/wlp/bin/server	stop	defaultServer"
podman	run	--rm	icr.io/appcafe/open-liberty:full-java8-ibmjava-ubi	sh	-c	"curl	-L
https://github.com/IBM/helloworldjsp/releases/download/0.1.20240212/helloworldjsp.war
-so	/config/dropins/helloworldjsp.war	&&	echo	'<?xml	version=\"1.0\"	encoding=\"UTF-
8\"?><server><httpEndpoint	id=\"defaultHttpEndpoint\"	host=\"*\"	httpPort=\"9080\"
httpsPort=\"9443\"><accessLogging	filepath=\"\${server.output.dir}/logs/access.log\"
logFormat=\"%h	%u	%t	"%r"	%s	%b	%D	%{R}W\"	/></httpEndpoint></server>'	>
/config/configDropins/overrides/server.xml	&&	(/opt/ol/wlp/bin/server	run
defaultServer	&>	/logs/console.log	&)	&&	sleep	2	&&	tail	-99999f	/logs/messages.log
|	grep	-q	CWWKF0011I	&&	curl	-sv	--trace-time
http://localhost:9080/helloworldjsp/helloworld	&&	cat
/opt/ol/wlp/output/defaultServer/logs/access.log	&&	/opt/ol/wlp/bin/server	stop
defaultServer"
podman	run	--rm	icr.io/appcafe/open-liberty:full-java8-ibmjava-ubi	sh	-c	"curl	-L
https://github.com/IBM/helloworldjsp/releases/download/0.1.20240212/helloworldjsp.war
-so	/config/dropins/helloworldjsp.war	&&	echo	'<?xml	version=\"1.0\"	encoding=\"UTF-
8\"?><server><httpEndpoint	id=\"defaultHttpEndpoint\"	host=\"*\"	httpPort=\"9080\"
httpsPort=\"9443\"><accessLogging	filepath=\"\${server.output.dir}/logs/access.log\"
logFormat=\"%h	%u	%t	"%r"	%s	%b	%D	%{R}W	"%{Host}i"	"%{User-
Agent}i"\"	/></httpEndpoint></server>'	>
/config/configDropins/overrides/server.xml	&&	printf
'com.ibm.ws.logging.console.format=json\ncom.ibm.ws.logging.console.log.level=info\ncom.ibm.ws.logging.console.source=message,trace,accessLog,ffdc,audit\ncom.ibm.ws.logging.json.access.log.fields=logFormat\n'
>	/config/bootstrap.properties	&&	(/opt/ol/wlp/bin/server	run	defaultServer	&>
/logs/console.log	&)	&&	sleep	2	&&	tail	-99999f	/logs/messages.log	|	grep	-q
CWWKF0011I	&&	curl	-sv	--trace-time	http://localhost:9080/helloworldjsp/helloworld
&>/dev/null	&&	cat	/opt/ol/wlp/output/defaultServer/logs/access.log	&&
/opt/ol/wlp/bin/server	stop	defaultServer	&>/dev/null	&&	echo	'*	Access	log:'	&&	cat
/opt/ol/wlp/output/defaultServer/logs/access.log	&&	echo	'*	JSON	access	log:'	&&

https://hub.docker.com/_/websphere-liberty
https://hub.docker.com/_/open-liberty

grep	liberty_accesslog	/logs/console.log"

	

Log	Analysis	Dashboards

Liberty	provides	a	Grafana	dashboard	example	for	mpMetrics	(source),	Kibana	dashboard	example,	Splunk
OCP	dashboard	example,	and	mpFaultTolerance	dashboard.

			

WebSphere	Liberty	Operator

Background:	https://www.ibm.com/docs/en/was-liberty/nd?topic=container-running-websphere-
liberty-operator

	

Open	Liberty	Operator

Background:	https://github.com/OpenLiberty/open-liberty-operator/blob/master/doc/user-guide.adoc

	

Containers

Examples

Splash-Only

Running	a	simple	WebSphere	Liberty	container:

docker	run	--rm	-p	80:9080	-p	443:9443	open-liberty:latest

Startup	is	complete	when	you	see:

[AUDIT]	CWWKF0011I:	The	server	defaultServer	is	ready	to	run	a	smarter	planet.

Access	the	default	splash	page	at	http://localhost/	or	https://localhost/

	

Simple	Web	Application	File

Mount	the	absolute	path	to	a	.war	or	.ear	file	from	the	host	to	/config/dropins/.	For	example,	download
https://raw.githubusercontent.com/kgibm/java_web_hello_world/master/builds/java_web_hello_world.ear
and	run:

docker	run	--rm	-p	80:9080	-p	443:9443	-v	$(pwd)/java_web_hello_world.ear:/config/dropins/java_web_hello_world.ear	open-liberty:latest

The	default	context	root	is	the	basename	of	the	.war	or	.ear	file	unless	a	specific	context	root	has	been
configured.	In	this	example,	the	context	root	is	explicitly	configured	within	the	ear	to	/	so	access	this	example
at	http://localhost/

	

Adding	server.xml	Configuration

https://grafana.com/grafana/dashboards/11706
https://github.com/OpenLiberty/open-liberty-operator/tree/main/deploy/dashboards/metrics
https://github.com/WASdev/sample.dashboards/tree/master/Liberty/Elastic%20Stack%207
https://github.com/WASdev/sample.dashboards/tree/master/Liberty/OCP/Splunk%208
https://grafana.com/grafana/dashboards/14193-open-liberty-mpfaulttolerance-3-x/
https://www.ibm.com/docs/en/was-liberty/nd?topic=container-running-websphere-liberty-operator
https://github.com/OpenLiberty/open-liberty-operator/blob/master/doc/user-guide.adoc
http://localhost/
https://localhost/
https://github.com/kgibm/java_hello_world/
https://raw.githubusercontent.com/kgibm/java_web_hello_world/master/builds/java_web_hello_world.ear
http://localhost/

The	base	server.xml	configuration	may	be	specified	with	.xml	files	in	/config/configDropins/defaults/

Overriding	server.xml	configuration	may	be	specific	with	.xml	files	in	/config/configDropins/overrides/

"The	configuration	that	is	specified	in	the	configDropins/overrides	directory	takes	precedence	over	the
configuration	in	the	server.xml	file.	Configuration	specified	in	server.xml	file	takes	precedence	over
configuration	that	is	specified	in	the	configDropins/defaults	directory."
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_setup_dropins.html

	

Security

See	https://github.com/OpenLiberty/ci.docker/blob/master/SECURITY.md

	

Kubernetes

Configuration	Secrets

See	https://aguibert.github.io/openliberty-cheat-sheet/#_configuration_secrets

	

Installing	Fixes

How	to	apply	fixes	to	a	container:	https://github.com/WASdev/ci.docker/tree/master/ga/applying-ifixes

	

Containerfiles

OpenLiberty
WebSphere	Liberty

	

WebSphere	Application	Server	traditional	in	Containers

Recipe

1.	 Review	the	Java	in	Containers	recipes
2.	 Execute	/work/configure.sh	as	the	last	step	in	your	Containerfile
3.	 Review	the	WAS	traditional	recipes
4.	 Review	the	Java	recipe
5.	 Review	the	Operating	System	Recipes

	

Container	Images

IBM	Container	Registry:
WebSphere	Application	Server	traditional:	FROM	icr.io/appcafe/websphere-traditional
See	all	tags	with:

curl	-s	https://icr.io/v2/appcafe/websphere-traditional/tags/list	|	jq	.tags

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_setup_dropins.html
https://github.com/OpenLiberty/ci.docker/blob/master/SECURITY.md
https://aguibert.github.io/openliberty-cheat-sheet/#_configuration_secrets
https://github.com/WASdev/ci.docker/tree/master/ga/applying-ifixes
https://github.com/OpenLiberty/ci.docker
https://github.com/WASdev/ci.docker
https://github.com/WASdev/ci.docker.websphere-traditional#best-practices

DockerHub
WebSphere	Application	Server	traditional:	FROM	docker.io/ibmcom/websphere-traditional
See	all	WebSphere	Application	Server	traditional	tags	with:

curl	-L	-s	"https://registry.hub.docker.com/v2/repositories/ibmcom/websphere-traditional/tags?page=1&page_size=100"	|	jq	'.results[].name'

	

Resources

https://github.com/WASdev/ci.docker.tutorials
https://github.com/IBM/openshift-workshop-was
https://github.com/WASdev/ci.docker.websphere-traditional/blob/master/docker-
build/9.0.5.x/Dockerfile
https://github.com/WASdev/ci.docker.ibm-http-server/blob/master/production/Dockerfile.install

	

Migrating	from	tWAS

1.	 Download	the	Migration	Toolkit	for	Application	Binaries
2.	 Install:	java	-jar	binaryAppScannerInstaller.jar
3.	 Run	java	-jar	binaryAppScanner.jar	$WAS/config/cells/$CELL/applications/$APP.ear	--

targetAppServer=$SERVER	--generateConfig	and	use	the	resulting	wsadmin	script	in	place	of	the
install_app.py	script

	

Log	Analysis	Dashboards

WAS	traditional	provides	a	Kibana	dashboard	example.

	

Docker

Examples

WAS	traditional	on	Docker

Create	a	file	in	the	current	directory	named	PASSWORD	with	an	administrative	password	as	its	contents.	For
example:

wsadmin

Then	run:

docker	run	-p	9043:9043	-p	9443:9443	-v	$(pwd)/PASSWORD:/tmp/PASSWORD	-e	ENABLE_BASIC_LOGGING=true	ibmcom/websphere-traditional:latest

After	you	see	"open	for	e-business",	access	the	administrative	console	with	the	user	name	wsadmin	and	the
password	from	the	PASSWORD	file	at	https://localhost:9043/ibm/console/login.do?action=secure

Access	the	WebContainer	port	at	9443:	https://localhost:9443/snoop

	

Virtualization

https://hub.docker.com/r/ibmcom/websphere-traditional/
https://github.com/WASdev/ci.docker.tutorials
https://github.com/IBM/openshift-workshop-was
https://github.com/WASdev/ci.docker.websphere-traditional/blob/master/docker-build/9.0.5.x/Dockerfile
https://github.com/WASdev/ci.docker.ibm-http-server/blob/master/production/Dockerfile.install
https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration_Toolkit_for_Application_Binaries
https://github.com/arturdzm/ci.docker.websphere-traditional/tree/master/samples/hello-world
https://github.com/WASdev/sample.dashboards/blob/master/WAS/OCP/Kibana5/ibm-websphere-traditional-kibana5-dashboard.json
https://localhost:9043/ibm/console/login.do?action=secure
https://localhost:9443/snoop

Virtualization	Recipe
1.	 Do	not	overcommit	memory.
2.	 Use	hypervisor	utilities	to	monitor	resource	utilizations	in	addition	to	guest	utilities.
3.	 When	overcommitting	CPU,	take	care	just	as	you	would	when	running	multiple	processes	on	the	same

physical	CPU.
4.	 If	using	geographically	separated	data	centers,	measure	cross-data	center	latencies.

	

Key	Concepts
Virtualization	is	an	abstraction	or	a	masking	of	underlying	physical	resources	(such	as	a	server)
from	operating	system	images	or	instances	running	on	the	physical	resource.	By	abstracting	the
operating	system	from	the	underlying	hardware,	you	can	create	multiple	independent	or	isolated
OS	environments	on	a	given	set	of	hardware	and,	depending	on	the	virtualization	technology	in
use,	the	OS	environments	can	either	be	homogenous	or	heterogeneous.	This	capability	enables
the	consolidation	of	multiple	environments	on	a	single	server	that	are	dedicated	and	isolated
from	other	environments.

Application	virtualization...	addresses	application	level	workload,	response	time,	and	application
isolation	within	a	shared	environment.	A	prominent	example	of	an	application	virtualization
technology	is	WebSphere	Virtual	Enterprise	[(Intelligent	Management)].

Server	virtualization	enables	the	consolidation	of	physical	multiple	servers	into	virtual	servers	all
running	on	a	single	physical	server,	improving	the	resource	utilization	while	still	not	exceeding
capacity.	Additional	benefits	of	server	virtualization	include	savings	in	power,	cooling,	and	floor
space,	and	probably	lower	administrative	costs	as	well.

http://www.ibm.com/developerworks/websphere/techjournal/0805_webcon/0805_webcon.html

The	virtualization	system	is	called	the	hypervisor	or	host,	and	the	virtualized	system	running	on	top	of	the
hypervisor	is	called	the	guest.	"A	hypervisor	can	be	classified	into	two	types:	Type	1,	also	known	as	"native"
or	"bare	metal,"	where	the	hypervisor	is	the	operating	system	or	it's	integral	to	the	operating	system.
Examples	of	type	1	hypervisors	would	be	VMware	ESX	and	IBM	PowerVM	to	name	but	two.	Type	2	refers
to	"hosted"	or	"software	applications,"	where	the	hypervisor	is	an	application	running	on	the	operating
system.	Some	examples	include	VMware	Server,	VMware	Workstation,	and	Microsoft	Virtual	Server."
(http://www.ibm.com/developerworks/websphere/techjournal/1102_webcon/1102_webcon.html)

On	recent	versions	of	the	IBM	JVM,	if	you	have	very	short-lived	applications	in	a	dynamic,	cloud-like
environment	and	you're	experiencing	performance	problems,	consider	using	the	option	-Xtune:virtualized
(http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/Xtunevirtualized.html

Sometimes	it	is	difficult	to	prove	whether	or	not	a	guest	is	affected	by	other	guests.	If	possible,	move	or
duplicate	the	guest	to	a	similarly	sized	host	with	little	or	no	other	guest	activity	to	test	this	hypothesis.

In	general,	hypervisor	resource	statistics	(e.g.	CPUs,	memory,	etc.)	are	more	accurate	than	guest	statistics.

While	CPU	over-provisioning	may	be	tolerable,	memory	over-provisioning,	particularly	with	Java
applications,	is	not	recommended.

Consider	dedicating	memory	for	virtual	machines	and,	in	general,	avoid	spanning	CPU	sockets.

Ensure	sufficient	physical	resources	for	the	hypervisor	itself	(e.g.	CPUs).

Another	quote	from	a	senior	architect:

The	lure	of	improved	resource	utilization	is	what	leads	to	pitfalls	in	server	virtualization.	More

http://www.ibm.com/developerworks/websphere/techjournal/0805_webcon/0805_webcon.html
http://www.ibm.com/developerworks/websphere/techjournal/1102_webcon/1102_webcon.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/Xtunevirtualized.html

specifically,	over-committing	the	available	physical	resources	--	CPU	and	memory	--	in	an
attempt	to	maximize	server	utilization	is	what	leads	to	ineffective	virtualization!	In	order	to
effectively	utilize	server	virtualization,	it's	paramount	to	recognize	that	underlying	the	virtual
machines	is	a	set	of	finite	physical	resources,	and	once	the	limits	of	these	underlying	resources
are	reached,	performance	can	quickly	degrade.	While	it's	important	to	avoid	over-committing
any	physical	resource,	two	resources	in	particular	are	key	to	effective	virtualization:	CPU	and
physical	memory	(RAM).	As	a	result,	it	is	essential	to	avoid	over-committing	these	two
resources.	This	is	actually	no	different	than	in	a	"non-virtualized"	environment	or,	stated	another
way:	virtualization	doesn't	provide	additional	resources.

	

Guest	Mobility
Technologies	such	as	Power's	Live	Partition	Mobility	and	VMWare's	vMotion	can	dynamically	move	guests
between	hosts	while	running	and	performing	work	.	This	isn't	magic	and	it	involves	pausing	the	guest
completely	during	the	move.	In	addition,	workloads	with	a	high	rate	of	memory	references	may	have
continuing	effects	after	the	pause	due	to	memory	cache	hit	rates.	Other	variables	may	also	come	into	play
such	as	the	distance	of	host-to-host	communications	increasing	due	to	the	change	(e.g.	if	the	network
distance	increases,	or	if	two	hosts	shared	a	CPU	chip	or	NUMA	interconnects	and	then	one	moved	away,
etc.).

Depending	on	the	duration	of	the	pause,	guest	mobility	may	be	acceptable	similar	to	a	full	garbage	collection,
or	it	may	be	unacceptable	similar	to	memory	thrashing	or	excessive	CPU	overcommit.	In	general,	the	use	of
these	technologies	should	be	minimized	for	production	workloads	and	tested	extensively	to	make	sure	the
pauses	and	response	time	degradation	are	acceptable	in	the	context	of	service	level	requirements.	Internal
IBM	tests	have	shown	that	there	may	be	workload	pauses	and	throughput	decreases	associated	with	a	guest
move,	which	vary	based	on	the	factors	mentioned	above	and	may	or	may	not	be	acceptable	for	workloads
with	high	service	levels.

	

VMWare
Consider	for	a	moment	the	number	of	idle	or	under-utilized	servers	that	might	exist	in	a	typical
lab	or	data	center.	Each	of	these	systems	consumes	power,	rack	space,	and	time	in	the	form	of
maintenance	and	administration	overhead.	While	it	is	costly	to	allow	servers	to	remain	idle,	it's
also	unreasonable	in	most	cases	to	power	a	system	down.	Consolidation	through	virtualization
provides	a	solution	by	pooling	hardware	resources	and	scheduling	them	according	to	demand.	If
a	VM	has	idle	resources,	they	can	be	redirected	to	other	systems	where	they	are	needed.	Under
this	model	the	cost	of	idle	servers	can	be	minimized,	while	allowing	their	function	to	continue.

Various	scenarios	were	measured	to	demonstrate	the	performance	and	scalability	of	WebSphere
Application	Server	V8.5.5.1	within	VMware	ESXi	5.5	VMs	as	compared	to	on-the-metal
(OTM)	results	on	state-of-the-art	multi-core	hardware.	ESXi	performance	of	a	typical
WebSphere	Application	Server	application	was	generally	within	~15%	of	OTM	when	running
on	an	unsaturated	system.

Do	not	over	commit	memory	for	WebSphere	Application	Server	V8.5.5.1	VM	deployments.	It
is	critical	for	the	host	to	have	enough	physical	memory	for	all	the	VMs.	Over	committing
memory	in	this	scenario	can	result	in	drastic	performance	problems.

Over	committing	CPU	can	improve	both	density	and	performance	if	the	ESXi	host	is	not
saturated.	However,	if	the	host	is	saturated	then	this	could	result	in	an	incremental	performance
loss.	Response	times	steadily	increase	when	all	CPUs	are	heavily	loaded

OS	level	performance	statistics	within	a	VM	are	not	accurate.	Do	not	rely	on	these	statistics	for

http://www-01.ibm.com/support/knowledgecenter/POWER7/p7hc3/iphc3kickoff.htm
http://www.vmware.com/products/vsphere/features/vmotion

tuning/management.	ESX	provides	accurate	statistics	at	the	hypervisor	level.

To	achieve	the	optimal	configuration,	single	Instance	VMs	should	not	span	socket	boundaries...
If	a	single	VM	has	more	vCPUs	than	can	fit	within	a	single	socket,	consider	vertical	scaling	the
VMs	for	better	performance.	If	a	VM	needs	more	vCPUs	than	can	fit	inside	a	single	socket,	then
it	is	recommended	to	configure	the	VM	with	virtual	sockets	that	match	the	underlying	physical
sockets	architecture.

ftp://public.dhe.ibm.com/software/webservers/appserv/was/WASV8551_VMware_performance_2_17.pdf

	

esxtop

esxtop	shows	CPU	utilization	by	guest:

http://www.vmware.com/pdf/esx2_using_esxtop.pdf

	

vMotion

VMware	has	the	ability	to	perform	"live	migrations"	which	"allows	you	to	move	an	entire
running	virtual	machine	from	one	physical	server	to	another,	with	no	downtime."	(see
https://www.vmware.com/products/vsphere/vmotion.html)	However,	the	actual	movement	of
the	running	virtual	machine	can	affect	the	virtual	machine's	performance	especially	if	the	virtual
machine	is	moved	frequently.

Performance	Best	Practices	for	VMware:	http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.5.pdf

Consider	changing	the	latency	sensitivity	network	parameter.	In	one	benchmark,	the	latency-sensitive	option
decreased	response	times	by	31%	(http://www.vmware.com/files/pdf/techpaper/latency-sensitive-perf-
vsphere55.pdf).

Review	the	virtual	CPU	to	physical	CPU	mapping.	In	some	cases,	a	virtual	CPU	may	be	a	CPU	core	thread
rather	than	a	CPU	core.	Review	the	Operating	Systems	chapter	for	background	on	CPU	allocation.

	

Networking

ftp://public.dhe.ibm.com/software/webservers/appserv/was/WASV8551_VMware_performance_2_17.pdf
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.monitoring.doc/GUID-D89E8267-C74A-496F-B58E-19672CAB5A53.html
http://www.vmware.com/pdf/esx2_using_esxtop.pdf
https://www.vmware.com/products/vsphere/vmotion.html
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.5.pdf
http://www.vmware.com/files/pdf/techpaper/latency-sensitive-perf-vsphere55.pdf

Consider	network	drivers	such	as	VMXNET3	instead	of,	e.g.	E1000,	as	VMXNET3	spreads	soft	interrupts
across	all	CPUs	instead	of	just	one	as	in	E1000.	A	symptom	of	this	being	an	issue	is	high	"si"	(softirq)	CPU.

	

Large	Pages

Using	large	pages	improves	overall	SPECjbb2005	performance	by	8-10	percent...	[which]	comes
from	a	significant	reduction	in	L1	DTLB	misses...	ESX	Server	3.5	and	ESX	Server	3i	v3.5
enable	large	page	support	by	default.	When	a	virtual	machine	requests	a	large	page,	the	ESX
Server	kernel	tries	to	find	a	free	machine	large	page.

When	free	machine	memory	is	low	and	before	swapping	happens,	the	ESX	Server	kernel
attempts	to	share	identical	small	pages	even	if	they	are	parts	of	large	pages.	As	a	result,	the
candidate	large	pages	on	the	host	machine	are	broken	into	small	pages.	In	rare	cases,	you	might
experience	performance	issues	with	large	pages.	If	this	happens,	you	can	disable	large	page
support	for	the	entire	ESX	Server	host	or	for	the	individual	virtual	machine.

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/large_pg_performance.pdf

	

Ballooning

The	memory	balloon	driver	(vmmemctl)	collaborates	with	the	server	to	reclaim	pages	that	are
considered	least	valuable	by	the	guest	operating	system.	The	driver	uses	a	proprietary	ballooning
technique	that	provides	predictable	performance	that	closely	matches	the	behavior	of	a	native
system	under	similar	memory	constraints.	This	technique	increases	or	decreases	memory
pressure	on	the	guest	operating	system,	causing	the	guest	to	use	its	own	native	memory
management	algorithms.	When	memory	is	tight,	the	guest	operating	system	determines	which
pages	to	reclaim	and,	if	necessary,	swaps	them	to	its	own	virtual	disk.

If	necessary,	you	can	limit	the	amount	of	memory	vmmemctl	reclaims	by	setting	the
sched.mem.maxmemctl	parameter	for	a	specific	virtual	machine.	This	option	specifies	the
maximum	amount	of	memory	that	can	be	reclaimed	from	a	virtual	machine	in	megabytes	(MB).

http://pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp?
topic=/com.vmware.vsphere.resourcemanagement.doc_40_u1/managing_memory_resources/c_memory_balloon_driver.html

This	has	some	known	issues	on	Linux:	http://kb.vmware.com/selfservice/microsites/search.do?
language=en_US&cmd=displayKC&externalId=1003586

On	Linux,	if	the	sum	of	processes'	resident	memory	is	significantly	less	than	the	total	memory	used	(whether
from	free,	top,	or	meminfo)	-	i.e.	memory	used	minus	filecache,	minus	buffers,	minus	slab	-	then	this	may	be
ballooning.	There	have	been	cases	where	ballooning	can	cause	runaway	paging	and	spark	the	OOM	killer.

How	to	find	out	what	amount	of	memory	a	VMWare	balloon	driver	has	consumed	from	a	virtualized	server:
https://access.redhat.com/site/solutions/445113

	

Hyper-V
Review	common	Hyper-V	bottlenecks

	

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/large_pg_performance.pdf
http://pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp?topic=/com.vmware.vsphere.resourcemanagement.doc_40_u1/managing_memory_resources/c_memory_balloon_driver.html
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1003586
https://access.redhat.com/site/solutions/445113
https://learn.microsoft.com/en-us/windows-server/administration/performance-tuning/role/hyper-v-server/detecting-virtualized-environment-bottlenecks

Guest	Operating	Systems

Virtualized	Linux

The	vmstat	command	includes	an	"st"	column	that	reports	CPU	time	"stolen"	from	the	guest:	"st:	Time	stolen
from	a	virtual	machine.	Prior	to	Linux	2.6.11,	unknown."	(http://man7.org/linux/man-
pages/man8/vmstat.8.html).	This	is	also	available	in	the	top	command.

	

Cloud
Key	Concepts

1.	 Virtualization	by	itself	does	not	increase	capacity.	You	still	have	a	finite	amount	of	resources;	i.e.
CPU,	memory,	network,	disks,	etc.

Virtualization	may	allow	you	to	better,	and	more	effectively,	use	those	resources.
You	will	incur	some	overhead	for	the	hypervisor.
The	consequences	of	over	committing	memory	are	significantly	more	dramatic	than	that	of	CPU
resources

For	example,	in	the	PureApplication	Server	environment,	over	committing	memory	is	not
allowed

2.	 Other	tuning	concepts	outlined	in	this	Cookbook	should	also	be	adhered	to	when	running	in	a	virtual
environment	including

Operating	System
Java
Linux
Database
etc

3.	 Depending	on	your	runtime	environment,	virtualization	may	provide	you	with	the	ability	to	auto	scale
your	workload(s)	based	on	policy(s)	and	demand,	for	example:

PureApplication	Server
SoftLayer

4.	 Disk	drive	capacity	has	been	increasing	substantially	over	the	past	several	years.	It	is	not	unusual	to
see	disk	drives	with	storage	capacity	from	500	Megabytes	to	3	Terabytes	or	more.	However,	while
storage	capacity	has	certainly	increased,	IOPS	(Input-output	Operations	Per	Second)	has	not	come
close	to	keeping	pace,	particularly	for	Hard	Disk	Drives	(HDD's).	The	nature	of	virtualization	is	to	try
to	pack	as	many	VM's	(density)	as	possible	on	a	physical	compute	node.	Particular	attention	should	be
given	to	the	IOPS	requirements	of	these	VM's,	and	not	just	their	disk	storage	requirements.	Newer	disk
technology's,	like	Solid	State	Drives	(SSD's)	and	Flash	drives,	offer	significant	IOPS	improvements,
but	may,	or	may	not,	be	available	in	your	environment.	Some	environments	are	connected	to	SANs	(a
network	of	drives)	which	can	introduce	latency	to	a	virtual	machine	and	must	be	monitored	to	ensure
that	disk	I/O	time	is	acceptable	for	the	virtual	machine.	Any	lag	in	the	disk	I/O	latency	can	affect
applications	running	in	the	virtual	machine.	Applications	that	tend	to	log	a	lot	of	data	(error,	info,
audit,	etc)	can	suffer	performance	issues	if	the	latency	is	too	high.

	

Trends
1.	 The	cost	of	memory	outweighs	the	cost	of	CPU,	disk,	and	network	resources	in	cloud	environments.

This	is	pushing	many	customers	to	reduce	memory	usage	and	increase	CPU	usage.
2.	 Various	services	are	starting	to	be	provided	as	pay-per-use	API	calls.	This	is	pushing	many	customers

to	cache	the	results	of	expensive	API	calls.

http://man7.org/linux/man-pages/man8/vmstat.8.html

	

Scalability	and	Elasticity
Scalability	and	elasticity	for	virtual	application	patterns	in	IBM	PureApplication	System:
http://www.ibm.com/developerworks/websphere/techjournal/1309_tost/1309_tost.html

	

Databases
Here	is	a	list	of	databases	that	are	fully	tested	&	supported	with	WAS:
http://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/prereqsForProduct?
deliverableId=1318522073603

Terms:

Cardinality:	with	respect	to	tables,	the	number	of	rows	in	the	table.	With	respect	to	indexed	columns,
the	number	of	distinct	values	of	that	column	in	a	table.
Normalization	is	the	process	of	restructuring	a	data	model	by	reducing	its	relations	to	their	simplest
forms.	It	is	a	key	step	in	the	task	of	building	a	logical	relational	database	design.	Normalization
reduces	redundancy	from	your	data	and	can	improve	the	performance	of	update	and	delete	statements,
since	you	only	have	to	do	it	in	one	place.	By	normalizing	your	data,	you	try	to	ensure	that	all	columns
in	the	table	depend	on	the	primary	key.	The	disadvantage	of	a	fully	normalized	data	structure	is	in	data
retrieval	operations,	specifically	when	a	query	is	accessing	a	large	number	of	related	pieces	of	data
from	different	tables	via	join	operations.	For	more	information	about	Normalization,	author	C.J.	Date
is	one	of	the	better	resources.
Denormalization	is	the	intentional	duplication	of	columns	in	multiple	tables	whose	consequence	is
increased	data	redundancy.	Denormalization	is	sometimes	necessary	to	minimize	performance
problems	and	is	a	key	step	in	designing	a	physical	relational	database	design.

	

Sub-chapters
IBM	DB2
Oracle	Database
Apache	Derby
Other	Databases

	

IBM	DB2

IBM	DB2	Recipe

1.	 Create	a	pressure	valve	with	WLM
2.	 Ensure	that	the	version	of	the	DB2	driver	matches	the	DB2	backend	version.	Note	that	higher	level

JDBC	drivers	are	compatible	with	lower	level	DB2	servers.
3.	 Before	DB2	driver	version	4.26.17,	set	-Ddb2.jcc.override.timerLevelForQueryTimeOut=2
4.	 On	AIX,	use	MALLOCOPTIONS=buckets,multiheap
5.	 Gather	db2pd	-stack	all	during	issue	times.

	

http://www.ibm.com/developerworks/websphere/techjournal/1309_tost/1309_tost.html
http://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/prereqsForProduct?deliverableId=1318522073603
https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads
https://www.ibm.com/support/pages/malloc-heap-contention-may-cause-performance-degradation-when-using-db2-aix-specific-features

DB2	JCC	Driver

General	JCC	Recommendations

Ensure	that	the	version	of	the	DB2	driver	matches	the	DB2	backend	version.	Note	that	higher	level	JDBC
drivers	are	compatible	with	lower	level	DB2	servers.

	

Read	Timeout

Set	a	read	timeout	with	blockingReadConnectionTimeout	(defaults	to	unlimited):

blockingReadConnectionTimeout:	The	amount	of	time	in	seconds	before	a	connection	socket
read	times	out.	This	property	applies	only	to	IBM	Data	Server	Driver	for	JDBC	and	SQLJ	type	4
connectivity,	and	affects	all	requests	that	are	sent	to	the	data	source	after	a	connection	is
successfully	established.	The	default	is	0.	A	value	of	0	means	that	there	is	no	timeout.

	

timerLevelForQueryTimeOut

For	both	type	2	and	type	4	drivers,	before	version	4.26.17,	the	default	timerLevelForQueryTimeOut	of
QUERYTIMEOUT_STATEMENT_LEVEL	(1)	creates	a	timer	object	for	each	statement	execution	when	there	is	a
non-zero	timeout	and	this	may	have	a	large	performance	impact.	The	alternative	is	to	create	a	single	timer
object	for	each	connection	with	-Ddb2.jcc.override.timerLevelForQueryTimeOut=2.	In	one	case,	this
improved	performance	by	65%.	Changing	the	default	means	holding	the	timer	and	related	memory	for	longer
for	each	connection	in	a	connection	pool,	but	this	is	an	acceptable	cost	for	most	customers	for	the	improved
performance.

The	main	symptom	of	this	is	that	thread	dumps	will	show	many	threads	with	stack	tops	in
java/lang/Thread.startImpl	called	from	com/ibm/db2	code.	For	example:

3XMTHREADINFO						"WebContainer	:	433"	J9VMThread:0x000000003765AA00,	j9thread_t:0x000001004F74D8C0,	java/lang/Thread:0x0000000591475000,	state:R,	prio=5
3XMJAVALTHREAD												(java/lang/Thread	getId:0x4FC,	isDaemon:true)
3XMTHREADINFO1												(native	thread	ID:0x62E0445,	native	priority:0x5,	native	policy:UNKNOWN,	vmstate:CW,	vm	thread	flags:0x00000001)
3XMCPUTIME															CPU	usage	total:	221.008744000	secs,	user:	205.519645000	secs,	system:	15.489099000	secs,	current	category="Application"
3XMHEAPALLOC													Heap	bytes	allocated	since	last	GC	cycle=131072	(0x20000)
3XMTHREADINFO3											Java	callstack:
4XESTACKTRACE																at	java/lang/Thread.startImpl(Native	Method)
4XESTACKTRACE																at	java/lang/Thread.start(Thread.java:948(Compiled	Code))
5XESTACKTRACE																			(entered	lock:	java/lang/Thread$ThreadLock@0x0000000692FA3730,	entry	count:	1)
5XESTACKTRACE																			(entered	lock:	java/util/TimerThread@0x0000000692FA3698,	entry	count:	1)
4XESTACKTRACE																at	java/util/Timer.<init>(Timer.java:187(Compiled	Code))
4XESTACKTRACE																at	java/util/Timer.<init>(Timer.java:157(Compiled	Code))
4XESTACKTRACE																at	com/ibm/db2/jcc/am/wo.a(wo.java:5151(Compiled	Code))
4XESTACKTRACE																at	com/ibm/db2/jcc/am/wo.ec(wo.java:5275(Compiled	Code))
4XESTACKTRACE																at	com/ibm/db2/jcc/am/xo.b(xo.java:4191(Compiled	Code))
4XESTACKTRACE																at	com/ibm/db2/jcc/am/xo.jc(xo.java:760(Compiled	Code))
4XESTACKTRACE																at	com/ibm/db2/jcc/t4/j.jc(j.java:134(Compiled	Code))
4XESTACKTRACE																at	com/ibm/db2/jcc/am/xo.executeQuery(xo.java:725(Compiled	Code))
5XESTACKTRACE																			(entered	lock:	com/ibm/db2/jcc/t4/b@0x000000063157C588,	entry	count:	1)

Starting	with	DB2	driver	version	4.26.17,	the	default	has	been	changed	to	-
Ddb2.jcc.override.timerLevelForQueryTimeOut=2

	

Keep-alive

https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads
https://www.ibm.com/docs/en/db2/11.5?topic=pdsdjs-common-data-server-driver-jdbc-sqlj-properties-all-database-products
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_r0021822.html
https://www.ibm.com/support/pages/apar/IT30972
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_r0053795.html

It	seems	that	the	DB2	JDBC	driver	does	enable	keepalive:	https://www-01.ibm.com/support/docview.wss?
uid=swg21231084

DB2	sets	the	TCP/IP	keepalive	setting	on	both	the	client	and	server	by	default.

	

DB2	on	z/OS

Collect	and	archive	SMF	100-102	records.	During	a	sustained	issue,	gather	a	console	dump	of	the	4	Db2
address	spaces	(DBM1,	DIST,	MSTR,	IRLM).

	

Type	2	vs	Type	4

Type	2	is	native	(with	an	"inability	to	offload	[most]	Type	2	work	to	zAAP"	although	some	may	be
offloaded	after	APAR	OA29015)	and	type	4	is	mostly	Java,	therefore,	type	4	may	use	zIIPs/zAAPs;
however,	type	2	may	outperform	type	4	with	similar	GCP	usage	(or	lower	in	the	case	of	DB2	on	a	remote
LPAR)	because	of	its	use	of	cross-memory	technology	and	because	type	4's	usage	of	TCP	drives	GCP.
Additional	details:

[Type	4]	TCP	communications	may	be	done	all	within	the	same	LPAR	(as	done	in	this	study)
[...]	Summary	of	Results:

The	use	of	Type	4	resulted	in	more	total	processor	usage	than	Type	2.
The	overall	general	processor	(CP)	usage	showed	Type	2	and	Type	4	to	be	approximately
equal.
Performance	enhancements	in	the	JDBC	Type	2	driver	now	make	it	equal	or	better	than
the	Type	4.

	

Native	Memory	Usage

The	type	2	DB2	driver	mostly	uses	native	memory	below	the	2GB	bar	(except	LBF)	and	this	usage	may
compete	for	JVM	under-the-2GB-bar	storage	required	for	some	data	structures	when	using	compressed
references.	Alternatively,	the	type	4	driver	is	pure	Java	and	does	not	directly	use	native	memory	below	the
bar.	Note	that	some	DB2	client-side	application	functions	may	require	the	type	2	driver,	although	these
functions	are	generally	more	obscure	and	not	used	by	applications.	In	some	cases,	the	type	4	driver	may
perform	worse	as	it	does	more	processing	as	part	of	the	DRDA	communication	protocol	and	TCP/IP	whereas
a	type	2	driver	can	use	cross-memory	calls	if	it's	on	the	same	LPAR	as	DB2.

	

Server

Display	configuration:	db2	get	db	cfg

DB2	Self-tuning:	db2	autoconfigure	apply	db	and	dbm

Review	the	DB2	tuning	(software	&	hardware)	in	the	latest	SPECjEnterprise	results	submitted	by	IBM:
http://www.spec.org/jEnterprise2010/results/res2013q2/jEnterprise2010-20130402-00042.html

Located	in	the	DB2	Control	Center,	[the	DB2	configuration]	advisor	calculates	and	displays
recommended	values	for	the	DB2	buffer	pool	size,	the	database,	and	the	database	manager
configuration	parameters,	with	the	option	of	applying	these	values.	See	more	information	about
the	advisor	in	the	online	help	facility	within	the	Control	Center.

https://www-01.ibm.com/support/docview.wss?uid=swg21231084
https://www.ibm.com/docs/en/db2-for-zos/13?topic=ipdsa-db2-address-spaces-involved-in-distributed-data-processing
https://www.ibm.com/support/pages/system/files/inline-files/WP101476_-_WebSphere_zOS_-_The_Value_of_Co-Location.pdf#page=6
https://www.ibm.com/support/pages/system/files/inline-files/WP101476_-_WebSphere_zOS_-_The_Value_of_Co-Location.pdf#page=13
https://www.ibm.com/support/pages/system/files/inline-files/WP101476-2_-_Value_of_Co-Location_Update.pdf
https://www.ibm.com/support/pages/system/files/inline-files/WP101476_-_WebSphere_zOS_-_The_Value_of_Co-Location.pdf#page=11
https://www.ibm.com/support/pages/system/files/inline-files/WP101476_-_WebSphere_zOS_-_The_Value_of_Co-Location.pdf
http://www.spec.org/jEnterprise2010/results/res2013q2/jEnterprise2010-20130402-00042.html

When	configuring	the	data	source	settings	for	the	databases,	confirm	the	DB2	MaxAppls	setting
is	greater	than	the	maximum	number	of	connections	for	the	data	source.	If	you	are	planning	to
establish	clones,	set	the	MaxAppls	value	as	the	maximum	number	of	connections	multiplied	by
the	number	of	clones.	The	same	relationship	applies	to	the	session	manager	number	of
connections.	The	MaxAppls	setting	must	be	equal	to	or	greater	than	the	number	of	connections.
If	you	are	using	the	same	database	for	session	and	data	sources,	set	the	MaxAppls	value	as	the
sum	of	the	number	of	connection	settings	for	the	session	manager	and	the	data	sources.

For	example,	MaxAppls	=	(number	of	connections	set	for	the	data	source	+	number	of
connections	in	the	session	manager)	multiplied	by	the	number	of	clones.

After	calculating	the	MaxAppls	settings	for	the	WebSphere	Application	Server	database	and
each	of	the	application	databases,	verify	that	the	MaxAgents	setting	for	DB2	is	equal	to	or
greater	than	the	sum	of	all	of	the	MaxAppls	values.	For	example,	MaxAgents	=	sum	of
MaxAppls	for	all	databases.

For	systems	with	multiple	hard	disk	drives,	you	can	gain	large	performance	improvements	by
setting	the	log	files	for	each	database	on	a	different	hard	drive	from	the	database	files.

How	to	view	or	set:	At	a	DB2	command	prompt,	issue	the	command:	db2	update	db	cfg	for
[database_name]	using	newlogpath	[fully_qualified_path].

Recommended	value:	Use	a	separate	high-speed	drive,	preferably	performance	enhanced
through	a	redundant	array	of	independent	disk	(RAID)	configuration.

If	lock	escalations	are	causing	performance	concerns,	you	might	need	to	increase	the	value	of
[maxlocks]	or	the	locklist	parameter...	You	can	use	the	database	system	monitor	to	determine	if
lock	escalations	are	occurring.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_db2parameters.html

Maintain	current	indexes	on	tables:	utilize	the	DB2	Design	Advisor	(available	from	the
DB2	Control	Center,	or	command	line)	to	help	determine	indexes	that	could	improve
performance.
Update	catalog	statistics:	DB2	uses	these	to	optimize	access	to	key	tables.	The	easiest	way
to	maintain	statistics	is	via	the	DB2	Automatic	Table	Maintenance	feature,	which	runs	the
RUNSTATS	command	in	the	background	as	required	to	ensure	that	the	correct	statistics
are	collected	and	maintained.	By	default,	this	feature	is	not	enabled.	It	may	be	turned	on
from	the	DB2	Control	Center.
Set	buffer	pool	size	correctly:	a	buffer	pool	is	an	area	of	memory	into	which	database
pages	are	read,	modified,	and	held	during	processing;	accessing	pages	from	the	buffer
pool	is	much	faster	than	accessing	pages	from	physical	devices.	To	choose	appropriate
buffer	pool	size	settings,	monitor	database	container	I/O	activity,	by	using	system	tools	or
by	using	DB2	buffer	pool	snapshots.	Be	careful	to	avoid	configuring	large	buffer	pool	size
settings	which	lead	to	paging	activity	on	the	system.

https://w3quickplace.lotus.com/QuickPlace/wasperf/PageLibrary852569AF00670F15.nsf/$defaultview/1CCEB50DD9A9C561852576030042A65C/$File/WebSphere%20BPM%206.2%20How%20To%20Win%20Performance%20POCs.pdf?
OpenElement

Put	frequently	updated	columns	together	and	at	the	end	of	the	row.	This	has	an	effect	on	update	performance
due	to	the	following	logging	considerations:	For	fixed	length	row	updates,	DB2	logs	from	the	first	changed
column	to	the	last	changed	column.	For	variable	length	row	updates,	DB2	logs	from	the	first	changed	byte	to
the	end	of	the	row.	If	the	length	of	a	variable	length	column	changes,	this	will	result	in	a	change	to	the	row
header	(which	includes	the	row	length),	and	thus	the	entire	row	will	be	logged.

	

Query	Execution	Times

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_db2parameters.html
https://w3quickplace.lotus.com/QuickPlace/wasperf/PageLibrary852569AF00670F15.nsf/$defaultview/1CCEB50DD9A9C561852576030042A65C/$File/WebSphere%20BPM%206.2%20How%20To%20Win%20Performance%20POCs.pdf?OpenElement

To	get	per-query	execution	times,	create	a	DB2	event	monitor	(note	on	the	create	event	monitor	command,
single	quotes	around	the	path	are	required):

$	mkdir	$PATH
$	chmod	777	$PATH
$	db2	connect	to	<db_name>	user	<inst_user>	using	<password>
$	db2	"create	event	monitor	$NAME	for	statements	write	to	file	'$PATH'"
$	db2	"set	event	monitor	$NAME	state	1"

To	disable	an	event	monitor:

$	db2	"set	event	monitor	$NAME	state	0"

To	process	event	monitor	data	to	a	human	readable	form:

$	db2evmon	-path	$PATH	>	commands.out

To	list	all	event	monitors:

$	db2	"select	*	from	SYSCAT.EVENTMONITORS"

To	completely	delete	an	event	monitor:

$	db2	"drop	event	monitor	$NAME"

Example	of	a	single	query	execution	from	db2evmon	output:

Statement	Event	...
		Text					:	select	id,symbol	from	MYTABLE
		Start	Time:	02-09-2010	18:21:46.159875
		Stop	Time:		02-09-2010	18:21:46.164743
		Exec	Time:		0.004868	seconds...

	

Tablespaces

A	tablespace	is	a	physical	storage	object	that	provides	a	level	of	indirection	between	a	database	and	the	tables
stored	within	the	database.	It	is	made	up	of	a	collection	of	containers	into	which	database	objects	are	stored.
A	container	is	an	allocation	of	space	to	a	table	space.	Depending	on	the	table	space	type,	the	container	can	be
a	directory,	device,	or	file.

System	Managed	Space	(SMS):	stores	data	in	operating	system	files.	They	are	an	excellent	choice	for
general	purposes	use.	They	provide	good	performance	with	little	administration	cost.

Database	Managed	Space	(DMS):	with	database-managed	space	(DMS)	table	spaces,	the	database	manager
controls	the	storage	space.

DMS	tablespaces	usually	perform	better	than	SMS	tablespaces	because	they	are	pre-allocated	and	do	not
have	to	spend	time	extending	files	when	new	rows	are	added.	DMS	tablespaces	can	be	either	raw	devices	or
file	system	files.	DMS	tablespaces	in	raw	device	containers	provide	the	best	performance	because	double
buffering	does	not	occur.	Double	buffering,	which	occurs	when	data	is	buffered	first	at	the	database	manager
level	and	then	at	the	file	system	level,	might	be	an	additional	cost	for	file	containers	or	SMS	table	spaces.

If	you	use	SMS	tablespaces,	consider	using	the	db2empfa	command	on	your	database.	The	db2empfa
(Enable	Multipage	File	Allocation)	tool	enables	the	use	of	multipage	file	allocation	for	a	database.	With
multipage	file	allocation	enabled	for	SMS	table	spaces,	disk	space	is	allocated	one	extent	rather	than	one
page	at	a	time,	improving	INSERT	throughput.

$	db2	"LIST	TABLESPACES	SHOW	DETAIL"

	

Buffer	Pools

There	is	no	definitive	answer	to	the	question	of	how	much	memory	you	should	dedicate	to	the	buffer	pool.
Generally,	more	is	better.	A	good	rule	of	thumb	would	be	to	start	with	about	75%	of	your	system's	main
memory	devoted	to	buffer	pool(s),	but	this	rule	is	applicable	only	if	the	machine	is	a	dedicated	database
server.

If	your	tablespaces	have	multiple	page	sizes,	then	you	should	create	one	buffer	pool	for	each	page	size.

Buffpage	is	a	database	configuration	parameter.	A	buffer	pool	is	a	memory	storage	area	where
database	pages	containing	table	rows	or	index	entries	are	temporarily	read	and	changed.	Data	is
accessed	much	faster	from	memory	than	from	disk.

How	to	view	or	set:	To	view	the	current	value	of	buffpage	for	database	x,	issue	the	DB2	command	get	db	cfg	for	x	and	look	for	the	value	BUFFPAGE.	To	set	BUFFPAGE	to	a	value	of	n,	issue	the	DB2	command	update	db	cfg	for	x	using	BUFFPAGE	n	and	set	NPAGES	to	-1	as	follows:		

db2			\<--	go	to	DB2	command	mode,	otherwise	the	following	"select"	does	not	work	as	is		
				connect	to	x				\<--	(where	x	is	the	particular	DB2	database	name)		
				select	*	from	syscat.bufferpools		
							(and	note	the	name	of	the	default,	perhaps:	IBMDEFAULTBP)		
							(if	NPAGES	is	already	-1,	there	is	no	need	to	issue	following	command)		
				alter	bufferpool	IBMDEFAULTBP	size	-1		
				(re-issue	the	above	"select"	and	NPAGES	now	equals	-1)		

You	can	collect	a	snapshot	of	the	database	while	the	application	is	running	and	calculate	the	buffer	pool	hit	ratio	as	follows:		
				Collect	the	snapshot:		
								Issue	the	update	monitor	switches	using	bufferpool	on	command.		
								Make	sure	that	bufferpool	monitoring	is	on	by	issuing	the	get	monitor	switches	command.		
								Clear	the	monitor	counters	with	the	reset	monitor	all	command.		
				Run	the	application.		
				Issue	the	get	snapshot	for	all	databases	command	prior	to	all	applications	disconnect	from	the	database,	otherwise	statistics	are	lost.		
				Issue	the	update	monitor	switches	using	bufferpool	off	command.		
				Calculate	the	hit	ratio	by	looking	at	the	following	database	snapshot	statistics:		
								Buffer	pool	data	logical	reads		
								Buffer	pool	data	physical	reads		
								Buffer	pool	index	logical	reads		
								Buffer	pool	index	physical	reads		
Default	value:	250		
Recommended	value:	Continue	increasing	the	value	until	the	snapshot	shows	a	satisfactory	hit	rate.		

The	buffer	pool	hit	ratio	indicates	the	percentage	of	time	that	the	database	manager	did	not	need
to	load	a	page	from	disk	to	service	a	page	request.	That	is,	the	page	is	already	in	the	buffer	pool.
The	greater	the	buffer	pool	hit	ratio,	the	lower	the	frequency	of	disk	input	and	output.	Calculate
the	buffer	pool	hit	ratio	as	follows:

P	=	buffer	pool	data	physical	reads	+	buffer	pool	index	physical	reads		
L	=	buffer	pool	data	logical	reads	+	buffer	pool	index	logical	reads		
Hit	ratio	=	(1-(P/L))	*	100%

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_db2parameters.html

	

Indexing

An	index	is	a	set	of	keys,	each	pointing	to	a	row,	or	rows	in	a	table.	An	index	serves	to	ensure	uniqueness,	as
in	the	case	of	Primary	Key,	and	to	allow	more	efficient	access	to	rows	in	a	table	by	creating	a	direct	path	to
the	data	through	pointers.	The	SQL	optimizer	automatically	chooses	the	most	efficient	way	to	access	data	in
tables.	The	optimizer	takes	indexes	into	consideration	when	determining	the	fastest	access	path	to	data.

An	index	will	impact	disk	storage	usage,	insert	and	delete	processing,	and	database	maintenance.

The	intent	of	a	clustering	index	is	so	that	the	sequence	of	key	values	closely	corresponds	to	the	sequence	of
rows	stored	in	a	table.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_db2parameters.html

Create	as	few	indexes	as	possible.	Consider	creating	the	INDEXES	with	the	"ALLOW	REVERSE	SCANS"
option.	Pay	close	attention	to	the	order	of	the	columns	in	the	index.	Don't	create	redundant	indexes.	Use	DB2
"Explain"	facilities	to	determine	the	actual	usage	of	the	indexes.

	

Logging

One	of	the	main	purposes	of	all	database	systems	is	to	maintain	the	integrity	of	your	data.	All	databases
maintain	log	files	that	keep	records	of	database	changes.	DB2	logging	consists	of	a	set	of	primary	and
secondary	log	files	that	contain	log	records	that	record	all	changes	to	a	database.	The	database	log	is	used	to
roll	back	changes	for	units	of	work	that	are	not	committed	and	to	recover	a	database	to	a	consistent	state.
DB2	provides	two	logging	strategy	choices.

Circular	logging	is	the	default	log	mode.	With	circular	logging,	the	log	records	fill	the	log	files	and	then
overwrite	the	initial	log	records	in	the	initial	log	file.	The	overwritten	log	records	are	not	recoverable.	This
type	of	logging	is	typically	not	suited	for	a	production	application.

Log	Retain	logging	is	a	setting	where	a	log	is	archived	when	it	fills	with	log	records.	New	log	files	are	made
available	for	log	records.	Retaining	log	files	enables	roll-forward	recovery.	Roll-forward	recovery	reapplies
changes	to	the	database	based	on	completed	units	of	work	(transactions)	that	are	recorded	in	the	log.	You	can
specify	that	roll-forward	recovery	is	to	the	end	of	the	logs,	or	to	a	particular	point	in	time	before	the	end	of
the	logs.	Archived	log	files	are	never	directly	deleted	by	DB2,	therefore,	it	is	the	applications'	responsibility
to	maintain	them;	i.e.	archive,	purge,	etc.

Placement	of	the	log	files	needs	to	be	optimized,	not	only	for	write	performance,	but	also	for	read
performance,	because	the	database	manager	will	need	to	read	the	log	files	during	database	recovery.

Increase	the	size	of	the	database	configuration	Log	Buffer	parameter	(logbufsz).	This	parameter	specifies	the
amount	of	the	database	heap	to	use	as	a	buffer	for	log	records	before	writing	these	records	to	disk.

Buffering	the	log	records	will	result	in	more	efficient	logging	file	I/O	because	the	log	records	will	be	written
to	disk	less	frequently,	and	more	log	records	will	be	written	at	each	time.

	

Reorg

SQL	statement	performance	can	deteriorate	after	many	updates,	deletes	or	inserts.

Use	the	DB2	reorgchk	update	statistics	on	table	all	command	to	perform	the	runstats	operation
on	all	user	and	system	tables	for	the	database	to	which	you	are	currently	connected.	Rebind
packages	using	the	bind	command.	If	statistics	are	available,	issue	the	db2	-v	"select	tbname,
nleaf,	nlevels,	stats_time	from	sysibm.sysindexes"	command	on	DB2	CLP.	If	no	statistic	updates
exist,	nleaf	and	nlevels	are	-1,	and	stats_time	has	an	empty	entry	(for	example:	"-").	If	the
runstats	command	was	previously	run,	the	real-time	stamp	from	completion	of	the	runstats
operation	also	displays	under	stats_time.	If	you	think	the	time	shown	for	the	previous	runstats
operation	is	too	old,	run	the	runstats	command	again.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_db2parameters.html

	

Runstats

The	DB2	optimizer	uses	information	and	statistics	in	the	DB2	catalog	in	order	to	determine	the	best	access	to
the	database	based	on	the	query	provided.	Statistical	information	is	collected	for	specific	tables	and	indexes
in	the	local	database	when	you	execute	the	RUNSTATS	utility.	When	significant	numbers	of	table	rows	are

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_db2parameters.html

added	or	removed,	or	if	data	in	columns	for	which	you	collect	statistics	is	updated,	execute	RUNSTATS
again	to	update	the	statistics.

After	running	RUNSTATS	on	your	database	tables,	you	need	to	rebind	your	applications	to	take	advantage
of	those	new	statistics.	This	is	done	to	ensure	the	best	access	plan	is	being	used	for	your	SQL	statements.	To
clear	the	contents	of	the	SQL	cache,	use	the	FLUSH	PACKAGE	CACHE	sql	statement.

	

Explain

Explain	allows	you	to	capture	information	about	the	access	plan	chosen	by	the	optimizer	as	well	as
performance	information	that	helps	you	tune	queries.	Before	you	can	capture	explain	information,	you	need
to	create	the	relational	tables	in	which	the	optimizer	stores	the	explain	information	and	you	set	the	special
registers	that	determine	what	kind	of	explain	information	is	captured.

db2	ttf	EXPLAIN.DDL	(located	in	sqllib/misc	directory)
db2exfmt"	this	command	line	tool	is	used	to	display	explain	information	in	preformatted	output.

db2expln	and	dynexpln:	these	command	line	tools	are	used	to	see	the	access	plan	information	available	for
one	or	more	packages	of	static	SQL	statements.	Db2expln	shows	the	actual	implementation	of	the	chosen
access	plan.	It	does	not	show	optimizer	information.	The	dynexpln	tool,	which	uses	db2expln	within	it,
provides	a	quick	way	to	explain	dynamic	SQL	statements	that	contain	no	parameter	markers.	This	use	of
db2expln	from	within	dynexpln	is	done	by	transforming	the	input	SQL	statement	into	a	static	statement
within	a	pseudo-package.	When	this	occurs,	the	information	may	not	always	be	completely	accurate.	If
complete	accuracy	is	desired,	use	the	explain	facility.	The	db2expln	tool	does	provide	a	relatively	compact
and	English-like	overview	of	what	operations	will	occur	at	run-time	by	examining	the	actual	access	plan
generated.

	

Isolation	Levels

An	isolation	level	determines	how	data	is	locked	or	isolated	from	other	processes	while	the	data	is	being
accessed.	The	isolation	level	will	be	in	effect	for	the	duration	of	the	unit	of	work.	DB2	supports	the	following
isolation	levels,	listed	in	order	of	most	restrictive	to	least	restrictive:

1.	 Repeatable	Read	-	An	isolation	level	that	locks	all	the	rows	in	an	application	that	are	referenced	within
a	transaction.	When	a	program	uses	repeatable	read	protection,	rows	referenced	by	the	program	cannot
be	changed	by	other	programs	until	the	program	ends	the	current	transaction.

2.	 Read	Stability	-	An	isolation	level	that	locks	only	the	rows	that	an	application	retrieves	within	a
transaction.	Read	stability	ensures	that	any	qualifying	row	that	is	read	during	a	transaction	is	not
changed	by	other	application	processes	until	the	transaction	is	completed,	and	that	any	row	changed	by
another	application	process	is	not	read	until	the	change	is	committed	by	that	process.

3.	 Cursor	Stability	-	An	isolation	level	that	locks	any	row	accessed	by	a	transaction	of	an	application
while	the	cursor	is	positioned	on	the	row.	The	lock	remains	in	effect	until	the	next	row	is	fetched	or
the	transaction	is	terminated.	If	any	data	is	changed	in	a	row,	the	lock	is	held	until	the	change	is
committed	to	the	database

4.	 Uncommitted	Read	-	An	isolation	level	that	allows	an	application	to	access	uncommitted	changes	of
other	transactions.	The	application	does	not	lock	other	applications	out	of	the	row	that	it	is	reading,
unless	the	other	application	attempts	to	drop	or	alter	the	table.	Sometimes	referred	to	as	"Dirty	Reads"

	

Lock	Timeouts

To	view	the	current	value	of	the	lock	timeout	property	for	database	xxxxxx,	issue	the	DB2	get
db	cfg	for	xxxxxx	command	and	look	for	the	value	LOCKTIMEOUT.	To	set	LOCKTIMEOUT

to	a	value	of	n,	issue	the	DB2	update	db	cfg	for	xxxxxx	command	using	LOCKTIMEOUT	n,
where	xxxxxx	is	the	name	of	the	application	database	and	n	is	a	value	between	0	and	30	000
inclusive.

Default	value:	-1,	meaning	lock	timeout	detection	is	turned	off.	In	this	situation,	an	application
waits	for	a	lock	if	one	is	not	available	at	the	time	of	the	request,	until	either	the	lock	is	granted
or	a	deadlock	occurs.

Recommended	value:	If	your	database	access	pattern	tends	toward	a	majority	of	writes,	set	this
value	so	that	it	gives	you	early	warning	when	a	timeout	occurs.	A	setting	of	30	seconds	suits	this
purpose.	If	your	pattern	tends	toward	a	majority	of	reads,	either	accept	the	default	lock	timeout
value,	or	set	the	property	to	a	value	greater	than	30	seconds.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_db2parameters.html

If	lock	escalations	occur	frequently,	increase	the	value	of	either	locklist	or	maxlocks,	or	both.

	

Query	Tuning

Use	the	OPTIMIZE	FOR	n	ROWS	clause	to	give	priority	to	retrieving	the	first	n	rows	in	the	full	result	set.

Use	the	FETCH	FIRST	n	ROWS	ONLY	clause	to	retrieve	only	a	specified	number	of	rows.	Take	advantage
of	row	blocking,	by	specifying	the	FOR	READ	ONLY,	FOR	FETCH	ONLY,	OPTIMIZE	FOR	n	ROWS
clause,	or	if	you	declare	your	cursor	as	SCROLLing.	This	will	improve	performance,	and,	in	addition,
improve	concurrency	because	exclusive	locks	are	never	held	on	the	rows	retrieved.

Consider	the	use	of	APPEND	MODE

Insert	multiple	rows	with	one	INSERT	statement

	

Disk

A	database	that	would	have	taken	36	*	1	GB	drives	a	number	of	years	ago	can	now	be	placed	on	one	disk.
This	highlights	the	database	I/O	problems.	For	example,	if	each	1	GB	disk	drive	can	do	80	I/O	operations	a
second,	this	means	the	system	can	do	a	combined	36	*	80	=	2880	I/O	operations	per	second.	But	a	single	36
GB	drive	with	a	seek	time	of	7	ms	can	do	only	140	I/O	operations	per	second.	While	increased	disk	drive
capacity	is	good	news,	the	lower	numbers	of	disks	cannot	deliver	the	same	I/O	throughput.

	

WLM	Pressure	Valve

1.	 Enable	WLM	for	the	correct	USER	and	application	name	(replace	$initialconcurrency):

CREATE	SERVICE	CLASS	SC1;
CREATE	WORKLOAD	wl1	SESSION_USER('MYUSER')	APPLNAME('db2jcc_application')	SERVICE	CLASS	SC1;
GRANT	USAGE	ON	WORKLOAD	wl1	TO	PUBLIC;
CREATE	THRESHOLD	"MYDB_ABNORMAL_WORKLOAD_CONCURRENCY"	FOR	SERVICE	CLASS	SC1
ENFORCEMENT	DATABASE
WHEN	CONCURRENTDBCOORDACTIVITIES	>	$initialconcurrency
COLLECT	ACTIVITY	DATA
CONTINUE;

2.	 When	needed,	dynamically	increase	or	reduce	pressure	by	changing	CONCURRENTDBCOORDACTIVITIES
(replace	$newvalue):

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/rprf_db2parameters.html

ALTER	THRESHOLD	"MYDB_ABNORMAL_WORKLOAD_CONCURRENCY"	WHEN	CONCURRENTDBCOORDACTIVITIES	>	$newvalue	CONTINUE;

	

DB2	Configuration

Number	of	asynchronous	page	cleaners	(NUM_IOCLEANERS)	-	This	parameter	controls	the	number	of
page	cleaners	that	write	changed	pages	from	the	buffer	pool	to	disk.	You	may	want	to	increase	this	to	the
number	of	physical	disk	drive	devices	you	have.	The	default	is	1.

Enable	intra-partition	parallelism	(INTRA_PARALLEL)	-	if	you	have	a	multi-processor	SMP	system,	setting
this	parameter	to	YES	may	improve	performance.	The	default	is	NO

To	optimize	for	INSERT	speed	at	the	possible	expense	of	faster	table	growth,	set	the
DB2MAXFSCRSEARCH	registry	variable	to	a	small	number.	To	optimize	for	space	reuse	at	the	possible
expense	of	INSERT	speed,	set	DB2MAXFSCRSEARCH	to	a	larger	number.

	

Snapshots

Collecting	performance	data	introduces	overhead	on	the	operation	of	the	database.	DB2	provides	monitor
switches	to	control	which	information	is	collected.	You	can	turn	these	switches	on	by	using	the	following
DB2	commands:

UPDATE	MONITOR	SWITCHES	USING	BUFFERPOOL	ON	;
UPDATE	MONITOR	SWITCHES	USING	LOCK	ON	;
UPDATE	MONITOR	SWITCHES	USING	SORT	ON	;
UPDATE	MONITOR	SWITCHES	USING	STATEMENT	ON	;
UPDATE	MONITOR	SWITCHES	USING	TABLE	ON	;
UPDATE	MONITOR	SWITCHES	USING	UOW	ON	;

You	can	access	the	data	that	the	database	manager	maintains	either	by	taking	a	snapshot	or	by	using	an	event
monitor.

Use	the	GET	SNAPSHOT	command	to	collect	status	information	and	format	the	output	for	your	use.	Some
of	the	most	useful	options	are:

GET	SNAPSHOT	FOR	DATABASE	-	Provides	general	statistics	for	one	or	more	active	databases	on
the	current	database	partition.
GET	SNAPSHOT	FOR	APPLICATIONS	-	Provides	information	about	one	or	more	active
applications	that	are	connected	to	a	database	on	the	current	database	partition.
GET	SNAPSHOT	FOR	DATABASE	MANAGER	-	Provides	statistics	for	the	active	database
manager	instance.
GET	SNAPSHOT	FOR	LOCKS	-	Provides	information	about	every	lock	held	by	one	or	more
applications	connected	to	a	specified	database.
GET	SNAPSHOT	FOR	BUFFERPOOLS	-	Provides	information	about	buffer	pool	activity	for	the
specified	database.
GET	SNAPSHOT	FOR	DYNAMIC	SQL	-	Returns	a	point-in-time	picture	of	the	contents	of	the	SQL
statement	cache	for	the	database.

	

db2batch

A	benchmark	tool	called	db2batch	is	provided	in	the	sqllib/bin	subdirectory	of	your	DB2	installation.	This
tool	can	read	SQL	statements	from	either	a	flat	file	or	standard	input,	dynamically	describe	and	prepare	the
statements,	and	return	an	answer	set.

	

IBM	DB2	for	z/OS

"First,	ensure	that	your	DB2	logs	are	large	enough,	are	allocated	on	the	fastest	volumes	you
have,	and	make	sure	they	have	optimal	CI	sizes.

Next,	ensure	that	you	have	tuned	your	bufferpools	so	that	the	most	often-read	data	is	in	memory
as	much	as	possible.	Use	ESTOR	and	hyperpools.

You	many	want	to	consider	pre-formatting	tables	that	are	going	to	be	heavily	used.	This	avoids
formatting	at	runtime.

Ensuring	DB2	Tracing	Under	the	DB2	for	z/OS	Universal	Driver	is	Turned	Off:
If	the	db2.jcc.propertiesFile	jvm	property	has	been	defined	to	specify	a	DB2	jcc	properties	file	to
the	WebSphere	Application	Server	for	z/OS,	ensure	that	the	following	trace	statements	in	the
file	are	commented	out	if	they	are	specified:

#	jcc.override.traceFile=<file	name>
#	jcc.override.traceFile=<file	name>

If	any	of	the	DB2	Universal	JDBC	Driver	datasources	your	applications	are	using	are	defined
with	a	nonzero	traceLevel	custom	property,	use	the	WebSphere	Application	Server	for	z/OS
Administrative	console	to	set	the	traceLevel	to	zero.

Be	sure	to	define	indexes	on	all	your	object	primary	keys.	Failure	to	do	so	will	result	in	costly
tablespace	scans.

Ensure	that,	once	your	tables	are	sufficiently	populated,	you	do	a	re-org	to	compact	the	tables.
Running	RUNSTATS	will	ensure	that	the	DB2	catalog	statistics	about	table	and	column	sizes
and	accesses	are	most	current	so	that	the	best	access	patterns	are	chosen	by	the	optimizer.

Enable	dynamic	statement	caching	in	DB2.	To	do	this,	modify	your	ZPARMS	to	say
CACHEDYN(YES)	MAXKEEPD(16K).	Depending	on	the	application,	this	can	make	a	very
significant	improvement	in	DB2	performance.	Specifically,	it	can	help	JDBC	and	LDAP	query.

Increase	DB2	checkpoint	interval	settings	to	a	large	value.	To	do	this,	modify	your	ZPARMS	to
include	CHKFREQ=xxxxx,	where	xxxxx	is	set	at	a	high	value	when	doing	benchmarks	(e.g.
CHKFREQ=16000000).	On	production	systems	there	are	other	valid	reasons	to	keep	checkpoint
frequencies	lower,	however."

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezdb2.html

	

DB2	on	Linux	on	Power

Write	I/O	to	the	Transaction	Log

Before	a	transaction	is	committed,	it	must	be	written	to	the	transaction	log.	This	can	become	a	primary
bottleneck.	This	can	be	lessened	by	isolating	transaction	logs.

	

Data	Compression

If	there	is	available	CPU	and	I/O	is	the	bottleneck,	consider	data	compression	with	the	DB2	Storage
Optimization	feature.

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/rprf_tunezdb2.html

alter	table	<table_name>	compress	yes
alter	index	<index_name>	compress	yes
reorg	table	<table_name>	RESETDICTIONARY
reorg	indexes	all	for	table	<table_name>
runstats	on	table	<table_name>	with	distribution	and	detailed	indexes	all	allow	read	access

	

db2pd

db2pd	-stack	all	gathers	stack	traces	of	DB2:
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.trb.doc/doc/c0054595.html

The	files	are	written	to	DIAGPATH	(db2	get	dbm	cfg|grep	DIAGPATH).

Alternatively,	specify	homedir	and	timeout	options	to	change	the	output	directory:

db2pd	-stack	all	dumpdir=~/db2stacks/	timeout=30

	

Oracle	Database

Client

	

Read	Timeout

Set	a	read	timeout	with	oracle.jdbc.ReadTimeout:

Pass	oracle.jdbc.ReadTimeout	as	connection	property	to	enable	read	timeout	on	socket.	The
timeout	value	is	in	milliseconds.

	

Server

Review	the	Oracle	Database	(software	and	hardware)	tuning	in	the	latest	SPECjEnterprise	results	submitted
by	Oracle:

SPARC	T5:	http://www.spec.org/jEnterprise2010/results/res2013q3/jEnterprise2010-20130904-
00045.html
Sun	Server:	http://www.spec.org/jEnterprise2010/results/res2013q3/jEnterprise2010-20130904-
00046.html

Update	Database	Statistics:	statistics	are	maintained	on	tables	and	indexes.	Updating
statistics	allows	the	query	optimizer	to	create	better	performing	access	plans	for	evaluating
queries.	One	approach	to	manually	updating	statistics	on	all	tables	in	a	schema	is	to	use
the	dbms_stats	utility:

execute	dbms_stats.gather_schema_stats(-
ownname	=>	'your_schema_name',	-
options	=>	'GATHER	AUTO',	-
estimate_percent	=>	DBMS_STATS.AUTO_SAMPLE_SIZE,	-
cascade	=>	TRUE,	-
method_opt	=>	'FOR	ALL	COLUMNS	SIZE	AUTO',	-
degree	=>	15);

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.trb.doc/doc/c0054595.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/jjdbc/JDBC-troubleshooting.html#GUID-5ADA932F-B2BF-4E34-8995-435FD2EF1F92
http://www.spec.org/jEnterprise2010/results/res2013q3/jEnterprise2010-20130904-00045.html
http://www.spec.org/jEnterprise2010/results/res2013q3/jEnterprise2010-20130904-00046.html

Set	Buffer	Cache	sizes	correctly:	this	reference	discusses	this	issue	in	detail:
https://docs.oracle.com/cd/B19306_01/server.102/b14211/memory.htm#g77696

Set	Log	Files	Appropriately:	Unlike	DB2,	Oracle	performs	an	expensive	checkpoint
operation	when	switching	logs.	The	checkpoint	involves	writing	all	dirty	pages	in	the
buffer	cache	to	disk.	Therefore,	it	is	important	to	make	the	log	files	large	enough	that
switching	occurs	infrequently.	Also,	applications	which	generate	a	high	volume	of	log
traffic	need	larger	log	files	to	achieve	this	goal.

Maintain	proper	table	indexing:	a	database	environment	that	requires	additional	indexes
will	often	exhibit	performance	degradation	over	time;	in	some	cases	the	performance
degradation	can	be	profound.	Environments	that	need	additional	indexes	often	exhibit
heavy	read	I/O	on	devices	holding	the	tablespace	datafiles.	To	assist	in	determining	which
additional	indexes	could	improve	performance,	Oracle	10g	provides	the	Automatic
Database	Diagnostic	Monitor.	It	has	the	capability	to	help	define	and	design	indexes
suitable	for	a	particular	workload.

When	using	the	Oracle	RAC	product,	configure	the	database	nodes	as	Active-Passive.
This	generally	provides	optimal	system	performance	while	also	maintaining	high
availability	via	failover	support.

The	following	references	are	useful:

Oracle	10g	Release	2	documentation	(includes	a	Performance	Tuning	Guide)
http://www.oracle.com/pls/db102/homepage

https://w3quickplace.lotus.com/QuickPlace/wasperf/PageLibrary852569AF00670F15.nsf/$defaultview/1CCEB50DD9A9C561852576030042A65C/$File/WebSphere%20BPM%206.2%20How%20To%20Win%20Performance%20POCs.pdf?
OpenElement

The	PROCESSES	parameter	is	effectively	equivalent	to	the	maximum	number	of	concurrent	users	plus	the
number	of	background	processes.

The	OPEN_CURSORS	parameter	value	should	be	set	high	enough	to	prevent	the	application	from	running
out	of	open	cursors	(handles	to	private	SQL	areas).	For	example,	3000.

The	SESSION_CACHED_CURSORS	parameter	sets	the	number	of	cached	closed	cursors	each	session	can
have.	For	example,	1000.

The	DB_FILES	parameter	specifies	the	maximum	number	of	database	files	that	can	be	opened	for	the
database.	For	example,	3000.

The	PRE_PAGE_SGA	parameter	determines	whether	Oracle	reads	the	entire	SGA	into	memory	at	instance
startup.	This	setting	can	increase	the	amount	of	time	necessary	for	instance	startup,	but	it	is	likely	to	decrease
the	amount	of	time	necessary	for	Oracle	to	reach	its	full	performance	capacity	after	startup.

The	DB_WRITER_PROCESSES	parameter	can	be	set	to	take	advantage	of	a	multi-cpu	system	that	modifies
data	heavily	by	enabling	multiple	DB	writer	processes.	For	example,	use	the	formula
DB_WRITER_PROCESSES	=	CPU_COUNT	/	8

	

Basic	Commands

List	connected	clients:

SELECT	*	FROM	v$session

	

https://docs.oracle.com/cd/B19306_01/server.102/b14211/memory.htm#g77696
http://www.oracle.com/pls/db102/homepage
https://w3quickplace.lotus.com/QuickPlace/wasperf/PageLibrary852569AF00670F15.nsf/$defaultview/1CCEB50DD9A9C561852576030042A65C/$File/WebSphere%20BPM%206.2%20How%20To%20Win%20Performance%20POCs.pdf?OpenElement

Automatic	Workload	Repository	Reports

Automatic	Workload	Repository	(AWR)	reports	are	commonly	used	to	investigate	Oracle	database
performance.

Common	things	to	review:

SQL	ordered	by	Elapsed	Time	(Global) :	Usually,	review	the	per	execution	"Elapsed	(s)"	times	of
queries	and	consider	the	Execs	column	which	is	how	many	times	those	queries	were	executed.

	

Automatic	Memory	Management

Automatic	Memory	Management	(AMM)	was	introduced	in	Oracle	11g	and	allows	most	memory	usage
(SGA,	PGA,	buffer	pools,	shared	pools,	large	pools,	etc.)	to	be	automatically	sized	(excluding	the	log
buffer).	For	example:

1.	 Set	a	value	for	MEMORY_MAX_TARGET.	Sufficient	OS	memory	is	required	to	support	the	value
set.	MEMORY_MAX_TARGET=14464M.

2.	 Set	SGA_TARGET	and	PGA_AGGREGATE_TARGET	to	0.	If	these	values	are	nonzero	then	it
defines	the	minimum	size	for	the	specified	region.

3.	 Set	MEMORY_TARGET	to	the	total	amount	of	memory	you	want	to	share	between	SGA	and	PGA.
e.g.	MEMORY_TARGET=14464M.

	

Apache	Derby
Apache	Derby	is	a	simple,	Java-based	database:	http://db.apache.org/derby/

	

ij

Use	the	ij	tool	to	connect	to	a	Derby	database	from	the	command	line:

$	cd	${PARENT_DIRECTORY_OF_DIRBY_DATABASE}
$	java	-jar	${DERBY}/lib/derbytools.jar:${DERBY}/lib/derby.jar	org.apache.derby.tools.ij
ij>	connect	'jdbc:derby:dbName';
ij>	show	tables;
ij>	describe	schema.table;

The	database	name	(in	the	example	above,	dbName)	may	be	prefixed	with	a	filesystem	path.

Tips:

Add	"create=true"	to	the	connect	command	to	create	the	database	if	it	doesn't	exist.	For	example:
connect	'jdbc:derby:dbName;create=true';
Use	-Dij.database=${CONNECT}	on	the	java	command	to	immediately	connect	using	the	connection
string	${CONNECT}.
Type	"exit;"	to	exit.

Example	running	a	SQL	file:

$	java	-Dij.database=jdbc:derby:dbName	-jar	${DERBY}/lib/derbytools.jar:${DERBY}/lib/derby.jar	org.apache.derby.tools.ij	${FILE}.sql

Exporting	a	table:	https://db.apache.org/derby/docs/10.4/tools/derbytools.pdf

https://docs.oracle.com/en/database/oracle/oracle-database/21/tgdba/comparing-database-performance-over-time.html#GUID-4AF92592-96A3-4881-B631-10EC3AAA6922
http://db.apache.org/derby/
https://db.apache.org/derby/docs/10.4/tools/derbytools.pdf

CALL	SYSCS_UTIL.SYSCS_EXPORT_TABLE	('SCHEMA','TABLE','exported.delimited',';','%',null);

	

Other	Databases

Tibero	Database

Tibero	is	not	tested	with	WAS.	Presumably	they	are	using	a	generic	JDBC	type	4	driver	and	so	as	long	as
they've	written	to	the	specification	of	JDBC/JCA,	then	WAS	will	support	any	connection	pool	issues;
however,	any	issues	with	the	database	driver	or	the	database	are	not	supported.

	

Caching	and	WebSphere	eXtreme	Scale
Caching	Recipes

1.	 If	available,	enable	the	Java	shared	class	and	ahead-of-time	compilation	caches.	WAS	enables	this	by
default,	but	you	can	increase	the	size	if	you	have	available	memory.	See	the	Java	chapter.

2.	 Pre-compile	Java	Server	Pages	(JSPs).	See	the	WAS	chapter.
3.	 If	possible,	utilize	the	WAS	Dynacache	feature	to	cache	servlet	responses.	See	the	HTTP	section	in	the

WAS	chapter.
4.	 The	application	should	set	standardized	response	headers	that	indicate	caching	(e.g.	Cache-Control	in

HTTP).
1.	 An	alternative	is	to	use	a	web	server	such	as	IHS	to	apply	cache	headers	to	responses	based	on

rules.	See	the	Web	Servers	chapter.
5.	 If	possible,	use	the	WebSphere	eXtreme	Scale	(WXS)	product	to	maximize	data	caching	(see	below).
6.	 Consider	using	an	edge	cache	such	as	the	WebSphere	Caching	Proxy.	See	the	Web	Servers	chapter.
7.	 If	using	WebSphere	Commerce,	set	Dynacache	caches'	sharing	modes	to	NOT_SHARED.

	

General	Caching	Topics
Caching	(or	lack	thereof)	can	have	dramatic	performance	impacts;	however,	caching	must	be	carefully
implemented	to	avoid	inconsistent	data:

Most	Java	EE	application	workloads	have	more	read	operations	than	write	operations.	Read
operations	require	passing	a	request	through	several	topology	levels	that	consist	of	a	front-end
web	server,	the	web	container	of	an	application	server,	the	EJB	container	of	an	application
server,	and	a	database.	WebSphere	Application	Server	provides	the	ability	to	cache	results	at	all
levels	of	the	network	topology	and	Java	EE	programming	model	that	include	web	services.

Application	designers	must	consider	caching	when	the	application	architecture	is	designed
because	caching	integrates	at	most	levels	of	the	programming	model.	Caching	is	another	reason
to	enforce	the	MVC	pattern	in	applications.	Combining	caching	and	MVC	can	provide	caching
independent	of	the	presentation	technology	and	in	cases	where	there	is	no	presentation	to	the
clients	of	the	application.
(https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cprf_appdesign.html

In	general,	caches	are	held	in	memory	or	disk	which	must	be	properly	sized	for	the	additional	cache	usage.
Caches	may	also	introduce	additional	administration.	Example	caches	(detailed	in	later	chapters):

Avoid	your	infrastructure	altogether	by	telling	the	client	(e.g.	browser)	to	cache	as	much	as	possible

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/cprf_appdesign.html

with	response	headers.
Cache	whole	or	parts	of	responses	(e.g.	servlet	caching).
Use	dedicated	caching	proxy	servers	between	the	end-user	and	application.
Place	static	content	as	close	to	the	user	as	possible	(e.g.	in	a	web	server	instead	of	the	application
server,	content	delivery	networks,	etc.).

	

WebSphere	eXtreme	Scale	(WXS)
Caching	is	used	to	reduce	execution	path	length	at	any	layer	to	reduce	the	cost	of	each	execution.	This	may
lower	the	response	time	and/or	lower	the	transaction	cost.	A	grid	is	a	set	of	maps	that	store	data.	Within	a
grid,	partitions	split	maps	across	multiple	container	server	JVMs	using	shards.	A	catalog	server	coordinates
shard	placement	and	monitors	container	servers.	There	may	be	multiple	catalog	servers	in	a	catalog	service
domain	(which	itself	is	a	mini	grid)	for	high	availability.	A	partition	has	1	primary	shard	and	0	or	more
replica	shards.	The	primary	shard	receives	the	actual	data	(insert,	update,	remove).	A	replica	shard	may	be
either	synchronous	or	asynchronous.	If	minSyncReplica	is	>	0,	a	transaction	in	a	primary	shard	is	only
committed	with	the	agreement	of	those	replicas.

Performance	Tuning	Documentation
General	Documentation

	

Catalog	Servers

A	catalog	server	references	an	objectGridServer.properties	file.	On	WAS,	this	is	often	in	<WAS>/properties
and	may	be	copied	from	<WAS>/optionalLibraries/ObjectGrid/properties/sampleServer.properties.

	

Container	Servers

A	container	server	references	both	an	objectGrid.xml	file	and	an	objectGridDeployment.xml	file.	For	a
WAR,	place	both	into	WebContent/META-INF.	A	container	server	also	must	have	access	to	the
objectGridServer.properties	file.	Full	objectGridDeployment.xsd:
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/rxsdepschema.html

	

Example	development	objectGridDeployment.xml

<?xml	version="1.0"	encoding="UTF-8"?>
<deploymentPolicy	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy	../deploymentPolicy.xsd"
		xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">
		<objectgridDeployment	objectgridName="grid1">
				<mapSet	name="mapSet"	numberOfPartitions="1"	developmentMode="true">
						<map	ref="map1"/>
				</mapSet>
		</objectgridDeployment>
</deploymentPolicy>

	

Example	non-development	objectGridDeployment.xml

<?xml	version="1.0"	encoding="UTF-8"?>
<deploymentPolicy	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

https://www.ibm.com/docs/en/wxs/8.6.1?topic=documentation-tuning-performance
https://www.ibm.com/docs/en/wxs/8.6.1
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/rxsdepschema.html

		xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy	../deploymentPolicy.xsd"
		xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">
		<objectgridDeployment	objectgridName="grid1">
				<mapSet	name="mapSet"	numberOfPartitions="17"	minSyncReplicas="1"	developmentMode="false">
						<map	ref="map1"/>
				</mapSet>
		</objectgridDeployment>
</deploymentPolicy>

	

WXS	Client

A	client	references	an	objectGrid.xml	file.	For	a	WAR,	place	into	WebContent/META-INF.	Full
objectGrid.xsd:
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/rxslclschema.html

	

Example	objectGrid.xml

<?xml	version="1.0"	encoding="UTF-8"?>
<objectGridConfig	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:schemaLocation="http://ibm.com/ws/objectgrid/config	../objectGrid.xsd"
		xmlns="http://ibm.com/ws/objectgrid/config">
		<objectGrids>
				<objectGrid	name="grid1"	txTimeout="120">
						<backingMap	name="map1"	copyMode="COPY_TO_BYTES"	lockStrategy="OPTIMISTIC"	lockTimeout="15"	/>
				</objectGrid>
		</objectGrids>
</objectGridConfig>

	

Example	code	to	put	and	get	from	a	grid

import	com.ibm.websphere.objectgrid.ClientClusterContext;
import	com.ibm.websphere.objectgrid.ConnectException;
import	com.ibm.websphere.objectgrid.ObjectGrid;
import	com.ibm.websphere.objectgrid.ObjectGridException;
import	com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import	com.ibm.websphere.objectgrid.ObjectMap;
import	com.ibm.websphere.objectgrid.Session;
import	com.ibm.websphere.objectgrid.plugins.TransactionCallbackException;

try	{
				long	key	=	42;
				String	value	=	"Hello	World";
				ClientClusterContext	ccc	=	ObjectGridManagerFactory.getObjectGridManager().connect("localhost:4809",	null,	null);
				ObjectGrid	grid	=	ObjectGridManagerFactory.getObjectGridManager().getObjectGrid(ccc,	"grid1");
				Session	session	=	grid.getSession();
				ObjectMap	map1	=	session.getMap("map1");

				map1.setPutMode(ObjectMap.PutMode.UPSERT);
				map1.put(key,	value);

				String	fromGrid	=	(String)	map1.get(key);				
				System.out.println(fromGrid.equals(value));
}	catch	(ConnectException	e)	{
				throw	new	RuntimeException(e);
}	catch	(TransactionCallbackException	e)	{
				throw	new	RuntimeException(e);
}	catch	(ObjectGridException	e)	{
				throw	new	RuntimeException(e);
}

http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/rxslclschema.html

When	using	a	catalog	service	domain	(e.g.	"csd01")	in	WAS,	use	the	following	instead:

ObjectGridManager	objectGridManager	=	ObjectGridManagerFactory.getObjectGridManager();
CatalogDomainManager	catalogDomainManager	=	objectGridManager.getCatalogDomainManager();
CatalogDomainInfo	catalogDomainInfo	=	catalogDomainManager.getDomainInfo("csd01");
String	cep	=	catalogDomainInfo.getClientCatalogServerEndpoints();
ClientClusterContext	ccc	=	objectGridManager.connect(cep,	(ClientSecurityConfiguration)	null,	(URL)	null);
ObjectGrid	objectGrid	=	objectGridManager.getObjectGrid(ccc,	"grid1");

	

Best	Practices

Have	approximately	10	shards	per	container.	So	if	you	plan	to	have	50	containers	for	instance	and	you	have
one	replica	configured	in	your	policy,	we	would	recommend	about	250	partitions.	This	allows	for	having
extra	shards	available	for	adding	containers	in	the	future	when	you	need	to	expand	without	taking	a	grid
outage	to	change	the	number	of	partitions.	With	having	extra	partitions	per	container,	elasticity	can	be
achieved.	The	general	formula	is	(number	of	containers	*	10)	/	(1	+	number	of	replicas)).	That	gives	you	the
number	of	partitions	to	start	with.	That	usually	gives	a	whole	number	that	is	not	prime.	We	recommend
choosing	a	prime	number	that	is	close	to	the	number	that	the	formula	returns.

When	it	comes	to	starting	a	lot	of	containers,	we	recommend	making	use	of	the	xscmd	commands	of
suspendBalancing	and	resumeBalancing.	You	invoke	suspendBalancing	before	staring	the	containers	and
resumeBalancing	when	you	are	complete.	This	approach	allows	eXtreme	Scale	to	make	one	placement
decision	instead	of	multiple	ones.	If	it	was	making	a	placement	decision	for	each	container	as	they	start,	the
result	can	be	a	lot	of	unnecessary	data	movement.

Similarly	when	you	are	stopping	containers	and	catalog	servers,	we	recommend	making	use	of	the	xscmd
command	of	teardown	to	specify	the	servers	you	want	to	stop	if	you	are	stopping	more	than	one.	Again	this
approach	allows	you	to	limit	the	amount	of	data	movement	to	be	more	efficient.	There	are	filter	options	like
host	or	zone	to	allow	you	to	just	say	stop	all	containers	on	this	host	or	in	this	zone	for	instance,	or	you	can
just	give	the	complete	list	of	the	servers	you	want	to	stop.	If	you	want	to	stop	all	containers,	just	run	xscmd	-
c	teardown	without	filters	or	a	list	of	servers	and	it	will	stop	all	containers.	If	you	want	to	stop	all	containers
for	a	specific	grid	you	can	use	the	-g	option	to	specify	the	grid	to	filter	on.

	

Thread	Pools

Containers:

XIOPrimaryPool:	Used	for	WXS	CRUD	operations.
WXS:	Used	for	replication	and	DataGridAgents.
xioNetworkThreadPool:	Reads	the	request	and	sends	response.

	

Near	Cache

A	near	cache	is	a	client	side	subset	of	the	grid:	http://www-
01.ibm.com/support/knowledgecenter/SSTVLU_8.6.0/com.ibm.websphere.extremescale.doc/txsclinearcacheconfig.html?
lang=en

The	near	cache	is	enabled	by	default	for	any	map	with	a	non-PESSIMISTIC	lockStrategy	(default
OPTIMISTIC)	(see	the	Spring	section	for	an	exception).	It	is	also	unbounded	by	default	which	may	cause
OutOfMemoryErrors	if	an	evictor	is	not	specified	either	through	ttlEvictorType/timeToLive	or	a	plugin
evictor	such	as	LRU	through	pluginCollectionRef.	Alternatively,	nearCacheInvalidationEnabled	may	be	set
to	true	to	propagate	invalidations	from	the	grid	to	each	nearCache:	http://www-
01.ibm.com/support/knowledgecenter/SSTVLU_8.6.0/com.ibm.websphere.extremescale.doc/txsnearcacheinv.html?

http://www-01.ibm.com/support/knowledgecenter/SSTVLU_8.6.0/com.ibm.websphere.extremescale.doc/txsclinearcacheconfig.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSTVLU_8.6.0/com.ibm.websphere.extremescale.doc/txsnearcacheinv.html?lang=en

lang=en

The	increase	in	Java	heap	usage	should	be	monitored	to	ensure	the	nearCache	is	not	increasing	the	proportion
of	time	in	garbage	collection	too	much	(or	its	eviction/size	should	be	tuned,	or	the	heap	increased).

If	the	map's	copyMode	is	COPY_TO_BYTES	or	COPY_TO_BYTES_RAW,	then	nearCacheCopyMode
should	be	set	to	NO_COPY,	because	any	copying	is	unnecessary.

The	near	cache	hit	rate	is	a	critical	performance	metric.	A	near	cache	occupancy	may	be	limited	by	size	(e.g.
LRU/LFU	evictor)	or	expired	over	time	(e.g.	TTL	evictor).

Enable	near	cache	statistics	through	the	ObjectGrid	Maps	PMI	module:

Then	check	the	hit	rate	by	analyzing	hits	/	gets:

		

Spring	Integration

WXS	provides	Spring	integration	for	Spring	>=	3.1:	http://www-
01.ibm.com/support/knowledgecenter/SSTVLU_8.6.0/com.ibm.websphere.extremescale.doc/txsspringprovide.html?
cp=SSTVLU_8.6.0&lang=en

Older	documentation	states	that,	generally,	the	nearCache	is	automatically	enabled	when	the	lockStrategy	is
NONE	or	OPTIMISTIC	(default).	This	is	true,	except	for	the	Spring	provider	which	explicitly	disables	the
nearCache	even	when	it	would	have	been	enabled,	unless	a	client	override	XML	is	provided	(see
CLIENT_OVERRIDE_XML	in	the	link	above).

Example	Spring	XML	specifying	the	client	override	XML:

<?xml	version="1.0"	encoding="UTF-8"?>
<beans	xmlns="http://www.springframework.org/schema/beans"
				xmlns:p="http://www.springframework.org/schema/p"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
				xmlns:tx="http://www.springframework.org/schema/tx"
				xsi:schemaLocation="http://www.springframework.org/schema/beans	http://www.springframework.org/schema/beans/spring-beans.xsd
								http://www.springframework.org/schema/tx	http://www.springframework.org/schema/tx/spring-tx.xsd">

				<bean	id="domain"
								class="com.ibm.websphere.objectgrid.spring.ObjectGridCatalogServiceDomainBean"
								p:client-override-xml="file:/objectgrid.xml"
								p:catalog-service-endpoints="${catalogServiceUrl}"	/>
...

Example	client	override	XML	which	enables	a	nearCache	(see	the	Near	Cache	section	for	more	details):

<?xml	version="1.0"	encoding="UTF-8"?>
<objectGridConfig
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:schemaLocation="http://ibm.com/ws/objectgrid/config	../objectGrid.xsd"
		xmlns="http://ibm.com/ws/objectgrid/config">

		<objectGrids>
				<objectGrid	name="CACHE_REMOTE"	txTimeout="60">
						<!--	NOEXP	caches'	nearCaches	use	LRU	to	limit	number	of	nearCache	entries	per	map	-->
						<backingMap	name="CACHE_NOEXP_.*"	template="true"
																		lockStrategy="NONE"	ttlEvictorType="NONE"	timeToLive="0"	copyMode="COPY_TO_BYTES"
																		nearCacheEnabled="true"	nearCacheCopyMode="NO_COPY"	pluginCollectionRef="LRUevictorPlugins"	/>
						<!--	EXP	caches'	nearCaches	implicitly	use	backingMap	TTL	evictor	settings	-->
						<backingMap	name="CACHE_EXP_.*"	template="true"
																		lockStrategy="NONE"	ttlEvictorType="LAST_UPDATE_TIME"	timeToLive="120"	copyMode="COPY_TO_BYTES"
																		nearCacheEnabled="true"	/>
				</objectGrid>
		</objectGrids>
	
		<backingMapPluginCollections>
				<backingMapPluginCollection	id="LRUevictorPlugins">
						<bean	id="Evictor"	className="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor">
								<!--	max	entries	per	map	=	numberOfLRUQueues	*	maxSize	-->
								<property	name="numberOfLRUQueues"	type="int"	value="5"	description="set	number	of	LRU	queues"	/>
								<property	name="maxSize"	type="int"	value="5"	description="set	max	size	for	each	LRU	queue"	/>
						</bean>
				</backingMapPluginCollection>
		</backingMapPluginCollections>
</objectGridConfig>

When	a	client	override	XML	is	successfully	loaded,	messages	such	as	the	following	will	be	printed:

[2/10/16	23:50:03:190	EST]	00000000	ObjectGridMan	I	CWOBJ2433I:	Client-side	ObjectGrid	settings	are
going	to	be	overridden	for	domain	DefaultDomain	using	the	URL	file:/override-objectgrid.xml.
[2/10/16	23:50:03:758	EST]	00000000	ObjectGridImp	I	CWOBJ1128I:	The	client	cache	is	enabled	for	maps
[IBM_SPRING_PARTITIONED_.*]	on	the	SPRING_REMOTE	ObjectGrid.

http://www-01.ibm.com/support/knowledgecenter/SSTVLU_8.6.0/com.ibm.websphere.extremescale.doc/txsspringprovide.html?cp=SSTVLU_8.6.0&lang=en

In	the	above	example,	the	maps	using	the	first	template	have	the	LRU	evictor	specified	at	the	bottom	of	the
XML.	The	maps	using	the	second	template	do	not	specify	a	pluginCollectionRef	but	they	will	implicitly	use
the	TTL	evictor	because	the	backingMap	specifies	a	TTL	evictor	type	and	time.

The	WXS	Spring	provider	enables	a	"fast	fail"	mechanism	by	default.	This	mechanism	exists	to	allow	an
application	to	not	hang	if	a	temporary	network	brownout	occurs.	Without	fastfail,	if	network	connectivity	is
lost	between	the	client	and	the	WXS	server,	each	request	will	time	out	before	returning.	Fastfail	quickly
identifies	that	the	network	is	down	and	allows	all	cache	requests	to	return	null	immediately	and	reconnect
once	network	connectivity	has	been	restored.	This	is	accomplished	with	one
WXSSpringFastFail[${MAP_NAME}]	thread	created	per	map	(and	if	maps	are	used	in	different	applications
with	the	default	classloading	policy,	one	per	classloader.	This	fast	fail	function	may	be	disabled	with	-
Dcom.ibm.websphere.objectgrid.spring.disable.fastfail=true,	in	which	case	TargetNotAvailableExceptions
and	related	exceptions	will	print	FFDCs	and	a	null	value	will	be	returned	from	the	cache.

	

Monitoring

There	are	many	ways	to	monitor	WXS:
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/txsadmdeployenv.html

	

Performance	Tracing

See	below	for	additional	tracing	specific	to	XIO.

For	the	overall	transaction,	use	the	diagnostic	trace	com.ibm.ws.objectgrid.SessionImpl=all	and	calculate	the
time	between	the	"begin"	entry	and	"commit	"	exit	trace	points.	That's	the	lifetime	of	the	transaction	on	the
client.	We	don't	necessarily	go	to	the	server	immediately	after	begin()	so	it's	possible	if	you	did	the	same
thing	on	both	the	client	and	the	server	for	the	same	transaction,	you'd	get	different	numbers.

On	the	client	side	instrumenting	com.ibm.ws.objectgrid.client.RemoteCacheLoader.get()	will	give	you
information	on	the	client	side	for	how	long	a	client	get	operation	is	taking.

On	the	container	side	instrumenting	com.ibm.ws.objectgrid.ServerCoreEventProcessor.getFromMap()	will
give	you	information	on	the	server	side	for	how	long	we	take	to	get	a	value	on	the	server	side.

	

Offload	Caching

WXS	is	frequently	used	for	HTTP	Session	persistence	instead	of	a	database	or	Dynacache:
ftp://ftp.software.ibm.com/software/iea/content/com.ibm.iea.wxs/wxs/7.0/Administration/Labs/XS70_HTTPSession_Lab.pdf
Keep	in	mind	that	the	Extreme	Scale	JVMs	will	also	need	to	be	tuned.

	

eXtreme	IO	(XIO)

Tuning	XIO:	http://www-
01.ibm.com/support/knowledgecenter/SSTVLU_8.6.0/com.ibm.websphere.extremescale.doc/rxstunexio.html

	

eXtreme	Memory	(XM)

WebSphere	eXtreme	Scale	v8.6	provides	the	ability	to	store	cache	data	outside	of	the	Java	heap	space.	This

http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/txsadmdeployenv.html
ftp://ftp.software.ibm.com/software/iea/content/com.ibm.iea.wxs/wxs/7.0/Administration/Labs/XS70_HTTPSession_Lab.pdf
http://www-01.ibm.com/support/knowledgecenter/SSTVLU_8.6.0/com.ibm.websphere.extremescale.doc/rxstunexio.html

feature	is	termed	Extreme	Memory	or	XM.	Using	XM	requires	the	eXtreme	IO	feature	(XIO)	introduced	in
v8.6.

XM	leads	to	more	performant	and	consistent	relative	response	times:
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/cxsxm.html

	

Data	Serialization

COPY_TO_BYTES

To	optimize	serialization	with	any	of	these	options,	you	can	use	the	COPY_TO_BYTES	mode
to	improve	performance	up	to	70	percent.	With	COPY_TO_BYTES	mode,	the	data	is	serialized
when	transactions	commit,	which	means	that	serialization	happens	only	one	time.	The	serialized
data	is	sent	unchanged	from	the	client	to	the	server	or	from	the	server	to	replicated	server.	By
using	the	COPY_TO_BYTES	mode,	you	can	reduce	the	memory	footprint	that	a	large	graph	of
objects	can	use.
(http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/cxsserializer.html

	

ORB

If	using	IBM	Java	ORB	communication,	tune	the	ORBs	in	all	WXS	processes	(catalogs,	containers,	and
clients):	http://www-
01.ibm.com/support/knowledgecenter/SSTVLU_8.6.0/com.ibm.websphere.extremescale.doc/rxsorbproperties.html

	

eXtreme	Data	Format	(XDF)

WebSphere	eXtreme	Scale	v8.6	introduced	eXtreme	Data	Format	(XDF)	which	allows	sharing	between	Java
and	.NET	applications,	additional	indexing	options,	automatic	versioning,	and	partitioning	through
annotations.	XDF	is	the	default	serialization	mode	when	XIO	is	enabled	and	copy	mode	is
COPY_TO_BYTES:
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/txsconfigxdf.html

XDF	supports	serialization	of	Java	objects	which	do	not	implement	the	Serializable	interface.

XDF	does	not	compress	entries,	so	data	placed	in	the	cache	may	be	larger	than	other	serialization	modes	and
may	increase	the	overhead	of	network	transportation.

	

CAP	Theorem

Consistency	-	all	clients	see	the	same	view,	even	in	the	presence	of	updates
High	Availability	-	all	clients	can	find	some	replica	of	the	data,	even	in	the	presence	of	failures
Partition	Tolerance	-	the	system	properties	are	held	even	when	the	system	is	partitioned.

CAP	theorem	states	that	a	grid	can	only	have	two	of	the	three.	In	WXS	version	prior	to	WXS	v7.1,	grids
provide	CP	services.	That	is	to	say	that	the	grid	provided	consistency	(only	one	place	to	write	the	data	-	the
primary	shard),	and	partition	tolerance	(the	grid	is	capable	of	providing	service	even	if	parts	of	the	grid	are
network	partitioned	and	unavailable).	As	of	WXS	v7.1	we	can	now	have	AP	grids	(Availability	and	Partition
Tolerance).

http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/cxsxm.html
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/cxsserializer.html
http://www-01.ibm.com/support/knowledgecenter/SSTVLU_8.6.0/com.ibm.websphere.extremescale.doc/rxsorbproperties.html
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/txsconfigxdf.html

	

Queries

WXS	provides	its	own	SQL-like	query	language:
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/rxsquerylang.html

	

Setting	eXtreme	Scale	tuning	options

For	standalone	client	JVM

Create	the	file	objectGridClient.properties	in	the	server's	root	directory,	and	add	a	JVM	parameter:

-Dobjectgrid.client.props=objectGridClient.properties

	

For	standalone	container	JVM:

Create	the	file	objectGridServer.properties	and	add	the	JVM	command	line	argument:

-serverProps	objectGridServer.properties

	

xscmd

xscmd	is	the	fully	supported	replacement	for	the	older	xsadmin.	General:

Help:	xscmd	-help
List	available	commands:	xscmd	-lc

The	key	thing	to	specify	to	xscmd	is	-cep	which	specifies	the	list	of	catalog	service	endpoints.	For	example:

$./xscmd.sh	-c	listObjectGridNames	-cep	localhost:4809
...
Grid	Name

Grid

When	the	catalog	service	is	running	inside	WebSphere	Application	Server	(by	default,	in	the	deployment
manager),	and	XIO	is	enabled,	the	-cep	port	is	the	XIO_ADDRESS	port.

	

Suspend	and	Resume	Status

The	suspendStatus	command	displays	the	suspend	and	resume	status	(ignore	the	heartbeat	option	as	it	only
applies	to	WXS	stand	alone):

$	xscmd.sh	-c	suspendStatus
...
***	Printing	the	results	of	the	balance	status	command	for	all	data	grids.

		Type						ObjectGrid	name	Map	Set	Name	Status		Details
		----						---------------	------------	------		-------
		placement	Grid												mapSet							Resumed

http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/rxsquerylang.html

***	Printing	the	results	of	the	transport	communication	failure	detection	status	command	for
				DefaultDomain	catalog	service	domain.	The	type	requested	was	failoverAll.

		Type								Domain	name			Status		Details
		----								-----------			------		-------
		failoverAll	DefaultDomain	Resumed

When	you	suspend	or	resume,	the	primary	catalog	logs	will	contain:

Placement:	CWOBJ1237	for	both	suspend	and	resume	request	attempt,	CWOBJ1214	for	both	suspend
and	resume	when	it	completes	successfully	...	the	logs	will	differ	with	the	word	"suspend"	or	"resume"
accordingly.
FailoverAll:	CWOBJ1262	for	the	supsend	and	resume	request	attempt,	CWOBJ1260	for	both	suspend
and	resume	when	it	completes	successfully	...	the	logs	will	differ	with	the	word	"suspend"	or	"resume"
accordingly.

	

Performing	Maintenance

1.	 Use	the	WXS	teardown	command	on	all	the	containers	which	will	be	undergoing	maintenance.	For
example:	xscmd	-c	teardown	-sl	cachesvr1

2.	 Wait	5	minutes
3.	 Use	the	WXS	teardown	command	on	all	the	catalogs	which	will	be	undergoing	maintenance	one	at	a

time	and	waiting	5	minutes	between	each.	For	example:	xscmd	-c	teardown	-sl	catlgsrvr1
4.	 Wait	5	minutes
5.	 Stop	underlying	JVMs	(e.g.	if	running	on	WAS)
6.	 Apply	maintenance
7.	 Start	catalog	servers
8.	 Wait	5	minutes
9.	 Start	container	servers

10.	 Wait	5	minutes

If	there	are	many	servers	being	started	at	once,	you	may	first	suspend	balancing:

1.	 xscmd	-c	suspend

Then	resume	balancing	once	the	JVMs	are	started:

1.	 xscmd	-c	resume	-t	placement
2.	 Run	$(xscmd	-c	showPlacement)	until	all	partitions	show	as	placed.
3.	 xscmd	-c	resume	-t	heartbeat

	

Application	Considerations

FIFO	Queue

WXS	maps	may	be	used	as	a	FIFO	queue	with	the	getNextKey	method:
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/rxsmapsfifo.html

	

Transactions

Twophase	transactions	will	ensure	that	all	changes	made	to	all	maps	in	the	transactions	are	either	rolled	back
or	committed:
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/txsprogobjgridtxn.html

https://www.ibm.com/docs/en/wxs/8.6.1?topic=administering-stopping-servers-gracefully-xscmd-utility
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/rxsmapsfifo.html
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.doc/txsprogobjgridtxn.html

You	can	have	two	maps	involved	in	a	transaction	without	using	the	Twophase	logic.	If	the	two	maps	are	in
the	same	partition,	everything	will	commit	or	rollback	as	part	of	the	transaction.	WXS	will	not	partially
commit	a	change	by	having	only	one	map	commit	and	then	not	doing	the	other	map	due	to	an	error;	it	is
always	going	to	be	an	atomic	operation	even	with	a	Onephase	transaction.

	

Transaction	Callbacks

The	TransactionCallback	interface	may	be	used	to	execute	code	before	a	Session.commit	completes:
http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.javadoc.doc/topics/com/ibm/websphere/objectgrid/plugins/TransactionCallback.html

	

IBM	MQ
IBM	MQ	Recipe

1.	 Test	with	SHARECNV(1)	to	potentially	increase	throughput	per	socket:
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.mon.doc/q036143_.htm

	

MQ	versus	WAS	SIB
As	of	Sep.	2011,	performance	of	WebSphere	MQ	persistent	messages	is	approximately	twice	as
fast	as	SIBus	persistent	messages.	There	is	little	difference	for	non-persistent	messages.

WebSphere	MQ	supports	clustering	of	queue	managers	for	enhanced	throughput	and	scalability
of	administration.	There	are	many	examples	of	production	clusters	containing	thousands	of
queue	managers.	WebSphere	MQ	clustering	is	extremely	flexible,	supporting	selective
parallelism	of	cluster	queues,	enabling	you	to	independently	tailor	the	number	of	instances	of
each	cluster	queue.	SIBus	messaging	engines	can	be	clustered	within	a	WebSphere	Application
Server	cluster	for	throughput	and	administrative	scalability.	However,	a	WebSphere	Application
Server	cluster	has	a	much	lower	scalability	limit	than	a	WebSphere	MQ	cluster,	and	if	a	queue	is
assigned	to	a	WebSphere	Application	Server	cluster	bus	member,	it	is	partitioned	across	all
messaging	engines	in	the	cluster	--	you	cannot	selectively	locate	partitions.
(http://www.ibm.com/developerworks/websphere/library/techarticles/1109_wallis/1109_wallis.html)

	

WAS	Considerations
Listener	ports	are	"stabilized"	(no	more	investment	from	IBM)	and	activation	specifications	are	the
recommended	approach	to	integrate	with	WMQ.

Consider	various	queue	properties:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tmj_wmqmp_tuned.html

For	z/OS,	consider	this	tuning:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_tunezmdb.html

If	using	listener	ports,	monitor	the	session	pool	size:
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tmb_adm15.html

http://www.ibm.com/support/knowledgecenter/en/SSTVLU_8.6.1/com.ibm.websphere.extremescale.javadoc.doc/topics/com/ibm/websphere/objectgrid/plugins/TransactionCallback.html
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.mon.doc/q036143_.htm
http://www.ibm.com/developerworks/websphere/library/techarticles/1109_wallis/1109_wallis.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tmj_wmqmp_tuned.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tprf_tunezmdb.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tmb_adm15.html

For	the	JMS	WASMQ	Message	Provider	Resource	Adapter	Properties
(http://www.ibm.com/developerworks/websphere/library/techarticles/1308_broadhurst/1308_broadhurst.html)

Max	Connections.	Practice	is	to	set	this	to	2147483647	(maximum	possible).	This	must	be	set	at	the
same	scope	as	the	activation	specification.	Since	activation	specifications	are	generally	set	at	Node
scope,	Max	Connections	should	be	set	at	Node	scope	too.
Connection	Concurrency.	Practice	is	to	have	this	property	equal	1.	Note	for	WebSphere	8.5,	the
connectionConcurrency	property	has	been	set	to	1	as	default	and	made	a	no-op,	so	it	is	not	required	to
explicitly	set	it.	For	WebSphere	versions	earlier	than	8.5,	this	should	be	set	at	cell	scope.

	

WAS	MQ	Resource	Adapter
Versions:	http://www-01.ibm.com/support/docview.wss?uid=swg21248089

Connection	Pools	and	Session	Pools:	https://www.ibm.com/support/pages/understanding-jms-
connection-pools-and-session-pools-better-tuning

	

Best	Practices
http://www.ibm.com/developerworks/websphere/library/techarticles/0807_hsieh/0807_hsieh.html

Message	size	and	length	can	affect	the	performance	of	the	application	that	processes	the	message,	and
the	network	time	of	data	transmission.	Send	only	essential	data	in	the	message.
Use	persistent	messages	for	critical	or	essential	data	only.	Persistent	messages	are	logged	to	disk	and
can	reduce	the	performance	of	your	application.
Retrieving	messages	from	a	queue	by	message	or	correlation	identifiers	will	reduce	application
performance.	It	causes	the	queue	manager	to	search	all	messages	in	the	queue	until	it	finds	the	desired
message.	If	applications	have	high-performance	requirements,	applications	should	be	designed	to
process	messages	sequentially.
The	MaxMsgLength	parameter	stores	the	value	for	the	maximum	size	of	a	message	allowed	on	the
queue.	The	4	MB	default	can	be	changed	to	better	align	with	your	application	processing	needs,	which
will	have	the	benefit	of	using	system	resources	in	the	most	efficient	manner.
Ensure	that	messaging	applications	are	designed	to	work	in	parallel	with	each	other	and	with	multiple
instances	of	applications.	The	queue	manager	executes	one	service	request	within	a	queue	at	a	given
time	to	maintain	integrity.	Avoid	programs	that	use	numerous	MQPUT	calls	in	a	sync	point	without
committing	them.	Affected	queues	can	fill	up	with	messages	that	are	currently	inaccessible	while	other
applications	or	tasks	might	be	waiting	to	get	these	messages.
When	applications	have	intermittent	message	transmission	needs,	use	the	MQPUT1	call	to	put	only
one	message	on	the	queue.	For	higher	volume	applications,	where	multiple	messages	are	being	put,
consider	an	alternative	to	the	traditional	usage	of	an	MQOPEN	call	followed	by	a	series	of	MQPUT
calls	and	an	MQCLOSE	call.
Keep	connections	and	queues	open	if	you	are	going	to	reuse	them	instead	of	repeatedly	opening	and
closing,	connecting	and	disconnecting.
The	maximum	number	of	threads	an	application	can	run	on	a	system	can	affect	the	performance	of	the
solution,	especially	on	Windows.
Configure	channels	with	a	disconnect	interval	so	that	they	can	go	inactive	when	there	is	no	activity	on
the	channel	after	a	period	of	time.	This	will	reduce	overhead	and	help	improve	overall	performance.
MQ	performance	is	commonly	bound	by	disk	I/O	writes.	Ensure	that	the	storage	team	is	involved	with
disk	layouts	to	ensure	the	fastest	reliable	disk	writes	possible.
When	using	clusters:	"Adding	more	than	two	full	repositories	often	degrades	overall	performance,
because	the	cluster	will	need	to	send	additional	traffic	and	spend	more	time	maintaining	all	of	the
repositories...	[I]t	is	usually	better	to	create	one	queue	manager	with	100	queues	as	opposed	to	100
queue	managers	with	one	queue	apiece."

http://www.ibm.com/developerworks/websphere/library/techarticles/1308_broadhurst/1308_broadhurst.html
http://www-01.ibm.com/support/docview.wss?uid=swg21248089
https://www.ibm.com/support/pages/understanding-jms-connection-pools-and-session-pools-better-tuning
http://www.ibm.com/developerworks/websphere/library/techarticles/0807_hsieh/0807_hsieh.html

Large	message	depths	on	your	WebSphere	MQ	queues	could	cause	performance	issues.	Storing
thousands	of	messages	on	a	single	queue	is	not	a	best	practice.

	

MQ	Documentation
The	WebSphere	MQ	library	has	links	to	documentation	for	all	versions	of	MQ:	http://www-
01.ibm.com/software/integration/wmq/library/index.html

	

Basic	MQ	Display	Commands
dspmqinst	lists	the	MQ	installations	on	the	machine

dspmqver	shows	the	MQ	version	and	patch	level

dspmq	lists	queue	managers	on	the	local	machine,	and	the	status	of	each	one

	

DISPLAY	QSTATUS
Documentation:
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ref.adm.doc/q086260_.htm

Example	output:

					1	:		DISPLAY	QSTATUS(MDM.MESSAGING.REQUEST)	TYPE(QUEUE)	ALL
AMQ8450:	Display	queue	status	details.
			QUEUE(MDM.MESSAGING.REQUEST)												TYPE(QUEUE)
			CURDEPTH(0)																													IPPROCS(177)
			LGETDATE(2020-04-22)																				LGETTIME(06.47.13)
			LPUTDATE(2020-04-22)																				LPUTTIME(06.47.13)
			MEDIALOG()																													MONQ(HIGH)
			MSGAGE(0)																															OPPROCS(5)
			QTIME(2323,	2042)																							UNCOM(NO)

Key	outputs:

CURDEPTH:	The	current	depth	of	the	queue,	that	is,	the	number	of	messages	on	the	queue,	including
both	committed	messages	and	uncommitted	messages.

LGETDATE/LGETTIME:	The	date	[and	time]	on	which	the	last	message	was	retrieved	from	the
queue	since	the	queue	manager	started.	A	message	being	browsed	does	not	count	as	a	message	being
retrieved.

LPUTDATE/LPUTTIME:	The	date	[and	time]	on	which	the	last	message	was	put	to	the	queue	since
the	queue	manager	started.

MSGAGE:	Age,	in	seconds,	of	the	oldest	message	on	the	queue.	The	maximum	displayable	value	is
999999999

IPPROCS:	Number	of	concurrent	getters	(e.g.	WAS	MDBs),	although	the	actual	number	is	potentially
up	to	IPPROCS	*	SHARECNV.	The	size	of	the	Server	Session	Pool	for	the	Activation	Specification
determines	how	many	messages	are	processed	concurrently	by	message-driven	beans	that	use	this
activation	specification.	This	defaults	to	10	and	you	can	configure	this	via	"Maximum	Server	Sessions'
under	the	'Advanced	Properties'	tab	for	the	Activation	Spec	in	the	Admin	Console.

http://www-01.ibm.com/software/integration/wmq/library/index.html
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ref.adm.doc/q086260_.htm

OPPROCS:	Number	of	concurrent	putters.

QTIME:	Interval,	in	microseconds,	between	messages	being	put	on	the	queue	and	then	being
destructively	read.	The	interval	is	measured	from	the	time	that	the	message	is	placed	on	the	queue
until	it	is	destructively	retrieved	by	an	application	and,	therefore,	includes	any	interval	caused	by	a
delay	in	committing	by	the	putting	application.	Two	values	are	displayed	and	these	are	recalculated
only	when	messages	are	processed:	A	value	based	on	the	last	few	messages	processed	and	A	value
based	on	a	larger	sample	of	the	recently	processed	messages.	These	values	depend	on	the	configuration
and	behavior	of	your	system,	as	well	as	the	levels	of	activity	within	it,	and	serve	as	an	indicator	that
your	system	is	performing	normally.	A	significant	variation	in	these	values	might	indicate	a	problem
with	your	system.

UNCOM:	Indicates	whether	there	are	any	uncommitted	changes	(puts	and	gets)	pending	for	the	queue.

Extracting	periodic	file	output	to	a	CSV:

#!/bin/awk	-f
BEGIN	{	print	"LGETDATE,LGETTIME,CURDEPTH,IPPROCS,MSGAGE,OPPROCS,QTIME1,QTIME2,UNCOM";	}
/CURDEPTH/	{
		curdepth=$1;
		curdepth=substr(curdepth,	10);
		gsub(/\)/,	"",	curdepth);
		curdepth=getASCII(curdepth);
		ipprocs=substr($2,	9);
		gsub(/\)/,	"",	ipprocs);
		ipprocs=getASCII(ipprocs);
}
/LGETDATE/	{
		lgetdate=substr($1,	10,	10);
		lgetdate=getASCII(lgetdate);
		lgettime=substr($2,	10,	8);
		gsub(/\./,	":",	lgettime);
		lgettime=getASCII(lgettime);
}
/LPUTDATE/	{
		lputdate=substr($1,	10,	10);
		lputdate=getASCII(lputdate);
		lputtime=substr($2,	10,	8);
		gsub(/\./,	":",	lputtime);
		lputtime=getASCII(lputtime);
}
/MSGAGE/	{
		msgage=substr($1,	8);
		gsub(/\)/,	"",	msgage);
		msgage=getASCII(msgage);
		opprocs=substr($2,	9);
		gsub(/\)/,	"",	opprocs);
		opprocs=getASCII(opprocs);
}
/QTIME/	{
		qtime1=substr($1,	7);
		gsub(/,/,	"",	qtime1);
		qtime1=getASCII(qtime1);
		qtime2=$2;
		gsub(/\)/,	"",	qtime2);
		qtime2=getASCII(qtime2);
		uncom=substr($3,	7);
		gsub(/\)/,	"",	uncom);
		uncom=getASCII(uncom);
		printf("%s,%s,%s,%s,%s,%s,%s,%s,%s\n",	lgetdate,	lgettime,	curdepth,	ipprocs,	msgage,	opprocs
}
function	getASCII(str)	{
		gsub(/[^\40-\176]/,	"",	str);
		return	str;
}

If	you	want	to	know	which	PIDs	are	reading/writing	messages	to	a	particular	queue,	use	the	following
command:

DISPLAY	QSTATUS(QName)	TYPE(HANDLE)	ALL

Then	look	for	the	PID	and	grep	for	that	PID	to	know	which	application	is	using	that	queue.	You	need	to	look
for	the	APPLTYPE(USER)	and	not	the	APPLTYPE(SYSTEM).

	

Performance	differences	across	MQ	versions
Official	WebSphere	MQ	Performance	Reports	are	available	via	the	MQ	SupportPac	site	 here.

	

Windows	and	UNIX	Performance	Tuning
Configuring	and	tuning	WebSphere	MQ	for	performance	on	Windows	and	UNIX:
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712_dunn.html

Queue	manager	log	configuration	(applicable	only	when	using	persistent	messages)
More	tips	related	to	persistent	messages:

"When	processing	persistent	messages	it	is	recommended	to	run	many	instances	of	the
application	concurrently	in	order	to	optimise	the	efficiency	of	the	queue	manager	log."
"When	processing	persistent	messages	in	an	application	you	should	ensure	that	all	MQPUT	and
MQGET	activity	takes	place	within	a	unit	of	work,	or	syncpoint	as	it	is	sometime	referred	to,	for
efficiency	purposes."

Fastpath	channels,	fastpath	listeners
Queue	buffer	sizes

	

WMQ	JMS	Client
https://www.ibm.com/developerworks/mydeveloperworks/blogs/messaging/entry/programming_a_websphere_mq_jms_client_for_performance7

If	possible:

Use	non-persistent	messages
Use	bindings	mode
Use	correlation	ID	when	using	selectors
Use	the	async	put	feature
Use	read-ahead	when	you	can,	with	non-persistent	messages
Use	conversation	sharing	/	multiplexed	sockets
Use	non-transacted	sessions

	

Resources
MQ	Performance	Reports:	http://www-01.ibm.com/support/docview.wss?uid=swg27007150

1.	 MP01:	WebSphere	MQ	-	Tuning	Queue	limits
2.	 MP06:	WebSphere	MQ	with	JMS:	Get	the	Best	from	WMQ	and	MB	Pub/Sub	Processing
3.	 MP7A:	WebSphere	MQ	for	Windows	V5.3	-	Performance	tuning	for	large	clusters

http://www-01.ibm.com/support/docview.wss?uid=swg27007150
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712_dunn.html
https://www.ibm.com/developerworks/mydeveloperworks/blogs/messaging/entry/programming_a_websphere_mq_jms_client_for_performance7
http://www-01.ibm.com/support/docview.wss?uid=swg27007150

4.	 There	is	also	a	performance	monitoring	Support	Pac,	MP08

MQ	v7	JMS	performance	evaluations	(vastly	improved	in	V7):	http://www-
01.ibm.com/support/docview.wss?uid=swg24022778

	

Authentication
Lightweight	Directory	Access	Protocol	(LDAP)
With	WAS	com.ibm.ws.security.*=all	diagnostic	trace,	search	for	"LdapRegistryI	>	search	Entry"	to	see	if	a
JVM	is	making	LDAP	calls

Consider	preFetchData	to	speed	up	some	LDAP	operations:	http://www-01.ibm.com/support/docview.wss?
uid=swg1PI09171

Recent	versions	of	WAS	include	a	basic	LDAP	search	under	AdminTask.ldapSearch:	http://www-
01.ibm.com/support/docview.wss?uid=swg1PI47190

	

LdapQuery.ear
Web	application	to	test	LDAP	queries:	http://www-01.ibm.com/support/docview.wss?uid=swg21648889

	

IBM	Tivoli	Directory	Server	(TDS)
IBM	Tivoli	Directory	Server	(TDS)	is	a	common	commerical	LDAP	product:	http://www-
01.ibm.com/support/knowledgecenter/SSVJJU/welcome

Use	cn=monitor	to	get	a	snapshot	of	activity:

$	ldapsearch	-h	ldap_host	-s	base	-b	cn=monitor	objectclass=*

Key	items:

currentconnections:	The	number	of	active	connections.

Shows	how	many	established	TCP	sockets	are	connected	to	LDAP;	however,	WAS	has	a	cache	for
LDAP	connections,	so	generally	this	number	may	not	change	even	if	there	are	a	lot	of	operations	over
the	connections.

opscompleted:	The	number	of	completed	requests	since	the	server	was	started.

Cumulative,	so	you	can	take	multiple	snapshots,	and	take	the	difference	to	find	the	number	of	LDAP
transactions	completed	in	that	time	period

current_workqueue_size:	The	current	depth	of	the	work	queue.

The	workqueue	size	is	zero	if	the	are	no	threads	waiting	for	an	available	worker	thread.	If	all	workers
are	busy,	the	operations	wait	in	the	work	queue.	Should	always	be	zero;	otherwise,	there	is	some
contention,	either	in	the	LDAP	box	itself	(e.g.	CPU),	or	in	the	number	of	threads	configured	for	LDAP,
or	too	much	load	coming	in.

http://www-01.ibm.com/support/docview.wss?uid=swg24022778
http://www-01.ibm.com/support/docview.wss?uid=swg1PI09171
http://www-01.ibm.com/support/docview.wss?uid=swg1PI47190
http://www-01.ibm.com/support/docview.wss?uid=swg21648889
http://www-01.ibm.com/support/knowledgecenter/SSVJJU/welcome

available_workers:	The	number	of	worker	threads	available	for	work.

if	it's	at	0	for	a	long	period	of	time,	that's	a	sign	of	a	busy	server,	and	will	usually	result	in	"hangs"
from	the	perspective	of	the	client-side.

The	idsmonitor.ksh	script	can	be	used	to	monitor	TDS,	which	includes	the	cn=monitor	output	along	with
time	stamps	and	other	information	and	can	be	run	on	an	interval:	http://www-
01.ibm.com/support/docview.wss?uid=swg21282708

Here's	a	Linux	command	that	converts	the	idsmonitor.out	files	to	CSV	for	spreadsheets	(and	then	just	adds	a
column	that	calculates	the	difference	between	rows):

opscompleted:	grep	-B	15	^opscompleted	idsmonitor.out.20131010.txt	|	grep	-e
^opscompleted	-e	Date	|	awk	'{printf	"%s",	substr($0,	7);getline;printf	",%s",
substr($0,	15);printf	"\n"}'
currentconnections:	grep	-B	9	^currentconnections	idsmonitor.out.20131010.txt	|	grep	-e
^currentconnections	-e	Date	|	awk	'{printf	"%s",	substr($0,	7);getline;printf	",%s",
substr($0,	21);printf	"\n"}'
current_workqueue_size:	grep	-B	101	^current_workqueue_size	idsmonitor.out.20131010.txt
|	grep	-e	^current_workqueue_size	-e	Date	|	awk	'{printf	"%s",	substr($0,
7);getline;printf	",%s",	substr($0,	25);printf	"\n"}'

	

OpenLDAP
See	the	OpenLDAP	chapter	in	the	appendix	for	non-performance	related	background.

	

Monitoring

See	available	monitors	with:

$	ldapsearch	-LLL	-W	-D	cn=Manager,dc=example,dc=com	-b	cn=monitor	objectclass=*

	

Competition	and	Migration
Comparing	Products
Here	are	some	things	to	compare	when	two	products	are	performing	differently.	Look	at	the	configuration,
but	also	gather	evidence	on	each	one	(e.g.	tracing)	to	actually	confirm	or	deny	whether	the	feature	is	in	use
and	the	relative	cost.

1.	 Compare	"underlying"	configurations	(at	least	at	a	high	level)	such	as	the	operating	system	(e.g.	CPU,
RAM	usage,	etc.),	Java	(e.g.	maximum	heap	size,	garbage	collection	overhead,	-D	parameters,	etc.),
etc.

2.	 Ensure	the	types	and	volumes	of	messages	are	the	same.	For	example,	are	there	more	exceptions	in	the
logs	of	the	worse-performing	product?

3.	 Security	configuration	(e.g.	authentication	provider)
4.	 Ensure	that	application	logging	levels	and	volume	are	the	same.	For	example,	in	one	case	the	default

classloading	policy	of	a	competitor	product	picked	up	a	different	logging	configuration	file	causing
less	logging	to	occur	versus	WAS.

5.	 If	a	different	temporary	directory	is	used	between	products	(-Djava.io.tmpdir),	make	sure	this	will	not

http://www-01.ibm.com/support/docview.wss?uid=swg21282708

have	any	impact	(e.g.	if	it's	on	a	slower	file	system).	For	example,	Tomcat	changes	the	default
temporary	directory.

6.	 If	the	time	of	a	product	component	(e.g.	web	service	call)	is	in	question,	there	may	be	no	easy	way	to
compare,	so	instead	consider	asking	the	application	to	write	a	log	entry	at	the	start	and	end	of	each	call.

7.	 If	there	is	a	small	difference,	try	to	magnify	the	difference	(for	example,	adding	more	concurrent
users)	and	then	gather	data.

8.	 Use	a	monitoring	product	such	as	ITCAM	that	works	on	both	products.
9.	 If	you	know	some	aspects	of	the	competition,	such	as	the	maximum	heap	size,	then	you	can	test	with

this	same	value.	If,	for	example,	garbage	collection	overhead	is	too	high	with	the	same	heap	size,	and
there	are	no	other	application	differences,	this	may	be	a	sign	that	some	fundamental	configuration	such
as	thread	pool	sizes,	data	source	caching,	etc.	may	be	leading	to	a	difference	in	heap	usage	and	may	be
the	fundamental	cause	of	the	difference	in	performance.

10.	 Profile	your	application	using	tools	such	as	the	IBM	Java	Health	Center	or	more	simply	by	taking
multiple	thread	dumps.

11.	 If	changing	JVMs	from	HotSpot	to	J9:
1.	 Review	the	J9	chapter	for	common	tuning.
2.	 Profile	the	application	and	if	you	see	classloading	is	very	heavy,	try	to	eliminate/cache	if

possible	because	there	have	been	some	observed	performance	difference	in	some	parts	of
classloading.

3.	 Test	with	reduced	JIT	compilation	threads.
12.	 Note	that	it	is	possible	that	two	CPUs	with	identical	specifications	(e.g.	clock	speed)	may	perform

differently	due	to	manufacturing	defects/differences,	physical	placement,	and	other	factors	which	may
cause	different	thermal	characteristics	and	affect	behavior	such	as	clock	speed	(for	examples,	see
Marathe,	Aniruddha,	et	al.	"An	empirical	survey	of	performance	and	energy	efficiency	variation	on
Intel	processors."	Proceedings	of	the	5th	International	Workshop	on	Energy	Efficient	Supercomputing.
ACM,	2017.).	Consider	varying	which	systems	the	test	are	run	on	to	see	if	there	is	any	difference.

	

WAS	Migration	Performance	Differences
If	a	customer	reports	that	performance	is	worse	after	migrating	WAS	versions,	consider	the	following	ideas.
In	some	ways,	comparing	two	versions	of	the	same	product	(e.g.	migration)	can	also	be	treated	as	a
"competition"	between	those	two	versions	using	the	tips	in	the	previous	section.

1.	 See	the	general	comparison	checklist	above.
2.	 What	changed?	Often	times,	the	hardware,	network,	and/or	application	has	changed	and	this	could

affect	the	difference.	If	possible,	try	installing	both	versions	and	applications	in	the	same	operating
system	instance	for	comparison.

3.	 If	the	migration	is	from	WAS	<	8	to	WAS	>=	8,	and	on	a	platform	that	runs	IBM	Java	and	-Xgcpolicy
is	not	specified	on	WAS	>=	8,	and	-Xgcpolicy	was	not	specified	on	the	previous	version	or	a	non-
gencon	policy	was	specified,	then	the	default	gcpolicy	changed	to	gencon	with	WAS	V8.0.	With
gencon,	part	of	the	young	generation	(-Xmn,	which	defaults	to	25%	of	-Xmx)	is	unavailable	for	the
application	(amount	changes	dynamically	based	on	the	tilt	ratio),	so	there	would	be	relatively	less	Java
heap	than	previously	which	can	cause	performance	changes.

4.	 Compare	the	configurations	between	versions,	first	checking	the	basics	such	as	generic	JVM
arguments,	thread	pool	configurations,	and	then	more	thoroughly.	Note	that	comparing	configuration
across	major	product	versions	may	show	some	known	differences	in	the	product	that	may	be	unrelated.

5.	 WAS	traditional	V8.5	includes	Intelligent	Management	(formerly	WVE)	enabled	by	default,	which
includes	additional	PMI	activity	amongst	other	things	(ODC	rebuilds	in	the	DMGR,	etc.),	which	some
customers	(particularly	on	z/OS)	may	notice	during	idle	periods	compared	to	previous	versions.	IM
may	also	introduce	additionally	memory	overhead,	particularly	as	the	size	of	the	cell	increases.	If	you
are	not	using	IM	features,	then	consider	disabling	it	with	LargeTopologyOptimization=false.

6.	 Java	EE5	modules	introduced	annotation	scanning	which	can	increase	startup	time	and	decrease
application	performance.	See	the	Annotation	Scanning	section	in	the	WAS	chapter.

7.	 Use	the	migration	tools	to	review	the	application.	The	toolkit	includes	a	"Performance"	section.
8.	 If	the	migration	is	from	WAS	<	8	to	WAS	>=	8,	and	the	application	uses	Spring,	calls	to

https://www.ibm.com/support/pages/node/6261005

ApplicationContext.getBean()	on	beans	using	the	@Async	annotation	cause	higher	CPU	utilization.
9.	 On	z/OS,	ensure	that	WLM	service	classes	and	other	classifications	are	the	same.

10.	 If	you're	migrating	from	IBM	Java	<=	8	to	IBM	Java	>=	11	or	Semeru	Java	(OpenJ9+OpenJDK),	the
JVM	is	largely	the	same,	but	the	JCL	may	have	significant	changes	(e.g.	the	performance
characteristics	of	the	JAXP	XSLT	compiler	may	change	positively	or	negatively	depending	on	the	use
case).

11.	 Review	the	Java	migration	notes.
12.	 When	installing	a	fixpack,	the	Java	shared	class	cache	and	OSGi	caches	are	cleared.

	

Known	Migration	Issues

Linux

1.	 When	migrating	from	RHEL	8.6	(kernel	4.18.0-372.9.1)	to	RHEL	8.7	and	later	(kernel	4.18.0-425.3.1
and	later),	there	is	a	known	performance	regression	of	~8	to	10%	on	certain	hardware	due	to	default
changes	in	the	Linux	kernel	options	mmio_stale_data=full	and	retbleed=auto	for	hardware
vulnerability	mitigations.

	

IBM	App	Connect	Enterprise
IBM	App	Connect	Enterprise	(ACE)	is	formerly	known	as	IBM	Integration	Bus	(IIB),	and	before	that,
WebSphere	Message	Broker	(WMB).	It	is	a	combination	of	a	C/C++	program	and	a	JVM.

	

Terms
Integration	Server	(also	known	as	a	DataFlowEngine	[DFE]	or	an	Execution	Group):	Where	message
flows	and	resources	are	deployed	and	executed.	This	process	includes	the	JVM.
Integration	Node:	An	optional	process	that	manages	a	set	of	integration	servers	(not	applicable	to
containers).
"Additional	instances"	are	basically	the	available	number	of	worker	threads.

	

Set	JVM	options
Java	arguments	may	be	specified	with	environment	variables	(e.g.	IBM_JAVA_OPTIONS)	or	with
mqsichangeproperties	[...]	jvmSystemProperty.	The	downside	of	using	environment	variables	is	that
multiple	execution	groups	may	use	a	single	profile	script,	thus,	per-execution	group	settings	cannot	be
specified.

	

jvmSystemProperty

To	set	JVM	options	using	the	mqsichangeproperties	jvmSystemProperty	sub-command,	first	list	the
existing	system	properties:

mqsireportproperties	$NODE	-e	$SERVER	-o	ComIbmJVMManager	-n	jvmSystemProperty

https://www.ibm.com/support/pages/node/232543
https://www.ibm.com/support/pages/node/6366719
https://www.ibm.com/support/pages/first-server-startup-after-installing-fix-pack-might-be-slower-due-class-cache-rebuild
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/8.7_release_notes/kernel_parameters_changes#kernel_parameters_changes
https://www.ibm.com/docs/en/app-connect/12.0?topic=overview-app-connect-enterprise-technical
https://www.ibm.com/docs/en/integration-bus
https://www.ibm.com/docs/en/app-connect/12.0?topic=overview-integration-servers-integration-nodes
https://www.ibm.com/docs/en/app-connect/12.0?topic=overview-glossary-terms-abbreviations
https://www.ibm.com/docs/en/app-connect/12.0?topic=overview-integration-servers-integration-nodes
https://www.ibm.com/docs/en/app-connect/12.0?topic=commands-mqsichangeproperties-command
https://www.ibm.com/docs/en/app-connect/12.0?topic=command-jvm-parameter-values

Then,	prepend	the	results	of	the	above	command	(if	any)	with	the	updated	arguments	into	the	last	argument
of	the	following	command.	Wrap	the	entire	JVM	options	string	with	single	quotes	and	each	argument	inside
with	double	quotes;	for	example:

mqsichangeproperties	$NODE	-e	$SERVER	-o	ComIbmJVMManager	-n	jvmSystemProperty	-v	'"-Xverbosegclog:verbosegc.%seq.log,20,50000"	"-Doption1=true"'

	

Using	environment	variables

Java	arguments	may	be	specified	with	the	environment	variable	IBM_JAVA_OPTIONS	for	IBM	Java.
Environment	variables	are	generally	set	in	the	profile.	First,	check	if	IBM_JAVA_OPTIONS	is	already	in	the
profile.	If	it	is,	append	the	arguments;	otherwise,	add	the	export;	for	example:

export	IBM_JAVA_OPTIONS="-Xverbosegclog:verbosegc.%seq.log,20,50000	-Doption1=true"

	

Verbose	garbage	collection
Verbose	garbage	collection	is	generally	recommended	for	production	with	benchmarks	showing	an	overhead
of	~0.1%.	Verbosegc	helps	investigate	OutOfMemoryErrors	and	garbage	collection	overhead.

ACE/IIB	JVMs	may	share	the	same	current	working	directory	(e.g.	$WORKPATH/common/errors);	therefore,
to	allow	sets	of	rotating	verbosegc	files	for	each	JVM,	add	a	unique	name	to	each	JVM's	added	options;	for
example,	replace	both	instances	of	$SERVER	with	each	JVM's	unique	name	in	the	following	example
(combining	with	pre-existing	mqsireportproperties,	if	any):

mqsichangeproperties	$NODE	-e	$SERVER	-o	ComIbmJVMManager	-n	jvmSystemProperty	-v	'"-Xverbosegclog:verbosegc.$SERVER.%seq.log,20,50000"'

	

Request	Thread	Dump
By	default,	ACE/IIB	set	-Xdump:heap:events=user	-Xdump:snap:events=user 	so	kill	-3	$PID	will
produce	a	heapdump	(*.phd)	and	snapdumps	(Snap*.trc)	in	addition	to	a	thread	dump	(javacore*txt).
There	is	no	way	to	disable	this.

To	produce	a	thread	dump	without	a	heapdump	and	snapdump,	on	ACE	>=	11.0.0.9	and	IIB	>=	10.0.0.9,	you
may	use	mqsichangeproperties	[...]	core:

mqsichangeproperties	$NODE	-e	$SERVER	-o	ComIbmInternalSupportManager/Java/JVM	-n	dump	-v	core

Thread	dumps	are	generally	written	to	$WORKPATH/common/errors/

	

Request	Heap	Dump
To	produce	a	heap	dump,	on	ACE	>=	11.0.0.9	and	IIB	>=	10.0.0.9,	you	may	use	mqsichangeproperties
[...]	heap:

mqsichangeproperties	$NODE	-e	$SERVER	-o	ComIbmInternalSupportManager/Java/JVM	-n	dump	-v	heap

Heap	dumps	are	generally	written	to	$WORKPATH/common/errors/

	

https://www.eclipse.org/openj9/docs/env_var/
https://www.ibm.com/support/pages/node/881976
https://www.ibm.com/support/pages/generating-java-diagnostic-dumps-app-connect-enterprise-or-ibm-integration-bus
https://www.ibm.com/support/pages/generating-java-diagnostic-dumps-app-connect-enterprise-or-ibm-integration-bus

Request	System	Dump
To	produce	a	system	dump,	on	ACE	>=	11.0.0.9	and	IIB	>=	10.0.0.9,	you	may	use	mqsichangeproperties
[...]	system:

mqsichangeproperties	$NODE	-e	$SERVER	-o	ComIbmInternalSupportManager/Java/JVM	-n	dump	-v	system

However,	currently,	this	mechanism	does	not	use	request=exclusive+prepwalk	so	it	is	not	recommended.
Instead,	see	J9	System	Dump	Recipe.

	

JDBC
The	JDBC	connection	pool	idle	timeout	is	set	with	the	environment	variable	MQSI_JDBC_POOL_EXPIRY	(in
seconds)	which	defaults	to	900	seconds	(15	minutes).	The	maximum	value	is	100000000	(~3	years).

The	JDBC	query	timeout	is	set	with	the	environment	variable	MQSI_POOL_DBCALL_TIMEOUT	(in	seconds)
which	defaults	to	15	or	60	seconds	depending	on	APAR	IT34228.	The	maximum	value	is	600	or	18000
seconds	depending	on	APAR	IT34228.

The	JDBC	monitoring	statistics	include	connection	pool	utilization	but	do	not	include	average	drive	response
time.

	

Diagnostic	Trace
User	trace:	https://www.ibm.com/support/pages/collecting-user-level-trace-iib-integration-server
Service	trace:

Node:	https://www.ibm.com/support/pages/collecting-service-level-trace-iib-integration-node
Server:	https://www.ibm.com/support/pages/collecting-service-level-trace-iib-integration-server

JDBC	trace:
https://www.ibm.com/support/pages/node/536991
https://www.ibm.com/support/pages/node/78035

ODBC	trace:	https://www.ibm.com/support/pages/node/78037

	

IBM	Business	Automation	Workflow
IBM	Business	Automation	Workflow	(BAW)	is	formerly	known	as	IBM	Business	Process	Manager	(BPM).

Resources:

Documentation

	

BAW	Recipe
1.	 Review	the	tuning	documentation
2.	 Ensure	that	business	object	parsing	mode	is	set	to	Lazy	Parsing	(recently	the	default).

	

https://www.ibm.com/support/pages/generating-java-diagnostic-dumps-app-connect-enterprise-or-ibm-integration-bus
https://www.ibm.com/support/pages/apar/IT34228
https://www.ibm.com/support/pages/apar/IT34228
https://www.ibm.com/docs/en/app-connect/12.0?topic=data-jdbc-connection-pools
https://www.ibm.com/support/pages/collecting-user-level-trace-iib-integration-server
https://www.ibm.com/support/pages/collecting-service-level-trace-iib-integration-node
https://www.ibm.com/support/pages/collecting-service-level-trace-iib-integration-server
https://www.ibm.com/support/pages/node/536991
https://www.ibm.com/support/pages/node/78035
https://www.ibm.com/support/pages/node/78037
https://www.ibm.com/products/business-automation-workflow
https://www.ibm.com/docs/en/baw/20.x?topic=v2102-product-overview
https://www.ibm.com/docs/en/baw/20.x?topic=management-tuning

Business	Object	Parsing	Mode
The	latest	default	business	object	parsing	mode	is	Lazy	Parsing	(XCI).	The	older	mode	is	Eager	Parsing
(EMF).	In	general,	Lazy	Parsing	is	more	performant	than	Eager	Parsing.	This	may	manifest	in	symptoms
such	as	lock	contention	with	org/eclipse/emf/ecore/impl/EPackageRegistryImpl,
org/eclipse/emf/ecore/impl/EPackageRegistryImpl.getEPackage,	and/or
com/ibm/ws/bo/BOExtendedMetaData.containsPackage.	Switching	from	Eager	to	Lazy	does	require
changing	each	application	and	recompiling.

	

IBM	InfoSphere	Master	Data	Management
IBM	InfoSphere	Master	Data	Management	(MDM)	helps	manage	the	master	data	in	an	organization.

Performance	Tuning	Documentation
General	Documentation

	

General	MDM	Best	Practices
Highlights	of	general	MDM	best	practices:

1.	 "General	interaction	run	times	for	an	enterprise	deployment	are	expected	to	be	along	the	following
lines:

MemPut	<	.5	sec

MemSearch	<	1	sec	-	varies	if	you	define	large	FBB

MemGet	<	.3	sec

EM	<	1	sec	-	varies	if	you	define	large	FBB"

	

Database	Response	Times
MDMSE	transactions	use	ODBC	connections	with	minimal	use	of	JDBC,	so	most	database	response	time
data	for	MDMSE	transactions	will	not	be	in	PMI	and	other	similar	monitoring.

Instead,	investigate	such	database	response	times	using	MDMSE	performance	logs	with	the	instructions	in
"Section	5:	MDM	Standard	Edition	(SE)	performance	logs".

In	particular,	use	the	additional	diagnostic	trace	specifier	com.ibm.mdm.mds.log.PerformanceLog=all.	This
may	be	enabled	at	startup	or	dynamically	at	runtime.	For	example:

=info:com.dwl.=warning:com.ibm.mdm.*=warning:com.ibm.mdm.mds.log.PerformanceLog=all:com.ibm.mdm.server.config.*=info:com.ibm.mdm.common.brokers.*=info:com.ibm.mdm.mds.*=info:com.dwl.base.report.mbean.TransactionDataListener=fine:com.ibm.mdm.mds.log.AuditLog=all:com.ibm.mdm.mds.log.TimerLog=all

Unlike	other	MDM	traces	that	go	to	trace.log,	the	PerformanceLog	data	goes	to	perfmsgs.dat.*	files	(by
default,	in	$WAS/installedApps/$CELL/MDM-native-E001.ear/native.war/log/perfmsgs.dat.*).

You	may	set	-Dmad.log.dir=${SERVER_LOG_ROOT}/	to	write	the	perfmsgs.dat.*	files	to	the	normal	server
log	directory.

https://www.ibm.com/docs/en/baw/20.x?topic=objects-considerations-when-choosing-business-object-parsing-mode
https://www.ibm.com/products/ibm-infosphere-master-data-management
https://www.ibm.com/docs/en/imdm/11.6?topic=performance-tuning
https://www.ibm.com/support/knowledgecenter/SSWSR9_11.6.0/com.ibm.mdmhs.homepage.doc/mdm11.6_welcome.html
https://www.ibm.com/support/pages/performance-considerations-ibm-infosphere-master-data-management-standard-edition
https://www.ibm.com/support/pages/node/529669

The	response	times	are	captured	in	column	10	in	milliseconds.

	

IBM	Maximo
Best	Practices	for	System	Performance
General	Documentation

	

MBO	PhantomReferences
Maximo	may	use	PhantomReferences	for	cleaning	up	MBO-related	objects	which	are	indirectly	created	by
application	database	requests.	PhantomReferences	are	basically	like	finalizers	that	allow	cleanup	code	to	run
for	an	object	that	is	about	to	be	garbage	collected.	However,	the	Java	specification	states	that
PhantomReference	processing	is	non-deterministic:

If	the	garbage	collector	determines	at	a	certain	point	in	time	that	the	referent	of	a	phantom
reference	is	phantom	reachable,	then	at	that	time	or	at	some	later	time	it	will	enqueue	the
reference.

Therefore,	it	is	possible	that	the	rate	of	PhantomReference	generation	exceeds	the	rate	at	which	they	can	be
marked,	queued,	and	cleared,	and	thus	the	PhantomReferences	themselves	can	build	up	and	put	pressure	on
the	memory	and	garbage	collection.	There	are	no	IBM	Java	tuning	options	to	control	the	aggressiveness	of
PhantomReference	marking,	queuing,	and	clearing;	however,	since	OpenJ9	0.35	(IBM	Java	8.0.7.20),
phantom	reference	processing	is	more	aggressive.

If	you	are	experiencing	long	GC	times	due	to	this	issue,	here	are	some	ideas:

1.	 Review	if	the	application	activity	is	expected.	For	example,	are	there	excessively	large	or	unbounded
database	queries	that	will	drive	creation	of	large/complex	MBO	object	graphs	that	will	indirectly	drive
lots	of	PhantomReferences?

2.	 Run	a	test	with	-Xgc:concurrentSlack=macrofrag	to	see	if	it	helps
3.	 Run	a	test	with	-Xgc:concurrentSlack=macrofrag	-

Xgc:concurrentSlackFragmentationAdjustmentWeight=50	to	see	if	it	helps
4.	 Horizontally	scale	to	more	nodes+JVMs	to	distribute	the	PhantomReference	processing
5.	 Test	reducing	-Xmx	to	induce	cleaning	up	PhantomReferences	more	often	so	that	the	worst	case	pause

time	of	cleaning	up	a	lot	of	queued	PhantomReferences	is	not	too	high
6.	 If	the	above	steps	do	not	help	or	are	not	feasible	in	the	short	term,	then	customer	could	periodically

restart	JVMs	to	clean	up	the	PhantomReferences
7.	 Test	increasing	-Xmx	(if	there	is	available	RAM)	if	the	JVM	needs	to	run	for	longer	before	restarting

Notes	for	identifying	this	issue:

1.	 Verbosegc	will	show	spikes	in	PhantomReference	count	some	time	before	GC	spikes	and
PhantomReferences	cleared	during	GC	spikes

2.	 In	a	core	dump,	the	class	histogram	will	show	large	retained	sets	for	java.util.Hashtable.	Running
merge	shortest	paths	to	GC	roots	on	these	objects	and	excluding	weak	references	will	show	a	lot	of
memory	through	phantom	references	in	the	phantomList	static	object	in	the	class	psdi.mbo.Mbo.	This
phantomList	may	have	a	lot	of	objects.

3.	 In	a	core	dump,	if	we	look	at	the	static	field	Mbo.phantomList,	for	example,	that	has	strong	references
to	phantom	references,	but	the	actual	referents	are	not	strongly	reachable.	Therefore,	the	phantom
reference	should	be	put	onto	the	Mbo.phantomQueue	(which	will	then	drive	the	Maximo	code	to
remove	the	phantom	reference	from	the	phantomList)	but	Java	may	be	slow	to	mark	the	referents	as
only	phantomly	reachable	(as	evidenced	by	the	reference	queue	being	empty).	This	then	may	drive	the
accumulation	of	phantom	references	and	referents	in	the	heap	and	drives	high	GC	pause	times.	As	an

https://www.ibm.com/support/pages/maximo-76-performance-best-practice-guide
https://www.ibm.com/docs/en/mam/7.6.1.2
https://docs.oracle.com/javase/8/docs/api/java/lang/ref/PhantomReference.html
https://github.com/eclipse-openj9/openj9/commit/1a5bcbe1ac02e1f7e6849cf7b147f56007a5afbc

example,	if	we	look	at	one	phantom	reference	psdi.mbo.MboCounter,	its	referent	may	be	some	object,
but	if	we	check	whether	this	is	strongly	referenced,	then	it	is	not	strongly	reachable	(disregarding
WeakReference	paths).

Ideally,	PhantomReference	usage	should	be	minimized	or	eliminated.

	

IBM	Operational	Decision	Manager
IBM	Operational	Decision	Manager	(ODM)	uses	rules	for	automated	decision	making.

General	Documentation

	

Tuning	Guide
See	the	Tuning	Guide.

	

Rule	Execution	Server
The	Rule	Execution	Server	(RES)	runs	RuleApps.	It	is	also	known	as	Decision	Server	Rules.

There	are	two	rules	engine	for	executing	rules:	Classic	Rule	Engine	and	Decision	Engine.	The	Classic	Rule
Engine	has	known	scalability	issues	and	it	is	deprecated	in	favor	of	the	Decision	Engine.

	

Performance	Tuning

Review	the	checklist	to	improve	the	performance	of	Rule	Execution	Server.

	

Decision	Engine

On	IBM	and	Semeru	Java,	test	the	relative	performance	of	-Xjit:exclude={com/ibm/rules/generated/*}

	

Classic	Rule	Engine

Older	versions	of	the	checklist	included	the	following	options:

-Xgcpolicy:gencon
-Xgcthreads6
-Xjit:codeTotal=261072
-Xjit:compilationThreads=1
-Xjit:{ilog/rules/engine/Sequential/generated/*}(disableInlining)

The	first	gencon	option	is	the	default	in	recent	versions	of	Java.

Only	the	last	-Xjit	option	was	active	as	that	is	the	way	-Xjit	options	are	processed;	only	the	most	recent

https://www.ibm.com/products/operational-decision-manager
https://www.ibm.com/docs/en/odm/8.11.0?topic=manager-introducing-operational-decision
https://community.ibm.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=5534ed60-46c4-b791-d94f-e925a91f9331&forceDialog=0
https://www.ibm.com/docs/en/odm/8.11.0?topic=server-rule-execution-overview
https://www.ibm.com/docs/en/odm/8.11.0?topic=notes-deprecated-removed-features
https://www.ibm.com/community/automation/docs/odm-2/best-practices/rule-execution-server/checklist-perf-res/

option	takes	precedence	over	all	previously	specified	options.	In	addition,	the	disableInlining	was
incorrect	because	it	is	case-sensitive	and	the	package	is	sequential	rather	than	Sequential.	A	common
alternative	is:

-Xjit:exclude={ilog/rules/engine/sequential/generated/*}

The	codeTotal	option	of	256MB	is	already	the	default	in	recent	versions	of	Java.

A	single	JIT	compilation	thread	is	generally	only	used	when	CPU	is	tight	or	startup	performance	is	very
important,	so	test	removing	that	option.

Limiting	GC	threads	is	generally	only	used	when	vertically	scaling	multiple	JVMs	on	the	same	node,	so	test
removing	that	option.

	

Troubleshooting
Sub-chapters

Troubleshooting	Operating	Systems
Troubleshooting	Java
Troubleshooting	WebSphere	Application	Server
Troubleshooting	Web	Servers
Troubleshooting	Containers
Troubleshooting	IBM	MQ
Troubleshooting	WXS

	

Troubleshooting	Recipe
1.	 Review	the	Troubleshoot	WebSphere	Application	Server	(The	Basics)	presentation.
2.	 For	troubleshooting	tools	and	performance	analysis,	review	the	Self-paced	WebSphere	Application

Server	Troubleshooting	and	Performance	Lab	presentation.
3.	 While	investigating	a	problem,	try	to	eliminate	or	reduce	any	uncontrolled	changes	to	variables	such	as

configuration	or	application	changes.	Introduce	changes	methodically.
4.	 Try	to	find	the	smallest,	reproducible	set	of	steps	that	causes	the	problem.
5.	 If	a	problem	cannot	be	reproduced	in	a	test	environment,	consider	disallowing	real	traffic	from	coming

into	a	particular	production	node,	and	then	debugging	on	that	node.

	

The	Scientific	Method
Troubleshooting	is	the	act	of	understanding	problems	and	then	changing	systems	to	resolve	those	problems.
The	best	approach	to	troubleshooting	is	the	scientific	method	which	is	basically	as	follows:

1.	 Observe	and	measure	evidence	of	the	problem.	For	example:	"Users	are	receiving	HTTP	500	errors
when	visiting	the	website."

2.	 Create	prioritized	hypotheses	about	the	causes	of	the	problem.	For	example:	"I	found	exceptions	in	the
logs.	I	hypothesize	that	the	exceptions	are	creating	the	HTTP	500	errors."

3.	 Research	ways	to	test	the	hypotheses	using	experiments.	For	example:	"I	searched	the	documentation
and	previous	problem	reports	and	the	exceptions	may	be	caused	by	a	default	setting	configuration.	I
predict	that	changing	this	setting	will	resolve	the	problem	if	this	hypothesis	is	true."

https://ibm.biz/troubleshooting1-replay
http://ibm.biz/troubleshoot2-replay

4.	 Run	experiments	to	test	hypotheses.	For	example:	"Please	change	this	setting	and	see	if	the	user	errors
are	resolved."

5.	 Observe	and	measure	experimental	evidence.	If	the	problem	is	not	resolved,	repeat	the	steps	above;
otherwise,	create	a	theory	about	the	cause	of	the	problem.

	

Tips
Keep	the	following	in	mind,	especially	if	a	situation	becomes	hot:

1.	 Empathize	with	the	stakeholders'	situation.
2.	 Be	confident	and	optimistic.	You	have	the	scientific	method	behind	you.	Except	for	rare	chaotic

effects	and	machine	learning	systems,	computers	are	basically	deterministic	and	it's	simply	a	matter	of
time,	effort,	a	sprinkle	of	creativity,	and	finding	the	right	people	for	the	problems	to	be	solved.	Do
your	best.

3.	 Ask	the	stakeholders	about	the	resolution	criteria.	In	some	cases,	the	criteria	are	obvious,	and	in	other
cases,	there	needs	to	be	some	negotiation	about	reasonable	success	criteria	(which	may	change	over
time).	In	any	case,	the	criteria	should	be	agreed	upon	in	writing	and	modified	in	writing	when	the
situation	changes.	This	avoids	any	misaligned	expectations.

4.	 Seek	the	truths	related	to	the	resolution	criteria.	Deliver	the	truths	sensitively.
5.	 Keep	detailed	notes	about	meetings,	investigations,	tests,	etc.,	and	continuously	share	a	summary	of

those	notes	with	the	team	and	management.
6.	 Save	lessons	learned	in	a	separate	document	(e.g.	document	file,	wiki,	version	control,	a	copy	of	this

document,	etc.)	to	save	time	in	the	future	and	to	share	knowledge	with	others.
7.	 Establish	some	basic	human	relationship	with	the	people	you're	working	with	by	not	sounding	too

much	like	a	lawyer.	Be	precise	and	professional,	but	also	be	personable	and,	when	appropriate,	use
inoffensive	questions	and	humor	beyond	the	narrow	facts	of	the	situation.

8.	 If	you	don't	know	an	answer,	be	honest	and	say	you	don't	know,	and	also	say	that	you	will	do	anything
in	your	power	to	find	the	answer.	Follow-up	on	any	such	promises	you	make.

9.	 Prioritize.	There	may	not	be	enough	time	or	need	to	understand	every	detail	or	question.
10.	 Be	nice.

	

Initial	Engagement
When	you're	first	engaged	in	a	situation,	whether	in	person,	by	phone,	or	by	email,	don't	ask	too	many
questions.	There	are	many	interesting	questions	such	as	"how	long	has	this	been	happening?"	and	"what
changed?"	which	are	sometimes	useful,	but	often	too	general,	time	consuming	and	inconclusive.	This	is	not
to	discount	experiences	people	have	of	asking	simple	questions	and	finding	simple	solutions,	but	you	should
optimize	for	the	average	case.	Use	the	minimum	set	of	questions	that	will	allow	you	to	gather	evidence,
create	hypotheses,	and	test	those	hypotheses.

In	addition	to	understanding	the	situation,	use	the	first	set	of	questions	to	make	an	initial	judgement	about	the
skill	level	and	time	availability	of	the	people	involved.	If	you	perceive	high	skill	level	or	time	availability,
then	ask	more	questions	and	explore	the	knowledge	of	the	people;	otherwise,	gather	evidence	and	let	the	data
speak	for	itself.

Example	question	list	for	a	first	engagement:

1.	 What	are	the	problems	and	when	did	they	occur?
2.	 What	are	the	impacts	on	the	business?
3.	 Do	you	observe	any	specific	symptoms	of	the	problems	in	the	WAS	logs,	application	logs,	or	the

operating	system	or	other	monitoring	tools?
4.	 What	versions	of	software	are	being	used	(e.g.	WAS,	Java,	IHS,	etc.)?	Is	the	operating	system

virtualized?

5.	 Are	there	any	workarounds?
6.	 If	the	problem	is	in	a	production	environment,	can	you	reproduce	it	in	your	test	environment?

Based	on	the	answers	to	these	questions,	if	there	are	no	obvious	hypotheses,	then	the	next	step	is	to	ask	for
all	available	logs.

	

Analyzing	Logs
The	most	important	thing	is	to	always	try	to	analyze	all	logs	as	thoroughly	as	possible	on	every	incident.
Make	no	assumptions.	There	have	been	many	embarrassing	cases	where	only	the	logs	with	the	known
symptoms	were	analyzed,	and	the	actual	cause	was	another	symptom	in	other	logs	the	whole	time	(e.g.
FFDC,	etc.).	Analyzing	all	logs	is	also	useful	to	get	a	fuller	understanding	of	everything	happening	in	the
system	which	may	help	with	creating	hypotheses	about	the	problem.

If	you	find	a	symptom	before	or	during	the	problem	that	may	be	related,	then	do	the	following:

1.	 Prioritize	symptoms	based	on	relevance,	timing,	and	frequency.
2.	 Search	IBM	documentation	for	the	symptom.
3.	 Search	internal	problem	ticket	systems,	wikis,	etc.	for	the	symptom.
4.	 Discuss	with	other	people	familiar	with	the	issue	or	component.
5.	 Use	popular	search	engines	to	search	for	the	symptom.	Use	double	quotes	around	the	search	term	for

exact	matches.

	

Organizing	an	Investigation
Keep	track	of	a	summary	of	the	situation,	a	list	of	problems,	hypotheses,	and	experiments/tests.	Use
numbered	items	so	that	people	can	easily	reference	things	in	phone	calls	or	emails.	The	summary	should	be
restricted	to	a	single	sentence	for	problems,	resolution	criteria,	statuses,	and	next	steps.	Any	details	are	in	the
subsequent	tables.	The	summary	is	a	difficult	skill	to	learn,	so	you	must	constrain	yourself	to	a	single	(short!)
sentence.	For	example:

	

Summary

1.	 Problems:	1)	Average	website	response	time	of	5000ms	and	2)	website	error	rate	>	10%.
2.	 Resolution	criteria:	1)	Average	response	time	of	300ms	and	2)	error	rate	of	<=	1%.
3.	 Statuses:	1)	Reduced	average	response	time	to	2000ms	and	2)	error	rate	to	5%.
4.	 Next	steps:	1)	Investigate	database	response	times	and	2)	gather	diagnostic	trace.

	

Problems

# Problem Case Status Next	Steps

1 Average	response	time
greater	than	300ms TS001234567 Reduced	average	response	time	to

2000ms	by	increasing	heap	size
Investigate	database
response	times

2 Website	error	rate	greater
than	1% TS001234568 Reduced	website	error	rate	to	5%	by

fixing	an	application	bug
Run	diagnostic	trace	for
remaining	errors

	

Hypotheses	for	Problem	#1

Hypothesis Evidence Status

1
High	proportion	of	time	in
garbage	collection	leading
to	reduced	performance

Verbosegc	showed
proportion	of	time
in	GC	of	20%

Increased	Java	maximum	heap	size	to	-Xmx1g	and
proportion	of	time	in	GC	went	down	to	5%;	Further	fine-
tuning	can	be	done,	but	at	this	point	5%	is	a	reasonable
number

2 Slow	database	response
times

Thread	stacks
showed	many
threads	waiting	on
the	database

Gather	database	response	times

	

Hypotheses	for	Problem	#2

Hypothesis Evidence Status

1
NullPointerException	in
com.application.foo	is	causing
errors

NullPointerExceptions	in	the	logs
correlate	with	HTTP	500	response
codes

Application	fixed	the
NullPointerException	and	error
rates	were	halved

2
ConcurrentModificationException
in	com.websphere.bar	is	causing
errors

ConcurrentModificationExceptions
correlate	with	HTTP	500	response
codes

Gather	WAS	diagnostic	trace
capturing	some	exceptions

	

Experiments/Tests

Experiment/Test Date/Time Environment Changes Results

1 Baseline 2020-01-01	09:00:00	UTC	-
2020-01-01	17:00:00	UTC

Production
server1 None

Average
response	time
5000ms

2 Reproduce	in	a
test	environment

2020-01-02	11:00:00	UTC	-
2020-01-02	12:00:00	UTC Test	server1 None

Average
response	time
8000ms

3 Test	problem	#1	-
hypothesis	#1

2020-01-03	12:30:00	UTC	-
2020-01-03	14:00:00	UTC Test	server1 Increase	Java	heap	size

to	1g

Average
response	time
4000ms

4 Test	problem	#1	-
hypothesis	#1

2020-01-04	09:00:00	UTC	-
2020-01-04	11:30:00	UTC

Production
server1

Increase	Java	heap	size
to	1g

Average
response	time
2000ms

5 Test	problem	#2	-
hypothesis	#1 2020-01-05	UTC Production

server1 Application	bugfix
Average
response	time
2000ms

6 Test	problem	#2	-
hypothesis	#2 TBD Test	server1 Gather	WAS	JDBC

PMI TBD

7 Test	problem	#2	-
hypothesis	#2 TBD Test	server1 Enable	WAS	diagnostic

trace	com.ibm.foo=all TBD

	

Site	Reliability	Engineering
Site	Reliability	Engineering	(SRE)	is	an	approach	to	computer	operations	with	a	focus	on	continuous
delivery,	software	engineering,	automation,	a	hypothesis	and	data-driven	approach,	reducing	risk,	incident
management,	performance	tuning,	capacity	planning,	and	balancing	velocity,	quality,	serviceability,
reliability,	and	availability.

	

Root	Cause	Analysis	(RCA)
Root	cause	analysis	(RCA)	is	the	search	for	the	primary,	sufficient	condition	that	causes	a	problem.	The	first
danger	of	"root"	cause	analysis	is	that	you	may	think	you're	done	when	you're	not.	The	word	"root"	suggests
final,	but	how	do	you	know	you're	done?	For	example,	there	was	a	problem	of	high	user	response	times.	The
proximate	cause	was	that	the	processors	were	saturated.	The	processors	were	being	driven	so	heavily
because	System.gc	was	being	called	frequently,	forcing	garbage	collections.	This	was	thought	to	be	the	"root
cause"	so	somebody	suggested	using	the	option	-Xdisableexplicitgc	to	make	calls	to	System.gc	do
nothing.	Everyone	sighed	relief;	root	cause	was	found!	Not	so.	The	System.gcs	were	being	called	due	to
native	OutOfMemoryErrors	(NOOMs)	when	trying	to	load	classes	(and	-Xdisableexplicitgc	doesn't	affect
forced	GCs	from	the	JVM	handling	certain	NOOMs).	After	much	more	investigation,	we	arrived	at	a	very
complex	causal	chain	in	which	there	wasn't	even	a	single	cause:

The	second	danger	of	root	"cause"	analysis	is	that	it	suggests	a	single	cause,	which	obviously	isn't	always	the
case.

Properly	understood	and	with	all	the	right	caveats,	RCA	is	fine,	but	it	is	rarely	properly	understood	and	rarely
comes	with	caveats.	Once	someone	declares	that	"root	cause"	has	been	found,	most	people	are	satisfied,
especially	if	removing	that	cause	seems	to	avoid	the	problem.	It	is	interesting	that	the	term	"root"	has	gained
such	a	strong	hold,	when	it	is	clearly	too	strong	of	a	term.	It's	possible	that	"root"	was	added	to	"cause
analysis,"	because	without	"root,"	some	people	might	stop	at	the	first	cause,	but	perversely,	the	phrase	has
caused	the	exact	same	sloppiness,	laziness	and	false	sense	of	accomplishment	that	it	was	probably	designed
to	avoid.	However,	given	that	both	suffer	from	the	same	problem,	"root	cause	analysis"	is	worse	than	"cause
analysis"	because	at	least	the	latter	is	more	open	ended.

Instead,	the	term	"causal	chain"	is	preferred	because	it	seems	to	define	the	investigation	in	terms	of	a	chain
of	causes	and	effects	and	is	more	suggestive	of	the	open-endedness	of	this	chain	graph.

Some	popular	troubleshooting	patterns	are	the	Apollo	methodology,	Kepner-Tregoe	(KT),	Five	Whys,	and
others.

	

Analysis	versus	Isolation
A	common	aspect	to	a	problem	is	that	an	application	worked	and	then	the	environment	(WAS,	etc.)	was
upgraded	and	the	application	stopped	working.	Many	customers	then	say,	"therefore,	the	product	is	the	root

cause."	It	is	easy	to	show	that	this	is	a	logical	fallacy	(neither	necessary	nor	sufficient)	with	a	real	world
example:	A	customer	upgraded	from	WAS	6.1	to	WAS	7	without	changing	the	application	and	it	started	to
throw	various	exceptions.	It	turned	out	that	the	performance	improvements	in	WAS	7	and	Java	6	exposed
existing	concurrency	bugs	in	the	application.

It	is	not	wrong	to	bring	up	the	fact	that	a	migration	occurred.	In	fact,	it's	critical	that	you	do.	This	is	important
information,	and	sometimes	helps	to	quickly	isolate	a	problem.	However,	people	often	make	the	argument
that	the	fact	of	the	migration	is	the	key	aspect	to	the	problem.	This	may	or	may	not	be	true,	but	what	it	does
do	is	elevate	the	technique	of	isolation	above	analysis,	which	is	often	a	time-consuming	mistake.

Analysis	is	the	technique	of	creating	hypotheses	based	on	observed	symptoms,	such	as	exceptions,	traces,	or
dumps.	In	the	above	example,	the	customer	experienced	java.util.ConcurrentModificationExceptions	in	their
application,	but	they	did	not	analyze	why.

Isolation	is	the	technique	of	looking	at	the	end-to-end	system	instead	of	particular	symptoms,	and
simplifying	or	eliminating	components	until	the	problem	is	isolated,	either	by	the	process	of	elimination,	or
by	finding	the	right	symptoms	to	analyze.	Saying	that	the	migration	is	the	key	aspect	to	the	problem	is	really
saying	that	the	first	step	is	to	understand	what	changed	in	the	migration	and	then	use	that	to	isolate	which
changed	component	caused	the	problem.	As	the	above	example	demonstrates,	changes	such	as	performance
improvements	may	have	unknown	and	unpredictable	effects,	so	isolation	may	not	help.

In	general,	start	with	analysis	instead	of	isolation.	You	should	certainly	bring	up	any	changes	that	occurred
right	before	the	problem	(migration,	etc.),	but	be	careful	where	this	leads	everyone.	If	analysis	leads	to	a
dead	end,	then	consider	using	isolation,	including	comparing	changes,	but	even	in	this	case,	comparing
product	versions	is	difficult;	many	things	change.

	

IBM	Support
For	problems	that	fall	within	the	scope	of	your	IBM	Support	Contract	(note	that	some	performance	issues	do
not),	but	cannot	be	resolved	within	a	reasonable	time,	we	recommend	you	open	a	support	case	through	My
https://www.ibm.com/mysupport/s/)	at	the	appropriate	severity	level.	What	is	reasonable	will	depend	on	how
important	the	application	is	to	the	business	and	the	Service	Level	Agreements	(SLAs)	the	application	is
expected	to	deliver.	Note	that	a	support	case	was	previously	known	as	a	Problem	Management	Record
(PMR).

After	opening	a	case	with	IBM	Support,	we	will	need	data	about	your	specific	issue.	In	order	to	expedite
analysis,	WAS	provides	instructions	on	the	data	collection	steps	for	various	problem	scenarios	in	a	list	of
MustGathers.	Once	you	have	collected	the	relevant	data,	upload	it	to	the	case.	Once	IBM	has	received	the
data,	we	will	try	to	provide	a	response	within	the	designated	time	criteria	depending	on	the	severity	level.

If	you	feel	the	case	needs	more	attention,	call	the	 local	toll	free	number	and	ask	the	person	who	answers	the
phone	to	speak	with	the	"duty	manager".	Provide	the	duty	manager	with	your	case	number	and	the	specific
issue	you	feel	needs	to	be	addressed.

If	you	are	evaluating	WAS	software	and	have	not	purchased	licenses,	you	cannot	open	a	support	case;
however,	your	IBM	sales	representative,	IBM	client	team,	or	a	business	partner	may	be	able	to	open	support
cases	while	working	with	you.

	

How	to	Upload	Data	to	a	Case

1.	 Create	a	single	archive	per	machine	with	a	descriptive	name	and	the	case	number	and	a	README.txt
file	that	describes	relevant	events	or	time	periods,	replacing	commas	with	periods	(e.g.
TS001234567.test1.node1.zip).

2.	 Follow	upload	instructions:

https://www.ibm.com/support/pages/ibm-support-guide
https://www.ibm.com/mysupport/s/
https://www.ibm.com/support/pages/ibm-enterprise-support-and-preferred-care-severity-definitions
https://www.ibm.com/support/pages/mustgather-read-first-websphere-application-server-and-liberty
https://www.ibm.com/planetwide/
https://www.ibm.com/support/pages/node/739401

1.	 If	the	files	are	less	than	20MB	in	total,	and	there	is	no	sensitive	information,	send	an	email	to
ecurep@ecurep.ibm.com	with	the	files	attached	and	the	subject,	"Case	TS001234567:	Subject	of
the	update"

2.	 If	the	files	are	less	than	200MB,	use	the	 secure	browser	upload
3.	 Otherwise,	use	SFTP:

1.	 Prepend	file(s)	with	the	case	number.	For	example,	TS001234567_somefile.zip.	You
may	also	prepend	with	"Case";	For	example,	Case_TS001234567_somefile.zip

2.	 sftp	anonymous@sftp.ecurep.ibm.com
3.	 Press	Enter	at	the	password	prompt
4.	 cd	toibm/websphere
5.	 put	TS001234567_somefile.zip

	

WebSphere	Application	Server	Troubleshooting	and	Performance
Lab
The	WebSphere	Application	Server	Troubleshooting	and	Performance	Lab	provides	a	Linux	VM	with
various	tools	installed	as	well	as	WAS	itself	and	a	self-paced	lab.

	

Problem	Diagnostics	Lab	Tookit	(PDTK)
The	Problem	Diagnostics	Lab	Toolkit	is	an	EAR	file	that	can	be	installed	inside	WebSphere	Application
Server	and	used	to	simulate	various	problems	such	as	OutOfMemoryErrors:
https://www.ibm.com/support/pages/problem-diagnostics-lab-toolkit

	

No	modes:	An	exception?
In	computing	history,	there	was	a	famous	crusade	by	Larry	Tesler	--	a	titan	of	the	industry;	he	worked	at
Xerox	PARC	(Smalltalk),	Apple,	Amazon,	and	Yahoo	--	which	he	called	"no	modes."	He	said,	for	example,
that	you	shouldn't	have	to	enter	a	"mode"	just	to	type	text.	You	should	be	able	to	click	and	type.	It	was	a
revolutionary	idea	back	then.	There	are	still	some	popular	modal	programs	today	such	as	vi	and	Emacs,	and
the	mode	combinations	make	their	users	look	like	wizards,	but	in	general,	modes	are	dead.

However,	perhaps	there	should	be	modes	with	the	rm`	(remove)	command.	Here	is	an	output	of	the	history
from	a	problem	situation:

cd	/usr/IBM/WebSphere/AppServer/profiles/dmgr
rm	-rf	heap*
rm	-rf	javacore	*

Do	you	see	the	mistake?	The	user	wanted	to	delete	all	javacore	files	in	the	current	directory,	but	accidentally
put	a	space	before	the	wildcard.	This	resolves	to:	delete	any	single	file	named	javacore,	and	then	delete
everything	else	in	this	directory,	recursively!	In	this	case,	the	-r	(recursive)	flag	was	superfluous	(since	you
don't	need	it	when	you're	just	removing	files)	and	did	the	real	damage,	as	it	recursively	deleted	everything
under	that	directory.

It's	hard	to	blame	the	person.	We've	all	done	similar	things.	The	problem	is	that	after	a	while	you	become	too
comfortable	flying	through	a	machine,	copying	this,	deleting	that.

There's	something	about	rm	that	is	different.	It's	hard	to	slow	down	sometimes	or	not	to	use	-f	or	-r
gratuitously.	Therefore,	perhaps	there	should	be	a	mode	to	run	rm,	and	it	should	be	difficult	to	disable	(kernel
compile	flag?).	Your	brain	needs	to	do	a	context	switch	and	give	itself	time	to	answer	a	few	questions:	What

mailto:ecurep@ecurep.ibm.com
https://www.secure.ecurep.ibm.com/app/upload_sf
https://ibm.biz/websphere_perf_pd_lab
https://www.ibm.com/support/pages/problem-diagnostics-lab-toolkit
http://en.wikipedia.org/wiki/Larry_Tesler

am	I	deleting?	What	would	I	like	to	delete?	Is	there	a	difference	between	the	two?

	

Troubleshooting	Operating	Systems

Sub-chapters

Troubleshooting	Linux
Troubleshooting	AIX
Troubleshooting	z/OS
Troubleshooting	IBM	i
Troubleshooting	Windows
Troubleshooting	macOS
Troubleshooting	Solaris
Troubleshooting	HP-UX

	

Debug	Symbols

Some	applications	use	native	libraries	(e.g.	JNI;	.so,	.dll,	etc.)	to	perform	functions	in	native	code	(e.g.
C/C++)	rather	than	through	Java	code.	This	may	involve	allocating	native	memory	outside	of	the	Java	heap
(e.g.	malloc,	mmap).	These	libraries	have	to	do	their	own	garbage	collection	and	application	errors	can	cause
native	memory	leaks,	which	can	ultimately	cause	crashes,	paging,	etc.	These	problems	are	one	of	the	most
difficult	classes	of	problems,	and	they	are	made	even	more	difficult	by	the	fact	that	native	libraries	are	often
"stripped"	of	symbol	information.

Symbols	are	artifacts	produced	by	the	compiler	and	linker	to	describe	the	mapping	between	executable	code
and	source	code.	For	example,	a	library	may	have	a	function	in	the	source	code	named	"foo"	and	in	the
binary,	this	function	code	resides	in	the	address	range	0x10000000	-	0x10001000.	This	function	may	be
executing,	in	which	case	the	instruction	register	is	in	this	address	range,	or	if	foo	calls	another	function,	foo's
return	address	will	be	on	the	call	stack.	In	both	cases,	a	debugger	or	leak-tracker	only	has	access	to	raw
addresses	(e.g.	0x100000a1).	If	there	is	nothing	to	tell	it	the	mapping	between	foo	and	the	code	address
ranges,	then	you'll	just	get	a	stack	full	of	numbers,	which	usually	isn't	very	interesting.

Historically,	symbols	have	been	stripped	from	executables	for	the	following	reasons:	1)	to	reduce	the	size	of
libraries,	2)	because	performance	could	suffer,	and	3)	to	complicate	reverse-engineering	efforts.	First,	it's
important	to	note	that	all	three	of	these	reasons	do	not	apply	to	privately	held	symbol	files.	With	most
modern	compilers,	you	can	produce	the	symbol	files	and	save	them	off.	If	there	is	a	problem,	you	can
download	the	core	dump,	find	the	matching	symbols	locally,	and	off	you	go.

Therefore,	the	first	best	practice	is	to	always	generate	and	save	off	symbols,	even	if	you	don't	ship	them	with
your	binaries.	When	debugging,	you	should	match	the	symbol	files	with	the	exact	build	that	produced	the
problem.	This	also	means	that	you	need	to	save	the	symbols	for	every	build,	including	one-off	or	debug
builds	that	customers	may	be	running,	and	track	these	symbols	with	some	unique	identifier	to	map	to	the
running	build.

The	second	best	practice	is	to	consider	shipping	symbol	files	with	your	binaries	if	your	requirements	allow	it.
Some	answers	to	the	objections	above	include:	1)	although	the	size	of	the	distribution	will	be	larger,	this
greatly	reduces	the	time	to	resolve	complex	problems,	2)	most	modern	compilers	can	create	fully	optimized
code	with	symbols	[A],	and	3)	reverse	engineering	requires	insider	or	hacker	access	to	the	binaries	and	deep
product	knowledge;	also,	Java	code	is	just	as	easy	to	reverse	engineer	as	native	code	with	symbols,	so	this	is
an	aspect	of	modern	programming	and	debugging.	Benefits	of	shipping	symbols	include:	1)	not	having	to
store,	manage,	and	query	a	symbol	store	or	database	each	time	you	need	symbols,	2)	allow	"on	site"
debugging	without	having	to	ship	large	core	dumps,	since	oftentimes	running	a	simple	back	trace	or	post-
processing	program	on	the	same	machine	where	the	problem	happened,	with	symbols,	can	immediately

produce	the	desired	information.

As	always,	your	mileage	may	vary	and	you	should	fully	test	such	a	change,	including	a	performance	test.

	

Eye	Catcher

Eye-catchers	are	generally	used	to	aid	in	tracking	native	memory	usage	or	corruption.	An	eye-catcher,	as	its
name	suggests,	is	some	sequence	of	bytes	that	has	a	low	probability	of	randomly	appearing	in	memory.	If
you	see	one	of	your	eye-catchers,	it's	likely	that	you've	found	one	of	your	allocations.

For	example,	below	is	a	simple	C	program	which	leaks	10	MyStruct	instances	into	the	native	heap	with	the
eye	catcher	0xDEADFAD0	and	then	waits	indefinitely	so	that	a	coredump	may	be	produced:

#include	<stdio.h>
#include	<signal.h>
#include	<stdlib.h>
#include	<string.h>

#define	EYECATCHER_MYSTRUCT	0xDEADFAD0

typedef	struct	{
		int	eyeCatcher;
		int	myData;
}	MyStruct;

void	main(int	argc,	char**	argv)	{
		sigset_t	sigmask;
		MyStruct	*p;
		int	i;

		for	(i	=	0;	i	<	10;	i++)	{
				p		=	(MyStruct*)malloc(sizeof(MyStruct));
				printf("Alloced	struct	@	0x%0X\n",	p);
				p->eyeCatcher	=	EYECATCHER_MYSTRUCT;
				p->myData	=	123*i;
		}

		printf("Hello	World.	Waiting	indefinitely...\n");
		sigemptyset(&sigmask);
		sigaddset(&sigmask,SIGCHLD);
		sigsuspend(&sigmask);
}

Now,	we	can	find	all	of	these	structures	in	a	hexdump.	In	this	example,	integers	are	stored	in	little	endian
format,	so	search	for	D0FAADDE	instead	of	DEADFAD0:

$	hexdump	-C	core.680	|	grep	"d0	fa	ad	de"
00002cb0		00	00	00	00	d0	fa	ad	de		00	00	00	00	00	00	00	00		|................|
00002cd0		00	00	00	00	d0	fa	ad	de		7b	00	00	00	00	00	00	00		|........{.......|
00002cf0		00	00	00	00	d0	fa	ad	de		f6	00	00	00	00	00	00	00		|................|
00002d10		00	00	00	00	d0	fa	ad	de		71	01	00	00	00	00	00	00		|........q.......|
00002d30		00	00	00	00	d0	fa	ad	de		ec	01	00	00	00	00	00	00		|................|
00002d50		00	00	00	00	d0	fa	ad	de		67	02	00	00	00	00	00	00		|........g.......|
00002d70		00	00	00	00	d0	fa	ad	de		e2	02	00	00	00	00	00	00		|................|
00002d90		00	00	00	00	d0	fa	ad	de		5d	03	00	00	00	00	00	00		|........].......|
00002db0		00	00	00	00	d0	fa	ad	de		d8	03	00	00	00	00	00	00		|................|
00002dd0		00	00	00	00	d0	fa	ad	de		53	04	00	00	00	00	00	00		|........S.......|

We	can	see	the	ten	allocations	there.	Note:	the	eye	catcher	just	happened	to	be	on	a	word	boundary.	It's
possible	that	it	spanned	multiple	lines	or	across	the	8	byte	boundary.	The	best	way	to	search	for	eye	catchers
is	through	some	type	of	automation	such	as	gdb	extensions.

Strings	are	often	preferable	to	integers.	This	solves	the	problem	of	big-	and	little-endianness	and	it's	normally

easier	to	spot	these	strings:

#define	EYECATCHER_MYSTRUCT2	"DEADFAD0"

typedef	struct	{
		char	eyeCatcher[9];	//	Add	1	to	the	length	of	the	eye	catcher,	because	strcpy	will	copy	in	the	null	terminator
		int	myData;
}	MyStruct2;

...

for	(i	=	0;	i	<	10;	i++)	{
		p2		=	(MyStruct2*)malloc(sizeof(MyStruct2));
		printf("Alloced	struct	@	0x%0X\n",	p2);
		strcpy(p2->eyeCatcher,	EYECATCHER_MYSTRUCT2);
		p2->myData	=	123*i;
}

...

$	hexdump	-C	core.6940	|	grep	DEADFAD0	|	tail	-10
00002df0		00	00	00	00	44	45	41	44		46	41	44	30	00	00	00	00		|....DEADFAD0....|
00002e10		00	00	00	00	44	45	41	44		46	41	44	30	7b	00	00	00		|....DEADFAD0{...|
00002e30		00	00	00	00	44	45	41	44		46	41	44	30	f6	00	00	00		|....DEADFAD0....|
00002e50		00	00	00	00	44	45	41	44		46	41	44	30	71	01	00	00		|....DEADFAD0q...|
00002e70		00	00	00	00	44	45	41	44		46	41	44	30	ec	01	00	00		|....DEADFAD0....|
00002e90		00	00	00	00	44	45	41	44		46	41	44	30	67	02	00	00		|....DEADFAD0g...|
00002eb0		00	00	00	00	44	45	41	44		46	41	44	30	e2	02	00	00		|....DEADFAD0....|
00002ed0		00	00	00	00	44	45	41	44		46	41	44	30	5d	03	00	00		|....DEADFAD0]...|
00002ef0		00	00	00	00	44	45	41	44		46	41	44	30	d8	03	00	00		|....DEADFAD0....|
00002f10		00	00	00	00	44	45	41	44		46	41	44	30	53	04	00	00		|....DEADFAD0S...|

Here	are	some	other	considerations:

1.	 If	you're	writing	native	code	that	is	making	dynamic	allocations,	consider	always	using	eye	catchers.
Yes,	they	have	a	small	overhead.	It's	generally	worth	it.	The	evidence	for	this	recommendation	is	that
most	large,	native	products	use	them.

2.	 You	can	put	an	"int	size"	field	after	the	eye	catcher	which	stores	the	size	of	the	allocation
(sizeof(struct)),	which	makes	it	easier	to	quickly	tell	how	much	storage	your	allocations	are	using.

3.	 You	can	wrap	all	allocations	(and	deallocations)	in	common	routines	so	that	this	is	more	standard	(and
foolproof)	in	your	code.	This	is	usually	done	by	having	an	eye	catcher	struct	and	wrapping	malloc.	In
the	wrapped	malloc,	add	the	sizeof(eyecatcherstruct)	to	the	bytes	requested,	then	put	the	eye	catcher
struct	at	the	top	of	the	allocation,	and	then	return	a	pointer	to	the	first	byte	after
sizeof(eyecatcherstruct)	to	the	user.

	

Troubleshooting	Linux

General	Troubleshooting	Commands

Print	system	page	size:	getconf	PAGESIZE

The	ausyscall	command	converts	a	syscall	number	to	the	syscall	name.	Example:

$	ausyscall	221		
fadvise64

	

Kernel	symbol	table

Gather	the	kernel	symbol	table:

$	sudo	su	-
$	cat	/proc/kallsyms	&>	kallsyms_$(hostname)_$(date	+"%Y%m%d_%H%M%S").txt
$	cat	/boot/System.map-$(uname	-r)	&>	systemmap_$(hostname)_$(date	+"%Y%m%d_%H%M%S").txt

Upload	kallsyms_*txt	and	systemmap_*txt

	

pgrep/pkill

pgrep	finds	process	IDs	based	on	various	search	options.	It	is	a	more	formalized	alternative	to	common
commands	like	ps	-elf	|	grep	something:	https://www.kernel.org/doc/man-
pages/online/pages/man1/pgrep.1.html

Examples:

Search	by	simple	program	name:	pgrep	java
Search	by	something	in	the	full	program	name	or	full	command	line:	pgrep	-f	server1

pidof	is	a	similar	program	to	pgrep:	https://www.kernel.org/doc/man-pages/online/pages/man1/pidof.1.html

pkill	combines	pgrep	and	kill	into	one	command:	https://www.kernel.org/doc/man-
pages/online/pages/man1/pkill.1.html

Examples:

Send	SIGQUIT	to	all	Java	programs:	pkill	-3	java
Send	SIGQUIT	to	all	Java	programs	with	server1	in	the	command	line:	pkill	-3	-f	server1

	

kill

The	kill	command	is	used	to	send	a	signal	to	a	processes	or	to	terminate	it:

kill	$PID

Without	arguments,	the	SIGTERM	(15)	signal	is	sent	which	is	equivalent	to	kill	-15	$PID.

To	specify	a	signal,	use	the	number	or	name	of	the	signal.	For	example,	to	send	the	equivalent	of	Ctrl+C	to	a
process,	use	either	one	of	the	following	commands:

$	kill	-2	$PID
$	kill	-INT	$PID

To	list	all	available	signals:

$	kill	-l
	1)	SIGHUP								2)	SIGINT								3)	SIGQUIT							4)	SIGILL								5)	SIGTRAP
	6)	SIGABRT							7)	SIGBUS								8)	SIGFPE								9)	SIGKILL						10)	SIGUSR1
11)	SIGSEGV						12)	SIGUSR2						13)	SIGPIPE						14)	SIGALRM						15)	SIGTERM
16)	SIGSTKFLT				17)	SIGCHLD						18)	SIGCONT						19)	SIGSTOP						20)	SIGTSTP
21)	SIGTTIN						22)	SIGTTOU						23)	SIGURG							24)	SIGXCPU						25)	SIGXFSZ
26)	SIGVTALRM				27)	SIGPROF						28)	SIGWINCH					29)	SIGIO								30)	SIGPWR
31)	SIGSYS							34)	SIGRTMIN					35)	SIGRTMIN+1			36)	SIGRTMIN+2			37)	SIGRTMIN+3
38)	SIGRTMIN+4			39)	SIGRTMIN+5			40)	SIGRTMIN+6			41)	SIGRTMIN+7			42)	SIGRTMIN+8
43)	SIGRTMIN+9			44)	SIGRTMIN+10		45)	SIGRTMIN+11		46)	SIGRTMIN+12		47)	SIGRTMIN+13
48)	SIGRTMIN+14		49)	SIGRTMIN+15		50)	SIGRTMAX-14		51)	SIGRTMAX-13		52)	SIGRTMAX-12
53)	SIGRTMAX-11		54)	SIGRTMAX-10		55)	SIGRTMAX-9			56)	SIGRTMAX-8			57)	SIGRTMAX-7
58)	SIGRTMAX-6			59)	SIGRTMAX-5			60)	SIGRTMAX-4			61)	SIGRTMAX-3			62)	SIGRTMAX-2
63)	SIGRTMAX-1			64)	SIGRTMAX	

https://www.kernel.org/doc/man-pages/online/pages/man1/pgrep.1.html
https://www.kernel.org/doc/man-pages/online/pages/man1/pidof.1.html
https://www.kernel.org/doc/man-pages/online/pages/man1/pkill.1.html
https://www.kernel.org/doc/man-pages/online/pages/man1/kill.1.html

SIGSTOP	may	be	used	to	completely	pause	a	process	so	that	the	operating	system	does	not	schedule	it.
SIGCONT	may	be	used	to	continue	a	stopped	process.	This	can	be	useful	for	things	such	as	simulating	a	hung
database.

	

Find	who	killed	a	process

There	are	two	main	ways	a	process	is	killed:

1.	 It	kills	itself	using	a	call	to	java/lang/System.exit,	java/lang/Runtime.halt,	exit,	raise,	etc.
2.	 It	is	killed	by	the	kernel	or	another	process	using	the	kill	system	call,	the	kill	command,	etc.

These	are	diagnosed	differently	with	their	own	section	below.

	

Find	why	a	process	killed	itself

1.	 If	using	IBM	Java	or	Semeru/OpenJ9,	restart	the	process	with	the	following	Java	options	and	review
the	resulting	javacore:

-Xdump:java:events=vmstop,request=exclusive+preempt

2.	 If	using	HotSpot	Java,	some	builds	have	User	Statically-Defined	Tracing	(USDT)	probes	which	then
SystemTap	or	eBPF	(on	newer	kernels)	can	use	to	trace	calls	to	System.exit.

	

Find	who	killed	another	process

1.	 Check	the	native	stdout	and	stderr	logs	of	the	process	for	any	suspicious	activity

2.	 Check	the	kernel	log	around	the	time	of	the	kill	for	things	like	the	OOM	Killer	and	other	potentially
related	messages	(e.g.	SSH	login	by	some	user)

3.	 Consider	using	bcc-tools	and	killsnoop.py

4.	 If	an	auditing	or	keylogging	system	is	in	place,	review	if	anyone	used	the	kill	command.

5.	 For	systems	that	support	it,	use	auditd	with	a	rule	to	watch	for	kill	system	calls,	although	test	the
performance	overhead.

6.	 For	kernels	that	support	SystemTap,	combine	scripts	such	as
https://github.com/jav/systemtap/blob/master/testsuite/systemtap.examples/process/sigmon.stp	and
https://github.com/jav/systemtap/blob/master/testsuite/systemtap.examples/process/proc_snoop.stp	to
capture	the	signal	and	map	to	the	source	PID	with	details.

7.	 For	some	signals	like	SIGTERM	(but	not	SIGKILL),	attach	strace	to	the	process	and	watch	for	signal
notifications	although	the	overhead	may	be	massive	even	with	the	-e	filter:

$	nohup	strace	-f	-tt	-e	signal	-o	strace_trace.txt	-p	$PID	&>>	strace_stdouterr.txt	&
$	tail	-f	strace_trace.txt	|	grep	"	SIG"
2406		18:50:39.769367	---	SIGTERM	{si_signo=SIGTERM,	si_code=SI_USER,	si_pid=678,	si_uid=0}	---

The	si_pid	integer	is	the	sending	PID.	A	script	in	the	background	that	periodically	writes	ps	output
may	capture	this	process.	Create	psbg.sh:

#!/bin/sh
outputfile="diag_ps_$(hostname)_$(date	+"%Y%m%d_%H%M%S").log"

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#exit-int-
https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#halt-int-
https://www.kernel.org/doc/man-pages/online/pages/man3/exit.3.html
https://www.kernel.org/doc/man-pages/online/pages/man3/raise.3.html
https://www.kernel.org/doc/man-pages/online/pages/man2/kill.2.html
https://www.kernel.org/doc/man-pages/online/pages/man1/kill.1.html
https://sourceware.org/systemtap/wiki/HomePage?action=AttachFile&do=get&target=hotspot-stap.pdf
https://github.com/iovisor/bcc/blob/master/tools/killsnoop.py
https://www.kernel.org/doc/man-pages/online/pages/man8/auditctl.8.html
https://access.redhat.com/solutions/36278
https://github.com/jav/systemtap/blob/master/testsuite/systemtap.examples/process/sigmon.stp
https://github.com/jav/systemtap/blob/master/testsuite/systemtap.examples/process/proc_snoop.stp
https://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html

while	true;	do
		echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	iteration"	&>>	"${outputfile}"
		ps	-elf	2>&1	&>>	"${outputfile}"
		sleep	15
done

Then	start	before	the	strace:

$	chmod	a+x	psbg.sh
$	nohup	./psbg.sh	&

8.	 For	some	signals,	attach	to	the	process	using	gdb	and	immediately	continue.	When	the	signal	hits	the
process,	gdb	will	break	execution	and	leave	you	at	a	prompt.	Then,	handle	the	particular	signal	you
want	and	print	$_siginfo._sifields._kill.si_pid	and	detach.	Use	the	same	ps	script	as	above	to
track	potential	source	PIDs.

$	java	HelloWorld
Hello	World.	Waiting	indefinitely...

$	ps	-elf	|	grep	HelloWorld	|	grep	-v	grep
0	S	kevin				23947	...

$	gdb	java	23947
...
(gdb)	handle	all	nostop	noprint	noignore
(gdb)	handle	SIGABRT	stop	print	noignore
(gdb)	continue

#	...	Reproduce	the	problem	...

Program	received	signal	SIGABRT,	Aborted.
[Switching	to	Thread	0x7f232df12700	(LWP	23949)]
0x00000033a400d720	in	sem_wait	()	from	/lib64/libpthread.so.0
(gdb)	ptype	$_siginfo
type	=	struct	{
				int	si_signo;
				int	si_errno;
				int	si_code;
				union	{
								int	_pad[28];
								struct	{...}	_kill;
								struct	{...}	_timer;
								struct	{...}	_rt;
								struct	{...}	_sigchld;
								struct	{...}	_sigfault;
								struct	{...}	_sigpoll;
				}	_sifields;
}
(gdb)	ptype	$_siginfo._sifields._kill
type	=	struct	{
				__pid_t	si_pid;
				__uid_t	si_uid;
}
(gdb)	p	$_siginfo._sifields._kill.si_pid
$1	=	22691

(gdb)	continue

In	the	above	example,	we	print	_sifields._kill	because	we	know	we	sent	a	kill,	but	strictly
speaking,	that	assumption	cannot	always	be	made.	_sifields	is	a	union,	so	only	one	of	the	fields	of
the	union	will	have	correct	values.	You	must	first	consult	the	signal	number	to	know	which	union
member	to	print:

The	rest	of	the	struct	may	be	a	union,	so	that	one	should	read	only	the	fields	that	are
meaningful	for	the	given	signal

	

https://sourceware.org/gdb/onlinedocs/gdb/Signals.html
https://www.kernel.org/doc/man-pages/online/pages/man2/sigaction.2.html
https://www.kernel.org/doc/man-pages/online/pages/man2/sigaction.2.html

File	I/O

fsync

fsync	is	a	system	call	used	to	attempt	to	flush	pending	I/O	writes	to	disk;	however,	there	are	various
potential	issues	with	fsync	(Rebello	et	al.,	2021).	One	way	to	reduce	such	risks	is	to	use	a	copy-on-write	file
system	such	as	Btrfs	instead	of	journaling	file	systems	such	as	ext4	and	XFS.

	

sosreport

sosreport	is	a	utility	to	gather	system-wide	diagnostics	on	Fedora,	RedHat,	and	CentOS	distributions:

1.	 sudo	dnf	install	-y	sos
2.	 sudo	sosreport	--batch
3.	 This	will	take	a	few	minutes	to	run.
4.	 A	compressed	file	will	be	produced	such	as	/var/tmp/sosreport-7ce62b94e928-2020-09-01-

itqojtr.tar.xz.	To	use	an	alternative	directory,	specify	--tmp-dir	$dir.

Analysis	tips:

1.	 Uncompress	with	tar	-xf	sosreport*tar.xz

	

systemd

Killing	nohup	processes

Recent	versions	of	systemd	terminate	user	processes	part	of	the	user	session	scope	unit	(session-XX.scope)
when	the	user	logs	out	even	if	they	were	nohupped.	Either	systemd-run	may	be	used	instead	of	nohup,	or
KillUserProcesses	may	be	set	to	no	in	logind.conf.

	

Signal	handlers

Show	signal	handlers	registered	for	a	process:

grep	Sig	/proc/$pid/status

	

Process	core	dumps

Core	dumps	are	normally	written	in	the	ELF	file	format.	Therefore,	use	the	readelf	program	to	find	all	of	the
LOAD	sections	to	review	the	virtual	memory	regions	that	were	dumped	to	the	core:

$	readelf	--program-headers	core
Program	Headers:
		Type											Offset													VirtAddr											PhysAddr
																	FileSiz												MemSiz														Flags		Align
		NOTE											0x00000000000003f8	0x0000000000000000	0x0000000000000000
																	0x00000000000008ac	0x0000000000000000		R						1
		LOAD											0x0000000000000ca4	0x0000000000400000	0x0000000000000000
																	0x0000000000001000	0x0000000000001000		R	E				1
		LOAD											0x0000000000001ca4	0x0000000000600000	0x0000000000000000

https://www.kernel.org/doc/man-pages/online/pages/man2/fsync.2.html
https://doi.org/10.1145/3450338
https://access.redhat.com/solutions/3592
https://github.com/systemd/systemd/blob/2d4f8cf467b6825c91276808250823a29ab461fe/NEWS#L4356

																	0x0000000000001000	0x0000000000001000		RW					1...

	

Request	core	dump	(also	known	as	a	"system	dump"	for	IBM	Java)

Additional	methods	of	requesting	system	dumps	for	IBM	Java	are	documented	in	the	Troubleshooting	IBM
Java	and	Troubleshooting	WAS	chapters.

1.	 The	gcore	command	pauses	the	process	while	the	core	is	generated	and	then	the	process	should
continue.	Replace	${PID}	in	the	following	example	with	the	process	ID.	You	must	have	permissions	to
the	process	(i.e.	either	run	as	the	owner	of	the	process	or	as	root).	The	size	of	the	core	file	will	be	the
size	of	the	virtual	size	of	the	process	(ps	VSZ).	If	there	is	sufficient	free	space	in	physical	RAM	and
the	filecache,	the	core	file	will	be	written	to	RAM	and	then	asynchronously	written	out	to	the
filesystem	which	can	dramatically	improve	the	speed	of	generating	a	core	and	reduce	the	time	the
process	is	paused.	In	general,	core	dumps	compress	very	well	(often	up	to	75%)	for	transfer.	Normally,
the	gcore	command	is	provided	as	part	of	the	gdb	package.	In	fact,	the	gcore	command	is	actually	a
shell	script	which	attaches	gdb	to	the	process	and	runs	the	gdb	gcore	command	and	then	detaches.

gcore	${PID}	core.$(date	+%Y%m%d.%H%M%S).dmp		

There	is	some	evidence	that	the	gcore	command	in	gdb	writes	less	information	than	the	kernel	would
write	in	the	case	of	a	crash	(this	probably	has	to	do	with	the	two	implementations	being	different	code
bases).

2.	 The	process	may	be	crashed	using	kill	-6	${PID}	or	kill	-11	${PID}	which	will	usually	produe	a
core	dump.

3.	 On	OutOfMemoryError	using	the	J9	option:

"-Xdump:tool:events=systhrow,filter=java/lang/OutOfMemoryError,range=1..1,request=exclusive+prepwalk,exec=gcore	%p"

IBM	proposed	a	kernel	API	to	create	a	core	dump	but	it	was	rejected	for	security	reasons	and	it	was
proposed	to	do	it	in	user	space.

	

Core	dumps	from	crashes

When	a	crash	occurs,	the	kernel	may	create	a	core	dump	of	the	process.	How	much	is	written	is	controlled
by	coredump_filter:

Since	kernel	2.6.23,	the	Linux-specific	/proc/PID/coredump_filter	file	can	be	used	to	control
which	memory	segments	are	written	to	the	core	dump	file	in	the	event	that	a	core	dump	is
performed	for	the	process	with	the	corresponding	process	ID.	The	value	in	the	file	is	a	bit	mask
of	memory	mapping	types	(see	mmap(2)).	(https://www.kernel.org/doc/man-
pages/online/pages/man5/core.5.html)

When	a	process	is	dumped,	all	anonymous	memory	is	written	to	a	core	file	as	long	as	the	size	of
the	core	file	isn't	limited.	But	sometimes	we	don't	want	to	dump	some	memory	segments,	for
example,	huge	shared	memory.	Conversely,	sometimes	we	want	to	save	file-backed	memory
segments	into	a	core	file,	not	only	the	individual	files.	/proc/PID/coredump_filter	allows	you	to
customize	which	memory	segments	will	be	dumped	when	the	PID	process	is	dumped.
coredump_filter	is	a	bitmask	of	memory	types.	If	a	bit	of	the	bitmask	is	set,	memory	segments
of	the	corresponding	memory	type	are	dumped,	otherwise	they	are	not	dumped.	The	following	7
memory	types	are	supported:

-	(bit	0)	anonymous	private	memory
-	(bit	1)	anonymous	shared	memory

https://www.kernel.org/doc/man-pages/online/pages/man5/core.5.html

-	(bit	2)	file-backed	private	memory
-	(bit	3)	file-backed	shared	memory
-	(bit	4)	ELF	header	pages	in	file-backed	private	memory	areas	(it	is	effective	only	if	the	bit	2	is
cleared)
-	(bit	5)	hugetlb	private	memory
-	(bit	6)	hugetlb	shared	memory

Note	that	MMIO	pages	such	as	frame	buffer	are	never	dumped	and	vDSO	pages	are	always
dumped	regardless	of	the	bitmask	status.	When	a	new	process	is	created,	the	process	inherits	the
bitmask	status	from	its	parent.	It	is	useful	to	set	up	coredump_filter	before	the	program	runs.

For	example:

$	echo	0x7	>	/proc/self/coredump_filter
$./some_program

https://www.kernel.org/doc/Documentation/filesystems/proc.txt

	

systemd-coredump

This	section	has	been	moved	to	Java	best	practices	for	core	piping.

	

Process	Virtual	Address	Space

The	total	virtual	and	resident	address	space	sizes	of	a	process	may	be	queried	with	ps:

$	ps	-o	pid,vsz,rss	-p	14062
		PID				VSZ			RSS
14062		44648	42508

Details	of	the	virtual	address	space	of	a	process	may	be	queried	with
(https://www.kernel.org/doc/Documentation/filesystems/proc.txt):

$	cat	/proc/${PID}/maps

This	will	produce	a	line	of	output	for	each	virtual	memory	area	(VMA):

$	cat	/proc/self/maps
00400000-0040b000	r-xp	00000000	fd:02	22151273				/bin/cat...

The	first	column	is	the	address	range	of	the	VMA.	The	second	column	is	the	set	of	permissions	(read,	write,
execute,	private).	The	third	column	is	the	offset	if	the	VMA	is	a	file,	device,	etc.	The	fourth	column	is	the
device	(major:minor)	if	the	VMA	is	a	file,	device,	etc.	The	fifth	column	is	the	inode	if	the	VMA	is	a	file,
device,	etc.	The	final	column	is	the	pathname	if	the	VMA	is	a	file,	etc.

The	sum	of	these	address	ranges	will	equal	the	ps	VSZ	number.

In	recent	versions	of	Linux,	smaps	is	a	superset	of	maps	and	additionally	includes	details	for	each	VMA:

$	cat	/proc/self/smaps
00400000-0040b000	r-xp	00000000	fd:02	22151273				/bin/cat
Size:																	44	kB
Rss:																		20	kB
Pss:																		12	kB...

The	Rss	and	Pss	values	are	particularly	interesting,	showing	how	much	of	the	VMA	is	resident	in	memory
(some	pages	may	be	shared	with	other	processes)	and	the	proportional	set	size	of	a	shared	VMA	where	the

https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

size	is	divided	by	the	number	of	processes	sharing	it,	respectively.

	

smaps

The	total	virtual	size	of	the	process	(VSZ):

$	grep	^Size	smaps	|	awk	'{print	$2}'	|	paste	-sd+	|	bc	|	sed	's/$/*1024/'	|	bc
3597316096

The	total	resident	size	of	the	process	(RSS):

$	grep	Rss	smaps	|	awk	'{print	$2}'	|	paste	-sd+	|	bc	|	sed	's/$/*1024/'	|	bc
897622016

The	total	proportional	resident	set	size	of	the	process	(PSS):

$	grep	Pss	smaps	|	awk	'{print	$2}'	|	paste	-sd+	|	bc	|	sed	's/$/*1024/'	|	bc
891611136

In	general,	PSS	is	used	for	sizing	physical	memory.

Print	sum	VMA	sizes	greater	than	60MB:

$	grep	-v	-E	"^[a-zA-Z_]+:"	smaps	|	awk	'{print	$1}'	|	sed	's/\-/,/g'	|	perl	-F,	-lane	'print	hex($F[1])-hex($F[0]);'	|	sort	-n	|	grep	"^[6].......$"	|	paste	-sd+	|	bc
840073216

Sort	VMAs	by	RSS:

$	cat	smaps	|	while	read	line;	do	read	line2;	read	line3;	read	line4;	read	line5;	read	lin6;	read	line7;	read	line8;	read	line9;	read	line10;	read	line11;	read	line12;	read	line13;	read	line14;	echo	$line,	$line3;	done	|	awk	'{print	$(NF-1)*1024,	$1}'	|	sort	-n

	

pmap

The	pmap	command	prints	the	same	information	as	smaps	but	in	a	column-based	format:
https://www.kernel.org/doc/man-pages/online/pages/man1/pmap.1.html

				$	pmap	-XX	$(pgrep	-f	defaultServer)		
				22:			java	-javaagent:/opt/ibm/wlp/bin/tools/ws-javaagent.jar	-Djava.awt.headless=true	-Djdk.attach.allowAttachSelf=true	-Xshareclasses:name=liberty,nonfatal,cacheDir=/output/.classCache/	-XX:+UseContainerSupport	-jar	/opt/ibm/wlp/bin/tools/ws-server.jar	defaultServer		
													Address	Perm			Offset	Device			Inode				Size	KernelPageSize	MMUPageSize				Rss				Pss	Shared_Clean	Shared_Dirty	Private_Clean	Private_Dirty	Referenced	Anonymous	LazyFree	AnonHugePages	ShmemPmdMapped	Shared_Hugetlb	Private_Hugetlb	Swap	SwapPss	Locked																	VmFlags	Mapping		
												00400000	r-xp	00000000		08:01	5384796							4														4											4						4						4												0												0													0													4										4									4								0													0														0														0															0				0							0						0							rd	ex	mr	mw	me	dw	java		
												00600000	r--p	00000000		08:01	5384796							4														4											4						4						4												0												0													0													4										4									4								0													0														0														0															0				0							0						0							rd	mr	mw	me	dw	ac	java		
												00601000	rw-p	00001000		08:01	5384796							4														4											4						4						4												0												0													0													4										0									4								0													0														0														0															0				0							0						0				rd	wr	mr	mw	me	dw	ac	java		
												00d96000	rw-p	00000000		00:00							0					132														4											4				124				124												0												0													0											124								124							124								0													0														0														0															0				0							0						0							rd	wr	mr	mw	me	ac	\[heap\]		
												00db7000	rw-p	00000000		00:00							0			51200														4											4		39124		39124												0												0													0									39124						39124					39124								0									38912														0														0															0				0							0						0				rd	wr	mr	mw	me	nr	hg	\[heap\]		
												03fb7000	---p	00000000		00:00							0		153600														4											4						0						0												0												0													0													0										0									0								0													0														0														0															0				0							0						0										mr	mw	me	nr	hg		
												dfff1000	---p	00000000		00:00							0						60														4											4						0						0												0												0													0													0										0									0								0													0														0														0															0				0							0						0										mr	mw	me	nr	hg		
												e0000000	rw-p	00000000		00:00							0			69184														4											4		47856		47856												0												0													0									47856						47856					47856								0									24576														0														0															0				0							0						0				rd	wr	mr	mw	me	nr	hg

	

gdb

Loading	a	core	dump

A	core	dump	is	loaded	by	passing	the	paths	to	the	executable	and	the	core	dump	to	gdb:

$	gdb	${PATH_TO_EXECUTABLE}	${PATH_TO_CORE}

To	load	matching	symbols	from	particular	paths	(e.g.	if	the	core	is	from	another	machine):

https://www.kernel.org/doc/man-pages/online/pages/man1/pmap.1.html

1.	 Run	gdb	without	any	parameters
2.	 set	solib-absolute-prefix	${ABS_PATH_TO_SO_LIBS}

This	is	the	simulated	root;	for	example,	if	the	.so	was	originally	loaded	from
/lib64/libc.so.6,	and	you	have	it	on	your	host	in	/tmp/dump/lib64/libc.so.6,	then
${ABS_PATH_TO_SO_LIBS}	would	be	/tmp/dump

3.	 Optional	if	you	have	*.debug	files:	set	debug-file-directory
${ABS_PATHS_TO_DIR_WITH_DEBUG_FILES}

4.	 file	${PATH_TO_JAVA_EXECUTABLE_THAT_CREATED_THE_CORE}
5.	 core-file	${PATH_TO_CORE}

Batch	execute	some	gdb	comments:

$	gdb	--batch	--quiet	-ex	"thread	apply	all	bt"	-ex	"quit"	$EXE	$CORE

	

Common	Commands

Print	current	thread	stack:	bt
Print	thread	stacks:	thread	apply	all	bt
Review	what's	loaded	in	memory:

info	proc	mappings
maintenance	info	sections
info	files

List	all	threads:	info	threads
Switch	to	a	different	thread:	thread	N
Print	loaded	shared	libraries:	info	sharedlibrary
Print	register:	p	$rax
Print	current	instruction:	x/i	$pc
If	available,	print	source	of	current	function:	list
Disassemble	function	at	address:	disas	0xff
Print	structure	definition:	ptype	struct	malloc_state
Print	output	to	a	file:	set	logging	on
Print	data	type	of	variable:	ptype	var
Print	symbol	information:	info	symbol	0xff
Add	a	source	directory	to	the	source	path:	directory	$DIR

	

Print	Virtual	Memory

Virtual	memory	may	be	printed	with	the	x	command:

(gdb)	x/32xc	0x00007f3498000000
0x7f3498000000:				32	'	'						0	'\000'				0	'\000'				28	'\034'				54	'6'				127	'\177'				0	'\000'				0	'\000'
0x7f3498000008:				0	'\000'				0	'\000'				0	'\000'			-92	'\244'				52	'4'				127	'\177'				0	'\000'				0	'\000'
0x7f3498000010:				0	'\000'				0	'\000'				0	'\000'				4	'\004'				0	'\000'				0	'\000'				0	'\000'				0	'\000'
0x7f3498000018:				0	'\000'				0	'\000'				0	'\000'				4	'\004'				0	'\000'				0	'\000'				0	'\000'				0	'\000'

Another	option	is	to	dump	memory	to	a	file	and	then	spawn	an	xxd	process	from	within	gdb	to	dump	that	file
which	is	easier	to	read:

(gdb)	define	xxd
Type	commands	for	definition	of	"xxd".
End	with	a	line	saying	just	"end".
>dump	binary	memory	dump.bin	$arg0	$arg0+$arg1
>shell	xxd	dump.bin
>shell	rm	-f	dump.bin
>end
(gdb)	xxd	0x00007f3498000000	32

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Source-Path.html

0000000:	2000	001c		367f	0000	0000	00a4	347f	0000			...6.......4...
0000010:	0000	0004	0000	0000	0000	0004	0000	0000	

For	large	areas,	these	may	be	dumped	to	a	file	directly:

(gdb)	dump	binary	memory	dump.bin	0x00007f3498000000	0x00007f34a0000000

Large	VMAs	often	have	a	lot	of	zero'd	memory.	A	simple	trick	to	filter	those	out	is	to	remove	all	zero	lines:

$	xxd	dump.bin	|	grep	-v	"0000	0000	0000	0000	0000	0000	0000	0000"	|	less

	

Process	Virtual	Address	Space

Gdb	can	query	a	core	file	and	produce	output	about	the	virtual	address	space	which	is	similar	to
/proc/${PID}/smaps,	although	it	is	normally	a	subset	of	all	of	the	VMAs:

(gdb)	info	files
Local	core	dump	file:
				`core.16721.dmp',	file	type	elf64-x86-64.
				...
				0x00007f3498000000	-	0x00007f34a0000000	is	load51...

The	"Local	core	dump	file"	stanza	of	gdb	"info	files"	seems	like	the	best	place	to	look	to	approximate	the
virtual	address	size	of	the	process	at	the	time	of	the	dump.	This	will	not	account	for	everything,	especially	if
coredump_filter	is	the	default	value	(and	even	if	it	has	all	flags	set).

A	GDB	python	script	may	be	used	to	sum	all	of	these	address	ranges:
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/gdb/gdbinfofiles.py

	

Debug	a	Running	Process

You	may	attach	gdb	to	a	running	process:

$	gdb	${PATH_TO_EXECUTABLE}	${PID}

This	may	be	useful	to	set	breakpoints.	For	example,	to	break	on	a	SIGABRT	signal:

(gdb)	handle	all	nostop	noprint	noignore
(gdb)	handle	SIGABRT	stop	print	noignore
(gdb)	continue

#	...	Reproduce	the	problem	...

Program	received	signal	SIGABRT,	Aborted.
[Switching	to	Thread	0x7f232df12700	(LWP	23949)]
0x00000033a400d720	in	sem_wait	()	from	/lib64/libpthread.so.0
(gdb)	ptype	$_siginfo
type	=	struct	{
				int	si_signo;
				int	si_errno;
				int	si_code;
				union	{
								int	_pad[28];
								struct	{...}	_kill;...
				}	_sifields;
}
(gdb)	ptype	$_siginfo._sifields._kill
type	=	struct	{
				__pid_t	si_pid;
				__uid_t	si_uid;

https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/gdb/gdbinfofiles.py

}
(gdb)	p	$_siginfo._sifields._kill.si_pid
$1	=	22691

(gdb)	continue

Next	we	can	search	for	this	PID	22691	and	we'll	find	out	who	it	is	(in	the	following	example,	we	see	bash
and	the	user	name).	If	the	PID	is	gone,	then	it	is	presumably	some	sort	of	script	that	already	finished	(you
could	create	a	background	process	that	writes	ps	output	to	a	file	periodically	to	capture	this):

$	ps	-elf	|	grep	22691	|	grep	-v	grep
0	S	kevin				22691	20866		0		80			0	-	27657	wait			08:16	pts/2				00:00:00	bash

Strictly	speaking,	you	must	first	consult	the	signal	number	to	know	which	union	member	to	print	above	in
$_siginfo._sifields._kill:	https://www.kernel.org/doc/man-pages/online/pages/man2/sigaction.2.html

	

Process	glibc	malloc	free	lists

Use	the	following	Python	script	to	sum	the	total	size	of	free	malloc	chunks	on	glibc	malloc	free	lists	in	a	core
dump:

#	glibc_malloc_info.py	is	a	gdb	automation	script	to	count	the	total	size	of	free	malloc	chunks	in	all	arenas.
#	It	requires	gdb	compiled	with	Python	scripting	support,	a	core	dump,	the	process	from	which	the	core	dump	came,
#	and	glibc	symbols	(e.g.	glibc-debuginfo)	that	match	those	used	by	that	process.
#	Background:	https://sourceware.org/glibc/wiki/MallocInternals
#
#	usage:
#	Basic:	CORE=path_to_core	EXE=path_to_process	gdb	--batch	--command	glibc_malloc_info.py
#	J9	jextract:	JEXTRACTED=true	gdb	--batch	--command	glibc_malloc_info.py
#	glibc	symbols	extracted	into	current	directory:	JEXTRACTED=true	CWDSYMBOLS=true	gdb	--batch	--command	glibc_malloc_info.py
#	
#	Example	output:
#
#	Total	malloced:	25948160
#	Total	malloced	not	through	mmap:	6696960
#	Total	malloced	through	mmap:	19251200
#	mmap	threshold:	2170880
#	Number	of	arenas:	32
#	Processing	arena	1	@	0x155190f4b9e0
#	[0]:	binaddr:	0x155190f4ba50
#	[0]:	chunkaddr:	0x155157cfe050
#	[0,0]:	size:	39952
#	[0]:	total	free	in	bin:	160784,	num:	10,	max:	39952,	avg:	16078
#	[...]
#	Total	malloced:	25948160
#	Total	free:	12915264

import	os
import	sys

if	os.environ.get("JEXTRACTED")	==	"true":
		gdb.execute("set	solib-absolute-prefix	"	+	os.getcwd()	+	"/")
		gdb.execute("set	solib-search-path	"	+	os.getcwd()	+	"/")

if	os.environ.get("CWDSYMBOLS")	==	"true":
		print("Setting	debug-file-directory	to	"	+	os.getcwd()	+	"/usr/lib/debug/")
		gdb.execute("set	debug-file-directory	"	+	os.getcwd()	+	"/usr/lib/debug/")

exe	=	os.environ.get("EXE")
core	=	os.environ.get("CORE")
for	root,	dirnames,	filenames	in	os.walk('.'):
		for	filename	in	filenames:
				fullpath	=	root	+	"/"	+	filename
				if	core	is	None	and	filename.startswith("core")	and	not	filename.endswith("zip")	and	not	filename.endswith(".gz")	and	not	filename.endswith(".tar"):

https://www.kernel.org/doc/man-pages/online/pages/man2/sigaction.2.html

						print("Found	core	file:	"	+	fullpath)
						core	=	fullpath
				elif	exe	is	None	and	filename	==	"java":
						print("Found	executable:	"	+	fullpath)
						exe	=	fullpath

if	exe	is	None:
		raise	Exception("Could	not	find	executable	in	current	working	directory");
if	core	is	None:
		raise	Exception("Could	not	find	corefile	in	current	working	directory");

gdb.execute("file	"	+	exe)
gdb.execute("core-file	"	+	core)
gdb.execute("set	pagination	off")

OPTION_DEBUG	=	os.environ.get("DEBUG")	==	"true"
OPTION_BIN_ADDR_OFFSET	=	16	#	see	offsetof	in	bin_at	in	malloc.c
OPTION_BIN_ADDR_OFFSET2	=	24
OPTION_BIN_COUNT	=	253	#	see	struct	malloc_state	in	malloc.c	or	`ptype	struct	malloc_state`-1
OPTION_FASTBIN_COUNT	=	9	#	see	struct	malloc_state	in	malloc.c	or	`ptype	struct	malloc_state`-1
OPTION_START	=	0	#	For	debug

def	value_to_addr(v):
		return	clean_addr(v.address)

def	clean_addr(addr):
		addr	=	str(addr)
		x	=	addr.find("	")
		if	x	!=	-1:
				addr	=	addr[0:x]
		return	addr

def	process_bins(bins,	count):
		total_free	=	0
		for	i	in	range(OPTION_START,	count):
				iteration_free	=	0
				binaddr	=	value_to_addr(bins[i])
				binaddrHexstring	=	hex(int(binaddr,	16))
				print("["	+	str(i)	+	"]:	binaddr:	"	+	binaddr)
				chunkaddr	=	value_to_addr(bins[i].dereference())
				print("["	+	str(i)	+	"]:	chunkaddr:	"	+	str(chunkaddr))

				if	chunkaddr	==	"0x0":
						continue

				fwd	=	gdb.parse_and_eval("((struct	malloc_chunk	*)"	+	chunkaddr	+	")->fd")
				if	OPTION_DEBUG:
						print("["	+	str(i)	+	"]:	fwd:	"	+	str(fwd))

				x	=	0
				max	=	0

				#	If	the	address	of	the	first	chunk	equals	the	fd	pointer,	then	it's	an	unused	bin.	See	malloc_init_state
				if	binaddr	!=	str(fwd):
						firstaddr	=	chunkaddr
						firstiteration	=	True
						while	chunkaddr	!=	"0x0"	and	(firstiteration	or	(str(chunkaddr)	!=	str(firstaddr))):
								if	OPTION_DEBUG:
										print("["	+	str(i)	+	","	+	str(x)	+	"]:	chunkaddr:	"	+	chunkaddr)

								checkchunk	=	hex(int(chunkaddr,	16)	+	OPTION_BIN_ADDR_OFFSET)
								checkchunk2	=	hex(int(chunkaddr,	16)	+	OPTION_BIN_ADDR_OFFSET2)
								if	OPTION_DEBUG:
										print("["	+	str(i)	+	","	+	str(x)	+	"]:	checkchunk	:	"	+	checkchunk)
										print("["	+	str(i)	+	","	+	str(x)	+	"]:	checkchunk2:	"	+	checkchunk2)
								if	checkchunk	==	binaddrHexstring	or	checkchunk2	==	binaddrHexstring:
										break

								try:

										size	=	gdb.parse_and_eval("((struct	malloc_chunk	*)"	+	chunkaddr	+	")->size	&	~0x7")
								except	gdb.error:
										size	=	gdb.parse_and_eval("((struct	malloc_chunk	*)"	+	chunkaddr	+	")->mchunk_size	&	~0x7")

								if	size	>	max:
										max	=	size

								if	OPTION_DEBUG	or	firstiteration:
										print("["	+	str(i)	+	","	+	str(x)	+	"]:	size:	"	+	str(size))
								total_free	=	total_free	+	size
								iteration_free	=	iteration_free	+	size

								chunkaddr	=	value_to_addr(gdb.parse_and_eval("((struct	malloc_chunk	*)"	+	chunkaddr	+	")->fd").dereference())

								x	=	x	+	1
								firstiteration	=	False

				if	x	>	0:
						print("["	+	str(i)	+	"]:	total	free	in	bin:	"	+	str(iteration_free)	+	",	num:	"	+	str(x)	+	",	max:	"	+	str(max)	+	",	avg:	"	+	str(iteration_free	/	x))
				else:
						print("["	+	str(i)	+	"]:	total	free	in	bin:	"	+	str(iteration_free))

		return	total_free

total_malloced	=	gdb.parse_and_eval("mp_.mmapped_mem")	+	gdb.parse_and_eval("main_arena.system_mem")

print("Total	malloced:	"	+	str(total_malloced))
print("Total	malloced	not	through	mmap:	"	+	str(gdb.parse_and_eval("main_arena.system_mem")))
print("Total	malloced	through	mmap:	"	+	str(gdb.parse_and_eval("mp_.mmapped_mem")))
print("mmap	threshold:	"	+	str(gdb.parse_and_eval("mp_.mmap_threshold")))
print("Number	of	arenas:	"	+	str(gdb.parse_and_eval("narenas")))

total_free	=	0

arena	=	value_to_addr(gdb.parse_and_eval("main_arena"))
main_arena	=	arena
process_arena	=	True
arena_count	=	1

while	process_arena:
		print("Processing	arena	"	+	str(arena_count)	+	"	@	"	+	str(arena))
		total_free	=	total_free	+	process_bins(gdb.parse_and_eval("((struct	malloc_state	*)"	+	str(arena)	+	")->bins"),	OPTION_BIN_COUNT)
		total_free	=	total_free	+	process_bins(gdb.parse_and_eval("((struct	malloc_state	*)"	+	str(arena)	+	")->fastbinsY"),	OPTION_FASTBIN_COUNT)
		arena	=	clean_addr(gdb.parse_and_eval("((struct	malloc_state	*)"	+	str(arena)	+	")->next"))
		print("Next	arena:	"	+	str(arena))
		process_arena	=	str(arena)	!=	str(main_arena)
		arena_count	=	arena_count	+	1

print("")
print("Total	malloced:	"	+	str(total_malloced))
print("Total	free:	"	+	str(total_free))

#	Example	manual	analysis:
#
#	There	was	a	question	about	how	to	determine	glibc	malloc	free	chunks:
#	Install	glibc-debuginfo	and	load	the	core	dump	in	gdb.	First,	we	see	that	the	total	outstanding	malloc'ed	at	the	time	of	the	dump	is	about	4GB:
#	(gdb)	print	main_arena.system_mem	+	mp_.mmapped_mem
#	$1	=	4338761728
#	Start	with	the	starting	chunk	for	a	bin:
#	(gdb)	print	main_arena.bins[250]
#	$2	=	(mchunkptr)	0x7f24c6232000
#	Cast	to	a	malloc_chunk,	get	the	size	(or	mchunk_size,	depending	on	version)	and	mask	with	0x7	to	see	that	it's	1MB	(see	https://sourceware.org/glibc/wiki/MallocInternals):
#	(gdb)	print	((struct	malloc_chunk	*)0x7f24c6232000)->size	&	~0x7
#	$3	=	1048545
#	Then	follow	the	linked	list	through	the	fd	(forward)	pointer:
#	(gdb)	print	((struct	malloc_chunk	*)0x7f24c6232000)->fd
#	$4	=	(struct	malloc_chunk	*)	0x7f24a7632000
#	Continuing:
#	(gdb)	print	((struct	malloc_chunk	*)0x7f24a7632000)->fd

#	$5	=	(struct	malloc_chunk	*)	0x7f24a3cfb000
#	You	know	you're	at	the	end	of	the	list	when	the	forward	pointer	is	the	address	of	the	first	chunk	plus	either	16	or	24:
#	(gdb)	print	&(main_arena.bins[250])
#	$6	=	(mchunkptr	*)	0x7f2525c97f98	<main_arena+2104>
#	After	about	3,345	of	these	chunks,	you'll	see:
#	(gdb)	print	((struct	malloc_chunk	*)0x7f24bcb723d0)->fd
#	$7	=	(struct	malloc_chunk	*)	0x7f2525c97f88	<main_arena+2088>
#	(gdb)	print/x	0x7f2525c97f88	+	16
#	$8	=	0x7f2525c97f98
#	Therefore,	3,345	*	~1MB	=	~3.3GB.
#	In	this	case,	the	workaround	is	export	MALLOC_MMAP_THRESHOLD_=1000000.	This	fixes	the	glibc	malloc	mmap	threshold	so
#	that	when	someone	calls	malloc	requesting	more	than	that	many	bytes,	malloc	actually	calls	mmap	to	allocate	and	then
#	when	free	is	called,	it	calls	munmmap	so	that	the	memory	goes	back	to	the	OS	instead	of	getting	added	to	the	malloc
#	free	lists.

	

gcore

Although	it's	preferable	to	use	Java's	built-in	methods	of	requesting	a	core	dump,	gcore	may	be	used	which
attaches	gdb	and	dumps	most	of	the	memory	segments	into	a	core	file	and	allows	the	process	to	continue:

usage:	gcore	[-o	filename]	pid

Here	is	a	shells	cript	to	help	capture	more	details:

#!/bin/sh

#	This	script	automates	taking	a	core	dump	using	gcore.
#	It	also	updates	coredump_filter	to	maximize	core	dump	contents.
#	Usage:	./ibmgcore.sh	PID	[SEQ]	[PREFIX]
#								PID	-	The	process	ID.	You	must	have	permissions	(owner	or	sudo/root).
#								SEQ	-	Optional	sequence	number.	Defaults	to	1.
#								PREFIX	-	Optional	prefix	(e.g.	directory	and	file	name).	Defaults	to	./

PID=$1
SEQ=$2
PREFIX=$3
if	[-z	"$PREFIX"];	then
		PREFIX="./"
fi
if	[-z	"$SEQ"];	then
		SEQ=1
fi
DT=`date	+%Y%m%d.%H%M%S`
LOG="${PREFIX}core.${DT}.$PID.000$SEQ.dmp.log.txt"
COREFILE="${PREFIX}core.${DT}.$PID.000$SEQ.dmp"
echo	0x7f	>	/proc/$PID/coredump_filter
date	>	${LOG}
echo	$PID	>>	${LOG}	2>&1
cat	/proc/$PID/coredump_filter	>>	${LOG}	2>&1
echo	"maps"	>>	${LOG}	2>&1
cat	/proc/$PID/maps	>>	${LOG}	2>&1
echo	"smaps"	>>	${LOG}	2>&1
cat	/proc/$PID/smaps	>>	${LOG}	2>&1
echo	"limits"	>>	${LOG}	2>&1
cat	/proc/$PID/limits	>>	${LOG}	2>&1
echo	"gcore	start"	>>	${LOG}	2>&1
date	>>	${LOG}
gcore	-o	$COREFILE	$PID	>>	${LOG}	2>&1
echo	"gcore	finish"	>>	${LOG}	2>&1
date	>>	${LOG}
echo	"Gcore	complete.	Now	renaming.	This	may	take	a	few	moments,	but	your	process	has	now	continued	running."
#	gcore	adds	the	PID	to	the	end	of	the	file,	so	just	remove	that
mv	$COREFILE.$PID	$COREFILE
date	>>	${LOG}
echo	"Completely	finished."	>>	${LOG}	2>&1

	

Shared	Libraries

Check	if	a	shared	library	is	stripped	of	symbols:

$	file	$LIBRARY.so

Check	the	output	for	"stripped"	or	"non-stripped."

	

glibc

malloc

The	default	Linux	native	memory	allocator	on	most	distributions	is	Glibc	malloc	(which	is	based	on	ptmalloc
and	dlmalloc).	Glibc	malloc	either	allocates	like	a	classic	heap	allocator	(from	sbrk	or	mmap'ed	arenas)	or
directly	using	mmap,	depending	on	a	sliding	threshold	(M_MMAP_THRESHOLD).	In	the	former	case,	the
basic	idea	of	a	heap	allocator	is	to	request	a	large	block	of	memory	from	the	operating	system	and	dole	out
chunks	of	it	to	the	program.	When	the	program	frees	these	chunks,	the	memory	is	not	returned	to	the
operating	system,	but	instead	is	saved	for	future	allocations.	This	generally	improves	the	performance	by
avoiding	operating	system	overhead,	including	system	call	time.	Techniques	such	as	binning	allows	the
allocator	to	quickly	find	a	"right	sized"	chunk	for	a	new	memory	request.

The	major	downside	of	all	heap	allocators	is	fragmentation	(compaction	is	not	possible	because	pointer
addresses	in	the	program	could	not	be	changed).	While	heap	allocators	can	coallesce	adjacent	free	chunks,
program	allocation	patterns,	malloc	configuration,	and	malloc	heap	allocator	design	limitations	mean	that
there	are	likely	to	be	free	chunks	of	memory	that	are	unlikely	to	be	used	in	the	future.	These	free	chunks	are
essentially	"wasted"	space,	yet	from	the	operating	system	point	of	view,	they	are	still	active	virtual	memory
requests	("held"	by	glibc	malloc	instead	of	by	the	program	directly).	If	no	free	chunk	is	available	for	a	new
allocation,	then	the	heap	must	grow	to	satisfy	it.

In	the	worst	case,	with	certain	allocation	patterns	and	enough	time,	resident	memory	will	grow	unbounded.
Unlike	certain	Java	garbage	collectors,	glibc	malloc	does	not	have	a	feature	of	heap	compaction.	Glibc
malloc	does	have	a	feature	of	trimming	(M_TRIM_THRESHOLD);	however,	this	only	occurs	with
contiguous	free	space	at	the	top	of	a	heap,	which	is	unlikely	when	a	heap	is	fragmented.

Starting	with	glibc	2.10	(for	example,	RHEL	6),	the	default	behavior	was	changed	to	be	less	memory
efficient	but	more	performant	by	creating	per-thread	arenas	to	reduce	cross-thread	malloc	contention:

Red	Hat	Enterprise	Linux	6	features	version	2.11	of	glibc,	providing	many	features	and
enhancements,	including...	An	enhanced	dynamic	memory	allocation	(malloc)	behaviour
enabling	higher	scalability	across	many	sockets	and	cores.	This	is	achieved	by	assigning	threads
their	own	memory	pools	and	by	avoiding	locking	in	some	situations.	The	amount	of	additional
memory	used	for	the	memory	pools	(if	any)	can	be	controlled	using	the	environment	variables
MALLOC_ARENA_TEST	and	MALLOC_ARENA_MAX.	MALLOC_ARENA_TEST
specifies	that	a	test	for	the	number	of	cores	is	performed	once	the	number	of	memory	pools
reaches	this	value.	MALLOC_ARENA_MAX	sets	the	maximum	number	of	memory	pools
used,	regardless	of	the	number	of	cores.	(https://access.redhat.com/knowledge/docs/en-
US/Red_Hat_Enterprise_Linux/6/html/6.0_Release_Notes/compiler.html)

After	a	certain	number	of	arenas	have	already	been	created	(2	on	32-bit	and	8	on	64-bit,	or	the	value
explicitly	set	through	the	environment	variable	MALLOC_ARENA_TEST),	the	maximum	number	of	arenas
will	be	set	to	NUMBER_OF_CPU_CORES	multiplied	by	2	for	32-bit	and	8	for	64-bit.	A	thread	will	be
assigned	to	a	particular	arena.	These	arenas	will	also	increase	virtual	memory	usage	compared	to	a	single
heap;	however,	virtual	memory	increase	by	itself	is	not	an	issue.	There	is	some	evidence	that	certain
workloads	combined	with	these	per-thread	arenas	may	cause	additional	fragmentation,	which	could	be	an

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/6.0_Release_Notes/compiler.html

issue.	This	behavior	may	be	reverted	with	the	environment	variable	MALLOC_ARENA_MAX=1.

Glibc	malloc	does	not	make	it	easy	to	tell	if	fragmentation	is	the	cause	of	process	size	growth,	versus
program	demands	or	a	leak.	The	malloc_stats	function	can	be	called	in	the	running	process	to	print	free
statistics	to	stderr.	It	wouldn't	be	too	hard	to	write	a	JVMTI	shared	library	which	called	this	function	through
a	static	method	or	MBean	(and	this	could	even	be	loaded	dynamically	through	Java	Surgery).	More
commonly,	you'll	have	a	core	dump	(whether	manually	taken	or	from	a	crash),	and	the	malloc	structures
don't	track	total	free	space	in	each	arena,	so	the	only	way	would	be	to	write	a	gdb	python	script	that	walks	the
arenas	and	memory	chunks	and	calculates	free	space	(in	the	same	way	as	malloc_stats).	Both	of	these
techniques,	while	not	terribly	difficult,	are	not	currently	available.	In	general,	native	heap	fragmentation	in
Java	program	is	much	less	likely	than	native	memory	program	demands	or	a	leak,	so	I	always	investigate
those	first	(using	techniques	described	elsewhere).

If	you	have	determined	that	native	heap	fragmentation	is	causing	unbounded	process	size	growth,	then	you
have	a	few	options.	First,	you	can	change	the	application	by	reducing	its	native	memory	demands.	Second,
you	can	tune	glibc	malloc	to	immediately	free	certain	sized	allocations	back	to	the	operating	system.	As
discussed	above,	if	the	requested	size	of	a	malloc	is	greater	than	M_MMAP_THRESHOLD,	then	the
allocation	skips	the	heaps	and	is	directly	allocated	from	the	operating	system	using	mmap.	When	the
program	frees	this	allocation,	the	chunk	is	un-mmap'ed	and	thus	given	back	to	the	operating	system.	Beyond
the	additional	cost	of	system	calls	and	the	operating	system	needing	to	allocate	and	free	these	chunks,	mmap
has	additional	costs	because	it	must	be	zero-filled	by	the	operating	system,	and	it	must	be	sized	to	the
boundary	of	the	page	size	(e.g.	4KB).	This	can	cause	worse	performance	and	more	memory	waste	(ceteris
paribus).

If	you	decide	to	change	the	mmap	threshold,	the	first	step	is	to	determine	the	allocation	pattern.	This	can	be
done	through	tools	such	as	ltrace	(on	malloc)	or	SystemTap,	or	if	you	know	what	is	causing	most	of	the
allocations	(e.g.	Java	DirectByteBuffers),	then	you	can	trace	just	those	allocations.	Next,	create	a	histogram
of	these	sizes	and	choose	a	threshold	just	under	the	smallest	yet	most	frequent	allocation.	For	example,	let's
say	you've	found	that	most	allocations	are	larger	than	8KB.	In	this	case,	you	can	set	the	threshold	to	8192:

MALLOC_MMAP_THRESHOLD_=8192

Additionally,	glibc	malloc	has	a	limit	on	the	number	of	direct	mmaps	that	it	will	make,	which	is	65536	by
default.	With	a	smaller	threshold	and	many	allocations,	this	may	need	to	be	increased.	You	can	set	this	to
something	like	5	million:

MALLOC_MMAP_MAX_=5000000

These	are	set	as	environment	variables	in	each	Java	process.	Note	that	there	is	a	trailing	underscore	on	these
variable	names.

You	can	verify	these	settings	and	the	number	and	total	size	of	mmaps	using	a	core	dump,	gdb,	and	glibc
symbols:

(gdb)	p	mp_
$1	=	{trim_threshold	=	131072,	top_pad	=	131072,	mmap_threshold	=	4096,
						arena_test	=	0,	arena_max	=	1,	n_mmaps	=	1907812,	n_mmaps_max	=	5000000,
						max_n_mmaps	=	2093622,	no_dyn_threshold	=	1,	pagesize	=	4096,
						mmapped_mem	=	15744507904,	max_mmapped_mem	=	17279684608,	max_total_mem	=	0,
						sbrk_base	=	0x1e1a000	""}

In	this	example,	the	threshold	was	set	to	4KB	(mmap_threshold),	there	are	about	1.9	million	active	mmaps
(n_mmaps),	the	maximum	number	is	5	million	(n_mmaps_max),	and	the	total	amount	of	memory	currently
mmap'ped	is	about	14GB	(mmapped_mem).

There	is	also	some	evidence	that	the	number	of	arenas	can	contribute	to	fragmentation.

	

Investigating	core	dumps

Notes:

1.	 The	kernel	does	not	dump	everything	from	the	running	process	(even	if	0x7f	is	set	in	coredump_filter).
2.	 Testing	has	shown	that	gcore	dumps	less	memory	content	than	when	the	kernel	dumps	a	core	during

crash	processing.

	

Ideas	for	dealing	with	fragmentation:

1.	 Reduce	the	number	and/or	frequency	of	direct	or	indirect	mallocs.
2.	 Create	thread	local	caches	of	whatever	is	using	the	mallocs	(e.g.	DirectByteBuffers).	Set	the	minimum

size	of	the	thread	pool	doing	this	equal	to	the	maximum	size	to	avoid	thread	local	destruction.
3.	 Experiment	with	a	limited	MALLOC_ARENA_MAX	(try	1	to	see	if	there's	any	effect	at	first).
4.	 Experiment	with	MALLOC_MMAP_THRESHOLD	and	MALLOC_MMAP_MAX,	carefully

monitoring	the	performance	difference.
5.	 Batch	the	frees	together	(e.g.	with	a	stop-the-world	type	of	mechanism)	to	increase	the	probability	of

free	chunks	coalescing.
6.	 Experiment	with	M_MXFAST
7.	 malloc_trim	is	rarely	useful	outside	of	academic	scenarios.	It	only	trims	from	the	top	of	the	main	arena.

First,	most	fragmentation	is	within	an	arena	not	at	the	top,	and	second,	most	programs	heavily	(and
even	predominantly)	use	the	non-main	arenas.

	

How	much	is	malloc'ed?

Add	mp_.mmapped_mem	plus	system_mem	for	each	arena	starting	at	main_arena	and	following	the	next
pointer	until	next==&main_arena

(gdb)	p	mp_.mmapped_mem
$1	=	0
(gdb)	p	&main_arena
$2	=	(struct	malloc_state	*)	0x3c95b8ee80
(gdb)	p	main_arena.system_mem
$3	=	413696
(gdb)	p	main_arena.next
$4	=	(struct	malloc_state	*)	0x3c95b8ee80

	

Exploring	Arenas

glibc	provides	malloc	statistics	at	runtime	through	a	few	methods:	mallinfo,	malloc_info,	and	malloc_stats.
mallinfo	is	old	and	not	designed	for	64-bit	and	malloc_info	is	the	new	version	which	returns	an	XML	blob	of
information.	malloc_stats	doesn't	return	anything,	but	instead	prints	out	total	statistics	to	stderr
(http://udrepper.livejournal.com/20948.html).

malloc_info:	https://www.kernel.org/doc/man-pages/online/pages/man3/malloc_info.3.html
malloc_stats:	https://www.kernel.org/doc/man-pages/online/pages/man3/malloc_stats.3.html
mallinfo:	https://www.kernel.org/doc/man-pages/online/pages/man3/mallinfo.3.html

	

malloc	trace

Malloc	supports	rudimentary	allocation	tracing:
http://www.gnu.org/software/libc/manual/html_node/Tracing-malloc.html

http://udrepper.livejournal.com/20948.html
https://www.kernel.org/doc/man-pages/online/pages/man3/malloc_info.3.html
https://www.kernel.org/doc/man-pages/online/pages/man3/malloc_stats.3.html
https://www.kernel.org/doc/man-pages/online/pages/man3/mallinfo.3.html
http://www.gnu.org/software/libc/manual/html_node/Tracing-malloc.html

	

strace

On	how	to	use	strace	and	ltrace	to	investigate	mmap	and	malloc	calls	with	callstacks,	see	the	main	Linux
chapter.

	

Native	Memory	Leaks

eBPF

On	Linux	kernel	versions	>=	4.1,	eBPF	is	an	in-kernel	virtual	machine	that	runs	programs	that	access	kernel
information.	eBPF	is	fully	supported	starting	with,	for	example,	RHEL	8.

	

Install

Modern	Fedora/RHEL/CentOS/ubi/ubi-init:

dnf	install	-y	kernel-devel	bcc-tools	bpftool

Then	add	to	PATH:

export	PATH=/usr/share/bcc/tools/:${PATH}

Alternatively,	manually	install:

1.	 Install	dependencies:	https://github.com/iovisor/bcc/blob/master/INSTALL.md#packages
2.	 Clone	bcc	tools:

git	clone	https://github.com/iovisor/bcc

	

bpftool

List	running	eBPF	programs

bpftool	prog	list

	

Tracking	native	memory	leaks

Periodically	dump	any	stacks	that	do	not	have	matching	frees:

1.	 Run	the	memleak	script,	specifying	the	process	to	watch,	the	interval	in	seconds,	and,	optionally,	the
number	of	iterations:

memleak.py	-p	$PID	30	10	>	memleak_$PID.txt

2.	 Analyze	the	stack	output.	For	example:

[19:41:11]	Top	10	stacks	with	outstanding	allocations:
225144	bytes	in	159	allocations	from	stack
func1+0x16	[process]
main+0x81	[process]

https://github.com/iovisor/bcc/blob/master/INSTALL.md#packages
https://raw.githubusercontent.com/iovisor/bcc/master/tools/memleak_example.txt

	

LinuxNativeTracker

Recent	versions	of	IBM	Java	include	an	optional	feature	to	enable	advanced	native	memory	tracking:
https://www.ibm.com/support/pages/ibm-java-linux-howto-tracking-native-memory-java-8-linux

HotSpot	Java	has	-XX:NativeMemoryTracking

	

Debug	Symbols

In	general,	it	is	recommended	to	compile	all	executables	and	libraries	with	debug	symbols	(-g):

GCC,	the	GNU	C/C++	compiler,	supports	'-g'	with	or	without	'-O',	making	it	possible	to	debug
optimized	code.	We	recommend	that	you	always	use	'-g'	whenever	you	compile	a	program.

Alternatively,	symbols	may	be	output	into	separate	files	and	made	available	for	download	to	support
engineers:	http://www.sourceware.org/gdb/current/onlinedocs/gdb/Separate-Debug-Files.html

See	instructions	for	each	distribution.

	

Frame	pointer	omission

Frame	pointer	omission	(FPO)	is	a	common	compiler	optimization	that	makes	it	more	difficult	for	diagnostic
tools	to	walk	stack	traces.	When	compiling	with	GCC,	test	the	relative	performance	of	-fno-omit-frame-
pointer	to	ensure	that	frame	pointers	are	not	omitted	so	that	backtraces	are	in	tact.

To	check	if	an	executable	uses	FPO,	dump	its	assembly	and	check	if	there	are	instructions	to	copy	the
address	of	the	stack	pointer	into	the	frame	pointer.	If	there	are	no	such	instructions,	then	FPO	is	active.	For
example,	on	x86	(with	objdump	using	AT&T	syntax	by	default),	you	might	search	as	follows:

$	objdump	-d	libzip.so	|	grep	-e	"mov.*%esp,.*%ebp"	-e	"mov.*%rsp,.*%rbp"

Note	that	some	executables	have	a	mix	of	FPO	and	no-FPO	so	the	presence	alone	may	not	be	sufficient	to
check.

	

SystemTap	(stap)

SystemTap	is	largerly	superceded	by	eBPF	on	newer	kernels.	However,	it	does	still	work.	Examples:

ltrace	equivalent:	https://sourceware.org/git/?
p=systemtap.git;a=blob;f=testsuite/systemtap.examples/process/ltrace.stp;h=151cdb545432b9001bf2416f098b097418d2ccff;hb=refs/heads/master

	

Network

On	Linux,	once	a	socket	is	listening,	there	are	two	queues:	a	SYN	queue	and	an	accept	queue	(controlled	by
the	backlog	passed	to	listen).	Once	the	handshake	is	complete,	a	connection	is	put	on	the	accept	queue,	if	the
current	number	of	connections	on	the	accept	queue	is	less	than	the	backlog.	The	backlog	does	not	affect	the
SYN	queue	because	if	a	SYN	gets	to	the	server	when	the	accept	queue	is	full,	it	is	still	possible	that	by	the
time	the	full	handshake	completes,	the	accept	queue	will	have	space.	If	the	handshake	completes	and	the

https://www.ibm.com/support/pages/ibm-java-linux-howto-tracking-native-memory-java-8-linux
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr007.html
https://sourceware.org/gdb/current/onlinedocs/gdb#Compiling-for-Debugging
http://www.sourceware.org/gdb/current/onlinedocs/gdb/Separate-Debug-Files.html
https://sourceware.org/git/?p=systemtap.git;a=blob;f=testsuite/systemtap.examples/process/ltrace.stp;h=151cdb545432b9001bf2416f098b097418d2ccff;hb=refs/heads/master

accept	queue	is	full,	then	the	server's	socket	information	is	dropped	but	nothing	sent	to	the	client;	when	the
client	tries	to	send	data,	the	server	would	send	a	RST.	If	syn	cookies	are	enabled	and	the	SYN	queue	reaches
a	high	watermark,	after	the	SYN/ACK	is	sent,	the	SYN	is	removed	from	the	queue.	When	the	ACK	comes
back,	the	SYN	is	rebuilt	from	the	information	in	the	ACK	and	then	the	handshake	is	completed.

	

Process	CPU	Deep	Dive

1.	 Create	linuxstat.sh:

#!/bin/sh
outputfile="linuxstat_$(date	+"%Y%m%d_%H%M%S").log"
echo	"linuxstat:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	PIDs:	${*}"	|	tee	-a	${outputfile}
while	true;	do
		cat	/proc/stat	&>>	${outputfile}
		for	PID	in	${*};	do
				echo	"linuxstat:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	iteration	for	PID:	${PID}"	|	tee	-a	${outputfile}
				cat	/proc/${PID}/stat	&>>	${outputfile}
				(for	i	in	/proc/${PID}/task/*;	do	echo	-en	"$i=";	cat	$i/stat;	done)	&>>	${outputfile}
		done
		sleep	15
done

2.	 chmod	+x	linuxstat.sh
3.	 Start:

nohup	./linuxstat.sh	PID1	PID2...

4.	 Reproduce	the	problem
5.	 Ctrl^C	to	stpo	linuxstat.sh	and	gather	linuxstat*log

	

Hung	Processes

Gather	and	review	(particularly	the	output	of	each	kernel	stack	in	/stack):

PID=$1
outputfile="linuxhang_$(date	+"%Y%m%d_%H%M%S").log"
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	status"	|	tee	-a	${outputfile}
cat	/proc/${PID}/status	&>>	${outputfile}
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	sched"	|	tee	-a	${outputfile}
cat	/proc/${PID}/sched	&>>	${outputfile}
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	schedstat"	|	tee	-a	${outputfile}
cat	/proc/${PID}/schedstat	&>>	${outputfile}
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	syscall"	|	tee	-a	${outputfile}
cat	/proc/${PID}/syscall	&>>	${outputfile}
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	wchan"	|	tee	-a	${outputfile}
echo	-en	"/proc/${PID}/wchan="	&>>	${outputfile}
cat	/proc/${PID}/wchan	&>>	${outputfile}
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	task	wchan"	|	tee	-a	${outputfile}
(for	i	in	/proc/${PID}/task/*;	do	echo	-en	"$i=";	cat	$i/wchan;	echo	"";	done)	&>>	${outputfile}
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	stack"	|	tee	-a	${outputfile}
echo	-en	"/proc/${PID}/stack="	&>>	${outputfile}
cat	/proc/${PID}/stack	&>>	${outputfile}
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	task	stack"	|	tee	-a	${outputfile}
(for	i	in	/proc/${PID}/task/*;	do	echo	-en	"$i=";	cat	$i/stack;	echo	"";	done)	&>>	${outputfile}
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	syscall"	|	tee	-a	${outputfile}
echo	-en	"/proc/${PID}/syscall="	&>>	${outputfile}
cat	/proc/${PID}/syscall	&>>	${outputfile}
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	task	syscall"	|	tee	-a	${outputfile}
(for	i	in	/proc/${PID}/task/*;	do	echo	-en	"$i=";	cat	$i/syscall;	echo	"";	done)	&>>	${outputfile}
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	task	sched"	|	tee	-a	${outputfile}
(for	i	in	/proc/${PID}/task/*;	do	echo	-en	"$i=";	cat	$i/sched;	done)	&>>	${outputfile}
echo	"linuxhang:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	task	status"	|	tee	-a	${outputfile}

(for	i	in	/proc/${PID}/task/*;	do	echo	-en	"$i=";	cat	$i/status;	done)	&>>	${outputfile}
echo	"Wrote	to	${outputfile}"

Review	if	number	of	switches	is	increasing:

PID=8939;	PROC=sched;	for	i	in	/proc/${PID}	/proc/${PID}/task/*;	do	echo	-en	"$i/${PROC}=";	echo	"";	cat	$i/${PROC};	echo	"";	done	|	grep	-e	${PROC}=	-e	nr_switches

A	simpler	script:

PID=...
date	>>	kernelstacks.txt
for	i	in	/proc/${PID}/task/*;	do
		echo	-en	"$i	stack="	&>>	kernelstacks.txt
		cat	$i/stack	&>>	kernelstacks.txt
		echo	""	&>>	kernelstacks.txt
		echo	-en	"$i	wchan="	&>>	kernelstacks.txt
		cat	$i/wchan	&>>	kernelstacks.txt
		echo	""	&>>	kernelstacks.txt
		echo	-en	"$i	syscall="	&>>	kernelstacks.txt
		cat	$i/syscall	&>>	kernelstacks.txt
		echo	""	&>>	kernelstacks.txt
		echo	-en	"$i	sched="	&>>	kernelstacks.txt
		cat	$i/sched	&>>	kernelstacks.txt
		echo	""	&>>	kernelstacks.txt
		echo	-en	"$i	status="	&>>	kernelstacks.txt
		cat	$i/status	&>>	kernelstacks.txt
		echo	""	&>>	kernelstacks.txt
done

	

Kernel	Dumps

crash	/var/crash/<timestamp>/vmcore	/usr/lib/debug	/lib/modules/<kernel>/vmlinux

Note	that	the	<kernel>	version	should	be	the	same	that	was	captured	by	kdump.	To	find	out
which	kernel	you	are	currently	running,	use	the	uname	-r	command.

To	display	the	kernel	message	buffer,	type	the	log	command	at	the	interactive	prompt.

To	display	the	kernel	stack	trace,	type	the	bt	command	at	the	interactive	prompt.	You	can	use	bt
<pid>	to	display	the	backtrace	of	a	single	process.

To	display	status	of	processes	in	the	system,	type	the	ps	command	at	the	interactive	prompt.	You
can	use	ps	<pid>	to	display	the	status	of	a	single	process.

To	display	basic	virtual	memory	information,	type	the	vm	command	at	the	interactive	prompt.
You	can	use	vm	<pid>	to	display	information	on	a	single	process.

To	display	information	about	open	files,	type	the	files	command	at	the	interactive	prompt.	You
can	use	files	<pid>	to	display	files	opened	by	only	one	selected	process.

kernel	object	file:	A	vmlinux	kernel	object	file,	often	referred	to	as	the	namelist	in	this
document,	which	must	have	been	built	with	the	-g	C	flag	so	that	it	will	contain	the	debug	data
required	for	symbolic	debugging.

When	using	the	fbt	provider,	it	helps	to	run	through	the	syscall	once	with	all	to	see	what	the	call
stack	is	and	then	hone	in.

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/pdf/Kernel_Crash_Dump_Guide/Red_Hat_Enterprise_Linux-7-
Kernel_Crash_Dump_Guide-en-US.pdf

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/pdf/Kernel_Crash_Dump_Guide/Red_Hat_Enterprise_Linux-7-Kernel_Crash_Dump_Guide-en-US.pdf

	

Change	root	password

1.	 Type	e	on	the	boot	menu.
2.	 Add	rd.break	enforcing=0	to	the	line	that	starts	with	linux	(another	option	is	systemd.debug-

shell	and	hit	Ctrl+Alt+F9)
3.	 Continue	booting:	Ctrl+X
4.	 Make	the	filesystem	writable:	mount	-o	remount,rw	/sysroot
5.	 Enter	root	filesystem:	chroot	/sysroot
6.	 Change	root	password:	passwd
7.	 Continue	booting:	Ctrl+D

	

Fix	non-working	disk

1.	 Type	e	on	the	boot	menu.
2.	 Add	systemd.unit=emergency.target	to	the	line	that	starts	with	linux
3.	 Make	all	filesystems	writeable:	mount	-o	remount,rw	/
4.	 Try	re-mount:	mount	-a
5.	 Fix	any	errors	in	/etc/fstab
6.	 Run	systemctl	daemon-reload
7.	 Try	re-mount:	mount	-a
8.	 Continue	booting:	Ctrl+D

	

journald

Persist	all	logs

1.	 Set	Storage=persistent	in	/etc/systemd/journald.conf
2.	 Run	systemctl	reload	systemd-journald
3.	 Logs	in	/var/log/journal

	

Battery	Status

Example:

$	sudo	acpi	-V	|	grep	^Battery
Battery	0:	Unknown,	79%
Battery	0:	design	capacity	1886	mAh,	last	full	capacity	1002	mAh	=	53%
Battery	1:	Charging,	46%,	01:01:20	until	charged
Battery	1:	design	capacity	6166	mAh,	last	full	capacity	5567	mAh	=	90%

	

Administration

Create	New	Superuser

1.	 Create	a	user	with	a	home	directory:	adduser	-m	$user
2.	 Set	the	password	for	the	new	user:	passwd	$user
3.	 Add	the	user	to	the	superuser	wheel	group:	usermod	-a	-G	wheel	$user

	

Basic	Diagnostics

outputfile="linuxdiag_$(date	+"%Y%m%d_%H%M%S").log"
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	uptime"	|	tee	-a	${outputfile}
uptime	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	hostname"	|	tee	-a	${outputfile}
hostname	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	w"	|	tee	-a	${outputfile}
w	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	lscpu"	|	tee	-a	${outputfile}
lscpu	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	dmesg"	|	tee	-a	${outputfile}
(dmesg	|	tail	-50)	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	df"	|	tee	-a	${outputfile}
df	-h	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	free"	|	tee	-a	${outputfile}
free	-m	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	ps	memory"	|	tee	-a	${outputfile}
ps	-o	pid,vsz,rss,cmd	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	vmstat"	|	tee	-a	${outputfile}
vmstat	1	5	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	top	all"	|	tee	-a	${outputfile}
top	-b	-d	2	-n	2	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	top	threads"	|	tee	-a	${outputfile}
top	-b	-H	-d	2	-n	2	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	pidstat"	|	tee	-a	${outputfile}
pidstat	-d	-h	--human	-l	-r	-u	-v	-w	2	2	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	iostat"	|	tee	-a	${outputfile}
iostat	-xm	1	5	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	ss	summary"	|	tee	-a	${outputfile}
ss	--summary	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	ss	all"	|	tee	-a	${outputfile}
ss	-amponet	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	nstat"	|	tee	-a	${outputfile}
nstat	-asz	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	sar	network"	|	tee	-a	${outputfile}
sar	-n	DEV	1	5	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	sar	tcp"	|	tee	-a	${outputfile}
sar	-n	TCP,ETCP	1	5	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	lnstat"	|	tee	-a	${outputfile}
lnstat	-c	1	&>>	${outputfile}
echo	"diag:	$(date	+"%Y%m%d	%H%M%S	%N	%Z")	:	sysctl"	|	tee	-a	${outputfile}
sysctl	-a	&>>	${outputfile}
echo	"Wrote	to	${outputfile}"

	

Sending	a	kernel	patch

1.	 Review	the	documentation	on	submitting	patches

2.	 Find	the	repository	of	your	target	subsystem	in	the	MAINTAINERS	file.	For	example,	for	perf,	the
repository	is:

SCM:	git	git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git	perf/core

3.	 Clone	this	repository.	For	example,	for	perf,	from	above:

git	clone	git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git

4.	 Checkout	the	appropriate	branch	from	the	SCM	line	in	the	MAINTAINERS	file.	For	example,	for	perf,
from	above:

git	checkout	perf/core

https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://www.kernel.org/doc/html/latest/process/maintainers.html#performance-events-subsystem
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git

5.	 Make	your	changes	and	commit	them	with	a	prefix	of	the	subsystem.	For	example,	for	perf:

git	commit	-sam	"perf:	DESCRIPTION	OF	CHANGES"

6.	 Subscribe	to	the	mailing	list	in	the	MAINTAINERS	file.	For	example,	for	perf,	it's	linux-perf-
users@vger.kernel.org	and	subscription	instructions	may	be	found	at	http://vger.kernel.org/vger-
lists.html#linux-perf-users

7.	 Send	the	patch	to	the	mailing	list.	For	example,	for	perf:

git	send-email	--from	"First	Last	<email@example.com>"	--to	linux-perf-users@vger.kernel.org	--suppress-cc	all	-1

8.	 After	some	time,	validate	the	email	was	successfully	sent	to	the	mailing	list	by	reviewing	the	archives.
For	example,	for	perf,	see	https://lore.kernel.org/linux-perf-users/

	

Error	Codes	(errno.h)

An	errno	code	is	used	throughout	Linux	to	detail	errors	when	calling	functions.	Names	and	numeric	values
for	a	particular	instance	of	Linux	may	be	listed	with	errno	-l	from	the	moreutils	package.	Additional
definitions	are	available	in	asm-generic/errno-base.h,	asm-generic/errno.h,	and	linux/errno.h.	Example	list:

#	errno	-l	|	sort	-n	-k	2	|	awk	'{printf("%-16s	%3s	",	$1,	$2);	for	(i=3;i<=NF;i++)	printf("	%s",	$i);	printf("\n");}'
EPERM														1		Operation	not	permitted
ENOENT													2		No	such	file	or	directory
ESRCH														3		No	such	process
EINTR														4		Interrupted	system	call
EIO																5		Input/output	error
ENXIO														6		No	such	device	or	address
E2BIG														7		Argument	list	too	long
ENOEXEC												8		Exec	format	error
EBADF														9		Bad	file	descriptor
ECHILD												10		No	child	processes
EAGAIN												11		Resource	temporarily	unavailable
EWOULDBLOCK							11		Resource	temporarily	unavailable
ENOMEM												12		Cannot	allocate	memory
EACCES												13		Permission	denied
EFAULT												14		Bad	address
ENOTBLK											15		Block	device	required
EBUSY													16		Device	or	resource	busy
EEXIST												17		File	exists
EXDEV													18		Invalid	cross-device	link
ENODEV												19		No	such	device
ENOTDIR											20		Not	a	directory
EISDIR												21		Is	a	directory
EINVAL												22		Invalid	argument
ENFILE												23		Too	many	open	files	in	system
EMFILE												24		Too	many	open	files
ENOTTY												25		Inappropriate	ioctl	for	device
ETXTBSY											26		Text	file	busy
EFBIG													27		File	too	large
ENOSPC												28		No	space	left	on	device
ESPIPE												29		Illegal	seek
EROFS													30		Read-only	file	system
EMLINK												31		Too	many	links
EPIPE													32		Broken	pipe
EDOM														33		Numerical	argument	out	of	domain
ERANGE												34		Numerical	result	out	of	range
EDEADLK											35		Resource	deadlock	avoided
EDEADLOCK									35		Resource	deadlock	avoided
ENAMETOOLONG						36		File	name	too	long
ENOLCK												37		No	locks	available
ENOSYS												38		Function	not	implemented
ENOTEMPTY									39		Directory	not	empty
ELOOP													40		Too	many	levels	of	symbolic	links

http://vger.kernel.org/vger-lists.html#linux-perf-users
https://lore.kernel.org/linux-perf-users/
https://www.kernel.org/doc/man-pages/online/pages/man3/errno.3.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/asm-generic/errno-base.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/asm-generic/errno.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/errno.h

ENOMSG												42		No	message	of	desired	type
EIDRM													43		Identifier	removed
ECHRNG												44		Channel	number	out	of	range
EL2NSYNC										45		Level	2	not	synchronized
EL3HLT												46		Level	3	halted
EL3RST												47		Level	3	reset
ELNRNG												48		Link	number	out	of	range
EUNATCH											49		Protocol	driver	not	attached
ENOCSI												50		No	CSI	structure	available
EL2HLT												51		Level	2	halted
EBADE													52		Invalid	exchange
EBADR													53		Invalid	request	descriptor
EXFULL												54		Exchange	full
ENOANO												55		No	anode
EBADRQC											56		Invalid	request	code
EBADSLT											57		Invalid	slot
EBFONT												59		Bad	font	file	format
ENOSTR												60		Device	not	a	stream
ENODATA											61		No	data	available
ETIME													62		Timer	expired
ENOSR													63		Out	of	streams	resources
ENONET												64		Machine	is	not	on	the	network
ENOPKG												65		Package	not	installed
EREMOTE											66		Object	is	remote
ENOLINK											67		Link	has	been	severed
EADV														68		Advertise	error
ESRMNT												69		Srmount	error
ECOMM													70		Communication	error	on	send
EPROTO												71		Protocol	error
EMULTIHOP									72		Multihop	attempted
EDOTDOT											73		RFS	specific	error
EBADMSG											74		Bad	message
EOVERFLOW									75		Value	too	large	for	defined	data	type
ENOTUNIQ										76		Name	not	unique	on	network
EBADFD												77		File	descriptor	in	bad	state
EREMCHG											78		Remote	address	changed
ELIBACC											79		Can	not	access	a	needed	shared	library
ELIBBAD											80		Accessing	a	corrupted	shared	library
ELIBSCN											81		.lib	section	in	a.out	corrupted
ELIBMAX											82		Attempting	to	link	in	too	many	shared	libraries
ELIBEXEC										83		Cannot	exec	a	shared	library	directly
EILSEQ												84		Invalid	or	incomplete	multibyte	or	wide	character
ERESTART										85		Interrupted	system	call	should	be	restarted
ESTRPIPE										86		Streams	pipe	error
EUSERS												87		Too	many	users
ENOTSOCK										88		Socket	operation	on	non-socket
EDESTADDRREQ						89		Destination	address	required
EMSGSIZE										90		Message	too	long
EPROTOTYPE								91		Protocol	wrong	type	for	socket
ENOPROTOOPT							92		Protocol	not	available
EPROTONOSUPPORT			93		Protocol	not	supported
ESOCKTNOSUPPORT			94		Socket	type	not	supported
ENOTSUP											95		Operation	not	supported
EOPNOTSUPP								95		Operation	not	supported
EPFNOSUPPORT						96		Protocol	family	not	supported
EAFNOSUPPORT						97		Address	family	not	supported	by	protocol
EADDRINUSE								98		Address	already	in	use
EADDRNOTAVAIL					99		Cannot	assign	requested	address
ENETDOWN									100		Network	is	down
ENETUNREACH						101		Network	is	unreachable
ENETRESET								102		Network	dropped	connection	on	reset
ECONNABORTED					103		Software	caused	connection	abort
ECONNRESET							104		Connection	reset	by	peer
ENOBUFS										105		No	buffer	space	available
EISCONN										106		Transport	endpoint	is	already	connected
ENOTCONN									107		Transport	endpoint	is	not	connected
ESHUTDOWN								108		Cannot	send	after	transport	endpoint	shutdown
ETOOMANYREFS					109		Too	many	references:	cannot	splice
ETIMEDOUT								110		Connection	timed	out

ECONNREFUSED					111		Connection	refused
EHOSTDOWN								112		Host	is	down
EHOSTUNREACH					113		No	route	to	host
EALREADY									114		Operation	already	in	progress
EINPROGRESS						115		Operation	now	in	progress
ESTALE											116		Stale	file	handle
EUCLEAN										117		Structure	needs	cleaning
ENOTNAM										118		Not	a	XENIX	named	type	file
ENAVAIL										119		No	XENIX	semaphores	available
EISNAM											120		Is	a	named	type	file
EREMOTEIO								121		Remote	I/O	error
EDQUOT											122		Disk	quota	exceeded
ENOMEDIUM								123		No	medium	found
EMEDIUMTYPE						124		Wrong	medium	type
ECANCELED								125		Operation	canceled
ENOKEY											126		Required	key	not	available
EKEYEXPIRED						127		Key	has	expired
EKEYREVOKED						128		Key	has	been	revoked
EKEYREJECTED					129		Key	was	rejected	by	service
EOWNERDEAD							130		Owner	died
ENOTRECOVERABLE		131		State	not	recoverable
ERFKILL										132		Operation	not	possible	due	to	RF-kill
EHWPOISON								133		Memory	page	has	hardware	error

	

Sysrq	Keys

Check	if	sysrq	enabled

Show	if	sysrq	is	enabled	(1):

$	sysctl	kernel.sysrq
kernel.sysrq	=	1

	

Enable	sysrq

Enable:

1.	 Method	1	(temporary):

sysctl	-w	kernel.sysrq=1

2.	 Method	2	(permanent):
1.	 Add	kernel.sysrq=1	to	/etc/sysctl.conf
2.	 Apply	with	sysctl	-p

	

sysrq	characters

Commonly	used	characters:

f:	Run	the	OOM	Killer.	This	will	kill	the	process	using	the	most	RAM	(even	if	it's	not	using	much).
r:	Take	control	of	keyboard	from	X.
e:	Send	SIGTERM	to	all	processes.	Wait	for	graceful	termination.
i:	Send	SIGKILL	to	all	processes	for	forceful	termination.
s:	Sync	disks.
u:	Remount	all	filesystems	as	read-only.
b:	Reboot.

g:	Switch	to	the	kernel	console.	Otherwise,	switch	to	a	console	with,	e.g.	Ctrl+Alt+F3
l:	Show	backtrace	of	all	CPUs.
0-9:	Change	the	kernel	log	level.
d:	Display	kernel	locks.
m:	Show	memory	information.
t:	Show	a	list	of	all	processes.
w:	Show	a	list	of	blocked	processes.
c:	Perform	a	kernel	crash.

A	"controlled"	reboot	is	often	done	with	reisub

	

Execute	sysrq

Execute:

1.	 Method	1	(using	keyboard):
Ctrl	+	Alt	+	SysRq	(usually	PrintScreen)	+	$CHARACTER
All	of	these	keys	must	be	held	down	at	the	same	time	and	then	released
On	some	keyboards,	this	only	works	with	the	right-side	Ctrl/Alt	keys
On	some	keyboards,	a	function	(Fn)	key	must	be	held	for	PrintScreen

2.	 Method	2	(as	root):

echo	$CHARACTER	>	/proc/sysrq-trigger

3.	 Method	3	(with	sudo):

echo	$CHARACTER	|	sudo	tee	/proc/sysrq-trigger

	

Troubleshooting	AIX

Java	interaction

If	Java	uses	shmget	to	allocate	the	Java	heap,	then	it	will	immediately	mark	the	shared	memory	region	for
deletion,	so	that	if	the	JVM	crashes,	the	memory	will	be	released.	Therefore,	if	you	find	large	shared
memory	regions	marked	for	deletion	(ipcs	-Smqsa	-1	|	egrep	"^m"	|	egrep	"	D"),	this	is	most	likely
the	reason	and	expected.

	

Request	core	dump	(also	known	as	a	"system	dump"	for	IBM	Java)

Additional	methods	of	requesting	system	dumps	for	IBM	Java	are	documented	in	the	Troubleshooting	IBM
Java	and	Troubleshooting	WAS	chapters.

1.	 The	gencore	command	pauses	the	process	while	the	core	is	generated	and	then	the	process	should
continue.	Replace
PIDinthefollowingexamplewiththeprocessID.Youmusthavepermissionstotheprocess(i.e.eitherrunastheowne
-c	unlimited)	before	starting	the	process).	The	size	of	the	core	file	will	be	the	size	of	the	virtual	size	of
the	process	(ps	VSZ).	If	there	is	sufficient	free	space	in	physical	RAM	and	the	filecache,	the	core	file
will	be	written	to	RAM	and	then	asynchronously	written	out	to	the	filesystem	which	can	dramatically
improve	the	speed	of	generating	a	core	and	reduce	the	time	the	process	is	paused.	In	general,	core
dumps	compress	very	well	(often	up	to	75%)	for	transfer.

gencore	PIDcore.(date	+%Y%m%d.%H%M%S).dmp

	

Signals

Signal	mappings	and	detailed	error	codes	may	be	found	in	/usr/include/sys/signal.h.	A	simpler	listing	may	be
performed	with	kill	-l:

$	kill	-l
	1)	HUP		14)	ALRM					27)	MSG					40)	bad	trap	53)	bad	trap
	2)	INT		15)	TERM					28)	WINCH			41)	bad	trap	54)	bad	trap
	3)	QUIT	16)	URG						29)	PWR					42)	bad	trap	55)	bad	trap
	4)	ILL		17)	STOP					30)	USR1				43)	bad	trap	56)	bad	trap
	5)	TRAP	18)	TSTP					31)	USR2				44)	bad	trap	57)	bad	trap
	6)	ABRT	19)	CONT					32)	PROF				45)	bad	trap	58)	RECONFIG
	7)	EMT		20)	CHLD					33)	DANGER		46)	bad	trap	59)	CPUFAIL
	8)	FPE		21)	TTIN					34)	VTALRM		47)	bad	trap	60)	GRANT
	9)	KILL	22)	TTOU					35)	MIGRATE	48)	bad	trap	61)	RETRACT
10)	BUS		23)	IO							36)	PRE					49)	bad	trap	62)	SOUND
11)	SEGV	24)	XCPU					37)	VIRT				50)	bad	trap	63)	SAK
12)	SYS		25)	XFSZ					38)	ALRM1			51)	bad	trap
13)	PIPE	26)	bad	trap	39)	WAITING	52)	bad	trap

	

Find	PID	that	owns	a	socket

Method	1

Install	the	optional	lsof	tool.

	

Method	2

$	netstat	-Aan	|	grep	"*.2[2,5].*LISTEN"		
f1000e000531a3b8	tcp4							0						0		*.22																		*.*																			LISTEN		
f1000e00040babb8	tcp4							0						0		*.25																		*.*																			LISTEN

$	rmsock	f1000e000531a3b8	tcpcb
The	socket	0xf1000e000531a008	is	being	held	by	proccess	9830644	(sshd).

$	rmsock	f1000e00040babb8	tcpcb
The	socket	0xf1000e00040ba808	is	being	held	by	proccess	6684754	(sendmail).

	

Method	3

1.	 Find	the	socket	of	interest	with	netstat	-A	and	copy	the	first	hexadecimal	address	which	is	the	socket
ID:

#	netstat	-Aan	|	grep	32793

f1000e00032203b8	tcp4							0						0		127.0.0.1.32793							*.*																			LISTEN

2.	 Send	this	socket	ID	into	kdb:

#	echo	"sockinfo	f1000e00032203b8	tcpcb"	|	kdb	|	grep	proc		
F1000F0A00000000	F1000F0A10000000	pvproc+000000		
proc/fd:		65/8		
proc/fd:	fd:	8		
pvproc+010400			65*kuxagent	ACTIVE	**0410058**	0000001	00000008A84D5590			0	0030

https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/com.ibm.aix.genprogc/probevue_symb_const.htm

3.	 Take	the	first	hexadecimal	address	after	ACTIVE	and	convert	it	to	decimal:

#	echo	"hcal	0410058"	|	kdb	|	grep	Value		
Value	hexa:	00410058										Value	decimal:	4259928

4.	 Search	for	this	PID	in	ps:

#	ps	-elf	|	grep	4259928

	

Kernel	Trace

Trace	source	of	kill	signal

It	may	be	useful	to	understand	what	PID	is	sending	a	kill	signal	to	a	process	on	AIX.	You	can	use	this	kernel
trace:

Login	as	root
#	rm	-rf	/tmp/aixtrace;	mkdir	/tmp/aixtrace/;	cd	/tmp/aixtrace/
#	trace	-C	all	-a	-T	10M	-L	20M	-n	-j	134,139,465,14e,46c	-o	./trc
...	Reproduce	the	problem	...	e.g.	kill	-3	7667754
#	trcstop
#	cp	/etc/trcfmt	.
#	trcnm	-a	>	trace.nm
#	LDR_CNTRL=MAXDATA=0x80000000	gensyms	>	trace.syms
#	LDR_CNTRL=MAXDATA=0x80000000	gennames	-f	>	gennames.out
#	pstat	-i	>	trace.inode
#	ls	-al	/dev	>	trace.maj_min2lv

Either	zip	and	send	these	files	to	a	PMR	or	analysis	machine,	or	run	these	commands	directly	to	process	the
trace:

#	trcrpt	-C	all	-r	-o	trc.tr	trc
#	trcrpt	-C	all	-t	trcfmt	-n	trace.nm	-x	-O	pid=on,tid=on,svc=on,exec=on,cpuid=on,PURR=on	-o	trc.txt	trc.tr

Make	sure	the	trace	buffers	did	not	wrap:

#	grep	WRAP	trc.txt

If	there	are	no	results,	then	you're	good;	otherwise,	if	you	see	lines	such	as:

006		--1-											-1		-1							-1																						963.205627656							0.002912				963.205627656																			TRACEBUFFER	WRAPAROUND	0003
005		-4916246-						-1		4916246		113967573																963.205627656*																		963.205627656																			LOGFILE	WRAPAROUND	0002

Then,	either	try	increasing	buffer	sizes	or	reducing	your	test	case	or	system	load	(or	the	tracepoints	in	-j).

Finally,	search	for	the	signal:

#	grep	-Ei	"^14e|46c"	trc.txt	|	grep	-E	"signal	3|SIGQUIT"
14E		ksh												0			10879036	62128373																	28.157542500							0.128249					28.157542500																			kill:	signal	SIGQUIT	to	process	?	java

The	time	of	the	signal	is	the	ELAPSED_SEC	column	added	to	the	date	at	the	top	of	trc.txt:

#	head	-2	trc.txt

Wed	Aug	21	05:10:28	2013

Thus	the	kill	was	sent	at	05:10:56	by	PID	10879036	(ksh).	If	this	is	a	long	running	process,	then	you	can
reference	ps.out	for	more	details.	The	entry	may	not	print	the	PID	the	signal	was	sent	to	(notice	the	question
mark),	but	you	should	be	able	to	figure	that	out	based	on	other	artifacts	produced	at	that	time	such	as
javacores.

	

Useful	Commands

genkld:	List	all	shared	objects	loaded	on	the	system.
genld:	List	all	shared	objects	loaded	by	a	process.
slibclean:	Remove	shared	libraries	from	memory	that	have	0	use	and	load	counts.

	

Querying	Queue	Depth	with	Netstat

Example	AIX	netstat	output:

$	netstat	-an
Active	Internet	connections	(including	servers)
Proto	Recv-Q	Send-Q		Local	Address										Foreign	Address								(state)
tcp4							0						0		10.30.30.36.80							10.30.30.113.38378					ESTABLISHED	[...]

AIX	has	a	somewhat	strange	format	with	the	IP	address	followed	by	a	period	(instead	of	a	colon)	and	the
port	number.

To	find	the	queue	depth	of	a	server,	first	search	for	the	local	IP	followed	by	the	listening	port	of	the	server	(it
doesn't	matter	which	column	it's	in	because	it's	impossible	for	a	server	to	both	listen	on	a	port	and	use	that
same	port	as	a	client	port	for	some	other	socket),	and	filter	the	output	for	sockets	in	ESTABLISHED	or
SYN_RECEIVED	states.	Sockets	may	also	be	in	various	closing	states	such	as	CLOSE_WAIT,
TIME_WAIT,	FIN_WAIT_1,	and	FIN_WAIT_2	(depending	on	which	side	closed	its	half	of	the	socket
first):	these	states	can	cause	other	types	of	bottlenecks	but	they	are	not	related	to	queue	depth.

For	example,	let's	say	the	web	server	above	is	listening	on	port	80:

$	netstat	-an	|	grep	-F	10.30.30.36.80	|	grep	-e	ESTABLISHED	-e	SYN_RECEIVED	|	wc	-l
14

Then,	to	get	the	queue	depth,	subtract	this	number	from	the	maximum	number	of	servers	(e.g.	MaxClients,
WebContainer	maximum	size,	etc.).

	

Debug	Symbols

AIX:	"Specifying	-g	will	turn	off	all	inlining	unless	you	explicitly	request	it	with	an	optimization	option."
(http://www.ibm.com/support/knowledgecenter/en/SSGH2K_13.1.3/com.ibm.xlc1313.aix.doc/compiler_ref/opt_g_lower.html

Use	stabsplit	to	create	separate	symbol	files:
http://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/com.ibm.aix.cmds3/ld.htm

	

Analyzing	Native	Memory	with	svmon

AIX,	like	all	other	modern	operating	systems,	aggressively	uses	RAM	as	a	file	cache;	therefore,	it's	very
common	for	the	"free"	RAM	in	AIX	to	show	as	very	low.	However,	in	general,	this	file	cache	can	be	pushed
out	of	RAM	to	make	space	for	program	demands.	Therefore,	to	understand	"effective	RAM	usage",	you	must
subtract	non-pinned	filecache	from	used	RAM.

aixmem.sh:

#!/bin/sh

https://www.ibm.com/docs/en/aix/7.3?topic=g-genkld-command
https://www.ibm.com/docs/en/aix/7.3?topic=g-genld-command
https://www.ibm.com/docs/en/aix/7.3?topic=s-slibclean-command
http://www.ibm.com/support/knowledgecenter/en/SSGH2K_13.1.3/com.ibm.xlc1313.aix.doc/compiler_ref/opt_g_lower.html
http://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/com.ibm.aix.cmds3/ld.htm

PID=$1
INTERVAL=3600
echo	"PID=$PID,	INTERVAL=$INTERVAL"
while	([-d	/proc/$PID]);	do
		date
		svmon	-G
		svmon	-r	-m	-P	$PID
		kill	-3	$PID
		sleep	$INTERVAL
done

Run	the	following	to	make	the	script	executable:

chmod	a+x	aixmem.sh

Start	the	script	(and	replace	$PID	with	the	target	Java	process	ID):

nohup	./aixmem.sh	$PID	>	nativemem.txt	2>&1	&

This	runs	at	an	interval	of	30	minutes	and	has	a	very	low	overhead	(assuming	you	have	not	changed	the
default	behavior	of	kill	-3	to	only	produce	a	javacore).

After	enough	data	has	been	captured,	kill	the	script:

kill	$(ps	-ef	|	grep	nativemem.sh	|	grep	-v	grep	|	awk	'{print	$2}')

The	following	command	line	snippet	on	Linux	(should	be	easy	to	convert	to	ksh)	may	be	used	to	analyze	the
output	of	the	AIX	memory	script	above	and	display	the	effectively	used	RAM	(i.e.	RAM	usage	-	file	cache):

grep	-e	TZ	-e	"^memory"	-e	"^in	use"	nativemem.txt	|	\
					while	read	line;	do	\
							read	line2;
							read	line3;
							echo	$line;
							rambytesused="$(echo	"${line2}"	|	awk	'{print	$3}'	|	echo	"$(cat	-)*4096"	|	bc)";
							rambytesfilecache="$(echo	"${line3}"	|	awk	'{print	$5}'	|	echo	"$(cat	-)*4096"	|	bc)";
							printf	"Total	RAM	usage	(bytes):						%s\n"	"${rambytesused}";
							printf	"File	cache	RAM	usage	(bytes):	%s\n"	"${rambytesfilecache}";
							printf	"Effectively	used	RAM	(bytes):	%s\n\n"	"$(echo	"${rambytesused}-${rambytesfilecache}"	|	bc)";
					done

	

Native	Memory	Leaks

Restart	the	process	with	the	MALLOCDEBUG	envar	to	track	un-freed	mallocs.	This	may	have	a	significant
performance	overhead:

export	MALLOCDEBUG=report_allocations,stack_depth:3

Reproduce	the	problem	and	stop	the	process	gracefully.	A	report	is	produced	in	stderr	with	each	un-freed
allocation:

				Allocation	#0:	0x3002FD60
								Allocation	size:	0x2A0
								Allocated	from	heap:	0
								Allocation	traceback:
								0xD01DC934		malloc
								0xD01288AC		init_malloc
								0xD012A1F4		malloc
								0xD04DFF34		__pth_init

Snapshots	of	this	data	may	also	be	captured	with	a	core	dump	(see	above)	and	the	dbx	$(malloc)	command
(see	below).

With	Java,	careful	of	using	stack	depths	greater	than	3:

"The	stack	depth	of	3	provides	only	a	limited	stack	trace.	However,	the	use	of	larger	stack	depths
with	a	Java	application	can	cause	crashes	because	the	debug	malloc	facility	does	not	understand
the	stack	frames	used	for	JIT	compiled	code."

Run	format_mallocdebug_op.sh	to	aggregate	and	summarize	the	stacks:
https://www.ibm.com/developerworks/aix/library/au-mallocdebug.html

Example	output:

ZIP_Put_In_Cache
readCEN
calloc_common
malloc
################################
533676	bytes	leaked	in	127	Blocks
################################

	

dbx

Analyze	a	core	file:

$	dbx	${PATH_TO_EXECUTABLE}	${PATH_TO_CORE}

To	load	shared	libraries	from	a	particular	folder,	user	-p:

$	dbx	-p	/=./	${PATH_TO_EXECUTABLE}	${PATH_TO_CORE}

If	you	see	the	following	warning:

warning:	The	core	file	is	not	a	fullcore.	Some	info	may	not	be	available.

Then	the	core	is	probably	truncated.	As	recommended	in	the	Java	documentation,	enable	fullcore	and
reproduce	the	issue
(http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.aix.80.doc/diag/problem_determination/aix_setup_full_core.html

#	chdev	-l	sys0	-a	fullcore='true'	-a	pre430core='false'

	

Tips

Type	help	$COMMAND	to	print	the	summary	and	options	of	a	command.	For	example:

(dbx)	help	proc
proc	[raw]	[cred	|	cru	|	rlimit	|	ru	|	sigflags	|	signal]
								Display	process	information.	"raw"	displays	in	raw	hex	format.
								"cred"	shows	credentials,	"cru",	"ru"	and	"rlimit"	resource	info,
								"sigflags"	and	"signal"	information	about	signals	and	handlers.

Command	output	may	be	redirected	to	files	in	the	same	directory.	For	example:

(dbx)	coremap	>	coremap.txt

	

proc

proc	prints	general	process	information.	For	example:

https://www.ibm.com/developerworks/aix/library/au-mallocdebug.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.aix.80.doc/diag/problem_determination/aix_setup_full_core.html

(dbx)	proc
	pi_pid:									9306144																pi_sid:									10354784
	pi_ppid:								9961578																pi_pgrp:													204
	pi_uid:													204																pi_suid:													204
	pi_thcount:									342																pi_cpu:								0
	pi_start:						Tue	Dec		9	06:09:20	2014
	pi_tsize:						0x0000000000013eeb						pi_dsize:							0x000000003ba99c00...

	

thread

thread	prints	a	list	of	all	native	threads.	The	thread	preceded	with	">"	is	the	current	thread:

(dbx)	thread
	thread		state-k					wchan												state-u				k-tid	mode	held	scope	function
	$t1					run							0xf1000f0a1015c140	blocked		96535077				k			no			sys		_event_sleep					
	$t190			run																											running			123339089			k			no			sys		pollset_poll					
>$t286			run																											running			96272413				k			no			sys		genSystemCoreUsingGencore...

	

Native	Stacks

On	AIX,	to	calculate	the	total	native	memory	used	by	native	stacks:

(dbx)	thread	info

For	example,	under	"stack	storage,"	the	native	stack	size	is	next	to	size=:

thread		state-k					wchan				state-u				k-tid			mode	held	scope	function
	$t1					run																		blocked		28999789					u			no			sys		_event_sleep...
						stack	storage:
									base									=	0x2df23000									size									=	0x1ffc830

	

where

where	prints	a	native	stack	of	the	current	thread.	For	example:

(dbx)	where
genSystemCoreUsingGencore()	at	0x9000000177a6ef4
j9dump_create()	at	0x9000000177a6370
doSystemDump()	at	0x9000000177ed2cc
protectedDumpFunction()	at	0x9000000177f2b54
j9sig_protect()	at	0x90000001777dc9c
runDumpFunction()	at	0x9000000177f2aa4
runDumpAgent()	at	0x9000000177f26cc
createAndRunOneOffDumpAgent()	at	0x9000000177f22a0
triggerOneOffDump()	at	0x900000017814598
Java_com_ibm_jvm_Dump_SystemDumpImpl()	at	0x9000000186cb198

To	print	the	stack	of	a	particular	thread,	reference	the	number	with	$t#:

(dbx)	where	$t190
Thread	$t190
warning:	Thread	is	in	kernel	mode,	not	all	registers	can	be	accessed.
pollset_poll(??,	??,	??,	??)	at	0x90000000014e56c
pollStatus()	at	0x900000005e8ca30

	

map

map	prints	a	list	of	all	loaded	modules.	For	example:

(dbx)	map
Entry	1:
			Object	name:	./opt/BPM/8.5/WebSphere/AppServer/java/jre/bin/java
			Text	origin:					0x10000000000
			Text	length:					0x17236
			Data	origin:					0x1001000012b
			Data	length:					0x194d
			File	descriptor:	0x5
...
Entry	64:
			Object	name:	./usr/lib/libc.a
			Member	name:	shr_64.o
			Text	origin:					0x900000000000c80
			Text	length:					0x43b3bf
			Data	origin:					0x9001000a00007e0
			Data	length:					0x11d8a0
			File	descriptor:	0x83

	

coremap

coremap	prints	a	list	of	all	memory	mappings.	For	example:

Mapping:	Shared	Memory	(size=0x280000000)
			from	(address):	0xa00000000000000	-	0xa00000280000000
			to	(offset)			:	0x421680be	-	0x2c21680be
			in	file							:	core.20141209.175356.9306144.0002.dmp

In	the	above	example,	the	virtual	address	range	is	from	0xa00000000000000	to	0xa00000280000000	(which
is	of	length	0x280000000	reported	in	the	first	line),	and	the	raw	data	may	be	found	in	the	file
core.20141209.175356.9306144.0002.dmp	in	the	range	0x421680be	to	0x2c21680be.	We	can	verify	this	by
dumping	the	first	2	words	of	the	virtual	address:

(dbx)	0xa00000000000000/2X
0x0a00000000000000:		00000100	13737f3c

This	matches	dumping	the	same	bytes	from	the	core	file	at	the	offset:

$	od	-N	8	-x	core.20141209.175356.9306144.0002.dmp	+0x421680be
421680be		0000	0100	1373	7f3c

	

Print	memory

An	address	followed	by	a	slash,	a	number,	and	a	format	character	may	be	used	to	print	raw	memory.	For
example:

(dbx)	0x10000000000/8X
0x0000010000000000:		01f70005	51c013e3	00000000	0003a516
0x0000010000000010:		00781182	000015af	010b0001	00000000

The	help	command	for	this	is	help	display.

For	null-terminated	strings,	simply	type	the	address	followed	by	/s.

For	character	bytes,	use	/c.	For	example:

(dbx)	0x20000000000/8c
0x0000020000000000:		'A'	'B'	'C'	'D'	'E'	'F'	'1'	'2'

	

malloc

malloc	prints	a	summary	of	the	malloc	subsystem.	For	example:

(dbx)	malloc
The	following	options	are	enabled:

								Implementation	Algorithm........	Default	Allocator	(Yorktown)

Statistical	Report	on	the	Malloc	Subsystem:
								Heap	0
																heap	lock	held	by................	pthread	ID	0x1001000ee90
																bytes	acquired	from	sbrk().......			1000964480
																bytes	in	the	freespace	tree......				125697184
																bytes	held	by	the	user...........				875267296
																allocations	currently	active.....								56012
																allocations	since	process	start..					65224401

The	Process	Heap
																Initial	process	brk	value........	0x0000010010001a80
																current	process	brk	value........	0x000001004ba99c00
																sbrk()s	called	by	malloc.........															7180

	

corefile

corefile	prints	information	about	a	loaded	core	file.	For	example:

(dbx)	corefile
	Process	Name:		/opt/IBM/WebSphere/AppServer/java/jre/bin/java
	Version:							500
	Flags:									FULL_CORE	|	CORE_VERSION_1	|	MSTS_VALID	|	UBLOCK_VALID	|	USTACK_VALID	|	LE_VALID
	Signal:								
	Process	Mode:		64	bit

	

fd

fd	prints	information	about	open	file	handles.

	

Related	Commands

Print	all	printable	strings	and	their	hex	offsets	(at	least	N	printable	characters	followed	by	a	null,
default	N	is	4):
$	strings	-t	x	$CORE_FILE
Print	all	bytes	in	both	hexadecimal	and	character	from	the	core	file	starting	at	offset	0x988	and	only
show	100	bytes:
$	od	-N	100	-xc	$CORE_FILE	+0x988
Alternatively:
$	od	-v	-A	x	-N	100	-j	0x2B521000	-t	xc	$CORE_FILE

	

Compressing	Files

compress

The	compress	command	is	a	built-in	command	to	compress	files.	If	you're	okay	with	replacing	the	file,	then
you	can	run	it	in	place	like	this:

compress	-f	core.dmp

This	will	replace	the	file	with	a	core.dmp.Z	file	which	is	compressed.

If	you	want	to	create	a	separately	compressed	file	instead	of	replacing	in-place,	then	you	just	pipe	the	file
into	compress	and	write	to	the	desired	file:

cat	core.dmp	|	compress	-f	>	core.dmp.Z

To	package	multiple	files,	se	tar	to	package	multiple	files,	pipe	that	to	stdout,	then	use	compress	to	take	that
tar	data	from	stdin	and	then	write	that	to	a	.Z	file:

tar	-cvf	-	$FILES_OR_DIRS	|	compress	-f	>	$NAME.Z

The	reason	for	always	using	the	-f	flag	is	both	to	overwrite	existing	files	and	also	to	avoid	the	issue	of	"This
file	is	not	changed;	compression	does	not	save	space."	not	writing	the	file.

	

tar.gz

If	gzip	is	available,	use	tar	to	package	multiple	files,	pipe	that	to	stdout,	then	use	gzip	to	take	that	tar	data
from	stdin	and	then	write	that	to	a	.tar.gz	file:

tar	-cvf	-	$FILES_OR_DIRS	|	gzip	>	$NAME.tar.gz

	

Splitting	Files

The	split	command	splits	a	file	into	smaller	files.

For	example,	let's	say	you	have	a	core.dmp	file.	You	can	split	it	into	100MB	files	like	this:

split	-b	100m	core.dmp	core.dmp.split.

This	will	produce	files	like	this,	each	of	which	is	no	larger	than	100MB:

core.dmp.split.aa
core.dmp.split.ab
core.dmp.split.ac

	

Network

DNS	Cache

DNS	caching	is	enabled	with	netcd.	See	if	netcd	is	enabled	by	running	lssrc	-s	netcd.

The	netcdctrl	-t	all	-a	outputfile	command	dumps	out	the	DNS	cache.

The	netcdctrl	-f	-t	$TYPE 	command	flushes	the	cache.	Specify	$TYPE	as	local,	dns,	nis,	yp,	ulm,	or	all.

	

https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/c_commands/compress.html
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/t_commands/tar.html
https://www.ibm.com/support/pages/aix-toolbox-linux-applications-overview
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/t_commands/tar.html
https://www.ibm.com/support/knowledgecenter/ssw_aix_72/s_commands/split.html

ARP

List	ARP	entries:	arp	-a
There	isn't	an	option	to	clear	the	entire	ARGP	cache	but	you	may	delete	an	individual	entry	with	arp	-
d	$HOST_OR_IP.	This	could	be	automated	with	arp	-a	|	grep	"stored"	and	then	a	script	to	delete

	

Example	Script	to	Deny/Allow	Packets	on	a	port

#!/bin/ksh
WAS_PORT=9443
sample_intvl=20	
curl_id=2172797
curl_msg="200	ok"
do_v6=0		#	set	to	1	if	enabling	firewall	for	IP	V6	also
#------------------
#	FUNCTIONS	
show_usage()
{
				echo	"Usage:	$0	[-p	port]	[-s	sample_intvl][-F	on|off]
				echo	"-p	port\tspecifies	the	WAS	port;	default	is	9443"
				echo	"-s	sec\tspecifies	how	often	in	seconds	to	sample	the	port	state"
				echo	"-F	on/off\tManually	turn	on	the	firewall	or	turn	off	the	firewall"
				exit
}
create_filter()
{
				genfilt		-v4	-P	$WAS_PORT	-O	eq	-w	I	-a	D		-s	0	-m	0	-M	0	-D	"Deny	packets	to	port	$WAS_PORT	from	all	but	loopback"
				if	["$do_v6"	=	1];	then
							genfilt		-v6	-P	$WAS_PORT	-O	eq	-w	I	-a	D		-s	0	-m	0	-M	0	-D	"Deny	packets	to	port	$WAS_PORT	from	all	but	loopback"
				fi
}
chk_MFP_up()
{
				while	:;	do
								/usr/bin/netstat	-an	|	/usr/bin/grep	"\.$WAS_PORT	.*LISTEN"	>/dev/null
								if	[$?	!=	0];	then
												return
								fi
								sleep	$sample_intvl
				done
}
chk_url_ok()
{
				while	:;	do
								curl	https://localhost:$WAS_PORT/api/adapter/is_okay?id=$curl_id	|	grep	-i	"$curl_msg"	>/dev/null
								if	[$?	=	0];	then		#	200_ok	was	returned
												return
								fi
								sleep	$sample_intvl
				done
}
enable_firewall()
{
				mkdev	-l	ipsec_v4				#	enable	IPsec	kernel	extension	for	IP	V4
				mkfilt	-v4	-u								#	activate	the	filters
				if	["$do_v6"	=	1];	then
								mkdev	-l	ipsec_v6				#	enable	IPsec	kernel	extension	for	IP	V4
								mkfilt	-v6	-u								#	activate	the	filters	for	IP	V4
				fi
}
disable_firewall()
{
				rmfilt	-v4	-d						#	disable	the	filter
				rmdev	-l	ipsec_v4		#	disable	IPsec	kernel	extension
				if	["$do_v6"	=	1];	then

								rmfilt	-v6	-d								#	disable	the	filter	for	IP	V6
								rmdev	-l	ipsec_v6				#	disabl3	IPsec	kernel	extension	for	IP	V6
				fi
}
#--
#	MAIN	PROGRAM	
#
fw_state=""
while	getopts	p:s:F:	flag;	do
								case	$flag	in
								p)	WAS_PORT=$OPTARG;;
				s)	sample_intvl=$OPTARG;;
				F)	fw_state=$OPTARG;;
				\?)	show_usage;;
				esac
done
create_filter		#	create	the	filter	at	the	beginning;	okay	if	duplicate	filter	errmsg	is	returned
#
if	["$fw_state"	=	"on"];	then
				enable_firewall
				exit
elif	["$fw_state"	=	"off"];	then
				disable_firewall
				exit
fi
while	:;	do
				chk_MFP_up
				enable_firewall
				chk_url_ok
				disable_firewall
done

	

error.h	and	errno.h

#define	EPERM			1							/*	Operation	not	permitted														*/
#define	ENOENT		2							/*	No	such	file	or	directory												*/
#define	ESRCH			3							/*	No	such	process																						*/
#define	EINTR			4							/*	interrupted	system	call														*/
#define	EIO					5							/*	I/O	error																												*/
#define	ENXIO			6							/*	No	such	device	or	address												*/
#define	E2BIG			7							/*	Arg	list	too	long																				*/
#define	ENOEXEC	8							/*	Exec	format	error																				*/
#define	EBADF			9							/*	Bad	file	descriptor																		*/
#define	ECHILD		10						/*	No	child	processes																			*/
#define	EAGAIN		11						/*	Resource	temporarily	unavailable					*/
#define	ENOMEM		12						/*	Not	enough	space																					*/
#define	EACCES		13						/*	Permission	denied																				*/
#define	EFAULT		14						/*	Bad	address																										*/
#define	ENOTBLK	15						/*	Block	device	required																*/
#define	EBUSY			16						/*	Resource	busy																								*/
#define	EEXIST		17						/*	File	exists																										*/
#define	EXDEV			18						/*	Improper	link																								*/
#define	ENODEV		19						/*	No	such	device																							*/
#define	ENOTDIR	20						/*	Not	a	directory																						*/
#define	EISDIR		21						/*	Is	a	directory																							*/
#define	EINVAL		22						/*	Invalid	argument																					*/
#define	ENFILE		23						/*	Too	many	open	files	in	system								*/
#define	EMFILE		24						/*	Too	many	open	files																		*/
#define	ENOTTY		25						/*	Inappropriate	I/O	control	operation		*/
#define	ETXTBSY	26						/*	Text	file	busy																							*/
#define	EFBIG			27						/*	File	too	large																							*/
#define	ENOSPC		28						/*	No	space	left	on	device														*/
#define	ESPIPE		29						/*	Invalid	seek																									*/
#define	EROFS			30						/*	Read	only	file	system																*/
#define	EMLINK		31						/*	Too	many	links																							*/
#define	EPIPE			32						/*	Broken	pipe																										*/

#define	EDOM				33						/*	Domain	error	within	math	function				*/
#define	ERANGE		34						/*	Result	too	large																					*/
#define	ENOMSG		35						/*	No	message	of	desired	type											*/
#define	EIDRM			36						/*	Identifier	removed																			*/
#define	ECHRNG		37						/*	Channel	number	out	of	range										*/
#define	EL2NSYNC	38					/*	Level	2	not	synchronized													*/
#define	EL3HLT		39						/*	Level	3	halted																							*/
#define	EL3RST		40						/*	Level	3	reset																								*/
#define	ELNRNG		41						/*	Link	number	out	of	range													*/
#define	EUNATCH	42						/*	Protocol	driver	not	attached									*/
#define	ENOCSI		43						/*	No	CSI	structure	available											*/
#define	EL2HLT		44						/*	Level	2	halted																							*/
#define	EDEADLK	45						/*	Resource	deadlock	avoided												*/

#define	ENOTREADY							46						/*	Device	not	ready													*/
#define	EWRPROTECT						47						/*	Write-protected	media								*/
#define	EFORMAT									48						/*	Unformatted	media												*/

#define	ENOLCK										49						/*	No	locks	available											*/

#define	ENOCONNECT						50						/*	no	connection																*/
#define	ESTALE										52						/*	no	filesystem																*/
#define	EDIST											53						/*	old,	currently	unused	AIX	errno*/

/*	non-blocking	and	interrupt	i/o	*/
/*
	*	AIX	returns	EAGAIN	where	4.3BSD	used	EWOULDBLOCK;
	*	but,	the	standards	insist	on	unique	errno	values	for	each	errno.
	*	A	unique	value	is	reserved	for	users	that	want	to	code	case
	*	statements	for	systems	that	return	either	EAGAIN	or	EWOULDBLOCK.
	*/
#if	_XOPEN_SOURCE_EXTENDED==1
#define	EWOULDBLOCK					EAGAIN			/*	Operation	would	block							*/
#else	/*	_XOPEN_SOURCE_EXTENDED	*/
#define	EWOULDBLOCK					54
#endif	/*	_XOPEN_SOURCE_EXTENDED	*/

#define	EINPROGRESS					55						/*	Operation	now	in	progress	*/
#define	EALREADY								56						/*	Operation	already	in	progress	*/

/*	ipc/network	software	*/
								/*	argument	errors	*/
#define	ENOTSOCK								57						/*	Socket	operation	on	non-socket	*/
#define	EDESTADDRREQ				58						/*	Destination	address	required	*/
#define	EDESTADDREQ					EDESTADDRREQ	/*	Destination	address	required	*/
#define	EMSGSIZE								59						/*	Message	too	long	*/
#define	EPROTOTYPE						60						/*	Protocol	wrong	type	for	socket	*/
#define	ENOPROTOOPT					61						/*	Protocol	not	available	*/
#define	EPROTONOSUPPORT	62						/*	Protocol	not	supported	*/
#define	ESOCKTNOSUPPORT	63						/*	Socket	type	not	supported	*/
#define	EOPNOTSUPP						64						/*	Operation	not	supported	on	socket	*/
#define	EPFNOSUPPORT				65						/*	Protocol	family	not	supported	*/
#define	EAFNOSUPPORT				66						/*	Address	family	not	supported	by	protocol	family	*/
#define	EADDRINUSE						67						/*	Address	already	in	use	*/
#define	EADDRNOTAVAIL			68						/*	Can't	assign	requested	address	*/

								/*	operational	errors	*/
#define	ENETDOWN								69						/*	Network	is	down	*/
#define	ENETUNREACH					70						/*	Network	is	unreachable	*/
#define	ENETRESET							71						/*	Network	dropped	connection	on	reset	*/
#define	ECONNABORTED				72						/*	Software	caused	connection	abort	*/
#define	ECONNRESET						73						/*	Connection	reset	by	peer	*/
#define	ENOBUFS									74						/*	No	buffer	space	available	*/
#define	EISCONN									75						/*	Socket	is	already	connected	*/
#define	ENOTCONN								76						/*	Socket	is	not	connected	*/
#define	ESHUTDOWN							77						/*	Can't	send	after	socket	shutdown	*/

#define	ETIMEDOUT							78						/*	Connection	timed	out	*/
#define	ECONNREFUSED				79						/*	Connection	refused	*/

#define	EHOSTDOWN							80						/*	Host	is	down	*/
#define	EHOSTUNREACH				81						/*	No	route	to	host	*/

/*	ERESTART	is	used	to	determine	if	the	system	call	is	restartable	*/
#define	ERESTART								82						/*	restart	the	system	call	*/

/*	quotas	and	limits	*/
#define	EPROCLIM								83						/*	Too	many	processes	*/
#define	EUSERS										84						/*	Too	many	users	*/
#define	ELOOP											85						/*	Too	many	levels	of	symbolic	links						*/
#define	ENAMETOOLONG				86						/*	File	name	too	long																					*/

/*
	*	AIX	returns	EEXIST	where	4.3BSD	used	ENOTEMPTY;
	*	but,	the	standards	insist	on	unique	errno	values	for	each	errno.
	*	A	unique	value	is	reserved	for	users	that	want	to	code	case
	*	statements	for	systems	that	return	either	EEXIST	or	ENOTEMPTY.
	*/
#if	defined(_ALL_SOURCE)	&&	!defined(_LINUX_SOURCE_COMPAT)
#define	ENOTEMPTY							EEXIST		/*	Directory	not	empty	*/
#else			/*	not	_ALL_SOURCE	*/
#define	ENOTEMPTY							87
#endif		/*	_ALL_SOURCE	*/

/*	disk	quotas	*/
#define	EDQUOT										88						/*	Disc	quota	exceeded	*/

#define	ECORRUPT								89						/*	Invalid	file	system	control	data	*/

#define	ECORRUPT								89						/*	Invalid	file	system	control	data	*/

/*	errnos	90-92	reserved	for	future	use	compatible	with	AIX	PS/2	*/

/*	network	file	system	*/
#define	EREMOTE									93						/*	Item	is	not	local	to	host	*/

/*	errnos	94-108	reserved	for	future	use	compatible	with	AIX	PS/2	*/

#define	ENOSYS										109					/*	Function	not	implemented		POSIX	*/

/*	disk	device	driver	*/
#define	EMEDIA										110					/*	media	surface	error	*/
#define	ESOFT											111					/*	I/O	completed,	but	needs	relocation	*/

/*	security	*/
#define	ENOATTR									112					/*	no	attribute	found	*/
#define	ESAD												113					/*	security	authentication	denied	*/
#define	ENOTRUST								114					/*	not	a	trusted	program	*/

/*	BSD	4.3	RENO	*/
#define	ETOOMANYREFS				115					/*	Too	many	references:	can't	splice	*/

#define	EILSEQ										116					/*	Invalid	wide	character	*/
#define	ECANCELED							117					/*	asynchronous	i/o	cancelled	*/

/*	SVR4	STREAMS	*/
#define	ENOSR											118					/*	temp	out	of	streams	resources	*/
#define	ETIME											119					/*	I_STR	ioctl	timed	out	*/
#define	EBADMSG									120					/*	wrong	message	type	at	stream	head	*/
#define	EPROTO										121					/*	STREAMS	protocol	error	*/
#define	ENODATA									122					/*	no	message	ready	at	stream	head	*/
#define	ENOSTR										123					/*	fd	is	not	a	stream	*/

#define	ECLONEME								ERESTART	/*	this	is	the	way	we	clone	a	stream	...	*/

#define	ENOTSUP									124					/*	POSIX	threads	unsupported	value	*/

#define	EMULTIHOP							125					/*	multihop	is	not	allowed	*/

#define	ENOLINK									126					/*	the	link	has	been	severed	*/
#define	EOVERFLOW							127					/*	value	too	large	to	be	stored	in	data	type	*/

	

Troubleshooting	z/OS
z/OS	often	refers	to	a	date	in	the	form:	09.210.	In	this	case,	09	are	the	last	two	digits	of	the	year.	210	means
it	is	the	210th	day	of	year	2009;	in	this	example,	July	29,	2009.

	

Signals

Available	signals	may	be	listed	with	kill	-l:

$	kill	-l
	1)	SIGHUP						2)	SIGINT				3)	SIGABRT			4)	SIGILL						5)	SIGPOLL
	6)	SIGURG						7)	SIGSTOP			8)	SIGFPE				9)	SIGKILL				10)	SIGBUS
11)	SIGSEGV				12)	SIGSYS			13)	SIGPIPE		14)	SIGALRM				15)	SIGTERM
16)	SIGUSR1				17)	SIGUSR2		19)	SIGCONT		20)	SIGCHLD				21)	SIGTTIN
22)	SIGTTOU				23)	SIGIO				24)	SIGQUIT		25)	SIGTSTP				26)	SIGTRAP
28)	SIGWINCH			29)	SIGXCPU		30)	SIGXFSZ		31)	SIGVTALRM		32)	SIGPROF
33)	SIGDANGER

	

Console	Dump

A	console	dumps	is	a	dump	of	one	or	more	address	spaces.	Console	dumps	generally	also	contain	a	system
trace	for	the	entire	LPAR.	The	simplest	console	dump	is	just	of	the	root	address	space	(1):

1.	 DUMP	COMM=ASID1DMP
2.	 Reply	with	dump	options:

R	xx,ASID=1,SDATA=(ALLNUC,CSA,LPA,PSA,RGN,SQA,LSQA,TRT),END

	

High	CPU

Review	https://www.ibm.com/support/pages/mustgather-high-cpu-causing-hang-or-loop-running-zos

	

Sending	messages	to	the	MVS	log	and	slip	trapping	on	them

Messages	may	be	sent	to	the	joblog,	MVS	log,	or	both.	If	messages	are	sent	to	the	MVS	log,	then	you	can
use	them	for	slip	traps	for	dumps;	however,	be	careful	about	overloading	the	MVS	log	with	too	many
messages.

	

System	Dumps

It's	best	to	ensure	a	dump	is	produced	with	maximum	memory	for	dbx	(and	IPCS)	analysis.	For	example:

/CHNGDUMP	SET,SYSMDUMP=(ALL,ALLNUC)
/CHNGDUMP	SET,SDUMP,MAXSPACE=5000M
/DD	ALLOC=ACTIVE

https://www.ibm.com/support/pages/mustgather-high-cpu-causing-hang-or-loop-running-zos

To	display	current	dump	options:

/DISPLAY	DUMP,OPTIONS																																																		
IEE857I	13.12.22	DUMP	OPTION	813																																						
		SYSABEND-	ADD	PARMLIB	OPTIONS	SDATA=(LSQA,TRT,CB,ENQ,DM,IO,ERR,SUM),
																							PDATA=(SA,REGS,LPA,JPA,PSW,SPLS)															
		SYSUDUMP-	ADD	PARMLIB	OPTIONS	SDATA=(SUM),	NO	PDATA	OPTIONS									
		SYSMDUMP-	ADD	OPTIONS	(NUC,SQA,LSQA,SWA,TRT,RGN,LPA,CSA,SUM,ALLNUC,	
																						GRSQ)																																											
		SDUMP-	ADD	NO	OPTIONS,BUFFERS=00000000K,MAXSPACE=00005000M,									
																						MSGTIME=99999	MINUTES,MAXSNDSP=015	SECONDS,					
																						AUXMGMT=ON	,DEFERTND=NO	,OPTIMIZE=NO	,										
																						MAXTNDSP=(,,)	SECONDS																											
		ABDUMP-	TIMEENQ=0240	SECONDS																																								

	

IPCS

IPCS	is	the	z/OS	debugger	used	to	analyze	system	dumps	(similar	to	gdb	or	dbx	on	other	operating	systems).
z/OS	also	has	the	dbx	USS	utility	to	investigate	system	dumps	produced	by	C/C++	programs	in	a	similar	way
to	dbx/gdb	on	other	platforms.

In	IPCS,	first,	go	to	0	DEFAULTS	and	set	a	source	dataset	and	press	Enter.	For	example:

Source		==>	DSNAME('ASSR1.JVM.BBOS001S.D210125.T211001.X001')

Then	press	F3,	and	go	to	6	COMMAND,	type	ip	st	and	press	Enter.	It	may	ask	you	if	you	want	to	use	summary
data	and	type	Y	and	press	Enter.	The	dump	should	now	be	initialized.	F8	page	down	to	get	details	about	the
dump	and	then	F3	to	go	back	and	enter	various	commands:

1.	 General	status	report:	IP	ST
Local	time	of	the	dump	at	the	top
Program	Producing	Dump:	...
LPAR	name	follows	SNAME	(NN)

2.	 Dump	request	information:	IP	LIST	TITLE
3.	 If	produced	by	a	SLIP,	list	SLIP	info:	IP	LIST	SLIPTRAP
4.	 z/OS	version:	IP	CBF	CVT

Search	for	PRODI....	HBB77C0
5.	 ASIDs	dump:	IP	CBF	RTCT

ASIDs	dumped	in	the	SDAS	column	under	ASTB
6.	 ASID	to	JOBNAME	translation:	IP	SELECT	ALL
7.	 Switch	ASIDs:	IP	SELECT	ASID(x'nn') 	or	IP	SELECT	JOB(jobname)
8.	 Potential	abend	information:	IP	ST	FAILDATA
9.	 History	of	abends:	IP	VERBX	LOGDATA

10.	 Show	MVS	console	log:	IP	VERBX	MTRACE
11.	 Show	native	TCB	thread	stacks:	ip	verbx	ledata	'nthreads(*)'
12.	 Traceback	for	the	specified	TCB:	ip	verbx	ledata	'ceedump	asid(188)	tcb(0098CA48)'
13.	 List	thread	TCBs:	IP	SUMM	FORMAT

f	"T	C	B	S	U	M	M	A	R	Y"
Non-zero	code	in	the	CMP	column	is	the	abend	code

14.	 USS	thread	status	(requires	USS	kernel	address	space):	ip	omvsdata	process	detail
15.	 Display	memory:	IP	L	07208CE0	ASID(X'65')	L(X'60')
16.	 Display	memory	as	instructions:	IP	L	07208CE0	ASID(X'65')	L(X'60')	I
17.	 Show	system	trace:	IP	SYSTRACE	ALL	TIME(LOCAL)

Search	for	RCVY	for	processing	error
18.	 Show	system	trace	for	a	particular	ASID:	IP	SYSTRACE	ASID(x'nn')	TIME(LOCAL)
19.	 Show	system	trace	for	a	particular	ASID	and	TCB:	IP	SYSTRACE	ASID(x'0188')	TCB(x'0098CA48')

TIME(LOCAL)
20.	 Memory	usage	report:	ip	verbx	vsmdata	'summary	noglobal'

21.	 Review	captured	CPU	information	by	ASID:	SYSTRACE	PERFDATA

	

VSMDATA

The	VSMDATA	command	IP	VERBX	VSMDATA	'ASID(NN)	NOG	SUM'	(specifying	the	ASID	in	decimal)
displays	a	summary	of	LE	native	memory	usage	below	the	2GB	bar.	The	"User	Region"	is	effectively	the
native	heap	(actually,	it's	the	LE	heap	which	may	be	used	by	other	components	within	the	process	other	than
just	JVM	native	heap	usage).	Subtracting	"Ext.	User	Region	Start"	from	"Ext.	User	Region	Top"	provides
roughly	how	much	native	heap	is	being	used	under	the	2GB	bar.	If	"Ext.	User	Region	Top"	is	very	close	to
the	2GB	bar,	then	below-the-bar	native	memory	exhaustion	is	the	likely	cause	of	any	native
OutOfMemoryErrors.	In	the	following	example,	about	0x71346000	-	0x1F300000	=	0x52046000	(1.28GB)
of	native	memory	is	used	below	the	bar	and	the	top	is	very	close	to	the	2GB	bar	and	therefore	this	was	a
compressed	references	below-the-bar	exhaustion	NOOM.

				LOCAL	STORAGE	MAP																																																	

|																											|80000000		<-	Top	of	Ext.	Private									
|	Extended																		|																																									
|	LSQA/SWA/229/230										|7F600000		<-	Max	Ext.	User	Region	Address
|___________________________|71367000		<-	ELSQA	Bottom																
|																											|																																									
|	(Free	Extended	Storage)			|																																									
|___________________________|71346000		<-	Ext.	User	Region	Top								
|																											|																																									
|	Extended	User	Region						|																																									
|___________________________|1F300000		<-	Ext.	User	Region	Start						
:																											:																																									
:	Extended	Global	Storage			:																																									
=======================================<-	16M	Line																				
:	Global	Storage												:																																									
:___________________________:		A00000		<-	Top	of	Private														
|																											|																																									
|	LSQA/SWA/229/230										|		986000		<-	Max	User	Region	Address					
|___________________________|		931000		<-	LSQA	Bottom																	

	

C/C++

The	C/C++	compilers	on	z/OS	are	provided	by	the	XLC	package.	The	USS	utility	c89	is	often	used	to
compile	C	programs	and	the	USS	utility	c++	is	often	used	to	compile	C++	programs.	Note	that	for	XLC	c++:

Except	for	the	-W,	-D,	and	-U	flag	options,	all	flag	options	that	are	supported	by	the	c89	utility
are	supported	by	the	xlc	utility	with	the	same	semantics.

As	with	other	operating	systems,	it's	generally	advised	to	compile	C/C++	programs	with	symbol	information
for	serviceability	purposes	when	diagnosing	crashes.	In	general,	most	compiler	optimizations	are	still
performed	when	using	the	-g1	option	and	this	is	generally	recommended.	The	-g	c89	options	map	to	the
DEBUG	options.	If	-g1	provides	insufficient	information,	try	-g9	although	optimizations	will	be	more
affected.

Whether	the	compiler	is	run	from	USS	or	TSO	impacts	the	default	options	used:

invoking	the	compiler	with	the	c89	and	xlc	utilities	overrides	the	default	values	for	many
options,	compared	to	running	the	compiler	in	MVS	batch	or	TSO

There	is	an	example	C++	program	to	test	compilation:
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcux01/cppshell.htm

If	your	C++	files	use	the	.cpp	extension,	then	run	export	_CXX_CXXSUFFIX=cpp.

https://www.ibm.com/docs/en/zos/2.4.0?topic=is-verbexit-vsmdata-subcommand-format-virtual-storage-management-data
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.bpxa500/bpxa5c89.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.bpxa500/ccccc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.bpxa500/flagoptn.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.bpxa500/bpxa5c89.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcux01/debugop.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcux01/compopt.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcux01/cppshell.htm

	

dbx

The	dbx	USS	utility	is	an	alternative	to	using	IPCS	for	C/C++	programs.	Load	the	dump	with	the	-C	option
and	pass	the	data	set	name.	For	example:

$	dbx	-C	"//'SF.T00468.S3609.BOSS0030.DUMP1'"

Then	use	the	where	command	to	show	the	backtrace.

Common	commands:

List	address	spaces:	asid
List	all	threads:	thread
Change	the	current	thread:	thread	current	N
List	loaded	shared	libraries:	map
List	known	processes:	pid
Display	registers:	registers
Generate	copy/paste	commands	for	all	threads:

for	i	in	$(seq	1	164);	do	echo	"thread	current	${i}";	echo	where;	echo	"TRASH:	THREAD	${i}";	done

	

LE	Native	Memory

Environment	variables	may	be	used	to	control	memory	pools	and	print	memory	statistics;	for	example:

export	_CEE_RUNOPTS="$_CEE_RUNOPTS	HEAPPOOLS(ON)	HEAPPOOLS64(ON)	RPTOPTS(ON)	RPTSTG(ON)"

	

Troubleshooting	IBM	i

Gathering	Javacores	using	WRKJVMJOB

Gathering	Javacores	is	covered	in	the	IBM	i	Operating	System	chapter.

	

Signals

Available	signals	may	be	listed	with	kill	-l:

$	kill	-l
	1)	SIGHUP							2)	SIGINT							3)	SIGQUIT						4)	SIGILL							5)	SIGTRAP
	6)	SIGABRT						7)	SIGEMT							8)	SIGFPE							9)	SIGKILL					10)	SIGBUS
11)	SIGSEGV					12)	SIGSYS						13)	SIGPIPE					14)	SIGALRM					15)	SIGTERM
16)	SIGURG						17)	SIGSTOP					18)	SIGTSTP					19)	SIGCONT					20)	SIGCHLD
21)	SIGTTIN					22)	SIGTTOU					23)	SIGIO							24)	SIGXCPU					25)	SIGXFSZ
27)	SIGMSG						28)	SIGWINCH				29)	SIGPWR						30)	SIGUSR1					31)	SIGUSR2
32)	SIGPROF					33)	SIGDANGER			34)	SIGVTALRM			35)	SIGMIGRATE		36)	SIGPRE
37)	SIGVIRT					38)	SIGALRM1				39)	SIGWAITING		50)	SIGRTMIN				51)	SIGRTMIN+1
52)	SIGRTMIN+2		53)	SIGRTMIN+3		54)	SIGRTMAX-3		55)	SIGRTMAX-2		56)	SIGRTMAX-1
57)	SIGRTMAX				59)	SIGCPUFAIL		60)	SIGKAP						61)	SIGRETRACT		62)	SIGSOUND
63)	SIGSAK

	

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.bpxa500/bpxa50021.htm

Troubleshooting	Windows

Common	Commands

Query	Windows	Version:	ver
Query	host	name:	hostname
Show	all	processes:	tasklist	/svc
Kill	process:	taskkill	/PID	%PID%
Run	a	process	as	a	system	account:	psexec	-i	-s	...	(https://docs.microsoft.com/en-
us/sysinternals/downloads/psexec)

	

Batch	Scripts

Batch	scripts	execute	a	sequence	of	commands.	They	are	files	that	usually	end	in	the	.bat	or	.cmd
extensions.

	

Example	Batch	Script

::	Launcher	script
::	Comments	start	with	::

@echo	off

set	TITLE=Tool	Launcher
title	%TITLE%
echo	%TITLE%

set	PATH=C:\Java\bin;%PATH%

echo	Launching	the	tool.	This	may	take	a	few	minutes	depending	on	available	resources.

C:\Eclipse\eclipsec.exe	-consoleLog

echo(

echo	Tool	completed.	Press	any	key	to	end	this	prompt.

echo(

pause

	

Delayed	variable	expansion

Delayed	environment	variable	expansion	is	disabled	by	default	which	means	that	variable	evaluation	only
occurs	once.	From	help	set:

Delayed	environment	variable	expansion	is	useful	for	getting	around	the	limitations	of	the
current	expansion	which	happens	when	a	line	of	text	is	read,	not	when	it	is	executed.

To	always	evaluate	the	latest	value,	use	SETLOCAL	ENABLEDELAYEDEXPANSION	and	then	reference
environment	variables	with	!	instead	of	%.	For	example:

SETLOCAL	ENABLEDELAYEDEXPANSION

set	"workdir=!APPDATA!"

https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

if	"!USERDOMAIN!"	==	"MYDOMAIN"	(
		set	"workdir=E:\!USERNAME!"
		
		if	not	exist	"!workdir!"	mkdir	"!workdir!"
)

pushd	!workdir!

echo	[!date!	!time!]	Current	working	directory	is	!workdir!

popd

	

PowerShell

Start	PowerShell	from	a	command	prompt:	>	PowerShell

Run	a	single	command	with	-command	and	exit	examples:

powershell	-command	"gcim	Win32_OperatingSystem"
powershell	-command	"Get-WmiObject	-Query	\"Select	PoolNonpagedAllocs,
PoolNonpagedBytes,	PoolPagedAllocs,	PoolPagedBytes,	PoolPagedResidentBytes	from
Win32_PerfRawData_PerfOS_Memory\""

	

gcim

Kernel	Information

PS	C:\Windows\system32>	gcim	Win32_OperatingSystem	|	fl	*
Status																																				:	OK
Name																																						:	Microsoft	Windows	Server	2016	Datacenter|C:\Windows|\Device\Harddisk1\Partition2
FreePhysicalMemory																								:	29066692
FreeSpaceInPagingFiles																				:	2097152
FreeVirtualMemory																									:	30955508
[...]
LastBootUpTime																												:	10/18/2020	3:15:34	AM
LocalDateTime																													:	10/19/2020	12:13:26	PM
MaxNumberOfProcesses																						:	4294967295
MaxProcessMemorySize																						:	137438953344
[...]
TotalSwapSpaceSize																								:
TotalVirtualMemorySize																				:	35651016
TotalVisibleMemorySize																				:	33553864
Version																																			:	10.0.14393
BootDevice																																:	\Device\HarddiskVolume2
BuildNumber																															:	14393
[...]
OSArchitecture																												:	64-bit

	

Memory	Information

PS	C:\Windows\system32>	Get-WmiObject	-Query	"Select	*	from	Win32_PerfRawData_PerfOS_Memory"
[...]
AvailableBytes																							:	29771300864
AvailableKBytes																						:	29073536
AvailableMBytes																						:	28392
CacheBytes																											:	94912512
CacheBytesPeak																							:	99270656

https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/starting-windows-powershell

CacheFaultsPersec																				:	2821370
CommitLimit																										:	36506640384
CommittedBytes																							:	4798459904
DemandZeroFaultsPersec															:	27014186
Description																										:
FreeAndZeroPageListBytes													:	24855367680
FreeSystemPageTableEntries											:	12296228
Frequency_Object																					:	0
Frequency_PerfTime																			:	2045851
Frequency_Sys100NS																			:	10000000
LongTermAverageStandbyCacheLifetimes	:	14400
ModifiedPageListBytes																:	89337856
PageFaultsPersec																					:	43331932
PageReadsPersec																						:	266395
PagesInputPersec																					:	1596682
PagesOutputPersec																				:	0
PagesPersec																										:	1596682
PageWritesPersec																					:	0
PercentCommittedBytesInUse											:	564533688
PercentCommittedBytesInUse_Base						:	4294967295
PoolNonpagedAllocs																			:	512164
PoolNonpagedBytes																				:	278237184
PoolPagedAllocs																						:	656935
PoolPagedBytes																							:	466354176
PoolPagedResidentBytes															:	458170368
StandbyCacheCoreBytes																:	0
StandbyCacheNormalPriorityBytes						:	2499997696
StandbyCacheReserveBytes													:	2415935488
SystemCacheResidentBytes													:	0
SystemCodeResidentBytes														:	0
SystemCodeTotalBytes																	:	0
SystemDriverResidentBytes												:	15638528
SystemDriverTotalBytes															:	18214912
Timestamp_Object																					:	0
Timestamp_PerfTime																			:	244291819761
Timestamp_Sys100NS																			:	132476163452030000
TransitionFaultsPersec															:	14197071
TransitionPagesRePurposedPersec						:	0
WriteCopiesPersec																				:	411112

	

Windows	Management	Instrumentation	(WMI)

Windows	Management	Instrumentation	(WMI)	is	an	interface	to	access	administrative	information.

	

wmic

wmic	is	a	command	line	interface	to	WMI.

	

wmic	get	free	RAM

>wmic	os	get	freePhysicalMemory
FreePhysicalMemory
29227280

Update	the	hosts	file

1.	 Start	an	editor	such	as	Notepad	as	Administrator
2.	 Open	the	file	%WinDir%\System32\Drivers\Etc\hosts	(supercedes	the	holder	lmhosts	file)

https://docs.microsoft.com/en-us/windows/win32/wmisdk/about-wmi
https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmic

3.	 Edit	and	save

	

Request	thread	dump

See	Troubleshooting	IBM	Java	-	in	particular,	you	may	use	Java	Surgery	to	take	thread	dumps	on	IBM	Java.

	

Request	core	dump	(also	known	as	a	"system	dump"	for	IBM	Java)

Additional	methods	of	requesting	system	dumps	for	IBM	Java	are	documented	in	the	Troubleshooting	IBM
Java	and	Troubleshooting	WAS	chapters.

1.	 On	Windows,	start	Task	Manager,	right	click	on	the	process,	click	Create	Dump	File.	You	can	find	the
right	process	by	adding	the	PID	column,	and	finding	the	PID	from	SystemOut.log	or	the
%SERVER%.pid	file	in	the	logs	directory.

2.	 procdump:	https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
3.	 On	Windows,	userdump.exe	%PID%:	http://www-01.ibm.com/support/docview.wss?

uid=swg21138203#userdump

	

Minidump	versus	Full	User	Mode	Dump

The	name	"minidump"	is	misleading,	because	the	largest	minidump	files	actually	contain	more
information	than	the	"full"	user-mode	dump.	(https://msdn.microsoft.com/en-
us/library/windows/hardware/ff552212(v=vs.85).aspx)

	

Request	core	dump	from	Task	Manager

1.	 Find	the	right	process,	e.g.	by	process	ID	(PID)
2.	 Right	click	}	Create	dump	file:

3.	 Navigate	to	the	dump	file	directory:

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
http://www-01.ibm.com/support/docview.wss?uid=swg21138203#userdump
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552212(v=vs.85).aspx

	

EXE	has	stopped	working

If	you	receive	the	following	popup	with	the	message,	"A	problem	caused	the	program	to	stop	working
correctly.	Please	close	the	program.":

Then	before	clicking	"Close	the	program,"	you	may	create	a	dump	of	the	process:

1.	 Open	Task	Manager
2.	 Find	the	process	}	Right	Click	}	Create	dump	file

	

Determine	the	Current	Working	Directory	of	a	Process

1.	 Download	Microsoft's	free	Process	Explorer	tool:	https://technet.microsoft.com/en-
us/sysinternals/processexplorer.aspx

2.	 Unzip	and	start	procexp.exe
3.	 Find	the	java	process,	right	click	and	click	Properties:

https://technet.microsoft.com/en-us/sysinternals/processexplorer.aspx

4.	 Find	the	value	of	"Current	directory":

	

Determine	the	File	Locations	of	stdout	and	stderr

1.	 Install	Microsoft's	free	handle	tool:	https://technet.microsoft.com/en-us/sysinternals/handle.aspx
2.	 Unzip	and	open	a	command	prompt	to	the	directory	with	the	unzipped	files	and	run	the	tool	to	list	all

open	handles	for	all	processes:
>	cd	"C:\Downloads\Handle\"
>	handle.exe

3.	 Search	the	output	for	the	java.exe	section	for	the	target	process	ID.	For	example:
java.exe	pid:	4852	[...]
C:	File	(R--)	C:\work\stderr.txt
[...]

4.	 The	left-most	value	is	a	hexadecimal	number	representing	the	file	handle.	Stdin	is	A,	Stdout	is	B,	and
Stderr	is	C	(https://msdn.microsoft.com/en-us/library/windows/desktop/ms683231(v=vs.85).aspx);
however,	we	have	observed	that	sometimes	stdout	is	not	B,	but	instead	there	are	multiple	handles	in
the	D	to	FF	range	(unclear	why).

	

Find	who	killed	a	process

1.	 Install	gflags.exe	from	Microsoft
2.	 Enable	Silent	process	exit	monitoring:	https://docs.microsoft.com/en-us/windows-

hardware/drivers/debugger/registry-entries-for-silent-process-exit
3.	 Reproduce	the	issue
4.	 Review	the	silent	process	exit	monitoring	entry	in	the	Windows	Event	Log

	

Error:	No	buffer	space	available	(maximum	connections	reached?)

This	error	can	occur	particularly	around	socket	operations.	The	error	is	translated	from	the	Winsock	error
code	WSAENOBUFS,	10055.	The	most	common	cause	of	this	error	is	that	Windows	is	configured	for	the
default	maximum	of	5,000	in-use	ports.	This	can	be	monitored	by	watching	netstat	or	Perfmon	and	can	be
changed	with	the	MaxUserPort	registry	parameter.

A	more	advanced	cause	for	this	error	is	non-paged	pool	exhaustion.	The	paged	and	nonpaged	pools	are	areas

https://technet.microsoft.com/en-us/sysinternals/handle.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683231(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/registry-entries-for-silent-process-exit
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740668(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/cc739819(WS.10).aspx
https://techcommunity.microsoft.com/t5/windows-blog-archive/pushing-the-limits-of-windows-paged-and-nonpaged-pool/ba-p/723789

of	memory	for	certain	Windows	kernel-mode	allocations	such	as	the	Windows	kernel	itself	(e.g.	sockets,
socket	buffers,	etc.),	device	drivers,	etc.	The	nonpaged	pool	is	particularly	important	as	"it	is	the	availability
of	nonpaged	pool	that	determines	how	many	processes,	threads,	and	other	such	objects	can	be	created"	(MS
link	defunct).	If	these	pools	are	exhausted,	this	can	lead	to	crashes,	poor	performance,	application	problems,
and	paging.

If	the	system	is	using	the	/3GB	mode,	this	comes	at	a	cost	of	taking	memory	away	from	the	kernel,	including
paged	and	non-paged	pools.

To	determine	if	this	is	the	proximate	cause,	use	Perfmon	to	monitor	the	Memory\Pool	Nonpaged	Bytes
counter.	If	this	is	hitting	the	server's	nonpaged	pool	limit	(within	a	few	MB	since	Perfmon	is	sampling	on	an
interval),	then	this	is	the	cause	of	the	problem.	However,	this	proximate	cause	may	not	be	the	root	cause
since	the	nonpaged	pool	exhaustion	may	be	due	to	a	nonpaged	pool	leak.	A	nonpaged	pool	leak	can	be
determined	using	Microsoft's	PoolMon.

To	increase	kernel	memory,	lower	the	user-mode	address	space	limit	(/USERVA=X).	The	/3GB	switch	is
effectively	the	same	as	/USERVA=3072;	for	example,	/USERVA=2800.	This	parameter	would	be	used
instead	of	/3GB.	The	documentation	is	not	clear	on	how	the	additional	space	is	allocated	to	the	nonpaged
pool	and	to	what	limits	--	monitor	your	current	and	maximum	nonpaged	pool	sizes	with	process	explorer	and
work	with	Microsoft	support	to	properly	tune	this	value.

Query	using	PowerShell:

PS	C:\Windows\system32>	Get-WmiObject	-Query	"Select	PoolNonpagedAllocs,	PoolNonpagedBytes,	PoolPagedAllocs,	PoolPagedBytes,	PoolPagedResidentBytes	from	Win32_PerfRawData_PerfOS_Memory"
[...]
PoolNonpagedAllocs					:	500237
PoolNonpagedBytes						:	276725760
PoolPagedAllocs								:	635578
PoolPagedBytes									:	461209600
PoolPagedResidentBytes	:	453271552

	

windbg

Useful	commands:

Command	help:	.hh	%COMMAND%
Interrupt	a	long	running	command:	Ctrl+Break
Clear	output:	.cls
Write	output	to	file:	.logopen	%SOMEFILE%
Show	modules	the	process	has	in	memory:	lmf
Confirm	if	symbols	are	loaded	for	MODULE.dll:	ld	MODULE

If	you	see	"Defaulted	to	export	symbols	for	MODULE.dll,"	then	symbols	were	not	found	or	did
not	match.

List	all	virtual	memory	regions:	!address
Virtual	memory	info:	!address	-summary
List	all	native	heaps:	!heap	-s
List	details	of	a	heap	(ID	from	first	column	in	!heap	-s):	!heap	-stat	-h	<Heap	ID>
Given	a	UserPtr	and	EXE	has	gflags	+ust,	dump	stack:	!heap	-p	-a	<UserPtr>
Was	gflags	set:	!gflag
Dump	memory	at	an	arbitrary	address:	db	0x123...
Show	where	symbols	are	found:	lm
Show	checksum:	!lmi	MODULE
Module	information:	!dh	MODULE
Show	why	symbols	can't	be	found:	!sym	noisy;	.reload	/f
Try	to	load	symbols	for	a	particular	module	(take	the	name	from	lmf):	ld	%MODULE%
See	if	DLL	and	PDB	match:	!chksym	MODULE

NOTE:	If	a	DLL	is	compiled	in	"Release"	mode	(which	most	are),	then	you	will	not	see	line
numbers	or	parameters	even	if	the	PDB	has	private	symbols.

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/poolmon
https://docs.microsoft.com/en-us/troubleshoot/windows-server/performance/switch-options-for-boot-files
https://docs.microsoft.com/en-us/windows/win32/memory/4-gigabyte-tuning

	

Symbols

The	symbol	path	is	a	semicolon	delimited	list	of	directories	containing	symbol	(PDB)	files.	A	special	case
path	is	of	the	form	srv*%DIR%*%WEBSERVER%	which	specifies	an	HTTP(S)	symbol	server.	This	is
most	often	used	to	download	Windows	symbols	from	Microsoft.	If	the	%DIR%	does	not	exist,	it	is	created.

Simple	symbol	path	with	just	kernel	symbols:

0:000>	.sympath	srv*C:\symbols*http://msdl.microsoft.com/download/symbols
0:000>	.reload	/f

For	example,	a	common	path	which	includes	WebSphere	and	Java	symbols:

0:000>	.sympath	C:\Program	Files\IBM\WebSphere\AppServer\lib\native\win\x86_64\;C:\Program
Files\IBM\WebSphere\AppServer\java\8.0\jre\bin\compressedrefs\;C:\Program
Files\IBM\WebSphere\AppServer\java\8.0\jre\bin\j9vm\;C:\Program
Files\IBM\WebSphere\AppServer\bin\;srv*C:\symbols*http://msdl.microsoft.com/download/symbols
0:000>	.reload	/f

It	is	common	to	see	a	checksum	warning	when	loading	modules:

***	WARNING:	Unable	to	verify	checksum	for	...

In	general,	this	warning	can	be	safely	disregarded.	If	you	would	like	to	resolve	the	warning,	run	editbin
/release	module.dll:	https://msdn.microsoft.com/en-us/library/tst6zb25.aspx

To	display	detail	symbol	loading	information:

0:000>	!sym	noisy
noisy	mode	-	symbol	prompts	on
0:000>	.reload	/f

Check	if	symbols	were	correctly	loaded	for	a	module	by	searching	for	MATCH:

0:000>	!chksym	module
module.dll...
										pdb:	...\module.pdb
						pdb	sig:	EDD67653-11E7-483C-8D6D-E629DC820CC1
										age:	2

Loaded	pdb	is	...\module.pdb

module.pdb
						pdb	sig:	EDD67653-11E7-483C-8D6D-E629DC820CC1
										age:	2

MATCH:	module.pdb	and	module.dll

If	symbols	were	not	loaded,	you	may	various	errors	such	as	"sig	MISMATCH."	In	the	following	example,
the	PDB	file	has	a	signature	of	E98...,	whereas	the	DLL	has	a	signature	of	0.

0:000>	!chksym	mymodule

mymodule.dll
				Timestamp:	54415058
		SizeOfImage:	7000
						pdb	sig:	0
										age:	0

Loaded	pdb	is	...\mymodule.pdb

getClasses.pdb

http://msdl.microsoft.com/download/symbols
https://msdn.microsoft.com/en-us/library/tst6zb25.aspx

						pdb	sig:	E98AF532-F9C8-4205-9E83-0512360C6C93
										age:	0

sig	MISMATCH:	mymodule.pdb	and	mymodule.dll

Symbol	loading	options	may	be	displayed:

0:000>	.symopt
Symbol	options	are	0x30237:

Symbol	loading	options	may	be	updated.	For	example,	to	use	SYMOPT_LOAD_ANYTHING:

0:000>	.symopt	+0x40
Symbol	options	are	0x30277:

After	changing	symbol	loading	options,	you	may	need	to	reload	symbols	with	.reload	/f	or	reload	a
particular	module	with	.reload	/f	module.dll

	

Process	and	Thread	Info

Show	process	information:

0:000>	|

List	threads:

0:000>	~

Current	thread:

0:000>	~.

Crashing	thread:

0:000>	~#

Display	when	a	thread	was	created	and	how	much	user	and	kernel	time	it	has	used:

0:000>	.ttime
Created:	Fri	Oct		6	05:13:34.194	2017	(UTC	-	4:00)
Kernel:		0	days	0:00:00.046
User:				0	days	0:00:00.062

Current	thread	stack:

0:000>	kn

Stacks	for	all	threads:

0:000>	~*kn

To	find	the	crashing	thread	from	an	IBM	Java	core	dump,	use	jdmpview	or	IDDE:

>	!gpinfo	|	grep	Failing
Failing	Thread:	!j9vmthread	0x409e000
Failing	Thread	ID:	0xa048	(41032)

Take	the	hexadecimal	thread	ID	(without	0x)	and	change	the	current	thread	in	windbg	and	then	print	the
stack:

0:000>	~~[a048]s
0:000>	kn

To	switch	to	a	particular	frame	and	show	its	registers:

0:000>	.frame	/r	11

To	display	locals:

0:000>	dv

To	dump	details	about	a	variable:

0:000>	dt	somevariable

To	disassemble	a	function:

0:000>	uf	MODULE!SYMBOL

Note	that	the	registers	on	the	frame	that	crashed	might	be	strange	because	they	may	have	been	hijacked	by
the	signal	handler	to	create	the	core	dump,	so	you'll	have	to	check	what	the	registers	were	on	that	frame	in
the	javacore::

1XHREGISTERS			Registers:
2XHREGISTER						RDI:	0000D07C00000000
2XHREGISTER						RSI:	00000000000079D0
2XHREGISTER						RAX:	0000000000000000[...]

If	needed,	replace	"2XHREGISTER"	with	"r"	and	":"	with	"="	for	all	register	lines	except	XMM*	and	apply
them	in	windbg	on	the	.frame:

0:000>	r						RDI=	0000D07C00000000
0:000>	r						RSI=	00000000000079D0
0:000>	r						RAX=	0000000000000000	[...]

	

Crash	Dump	Analysis

0:000>	!analyze	-v

Virtual	Address	Space	(!address)

Use	!address	to	print	all	virtual	memory	allocations.	Only	Windows	symbols	are	required	to	execute	this:

windbg.exe	>	File	>	Open	Crash	Dump...	>	Select	.dmp	file	>	Save	Information	for	Workspace?	=	No
0:000>	.sympath	srv*C:\symbols*http://msdl.microsoft.com/download/symbols
0:000>	.reload	/f
0:000>	.logopen	c:\windbg.txt
0:000>	!address
								BaseAddress						EndAddress+1								RegionSize					Type							State																	Protect													Usage
--
*							0`00000000								0`00010000								0`00010000													MEM_FREE				PAGE_NOACCESS																	Free
*							0`00010000								0`00020000								0`00010000	MEM_MAPPED		MEM_COMMIT		PAGE_READWRITE															Heap	[Handle:	10000]...

The	following	script	may	be	used	to	analyze	the	output	of	!address:
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/windows/windbgaddress.pl

	

Native	memory	heaps	(!heap)

Use	!heap	-s	to	print	statistics	on	all	native	memory	heaps.	Only	Windows	symbols	are	required	to	execute
this:

https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/windows/windbgaddress.pl

windbg.exe	>	File	>	Open	Crash	Dump...	>	Select	.dmp	file	>	Save	Information	for	Workspace?	=	No
0:000>	.sympath	srv*C:\symbols*http://msdl.microsoft.com/download/symbols
0:000>	.reload	/f
0:000>	!heap	-s
LFH	Key																			:	0x000000911bae555a
Termination	on	corruption	:	ENABLED
										Heap					Flags			Reserv		Commit		Virt			Free		List			UCR		Virt		Lock		Fast		
																												(k)					(k)				(k)					(k)	length						blocks	cont.	heap		

0000000000260000	00000002	3593912	1920496	3593912	855294		6524		1953			66			72ea			LFH
				External	fragmentation		44	%	(6524	free	blocks)
				Virtual	address	fragmentation		46	%	(1953	uncommited	ranges)
0000000000010000	00008000						64						4					64						2					1					1				0						0...

In	general,	"External	fragmentation"	is	the	most	interesting	fragmentation	number	and	calculates	how	much
free	space	is	available	between	active	allocations.	In	this	example,	0.44	*	3,593,912	=	1.5GB.

Printing	all	heap	segments	for	a	particular	heap	identifier	will	show	the	address	ranges	of	virtual	allocations:

0:000>	!heap	-m	-h	260000
Index			Address		Name						Debugging	options	enabled
		1:			00260000
				Segment	at	0000000000260000	to	000000000035f000	(000ff000	bytes	committed)
				Segment	at	0000000001e70000	to	0000000001f6f000	(000ff000	bytes	committed)...

Printing	detailed	heap	statistics	will	show	a	histogram	of	free	block	sizes:

0:000>	!heap	-f	-stat	-h	260000
	0:	Heap	0000000000260000
			Flags										00000002	-	HEAP_GROWABLE
			Reserved	memory	in	segments														5342216	(k)
			Commited	memory	in	segments														1609368	(k)
			Virtual	bytes	(correction	for	large	UCR)	1653528	(k)
			Free	space																															576170	(k)	(5196	blocks)

																				Default	heap			Front	heap							Unused	bytes
			Range	(bytes)					Busy		Free				Busy			Free					Total		Average
--
					0	-			1024					2253			2599			3610		24459		154847577		26410
		1024	-			2048					2192						8					74			1265	1685388810	743772
		2048	-			3072						132					40					48			4882					150789				837...

The	output	of	!address	will	also	print	the	heap	for	each	of	the	virtual	allocations.	If	investigating	exhaustion
of	some	space	(e.g.	underneath	4GB),	then	review	the	heaps	used	in	that	space.

	

Dump	virtual	memory

The	db	command	accepts	a	start	and	end	address:

0:000>	db	0xffb1d000	0xffb24000
00000000`ffb1d000		00	00	00	00	00	00	00	00-36	dd	f3	85	a6	da	fc	00	6.......
00000000`ffb1d010		10	70	ac	57	00	00	00	00-30	20	65	1d	00	00	00	00	.p.W....0	e.....

	

Native	Stack	Sizes

It	appears	that	Windows	will	allocate	1MB	of	virtual	stack	space	for	every	thread	even	if	a	program	requests
less:	"The	default	stack	reservation	size	used	by	the	linker	is	1	MB."	(https://msdn.microsoft.com/en-
ca/library/windows/desktop/ms686774(v=vs.85).aspx).

For	example,	on	recent	versions	of	IBM	Java,	the	default	maximum	stack	size	(-Xss)	is	256KB	or	512KB

https://msdn.microsoft.com/en-ca/library/windows/desktop/ms686774(v=vs.85).aspx

(http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/diag/appendixes/cmdline/Xss.html
however,	a	userdump	in	windbg	showed:

0:000>	!address
								BaseAddress						EndAddress+1								RegionSize						Usage...
*							0`f0560000							0`f05a0000								0`00040000						Stack	[338.55e0;	~1450]
*							0`f0660000							0`f06a0000								0`00040000						Stack	[338.5be8;	~1448]...

For	example,	the	stack	@	0xf0560000	has	a	region	size	of	256KB;	however,	the	next	stack	doesn't	start	until
756KB	later.

Thread	stacks	may	also	be	printed	with	the	!threads	command:

0:000>	!threads
Index																		TID																					TEB														StackBase														StackLimit																	DeAlloc															StackSize				ThreadProc...
1637				0000000000004c24				0x000007fff0736000				0x00000000f15c0000				0x00000000f15bc000				0x00000000f14c0000				0x0000000000004000				0x0
Total	VM	consumed	by	thread	stacks	0x1997f000

In	this	example,	we	can	also	see	that	StackBase-DeAlloc	=	1MB.

	

Module

List	all	loaded	modules:

0:000>	lmf
start													end																	module	name
00000000`00400000	00000000`0042f000			java					C:\...\java\bin\java.exe
00000000`77750000	00000000`7786f000			kernel32	C:\Windows\System32\kernel32.dll...

	

Dump	flags

The	information	in	a	dump	is	controlled	with	the	MINIDUMP_TYPE	enumeration:
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680519(v=vs.85).aspx

This	may	be	queried	on	an	existing	dump	with	.dumpdebug	(see	the	"Flags"	line):

0:000>	.dumpdebug
-----	User	Mini	Dump	Analysis
MINIDUMP_HEADER:
Version									A793	(6804)
NumberOfStreams	7
Flags											2
																0002	MiniDumpWithFullMemory

	

Frame	Pointer	Omission	(FPO)

There	is	a	compiler	optimization	called	Frame	Pointer	Omission	(/Oy)	which	speeds	up	function	calls:
https://msdn.microsoft.com/en-us/library/2kxx5t2c.aspx

However,	this	breaks	stack	walker.	Microsoft	Visual	C++	2005	enabled	this	optimization	by	default	but	it
was	later	disabled	by	default	in	Visual	C++	2005	SP1,	therefore,	it	is	a	best	practice	to	avoid	FPO.

Check	if	FPO	is	used	by	an	EXE	or	DLL:

dumpbin.exe	/fpo	%MODULE%

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/diag/appendixes/cmdline/Xss.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680519(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/2kxx5t2c.aspx

If	there	are	"FPO	Data"	lines,	then	it	is	used.

	

Debug	and	Release	Modules

In	general,	Microsoft	compilers	provide	two	compilation	configurations:	Debug	and	Release.	These	supply
different	compiler	and	linker	parameters	such	as	optimization	levels	and	linking	to	different	libraries.	These
are	simply	default	sets	of	configurations,	and	it	is	possible	to	change	all	of	the	flags	of	a	"release"	build	to
make	it	a	"debug"	build.	The	salient	point	here	is	that	a	module	such	as	a	DLL	or	EXE	may	perform	worse
with	Debug	optimization	flags	(whether	due	to	using	the	Debug	configuration	or	by	explicitly	using	/Od,
/MTd,	etc.).	It	is	not	easy	to	check	a	final	DLL	or	EXE	to	understand	its	optimization	level.	One	technique	is
to	see	if	it	links	with	debug	versions	of	commonly	used	libraries	such	as	VC,	MFC,	or	ATL.	For	example,	use
a	dependency	walker	to	see	if	the	module	depends	on	MSVCRTD.DLL.	However,	this	is	not	proof	as	it	is
possible	to	create	a	fully	optimized	module	that	links	to	a	debug	version	of	one	of	these	libraries.	Another
technique	is	to	search	the	module	for	references	to	functions	only	called	with	_DEBUG	or	NDEBUG
#defined,	such	as	assert.

	

Symbols

Symbols	match	hexadecimal	addresses	to	human	readable	descriptions	from	the	original	source	code,	such	as
0x12345678	is	the	function	foo.	Symbols	are	required	when	analyzing	native	artifacts	such	as	process	core
dumps	(userdumps).	Windows	EXEs	and	DLLs	do	not	contain	symbol	information,	but	instead	the	symbols
are	placed	into	PDB	files,	normally	with	the	same	name	and	in	the	same	directory	as	the	EXE	or	DLL.	PDBs
should	always	be	built,	even	for	release-optimized	modules:

"Generating	PDB	files	for	release	executables	does	not	affect	any	optimizations,	or	significantly
alter	the	size	of	the	generated	files...	For	this	reason,	you	should	always	produce	PDB	files,	even
if	you	don't	want	to	ship	them	with	the	executable."	(https://msdn.microsoft.com/en-
us/library/ee416588(v=vs.85).aspx)

To	generate	symbols,	add	the	/Zi	compiler	flag:	https://msdn.microsoft.com/en-us/library/958x11bc.aspx

While	not	generally	recommended,	if	you	would	like	to	name	the	PDB	file	something	other	than
MODULE.pdb,	use	/Fd:	https://msdn.microsoft.com/en-us/library/9wst99a9.aspx

If	you	have	separate	compile	and	link	steps,	in	addition	to	the	compiler	/Zi	flag,	you	must	also	add	the	linker
/DEBUG	flag:	https://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx.	Note	that	the	term	"DEBUG"	in	this
context	has	nothing	to	do	with	/D	_DEBUG,	/Od,	/MTd	or	other	"Debug"	compiler	configurations,	but
instead	simply	"puts	the	debugging	information	into	a	program	database	(PDB)."	In	fact,	the	linker	will
update	the	PDB	file	created	by	the	compiler	through	the	/Zi	flag,	so	both	are	required.

Often,	symbols	will	not	be	distributed	with	EXEs	and	DLLs	simply	to	reduce	the	size	of	installer	packages.
Windows	itself	does	not	ship	with	PDBs.	However,	if	the	additional	size	of	PDBs	of	EXEs	and	DLLs	is
marginal,	then	we	recommend	that	you	ship	the	PDBs	with	the	EXEs	and	DLLs.	IBM	Java	ships	PDBs	with
each	build	(http://www-01.ibm.com/support/docview.wss?uid=swg1IV50063),	and	WAS	is	working	on
adding	PDBs	to	all	of	its	DLLs	(http://www-01.ibm.com/support/docview.wss?uid=swg1PM85208).

While	Windows	symbols	can	be	downloaded	for	a	particular	build	(see	retail	symbols	in
https://msdn.microsoft.com/en-us/windows/hardware/gg463028),	in	general,	it	is	better	to	use	the	Microsoft
Symbol	Server	which	will	download	any	matching	symbols	on	demand.	If	you	are	debugging	a	core	dump
from	a	machine	other	than	your	own	that	is	running	a	different	version	of	Windows,	then	using	the	Microsoft
Symbol	Server	is	the	best	approach:

The	common	Microsoft	debugging	tools	use	the	SymSrv	technology	if	you	provide	the	correct
symsrv	syntax	in	the	_NT_SYMBOL_PATH	environment	variable.	These	tools	automatically

https://msdn.microsoft.com/en-us/library/ee416588(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/958x11bc.aspx
https://msdn.microsoft.com/en-us/library/9wst99a9.aspx
https://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx
http://www-01.ibm.com/support/docview.wss?uid=swg1IV50063
http://www-01.ibm.com/support/docview.wss?uid=swg1PM85208
https://msdn.microsoft.com/en-us/windows/hardware/gg463028

include	whatever	you	provide	in	the	variable	as	the	symbol	path.

You	can	set	this	variable	as	a	system	variable	or	as	a	user	environment	variable.	To	do	this	from
the	desktop,	right-click	My	Computer,	and	then	click	Properties.	On	the	Advanced	tab,	click
Environment	Variables.

You	can	also	set	this	variable	temporarily	at	a	command	prompt.	In	this	way,	all	applications
that	you	start	through	the	command	prompt	inherit	this	setting.

https://support.microsoft.com/kb/311503	and	https://msdn.microsoft.com/en-
us/library/windows/hardware/ff558829(v=vs.85).aspx

Example:

>	set	_NT_SYMBOL_PATH	=	SRV*c:\symbols*http://msdl.microsoft.com/download/symbols
>	windbg

In	the	above	example,	symbols	downloaded	from	the	symbol	server	will	be	cached	locally	in	the	c:\symbols\
folder	for	future	use.

For	WAS,	assuming	WAS	in	C:\Program	Files\IBM\WebSphere\AppServer,	an	example	sympath	would	be:

C:\Program	Files\IBM\WebSphere\AppServer\bin;C:\Program
Files\IBM\WebSphere\AppServer\java\jre\bin\;C:\Program
Files\IBM\WebSphere\AppServer\java\jre\bin\j9vm\;C:\Program
Files\IBM\WebSphere\AppServer\bin\;srv*C:\symbols*http://msdl.microsoft.com/download/symbols

If	the	machine	does	not	have	internet	access,	you	can	run	"symchk	/om"	to	get	a	list	of	symbols	that	are
needed,	then	download	that	set	of	symbols	from	a	machine	that	does	have	internet	access	using	"symchk	/im"
and	then	copy	the	symbols	over.

If	you	do	not	want	to	ship	PDB	symbols,	then	you	should	still	save	PDBs	for	each	build	and	make	them
available	to	support	engineers.	Ideally,	these	can	be	offered	through	a	custom	symbol	server:

"Setting	up	a	symbol	server	on	your	own	local	network	is	as	simple	as	creating	a	file	share	on	a
server...	To	add,	delete	or	edit	files	on	a	symbol	server	share,	use	the	symstore.exe	tool."
(https://msdn.microsoft.com/en-us/library/ee416588(v=vs.85).aspx)

For	external	use,	an	HTTP	symbol	server	can	be	setup	using	IIS	on	top	of	the	symbol	directory.

You	can	find	all	the	PDBs	in	a	directory	using	*.pdb	in	explorer.exe	search	or	from	a	command	line
(https://technet.microsoft.com/pt-pt/library/cc754900(v=ws.10).aspx):

for	/r	%i	in	(*)	do	@echo	%ftzai	|	findstr	pdb

Another	way	to	see	if	a	PDB	file	is	corrupt	(https://msdn.microsoft.com/en-
us/library/windows/hardware/ff560157(v=vs.85).aspx	and	https://msdn.microsoft.com/en-
us/library/windows/desktop/ee416588(v=vs.85).aspx):

>	"C:\Program	Files	(x86)\Windows	Kits\8.0\Debuggers\x64\symchk.exe"	/v	module.dll	/s	DIRECTORYWITHPDB
Success:	DBGHELP:	private	symbol	&	lines
Failure:	FAILED	-	built	without	debugging	information

See	if	a	PDB	file	is	corrupt:

>	"C:\Program	Files	(x86)\Windows	Kits\8.0\Debuggers\x66\pdbcopy.exe"	somefile.pdb	test.pdb	-p
Can't	open	pdb	file...Error:	EC_CORRUPT

	

Desktop	Heap

https://support.microsoft.com/kb/311503
https://msdn.microsoft.com/en-us/library/windows/hardware/ff558829(v=vs.85).aspx
http://msdl.microsoft.com/download/symbols
https://msdn.microsoft.com/en-us/library/ee416588(v=vs.85).aspx
https://technet.microsoft.com/pt-pt/library/cc754900(v=ws.10).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff560157(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx

Windows	Desktop	Heaps	are	limited	areas	of	virtual	memory	allocated	for	programs	that	use	functions	in
user32.dll:	"The	desktop	heap	stores	certain	user	interface	objects,	such	as	windows,	menus,	and	hooks.
When	an	application	requires	a	user	interface	object,	functions	within	user32.dll	are	called	to	allocate	those
objects.	If	an	application	does	not	depend	on	user32.dll,	it	does	not	consume	desktop	heap."
(https://blogs.msdn.microsoft.com/b/ntdebugging/archive/2007/01/04/desktop-heap-overview.aspx,
https://support.microsoft.com/kb/184802).

	

BIOS	and	UEFI

BIOS	and	UEFI	are	firmware	for	launching	the	operating	system.	BIOS	is	often	accessed	through	a	hotkey
during	boot.	In	some	cases,	UEFI	cannot	be	access	through	a	hotkey	during	boot	and	instead	is	accessed
with:

Windows	8:	Start	}	Settings	}	Change	PC	Settings	}	General	}	Advanced	startup	}	Restart	Now	}
Troubleshoot	}	Advanced	options	}	UEFI	Firmware	Settings	}	Restart
Windows	10/11:	Start	}	Settings	}	Update	&	Security	}	Recovery	}	Advanced	startup	}	Restart	now	}
Troubleshoot	}	Advanced	options	}	UEFI	Firmware	Settings	}	Restart

	

Hosts	file

The	hosts	file	is	located	at	%WinDir%\System32\drivers\etc\hosts

A	non-comment	line	is	an	IP	address	followed	by	whitespace	followed	by	the	hostname.

	

Signals

Windows	supports	a	subset	of	POSIX	C	signals:

SIGINT	(2)
SIGILL	(4)
SIGABRT	(6)
SIGFPE	(8)
SIGSEGV	(11)
SIGTERM	(15)
SIGBREAK	(21)

	

Troubleshooting	macOS

Signals

Available	signals	may	be	listed	with	kill	-l:

$	kill	-l
	1)	SIGHUP						2)	SIGINT				3)	SIGQUIT				4)	SIGILL				5)	SIGTRAP
	6)	SIGABRT					7)	SIGEMT				8)	SIGFPE					9)	SIGKILL		10)	SIGBUS
11)	SIGSEGV				12)	SIGSYS			13)	SIGPIPE			14)	SIGALRM		15)	SIGTERM
16)	SIGURG					17)	SIGSTOP		18)	SIGTSTP			19)	SIGCONT		20)	SIGCHLD
21)	SIGTTIN				22)	SIGTTOU		23)	SIGIO					24)	SIGXCPU		25)	SIGXFSZ
26)	SIGVTALRM		27)	SIGPROF		28)	SIGWINCH		29)	SIGINFO		30)	SIGUSR1
31)	SIGUSR2

https://blogs.msdn.microsoft.com/b/ntdebugging/archive/2007/01/04/desktop-heap-overview.aspx
https://support.microsoft.com/kb/184802
https://support.microsoft.com/en-us/topic/how-to-reset-the-hosts-file-back-to-the-default-c2a43f9d-e176-c6f3-e4ef-3500277a6dae
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/signal?view=msvc-170

	

xattr

Files	downloaded	from	the	internet	have	a	quarantine	flag	automatically	added	that	may	cause	security
issues.	Open	a	terminal	and	run:

xattr	-d	com.apple.quarantine	*
xattr	-d	com.apple.metadata:kMDItemWhereFroms	*

	

Core	Dumps

By	default,	crashes	are	summarized	in	*.crash	files	in	~/Library/Logs/DiagnosticReports	(or
/Library/Logs/DiagnosticReports)	and	they	may	be	read	with	a	text	editor	or	opened	with	the	Console
application.

To	create	full	core	dumps,	ensure	the	/cores/	directory	exists	and	is	writable	by	the	user	creating	the	dump.
By	default,	/cores/	is	only	writable	by	the	root	or	wheel	users:

drwxr-xr-x			2	root		wheel				64	Aug	24		2019	cores

To	make	it	writable:

sudo	chmod	a+rwx	/cores/

The	location	of	core	dumps	is	controlled	with	kern.corefile:

%	sudo	sysctl	-a	|	grep	kern.corefile
kern.corefile:	/cores/core.%P

In	addition,	ensure	that	the	core	ulimit	is	unlimited.	By	default,	the	soft	limit	is	0	which	means	cores	are	not
created	(unless	it's	a	program	that	increases	the	limit	from	hard	to	soft	at	runtime):

%	ulimit	-a
-c:	core	file	size	(blocks)									0
%	ulimit	-aH	
-c:	core	file	size	(blocks)									unlimited

To	set	the	core	dump	soft	and	hard	ulimits	to	unlimited	by	default,	apply	the	following	and	restart:

sudo	/usr/libexec/PlistBuddy	/Library/LaunchDaemons/corelimit.plist	-c	"add	Label	string	com.launchd.corelimit"	-c	"add	ProgramArguments	array"	-c	"add	ProgramArguments:	string	launchctl"	-c	"add	ProgramArguments:	string	limit"	-c	"add	ProgramArguments:	string	core"	-c	"add	ProgramArguments:	string	unlimited"	-c	"add	RunAtLoad	bool	true"	-c	"add	ServiceIPC	bool	false"

You	may	also	need	to	add	the	user	creating	the	dump	to	the	wheel	group.	First	check	whether	your	user	is	a
member	of	wheel:

groups

If	not,	add	to	wheel:

sudo	dseditgroup	-o	edit	-a	$USER	-t	user	wheel

	

lldb

Process	Thread	dump

The	equivalent	of	pstack	is	to	use	lldb	to	print	all	thread	stacks.	For	example:

%	echo	"thread	backtrace	all"	|	lldb	-p	$PID
*	thread	#1,	queue	=	'com.apple.main-thread',	stop	reason	=	signal	SIGSTOP
		*	frame	#0:	0x00007fff20569e7e	libsystem_kernel.dylib`mach_msg_trap	+	10
[...]

	

Core	dumps

lldb	may	be	used	to	analyze	macOS	core	dumps.	For	example:

%	lldb	-c	/cores/core.11243
(lldb)	bt

Common	commands:

Cause	of	core	dump	and	current	thread/instruction:	process	status
List	threads:	thread	list
List	loaded	libraries:	image	list
Variables	for	the	current	stack	frame:	var
Print	a	specific	stack	frame	variable:	frame	variable	$NAME
Read	a	block	of	memory	in	some	format	(e.g.	with	bytes	and	ASCII):	memory	read	-fY	-c$BYTES
0x$ADDRESS	--force
Print	a	specific	stack	frame	variable	in	some	format	(e.g.	with	bytes	and	ASCII):	frame	variable
$NAME	-f	Y
Print	current	registers:	register	read
Current	assembly:	dis
Current	code:	list
Find	type	structure:	type	lookup	$NAME
Write	a	block	of	memory	to	a	file:	memory	read	-o	mem.bin	-c$BYTES	0x$ADDRESS

	

Tips

Long	click	on	the	maximize	button	to	do	split-screen	tiling
Finder

Show	all	files:	defaults	write	com.apple.finder	AppleShowAllFiles	TRUE

	

Open	Application	from	Terminal

Open	a	well	known	application	(in	/Applications/):

open	-a	Wireshark.app

Open	an	application	in	the	current	directory:

open	Eclipse.app

Open	multiple	instances	of	an	application	with	the	-n	flag.

Common	alias:

alias	code="open	-a	'/Applications/Visual	Studio	Code.app'"

	

Network

https://lldb.llvm.org/use/variable.html#type-format
https://lldb.llvm.org/use/variable.html#type-format

mtr

mtr	is	available	through	Brew:

brew	install	mtr

However,	it	must	be	run	as	root	and	it's	on	the	sbin	path.	For	example:

sudo	/opt/homebrew/sbin/mtr	--report-wide	--show-ips	--aslookup	--report-cycles	30	example.com

	

Security

Some	security	error	codes	above	10000	may	be	10000	+	an	errno-style	code.

Print	the	entitlements	of	an	application:

%	codesign	-d	--ent	:-	$EXECUTABLE

	

Termination	Reason:	CODESIGNING

For	crashes	due	to	Termination	Reason:	CODESIGNING ,	a	workaround	may	be	to	force	re-sign:

find	Eclipse.app	-name	"*"	-execdir	sudo	codesign	--force	--deep	--sign	-	{}	\;

	

System	Integrity	Protection

System	Integrity	Protection	(SIP)	is	a	security	feature	that	includes	restricting	runtime	attachment	to	system
processes.

	

SIP	Status

Show	the	SIP	status	with:

%	csrutil	status
System	Integrity	Protection	status:	enabled.

	

Disable	System	Integrity	Protection

To	disable	SIP,	boot	into	the	Recovery	Partition	and	run	csrutil	disable.

	

Enable	Kernel	Symbolication

1.	 May	require	disabling	SIP	first.

sudo	nvram	boot-args="keepsyms=1"

2.	 Reboot
3.	 Without	Activity	Monitor	running,	get	a	spindump:

https://developer.apple.com/library/archive/qa/qa1499/_index.html
https://developer.apple.com/library/archive/technotes/tn2415/_index.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40016462-CH1-DontLinkElementID_15
https://developer.apple.com/documentation/security/disabling_and_enabling_system_integrity_protection

sudo	spindump	-reveal	-noProcessingWhileSampling

4.	 Review	/tmp/spindump.txt

	

Recovery	Partition

Booting	to	the	recovery	partition:

1.	 Turn	off	Mac,	then:
1.	 ARM:

1.	 Press	and	hold	the	power	key
2.	 Intel:

1.	 Hold	the	⌘R	keys
2.	 Turn	on	Mac
3.	 When	you	see	the	"macOS	Recovery"	window,	release	the	⌘R	keys

2.	 Log	in	with	a	user
3.	 At	the	top	of	the	screen,	click	Utilities	}	Terminal
4.	 Run	desired	commands;	for	example:

%	csrutil	disable
System	Integrity	Protection	is	off.
Restart	the	machine	for	the	changes	to	take	effect.

5.	 At	the	top	of	the	screen,	click	the	Apple	icon	}	Restart
6.	 After	restarting,	ensure	SIP	has	been	disabled:

%	csrutil	status
System	Integrity	Protection	status:	disabled.

	

Enable	Non-Maskable	Interrupt

From	the	recovery	partition,	enabling	Non-Maskable	Interrupt	(NMI)	allows	for	creating	kernel	dumps	for	a
hung	system.

Add	debug=0x4	to	the	current	settings:

%	sudo	nvram	boot-args="$(nvram	boot-args)	debug=0x4"

	

Add	User	to	a	Group

For	example,	to	add	$USER	to	the	group	wheel:

sudo	dseditgroup	-o	edit	-a	$USER	-t	user	wheel

	

Comparing	and	Merging	Files

Eclipse	has	a	good	compare	and	merge	functionality
1.	 Create	a	project	(any	kind)
2.	 Right	click	on	the	project	}	Import...	}	General	}	File	System
3.	 Select	the	two	files	under	the	project
4.	 Right	click	}	Compare	With	}	Each	Other

FileMerge	is	a	visual	diff	tool	available	with	open

https://support.apple.com/en-us/HT201314
https://support.apple.com/en-us/HT206871
https://developer.apple.com/library/archive/qa/qa1264/_index.html
https://www.eclipse.org/

/Applications/Xcode.app/Contents/Applications/FileMerge.app

	

Kernel	core	dumps

It	appears	that	kernel	core	dumps	may	only	be	configured	to	be	sent	over	a	network	to	another	machine
(although	this	may	be	a	virtual	machine)	rather	than	produced	locally,	and	the	types	of	network	interfaces
that	may	be	used	are	limited	(e.g.	not	over	WiFi).

Generate	kernel	core	dump:	sudo	dtrace	-w	-n	"BEGIN{	panic();}"

See	https://developer.apple.com/library/archive/technotes/tn2004/tn2118.html

	

Troubleshooting	Solaris

Mapping	LWP	ID	to	Java	thread

It's	often	useful	to	map	an	LWP	ID	(for	example,	reported	in	prstat	-L)	to	a	Java	thread.	The	pstack	command
may	be	used	to	print	all	native	stack	traces	along	with	the	LWP	ID:

#	prstat	-mvLp	5598	5	2
			PID	USERNAME	USR	SYS	TRP	TFL	DFL	LCK	SLP	LAT	VCX	ICX	SCL	SIG	PROCESS/LWPID
		5598	root						78	2.8	0.1	0.0	1.7	1.3	7.0	8.7	135	502		3K			2	java/2
		5598	root						12	0.0	0.0	0.1	0.0		85	0.0	2.7		54		59	124			0	java/10...
#	pstack	5598
5598:				/opt/IBM/WAS855/AppServer/java_1.7_32/bin/java	Play
-----------------		lwp#	2	/	thread#	2		--------------------
	fbc895a0	*	*java/util/StringTokenizer.nextToken()Ljava/lang/String;	[compiled]	+74	(line	691)
	fbc895a0	*	*javax/crypto/Cipher.a(Ljava/lang/String;)[Ljava/lang/String;+55
	fbca2d10	*	*javax/crypto/Cipher.b(Ljava/lang/String;)Ljava/util/List;	[compiled]	+2
	fbc99494	*	*javax/crypto/Cipher.getInstance(Ljava/lang/String;)Ljavax/crypto/Cipher;	[compiled]	+2
	fbcbc29c	*	*Play.main([Ljava/lang/String;)V	[compiled]	+61	(line	39)
	fbc0021c	*	StubRoutines	(1)
	fe5b035c	__1cJJavaCallsLcall_helper6FpnJJavaValue_pnMmethodHandle_pnRJavaCallArguments_pnGThread__v_	(fe07fed8,	fe07fe70,	e,	27800,	f5cb0,	d79a4fc8)	+	3a0
	fe65be7c	jni_CallStaticVoidMethod	(27928,	d79a4fc8,	21240,	e,	27800,	ff117e5c)	+	678
	ff361bd8	JavaMain	(fe66537c,	28e6c,	27928,	ff387370,	ff0f261c,	fe65b804)	+	740
	ff2c5238	_lwp_start	(0,	0,	0,	0,	0,	0)...

	

Request	core	dump

1.	 The	gcore	command	pauses	the	process	while	the	core	is	generated	and	then	the	process	should
continue.	Replace	${PID}	in	the	following	example	with	the	process	ID.	You	must	have	permissions	to
the	process	(i.e.	either	run	as	the	owner	of	the	process	or	as	root).	The	size	of	the	core	file	will	be	the
size	of	the	virtual	size	of	the	process	(ps	VSZ).	If	there	is	sufficient	free	space	in	physical	RAM	and
the	filecache,	the	core	file	will	be	written	to	RAM	and	then	asynchronously	written	out	to	the
filesystem	which	can	dramatically	improve	the	speed	of	generating	a	core	and	reduce	the	time	the
process	is	paused.	In	general,	core	dumps	compress	very	well	(often	up	to	75%)	for	transfer.
(http://docs.oracle.com/cd/E36784_01/html/E36870/gcore-1.html)
$	gcore	${PID}

2.	 If	gcore	does	not	start	to	write	the	core	dump	immediately,	it	may	be	hung	waiting	to	acquire	control
of	the	process.	If	this	does	not	succeed	for	some	time,	try	instead	with	the	-F	option.

3.	 If	none	of	the	other	options	work,	you	may	crash	the	process	which	should	process	a	core	dump	using
one	of:

https://developer.apple.com/library/archive/technotes/tn2004/tn2118.html
http://docs.oracle.com/cd/E36784_01/html/E36870/gcore-1.html

$	kill	-6	${PID}
$	kill	-11	${PID}

	

Debug	Symbols

"To	compile	optimized	code	for	use	with	dbx,	compile	the	source	code	with	both	the	-O	(uppercase	letter	O)
and	the	-g	options...	The	-g0	(zero)	option	turns	on	debugging	and	does	not	affect	inlining	of	functions."
(http://docs.oracle.com/cd/E19205-01/819-5257/gevhr/index.html)

Create	separate	debug	files:	http://docs.oracle.com/cd/E19205-01/819-5257/gevia/index.html

	

Troubleshooting	HP-UX

32-bit	Native	OutOfMemoryErrors

You	may	increase	the	user	virtual	address	space	from	2GB	to	3GB	(at	the	cost	of	less	space	to	the	kernel	for
things	like	network	buffers)	with:

chatr	+q3p	enable	${PATH_TO_JAVA}

You	can	check	if	this	is	enable	with:

chatr	${PATH_TO_JAVA}
...
third	quadrant	private	data	space	enabled

	

gdb/wdb

When	the	process	is	hung,	attach	to	the	PID,	for	example:

/opt/langtools/bin/gdb	/opt/IBM/WebSphere/AppServer/java/bin/IA64W/java	24072

Then	run	thread	apply	all	bt

	

Print	full	command	line	of	running	program

HP-UX	does	not	provide	a	tool	(such	as	"ps")	to	print	the	full	command	line	of	a	running	program	(no
equivalent	of	Solaris	/usr/ucb/ps).	The	-x	parameter	of	ps	only	prints	the	first	1024	characters,	which	is	often
insufficient	for	Java	programs:

Only	a	subset	of	the	command	line	is	saved	by	the	kernel;	as	much	of	the	command	line	will	be
displayed	as	is	available...	The	value	of	DEFAULT_CMD_LINE_WIDTH	should	be	between
64	and	1020.

You	can	attach	to	a	process	using	gdb/wdb	and	print	argc/argv.	First,	we	attach	to	a	process	by	passing	in	the
location	of	java	(which	you	can	get	from	ps	-elfx)	followed	by	the	PID	(note	that	the	process	will	be
completely	paused	until	you	detach	gdb):

$	/opt/langtools/bin/gdb	/opt/IBM/WebSphere/AppServer/java/bin/IA64W/java	24072

__argc	and	__argv	are	global	variables	that	we	can	access,	so	let's	first	see	how	many	arguments	there	are:

http://docs.oracle.com/cd/E19205-01/819-5257/gevhr/index.html
http://docs.oracle.com/cd/E19205-01/819-5257/gevia/index.html

(gdb)	print	__argc
$1	=	3

In	this	example,	we	have	3	arguments.	Next,	we	know	that	argv	is	a	pointer	to	a	list	of	pointers,	each	with
one	of	the	program	arguments,	so	we	print	that	many	addresses	at	the	location	of	argv	(i.e.	replace	3	with
your	value	of	argc):

(gdb)	x/3a	__argv
0x9ffffffffffff950:					0x9ffffffffffff9e8						0x9ffffffffffffa19
0x9ffffffffffff960:					0x9ffffffffffffa24

Each	of	these	addresses	is	a	pointer	to	a	null-terminated	string,	so	we	print	each	using	the	s	option:

(gdb)	x/s	0x9ffffffffffff9e8
0x9ffffffffffff9e8:						"/opt/IBM/WebSphere/AppServer/java/bin/IA64W/java"
(gdb)	x/s	0x9ffffffffffffa19
0x9ffffffffffffa19:						"HelloWorld"
(gdb)	x/s	0x9ffffffffffffa24
0x9ffffffffffffa24:						"testarg"

Don't	forget	to	"detach"	to	continue	the	process.

Although	the	Java	jps	command	with	the	-v	parameter	is	no	better,	at	least	you	can	use	jps	-m	to	map	PID	to
WAS	server	name.

If	you	are	using	an	Itanium	system,	the	following	caliper	command	prints	the	full	command	line.	This	will
have	some	overhead	as	it	is	gathering	a	flat	profile	of	sampled	process	instructions	for	1	second,	but	it	is
presumably	more	lightweight	(and	more	user-friendly)	than	gdb:

/opt/caliper/bin/caliper	fprof	--process=root	--attach	$PID	--duration	1	|	grep	Invocation:

And	here's	a	one-line	command	that	runs	the	above	on	all	java	PIDs:

for	i	in	`ps	-elfx	|	grep	java	|	grep	-v	grep	|	awk	'{print	$4}'`;	do	echo	$i;	/opt/caliper/bin/caliper	fprof	--process=root	--attach	$i	--duration	1	|	grep	Invocation:	;done;

	

Troubleshooting	Java

Sub-chapters

Troubleshooting	OpenJ9	and	IBM	J9	JVMs
Troubleshooting	HotSpot	JVM

	

Request	Heap	Dump

There	are	many	ways	to	request	a	heap	dump	depending	on	your	Java	vendor	(and	further	depending	on	your
operating	system	and	WAS	profile,	detailed	within	each	Java	vendor's	section):

Request	System	Dump	on	OpenJ9	and	IBM	J9	JVMs
Request	HPROF	Heap	Dump	on	HotSpot	JVM

	

Excessive	Direct	Byte	Buffers

There	are	two	main	types	of	problems	with	Direct	Byte	Buffers:

1.	 Excessive	native	memory	usage
2.	 Excessive	performance	overhead	due	to	System.gc	calls	by	the	DBB	code

This	section	primarily	discusses	issue	1.	For	issue	2,	note	that	IBM	Java	starts	with	a	soft	limit	of	64MB	and
increases	by	32MB	chunks	with	a	System.gc	each	time,	so	consider	setting	-
XX:MaxDirectMemorySize=$BYTES	(e.g.	-XX:MaxDirectMemorySize=1024m)	to	avoid	this	upfront	cost
(although	read	on	for	how	to	size	this).

For	issue	1,	excessive	native	memory	usage	by	java.nio.DirectByteBuffers	is	a	classic	problem	with	any
generational	garbage	collector	such	as	gencon	(which	is	the	default	starting	in	IBM	Java	6.26/WAS	8),
particularly	on	64-bit.	DirectByteBuffers	(DBBs)	are	Java	objects	that	allocate	and	free	native	memory.
DBBs	use	a	PhantomReference	which	is	essentially	a	more	flexible	finalizer	and	they	allow	the	native
memory	of	the	DBB	to	be	freed	once	there	are	no	longer	any	live	Java	references.	Finalizers	and	their	ilk	are
generally	not	recommended	because	their	cleanup	time	by	the	garbage	collector	is	non-deterministic.

This	type	of	problem	is	particularly	bad	with	generational	collectors	because	the	whole	purpose	of	a
generational	collector	is	to	minimize	the	collection	of	the	tenured	space	(ideally	never	needing	to	collect	it).
If	a	DBB	is	tenured,	because	the	size	of	the	Java	object	is	very	small,	it	puts	little	pressure	on	the	tenured
heap.	Even	if	the	DBB	is	ready	to	be	garbage	collected,	the	PhantomReference	can	only	become	ready
during	a	tenured	collection.	Here	is	a	description	of	this	problem	(which	also	talks	about	native	classloader
objects,	but	the	principle	is	the	same):

If	an	application	relies	heavily	on	short-lived	class	loaders,	and	nursery	collections	can	keep	up
with	any	other	allocated	objects,	then	tenure	collections	might	not	happen	very	frequently.	This
means	that	the	number	of	classes	and	class	loaders	will	continue	increasing,	which	can	increase
the	pressure	on	native	memory...	A	similar	issue	can	arise	with	reference	objects	(for	example,
subclasses	of	java.lang.ref.Reference)	and	objects	with	finalize()	methods.	If	one	of	these	objects
survives	long	enough	to	be	moved	into	tenure	space	before	becoming	unreachable,	it	could	be	a
long	time	before	a	tenure	collection	runs	and	"realizes"	that	the	object	is	dead.	This	can	become
a	problem	if	these	objects	are	holding	on	to	large	or	scarce	native	resources.	We've	dubbed	this
an	"iceberg"	object:	it	takes	up	a	small	amount	of	Java	heap,	but	below	the	surface	lurks	a	large
native	resource	invisible	to	the	garbage	collector.	As	with	real	icebergs,	the	best	tactic	is	to	steer
clear	of	the	problem	wherever	possible.	Even	with	one	of	the	other	GC	policies,	there	is	no
guarantee	that	a	finalizable	object	will	be	detected	as	unreachable	and	have	its	finalizer	run	in	a
timely	fashion.	If	scarce	resources	are	being	managed,	manually	releasing	them	wherever
possible	is	always	the	best	strategy.

Essentially	the	problem	boils	down	to	either:

1.	 There	are	too	many	DBBs	being	allocated	(or	they	are	too	large),	and/or
2.	 The	DBBs	are	not	being	cleared	up	quickly	enough.

It	is	very	important	to	verify	that	the	volume	and	rate	of	DBB	allocations	are	expected	or	optimal.	If	you
would	like	to	determine	who	is	allocating	DBBs	(problem	#1),	of	what	size,	and	when,	you	can	run	a
DirectByteBuffer	trace.	Test	the	overhead	of	this	trace	in	a	test	environment	before	running	in	production.

If	you	would	like	to	clear	up	DBBs	more	often	(problem	#2),	there	are	a	few	options:

1.	 Use	-XX:MaxDirectMemorySize=$BYTES
Specifying	-XX:MaxDirectMemorySize	will	force	the	DBB	code	to	run	System.gc()	when	the	sum	of
outstanding	DBB	native	memory	would	be	more	than	$BYTES.	This	option	may	have	performance
implications.	When	using	this	option	with	IBM	Java,	ensure	that	-Xdisableexplicitgc	is	not	used.
The	optimal	value	of	$BYTES	should	be	determined	through	testing.	The	larger	the	value,	the	more
infrequent	the	System.gcs	will	be	but	the	longer	each	tenured	collection	will	be.	For	example,	start
with	-XX:MaxDirectMemorySize=1024m	and	gather	throughput,	response	time,	and	verbosegc	garbage
collection	overhead	numbers	and	compare	to	a	baseline.	Double	and	halve	this	value	and	determine
which	direction	is	better	and	then	do	a	binary	search	for	the	optimal	value.

2.	 Explicitly	call	System.gc.	This	is	generally	not	recommended.	When	DBB	native	memory	is	freed,	the
resident	process	size	may	not	be	reduced	immediately	because	small	allocations	may	go	onto	a	malloc

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xxmaxdirectmemorysize
https://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html

free	list	rather	than	back	to	the	operating	system.	So	while	you	may	not	see	an	immediate	drop	in	RSS,
the	free	blocks	of	memory	would	be	available	for	future	allocations	so	it	could	help	to	"stall"	the
problem.	For	example,	Java	Surgery	can	inject	a	call	to	System.gc	into	a	running	process.

3.	 One	common	cause	of	excessive	DBB	allocations	with	WebSphere	Application	Server	is	the	default
WAS	WebContainer	channelwritetype	value	of	async.	See	the	WAS	HTTP	section	for	more	details.

In	most	cases,	something	like	-XX:MaxDirectMemorySize=1024m	(and	ensuring	-Xdisableexplicitgc	is	not
set)	is	a	reasonable	solution	to	the	problem.

A	system	dump	or	HPROF	dump	may	be	loaded	in	the	IBM	Memory	Analyzer	Tool	&	the	IBM	Extensions
for	Memory	Analyzer	DirectByteBuffer	plugin	may	be	run	to	show	how	much	of	the	DBB	native	memory	is
available	for	garbage	collection.	For	example:

=>	Sum	DirectByteBuffer	capacity	available	for	GC:	1875748912	(1.74	GB)
=>	Sum	DirectByteBuffer	capacity	not	available	for	GC:	72416640	(69.06	MB)

	

Java	Surgery

There	is	a	technique	called	Java	surgery	which	uses	the	Java	Late	Attach	AP	to	inject	a	JAR	into	a	running
process	and	then	execute	various	diagnostics.

This	was	designed	initially	for	Windows	because	it	does	not	usually	have	a	simple	way	of	requesting	a	thread
dump	like	kill	-3	on	Linux.	Java	Surgery	has	an	option	with	IBM	Java	to	run	the
com.ibm.jvm.Dump.JavaDump()	API	to	request	a	thread	dump	(HotSpot	Java	does	not	have	an	equivalent
API,	although	Java	Surgery	does	generally	work	on	HotSpot	Java):

$	java	-jar	surgery.jar	-pid	16715	-command	JavaDump

	

Core	Dumps

More	problems	could	be	solved	if	customers	took	more	operating	system	core	dumps	(or	they	weren't
truncated	with	ulimits).	It's	amazing	how	much	information	can	be	extracted	from	a	full	address	space	dump.
It	is	probably	the	most	underutilized	diagnostic	artifact,	particularly	in	situations	where	one	wouldn't	expect	a
memory	dump	to	help.

However,	core	dumps	are	expensive.	They	take	dozens	of	seconds	to	dump	(during	which	time	the	process	is
frozen).	They	are	often	massive	and	take	a	long	time	to	compress	and	upload.	Finally,	they	take	a	long	time
to	download,	decompress	and	analyze.	For	these	reasons,	core	dumps	are	underutilized	(along	with	the
security	implications	of	capturing	and	transferring	all	raw	memory	in	the	process).

So,	in	the	case	that	you	don't	know	ahead	of	time	that	you	need	a	core	dump,	when	should	you	take	operating
system	core	dumps?

If	the	security,	disk	and	performance	risks	are	acceptable,	an	operating	system	core	dump	should	be	a	step	in
every	diagnostic	procedure.	For	example,	server	hung?	Do	the	normal	performance	MustGather,	and	then
take	a	core	dump.

But	wait,	didn't	you	just	read	that	core	dumps	might	be	overkill?	Yes.	So	what	you	should	do	is	compress
and	save	off	the	core	dump	into	a	special	location.	Only	upload	it	if	someone	asks	for	it,	or	if	you're
otherwise	stuck.

This	is	also	a	good	way	to	deal	with	the	security	implications.	With	this	approach,	the	data	won't	be	lost,	and
in	the	case	where	the	core	dump	is	required,	a	secure	way	of	handling	or	analyzing	the	core	dump	(perhaps
even	remotely)	can	be	figured	out.

	

https://www.ibm.com/support/pages/ibm-runtime-diagnostic-code-injection-java-platform-java-surgery
https://www.ibm.com/support/pages/ibm-runtime-diagnostic-code-injection-java-platform-java-surgery

Ensure	core	soft	and	hard	ulimits	are	set	to	unlimited

It	is	a	general	best	practice	to	set	the	core	soft	and	hard	ulimits	to	unlimited	for	Java	processes.

It	is	critical	that	a	system	dump	is	not	truncated	so	that	the	cause	of	crashes	and	other	issues	may	be
investigated.	Review	the	documentation	for	your	operating	system	to	correctly	configure	ulimits:

Linux:
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/problem_determination/linux_setup.html
AIX:
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/problem_determination/aix_setup_full_core.html
z/OS:
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/problem_determination/zos_setup_dumps.html

On	J9	JVMs,	the	JVMJ9VM133W	message	is	enabled	with	-Xcheck:dump	and	is	a	warning	that	system
cores	may	be	truncated	if	taken	during	a	problem	or	for	diagnostics	if	the	core	hard	ulimit	is	not	set	to
unlimited.	For	example:

JVMJ9VM133W	The	system	core	size	hard	ulimit	is	set	to	2048,	system	dumps	may	be	truncated.

When	the	J9	JVM	produces	the	core	dump	itself	(as	with	crashes	and	JVM-requested	system	dumps),	it	will
increase	the	core	soft	limit	to	the	hard	limit	automatically,	so	at	the	simplest	level,	it's	only	important	to	set
the	core	hard	ulimit	to	unlimited:	https://github.com/eclipse/openj9-omr/blob/v0.15.0-
release/port/unix/omrosdump.c#L307

However,	if	the	core	dump	is	produced	in	some	other	way,	or	if	the	JVM	fails	to	fork	itself	to	produce	the
core	dump	and	instead	the	OS	produces	the	core	dump,	then	the	soft	limit	will	be	used.	Therefore,	it's	best	to
set	both	soft	and	hard	core	ulimits	to	unlimited.

	

Ensure	core	piping	is	configured	properly	or	disabled	on	Linux

On	Linux,	the	/proc/sys/kernel/core_pattern	may	be	set	to	a	pipe	(|)	followed	by	a	program	to	which	a
core	dump	is	streamed	if	a	crash	occurs.	By	default,	this	is	not	set	on	vanilla	Linux;	however,	most	modern
Linux	distributions	do	set	this	by	default,	often	to	|/usr/lib/systemd/systemd-coredump	(the	general
purpose	is	to	avoid	core	dumps	filling	up	all	disk	space).	If	such	a	configuration	is	set,	ensure	such	core
handling	is	configured	properly	using	the	instructions	below	so	that	core	dumps	are	produced	and	are	not
truncated,	or	completely	disable	core	piping.

Note	that	core_pattern	cannot	be	set	within	a	container	so	containers	will	generally	send	cores	to	the	worker
node	rather	than	inside	the	container.

	

Properly	configuring	core	piping

systemd-coredump

If	/proc/sys/kernel/core_pattern	is	set	to	|/usr/lib/systemd/systemd-coredump,	then	systemd-
coredump	is	configured.

systemd-coredump	before	and	including	version	v250,	by	default,	truncates	core	dumps	greater	than	2GB.

systemd-coredump	after	version	v250,	by	default,	truncates	core	dumps	greater	than	32GB	on	64-bit	and
greater	than	1GB	on	32-bit.

The	defaults	show	up	as	commented	defaults	in	/etc/systemd/coredump.conf.	For	example:

https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/problem_determination/linux_setup.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/problem_determination/aix_setup_full_core.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/problem_determination/zos_setup_dumps.html
https://github.com/eclipse/openj9-omr/blob/v0.15.0-release/port/unix/omrosdump.c#L307
https://github.com/containers/podman/issues/6528
https://www.kernel.org/doc/man-pages/online/pages/man8/systemd-coredump.8.html
https://github.com/systemd/systemd/blob/v250/src/coredump/coredump.c#L52
https://github.com/systemd/systemd/blob/main/src/coredump/coredump.c#L51
https://www.kernel.org/doc/man-pages/online/pages/man5/coredump.conf.5.html

#ProcessSizeMax=2G
#ExternalSizeMax=2G

Thus,	edit	/etc/systemd/coredump.conf	and	update	the	defaults;	for	example,	start	with	something	like	the
following	but	change	based	on	your	available	disk	space:

ProcessSizeMax=100G
ExternalSizeMax=100G
MaxUse=500G
Compress=no

Then	run:

sudo	systemctl	daemon-reload

Java	processes	do	not	need	to	be	restarted	for	this	change	to	take	effect.	As	of	this	writing,	there	is	no	way	to
specify	an	unlimited	value	for	ProcessSizeMax,	ExternalSizeMax	or	MaxUse	which	is	why	large	values	like
100G	are	used	above.	Compression	is	also	disabled	to	reduce	core	dump	production	times.

By	default,	cores	will	go	to	/var/lib/systemd/coredump/.	The	name	of	a	core	dump,	by	default,	is	period-
separated	with	core,	the	process	or	thread	name,	user	ID,	/proc/sys/kernel/random/boot_id,	PID,	and
the	time	when	the	core	was	created	in	microseconds	since	the	Unix	Epoch.	However,	in	the	case	of	J9-
forked	core	dumps,	the	process	ID	will	not	match	the	original	process	(instead,	use	jdmpview's	info	proc).

The	command	coredumpctl	provides	various	utility	commands	for	working	with	core	dumps.

	

apport

If	/proc/sys/kernel/core_pattern	is	set	to	|/usr/share/apport/apport,	then	apport	is	configured.

By	default,	cores	should	not	be	truncated	by	apport	and	they	go	to	/var/crash/	or
/var/lib/apport/coredump.

	

rdp

If	/proc/sys/kernel/core_pattern	is	set	to	|/opt/dynatrace/oneagent/agent/rdp,	then	the	Dynatrace
core	dump	processing	program	is	configured.

The	Dynatrace	program	does	some	basic	processing	of	the	core	dump	and	then	pipes	the	core	dump	to	the
underlying	core_pattern	that	was	configured	at	the	time	the	Dynatrace	program	was	installed.	This	is
located	in	the	file	/opt/dynatrace/oneagent/agent/conf/original_core_pattern.

Since	Eclipse	OpenJ9	0.41	(IBM	Java	8.0.8.15,	and	IBM	Semeru	Runtimes	v8.0.392,	v11.0.21,	and	v17.0.9),
if	core_pattern	includes	/oneagent/agent/rdp,	then	the	JVM	will	attempt	to	read	the	relative	file
/oneagent/agent/conf/original_core_pattern	and	write	its	contents	in	a	javacore.txt	file	(though	this
will	not	work	in	containers	as	the	file	is	on	the	worker	node);	for	example:

2CISYSINFO					/proc/sys/kernel/core_pattern	=	|/opt/dynatrace/oneagent/agent/rdp
2CISYSINFO					.../oneagent/agent/conf/original_core_pattern	=	|/usr/lib/systemd/systemd-coredump	%P	%u	%g	%s	%t	%c	%h

	

abrt

If	/proc/sys/kernel/core_pattern	is	set	to	|/usr/libexec/abrt-hook-ccpp,	then	abrt	is	configured.

https://github.com/systemd/systemd/issues/8685
https://github.com/systemd/systemd/blob/v253/src/coredump/coredump.c#L304
https://www.kernel.org/doc/man-pages/online/pages/man1/coredumpctl.1.html
https://wiki.ubuntu.com/Apport
https://www.dynatrace.com/support/help/platform-modules/applications-and-microservices/profiling-and-optimization/crash-analysis#linux-core-dump-handling
https://github.com/eclipse-openj9/openj9/pull/17626
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/ch-abrt

Modify	/etc/abrt/abrt.conf

Set	MaxCrashReportsSize=0	to	avoid	truncation.
By	default,	cores	will	go	to	/var/spool/abrt.	Set	DumpLocation=/var/spool/abrt	to	another
directory	if	/var/spool/	is	mounted	on	a	small	filesystem

	

Disabling	core	piping

You	may	completely	disable	the	core	piping	and	revert	to	the	Linux	default	of	core	which	produces	the	core
dump	in	the	process	current	working	directory,	but	you	must	then	manually	monitor	disk	space	to	ensure
core	dumps	do	not	fill	important	disk	partitions	(alternatively,	create	a	dedicated	partition	for	diagnostics
and,	on	J9	JVMs,	set	-Xdump:directory=$DIR):

After	core	piping	is	disabled	using	the	instructions	below,	the	JVM	does	not	need	to	be	restarted	for	the
changes	to	take	effect.

On	J9	JVMs,	the	JVMJ9VM135W	message	is	enabled	with	-Xcheck:dump	and	is	a	warning	that	system	cores
will	be	piped.	For	example:

JVMJ9VM135W	/proc/sys/kernel/core_pattern	setting	"|/usr/libexec/abrt-hook-ccpp	%s	%c	%p	%u	%g	%t	e"	specifies	that	core	dumps	are	to	be	piped	to	an	external	program.	The	JVM	may	be	unable	to	locate	core	dumps	and	rename	them."

It	is	often	preferable	to	completely	disable	piping	when	running	J9	JVMs	because	when	the	J9	JVM
produces	a	core	dump	or	handles	a	crash,	it	will	post-process	the	core	dump	to	rename	it	with	additional
information	and	also	add	some	additional	details	into	the	core	dump.	The	J9	JVM	is	not	able	to	do	this	post-
processing	if	a	pipe	program	processes	the	core	dump	first.	However,	disabling	piping	will	disable	piping	for
all	processes,	so	keep	that	in	mind.

	

Disabling	systemd-coredump	core	piping

If	/proc/sys/kernel/core_pattern	is	set	to	|/usr/lib/systemd/systemd-coredump,	disable	systemd-
coredump	with:

sudo	sh	-c	"ln	-sf	/dev/null	/etc/sysctl.d/50-coredump.conf	&&	sysctl	-w	kernel.core_pattern=core"

	

Disabling	apport	core	piping

If	/proc/sys/kernel/core_pattern	is	set	to	|/usr/share/apport/apport,	disable	with:

sudo	systemctl	stop	apport
sudo	systemctl	disable	apport
sudo	systemctl	mask	apport

	

Disabling	abrt	core	piping

If	/proc/sys/kernel/core_pattern	is	set	to	|/usr/libexec/abrt-hook-ccpp,	disable	with:

sudo	systemctl	stop	abrtd
sudo	systemctl	disable	abrtd
sudo	systemctl	mask	abrtd

	

https://www.freedesktop.org/software/systemd/man/environment.d.html

Native	Java	Agents

JVMTI	is	the	latest	and	is	available	in	Java	5	and	replaces	JVMDI	and	JVMPI.	JVMDI	and	JVMPI	are	fully
deprecated	in	Java	6.	When	JVMPI	is	enabled,	the	JVM	looks	for	the	exported	method	JVM_OnLoad	in	the
binary.	When	JVMTI	is	enabled,	the	JVM	looks	for	the	exported	method	Agent_OnLoad	in	the	binary.

JVMPI	is	specified	using	the	-Xrun...	command	line	option

JVMTI	is	specified	using	the	-agentlib...	or	-agentpath...	command	line	options

	

Java	Serialization

Java	serialization	stream	protocol:
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/protocol.html

The	eye	catcher	for	a	serialized	Java	object	in	a	byte	stream	is	0xAC	0xED	(STREAM_MAGIC).

	

Verbose	Garbage	Collection

Verbose	garbage	collection	may	be	dynamically	enabled	with	the	Memory	MBean:

		

Killing	Threads

The	java/lang/Thread	methods	destroy,	stop,	and	suspend	are	all	deprecated	and	considered	unsafe.	The
alternative	is:

[...]	code	that	simply	modifies	some	variable	to	indicate	that	the	target	thread	should	stop
running.	The	target	thread	should	check	this	variable	regularly,	and	return	from	its	run	method	in
an	orderly	fashion	if	the	variable	indicates	that	it	is	to	stop	running.

The	java/lang/Thread	interrupt	method	may	be	used	for	a	"thread	that	waits	for	long	periods	(e.g.,	for	input)".

http://docs.oracle.com/javase/7/docs/platform/serialization/spec/protocol.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#destroy--
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#stop--
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#suspend--
https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#interrupt--
https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

If	the	thread	is	in	some	well	known	methods	like	Object.wait,	Thread.sleep,	etc.,	or	if	the	I/O	channel	is
interruptible,	then	this	will	"inject"	an	exception	into	the	thread	which	will	be	safely	thrown.	However,	this
will	not	work	if	the	thread	is	in	an	infinite	loop	that	is	just	using	CPU	and	uses	no	interruptible	APIs.

Liberty	requestTiming	has	an	optional	interruptHungRequests="true"	option	that	attemps	to	interrupt	a
thread	when	it	exceeds	the	hungRequestThreshold	on	J9-based	JVMs	using	its	Interruptible	features;
however,	this	may	not	work	for	run-away	looping	threads.

Liberty	has	"hang	resolution"	for	the	entire	thread	pool	when	there	are	tasks	in	the	queue	and	no	tasks	are
being	completed;	however,	this	does	not	help	with	run-away	threads.

WAS	traditional	on	z/OS	has	the	ability	to	recognize	when	a	request	has	exceeded	a	configured	amount	of
CPU	usage	and	quiesce	the	associated	WLM	enclave	which	puts	it	in	WLM's	discretionary	class.	This	is
called	the	Interruptible	Thread	Infrastructure	and	also	uses	J9's	Interruptible	features.

There	is	a	discussion	about	using	jdb	to	inject	a	RuntimeException	into	a	thread;	however,	the	kill	command
is	undocumented	and	is	likely	unsafe	under	all	conditions.	jdb	also	requires	that	the	process	has	debugging
enabled	which	has	various	implications.

WebSphere	Application	Server	traditional	has	Thread.interrupt	capabilities	as	part	of	its	memory	leak
detection	feature.

	

Patching

Notes	for	creating	a	patch:

1.	 Every	iteration	of	a	diagnostic	patch	should	include	a	log	entry	of	some	kind	to	confirm	the	patch	has
been	loaded	correctly.	Also	update	the	version	number	on	each	iteration	so	that	the	specific	version	of
a	patch	is	being	used	may	be	confirmed.	For	example,	add	a	static	initiailizer	to	one	of	the	classes	in
the	patch	that	is	expected	to	be	used	at	runtime:

static	{
		System.err.println("MyPatch	V1");
}

Options	to	run	a	patch:

1.	 For	Java	<=	8,	create	a	jar	with	the	classes	and	default	manifest	using	jar	cvf	mypatchV1.jar
package1	package2	and	prepend	it	to	the	boot	classpath:	-Xbootclasspath/p:$PATH/mypatchV1.jar

2.	 For	Java	>	8,	create	a	jar	as	above	and	patch	the	the	module	at	runtime	with	the	option:	--patch-
module	$MOD=$PATH/mypatchV1.jar

	

Troubleshooting	OpenJ9	and	IBM	J9	JVMs

IBM	Java	Versions

Each	Java	release	has	service	releases	which	are	fixpack	upgrades,	normally	with	APARs,	but	sometimes
with	feature	enhancements,	for	example	SR1.	Finally,	service	releases	themselves	may	have	fix	packs,	for
example	FP1.	An	example	IBM	Java	version	commonly	seen	is:	IBM	Java	Version	7R1	SR1	FP1

	

Debug	symbols

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_requesttiming.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/j9_blocked_threads.html
https://openliberty.io/docs/ref/general/#thread-pool-tuning.html
https://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/3c02b79e79ea32fd8625751a005d7f63/$FILE/WP101374%20-%20WebSphere%20zOS%20V7%20Dispatch%20Timeout%20Improvements.pdf
https://stackoverflow.com/a/15911133/1293660
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdb.html
https://www.ibm.com/docs/en/was-nd/9.0.5?topic=tools-configuring-memory-leak-policy
https://www.oracle.com/java/technologies/javase/v9-issues-relnotes.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html#BABHDABI
https://docs.oracle.com/javase/9/tools/java.htm#GUID-3B1CE181-CD30-4178-9602-230B800D4FAE__GUID-ABA4F32C-222A-48BC-BE92-3B167D3134AD

Click	"Show	all	X	assets"	under	a	release	to	find	*debugimage*	packages	that	have	*.debuginfo,
.pdb/.map,	and	*.dSYM	files:

IBM	Semeru	Runtimes	21
IBM	Semeru	Runtimes	17
IBM	Semeru	Runtimes	11
IBM	Semeru	Runtimes	8

	

Thread	Dump	(javacore.txt)

IBM	Java	can	produce	a	javacore.txt	file,	also	called	a	javadump.	An	example	file	name	is
javacore.20140930.025436.9920.0003.txt.

In	general,	javacores	are	very	low	overhead.	They	usually	take	no	more	than	a	few	hundred	milliseconds	to
produce.	However,	there	are	known	defects	in	IBM	Java	that	cause	the	entire	JVM	to	freeze	when	requesting
a	javacore.	These	are	usually	caused	by	race	conditions	and	are	more	likely	the	more	javacores	that	are
taken.	Therefore,	there	is	some	risk	in	taking	javacores	in	production,	and	this	risk	is	proportional	to	the
number	of	javacores	taken.	Before	taking	a	lot	of	javacores,	ensure	that	you	have	fixes	installed	for	the	most
common	of	these	hangs:

IJ38084
IZ84925
IV66662
IZ89711

Staring	with	IBM	Java	5,	you	may	see	threads	in	a	javacore	which	are	in	Conditional	Wait	(CW)	state	that
you	would	expect	to	be	Runnable	(R).	This	is	by	design;	however,	starting	with	Java	7.1	SR2,	Java	7.0	SR8,
and	Java	6.1	SR8	FP2,	such	threads	are	reported	as	Runnable	and	the	internal	state	is	reported	in	the	vmstate
field.

	

Request	Thread	Dump

Additional	methods	of	requesting	thread	dumps	are	documented	in	the	Troubleshooting	WAS	chapter.

1.	 On	non-Windows	operating	systems,	by	default,	the	command	kill	-3	${PID}	will	request	a	thread
dump.

2.	 For	Semeru	Java,	use	jcmd:

jcmd	$PID	Dump.java

3.	 For	IBM	Java	>=	8.0.6.0:

java	-Xbootclasspath/a:%JAVA_HOME%\lib\tools.jar	openj9.tools.attach.diagnostics.tools.Jcmd	%PID%	Dump.java

4.	 For	IBM	Java	>=	8.0.7.20	and	Semeru	>=	11.0.17.0	on	non-Windows	platforms,	restart	with:

-Xdump:java:events=user2,request=exclusive+preempt

Then	request	the	system	dump	with:

kill	-USR2	$PID

5.	 Programmatically	with	com.ibm.jvm.Dump.JavaDump()
6.	 On	recent	versions	of	IBM	Java,	use	Java	Surgery:

$	java	-jar	surgery.jar	-pid	${PID}	-command	JavaDump		

7.	 The	trace	engine	may	be	used	to	request	a	thread	dump	on	method	entry	and/or	exit.	The	following

https://github.com/ibmruntimes/semeru21-binaries/releases
https://github.com/ibmruntimes/semeru17-binaries/releases
https://github.com/ibmruntimes/semeru11-binaries/releases
https://github.com/ibmruntimes/semeru8-binaries/releases
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/javadump_interpret.html
https://www.ibm.com/support/pages/apar/IJ38084
http://www-01.ibm.com/support/docview.wss?uid=swg1IZ84925
http://www-01.ibm.com/support/docview.wss?uid=swg1IV66662
http://www-01.ibm.com/support/docview.wss?uid=swg1IZ89711
http://www-01.ibm.com/support/docview.wss?uid=swg21413580
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/diag/tools/javadump_tags_threads.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/diagnostics_summary.html
https://www.ibm.com/support/pages/ibm-runtime-diagnostic-code-injection-java-platform-java-surgery
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/trace_options_trigger.html

example	JVM	argument	requests	a	thread	dump	when	the	Example.trigger()	method	is	called:

-Xtrace:maximal=mt,trigger=method{com/ibm/example/Example.trigger,javadump}

By	default,	a	user	requested	javacore	has	the	request=exclusive	option	which	asks	for	exclusive	access
before	executing	the	javacore.	However,	unlike	other	agents,	if	exclusive	access	cannot	be	granted,	the
javacore	creation	will	still	proceed	with	some	data	excluded	for	safety.	There	is	a	known	APAR
IV68447/PI32843	where	heap	corruption	may	occur	if	a	javacore	runs	during	a	garbage	collection	cycle.

	

Process	Limits	(ulimits)

On	recent	versions	of	IBM	Java	and	applicable	operating	systems,	a	javacore	includes	a	section	with	the
current	ulimit	values	of	the	process:

1CIUSERLIMITS		User	Limits	(in	bytes	except	for	NOFILE	and	NPROC)
NULL											--
NULL											type																												soft	limit											hard	limit
2CIUSERLIMIT			RLIMIT_AS																								unlimited												unlimited
2CIUSERLIMIT			RLIMIT_CORE																						unlimited												unlimited
2CIUSERLIMIT			RLIMIT_CPU																							unlimited												unlimited
2CIUSERLIMIT			RLIMIT_DATA																						unlimited												unlimited
2CIUSERLIMIT			RLIMIT_FSIZE																					unlimited												unlimited
2CIUSERLIMIT			RLIMIT_LOCKS																					unlimited												unlimited
2CIUSERLIMIT			RLIMIT_MEMLOCK																							65536																65536
2CIUSERLIMIT			RLIMIT_NOFILE																									8192																	8192
2CIUSERLIMIT			RLIMIT_NPROC																								213234															213234
2CIUSERLIMIT			RLIMIT_RSS																							unlimited												unlimited
2CIUSERLIMIT			RLIMIT_STACK																							8388608												unlimited
2CIUSERLIMIT			RLIMIT_MSGQUEUE																					819200															819200
2CIUSERLIMIT			RLIMIT_NICE																														0																				0
2CIUSERLIMIT			RLIMIT_RTPRIO																												0																				0
2CIUSERLIMIT			RLIMIT_SIGPENDING																			213234															213234

When	requesting	a	system	dump	using	the	IBM	system	dump	mechanism,	the	JVM	will	ensure	that	the
RLIMIT_CORE	hard	limit	is	used.

	

NATIVEMEMINFO

In	recent	versions	of	IBM	Java,	the	NATIVEMEMINFO	section	summarizes	native	memory	allocations	that
the	JVM	has	made.

0SECTION							NATIVEMEMINFO	subcomponent	dump	routine
1MEMUSER							JRE:	4,786,464,960	bytes	/	14237	allocations
2MEMUSER							+--VM:	4,734,576,408	bytes	/	11959	allocations
3MEMUSER							|		+--Classes:	130,832,328	bytes	/	5225	allocations
3MEMUSER							|		+--Memory	Manager	(GC):	4,388,855,680	bytes	/	1502	allocations
4MEMUSER							|		|		+--Java	Heap:	4,294,967,296	bytes	/	1	allocation...

On	64-bit	Java,	the	"Unused	<32bit	allocation	regions:	6,708,704	bytes"	line	summarizes	how	much	native
memory	is	free	in	the	pooled	region	allocations	underneath	4GB.

If	-Dcom.ibm.dbgmalloc=true	is	specified,	then	additional	information	will	be	added	to	NATIVEMEMINFO
including	native	memory	used	by	the	Zip/Jar	SDK	code:

4MEMUSER	|	|	+--Zip:	5,913,128	bytes	/	2271	allocations
4MEMUSER	|	|	+--Wrappers:	64,320	bytes	/	193	allocations
5MEMUSER	|	|	|	+--Malloc:	64,320	bytes	/	193	allocations

As	an	alternative,	or	in	addition	to,	NATIVEMEMINFO	analysis,	Andrew	Hall	wrote	a	wonderful	little	Perl

http://www-01.ibm.com/support/docview.wss?uid=swg21222437
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/javadump_tags_nativememinfo.html

script	named	get_memory_use.pl	that	takes	an	IBM	javacore.txt	file	and	prints	the	number	of	reserved	bytes
for	each	IBM	Java	native	memory	segment	(the	many	pages	of	hex	addresses	towards	the	top	of	the
javacore).	Native	memory	segments	are	all	of	the	(pooled)	native	memory	allocations	that	IBM	Java	makes,
such	as	the	Java	heap	itself,	classes,	JIT,	etc.	This	script	has	been	enhanced	to:	1)	print	the
NATIVEMEMINFO	section	if	available,	and	2)	summarize	the	virtual	memory	layout	of	the	sections	based
on	256MB	sized	segments:

$	perl	get_memory_use.pl	javacore.20140507.195651.17236140.0001.txt

	

Virtual	Memory	Layout

A	virtual	memory	layout	of	native	memory	allocations	made	by	IBM	Java	may	be	created	by	simply	listing
the	start	and	end	addresses	of	all	IBM	Java	native	memory	segments:

$	grep	1STSEGMENT	javacore*.txt	|	awk	'{print	$3,$5}'	|	sort

This	list	may	be	useful	to	correlate	to	an	operating	system	virtual	memory	layout	to	figure	out	what	is
allocated	by	IBM	Java	versus	native	allocations	oustide	of	IBM	Java.

First,	determine	whether	most	of	the	native	memory	is	accounted	for	by	Java	or	not.	If	RSS	is	much	larger
than	expected,	then	gather	either	1)	the	output	of	/proc/${PID}/smaps,	or	2)	a	core	file	(you'll	also	need	the
java	executable	to	load	in	gdb).	#1	will	look	something	like	this:

...
7f3498000000-7f34a0000000	rw-p	00000000	00:00	0	
Size:													131072	kB
Rss:														131072	kB
Pss:														131072	kB...

In	the	case	of	#2,	you	can	get	an	output	that's	a	subset	of	#1	through	gdb	by	running	"info	files"	and
reviewing	the	core	dump	section	(you	can	also	get	this	info	without	gdb	by	running	readelf	--program-
headers	core.dmp):

$	gdb	${PATH_TO_JAVA_EXE}	${PATH_TO_CORE}
(gdb)	info	files
Symbols	from	"java".
Local	core	dump	file:
				`core.16721.dmp',	file	type	elf64-x86-64.
				...
				0x00007f3498000000	-	0x00007f34a0000000	is	load51...

Create	a	list	of	the	sizes	of	these	virtual	memory	areas	(VMAs)	and	then	cross-reference	their	ranges	with	the
memory	segment	ranges	in	the	javacore	($3	for	the	start	and	$5	for	the	end):

$	grep	"1STSEGMENT	"	javacore.20140703.171909.16721.0002.txt	|	awk	'{print	$3}'	|	sort

If	you've	found	large	VMAs	that	aren't	accounted	for	by	IBM	Java,	then	it	may	be	worth	exploring	their	raw
memory	to	figure	out	whodunnit.	GDB	has	the	x	command	to	print	raw	memory,	but	it's	not	easy	on	the	eye:

(gdb)	x/32xc	0x00007f3498000000
0x7f3498000000:	32	'	'		0	'\000'				0	'\000'				28	'\034'			54	'6'		127	'\177'		0	'\000'				0	'\000'
0x7f3498000008:	0	'\000'				0	'\000'				0	'\000'				-92	'\244'		52	'4'		127	'\177'		0	'\000'				0	'\000'
0x7f3498000010:	0	'\000'				0	'\000'				0	'\000'				4	'\004'				0	'\000'				0	'\000'				0	'\000'				0	'\000'
0x7f3498000018:	0	'\000'				0	'\000'				0	'\000'				4	'\004'				0	'\000'				0	'\000'				0	'\000'				0	'\000'

Another	option	is	to	dump	memory	to	a	file	and	then	spawn	an	xxd	process	from	within	gdb	to	dump	that
file:

(gdb)	define	xxd
Type	commands	for	definition	of	"xxd".
End	with	a	line	saying	just	"end".

https://www.ibm.com/developerworks/library/j-nativememory-aix/
https://raw.githubusercontent.com/kgibm/problemdetermination/master/scripts/java/ibm/get_memory_use.pl
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/javadump_tags_meminfo.html

>dump	binary	memory	dump.bin	$arg0	$arg0+$arg1
>shell	xxd	dump.bin
>shell	rm	-f	dump.bin
>end
(gdb)	xxd	0x00007f3498000000	32
0000000:	2000	001c	367f	0000	0000	00a4	347f	0000			...6.......4...
0000010:	0000	0004	0000	0000	0000	0004	0000	0000	

In	this	example,	we	found	out	later	that	this	was	a	Glibc	malloc	arena.	Unfortunately,	Glibc	doesn't	put	an
eye	catcher	at	the	top	of	each	arena,	so	the	only	way	to	know	for	sure	would	be	to	point	to	the	debuginfo
packages	and	walk	the	arena	chain	(first,	p	main_arena.next,	cast	to	malloc_state	and	dereference,	p	*
((struct	malloc_state	*(0x00007f3498000000),	and	so	on	until	next	==	p	&main_arena).

For	large	VMAs,	it's	probably	best	to	just	dump	the	VMA	to	a	file:

dump	binary	memory	dump.bin	0x00007f3498000000	0x00007f34a0000000

And	then	just	xxd	the	file	and	pipe	to	less.	If	you	have	smaps	output,	then	review	the	Rss	line	to	see	how
much	of	the	VMA	was	resident	in	RAM	at	the	time.

If	the	VMA	was	mmap'ped	(like	a	malloc	arena),	then	remember	that	mmap	will	zero	the	chunk	of	memory
first,	so	unused	parts	will	be	zeros.	A	simple	trick	to	filter	those	out	is	to	remove	all	zero	lines:

$	xxd	dump.bin	|	grep	-v	"0000	0000	0000	0000	0000	0000	0000	0000"	|	less

	

JVM-Allocated	Native	Memory

Every	JVM-allocated	native	memory	chunk	is	allocated	with	a	header	and	a	footer	of	type	J9MemTag.	The
first	32	bytes	is	an	eye	catcher,	the	second	32	bytes	is	a	checksum,	the	third	word	is	the	allocation	size,	the
fourth	word	is	a	pointer	to	a	string	describing	the	type	of	allocation,	and	the	fifth	word	is	a	pointer	to	the
allocation	category.	The	header	eyecatcher	is	0xB1234567	for	an	active	allocation	and	0xBADBAD67	for	a
freed	allocation.	The	footer	eyecatcher	is	0xB7654321	for	an	active	allocation	and	0xBADBAD21	for	a	freed
allocation.	Note	that	malloc	libraries	such	as	Linux	glibc	will	overwrite	the	first	two	words	of	a	freed	chunk
as	housekeeping	pointers.	On	64-bit,	this	means	that	the	eyecatcher,	checksum,	and	allocation	size	will	be
overwritten	in	the	header	tag;	however,	the	same	data	is	available	in	the	footer	tag,	so	it's	best	to	use	that.

	

Accumulated	CPU	Time

Compare	accumulated	CPU	time	between	threads	across	two	javacores	(replace	the	first	two	lines	with	the
javacore	file	names):

JAVACORE1=javacore.20171117.145059.26621.0001.txt;	\
JAVACORE2=javacore.20171117.145108.26621.0003.txt;	\
		join	-a	1	-a	2	\
				<(\
						grep	-e	'3XMTHREADINFO	'	-e	3XMCPUTIME	"${JAVACORE1}"	|	\
								grep	-v	'Anonymous	native	thread'	|	\
								sed	'$!N;s/\n/	/'	|	\
								sed	's/3XMTHREADINFO.*J9VMThread://g'	|	\
								sed	's/,.*CPU	usage	total://g'	|	\
								sed	's/	secs.*//g'	|	\
								sort
)\
				<(\
						grep	-e	'3XMTHREADINFO	'	-e	3XMCPUTIME	"${JAVACORE2}"	|	\
								grep	-v	'Anonymous	native	thread'	|	\
								sed	'$!N;s/\n/	/'	|	\
								sed	's/3XMTHREADINFO.*J9VMThread://g'	|	\
								sed	's/,.*CPU	usage	total://g'	|	\

https://github.com/eclipse/openj9-omr/blob/openj9-0.21.0/port/common/omrmemtag.c#L81
https://github.com/eclipse/openj9-omr/blob/openj9-0.21.0/include_core/omrport.h#L476
https://github.com/eclipse/openj9-omr/blob/openj9-0.21.0/include_core/omrport.h#L470
https://github.com/eclipse/openj9-omr/blob/openj9-0.21.0/include_core/omrport.h#L471

								sed	's/	secs.*//g'	|	\
								sort
)	|	\
							awk	'{	printf	"%s	%.9f\n",	$0,	$3-$2	}'	|	sort	-nr	-k	4

	

Thread	States

The	Javacore.txt	thread	dump	shows	the	state	of	each	thread	at	the	time	of	the	dump;	most	commonly,	R	for
runnable,	CW	for	conditional	wait,	B	for	blocked,	and	P	for	parked.	It	has	been	a	common	confusion	since
IBM	Java	version	5	that	threads	which	are	effectively	running	(R)	are	actually	reported	as	waiting	(CW).
This	is	because	the	JVM	uses	a	cooperative	mechanism	to	try	to	quiesce	running	threads	for	the	duration	of
the	Javacore	to	reduce	the	chances	of	problems	creating	the	javacore	itself.	Tools	such	as	IBM	TMDA
naïvely	report	the	thread	dump	state	without	taking	this	into	account:

2LKREGMON										Thread	public	flags	mutex	lock	(0x00000000015E0438):	<unowned>
3LKNOTIFYQ												Waiting	to	be	notified:
3LKWAITNOTIFY												"main"	(0x00000000015F6000)

However,	starting	with	Java	8,	Java	7,	Java	6.1,	and	Java	6	SR16	FP4,	the	javacore.txt	file	reports	these
thread	states	as	runnable,	and	moves	the	"true"	state	into	the	vmstate	field:	"Threads	that	were	running	Java
code	when	the	javacore	was	triggered	have	a	Java	thread	state	of	R	(Runnable)	and	an	internal	VM	thread
state	of	CW	(Condition	Wait)."	(<>)

3XMTHREADINFO						"main"	J9VMThread:0x00000000210E3100,	j9thread_t:0x00007F0FB4007C30,	java/lang/Thread:0x0000000020FE1D98,	state:R,	prio=5
3XMJAVALTHREAD												(java/lang/Thread	getId:0x1,	isDaemon:false)
3XMTHREADINFO1												(native	thread	ID:0x13DA,	native	priority:0x5,	native	policy:UNKNOWN,	vmstate:CW,	vm	thread	flags:0x00000001)
3XMTHREADINFO2												(native	stack	address	range	from:0x00007F0FBA12B000,	to:0x00007F0FBAB2C000,	size:0xA01000)

	

Check	which	thread	has	exclusive	access	in	a	javacore

1.	 Find	all	threads	whose	vm	thread	flags	bit	flags	have	J9_PUBLIC_FLAGS_VM_ACCESS	(0x20).
Ensure	that	only	one	thread	has	this	and	that	all	other	threads	have	the	big	flag
J9_PUBLIC_FLAGS_HALT_THREAD_EXCLUSIVE	(0x1).	For	example,	WebContainer	:	7 	has
0x20	and	the	others	have	0x1:

$	grep	-e	"XMTHREADINFO	"	-e	"vm	thread	flags"	javacore*.txt
3XMTHREADINFO						"WebContainer	:	7"	J9VMThread:0x0000000004C82700,	omrthread_t:0x0000153A040C9248,	java/lang/Thread:0x00000000F3FBB0D8,	state:R,	prio=5
3XMTHREADINFO1												(native	thread	ID:0x106E,	native	priority:0x5,	native	policy:UNKNOWN,	vmstate:R,	vm	thread	flags:0x00001020)
3XMTHREADINFO						"WebContainer	:	10"	J9VMThread:0x0000000004EB9400,	omrthread_t:0x00001539A401C7F8,	java/lang/Thread:0x00000000F3CE9BC8,	state:R,	prio=5
3XMTHREADINFO1												(native	thread	ID:0x1078,	native	priority:0x5,	native	policy:UNKNOWN,	vmstate:CW,	vm	thread	flags:0x00000081)
[...]

For	a	more	complete	picture,	perform	this	on	a	core	dump	using	jdmpview.

	

Heapdumps	and	system	dumps

A	heapdump	contains	information	on	the	Java	heap.	This	is	used	for	investigating	OutOfMemoryErrors,

http://www-01.ibm.com/support/docview.wss?uid=swg21413580
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/javadump_tags_threads.html
https://github.com/eclipse/openj9/blob/v0.22.0-release/runtime/oti/j9consts.h#L186
https://github.com/eclipse/openj9/blob/v0.22.0-release/runtime/oti/j9consts.h#L181

tuning	Java	heap	usage,	etc.	On	IBM	Java,	historically,	a	heapdump	was	equivalent	to	an	IBM	Portable
Heapdump	(PHD)	file.	A	PHD	heapdump	is	written	by	code	in	IBM	Java	and	is	generally	limited	to	object
reference	analysis.	Recently,	IBM	Java	has	pushed	a	new	strategic	direction	to	use	system	dumps	instead	of
PHD	heapdumps.	A	system	dump	is	equivalent	to	the	operating	system	process	memory	dump	(Unix=core,
Windows=dump,	z/OS=DUMP,	etc.).	System	dumps	are	written	by	the	operating	system.	In	essence,	system
dumps	are	a	superset	of	PHD	heapdumps.	Not	only	do	they	include	the	Java	heap,	but	they	also	include
object	memory	(for	example,	the	actual	value	of	a	String,	etc.),	which	brings	them	to	parity	with	HotSpot
HPROF	heapdumps.	Additionally,	system	dumps	include	more	detailed	thread	information	(including	some
of	the	Java	stack	frame	locals	on	each	stack	frame,	which	can	be	incredibly	useful,	such	as	finding	out	which
database	SQL	query	is	executing),	more	accurate	garbage	collection	root	information,	native	memory
information,	and	more.

Starting	in	IBM	Java	626	(WAS	8.0.0.2),	a	system	dump	has	been	added	for	the	first	OutOfMemoryError.
Thus,	the	default	has	changed	to	produce	a	PHD	heapdump,	javacore,	snap	file,	and	a	system	dump	on	OOM.

In	older	versions	of	IBM	Java,	the	jextract	tool	was	required	to	post-process	a	system	dump.	This	was
cumbersome	and	time	consuming.	Starting	with	Java	5	>=	SR12	(WAS	>=	6.1.0.33),	Java	6	>=	SR9	(WAS
>=	7.0.0.15),	Java	626	(WAS	8),	DTFJ-based	tools	such	as	the	Eclipse	Memory	Analyzer	Tool	(MAT)	with
IBM	DTFJ	plugin	can	read	a	system	dump	directly,	just	like	a	PHD	heapdump.	Jextract	may	still	be	useful
for	investigating	native	memory	information	(because	jextract	will	also	gather	native	libraries	from	the
filesystem),	but	in	general,	a	system	dump	is	now	as	easy	to	use	as	a	PHD	heapdump.

Unfortunately,	most	customers	on	Unix	operating	systems	are	still	configured	with	constrained	ulimits	which
truncate	system	dumps,	making	them	usually	useless.	It	is	critical	that	you	properly	configure	Unix	systems
for	full	core	dumps:

Enabling	full	cores	on	Linux
Enabling	full	cores	on	AIX

System	dumps	usually	compress	to	25%	of	original	size	using	zip,	gzip,	etc.

For	the	best	system	dump	performance,	ensure	significant	free	physical	memory	so	that	the	operating	system
can	write	it	to	RAM	and	then	asynchronously	flush	to	disk.

To	analyze	both	heapdumps	and	system	dumps,	see	the	Eclipse	Memory	Analyzer	Tool	chapter.

To	disable	heapdumps	and	core	dumps	on	OOM	but	keep	core	dumps	on	crashes:

-Xdump:heap:none	-Xdump:system:none:events=systhrow,filter=java/lang/OutOfMemoryError

	

Portable	Heap	Dump	(PHD)

In	general,	IBM	Java	uses	two	formats	for	heapdumps:	IBM	Portable	Heapdump	(PHD)	and	an	operating
system	dump.	The	latter	is	a	superset	of	the	former.

The	operating	system	dump	is	simply	a	core	dump	of	the	virtual	address	space	(Unix=core,
Windows=userdump,	z/OS=SYSDUMP)	of	the	process.	In	older	versions	of	IBM	Java,	the	JVM's	jextract
tool	was	required	to	be	run	on	an	operating	system	dump	before	it	could	be	analyzed.	Starting	with	Java	5	>=
SR12,	Java	6	>=	SR9,	and	later	Java	releases,	jextract	is	not	necessary	because	IBM	has	created	file	readers
for	operating	system	dumps	for	all	operating	systems	on	which	IBM	Java	runs.	Tools	such	as	the	IBM
Memory	Analyzer	Tool	use	the	IBM	Diagnostic	Tool	Framework	for	Java	API	to	read	the	heapdump	from
jextracted	ZIPs	or	operating	system	dumps.

An	IBM	PHD	file	contains	basic	information	about	the	Java	heap	such	as	the	graph	of	relationships	between
objects	and	their	size.	An	operating	system	dump	is	a	superset	of	a	PHD	heap	dump	and	includes	everything
about	the	process;	thus,	in	general,	it	will	be	larger	and	take	longer	to	produce	than	an	IBM	PHD	file.	An
operating	system	dump	is	usually	compressable	down	to	25%	of	its	original	size	for	transportation.

http://www-01.ibm.com/support/docview.wss?uid=swg21584396
ftp://aix.software.ibm.com/software/isa/isa410/production/metadata/com.ibm.dtfj.feature_1.6.0.201106211324/featureDesc.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/problem_determination/linux_setup.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.aix.80.doc/diag/problem_determination/aix_setup_full_core.html
http://www.ibm.com/developerworks/websphere/techjournal/1109_supauth/1109_supauth.html

	

Request	heap	dump

Additional	methods	of	requesting	heap	dumps	are	documented	in	the	Troubleshooting	WAS	chapter.

1.	 For	Semeru	Java,	use	jcmd:

jcmd	$PID	Dump.heap

2.	 For	IBM	Java	>=	8.0.6.0:

java	-Xbootclasspath/a:%JAVA_HOME%\lib\tools.jar	openj9.tools.attach.diagnostics.tools.Jcmd	%PID%	Dump.heap

3.	 For	IBM	Java	>=	8.0.7.20	and	Semeru	>=	11.0.17.0	on	non-Windows	platforms,	restart	with:

-Xdump:heap:events=user2,request=exclusive+prepwalk

Then	request	the	system	dump	with:

kill	-USR2	$PID

4.	 Use	Java	Surgery:

java	-jar	surgery.jar	-pid	${PID}	-command	HeapDump

5.	 Extract	a	PHD	heapdump	from	a	system	dump	using	the	heapdump	command	in	jdmpview
6.	 Restart	with	-Xdump:heap:events=user	to	take	one	on	kill	-3/Ctrl+Break.	Note	that	we	do	not

recommend	running	with	this	option	permanently	because	the	default	handler	only	produces	javacores
which	are	often	used	for	performance	investigations	whereas	a	heap	dump	causes	its	own	significant
performance	overhead.

7.	 Programmatically	with	com.ibm.jvm.Dump.HeapDump()
8.	 From	within	the	IBM	Memory	Analyzer	Tool:	File	}	Acquire	Heap	Dump
9.	 The	trace	engine	may	be	used	to	request	a	heap	dump	on	method	entry	and/or	exit.	The	following

example	JVM	argument	produces	a	heap	dump	when	the	Example.trigger()	method	is	called:

-Xtrace:maximal=mt,trigger=method{com/ibm/example/Example.trigger,heapdump}

	

System	Dumps	(core.dmp)

System	dumps	on	Linux

On	Linux,	when	IBM	Java	requests	the	system	dump,	it	forks	itself	and	then	kills	the	forked	child	process :

Linux	does	not	provide	an	operating	system	API	for	generating	a	system	dump	from	a	running
process.	The	JVM	produces	system	dumps	on	Linux	by	using	the	fork()	API	to	start	an	identical
process	to	the	parent	JVM	process.	The	JVM	then	generates	a	SIGSEGV	signal	in	the	child
process.	The	SIGSEGV	signal	causes	Linux	to	create	a	system	dump	for	the	child	process.	The
parent	JVM	processes	and	renames	the	system	dump,	as	required,	by	the	-Xdump	options,	and
might	add	additional	data	into	the	dump	file.	The	system	dump	for	the	child	process	contains	an
exact	copy	of	the	memory	areas	used	in	the	parent.	The	SDK	dump	viewer	can	obtain
information	about	the	Java	threads,	classes,	and	heap	from	the	system	dump.	However,	the	dump
viewer,	and	other	system	dump	debuggers	show	only	the	single	native	thread	that	was	running	in
the	child	process.

IBM	Java	then	looks	at	/proc/PID/maps	and	tries	to	append	information	to	the	core	dump	that	wouldn't
otherwise	be	there	(in	some	cases	this	is	not	possible	because	the	VMA	does	not	have	read	permission):	"The
Linux	operating	system	core	dump	might	not	contain	all	the	information	included	in	a	core	dump	produced
by	the	JVM	dump	agents".

https://www.ibm.com/support/pages/ibm-runtime-diagnostic-code-injection-java-platform-java-surgery
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/diagnostics_summary.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/trace_options_trigger.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/dumpagents_platform_nonzos.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/disablingdumpagentswith-xrs.html

In	general,	it	is	recommended	to	get	the	output	of	/proc/${PID}/smaps	at	the	same	time	as	getting	a	system
dump	if	you	will	be	interested	in	virtual	memory.

	

System	dumps	on	Windows

If	core	dumps	are	truncated,	test	setting	DumpType	to	a	value	such	as	2	or	0	and	custom	bitflags.	For
example:

1.	 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows	Error	Reporting\LocalDumps
2.	 DWORD	Decimal	=	2

	

Request	system	dump

Additional	methods	of	requesting	system	dumps	are	documented	in	the	Troubleshooting	Operating	Systems
and	Troubleshooting	WAS	chapter.

1.	 For	Semeru	Java,	use	jcmd:

jcmd	$PID	Dump.system

2.	 For	IBM	Java	>=	8.0.6.0:

java	-Xbootclasspath/a:%JAVA_HOME%\lib\tools.jar	openj9.tools.attach.diagnostics.tools.Jcmd	%PID%	Dump.system

3.	 For	IBM	Java	>=	8.0.7.20	and	Semeru	>=	11.0.17.0	on	non-Windows	platforms,	restart	with:

-Xdump:system:events=user2,request=exclusive+prepwalk

Then	request	the	system	dump	with:

kill	-USR2	$PID

4.	 Use	Java	Surgery:

java	-jar	surgery.jar	-pid	$PID	-command	SystemDump

5.	 Use	-Xdump:java+system:events=user,request=exclusive+prepwalk	to	take	one	on	kill	-
3/Ctrl+Break.	Note	that	we	do	not	recommend	running	with	this	option	permanently	because	the
default	handler	only	produces	javacores	which	are	often	used	for	performance	investigations	whereas	a
system	dump	causes	its	own	significant	performance	overhead.

6.	 Use	-Xdump:system:defaults:request=exclusive+prepwalk	to	change	the	system	dump	default	to
request	exclusive+prepwalk	and	then	use	some	mechanism	that	requests	a	system	dump	within	the
JVM.	Note	that	we	do	not	recommend	running	with	this	option	permanently	because	then	investigating
JVM	crashes	may	be	problematic.

7.	 Use	-Xdump:tool:events=user,request=exclusive+prepwalk,exec="gcore	%pid"	to	execute	a
program	that	requests	the	core	dump	on	kill	-3/Ctrl+Break.	Note	that	we	do	not	recommend
running	with	this	option	permanently	because	the	default	handler	only	produces	javacores	which	are
often	used	for	performance	investigations	whereas	a	system	dump	causes	its	own	significant
performance	overhead.

8.	 Automatically	produced	on	a	crash
9.	 Starting	with	Java	6.26	SR1,	a	system	dump	is	produced	on	the	first	OutOfMemoryError

10.	 In	earlier	versions	of	Java,	a	system	dump	may	be	produced	on	OOM	with:

-Xdump:heap:none	-Xdump:java+system:events=systhrow,filter=java/lang/OutOfMemoryError,range=1..4,request=exclusive+prepwalk

11.	 Programmatically	with	com.ibm.jvm.Dump.triggerDump("system:request=exclusive+prepwalk")
12.	 IBM	Health	Center	can	acquire	a	dump:	Monitored	JVM	}	Request	a	dump	}	System	Dump
13.	 The	IBM	Java	system	Dump	Agent	can	take	a	system	dump	on	various	events.	See	Table	2	in

https://docs.microsoft.com/en-us/windows/win32/wer/collecting-user-mode-dumps
https://github.com/eclipse/omr/blob/master/port/win32/omrosdump.c#L229
https://www.ibm.com/support/pages/ibm-runtime-diagnostic-code-injection-java-platform-java-surgery
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.60_26/vm626/GenericWrapper/whatsnew_sr1.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/diagnostics_summary.html
https://www.ibm.com/support/knowledgecenter/SS3KLZ/com.ibm.java.diagnostics.healthcenter.doc/topics/triggering.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/diag/tools/dumpagents_system.html
http://www.ibm.com/developerworks/library/j-memoryanalyzer/#N1026B

Debugging	from	Dumps.	For	example,	the	following	will	create	a	core	dump	when	the	Example.bad
method	throws	a	NullPointerException:

-Xdump:system:events=throw,range=1..1,request=exclusive+prepwalk,filter=java/lang/NullPointerException#com/ibm/example/Example.bad

14.	 The	trace	engine	may	be	used	to	request	a	system	dump	on	method	entry	and/or	exit.	The	following
example	JVM	argument	produces	a	system	dump	when	the	Example.trigger()	method	is	called:

-Xtrace:maximal=mt,trigger=method{com/ibm/example/Example.trigger,sysdump}

15.	 From	within	the	Eclipse	Memory	Analyzer	Tool:	File	}	Acquire	Heap	Dump

	

Exclusive-access	for	System	Dumps

One	of	the	main	issues	with	requesting	system	dumps	is	that	the	default	dump	agent	for	system	dumps	does
not	request	exclusive	access.

This	is	required	because	some	GPFs,	aborts,	and	other	conditions	need	to	take	system	dumps	without
requesting	exclusive	access	(for	example,	if	there	is	a	bug	within	the	GC	itself	that	causes	a	crash).

The	problem	is	that	if	a	system	dump	is	requested	while	a	garbage	collection	is	running,	this	normally	means
that	the	system	dump	will	be	unusable	by	tools	such	as	Memory	Analyzer	Tool.	The	garbage	collector	is
modifying	core	data	structures	and	moving	pointers	and	references	which	will	utterly	confuse	memory
analysis	tools.	The	API	com.ibm.jvm.Dump.SystemDump	which	is	used	by	most	mechanisms	to	request
system	dumps	(e.g.	wsadmin,	Liberty	server	dump,	etc.)	uses	the	default	dump	agent	which	means	it	does	not
request	exclusive	access.

On	IBM	Java	>=	7.1,	the	exclusive	option	may	be	passed	to	the	triggerDump	API	call:

com.ibm.jvm.Dump.triggerDump("system:request=exclusive+prepwalk");

The	Java	Surgery	tool's	SystemDump	command	uses	this	API	if	it	is	available.

On	IBM	Java	<	7.1,	there	aren't	many	good	options	to	ensure	that	requesting	a	system	dump	requests
exclusive	access	to	avoid	such	a	situation.	The	most	obvious	option	would	be	to	create	a	system	dump	on	the
user	event	(kill	-3)	and	request	exclusive	access	there;	but,	in	general,	the	user	event	should	be	used	for
lightweight	diagnostics	such	as	thread	dumps	and	it	should	not	be	used	for	heapdumps	or	system	dumps.

The	best	option	is	to	create	a	dump	agent	which	requests	a	system	dump	with	the	exclusive	option	when	a
diagnostic	exception	is	thrown	and	then	use	a	tool	such	as	Java	surgery	to	inject	a	small	JAR	into	the	JVM
that	throws	such	an	exception.	First,	set	the	following	JVM	option:

-Xdump:system:events=throw,filter=com/ibm/rdci/surgery/builtin/commands/CustomException1,request=exclusive+prepwalk

Then	use	Java	Surgery	to	attach	and	throw	the	exception:

java	-jar	surgery.jar	-command	ThrowException	-pid	${PID}

In	addition,	as	part	of	J9's	post-processing	of	system	dumps,	additional	information	is	added	to	the	dump	that
is	not	added	by	the	operating	system.	For	example,	on	Linux,	from	older	documentation:	"The	Linux
operating	system	core	dump	might	not	contain	all	the	information	included	in	a	core	dump	produced	by	the
JVM	dump	agents."

	

Late	attach

On	z/OS,	late	attach	is	disabled	by	default	and	may	be	enabled	with	-Dcom.ibm.tools.attach.enable=yes

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/trace_options_trigger.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/dump_agents_defaults.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/dump_agents_request.html
https://www.ibm.com/support/pages/ibm-runtime-diagnostic-code-injection-java-platform-java-surgery
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=7d3dc078-131f-404c-8b4d-68b3b9ddd07a

A	diagnostic	log	may	be	enabled	for	J9's	late	attach	mechanism	with	the	logging	option:

-Dcom.ibm.tools.attach.logging=yes

By	default,	this	creates	a	file	named	$PID.log	in	the	current	working	directory	of	the	process	(the	file	prefix
may	be	changed	with	-Dcom.ibm.tools.attach.log.name).	Example	output:

1617637336015(Mon	Apr	05	15:42:16	UTC	2021)	2458:	19	[Attach	API	initializer]:	AttachHandler	initialized
[...]
1617637364670(Mon	Apr	05	15:42:44	UTC	2021)	2458:	23	[Attachment	32835]:	connectToAttacher	localPort=43314	remotePort=32835
1617637364671(Mon	Apr	05	15:42:44	UTC	2021)	2458:	23	[Attachment	32835]:	streamSend	ATTACH_CONNECTED	e4404c99752ab0ec	
1617637364672(Mon	Apr	05	15:42:44	UTC	2021)	2458:	22	[Attach	API	wait	loop]:	Blocking	lock	succeeded
1617637364673(Mon	Apr	05	15:42:44	UTC	2021)	2458:	22	[Attach	API	wait	loop]:	iteration	0	checkReplyAndCreateAttachment	releaseLock
1617637364673(Mon	Apr	05	15:42:44	UTC	2021)	2458:	22	[Attach	API	wait	loop]:	unlocking	file	/tmp/.com_ibm_tools_attach/2458/attachNotificationSync
1617637364673(Mon	Apr	05	15:42:44	UTC	2021)	2458:	22	[Attach	API	wait	loop]:	closing	/tmp/.com_ibm_tools_attach/2458/attachNotificationSync
1617637365177(Mon	Apr	05	15:42:45	UTC	2021)	2458:	23	[Attachment	32835]:	doCommand	ATTACH_LOADAGENT(instrument,/opt/surgery/surgery.jar=[...])
1617637365178(Mon	Apr	05	15:42:45	UTC	2021)	2458:	23	[Attachment	32835]:	loadAgentLibrary	instrument:/opt/surgery/surgery.jar=[...]	decorate=true
1617637365621(Mon	Apr	05	15:42:45	UTC	2021)	2458:	23	[Attachment	32835]:	streamSend	ATTACH_ACK
1617637365624(Mon	Apr	05	15:42:45	UTC	2021)	2458:	23	[Attachment	32835]:	doCommand	ATTACH_DETACH
1617637365624(Mon	Apr	05	15:42:45	UTC	2021)	2458:	23	[Attachment	32835]:	streamSend	ATTACH_DETACHED

	

jextract

Recent	versions	of	IBM	Java	do	not	require	running	jextract	on	the	core	dump	for	memory	analysis	(Java	5
>=	SR12,	Java	6	>=	SR9,	etc.).	The	reason	is	that	the	dump	readers	(DTFJ)	are	able	to	read	operating	system
core	dump	files	directly	using	DirectDumpReader	(DDR)	technology.

However,	jextract	is	useful	for	investigating	native	memory	issues	because	jextract	will	gather	the	java
executable	and	native	libraries	which	may	be	loaded	into	a	debugger	along	with	the	core	dump.

Jextract	-interactive	runs	on	the	core	file	itself,	not	the	jextracted	ZIP.	Example	output:

#	jextract	-interactive	core.20100624.110917.7576.0001.dmp
Loading	dump	file...
Read	memory	image	from	core.20100624.110917.7576.0001.dmp
Jextract	interactive	mode.
Type	'!j9help'	for	help.
Type	'quit'	to	quit.
(Commands	must	be	prefixed	with	'!')
>
!findallcallsites	(or	!dumpallsegments)
Searching	for	all	memory	block	callsites...
Finished	search.	Bytes	scanned:	4294958661
	total	alloc			|	largest
	blocks|	bytes	|	bytes	|	callsite
-------+-------+-------+-------+-------+-------+-------+-------+-------+-------
						1						11						11	common/j9nls.c:427
						1					176					176	ParallelGlobalGC.cpp:162...

	

jcmd

OpenJ9	provides	the	jcmd	tool:

Pass	the	PID	followed	by	the	command.	List	available	commands:

$	jcmd	2440	help
Dump.heap
Dump.java
Dump.snap
Dump.system
GC.class_histogram

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-dcomibmtoolsattachlogging
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-dcomibmtoolsattachlogname
https://www.eclipse.org/openj9/docs/tool_jcmd/

GC.heap_dump
GC.run
Thread.print
help

List	the	help	contents	for	a	particular	command:

$	jcmd	2440	help	Dump.java
Dump.java:	Create	a	javacore	file.
	Format:	Dump.java	<file	path>
	<file	path>	is	optional,	otherwise	a	default	path/name	is	used.
	Relative	paths	are	resolved	to	the	target's	working	directory.
	The	dump	agent	may	choose	a	different	file	path	if	the	requested	file	exists.

Example	requesting	a	javacore:

$	jcmd	2440	Dump.java
Dump	written	to	/home/was/javacore.20200302.213647.2440.1.txt

Help	for	the	commands	above:

$	for	i	in	$(jcmd	2440	help);	do	jcmd	2440	help	$i;	done
Dump.heap:	Create	a	heap	dump.
	Format:	Dump.heap	<file	path>
	<file	path>	is	optional,	otherwise	a	default	path/name	is	used.
	Relative	paths	are	resolved	to	the	target's	working	directory.
	The	dump	agent	may	choose	a	different	file	path	if	the	requested	file	exists.
GC.heap_dump	is	an	alias	for	Dump.heap
Dump.java:	Create	a	javacore	file.
	Format:	Dump.java	<file	path>
	<file	path>	is	optional,	otherwise	a	default	path/name	is	used.
	Relative	paths	are	resolved	to	the	target's	working	directory.
	The	dump	agent	may	choose	a	different	file	path	if	the	requested	file	exists.

Dump.snap:	Dump	the	snap	trace	buffer.
	Format:	Dump.snap	<file	path>
	<file	path>	is	optional,	otherwise	a	default	path/name	is	used.
	Relative	paths	are	resolved	to	the	target's	working	directory.
	The	dump	agent	may	choose	a	different	file	path	if	the	requested	file	exists.

Dump.system:	Create	a	native	core	file.
	Format:	Dump.system	<file	path>
	<file	path>	is	optional,	otherwise	a	default	path/name	is	used.
	Relative	paths	are	resolved	to	the	target's	working	directory.
	The	dump	agent	may	choose	a	different	file	path	if	the	requested	file	exists.

GC.class_histogram:	Obtain	heap	information	about	a	Java	process
	Format:	GC.class_histogram	[options]
	Options:
										all	:	include	all	objects,	including	dead	objects	(this	is	the	default	option)
									live	:	include	all	objects	after	a	global	GC	collection
NOTE:	this	utility	may	significantly	affect	the	performance	of	the	target	VM.

GC.heap_dump:	Create	a	heap	dump.
	Format:	Dump.heap	<file	path>
	<file	path>	is	optional,	otherwise	a	default	path/name	is	used.
	Relative	paths	are	resolved	to	the	target's	working	directory.
	The	dump	agent	may	choose	a	different	file	path	if	the	requested	file	exists.
GC.heap_dump	is	an	alias	for	Dump.heap
GC.run:	Run	the	garbage	collector.
	Format:	GC.run
NOTE:	this	utility	may	significantly	affect	the	performance	of	the	target	VM.

Thread.print:	List	thread	information.
	Format:	Thread.print	[options]
	Options:	-l	:	print	information	about	ownable	synchronizers

help:	Show	help	for	a	command

	Format:		help	<command>
	If	no	command	is	supplied,	print	the	list	of	available	commands	on	the	target	JVM.

	

-Xdump

Changing	the	Default	Directory	of	Dump	Artifacts

On	recent	versions	of	Java,	change	the	default	directory	of	dump	artifacts	with	the	generic	JVM	argument:

-Xdump:directory=$DIR

For	particular	dump	types:

-Xdump:java:defaults:file=/var/dumps/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt

	

Stack	Traces	of	Large	Object	Allocations

The	filter	is	the	number	of	megabytes:

-Xdump:stack:events=allocation,filter=#5m

Example	output	in	stderr:

JVMDUMP039I	Processing	dump	event	"allocation",	detail	"5242880	bytes,	type	java.util.concurrent.ConcurrentHashMap$HashEntry[]"	at	2015/09/14	07:36:49	-	please	wait.
Thread=main	(00007F8830007C30)	Status=Running
				at	java/util/concurrent/ConcurrentHashMap$HashEntry.newArray(I)[Ljava/util/concurrent/ConcurrentHashMap$HashEntry;	(ConcurrentHashMap.java:311)	(Compiled	Code)
				...

To	get	a	core	dump	instead,	for	example:

-Xdump:system:events=allocation,filter=#20m,range=1..1,request=exclusive+prepwalk

	

Thrown	Exceptions

-Xdump	may	be	used	to	execute	agents	when	an	exception	is	thrown,	including	from	a	particular	method.	For
example:

-Xdump:system:events=throw,range=1..1,request=exclusive+prepwalk,filter=java/lang/NullPointerException#com/ibm/SomeClass.foo

Starting	with	Java	8,	exceptions	may	be	further	filtered	by	the	exception	message.	For	example,	to	trigger	a
javacore	on	a	java/lang/VerifyError	exception	that	contains	the	text	string	"wrong	initializer"

-Xdump:java:events=throw,filter=java/lang/VerifyError,msg_filter=*wrong	initializer*

	

Tool	Agent

The	tool	agent	may	be	used	to	execute	arbitrary	process	commands.	For	example,	to	print	/proc/meminfo	on
Linux	when	there	is	an	OOM:

-Xdump:tool:events=systhrow,filter=java/lang/OutOfMemoryError,request=exclusive+prepwalk,range=1..0,priority=999,exec="cat	/proc/%pid/smaps	>	smaps.%Y%m%d.%H%M%S.%pid.%seq.txt;	cat	/proc/meminfo	>	meminfo.%Y%m%d.%H%M%S.%pid.%seq.txt"

Running	a	command	on	the	last	artifact	produced:

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/dumpagents_msg_filter.html

-Xdump:tool:events=user,exec="bin/jextract	%last"

	

Caught	Exceptions

-Xdump	may	be	used	to	execute	agents	when	an	exception	is	caught,	including	from	a	particular	method.	For
example:

-Xdump:system:events=catch,request=exclusive,range=1..1,filter=*#Play.foo

Use	the	second	number	in	the	range	option	to	control	the	maximum	number	of	core	dumps	produced.	In	the
above	example,	no	more	than	1	cores	will	be	produced.

The	system	dump	agent	is	often	useful	because	the	system	dump	can	be	loaded	in	a	tool	such	as	the	Memory
Analyzer	Tool	and	various	stack	frame	locals	may	be	reviewed	that	may	help	understand	the	exception.

In	general,	it's	a	malpractice	to	catch	an	exception	and	suppress	its	detailed	information	(the	best	practice	is
to	re-throw	it	or	log	the	details).	For	example:

public	class	Play	{
		public	void	foo()	{
				try	{
						//	Work
				}	catch	(Throwable	t)	{
				}
		}
}

The	TechNote	above	goes	over	how	to	correctly	deal	with	this	situation,	but	sometimes	it's	difficult	to
quickly	update	code	when	there's	a	problem.	If	we	know	which	method	is	catching	the	exception,	then	we
can	just	use	the	above	technique	to	find	the	cause.

	

-Xtrace

Until	Java	7.1,	enabling	certain	-Xtrace	options	may	affect	the	performance	of	the	entire	JVM	(see	the	-
Xtrace	section	in	the	IBM	Java	chapter).

http://www-01.ibm.com/support/docview.wss?uid=swg21386753

If	you	want	to	dump	the	default	Xtrace	to	stderr,	use	-
Xtrace:print=all{level1},exception=j9mm{gclogger}

	

Tracing	Methods

The	simplest	usage	of	-Xtrace	is	to	trace	entry	and	exit	of	some	method(s).	For	example	(this	uses	a	wildcard
to	match	all	methods	of	a	class):

-Xtrace:print=mt,methods={com/ibm/ws/kernel/launch/internal/FrameworkManager.*}

Example	output	(goes	to	stderr):

20:45:41.867	0x1b34700														mt.0								>	com/ibm/ws/kernel/launch/internal/FrameworkManager.addShutdownHook(Z)V	bytecode	method,	this	=	0xe014d508		
20:45:41.868	0x1b34700														mt.6								<	com/ibm/ws/kernel/launch/internal/FrameworkManager.addShutdownHook(Z)V	bytecode	method

The	text	()	may	be	added	after	the	method	name(s)	to	add	additional	lines	of	output	showing	passed-in
arguments	and	returned	results	(if	the	method	has	not	been	JIT-compiled	yet):

-Xtrace:print=mt,methods={java/nio/HeapByteBuffer.getShort()}

Example	output:

17:23:43.134	0x11b06400														mt.0								>	java/nio/HeapByteBuffer.getShort()S	bytecode	method,	this	=	0x7fff903c8
17:23:43.134	0x11b06400														mt.18							-	this:	java/nio/HeapByteBuffer@00000007FFF903C8	method	arguments:	()
17:23:43.134	0x11b06400														mt.6								<	java/nio/HeapByteBuffer.getShort()S	bytecode	method
17:23:43.134	0x11b06400														mt.28							-	return	value:	(short)0

The	method	may	be	JIT-excluded	to	always	print	the	additional	information	although	this	may	have	a	large
performance	impact.	For	example:

-Xjit:exclude={java/nio/HeapByteBuffer.getShort()*}

A	stack	trace	may	be	dumped	with	the	trigger	option	to	show	which	method	is	calling	the	traced	method:

-Xtrace:iprint=mt,methods={com/ibm/ws/kernel/launch/internal/FrameworkManager.launchFramework()},trigger=method{com/ibm/ws/kernel/launch/internal/FrameworkManager.launchFramework,jstacktrace}

Example	output:

20:45:41.034	0x1b34700														mt.0								>	com/ibm/ws/kernel/launch/internal/FrameworkManager.launchFramework(Lcom/ibm/ws/kernel/boot/BootstrapConfig;Lcom/ibm/wsspi/logprovider/LogProvider;)V	bytecode	method,	this	=	0xffe89298		
20:45:41.034	0x1b34700														mt.18							-	this:	com/ibm/ws/kernel/launch/internal/FrameworkManager@00000000FFE89298	method	arguments:	(com/ibm/ws/kernel/boot/BootstrapConfig@00000000E0030150,com/ibm/ws/logging/internal/impl/LogProviderImpl@00000000E00ACEE8)		
20:45:41.035	0x1b34700							j9trc_aux.0								-	jstacktrace:		
20:45:41.035	0x1b34700							j9trc_aux.1								-	[1]	com.ibm.ws.kernel.launch.internal.FrameworkManager.launchFramework	(FrameworkManager.java:198)		
20:45:41.035	0x1b34700							j9trc_aux.1								-	[2]	com.ibm.ws.kernel.launch.internal.LauncherDelegateImpl.doFrameworkLaunch	(LauncherDelegateImpl.java:114)		
20:45:41.035	0x1b34700							j9trc_aux.1								-	[3]	com.ibm.ws.kernel.launch.internal.LauncherDelegateImpl.launchFramework	(LauncherDelegateImpl.java:100)		
20:45:41.035	0x1b34700							j9trc_aux.1								-	[4]	com.ibm.ws.kernel.boot.internal.KernelBootstrap.go	(KernelBootstrap.java:213)		
20:45:41.035	0x1b34700							j9trc_aux.1								-	[5]	com.ibm.ws.kernel.boot.Launcher.handleActions	(Launcher.java:241)		
20:45:41.035	0x1b34700							j9trc_aux.1								-	[6]	com.ibm.ws.kernel.boot.Launcher.createPlatform	(Launcher.java:117)		
20:45:41.035	0x1b34700							j9trc_aux.1								-	[7]	com.ibm.ws.kernel.boot.cmdline.EnvCheck.main	(EnvCheck.java:59)		
20:45:41.035	0x1b34700							j9trc_aux.1								-	[8]	com.ibm.ws.kernel.boot.cmdline.EnvCheck.main	(EnvCheck.java:35)

Instead	of	printing	to	stderr,	you	may	print	to	binary	files	and	then	post-process	them	(ideally	using	the	same
version	of	Java	that	produced	them)	to	dump	human-readable	output.	For	example:

-Xtrace:methods={com/ibm/ws/kernel/launch/internal/FrameworkManager.*},output={jvmtrace#.trc,100M,10},maximal=mt

Then	on	each	jvmtrace*.trc	file,	run	the	trace	formatter;	for	example:

$	java	com.ibm.jvm.TraceFormat	jvmtrace0.trc

	

Forced	Garbage	Collections

Forced	garbage	collections	(System.gc()	or	Runtime.gc())	can	be	investigated	by	printing	stack	traces
whenever	they're	called	using	the	generic	JVM	argument:

-Xtrace:trigger=method{java/lang/Runtime.gc,jstacktrace},print=mt

Output	goes	to	native_stderr.log.	There	may	be	some	performance	overhead	to	this	option	so	before
running	in	production	(see	the	-Xtrace	section	in	the	IBM	Java	chapter),	so	test	the	overhead	in	a	test
environment.	Example	output:

12:02:55.436*0x191de00	mt.2	>	java/lang/Runtime.gc()V	Native	method,	This	=	1b24188
12:02:55.463	0x191de00	mt.18	-	Instance	method	receiver:	java/lang/Runtime@00002B8F6249AA70	arguments:	()
12:02:55.463	0x191de00j9trc_aux.0	-	jstacktrace:
12:02:55.464	0x191de00j9trc_aux.1	-	[1]	java.lang.Runtime.gc	(Native	Method)
12:02:55.464	0x191de00j9trc_aux.1	-	[2]	java.lang.System.gc	(System.java:278)
12:02:55.464	0x191de00j9trc_aux.1	-	[3]	Test.main	(Test.java:3)

If	you	are	on	IBM	Java	>=6	and	<	7.1,	then	you	may	instead	use	-Xdump:stack:events=fullgc

This	will	print	a	stack	trace	to	stderr	every	time	a	full	garbage	collection	occurs:

Thread=WebContainer	:	263509055	(F6C04688)	Status=Running
				at	java/lang/Runtime.gc()V	(Native	Method)
				at	java/lang/System.gc()V	(System.java:312)
				at	Test.main([Ljava/lang/String;)V	(Test.java:6)
JVMDUMP013I	Processed	dump	event	"fullgc",	detail	"".

However,	it	will	also	print	a	stack	any	time	a	full	GC	occurs	for	non-explicit	reasons.	You	can	simply	look
for	any	stacks	that	begin	with	Runtime.gc	to	figure	out	which	ones	are	explicit.

	

Requesting	Full	GCs

If	it	is	required	to	request	full	GCs,	here	are	some	options	(assuming	-Xdisableexplicitgc	is	not	set):

1.	 MBean:	MemoryMXBean.gc
2.	 Create	a	JSP/Servlet	or	other	type	of	application	that	executes	System.gc	based	on	some	HTTP	request

or	other	input
3.	 Use	the	Java	Surgery	tool	with	-command	CollectGarbage	(this	one	is	probably	the	closest	to	jcmd,

although	see	the	caveats	on	the	page)
4.	 Use	-Xdump	or	-Xtrace	to	trigger	on	certain	method	invocations	(hard	to	configure)
5.	 Request	a	heapdump:	this	will	force	a	GC	as	part	of	taking	the	heapdump

	

Stack	Traces	of	the	Sources	of	Threads

The	sources	of	threads	may	be	tracked	by	dumping	where	those	threads	are	instantiated,	which	is	likely	the
code	that	will	subsequently	spawn	those	threads.	For	example,	if	there	is	a	thread	with	the	following	stack:

3XMTHREADINFO3		Java	callstack:
4XESTACKTRACE					at	java/lang/Object.wait(Native	Method)
4XESTACKTRACE					at	java/lang/Object.wait(Object.java:196(Compiled	Code))
4XESTACKTRACE					at	java/lang/ref/ReferenceQueue.remove(ReferenceQueue.java:102(Compiled	Code))
4XESTACKTRACE					at	sun/rmi/transport/DGCClient$EndpointEntry$RenewCleanThread.run(DGCClient.java:492(Compiled	Code))
4XESTACKTRACE					at	java/lang/Thread.run(Thread.java:736(Compiled	Code))

Then	the	thread	class	is	sun/rmi/transport/DGCClient$EndpointEntry$RenewCleanThread.	Next,
construct	an	-Xtrace	option	which	prints	the	stack	trace	of	the	constructor	call	to	stderr.	For	example:

http://www.ibm.com/support/knowledgecenter/en/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/tools/dumpagents_events.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryMXBean.html#gc%2528%2529
https://www.ibm.com/support/pages/ibm-runtime-diagnostic-code-injection-java-platform-java-surgery

-Xtrace:print=mt,methods={sun/rmi/transport/DGCClient$EndpointEntry$RenewCleanThread.<init>*},trigger=method{sun/rmi/transport/DGCClient$EndpointEntry$RenewCleanThread.<init>*,jstacktrace}

As	another	example,	for	Timers	with	stacks	such	as:

3XMTHREADINFO						"Thread-2572"	...
3XMTHREADINFO3											Java	callstack:
4XESTACKTRACE																at	java/lang/Object.wait(Native	Method)
4XESTACKTRACE																at	java/lang/Object.wait(Object.java:196(Compiled	Code))
4XESTACKTRACE																at	java/util/Timer$TimerImpl.run(Timer.java:246(Compiled	Code))
5XESTACKTRACE																			(entered	lock:	java/util/Timer$TimerImpl@0x0000000720737468,	entry	count:	1)

Add	the	following	generic	JVM	argument:

-Xtrace:print=mt,methods={java/util/Timer$TimerImpl.<init>*},trigger=method{java/util/Timer$TimerImpl.<init>*,jstacktrace}

Example	output:

20:05:02.535*0x23b3f500														mt.0								>	java/util/Timer$TimerImpl.<init>(Ljava/lang/String;Z)V	Bytecode	method,	This	=	20884938
20:05:02.535	0x23b3f500							j9trc_aux.0								-	jstacktrace:
20:05:02.535	0x23b3f500							j9trc_aux.1								-	[1]	java.util.Timer$TimerImpl.<init>	(Timer.java:201)
20:05:02.535	0x23b3f500							j9trc_aux.1								-	[2]	java.util.Timer.<init>	(Timer.java:364)
20:05:02.535	0x23b3f500							j9trc_aux.1								-	[3]	com.ibm.TimerTestServlet.service	(TimerTestServlet.java:22)...
20:05:02.535	0x23b3f500														mt.6								<	java/util/Timer$TimerImpl.<init>(Ljava/lang/String;Z)V	Bytecode	method

Enabling	certain	-Xtrace	options	may	affect	the	performance	of	the	entire	JVM	on	older	versions	of	Java	(see
the	-Xtrace	section).

	

I/O	Tracing

-Xtrace:none,maximal=j9scar.136,trigger=tpnid{j9scar.136,jstacktrace},output={"trace_%p.bin",100m}

	

Network	Tracing

To	enable	tracing	for	the	SDK's	java/net	classes,	you	may	use:

-Xtrace:methods={java/net/*},print=mt

This	writes	to	native_stderr.log.	For	example:

20:32:41.615	0x13d86800														mt.0								>	java/net/InetAddress.getCanonicalHostName()Ljava/lang/String;	Bytecode	method,	This	=	4125660
20:32:41.615	0x13d86800														mt.18							-	Instance	method	receiver:	java/net/Inet4Address@0000000004125660	arguments:	()
20:32:41.855	0x13d86800														mt.6								<	java/net/InetAddress.getCanonicalHostName()Ljava/lang/String;	Bytecode	method

Equivalently,	the	trace	may	be	sent	to	files.	For	example:

-Xtrace:methods={java/net/*},output={jvmtrace#.trc,100M,10},maximal=mt

Then	on	each	jvmtrace*.trc	file,	run	the	trace	formatter;	for	example:

$	java	com.ibm.jvm.TraceFormat	jvmtrace0.trc

In	the	following	example,	we	can	see	the	first	call	doesn't	find	the	host	name	in	the	cache,	then	puts	it	in	the
cache:

21:07:36.564789000		0x0000000013c6ba00	mt.0																Entry						>java/net/InetAddress.getCanonicalHostName()Ljava/lang/String;	Bytecode	method,	This	=	0x435f2b0
21:07:36.564790000		0x0000000013c6ba00	mt.18															Event							Instance	method	receiver:	java/net/Inet4Address@0x435f2b0	arguments:	()
...
21:07:36.783388000		0x0000000013c6ba00	mt.3																Entry						>java/net/InetAddress.cacheAddress(Ljava/lang/String;Ljava/lang/Object;Z)V	Bytecode	static	method
...
21:07:36.783425000		0x0000000013c6ba00	mt.0																Entry						>java/net/InetAddress$Cache.put...

s	=	0x1f0e930
21:07:36.783428000		0x0000000013c6ba00	mt.18															Event							Instance	method	receiver:	java/net/InetAddress$Cache@0x1f0e930	arguments:	(java/lang/String@00000000043A9D60...
000043AA260)
...
21:07:36.783656000		0x0000000013c6ba00	mt.6																Exit							<java/net/InetAddress.getCanonicalHostName()Ljava/lang/String;	Bytecode	method

In	the	next	call,	there	is	no	put;	therefore,	it	found	it	in	the	cache:

21:07:41.373200000		0x0000000013c6ba00	mt.0																Entry						>java/net/InetAddress.getCanonicalHostName()Ljava/lang/String;	Bytecode	method,	This	=	0x43ba250
21:07:41.373201000		0x0000000013c6ba00	mt.18															Event							Instance	method	receiver:	java/net/Inet4Address@0x43ba250	arguments:	()
...
21:07:41.493092000		0x0000000013c6ba00	mt.3																Entry						>java/net/InetAddress.getCachedAddress(Ljava/lang/String;)Ljava/lang/Object;	Bytecode	static	method
...
21:07:41.493165000		0x0000000013c6ba00	mt.6																Exit							<java/net/InetAddress.getCanonicalHostName()Ljava/lang/String;	Bytecode	method

Enabling	certain	-Xtrace	options	may	affect	the	performance	of	the	entire	JVM	on	older	versions	of	Java	(see
the	-Xtrace	section).

	

Debugging	File	Leaks

If	core	dump	analysis	does	not	discover	the	cause	of	file	leaks	(this	may	be	particularly	difficult	on	Windows
when	a	particular	leaked	file	must	be	found,	because	the	file	descriptor	identifiers	in	Java	objects	do	not
directly	map	to	Windows	HANDLE	addresses),	then	IO	trace	points	may	be	used.	IO	trace	points	differ	by
operating	system,	so	you	may	start	with	all	IO	trace	points	(print=IO),	but	in	this	example	we	show	Windows
trace	points:

-Xtrace:print=IO.100-105,trigger=tpnid{IO.103,jstacktrace}

This	also	adds	jstacktrace	on	IO.103	which	is	a	file	open.

21:40:27.491	0x2479c200														IO.103						>	IO_CreateFileW(filename=C:\WAS\profiles\...\.metadata\.plugins\...\properties.version...
21:40:27.491	0x2479c200							j9trc_aux.0								-	jstacktrace:
21:40:27.491	0x2479c200							j9trc_aux.1								-	[1]	java.io.FileOutputStream.open	(Native	Method)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[2]	java.io.FileOutputStream.<init>	(FileOutputStream.java:233)	(Compiled	Code)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[3]	java.io.FileOutputStream.<init>	(FileOutputStream.java:183)	(Compiled	Code)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[4]	org.eclipse.core.internal.localstore.BucketTree.saveVersion	(BucketTree.java:145)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[5]	org.eclipse.core.internal.localstore.BucketTree.close	(BucketTree.java:80)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[6]	org.eclipse.core.internal.properties.PropertyManager2.shutdown	(PropertyManager2.java:169)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[7]	org.eclipse.core.internal.resources.Workspace.shutdown	(Workspace.java:1829)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[8]	org.eclipse.core.internal.resources.Workspace.close	(Workspace.java:369)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[9]	org.eclipse.core.resources.ResourcesPlugin.shutdown	(ResourcesPlugin.java:344)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[10]	org.eclipse.core.internal.compatibility.PluginActivator.stop	(PluginActivator.java:46)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[11]	org.eclipse.osgi.framework.internal.core.BundleContextImpl$2.run	(BundleContextImpl.java:843)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[12]	java.security.AccessController.doPrivileged	(AccessController.java:341)	(Compiled	Code)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[13]	org.eclipse.osgi.framework.internal.core.BundleContextImpl.stop	(BundleContextImpl.java:836)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[14]	org.eclipse.osgi.framework.internal.core.BundleHost.stopWorker	(BundleHost.java:501)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[15]	org.eclipse.osgi.framework.internal.core.AbstractBundle.suspend	(AbstractBundle.java:550)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[16]	org.eclipse.osgi.framework.internal.core.Framework.suspendBundle	(Framework.java:1101)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[17]	org.eclipse.osgi.framework.internal.core.StartLevelManager.decFWSL	(StartLevelManager.java:597)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[18]	org.eclipse.osgi.framework.internal.core.StartLevelManager.doSetStartLevel	(StartLevelManager.java:257)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[19]	org.eclipse.osgi.framework.internal.core.StartLevelManager.shutdown	(StartLevelManager.java:215)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[20]	org.eclipse.osgi.framework.internal.core.InternalSystemBundle.suspend	(InternalSystemBundle.java:266)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[21]	org.eclipse.osgi.framework.internal.core.Framework.shutdown	(Framework.java:694)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[22]	org.eclipse.osgi.framework.internal.core.Framework.close	(Framework.java:592)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[23]	org.eclipse.osgi.framework.internal.core.InternalSystemBundle$1.run	(InternalSystemBundle.java:243)
21:40:27.491	0x2479c200							j9trc_aux.1								-	[24]	java.lang.Thread.run	(Thread.java:863)
21:40:27.492	0x2479c200														IO.105						<	IO_CreateFileW	-	return	code=5072
21:40:27.492	0x2479c200														IO.100						>	IO_CloseHandle(Handle=5072)
21:40:27.492	0x2479c200														IO.102						<	IO_CloseHandle	-	return	code=1

In	the	above	example,	an	open	returns	the	file	handle	5072	(the	result	in	the	method	exit	of	CreateFileW),
and	that	is	immediately	followed	by	a	CloseHandle	on	5072,	which	succeeds.	Finding	an	open	without	a
close	will	discover	the	leak.

	

Tracing	Profiler

See	https://www-01.ibm.com/support/docview.wss?uid=swg21657391

	

jdmpview

List	all	instances	of	a	class

>	x/j	java/lang/String

	

Show	details	of	a	class

>	info	class	java/lang/String

Java	object	information

>	x/j	0xfcdd4b58
									heap	#1	-	name:	Generational@145a9013c6c0

										java/lang/String	@	0xfcdd4b58
											declared	fields:
												private	final	char[]	value	=	<object>	@	0xfcdd4bd8
												private	final	int	count	=	14	(0xe)
												private	int	hashCode	=	0	(0x0)

												references:
														0xfcdd4bd8

Detailed	information:

>	!j9object	0xfcdd4b58
J9VMJavaLangString	at	0x00000000FCDD4B58	{
struct	J9Class*	clazz	=	!j9class	0x1294B00	//	java/lang/String
Object	flags	=	0x00000030;
[C	value	=	!fj9object	0xfcdd4bd8	(offset	=	0)	(java/lang/String)
I	count	=	0x0000000E	(offset	=	4)	(java/lang/String)
I	hashCode	=	0x00000000	(offset	=	8)	(java/lang/String)
"/daytrader/app"
}

	

Static	fields	of	a	class	with	pointer

>	!j9statics	0x1294B00
Static	fields	in	java/lang/String:
								0x0000000001294F00	serialVersionUID	J	(!j9romstaticfieldshape	0x0000145A4F06B218)	=	0xA0F0A4387A3BB342	(-6849794470754667710)
								[...]

	

Dump	arbitrary	memory

Dump	arbitrary	memory:

https://www-01.ibm.com/support/docview.wss?uid=swg21657391

>	xx	0xf1afdc10,10,4
0xf1afdc10	:		4C6DB928	00000000	E1A88FD0	00000000	[(.mL............]

In	the	above	example,	4C6DB928	was	a	Java	object.

	

Extracting	Xtrace

Use	the	!snapformat	command	to	extract	the	Xtrace	buffers.

The	second	column	is	the	thread	ID	which	may	be	inspected	with	!j9vmthread.	For	example:

15:45:48.434563585	*0x58AE400	j9vm.361													Entry						>Attempting	to	acquire	exclusive	VM	access.

>	!j9vmthread	0x58AE400
				0xa0:	j9object_t	threadObject	=	!j9object	0x0000000048BA4D50	//	com/Test/MyThread

	

What	caused	a	core	dump

1.	 Run	!snapformat	to	format	the	Xtrace	and	search	for	the	core	dump	file	name:

>	!snapformat	|	grep	core.20200804.025942.3576.0001.dmp
02:59:42.174160000	*0x1981C00	j9dmp.9														Event							Preparing	for	dump,	filename=/opt/ibm/wlp/output/defaultServer/core.20200804.025942.3576.0001.dmp

2.	 Take	the	thread	ID	of	that	message	and	search	the	Xtrace	for	that	thread	and	look	at	the	end	of	the
output:

>	!snapformat	|	grep	0x1981C00
02:59:42.016594000	*0x1981C00	j9vm.294													Entry						>setCurrentException	index=11	constructorIndex=0	detailMessage=0xf0001ad0
02:59:42.016612000		0x1981C00	j9vm.10														Entry						>internalSendExceptionConstructor
02:59:42.016620000	*0x1981C00	j9vm.246													Entry						>dispatchAsyncEvents	asyncEventFlags=0x4
02:59:42.016627000		0x1981C00	j9vm.247													Event							call	event	handler:	handlerKey=2	eventHandler=0x145a8df844e0	userData=0x0
02:59:42.016642000	*0x1981C00	j9vm.248													Exit							<dispatchAsyncEvents
02:59:42.172975000	*0x1981C00	j9vm.11														Exit							<internalSendExceptionConstructor
02:59:42.174160000	*0x1981C00	j9dmp.9														Event							Preparing	for	dump,	filename=/opt/ibm/wlp/output/defaultServer/core.20200804.025942.3576.0001.dmp

3.	 Take	the	address	of	the	detailMessage	object	in	the	setCurrentException	message	and	print	that
object:

>	!j9object	0xf0001ad0
J9VMJavaLangString	at	0x00000000F0001AD0	{
struct	J9Class*	clazz	=	!j9class	0x1294B00	//	java/lang/String
Object	flags	=	0x00000000;
[C	value	=	!fj9object	0xf0001ae0	(offset	=	0)	(java/lang/String)
I	count	=	0x0000000F	(offset	=	4)	(java/lang/String)
I	hashCode	=	0x00000000	(offset	=	8)	(java/lang/String)
"Java	heap	space"

4.	 In	this	example,	the	detailMessage	"Java	heap	space"	means	it	was	due	to	a	Java	OutOfMemoryError.

There	may	also	be	messages	like	the	following	showing	a	fatal	allocation	failure	and	its	size:

15:45:48.464090000	*0x0	j9mm.101													Event							J9AllocateIndexableObject()	returning	NULL!	277962536	bytes	requested	for	object	of	class	0x87f00	from	memory	space	'Generational'	id=0x3ff900852b0

	

Strong	paths	to	GC	roots

NOTE:	These	queries	also	provide	paths	through	phantom,	weak,	soft,	and	finalizable	references	which
should	be	ignored	if	searching	for	a	strong	path	to	GC	roots.

!strongrootpathfindall	0x...

This	command	is	the	same	as	!rootpathfindall.

Or	just	the	first	one:

!strongrootpath	0x...

This	command	is	the	same	as	!rootpathfind.

	

Find	details	about	an	object	and	its	heap	generation

whatis	0x...

Search	for	object	references

!findall	pointer	0x...

	

Accumulated	CPU	time	of	threads

Accumulated	CPU	time	in	javacores	are	queried	when	producing	a	javacore	but	no	such	standardized
information	is	in	core	dumps;	however,	z/OS	and	Windows	can	get	such	information	from	the	OS	structures.

On	Windows	using	info	thread:

KernelTime=200625000
UserTime=207656250

Multiply	each	by	100	to	get	nanoseconds.

	

Advanced	Commands

Object	size	histogram

Show	class	histogram	of	object	sizes,	excluding	static	memory	usage	(the	final	line	under	the	"Space	used"
column	shows	total	heap	usage	[reachable	and	unreachable]):

>	!objectsizeinfo

Object	field	size	summary
=========================
Class																				Total	size		Data	size		Space	used		Instances		char		byte					short			int				long		float		double		boolean		object			hidden		
-----------------------		----------		---------		----------		---------		----		-------		------		-----		----		-----		------		-------		-------		------		
boolean[]																N/A									N/A								32400							916								0					0								0							0						0					0						0							0								0								0							
boolean[][]														N/A									N/A								128									3										0					0								0							0						0					0						0							0								0								0							
byte[]																			N/A									N/A								61279440				8180							0					0								0							0						0					0						0							0								0								0							
byte[][]																	N/A									N/A								4440								41									0					0								0							0						0					0						0							0								0								0							
char[]																			N/A									N/A								16388632				153884					0					0								0							0						0					0						0							0								0								0							
char[][]																	N/A									N/A								343224						21126						0					0								0							0						0					0						0							0								0								0							
char[][][]															N/A									N/A								456									2										0					0								0							0						0					0						0							0								0								0							
com/ibm/AllocateObject			16										12*								16										1										0					0								0							0						0					0						0							0								0								0							
[...]
Class																				Total	size		Data	size		Space	used		Instances		char		byte					short			int				long		float		double		boolean		object			hidden		
Heap	summary													34832704				22956148			123317456			1529720				719			1763123		155493		41343		0					0						0							0								2651309		5199			

	

https://github.com/eclipse/openj9/blob/master/debugtools/DDR_VM/src/com/ibm/j9ddr/corereaders/minidump/ThreadInfoStream.java
https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/ns-minidumpapiset-minidump_thread_info?redirectedfrom=MSDN

Native	memory	usage

!nativememinfo	dumps	out	the	same	structure	that's	commonly	used	in	javacores:

>	!nativememinfo
JRE:	14,115,609,464	bytes	/	65049	allocations
+--VM:	13,622,156,544	bytes	/	55708	allocations
|		+--Classes:	245,835,968	bytes	/	32251	allocations

	

Java	heap	segments

To	find	out	the	size	of	the	Java	heap:

>	!dumpallregions
+----------------+----------------+----------------+----------------+--------+----------------+----------------------
|				region						|					start						|						end							|				subspace				|	flags		|						size						|						region	type
+----------------+----------------+----------------+----------------+--------+----------------+----------------------
	000000500867eb00	0000000080000000	000000009acc0000	000000500862add0	00000009									1acc0000	ADDRESS_ORDERED
	000000500867ee30	000000009acc0000	000000009f7a0000	000000500862f2e0	0000000a										4ae0000	ADDRESS_ORDERED
	000000500867ed20	000000009f7a0000	00000000a0000000	00000050118d5530	0000000a											860000	ADDRESS_ORDERED
+----------------+----------------+----------------+----------------+--------+----------------+----------------------

	

All	native	memory	segments

Dump	all	segments:

>	!dumpallsegments
memorySegments	-	!j9memorysegmentlist	0x66b5a0
+----------------+----------------+----------------+----------------+--------+--------+
|				segment					|					start						|					alloc						|						end							|		type		|		size		|
+----------------+----------------+----------------+----------------+--------+--------+
	00007f24ddc07968	00007f23f151f030	00007f23f15725b0	00007f23f161f030	00800040			100000
	00007f24ddc07c88	00007f23f5ecc030	00007f23f5fcc010	00007f23f5fcc030	00800040			100000	[...]

	

Loaded	native	libraries

List	loaded	native	libraries	at	the	time	of	the	dump:

>	!dclibs
Showing	library	list	for	/opt/dockerdebug/fedorawasdebug/supplemental/exampledata/liberty/verbosegc_and_oom/core.20191106.195108.1845.0001.dmp
exe	=	java
Lib	:	java
				Library	is	not	appended	to	the	core	file,	it	may	be	present	on	the	local	disk
Lib	:	java
				Library	is	not	appended	to	the	core	file,	it	may	be	present	on	the	local	disk
Lib	:	/lib64/ld-linux-x86-64.so.2
				Library	is	not	appended	to	the	core	file,	it	may	be	present	on	the	local	disk
Lib	:	/lib64/libpthread.so.0
				Library	is	not	appended	to	the	core	file,	it	may	be	present	on	the	local	disk	[...]

	

Show	dump	agents

Show	registered	dump	agents:

>	!showdumpagents
Registered	dump	agents

-Xdump:	[...]

	

Native	allocations	by	callsite

List	known	native	allocations	by	callsite:

>	!findallcallsites
	total	alloc			|	largest
	blocks|	bytes	|	bytes	|	callsite
-------+-------+-------+-------+-------+-------+-------+-------+-------+-------
			3043	65892984			74168	segment.c:233

	

Native	allocations	by	one	callsite

List	native	allocations	by	a	particular	callsite:

>	!findcallsite	dmpagent.c:1713
	!j9x	0x00002B248403AA90,0x0000000000000078				dmpagent.c:1713
	!j9x	0x00002B248403AB50,0x0000000000000078				dmpagent.c:1713
	!j9x	0x00002B248403AC10,0x0000000000000078				dmpagent.c:1713
	!j9x	0x00002B248403ACD0,0x0000000000000078				dmpagent.c:1713
	!j9x	0x00002B248403AD90,0x0000000000000078				dmpagent.c:1713
	!j9x	0x00002B248403AE50,0x0000000000000078				dmpagent.c:1713
	!j9x	0x00002B248403AF10,0x0000000000000078				dmpagent.c:1713
	!j9x	0x00002B248403AFD0,0x0000000000000078				dmpagent.c:1713
	!j9x	0x00002B24EC083520,0x0000000000000078				dmpagent.c:1713
Call	site	count	=	9

If	investigating	a	triggerDump	API	call,	the	last	callsite	can	be	cast	to	the	expected	struct:

>	!J9RASdumpAgent	0x00002B24EC083520
J9RASdumpAgent	at	0x2b24ec083520	{
		Fields	for	J9RASdumpAgent:
				0x0:	struct	J9RASdumpAgent	*	nextPtr	=	!j9rasdumpagent	0x0000000000000000
				0x8:	void	*	shutdownFn	=	!j9x	0x00002B2483DA2240
				0x10:	UDATA	eventMask	=	0x00000000004A2000	(4857856)
				0x18:	char	*	detailFilter	=	!j9x	0x0000000000000000
				0x20:	UDATA	startOnCount	=	0x0000000000000001	(1)
				0x28:	UDATA	stopOnCount	=	0x0000000000000000	(0)
				0x30:	UDATA	count	=	0x0000000000000000	(0)
				0x38:	char	*	labelTemplate	=	!j9x	0x00002B2484034BF0	//	"/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/cor..."
				0x40:	void	*	dumpFn	=	!j9x	0x00002B2483DA5660
				0x48:	char	*	dumpOptions	=	!j9x	0x0000000000000000
				0x50:	void	*	userData	=	!j9x	0x0000000000000000
				0x58:	UDATA	priority	=	0x00000000000003E7	(999)
				0x60:	UDATA	requestMask	=	0x0000000000000008	(8)
				0x68:	UDATA	prepState	=	0x0000000000000101	(257)
				0x70:	char	*	subFilter	=	!j9x	0x0000000000000000
}

The	requestMask	lists	the	request	options

	

Check	if	core	dump	is	in	an	exclusively	locked	state

1.	 Find	the	j9javam	pointer:

>	!context
*0	:	PID:	4374;		!j9javavm	0x153a38026560

https://github.com/eclipse/openj9/blob/v0.18.0-release/runtime/oti/j9dump.h#L118

2.	 Print	it	and	search	for	exclusiveAccessState:

>	!j9javavm	0x153a38026560	|	grep	exclusiveAccessState
0x1968:	UDATA	exclusiveAccessState	=	0x0000000000000002	(2)

3.	 Review	the	bit	flag	value:

#define	J9_XACCESS_NONE	0
#define	J9_XACCESS_PENDING	1
#define	J9_XACCESS_EXCLUSIVE	2
#define	J9_XACCESS_HANDING_OFF	3
#define	J9_XACCESS_HANDED_OFF	4
#define	J9_XACCESS_HANDING_OFF_FROM_EXTERNAL_THREAD	5

	

Check	which	thread	has	exclusive	access	in	a	core	dump

1.	 Find	all	threads	whose	publicFlags	bit	flags	have	J9_PUBLIC_FLAGS_VM_ACCESS	(0x20).
Ensure	that	only	one	thread	has	this	and	that	all	other	threads	have	the	bit	flag
J9_PUBLIC_FLAGS_HALT_THREAD_EXCLUSIVE	(0x1).	For	example,	WebContainer	:	7 	has
0x20	and	the	others	have	0x1:

>	!threads	flags
!j9vmthread	0x29106e00	publicFlags=1020	privateFlags=2	inNative=0	//	Default	Executor-thread-28408
!j9vmthread	0x294d7d00	publicFlags=a1	privateFlags=2	inNative=1	//	Default	Executor-thread-27795
[...]

To	quickly	search	for	the	exclusive	access	thread:

>	!threads	flags	|	grep	"20	privateFlags"
!j9vmthread	0x29106e00	publicFlags=1020	privateFlags=2	inNative=0	//	Default	Executor-thread-28408

2.	 Print	the	details	of	that	thread	and	search	for	omrthread_t:

>	!j9vmthread	0x29106e00	|	grep	omrthread_t
				0x138:	omrthread_t	osThread	=	!j9thread	0x000000595631C648

3.	 Print	the	omrthread_t	and	search	for	tid:

>	!j9thread	0x000000595631C648	|	grep	tid
				0x420:	uintptr_t	tid	=	0x00000000275F2800	(660547584)

4.	 Remove	any	0-padding	after	0x	and	pass	that	to	info	thread:

>	info	thread	0x275F2800
	process	id:	84410739

		thread	id:	0x275f2800
			registers:
				PSW				=	0x070c0000817384d6			R0					=	0x0000000000000003			R1					=	0x0000000026c90508			R2					=	0x0000005000a3b0cf
				R3					=	0x000000001c011720			R4					=	0x0000005400000000			R5					=	0x00000000000201bb			R6					=	0x00000000078d0401
				R7					=	0x0000000001d9d470			R8					=	0x000000006e366f00			R9					=	0x0000000026c90508			R10				=	0x0000000000000000
				R11				=	0x0000005000000000			R12				=	0x00000051bf7fec60			R13				=	0x0000005417efcaa0			R14				=	0x000000000170a6ae
				R15				=	0x0000000000000000
			native	stack	sections:
				0x5417efa000	to	0x5417f00000	(length	0x6000)
			native	stack	frames:
				bp:	0x0000005417efbd80	pc:	0x0000000026c8e0f0	ExtraSymbolsModule::CEEOPCT+0x6a40
				bp:	0x0000005417efc340	pc:	0x0000000026feed76	ExtraSymbolsModule::pthread_cond_wait+0x1ee
				bp:	0x0000005417efc4c0	pc:	0x00000000273f7680	libj9thr29.so::monitor_wait_original+0xcb8
				bp:	0x0000005417efc640	pc:	0x00000000273fda6c	libj9thr29.so::omrthread_monitor_wait+0x84
				bp:	0x0000005417efc740	pc:	0x000000007ad628a2	ExtraSymbolsModule::MM_Scavenger::getNextScanCache(MM_EnvironmentStandard*)+0x1062
				[...]

5.	 To	get	the	vmState	of	the	thread:
1.	 Find	the	OMR_VMThread	using	the	J9VMThread	above:

https://github.com/eclipse/openj9/blob/v0.22.0-release/runtime/oti/j9consts.h#L785
https://github.com/eclipse/openj9/blob/v0.22.0-release/runtime/oti/j9consts.h#L186
https://github.com/eclipse/openj9/blob/v0.22.0-release/runtime/oti/j9consts.h#L181

>	!j9vmthread	0x29106e00	|	grep	omr_vmthread
0x930:	struct	OMR_VMThread	*	omrVMThread	=	!omr_vmthread	0x0000000006B9F3B8

2.	 Search	the	OMR_VMThread	for	vmState:

>	!omr_vmthread	0x0000000006B9F3B8	|	grep	vmState
0x40:	uintptr_t	vmState	=	0x0000000000000000	(0)

3.	 A	state	of	0	is	the	Java	interpreter.	A	state	of	0x20xxx	means	the	thread	is	performing	garbage
collection.	Other	states	may	be	found	with	J9VMSTATE_*.

	

Map	method	address	to	method	name

>	!j9method	0x0000000005674478	-->	com/example/ExampleClass.play()V

Dump	byte	codes	of	a	class

>	!classforname	com/example/ExampleClass
Searching	for	classes	named	'com/example/ExampleClass'	in	VM=7f363402a320
!j9class	0x0000000005C22300	named	com/example/ExampleClass
Found	1	class(es)	named	com/example/ExampleClass
>	!j9class	0x0000000005C22300	|	grep	romClass
				0x8:	struct	J9ROMClass	*	romClass	=	!j9romclass	0x00007F342513DEF0
>	!dumpromclass	0x00007F342513DEF0

	

Dump	byte	codes	of	a	method

>	!methodforname	com/example/ExampleClass.play
Searching	for	methods	named	'com/example/ExampleClass.play'	in	VM=0x00007F6BB4013720...
!j9method	0x0000000005674478	-->	com/example/ExampleClass.play()V
Found	1	method(s)	named	com/example/ExampleClass.play
>	!bytecodes	0x0000000005674478
		Name:	play
		Signature:	()V
		[...]
				0	ldc2lw	70	(long)	0x0000000000000030
				3	lstore	5
				5	aconstnull	
				6	astore	7
				8	iconstm1	[...]

	

Query	Min	and	Max	Heap

1.	 Find	the	j9javam	pointer:

>	!context
*0	:	PID:	4374;		!j9javavm	0x153a38026560

2.	 Find	the	gcExtensions	pointer:

!j9javavm	0x153a38026560	|	grep	gcExtensions	|	charsfrom	-e	j9x
0x000000500B5904D0

3.	 Cast	the	gcExtensions	pointer	to	get	the	min	and	max	heap	sizes:

>		!MM_GCExtensions	0x000000500B5904D0	|	grep	memoryMax
0x20a8:	UDATA	memoryMax	=	0x0000000100000000	(4294967296)
>	!MM_GCExtensions	0x000000500B5904D0	|	grep	initialMemorySize
0x20b0:	UDATA	initialMemorySize	=	0x0000000040000000	(1073741824)

https://github.com/eclipse/omr/blob/omr-0.1.0/gc/include/omrmodroncore.h#L73
https://github.com/eclipse-openj9/openj9/blob/v0.31.0-release/runtime/oti/j9nonbuilder.h#L5088

	

Custom	DDR	Command

1.	 Create	a	Java	project	and	place	j9ddr.jar	on	the	classpath
2.	 Create	a	class	that	extends	com.ibm.j9ddr.tools.ddrinteractive.Command	and	uses	the

com.ibm.j9ddr.tools.ddrinteractive.annotations.DebugExtension	annotation.	For	example:

import	com.ibm.j9ddr.CorruptDataException;
import	com.ibm.j9ddr.tools.ddrinteractive.Command;
import	com.ibm.j9ddr.tools.ddrinteractive.Context;
import	com.ibm.j9ddr.tools.ddrinteractive.DDRInteractiveCommandException;
import	com.ibm.j9ddr.tools.ddrinteractive.annotations.DebugExtension;
import	com.ibm.j9ddr.vm29.j9.DataType;
import	com.ibm.j9ddr.vm29.pointer.generated.J9JavaVMPointer;
import	com.ibm.j9ddr.vm29.pointer.helper.J9RASHelper;

@DebugExtension(VMVersion="*")
public	class	CustomCommand	extends	Command	{
		{
				@SuppressWarnings("unused")
				CommandDescription	cd	=	addCommand("customcommand",	"",	"Help	description");
		}
		
		@Override
		public	void	run(String	command,	String[]	args,	Context	context,	PrintStream	out)	throws	DDRInteractiveCommandException	{
					try	{
							out.println("Hello	World");
							J9JavaVMPointer	jvm	=	J9RASHelper.getVM(DataType.getJ9RASPointer());
							out.println("!j9javavm	"	+	jvm.getHexAddress());
					}	catch	(CorruptDataException	e)	{
							throw	new	DDRInteractiveCommandException("Error	processing	"	+	e.getClass().getCanonicalName(),	e);
					}
		}
}

3.	 Package	the	class	into	a	jar	file.
4.	 Run	jdmpview	with	the	path	to	the	jar	file.	For	example:

jdmpview	-J-Dplugins=$HOME/customddrcommands-1.0-SNAPSHOT.jar	-core	core.20200804.025942.3576.0001.dmp

5.	 Execute	your	command	name	with	!	in	front.	For	example:

>	!customcommand
Hello	World
!j9javavm	0x000000500886EF70

	

Debugging	jdmpview

Example	enabling	DTFJ	logging:

>	log	j9ddr.structure_reader	FINEST

	

-Xcheck

-Xcheck:memory	may	be	used	to	investigate	native	memory	issues	within	the	JVM	itself.

	

Snap	Traces

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/diag/problem_determination/win_mem_trace_memorycheck.html

Snap	traces	contain	tracepoint	data	held	in	JVM	trace	bufffers	(-Xtrace).	Think	of	a	snap	trace	as	a	black	box
flight	recorder.	An	example	file	name	is	Snap.20140930.025436.9920.0004.trc.	To	process	a	snap	trace,	use
the	same	Java	version	that	produced	the	file	to	run	the	trace	formatter	on	the	snap	file.	For	example:

$	java	com.ibm.jvm.TraceFormat	Snap.20140930.025436.9920.0004.trc

If	you	are	formatting	a	snap	dump	from	another	JVM,	download	their	*.dat	files	($WAS/java/jre/lib/)	to
a	local	directory	and	then	use:

java	com.ibm.jvm.format.TraceFormat	Snap...trc.gz	-datdir	$DIR

On	z/OS,	FTP	the	.dat	files	down	in	ASC.

The	TraceFormatter	will	produce	an	output	file	with	the	same	name	plus	a	.fmt	suffix	which	is	a	human
readable	output	of	the	snap	file.	For	example:

09:54:40.168724484	*0x000000002d2e4e00	j9prt.527											Exception		*	j9vmem_reserve_memory	(failure)
09:54:40.168736220		0x000000002d2e4e00	j9prt.468											Exception		*	allocate_memory32	failed	to	allocate	byteAmount=8388608	callSite=segment.c:211
09:54:40.168740272		0x000000002d2e4e00	j9prt.1049										Exception		*	vmem	allocate	normal	region	failed.	Callsite	=	segment.c:211,	regionSize	=	8388608
09:54:40.168744813		0x000000002d2e4e00	j9prt.1045										Exception		*	memory32	allocate	returned	null	pointer.	Callsite	=	segment.c:211,	byteAmount	=	32832
09:54:40.168747956		0x000000002d2e4e00	j9vm.199												Exception		*	Failed	to	allocate	memory	for	segment	in	list	0x19fa50	(size=32768	type=0x10000)
09:54:40.168768913		0x000000002d2e4e00	j9vm.201												Exit							<allocateMemorySegmentInList	result=0x0
09:54:40.168776807		0x000000002d2e4e00	j9vm.94													Exception		*	Unable	to	allocate	1912	bytes	for	RAM	class.	Throw	OutOfMemoryError

	

Excessive	Direct	Byte	Buffers

In	addition	to	the	section	on	excessive	direct	byte	buffers	in	the	general	Troubleshooting	Java	chapter,	IBM
Java	offers	additional	potential	mitigations	to	excessive	DBBs:

1.	 Use	-Xgc:maxScavengeBeforeGlobal=N	to	force	System.gc()s	after	every	N	scavenges.	This	option
may	have	performance	implications.

2.	 Use	a	non-generational	garbage	collection	policy	such	as	-Xgcpolicy:optthruput	or	-
Xgcpolicy:optavgpause.	This	option	may	have	performance	implications.	As	the	article	quoted	above
mentions,	this	may	not	completely	solve	the	issue.

A	recent	IBM	javacore	shows	how	much	native	memory	is	currently	in	use	by	DirectByteBuffers.	For
example:

5MEMUSER							|		|		|		+--Direct	Byte	Buffers:	1,865,530,448	bytes	/	150746	allocations

Direct	byte	buffer	allocations	and	frees	may	be	tracked	with	the	following	-Xtrace:

-Xtrace:print=j9jcl.335-342

For	additonal	detail:

-Xtrace:none,output={directbytebuffers%p_#.trc,100m,5},maximal=j9jcl.335-342,trigger=tpnid{j9jcl.335-342,jstacktrace}

Log	files	named	directbytebuffers${PID_NUMBER}_${FILECOUNT}.trc	will	be	written	to	the	current
working	directory	of	the	JVM,	which	is	normally	the	profile	directory	(i.e.	where	javacores	go	by	default).
For	each	file,	execute	the	following	command:

${WebSphere}/java/bin/java	com.ibm.jvm.TraceFormat	directbytebuffersPID_NUMBER.trc	directbytebuffersPID_NUMBER.trc.txt

For	example:

${WebSphere}/java/bin/java	com.ibm.jvm.TraceFormat	directbytebuffers30799_0.trc	directbytebuffers30799_0.trc.txt

Create	a	ZIP	of	the	directbytebuffers	files	and	formatting	data	files:

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/trace_formatter.html

${WebSphere}/java/bin/jar	cvf	directbytebuffers.jar	directbytebuffers*trc*	${WebSphere}/java/jre/lib/J9TraceFormat.dat	${WebSphere}/java/jre/lib/TraceFormat.dat

Upload	directbytebuffers.jar	along	with	WAS	and	other	logs.

	

JIT

Excluding	JIT	methods

The	JIT	exclude	option	may	only	be	specified	once;	however,	it	supports	a	regular	expression	so	multiple
methods	may	be	specified	with	|.	For	example:

-Xjit:exclude={java/lang/invoke/MutableCallSite.invalidate*|org/eclipse/ui/application/WorkbenchAdvisor.eventLoopException*}

	

Always	JITting	methods

-Xjit:{method}(count=0)

Tracing	the	JIT	sampler

-Xjit:verbose{sampling}

	

OutOfMemoryError

Starting	with	IBM	Java	6.0.1,	a	system	dump	is	produced	on	the	first	OufOfMemoryError	in	addition	to	the
previous	artifacts	(PHD,	javacore,	snap).

	

Native	OutOfMemoryErrors	on	64-bit

There	are	three	broad	types	of	native	OutOfMemoryErrors	on	64-bit:

1.	 With	compressed	references,	insufficient	virtual	address	space	below	4GB	for	native	classes,	threads,
and	monitors.

2.	 Ulimit	exhaustion	on	certain	operating	systems	such	as	Linux	and	AIX.
3.	 If	malloc	or	mmap	return	NULL	or	fail	for	any	reason	(e.g.	physical	memory	and	swap	are	exhausted).

For	example,	on	Linux,	with	overcommit_memory=2,	if	the	amount	of	committed	bytes	(Committed_AS
in	/proc/meminfo)	will	exceed	(Swap	+	(RAM*overcommit_ratio))	or	(Swap	+
overcommit_kbytes).

When	using	IBM	Java	in	64-bit	mode	and	with	a	maximum	heap	size	less	than	25GB,	then	Compressed
References	(-Xcompressedrefs)	are	enabled	by	default	(defaults	may	be	different	on	older	versions	of	Java	on
some	operating	systems).

Compressed	references	will	"decrease	the	size	of	Java	objects	and	make	more	effective	use	of	the	available
space.	The	result	is	less	frequent	garbage	collection	and	improved	memory	cache	utilization."

There	are	important	implications	to	compressed	references	related	to	native	OutOfMemoryErrors:

When	you	are	using	compressed	references,	the	following	structures	are	allocated	in	the	lowest
4	GB	of	the	address	space:	Classes,	Threads,	Monitors.	Additionally,	the	operating	system	and
native	libraries	use	some	of	this	address	space.	Small	Java	heaps	are	also	allocated	in	the	lowest

http://www-01.ibm.com/support/docview.wss?uid=swg21584396
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/understanding/mm_compressed_references.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/garbage_compressed_refs.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/understanding/mm_compressed_references.html

4	GB	of	the	address	space.	Larger	Java	heaps	are	allocated	higher	in	the	address	space.

Native	memory	OutOfMemoryError	exceptions	might	occur	when	using	compressed	references
if	the	lowest	4	GB	of	address	space	becomes	full,	particularly	when	loading	classes,	starting
threads,	or	using	monitors.	You	can	often	resolve	these	errors	with	a	larger	-Xmx	option	to	put
the	Java	heap	higher	in	the	address	space.

A	command-line	option	can	be	used	with	-Xcompressedrefs	to	allocate	the	heap	you	specify	with
the	-Xmx	option,	in	a	memory	range	of	your	choice.	This	option	is	-Xgc:preferredHeapBase=
<address>,	where	<address>	is	the	base	memory	address	for	the	heap.	In	the	following
example,	the	heap	is	located	at	the	4GB	mark,	leaving	the	lowest	4GB	of	address	space	for	use
by	other	processes.	-Xgc:preferredHeapBase=0x100000000

The	first	key	point	is	that	some	maximum	heap	sizes	below	4GB	may	cause	the	Java	heap	to	be	placed	in	the
0-4GB	address	space	range	(when	possible).	Compressed	references	technology	works	by	compressing	and
decompressing	pointers	at	runtime	using	bit	shift	arithmetic.	However,	if	the	Java	heap	can	be	fit	under	4GB,
then	these	extra	instructions	are	not	required.	In	one	benchmark,	when	the	Java	heap	moved	above	the	0-
4GB	range,	there	was	a	relative	throughput	decrease	of	~2.5%.	Note	that	this	2.5%	effect	was	not	under
ceteris	paribus	conditions	because	the	heap	size	was	increased	rather	than	using	-Xgc:preferredHeapBase.
The	purpose	of	using	-Xgc:preferredHeapBase	(or	alternatively,	increasing	the	maximum	heap	size)	is	that
you	are	forcing	the	JVM	to	take	this	performance	hit	in	order	to	give	more	space	to	the	native	class,	thread,
and	monitor	data	structures	to	avoid	Native	OutOfMemoryErrors	(NOOMs).

The	second	key	point	is	that	native	class,	thread,	and	monitor	data	structures	must	all	be	allocated	below
4GB	when	using	compressed	references.	The	operating	system	and	other	native	allocations	may	further	limit
the	available	space	under	4GB,	so	if	you	continue	to	get	native	OutOfMemoryErrors	even	with	the	Java	heap
allocated	above	the	0-4GB	range,	then	you	must	address	the	number	and	size	of	the	class,	thread,	and
monitor	data	structures.	In	many	cases,	this	is	caused	by	a	class,	classloader,	or	thread	leak	which	you	can
investigate	with	various	tools,	but	it's	easiest	to	start	off	by	analyzing	the	javacore	from	the	NOOM.	If	there
are	no	leaks,	then	there	may	be	other	ways	to	reduce	these	data	structures	such	as	reducing	reflection
inflation,	using	shared	classes,	etc.

One	option	to	avoid	these	problems	and	NOOMs	is	to	disable	compressed	references	entirely;	however,	one
benchmark	shows	a	10-20%	relative	throughput	decrease	when	doing	so:	"Analysis	shows	that	a	64-bit
application	without	CR	yields	only	80-85%	of	32-bit	throughput	but	with	CR	yields	90-95%.	Depending	on
application	requirements,	CR	can	improve	performance	up	to	20%	over	standard	64-bit".	You	may	be	able	to
recover	some	of	this	drop	by	increasing	L2/L3	processor	cache	sizes	or	efficiency	(using	processor	sets).
Disabling	compressed	references	will	also	dramatically	increase	Java	heap	usage	by	up	to	70%	(because	the
pointers	are	doubled,	the	same	Java	object	reference	takes	more	of	the	Java	heap).

Common	causes	of	exhaustion	below	4GB	even	if	the	heap	is	above:

1.	 Too	many	classes,	classloaders,	threads,	or	monitors.
2.	 Too	many	other,	non-Class/Thread/Monitor	allocations	going	below	4GB.	Starting	with	Java	6.0.1

SR8	FP3	and	Java	7	SR8	FP10,	consider	reserving	more	of	this	space	for	Classes/Threads/Monitors
with	-Xmcrs#MB.	For	older	releases,	an	equivalent	but	undocumented	and	unsupported	option	is	-
Xgc:suballocatorInitialSize=#MB.

3.	 On	Windows,	its	default	allocation	strategy	fills	up	the	virtual	memory	below	4GB,	which	is	not
necessary.	Set	HKLM\System\CurrentControlSet\Control\Session	Manager\Memory
Management\AllocationPreference	to	(REG_DWORD)=0x100000

ftp://public.dhe.ibm.com/software/webserver/appserv/was/WAS_V7_64-bit_performance.pdf
ftp://public.dhe.ibm.com/software/webserver/appserv/was/WAS_V7_64-bit_performance.pdf
https://www.ibm.com/support/pages/node/507367
http://www-01.ibm.com/support/docview.wss?uid=swg27039764&aid=1
ftp://public.dhe.ibm.com/software/webserver/appserv/was/WAS_V7_64-bit_performance.pdf
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.60_26/vm626/J9/GC/xmcrs.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.win.70.doc/diag/understanding/mm_compressed_references.html

In	IBM	Java	<=	5	for	Linux,	the	IBM_MALLOCTRACE	option	is	available	which	calls	glibc's	mtrace.	Starting
with	IBM	Java	6,	this	option	was	changed	to	function	equivalent	to	-Xcheck:memory:all	instead	of	calling
mtrace.

Useful	jdmpview	commands:

info	thread	*	-	In	recent	versions,	includes	detailed	native	thread	information
info	mmap	-verbose	-	On	some	operating	systems	such	as	Linux,	includes	detailed	information
available	in	/proc

	

Native	Stack	Size	(-Xss)

Due	to	padding,	alignment,	and	other	operating	system	requirements,	the	actual	native	thread	stack	size	may
be	larger	than	that	specified	by	-Xss.

	

Known	Crashes

org/eclipse/swt/internal/cairo/Cairo._cairo_fill(Native	Method):	-
Dorg.eclipse.swt.internal.gtk.cairoGraphics=false

	

Debug	Mode

In	one	case,	removing	the	options	-Xdebug	-Xnoagent	improved	debug	performance	by	300%.	In	general,
the	only	required	arguments	are	-
agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=7777

	

LaunchAnywhere

If	you	see	the	following	error	launching	the	installer:

http://www.gnu.org/software/libc/manual/html_node/Tracing-malloc.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.diagnostics.60/diag/appendixes/env_var/env_jvm.html

An	internal	LaunchAnywhere	application	error	has	occured	and	this	application	cannot	proceed.		(LAX)
	
Stack	Trace:
java.lang.IllegalArgumentException:	Malformed	\uxxxx	encoding.
		at	java.util.Properties.loadConvert(Properties.java:618)
		at	java.util.Properties.load0(Properties.java:435)
		at	java.util.Properties.load(Properties.java:330)
		at	com.zerog.common.java.util.PropertiesUtil.loadProperties(Unknown	Source)
		at	com.zerog.lax.LAX.(DashoA8113)
		at	com.zerog.lax.LAX.main(DashoA8113)

Then	try	first	exporting	the	following	environment	variables:

export	PS1=">	"
export	TITLEBAR=">	"

	

Build	OpenJ9

1.	 Choose	the	desired	version	of	build	instructions
2.	 Follow	the	instructions	for	your	operating	system,	ultimately	leading	to	the	final	make	step	and	you

may	instead	run:

make	images

3.	 Execute	the	JVM:

build/*/images/jdk/bin/java	-version

	

Troubleshooting	HotSpot	JVM

jcmd

jcmd	is	a	tool	for	executing	various	diagnostic	operations.

	

jmap

jmap	is	an	unsupported	tool	for	memory	operations.

	

histo

The	histo	option	may	be	used	to	print	a	histogram	of	Java	objects	by	class,	including	number	of	instances
and	number	of	bytes.	The	live	option	only	counts	reachable	objects,	although	it	does	force	a	full	GC	first.
Example:

$	jmap	-histo	15078
	num					#instances									#bytes		class	name
--
			1:											399								4747704		[I
			2:										1565									151240		[C
			3:											450										51456		java.lang.Class
			4:											194										48144		[B
			5:										1229										29496		java.lang.String	...

	

https://community.flexera.com/t5/InstallAnywhere-Knowledge-Base/Malformed-uxxxx-Encoding-Error-Generated-when-Launching/ta-p/3648
https://github.com/eclipse-openj9/openj9/tree/master/doc/build-instructions
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr006.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jmap.html

jinfo

jinfo	is	an	unsupported	tool	which	prints	Java	configuration	of	a	live	Java	process	or	from	a	core	dump.

	

Thread	Dump

HotSpot	Java	can	produce	a	thread	dump	which	details	the	activity	of	each	thread.	For	example:

2020-01-01	01:23:45
Full	thread	dump	Java	HotSpot(TM)	64-Bit	Server	VM	(23.25-b01	mixed	mode):

"pool-1-thread-8402"	prio=3	tid=0x000000010956f000	nid=0x3cff	waiting	on	condition	[0xfffffff7868fe000]
		java.lang.Thread.State:	TIMED_WAITING	(parking)
				at	sun.misc.Unsafe.park(Native	Method)
				-	parking	to	wait	for		<0xfffffffe90fb54a0>	(a	java.util.concurrent.SynchronousQueue$TransferStack)
				at	java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:226)
				at	java.util.concurrent.SynchronousQueue$TransferStack.awaitFulfill(SynchronousQueue.java:460)
				at	java.util.concurrent.SynchronousQueue$TransferStack.transfer(SynchronousQueue.java:359)
				at	java.util.concurrent.SynchronousQueue.poll(SynchronousQueue.java:942)
				at	java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1068)
				at	java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1130)
				at	java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
				at	java.lang.Thread.run(Thread.java:724)...

The	"nid"	is	the	hexadecimal	native	thread	ID.

	

Request	Thread	Dump

1.	 On	POSIX	operating	systems,	send	the	SIGQUIT	signal	and	replace	$PID	and	a	text	thread	dump	will	be
printed	to	stderr:

kill	-3	$PID

2.	 Use	jcmd	and	replace	$PID	and	a	text	thread	dump	is	printed	to	the	jcmd	console:

jcmd	PID	Thread.print

	

HPROF	Heapdumps

An	HPROF	heapdump	contains	the	full	Java	heap	object	graph	as	well	as	Java	object	memory	contents	(for
example,	Strings,	primitives,	etc.).	This	is	used	for	investigating	OutOfMemoryErrors,	tuning	Java	heap
usage,	etc.

By	default,	when	a	Java	memory	request	cannot	be	fulfilled,	an	OutOfMemoryError	is	thrown,	but	an
HPROF	dump	is	not	produced.	Use	-XX:+HeapDumpOnOutOfMemoryError	to	produce	an	HPROF	dump	in
this	condition.	Consider	tuning	-XX:GCTimeLimit	and	-XX:GCHeapFreeLimit	to	control	when	an
OutOfMemoryError	is	thrown.	-XX:HeapDumpPath	may	be	used	to	control	where	the	dumps	are	written	to.	-
XX:OnOutOfMemoryError	may	be	used	to	execute	an	operating	system	command	on	an	OOM.

To	analyze	heapdumps,	see	the	Eclipse	Memory	Analyzer	Tool	chapter.

	

Generating	HPROF	heapdumps

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr013.html
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/clopts001.html

Additional	methods	of	requesting	heap	dumps	are	documented	in	the	Troubleshooting	WAS	chapter.

1.	 An	HPROF	heapdump	is	automatically	produced	on	OOM	after	adding	-
XX:+HeapDumpOnOutOfMemoryError	(this	must	be	explicitly	configured	and	the	JVM	restarted	as	it's
not	enabled	by	default).	Example	error	output	in	stdout:

java.lang.OutOfMemoryError:	GC	overhead	limit	exceeded
Dumping	heap	to	java_pid28537.hprof	...

2.	 Use	jcmd	and	replace	$PID:

jcmd	$PID	GC.heap_dump	heapdump.hprof

3.	 Use	the	HotSpotDiagnostic.dumpHeap	operation
4.	 Use	jmap	and	replace	$PID:

jmap	-dump:format=b,file=heapdump.hprof	${PID}

5.	 Produce	an	operating	system	core	dump	(see	the	Troubleshooting	Operating	Systems	chapter)	and	then
extract	the	HPROF	heapdump	using	jmap:

jmap	-dump:format=b,file=heapdump.hprof	${PATH_TO_JAVA}	${PATH_TO_CORE}

6.	 Use	-XX:OnOutOfMemoryError	(see	below)
7.	 From	within	Eclipse	Memory	Analyzer	Tool:	File	}	Acquire	Heap	Dump

	

Use	DTrace	to	Produce	Stacks	Calling	certain	Methods
The	following	DTrace	script	prints	stacks	when	System.gc	is	called.	The	JVM	must	be	started	with	-
XX:+ExtendedDTraceProbes

Attach	the	DTrace	script	to	a	running	PID:	/usr/sbin/dtrace	-qs	methodtrace.d	-p	${PID}

It	is	often	the	case	that	the	overhead	of	such	a	DTrace	script	is	very	high	and	may	be	inappropriate	for	a
production	environment.

#pragma	D	option	bufsize=128m

dtrace:::BEGIN
{
				/*	Java	level	tracing	*/
				traceJava	=	1;							/*	1	=	enable,	0	=	disable	*/
				classFilter	=	"java/lang/System";				/*	e.g.	"java/util"								*/
				methodFilter	=	"gc";			/*	e.g.	"get"														*/
				
				/*	Initialise	the	per-thread	indentation	variable	*/
				self->indent	=	0;
}

hotspot$target:::method-entry
/
				traceJava
				&&	(classFilter	==	""	||	strstr(copyinstr(arg1,	arg2),	classFilter)	!=	NULL)
				&&	(methodFilter	==	""	||	strstr(copyinstr(arg3,	arg4),	methodFilter)	!=	NULL)
/
{
				self->indent	+=	2;

				wt	=	walltimestamp;
				printf("%Y.%09d:	%d/%d:%*s->	%s.%s%s\n",
											wt,
											wt	%	1000000000,
											pid,

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/HotSpotDiagnosticMXBean.html#dumpHeap-java.lang.String-boolean-

											tid,
											self->indent,
											"",
											copyinstr(arg1,	arg2),
											copyinstr(arg3,	arg4),
											copyinstr(arg5,	arg6));				
				jstack(500,	8192);				
}

Example	output:

2018	Jan	10	14:03:24.280004000:	18021/2:
->	java/lang/System.gc()V
libjvm.so`__1cNSharedRuntimeTdtrace_method_entry6FpnKJavaThread_pnNmethodOopDesc__i_+0x1ac
														java/lang/System.c
														SystemDemo.ai
														0xfbc0021c
libjvm.so`__1cJJavaCallsLcall_helper6FpnJJavaValue_pnMmethodHandle_pnRJavaCallArguments_pnGThread__v_+0x318
														libjvm.so`jni_CallStaticVoidMethod+0x67c
														libjli.so`JavaMain+0x740
														libc.so.1`_lwp_start

	

Use	-XX:OnOutOfMemoryError	to	Spawn	jmap

#!/bin/sh
#	Usage:
#		1.	Create	oom.sh	with	the	contents	of	this	script
#		2.	Change	paths	in	the	"Variables"	section	if	needed
#		3.	chmod	a+x	oom.sh
#		4.	Run	java	with	the	following	argument,	replacing	$PATH	with	path	to	oom.sh
#					-XX:OnOutOfMemoryError="/$PATH/oom.sh	%p"

#	Variables
LOCKFILE=/tmp/oomlock
OUT=/tmp/oomout.txt
NOW=`date	+"%Y%m%d_%H%M%S"`
CURDIR=`pwd`
JAVA_HOME=/opt/IBM/WebSphere/AppServer/java/

#	Execution
echo	"OOM	handler	script	started	for	PID	$1	at	$NOW	in	$CURDIR"	>>	$OUT
if	[!	-f	$LOCKFILE];	then
		touch	$LOCKFILE	>>	$OUT	2>&1
		NOW=`date	+"%Y%m%d_%H%M%S"`
		echo	"OOM	handler	requested	hprof	at	$NOW"	>>	$OUT
		FILENAME="heap_${NOW}_${1}.hprof"
		$JAVA_HOME/bin/jmap	-F	-dump:format=b,file=$FILENAME	$1	>>	$OUT	2>&1
		#	/usr/bin/gcore	-F	-o	core_$NOW.dmp	$1	>>	$OUT	2>&1
		CODE=$?
		echo	"OOM	handler	returned	with	$CODE	at	$NOW"	>>	$OUT
		rm	-f	$LOCKFILE	>>	$OUT	2>&1
fi
NOW=`date	+"%Y%m%d_%H%M%S"`
echo	"OOM	handler	finished	at	$NOW"	>>	$OUT

	

Use	-XX:OnOutOfMemoryError	to	Spawn	gcore

#!/bin/sh
#	Usage:
#		1.	Create	oom.sh	with	the	contents	of	this	script
#		2.	Change	paths	in	the	"Variables"	section	if	needed
#		3.	chmod	a+x	oom.sh
#		4.	Run	java	with	the	following	argument,	replacing	$PATH	with	path	to	oom.sh

#					-XX:OnOutOfMemoryError="/$PATH/oom.sh	%p"
#		5.	After	an	OOM	occurs,	check	/tmp/oomout.txt	for	output	of	the	command
#		6.	Run	`jmap	-dump:format=b,file=heap.hprof	${PATH_TO_JAVA}	${CORE}`
#
#	Notes:
#		OnOutOfMemoryError	runs	/usr/bin/sh	-c	$CMD	synchronously,	during	which	it
#		appears	it	has	a	lock	that	prevents	jmap	to	attach.	Tried	-F,	but	that
#		generated	an	infinite	loop	and	ran	into	other	issues,	so	running	gcore
#		instead.

#	Variables
LOCKFILE=/tmp/oomlock
OUT=/tmp/oomout.txt
NOW=`date	+"%Y%m%d_%H%M%S"`
CURDIR=`pwd`
GCORE_PATH=/usr/bin/gcore

#	Execution
echo	"OOM	handler	script	started	for	PID	$1	at	$NOW	in	$CURDIR"	>>	$OUT
if	[!	-f	$LOCKFILE];	then
		touch	$LOCKFILE	>>	$OUT	2>&1
		NOW=`date	+"%Y%m%d_%H%M%S"`
		echo	"OOM	handler	requested	hprof	at	$NOW"	>>	$OUT
		#	$JAVA_HOME/bin/jmap	-dump:format=b,file=heap_$1.hprof	$1	>>	$OUT	2>&1
		$GCORE_PATH	-F	-o	core_$NOW.dmp	$1	>>	$OUT	2>&1
		CODE=$?
		echo	"OOM	handler	returned	with	$CODE	at	$NOW"	>>	$OUT
		rm	-f	$LOCKFILE	>>	$OUT	2>&1
fi
NOW=`date	+"%Y%m%d_%H%M%S"`
echo	"OOM	handler	finished	at	$NOW"	>>	$OUT

	

Code	to	Request	Diagnostics	from	within	the	JVM

import	java.io.BufferedReader;
import	java.io.IOException;
import	java.io.InputStreamReader;
import	java.lang.management.ManagementFactory;
import	java.text.SimpleDateFormat;
import	java.util.Date;
import	java.util.concurrent.atomic.AtomicInteger;

public	class	Play
{
				public	static	void	main(String...	args)	throws	Throwable
				{
								System.out.println("Requesting	core...");
								tryGenerateCore();
				}

				public	static	void	tryGenerateCore()
				{
								try
								{
												String	requestedFileName	=	generateCore();
												if	(requestedFileName	!=	null)
												{
																System.out.println("Started	writing	core	dump	to	"	+	requestedFileName);
												}
								}
								catch	(Throwable	t)
								{
												System.out.println("Error	generating	core:	"	+	t.getLocalizedMessage());
												t.printStackTrace();
								}
				}

				private	final	static	boolean	ENABLE_REQUESTING_COREDUMPS	=	Boolean.getBoolean("ENABLE_REQUESTING_COREDUMPS");
				private	final	static	SimpleDateFormat	DIAG_NAME_FORMAT	=	new	SimpleDateFormat("yyyyMMdd.HHmmss");
				private	final	static	String	CORE_PROGRAM_PATH	=	System.getProperty("CORE_PROGRAM_PATH",	"/usr/bin/gcore");
				private	final	static	int	MAX_CORE_DUMPS	=	Integer.getInteger("MAX_CORE_DUMPS",	1);
				private	static	final	AtomicInteger	coreDumpsTaken	=	new	AtomicInteger();
				private	static	int	coreDumpsRequested;

				/**
					*	Disabled	by	default.	Enable	with	-DENABLE_REQUESTING_COREDUMPS=true
					*	<p	/>
					*	Request	a	non-destructive	core	dump	in	a	separate	thread	by	spawning	out
					*	to	the	gcore	command.	gcore	will	attach	to	and	pause	the	process,	dump
					*	all	virtual	memory	(so	the	size	will	be	about	the	size	in	ps	VSZ)	and
					*	then	the	process	should	continue.	Unlike	an	OOM	or	using	jmap	to	request
					*	an	HPROF	dump,	requesting	a	core	does	not	request	a	Full	GC.	Jmap	can	be
					*	used	to	extract	an	HPROF	heapdump	from	the	core:
					*	<p	/>
					*	<code>$	jmap	-dump:format=b,file=heap.hprof	${PATH_TO_java}	${CORE}</code>
					*	<p	/>
					*	Whereas	asking	the	JVM	to	generate	a	heapdump	with	jmap	is	a	complex
					*	operation	because	the	JVM	has	to	walk	all	the	data	structures,	the
					*	operating	system	generating	a	core	is	very	simple:	the	OS	just	pauses	the
					*	process	and	dumps	out	all	of	the	virtual	memory.	The	overhead	of	a	core
					*	file	is	almost	completely	in	writing	the	large	amount	of	bytes	to	disk.
					*	There	are	some	techniques	to	make	this	very	fast.	First,	if	there	is
					*	sufficient	filecache	in	RAM	(i.e.	a	large	amount	of	free	RAM),	then	the
					*	OS	will	write	the	core	to	RAM	and	then	asynchronously	write	to	disk,	thus
					*	making	the	pause	quite	fast.	However,	this	can	have	some	performance	side
					*	effects.	An	alternative	way	to	do	this	is	to	mount	a	RAMdisk	and	write
					*	the	core	to	a	RAMdisk.
					*	<p	/>
					*	Warning:	ensure	sufficient	core,	file	and	other	ulimits.	Also	ensure
					*	sufficient	disk	space	in	the	current	working	directory.
					*
					*	@return	null	if	-DMAX_CORE_DUMPS	(default	1)	has	been	reached	or
					*									-DENABLE_REQUESTING_COREDUMPS=false;	otherwise,	the	requested
					*									core	file	name.
					*	@throws	IOException
					*	@throws	InterruptedException
					*/
				public	static	synchronized	String	generateCore()	throws	IOException,	InterruptedException
				{
								if	(!ENABLE_REQUESTING_COREDUMPS	||	coreDumpsRequested++	>=	MAX_CORE_DUMPS)	{	return	null;	}
								CoreDumpThread	coreDumpThread	=	new	CoreDumpThread();
								coreDumpThread.start();
								return	coreDumpThread.getRequestedFileName();
				}

				public	static	int	getPID()
				{
								String	name	=	ManagementFactory.getRuntimeMXBean().getName();
								if	(name	!=	null)
								{
												int	x	=	name.indexOf('@');
												if	(x	!=	-1)
												{
																name	=	name.substring(0,	x);
																return	Integer.parseInt(name);
												}
								}
								throw	new	RuntimeException("Could	not	find	PID");
				}

				static	class	CoreDumpThread	extends	Thread
				{
								private	final	int	pid;
								private	final	String	requestedFileName;
								private	Throwable	error;

								public	CoreDumpThread()
								{
												super("CoreDumpThread	:	"	+	coreDumpsTaken.get());
												//	Writing	the	core	can	take	a	while,	so	we'll	prefer	to	block	the
												//	JVM
												setDaemon(false);
												pid	=	getPID();
												requestedFileName	=	"core."	+	DIAG_NAME_FORMAT.format(new	Date())	+	"."	+	pid	+	".dmp";
								}

								@Override
								public	void	run()
								{
												try
												{
																ProcessBuilder	processBuilder	=	new	ProcessBuilder(CORE_PROGRAM_PATH,	"-o",	requestedFileName,	""	+	pid);
																processBuilder.redirectErrorStream(true);
																Process	process	=	processBuilder.start();
																BufferedReader	br	=	new	BufferedReader(new	InputStreamReader(process.getInputStream()));

																String	line;
																StringBuilder	sb	=	new	StringBuilder();
																while	((line	=	br.readLine())	!=	null)
																{
																				sb.append(line);
																}
																int	exitValue	=	process.waitFor();
																if	(exitValue	==	0)
																{
																				coreDumpsTaken.incrementAndGet();
																}
																else
																{
																				System.out.println("Error	requesting	core.	Exit	value	"	+	exitValue	+	".	Output	"	+	sb.toString());
																}
												}
												catch	(Throwable	t)
												{
																error	=	t;
																System.out.println("Error	generating	core:	"	+	t.getLocalizedMessage());
																t.printStackTrace();
												}
								}

								public	String	getRequestedFileName()
								{
												return	requestedFileName;
								}

								public	Throwable	getError()
								{
												return	error;
								}
				}
}

	

Troubleshooting	IBM	Java
This	chapter	has	been	renamed	to	Troubleshooting	OpenJ9	and	IBM	J9	JVMs.

	

Troubleshooting	Oracle	Java

This	chapter	has	been	renamed	to	Troubleshooting	HotSpot	JVM.

	

Troubleshooting	WebSphere	Application	Server

Sub-chapters

Troubleshooting	WAS	traditional
Troubleshooting	WebSphere	Liberty

	

Education

Troubleshoot	WebSphere	Application	Server	(The	Basics)
Self-paced	WebSphere	Application	Server	Troubleshooting	and	Performance	Lab

	

Preparing	for	Tracing
WAS	supports	a	diagnostic	trace	facility:

WAS	traditional:	https://www.ibm.com/support/pages/setting-trace-websphere-application-server

WebSphere	Liberty:	https://www.ibm.com/support/pages/set-trace-and-get-full-dump-websphere-
liberty

When	enabling	trace,	always	notify	the	customer	that	the	performance	impact	of	trace	is	highly	variable
across	components,	proportional	to	trace	load	and	the	detail	of	the	trace;	therefore,	there	is	no	way	to	predict
the	impact	of	diagnostic	trace.	The	best	thing	to	do	is	for	the	customer	to	run	a	benchmark	test	in	a	test
environment	without	trace	as	a	baseline,	and	then	run	the	same	test	with	trace	enabled	and	compare	the
relative	performance	difference.	Alternatively,	diagnostic	trace	may	be	enabled	on	only	a	single	member	of	a
production	cluster	to	reduce	the	impact	on	users.

It	is	critical	that	the	customer	follows	the	instructions	in	the	link	above	to	configure	a	large	number	and	size
of	historical	trace	files	when	enabling	a	heavy	trace	file	so	that	the	chances	are	higher	that	the	trace	captures
the	problem	before	it	rolls	over.

	

Notes

Any	class	packages	that	start	with	com.ibm.websphere	are	public.	Those	that	start	with	com.ibm.ws	are
internal.

	

Increasing	Resiliency	for	IBM	WebSphere	Application	Server	Deployments

The	top	practices	that	we	have	observed	in	customer	situations	which	cause	problems	are
(http://www.redbooks.ibm.com/redpapers/pdfs/redp5033.pdf):

1.	 No	test	environment	is	equal	to	the	production	environment
2.	 Communication	breakdown
3.	 No	plan	for	education

https://ibm.biz/troubleshooting1-replay
https://ibm.biz/troubleshoot2-replay
https://www.ibm.com/support/pages/setting-trace-websphere-application-server
https://www.ibm.com/support/pages/set-trace-and-get-full-dump-websphere-liberty
http://www.redbooks.ibm.com/redpapers/pdfs/redp5033.pdf

4.	 No	load	or	stress	testing
5.	 Not	managing	the	entire	application	lifecycle
6.	 No	capacity	or	scalability	plan
7.	 No	production	traffic	diagram
8.	 Changes	are	put	directly	into	production
9.	 No	migration	plan

10.	 No	record	of	changes
11.	 No	current	architecture	plan

	

Malpractice:	Broadly	Disabling	Core	Logging

By	default,	WebSphere	Application	Server	has	a	global	log	level	of	*=info.	This	means	the	following
messages	are	logged:	info,	audit,	warning,	severe,	and	fatal.	It	is	almost	always	a	malpractice	to	use
*=severe,	*=fatal,	or	*=off,	because	warnings	and	errors	generally	occur	infrequently	and	are	critical	to
understanding	why	problems	occurred.	It	is	often	a	malpractice	to	use	*=warning,	because	there	are	many
informational	messages	that	are	very	useful	to	understanding	why	problems	occurred.	If	there	are	repeating
messages	flooding	your	logs,	then	the	last	resort	should	be	to	broadly	disable	core	logging;	instead,	consider:

1.	 Open	a	support	ticket	with	the	owner	of	the	message	to	understand	why	the	message	occurs	so
frequently.

2.	 Change	the	log	level	of	the	particular	logger	for	those	messages	(after	understanding	what	they	mean
in	#1).	Any	log	levels	specified	after	the	global	log	level	override	the	log	level	for	that	particular
logger.	For	example,	if	the	log	configuration	is	*=info:com.test.Logger=warning,	then	the
threshold	is	only	changed	for	com.test.Logger	messages.

3.	 On	Liberty,	use	<logging	hideMessage="..."	/>

	

Command	line	HTTP	client	with	a	keep-alive	socket

You	may	use	a	command	line	HTTP/HTTPS	client	to	test	keep-alive	sockets.	Note	that	the	Host	header	is
required.	Press	enter	twice	after	entering	the	Host	header	to	send	the	request.	If	keep-alive	connections	are
supported	by	the	server,	after	the	response	is	shown,	you	may	send	another	request.

For	HTTP,	example	using	telnet.	Type	Ctrl+]	and	then	type	quit	to	quit	instead	of	Ctrl^C:

$	telnet	localhost	80
Trying	127.0.0.1...
Connected	to	localhost.
Escape	character	is	'^]'.
GET	/	HTTP/1.1
Host:	localhost

HTTP/1.1	200	OK
X-Powered-By:	Servlet/3.1
Content-Type:	text/plain
Content-Language:	en-US
Date:	Mon,	05	Apr	2021	17:23:31	GMT

Hello	World
GET	/	HTTP/1.1
[...]

For	HTTPS,	example	using	openssl:

$	openssl	s_client	-connect	localhost:443
CONNECTED(00000003)
[...]

GET	/	HTTP/1.1

Host:	localhost

HTTP/1.1	200	OK
X-Powered-By:	Servlet/3.1
Content-Type:	text/plain
Content-Language:	en-US
Date:	Mon,	05	Apr	2021	17:25:01	GMT

Hello	World
GET	/	HTTP/1.1
[...]

	

Troubleshooting	WAS	traditional

Troubleshooting	WAS	traditional	Recipe

1.	 Review	all	warnings	and	errors	in	System*.log	(or	using	logViewer	if	HPEL	is	enabled)	before	and
during	the	problem.	A	regular	expression	search	is	"	[W|E]	".	One	common	type	of	warning	is	an
FFDC	warning	which	points	to	a	matching	file	in	the	FFDC	logs	directory.

1.	 If	you're	on	Linux	or	use	cygwin,	use	the	following	command:

1.	 find	.	-name	"*System*"	-exec	grep	"	[W|E]	"	{}	\;	|	grep	-v	-e
known_error

2.	 Review	all	JVM*	messages	in	native_stderr.log	before	and	during	the	problem.	This	may	include
things	such	as	OutOfMemoryErrors.	The	filename	of	such	artifacts	includes	a	timestamp	of	the	form
YYYYMMDD.

3.	 Review	any	strange	messages	in	native_stdout.log	before	and	during	the	problem.

4.	 If	verbose	garbage	collection	is	enabled,	review	verbosegc	in	native_stderr.log	(IBM	Java),
native_stdout.log	(HotSpot	Java),	or	any	verbosegc.log	files	(if	using	-Xverbosegclog	or	-Xloggc)	in
the	IBM	Garbage	Collection	and	Memory	Visualizer	Tool	and	ensure	that	the	proportion	of	time	in
garbage	collection	for	a	relevant	period	before	and	during	the	problem	is	less	than	10%

5.	 Review	any	javacore*.txt	files	in	the	IBM	Thread	and	Monitor	Dump	Analyzer	tool.	Review	the
causes	of	the	thread	dump	(e.g.	user-generated,	OutOfMemoryError,	etc.)	and	review	threads	with
large	stacks	and	any	monitor	contention.

6.	 Review	any	heapdump*.phd	and	core*.dmp	files	in	the	IBM	Memory	Analyzer	Tool

	

Server	Start

When	the	server	is	started	or	a	log	file	is	rolled,	the	following	messages	will	be	written	to	SystemOut	and
trace	logs.	For	example:

************	Start	Display	Current	Environment	************
WebSphere	Platform	9.0.5.1	[BASE	9.0.5.1	f5011934.01]	[JAVA8	8.0.6.0	pxa6480sr6-20191107_01]	running	with	process	name	DefaultCell01\DefaultNode01\server1	and	process	id	1522
Full	server	name	is	DefaultCell01\DefaultNode01\server1-1522
Host	Operating	System	is	Linux,	version	4.19.76-linuxkit
[...]
*************	End	Display	Current	Environment	*************

	

Initial	Trace	Setting

When	the	server	is	started	or	a	log	file	is	rolled,	unless	the	message	has	been	disabled,	the	following	message
is	written	to	SystemOut	and	trace	logs.	For	example:

[4/15/20	10:47:01:227	EST]	00000001	ManagerAdmin		I			TRAS0017I:	The	startup	trace	state	is	*=info.

	

Open	for	e-business

When	the	server	has	fully	started,	unless	the	message	has	been	disabled,	the	following	message	will	be
written	to	SystemOut	and	trace	logs.	For	example:

[4/15/20	10:47:02:577	EST]	00000001	WsServerImpl		A			WSVR0001I:	Server	SERVER_NAME	open	for	e-business

Or

[11/4/23	22:20:14:149	EST]	00000001	WsServerImpl		A			WSVR0002I:	Server	SERVER_NAME	open	for	e-business,	problems	occurred	during	startup

Search	for	start	and	stop:

grep	-e	WSVR0001I	-e	WSVR0002I	-e	TRAS0017I

	

Trace	State	Changed

When	the	state	of	diagnostic	trace	changes,	unless	the	message	has	been	disabled,	the	following	message	will
be	written	to	SystemOut	and	trace	logs.	For	example:

[4/15/20	10:45:02:005	EST]	00000159	ManagerAdmin		I			TRAS0018I:	The	trace	state	has	changed.	The	new	trace	state	is	*=info:com.ibm.ws.cache.*=all.

	

WAS	and	Java

When	upgrading	WAS	fixpacks,	the	Java	fixpack	should	also	be	upgraded:	https://www-
304.ibm.com/support/docview.wss?uid=swg27005002

The	Java	SDK	can	be	upgraded	to	any	version	available	for	that	WAS	major	version.	For	example,	if	you	are
on	WAS	6.1.0.21	but	you	want	to	run	the	6.1.0.29	Java	SDK,	that	is	supported,	although	this	is	obviously	a
less	tested	configuration.	You	cannot	use	a	WAS	7	SDK	on	WAS	6.1,	for	example.

Diagnostic	plans:
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_diagplan.html

	

PID	File

It	is	possible	to	automate	finding	the	process	ID	of	particular	application	server	through	scripts.	Each
application	server	writes	a	file	named	${SERVER}.pid	into	its	log	folder	on	startup.	For	example,	on	POSIX
systems:

$	someScript.sh	`cat	/opt/IBM/WebSphere/AppServer/profiles/profile1/logs/server1/*.pid`

	

Stopping	Servers

There	are	four	ways	to	stop	a	WAS	server	(http://www-

https://www-304.ibm.com/support/docview.wss?uid=swg27005002
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_diagplan.html

01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/urun_rsvr.html?
lang=en):

1.	 WAS	Stop:	Quiesce	the	server	so	that	no	new	work	is	allowed	in,	allow	existing	work	tracked	by
WAS	to	finish,	then	gracefully	stop	all	applications,	shutdown	WAS	components,	and	attempt	to
gracefully	exit	the	Java	process.	By	default,	WAS	will	wait	up	to	3	minutes	for	the	quiesce	to
complete.	This	can	be	changed	with	com.ibm.ejs.sm.server.quiesceTimeout:	http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/xrun_jvm.html?
cp=SSAW57_8.5.5%2F3-18-6-481&lang=en

2.	 WAS	Immediate	Stop:	This	is	the	same	as	a	WAS	Stop,	except	that	it	does	not	wait	for	existing	work
to	finish.	Based	on	tests	on	V9,	ImmediateStop	still	waits	for	in-flight	requests	to	finish	just	like	the
Stop	function.

3.	 WAS	Terminate:	Unlike	the	stop	and	immediate	stop	methods,	this	method	does	not	attempt	to
gracefully	exit	the	Java	process,	but	instead	uses	operating	system	commands	to	kill	the	process.

4.	 Operating	system	signal:	Depending	on	the	type	of	signal,	either	the	process	will	end	without	any
handling	within	WAS	(destructive	signal,	e.g.	SIGKILL)	or	as	a	WAS	Immediate	Stop	(e.g.
SIGTERM).	WAS	accomplishes	the	latter	through	a	shutdown	hook
(http://docs.oracle.com/javase/7/docs/api/java/lang/Runtime.html#addShutdownHook%28java.lang.Thread%29

It	is	recommended	to	first	try	a	WAS	Stop,	wait	3	minutes,	then	try	a	WAS	Immediate	Stop,	and	finally	try	a
WAS	Terminate.

In	the	case	of	a	WAS	Terminate	or	a	destructive	operating	system	signal,	the	following	are	examples	of	some
possible	effects:

1.	 Transaction	log:	If	an	application	uses	transactions	and	the	process	ended	during	an	in-flight
transaction,	the	transaction	log	may	need	to	be	processed.

2.	 OSGi	cache:	If	the	process	ended	during	OSGi	activity,	the	OSGi	cache	may	need	to	be	reset	with
osgiCfgInit	and	clearClassCache.

3.	 IBM	Java	shared	class	cache:	If	the	process	ended	during	IBM	Java	shared	class	cache	activity,	the
cache	may	need	to	be	reset	with	Java	commands.

4.	 HTTP	sessions:	If	HTTP	sessions	are	configured	for	distribution	or	persistence,	some	sessions	may	not
have	been	committed	and	their	states	will	be	lost.

	

Request	Thread	Dump

Additional	methods	of	requesting	thread	dumps	are	documented	in	the	Troubleshooting	Java	chapters.

1.	 On	IBM	Java,	use	wsadmin	-lang	jython	and	run	the	following	command,	replacing	server1	with	the
server	name:

AdminControl.invoke(AdminControl.completeObjectName("type=JVM,process=server1,*"),	"dumpThreads")

2.	 On	Windows,	use	the	windows_hang.py	script	which	essentially	does	the	same	as	#1	with	much	more
flexibility:	http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg21111364

3.	 On	IBM	Java	and	WAS	>=	8,	Administrative	Console	}	Troubleshooting	}	Java	dumps	and	cores	}
Check	the	server(s)	}	Java	core:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/urun_rsvr.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/xrun_jvm.html?cp=SSAW57_8.5.5%252F3-18-6-481&lang=en
http://docs.oracle.com/javase/7/docs/api/java/lang/Runtime.html#addShutdownHook%2528java.lang.Thread%2529
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg21111364

4.	 On	Windows,	generate	an	attached	start	server	script	with	startServer.bat	-script,	start	the	server
using	the	generated	script,	and	now	since	you	have	an	attached	console,	you	can	type	Ctrl+Break	to
request	a	thread	dump.

	

JVM.dumpThreads

The	dumpThreads	functionality	is	different	depending	on	the	operating	system:

POSIX	(AIX,	Linux,	Solaris,	etc.):	kill(pid,	SIGQUIT)
Windows:	raise(SIGBREAK)
z/OS:	In	recent	versions,	produces	a	javacore,	heapdump,	and	SYSTDUMP	by	default

For	any	customers	that	have	changed	the	behavior	of	the	JVM	(-Xdump)	in	how	it	responds	to
SIGQUIT/SIGBREAK	(i.e.	kill	-3),	then	dumpThreads	will	respond	accordingly	(unless	running	z/OS,	in
which	case	use	wsadmin_dumpthreads*	properties).

	

Request	Heap	Dump

Additional	methods	of	requesting	heap	dumps	are	documented	in	the	Troubleshooting	Java	chapters.

1.	 On	IBM	Java,	use	wsadmin	-lang	jython	and	run	the	following	command,	replacing	server1	with	the
server	name:

AdminControl.invoke(AdminControl.completeObjectName("type=JVM,process=server1,*"),	"generateHeapDump")

2.	 On	IBM	Java	and	WAS	>=	8,	Administrative	Console	}	Troubleshooting	}	Java	dumps	and	cores	}
Check	the	server(s)	}	Heap	dump:

	

Request	System	Dump

Additional	methods	of	requesting	system	dumps	are	documented	in	the	Troubleshooting	Operating	Systems
and	Troubleshooting	Java	chapters.

Starting	with	WAS	8.5.5.17	and	9.0.5.2,	the	following	methods	request	exclusive+prepwalk.

1.	 On	IBM	Java	and	WAS	>=	8,	use	wsadmin	-lang	jython	and	run	the	following	command,	replacing
server1	with	the	server	name:

AdminControl.invoke(AdminControl.completeObjectName("type=JVM,process=server1,*"),	"generateSystemDump")

2.	 On	IBM	Java	and	WAS	>=	8,	Administrative	Console	}	Troubleshooting	}	Java	dumps	and	cores	}
Check	the	server(s)	}	System	dump:

	

ClassLoader	Leaks

ClassLoader	leaks	become	most	evident	when	an	application	is	restarted	and	its	old	classes	are	not	available
for	garbage	collection.	This	may	induce	longer	garbage	collection	times,	Java	OutOfMemoryErrors,	and
native	OutOfMemoryErrors.

The	IBM	Extensions	for	Memory	Analyzer	in	the	Eclipse	Memory	Analyzer	Tool	provide	two

https://www.ibm.com/support/pages/apar/PH16983

classloader	leak	detection	queries.
WAS	8.5	introduces	some	basic	classloader	leak	detection	(disabled	by	default):	 http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/ctrb_memleakdetection.html?
lang=en

	

Thread	IDs	in	Logs

Before	WAS	8.5,	the	"thread	ID"	printed	in	WAS	logs	(the	hexadecimal	number	after	the	timestamp)	comes
from	the	java/util/logging/LogRecord.getThreadID	method.	This	number	was	not	in	javacores,	so	there	was
no	easy	way	to	correlate	javacores	with	log	and	trace	messages.	Moreover,	this	thread	ID	was	different	from
java/lang/Thread.getID	which	might	be	printed	in	other	components,	and	that	thread	ID	also	wasn't	in
javacores.	There	were	some	complex	techniques	of	correlating	IDs:	http://www-
304.ibm.com/support/docview.wss?uid=swg21418557

WAS	8.5	has	changed	the	ID	printed	in	logs	to	the	value	from	java/lang/Thread.getID.	This	can	be	changed
back	to	the	previous	behavior	using	com.ibm.websphere.logging.useJULThreadID=true.	See:
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-
mp&topic=rtrb_readmsglogs.	This	was	also	backported	to	WAS	8.0.0.4	(PM60913);	however,	it	must	be
explicitly	enabled	in	WAS	8.0.

With	IBM	Java	6	SR12	(WAS	7.0.0.27),	IBM	Java	626	SR4	(WAS	8.0.0.6,	8.5.0.2,	8.5.5.0),	and	IBM	Java	7
SR3	(WAS	8.5.0.2,	8.5.5.0),	javacores	will	have	the	value	of	Thread.getID	printed	with	each	stack.	Given	the
above	change,	this	allows	you	to	correlate	WAS	log	messages	with	javacores	(note	the	bold	and	underlined
parts):

[8/22/12	10:00:05:049	PDT]	0000005b	SystemOut					O	swat.ear:	Calling	com.ibm.jvm.Dump.JavaDump()...	Thread.getId=0x5b

3XMTHREADINFO						"WebContainer	:	1"	J9VMThread:0x0000000012593E00,	j9thread_t:0x00007F7F542C6FF0,	java/lang/Thread:0x00000000104FEE78,	state:R,	prio=5
3XMJAVALTHREAD												(java/lang/Thread	getId:0x5B,	isDaemon:true)
3XMTHREADINFO1												(native	thread	ID:0x5859,	native	priority:0x5,	native	policy:UNKNOWN)
3XMTHREADINFO2												(native	stack	address	range	from:0x00007F8031226000,	to:0x00007F8031267000,	size:0x41000)
3XMHEAPALLOC													Heap	bytes	allocated	since	last	GC	cycle=2132320	(0x208960)
3XMTHREADINFO3											Java	callstack:
4XESTACKTRACE																at	com/ibm/jvm/Dump.JavaDumpImpl(Native	Method)

	

TrapIt.ear

TrapIt.ear	is	a	free	enterprise	application	which	may	be	installed	to	watch	for	particular	log	messages	and
generate	diagnostics	such	as	thread	dumps,	as	well	as	time-based	triggers	to	do	the	same:	http://www-
01.ibm.com/support/docview.wss?uid=swg21644180

	

High	Availability	Manager

JVM	Panic

Under	some	conditions,	the	High	Availability	Manager	will	"panic,"	print	some	diagnostics,	and	then	force
the	WAS	process	to	stop	itself.	The	symptoms	of	this	will	include:

1.	 A	stack	trace	in	RuntimeProviderImpl.panicJVM	in	SystemErr.log.	For	example:

[1/1/15	00:00:00:000	UTC]	00000001	SystemErr	R	java.lang.Throwable	[1/1/15	00:00:00:000	UTC]
00000001	SystemErr	R	at	java.lang.Thread.dumpStack(Thread.java:434)	[1/1/15	00:00:00:000	UTC]
00000001	SystemErr	R	at

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/ctrb_memleakdetection.html?lang=en
http://www-304.ibm.com/support/docview.wss?uid=swg21418557
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=rtrb_readmsglogs
http://www-01.ibm.com/support/docview.wss?uid=swg21644180

com.ibm.ws.hamanager.runtime.RuntimeProviderImpl.panicJVM(RuntimeProviderImpl.java:91)
[1/1/15	00:00:00:000	UTC]	00000001	SystemErr	R	at
com.ibm.ws.hamanager.coordinator.impl.JVMControllerImpl.panicJVM(JVMControllerImpl.java:56)
[1/1/15	00:00:00:000	UTC]	00000001	SystemErr	R	at
com.ibm.ws.hamanager.impl.HAGroupImpl.doIsAlive(HAGroupImpl.java:882)	[1/1/15	00:00:00:000
UTC]	00000001	SystemErr	R	at
com.ibm.ws.hamanager.impl.HAGroupImplHAGroupUserCallback.doCallback(HAGroupImpl.java : 
1388)[1/1/1500 : 00 : 00 : 
000UTC]00000001SystemErrRatcom.ibm.ws.hamanager.impl.Worker.run(Worker.java : 64)
[1/1/1500 : 00 : 00 : 
000UTC]00000001SystemErrRatcom.ibm.ws.util.ThreadPoolWorker.run(ThreadPool.java:1691)

2.	 A	"Panic"	line	in	SystemOut.log	with	a	detailed	description	of	the	reason	for	the	panic.	For	example:

Panic:component	requested	panic	from	isAlive

3.	 A	stack	trace	in	ServerImpl.emergencyShutdown	in	SystemOut.log.	For	example:

[1/1/15	00:00:00:000	UTC]	00000001	SystemOut	O	java.lang.RuntimeException:
emergencyShutdown	called:	[1/1/15	00:00:00:000	UTC]	00000001	SystemOut	O	at
com.ibm.ws.runtime.component.ServerImpl.emergencyShutdown(ServerImpl.java:633)	[1/1/15
00:00:00:000	UTC]	00000001	SystemOut	O	at
com.ibm.ws.hamanager.runtime.RuntimeProviderImpl.panicJVM(RuntimeProviderImpl.java:92)
[1/1/15	00:00:00:000	UTC]	00000001	SystemOut	O	at
com.ibm.ws.hamanager.coordinator.impl.JVMControllerImpl.panicJVM(JVMControllerImpl.java:56)
[1/1/15	00:00:00:000	UTC]	00000001	SystemOut	O	at
com.ibm.ws.hamanager.impl.HAGroupImpl.doIsAlive(HAGroupImpl.java:866)	[1/1/15	00:00:00:000
UTC]	00000001	SystemOut	O	at
com.ibm.ws.hamanager.impl.HAGroupImplHAGroupUserCallback.doCallback(HAGroupImpl.java : 
1364)[1/1/1500 : 00 : 00 : 
000UTC]00000001SystemOutOatcom.ibm.ws.hamanager.impl.Worker.run(Worker.java : 64)
[1/1/1500 : 00 : 00 : 
000UTC]00000001SystemOutOatcom.ibm.ws.util.ThreadPoolWorker.run(ThreadPool.java:1604)

One	common	cause	of	these	panics	is	that	the	SIB	messaging	engine	cannot	communicate	with	its	data	store
due	to	a	database	error.	For	example,	messages	such	as	the	following	precede	the	panic:

[1/1/15	00:00:00:000	UTC]	00000001	ConnectionEve	A			J2CA0056I:	The	Connection	Manager	received	a	fatal	connection	error	from	the	Resource	Adapter
for	resource	jdbc/sibdb.	The	exception	is:	com.ibm.db2.jcc.am.zn:	[jcc]	[t4][2030][11211][3.57.110]	A	communication	error	occurred	during	operations
on	the	connection's	underlying	socket,	socket	input	stream,	or	socket	output	stream.		Error	location:	Reply.fill().		Message:	Insufficient	data.
ERRORCODE=-4499,	SQLSTATE=08001
[1/1/15	00:00:00:000	UTC]	00000001	SibMessage				I			...	CWSIS1519E:	Messaging	engine	${ME}	cannot	obtain	the	lock	on	its	data	store,
which	ensures	it	has	exclusive	access	to	the	data.
[1/1/15	00:00:00:000	UTC]	00000001	SibMessage				E			...	CWSID0046E:	Messaging	engine	${ME}	detected	an	error	and	cannot	continue	to	run	in	this	server.
[1/1/15	00:00:00:000	UTC]	00000001	HAGroupImpl			I			HMGR0130I:	The	local	member	of	group	...,WSAF_SIB_MESSAGING_ENGINE=...,type=WSAF_SIB	has
indicated	that	is	it	not	alive.	The	JVM	will	be	terminated.

This	is	expected	behavior	and	the	database	needs	to	be	investigated	or	the	data	source	configuration	needs	to
be	tuned:	"Behavior	when	the	data	store	connection	is	lost...	default:	The	high	availability	manager	stops	the
messaging	engine	and	its	hosting	application	server	when	the	next	core	group	service	Is	alive	check	takes
place	(the	default	value	is	120	seconds)."	(http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tjm_dsconnloss.html

	

Messaging

Light	weight	ME-to-ME	tracing:	http://www-01.ibm.com/support/docview.wss?uid=swg1PI34044

	

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tjm_dsconnloss.html
http://www-01.ibm.com/support/docview.wss?uid=swg1PI34044

Users	Seeing	other	Users'	Data

The	call	center	is	getting	reports	and	screenshots	from	users	who	see	not	their	own	data	but	another	user's
data.	Depending	on	the	number	of	reports	received	it	may	necessitate	shutting	down	the	web	site	until	the
problem	can	be	diagnosed	and	fixed.	This	is	one	of	the	most	difficult	problems	troubleshoot	and	identify	root
cause.	Try	to	recreate	the	problem	in	one	of	the	application	test	environments.	Hopefully	it	is	easily
recreateable,	however,	the	symptom	may	not	exhibit	itself	in	a	test	environment.

	

Strategy	1:	Open	a	PMR	with	IBM	Support

It	is	imperative	to	open	a	PMR	with	IBM	Support	immediately	and	verify	with	the	support	specialist	that
there	is	no	known	issue	for	which	a	known	APAR	is	available.	If	there	is	an	APAR	then	download	and
install	the	APAR	and	restart	the	application	server	environment.

	

Monitor

Monitor	reports	from	the	user	community	and	if	reports	continue	to	come	in	that	users	see	other	user's	data
then	pursue	one	of	the	other	strategies.

	

Caveat

Applying	the	APAR	does	not	guarantee	it	will	fix	the	problem	if	the	issue	resides	within	the	application	code
itself.	The	APAR	is	only	applicable	if	it	is	a	bug	in	the	WebSphere	Application	Server.

	

Strategy	2:	Application	code	review

Review	the	application	code	and	look	for	one	of	the	following	anti-patterns	that	may	be	causing	users	to	see
another	user's	data.	In	no	particular	order:

Not	clearing	thread	local	variables.	[note:	was	this	a	feature	we	added	to	WAS	and	no	longer	a	problem
since	some	version?]
Storing	data	within	the	Servlet	in	an	instance	variable	defined	at	the	Servlet	class.

	

Monitor

Fix	the	code,	rebuild	the	application,	redeploy	and	test	the	application.	Once	it	passes	the	testing	process
deploy	to	production.	Monitor	reports	from	the	user	community.

	

Caveat

Because	this	type	of	application	bug	is	so	difficult	to	diagnose	and	resolve	the	application	"fix"	may	not
actually	fix	the	problem.	Because	of	there	being	multiple	bugs	there	may	be	several	iterations	of	of	this
strategy.

	

DRS	or	HA	Manager	Errors

Distributed	Replication	Server	or	HA	Manager	errors	appear	in	the	logs	of	either	the	DMgr	or	the	nodeagents
or	application	server	logs	themselves.

	

Strategy	1:	Check	version/fixpack	level	of	DMgr	and	JVMs	putting	out	errors

Sometimes	a	fixpack	may	be	inadvertently	missed	on	a	particular	JVM	or	node.	Apply	the	fixpack,	restart
and	see	if	that	fixes	the	problem.

Monitor

Logs	for	recurrence	of	the	error

	

Caveats

Sometimes	applying	a	fixpack	may	negatively	affect	an	application.	Make	sure	to	test	all	fixpacks	before
applying	them	in	production.

Strategy	2:	Application	code	is	using	DistributedMap	class

An	application	that	aggressively	uses	DistributedMap	may	negatively	increase	the	amount	of	communication
between	the	application	servers.	This	typically	exhibits	itself	when	either	the	number	of	application	server
JVMs	is	increased	or	the	thread	pool	for	the	application	is	increased	inside	the	JVM.	This	also	inhibits	the
ability	to	grow	the	environment	as	the	user	base	grows.	Therefore,	reconsider	the	use	of	DistributedMap	in
an	application	particularly	for	high	volume,	business	critical	applications.

	

Monitor

Logs	for	recurrence	of	the	error.

Caveats

Re-architecting/desgining	and	re-coding	the	application	to	eliminate	the	use	of	DistributedMap	can	take
weeks	to	months	depending	on	how	extensively	DistributedMap	was	used.

	

Application	Works	in	some	Nodes

The	same	EAR	file	is	deployed	to	two	nodes.	It	works	on	one	node	but	not	another.

	

Strategy	1:	NoClassDefFoundError	thrown

Collect	the	data	for	class	loader	mustgather	http://www-01.ibm.com/support/docview.wss?
uid=swg21196187

Analyze	the	data.	Following	things	should	be	checked	very	carefully.

http://www-01.ibm.com/support/docview.wss?uid=swg21196187

In	the	trace.log	find	the	full	"Local	Classpath"	for	the	application.	Compare	the	working	node	to	the	non-
working	node.	Very	often	the	administrator	is	somehow	not	deploying	the	application	correctly	and	puts	in	a
classpath	that	is	either	missing	items	or	rearranging	the	order	which	picks	up	a	different	version	of	the	same
jar	file.

In	the	one	case	I	worked	today:	Application	worked	on	AIX/Windows	but	NoClassDefFoundError	on	Linux.
It	is	a	JSF	application	but	not	supposed	to	use	JSF2.	But	the	jsf2	lib	was	included	in	the	EAR	file.	On	the
working	nodes	the	non-JSF2	impl	lib	was	preceding	the	JSF2	lib.	On	the	non-working	Linux	node	they	were
reversed	and	of	course	the	JSF2	class	had	a	dependency	they	must	not	have	included.

	

Patching	Java

1.	 Stop	all	the	WAS	JVMs	on	the	node	(including	the	node	agent,	application	servers,	deployment
manager	if	on	this	node,	etc.).

2.	 Log	in	as	the	user	that	owns	the	WAS	installation	(e.g.	root,	wsadmin,	etc.).
3.	 Change	directory	to	the	WAS	home	directory.	For	example:

cd	/opt/IBM/WebSphere/AppServer

4.	 Move	the	java	directory	to	a	backup	folder:

mv	java	java_backup

5.	 Make	a	new	java	directory:

mkdir	java

6.	 Change	directory	to	this	new	java	directory:

cd	java

7.	 Copy	in	the	Java	test	build	and	extract	it.	For	example:

cp	/tmp/ibm-java-sdk-8.0-6.30-linux-x86_64.tgz	.
tar	xzf	ibm-java-sdk-8.0-6.30-linux-x86_64.tgz

8.	 If	this	extracts	a	sub-directory	such	as	java,	ibm-java-x86_64-80,	etc.,	then	move	all	the	files	from
within	that	directory	into	the	current	java	directory.	For	example:

mv	ibm-java-x86_64-80/*	.

9.	 If	using	WAS	traditional	9,	no	further	changes	are	needed.	If	using	WAS	traditional	8.5.5,	overlay	the
following	files	from	the	Java	backup	directory:

cp	../java_backup/jre/lib/orb.properties	jre/lib/orb.properties
cp	../java_backup/jre/lib/security/java.policy	jre/lib/security/java.policy
cp	../java_backup/jre/lib/security/java.security	jre/lib/security/java.security
cp	../java_backup/jre/lib/security/cacerts	jre/lib/security/cacerts
cp	../java_backup/jre/lib/ext/iwsorbutil.jar	jre/lib/ext/iwsorbutil.jar

10.	 If	you	or	a	stack	product	have	previously	made	any	customizations	to	the	Java	directory	then	further
changes	may	be	needed.

11.	 Clear	the	Java	shared	class	cache	by	running	this	from	the	WebSphere	bin	directory:

./clearClassCache.sh

12.	 Start	the	JVMs	and	verify	the	logs	look	okay.

		

Troubleshooting	WebSphere	Liberty

Troubleshooting	WebSphere	Liberty	Recipe

1.	 Review	all	warnings	and	errors	in	messages.log	(or	using	binaryLog	if	binary	logging	is	enabled)
before	and	during	the	problem.	A	regular	expression	search	is	"	[W|E]	".	One	common	type	of
warning	is	an	FFDC	warning	which	points	to	a	matching	file	in	the	FFDC	logs	directory.

1.	 If	you're	on	Linux	or	use	cygwin,	use	the	following	command:

1.	 find	.	-name	"*messages*"	-exec	grep	"	[W|E]	"	{}	\;	|	grep	-v	-e
known_error

2.	 Review	all	JVM*	messages	in	console.log	before	and	during	the	problem.	This	may	include	things
such	as	OutOfMemoryErrors.	The	filename	of	such	artifacts	includes	a	timestamp	of	the	form
YYYYMMDD.	Review	any	other	strange	messages	in	console.log	before	and	during	the	problem.

3.	 If	verbose	garbage	collection	is	enabled,	review	verbosegc	in	console.log,	or	any	verbosegc.log	files
(if	using	-Xverbosegclog	or	-Xloggc)	in	the	IBM	Garbage	Collection	and	Memory	Visualizer	Tool	and
ensure	that	the	proportion	of	time	in	garbage	collection	for	a	relevant	period	before	and	during	the
problem	is	less	than	10%.

4.	 Review	any	javacore*.txt	files	in	the	IBM	Thread	and	Monitor	Dump	Analyzer	tool.	Review	the
causes	of	the	thread	dump	(e.g.	user-generated,	OutOfMemoryError,	etc.)	and	review	threads	with
large	stacks	and	any	monitor	contention.

5.	 Review	any	heapdump*.phd	and	core*.dmp	files	in	the	IBM	Memory	Analyzer	Tool.

		

Application	Start	and	Stop

The	CWWKZ0001I	message	is	printed	when	an	application	starts.	For	example:

[10/27/20	16:56:31:644	UTC]	0000002b	com.ibm.ws.app.manager.AppMessageHelper		A	CWWKZ0001I:	Application	daytrader	started	in	8.215	seconds.

The	CWWKZ0003I	message	is	printed	when	an	application	is	dynamically	updated:

[10/27/20	18:13:04:882	UTC]	0000007f	com.ibm.ws.app.manager.AppMessageHelper		A	CWWKZ0003I:	The	application	daytrader	updated	in	1.305	seconds.

The	CWWKZ0009I	message	is	printed	when	an	application	stops:

[10/27/20	18:11:54:519	UTC]	0000008a	com.ibm.ws.app.manager.AppMessageHelper		A	CWWKZ0009I:	The	application	daytrader	has	stopped	successfully.

		

Server	Dumps

The	server	dump	command	requests	various	types	of	status	information	of	a	running	server:	http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_setup_dump_server.html

$LIBERTY/bin/server	dump	$SERVER

By	default,	the	produced	files	will	go	to	$LIBERTY/usr/servers/$SERVER

		

Request	Thread	Dump

Additional	methods	of	requesting	thread	dumps	are	documented	in	the	Troubleshooting	Java	chapters.

$LIBERTY/bin/server	javadump	$SERVER

https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.messages.liberty.doc/CWWKZ.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_setup_dump_server.html

		

Request	Heap	Dump

Additional	methods	of	requesting	heap	dumps	are	documented	in	the	Troubleshooting	Java	chapters.

$LIBERTY/bin/server	javadump	$SERVER	--include=heap

		

Request	System	Dump

Additional	methods	of	requesting	system	dumps	are	documented	in	the	Troubleshooting	Operating	Systems
and	Troubleshooting	Java	chapters.

Starting	with	Liberty	20.0.0.2,	this	request	exclusive+prepwalk.

$LIBERTY/bin/server	javadump	$SERVER	--include=system

		

Client	fails	to	Connect	to	Liberty	Messaging	Engine

The	Liberty	logs	show	the	application	has	started	normally	and	bound	to	the	correct	ports.	However,	the
client	application	is	getting	the	error.

1.	Telnet	to	the	IP	port#	fails.

2.	netstat	-an	|	grep	LIST 	on	the	Liberty	server	shows	the	port	is	bound	to	127.0.0.1	(localhost).

com.ibm.ws.sib.jfapchannel.JFapConnectFailedException:	CWSIJ0063E:	A	network	connection	to	host
name	/192.168.2.234,	port	9,126	cannot	be	established...

		

Strategy:	Fix	server.xml	endpoints

Make	sure	the	server.xml	entries	for	the	endpoints	attribute	host	is	set	as:

host="*"

Sending	messages.log	and	trace.log	to	stdout	on	Linux

In	some	cases,	it	may	be	useful	to	send	all	WAS	logs	to	stdout	(i.e.	console.log	by	default);	for	example,	to
intermingle	JVM	-Xtrace	with	WAS	diagnostic	trace	for	easier	trace	analysis:

1.	 Remove	the	<logging	/>	element	from	server.xml.

2.	 Add	the	following	properties	to	bootstrap.properties	(create	this	file	in	the	same	directory	as	server.xml
if	it	doesn't	exist),	and	replace	the	diagnostic	trace	specification	with	the	desired	WAS	diagnostic
trace:

com.ibm.ws.logging.log.directory=/dev/
com.ibm.ws.logging.message.file.name=stdout
com.ibm.ws.logging.max.file.size=0
com.ibm.ws.logging.max.files=0
com.ibm.ws.logging.trace.file.name=stdout
com.ibm.ws.logging.newLogsOnStart=false
com.ibm.ws.logging.trace.specification=*=info:com.ibm.ws.kernel.*=all

https://github.com/OpenLiberty/open-liberty/commit/c7eb966ce5c995875cc116342e3e375dbcd07fa8

3.	 Add	other	configuration	such	as	-Xtrace	to	jvm.options.	For	example:

-Xtrace:iprint=mt,methods=
{com/ibm/ws/kernel/launch/internal/FrameworkManager.launchFramework},trigger=method{com/ibm/ws/kernel/launch/internal/FrameworkManager.launchFramework,jstacktrace}

4.	 Start	the	server	and	now	you	should	see	intermingled	trace	in	console.log;	for	example,	the	following
shows	both	-Xtrace	and	WAS	diagnostic	trace	for
com/ibm/ws/kernel/launch/internal/FrameworkManager.launchFramework:

16:47:30.776*0x998700	mt.0	>
com/ibm/ws/kernel/launch/internal/FrameworkManager.launchFramework(Lcom/ibm/ws/kernel/boot/BootstrapConfig;Lcom/ibm/wsspi/logprovider/LogProvider;)V
bytecode	method,	this	=	0xfffd6b68
16:47:30.777	0x998700	j9trc_aux.0	-	jstacktrace:
16:47:30.777	0x998700	j9trc_aux.1	-	[1]
com.ibm.ws.kernel.launch.internal.FrameworkManager.launchFramework
(FrameworkManager.java:198)
16:47:30.777	0x998700	j9trc_aux.1	-	[2]
com.ibm.ws.kernel.launch.internal.LauncherDelegateImpl.doFrameworkLaunch
(LauncherDelegateImpl.java:114)
16:47:30.777	0x998700	j9trc_aux.1	-	[3]
com.ibm.ws.kernel.launch.internal.LauncherDelegateImpl.launchFramework
(LauncherDelegateImpl.java:100)
16:47:30.777	0x998700	j9trc_aux.1	-	[4]	com.ibm.ws.kernel.boot.internal.KernelBootstrap.go
(KernelBootstrap.java:213)
16:47:30.777	0x998700	j9trc_aux.1	-	[5]	com.ibm.ws.kernel.boot.Launcher.handleActions
(Launcher.java:241)
16:47:30.777	0x998700	j9trc_aux.1	-	[6]	com.ibm.ws.kernel.boot.Launcher.createPlatform
(Launcher.java:117)
16:47:30.777	0x998700	j9trc_aux.1	-	[7]	com.ibm.ws.kernel.boot.cmdline.EnvCheck.main
(EnvCheck.java:59)
16:47:30.777	0x998700	j9trc_aux.1	-	[8]	com.ibm.ws.kernel.boot.cmdline.EnvCheck.main
(EnvCheck.java:35)
[11/25/19	16:47:30:777	UTC]	00000001	id=fccc7204
com.ibm.ws.kernel.launch.internal.FrameworkManager	>	launchFramework	Entry

Important	notes:

1.	 This	configures	WAS	logging	to	unlimited	size	and	disables	cleaning	up	old	WAS	logs	on	startup,	so
you	must	properly	manage	disk	usage	of	console.log	(e.g.	truncating	with	$(truncate	-s	0	console.log)
or	copying	off	and	zipping	files	or	moving	files	to	a	different	partition	while	running,	if	running	out	of
space).

2.	 Some	of	the	file	writes	will	be	uncoordinated	(e.g.	WAS	trace	and	JVM	trace),	so	be	careful	in	using
any	automated	tooling	in	processing	the	files	as	some	lines	may	be	spliced	together;	instead,	use
human	analysis.

3.	 FFDC	files	may	fail	to	be	written	because	they	will	try	to	write	to	/dev/ffdc/*
4.	 As	an	alternative	to	this	procedure,	consider	writing	a	post-processing	tool	that	combines	multiple	files

together	based	on	timestamp.

Alternatively,	you	may	switch	the	log	format	to	JSON	which	supports	sending	output	to	stdout	(and
messages	may	be	disabled	since	trace	contains	messages);	this	has	the	benefit	of	not	breaking	FFDC:

com.ibm.ws.logging.message.format=json
com.ibm.ws.logging.message.source=
com.ibm.ws.logging.trace.file.name=stdout
com.ibm.ws.logging.max.file.size=0
com.ibm.ws.logging.max.files=0
com.ibm.ws.logging.newLogsOnStart=false
com.ibm.ws.logging.trace.specification=*=info:com.ibm.ws.kernel.*=all

		

Override	Context	Root

To	override	the	context	root	of	an	EAR,	use	the	following	and	match	the	module	name	to	the	module	name
in	the	EAR:

<enterpriseApplication	location="my.ear">
		<web-ext	moduleName=""	context-root=""/>
</enterpriseApplication>

		

ws-javaagent.jar

ws-javaagent.jar	is	a	Java	agent	included	as	part	of	Liberty	with	the	-
javaagent:$LIBERTY/bin/tools/ws-javaagent.jar	option.	It	implements	Liberty's	diagnostic	trace
feature	by	using	byte	code	injection	(thus	avoiding	the	performance	overhead	of	log	guards	and	other	things
when	trace	is	disabled).	Thus,	it	is	needed	to	diagnostic	issues	using	diagnostic	trace.

	

Troubleshooting	Web	Servers

Troubleshooting	Web	Servers	Recipe

1.	 IBM	HTTP	Server:
1.	 Review	the	error_log	for	any	strange	errors	before	and	during	the	problem,	including	mpmstats.
2.	 Review	the	access_log	for	any	status	codes	>=	400	and	long	response	times	before	and	during

the	problem.
3.	 Review	the	http_plugin.log	file	for	any	strange	errors	before	and	during	the	problem.

	

Troubleshooting	Containers

Linux	Containers

	

PID	1

Signals

Linux	containers	often	run	the	main	application	as	PID	1.	However,	PID	1	has	special	treatment	related	to
sending	kill	signals:

The	only	signals	that	can	be	sent	to	process	ID	1,	the	init	process,	are	those	for	which	init	has
explicitly	installed	signal	handlers.	This	is	done	to	assure	the	system	is	not	brought	down
accidentally.

You	may	display	the	signals	the	process	has	installed	handlers	for,	blocked,	or	ignored	(SigCgt,	SigBlk,	and
SigIgn,	respectively,	in	hexadecimal):

The	/proc/pid/task/tid/status	file	contains	various	fields	that	show	the	signals	that	a	thread	is
blocking	(SigBlk),	catching	(SigCgt),	or	ignoring	(SigIgn).	(The	set	of	signals	that	are	caught	or
ignored	will	be	the	same	across	all	threads	in	a	process.)	Other	fields	show	the	set	of	pending

https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://www.kernel.org/doc/man-pages/online/pages/man2/kill.2.html
https://www.kernel.org/doc/man-pages/online/pages/man7/signal.7.html
https://www.kernel.org/doc/man-pages/online/pages/man5/proc.5.html

signals	that	are	directed	to	the	thread	(SigPnd)	as	well	as	the	set	of	pending	signals	that	are
directed	to	the	process	as	a	whole	(ShdPnd).	The	corresponding	fields	in	/proc/pid/status	show
the	information	for	the	main	thread.

Therefore,	print	these	masks	for	PID	1:

$	grep	-e	Sig	/proc/1/status
SigQ:			0/39372
SigPnd:	0000000000000000
SigBlk:	0000000000000000
SigIgn:	0000000000001000
SigCgt:	2000000181004cff

Then	cross-reference	the	bit	mask	(hexadecimal)	with	signal	numbers	(decimal):

$	kill	-l
	1)	SIGHUP								2)	SIGINT								3)	SIGQUIT							4)	SIGILL								5)	SIGTRAP
	6)	SIGABRT							7)	SIGBUS								8)	SIGFPE								9)	SIGKILL						10)	SIGUSR1
11)	SIGSEGV						12)	SIGUSR2						13)	SIGPIPE						14)	SIGALRM						15)	SIGTERM
16)	SIGSTKFLT				17)	SIGCHLD						18)	SIGCONT						19)	SIGSTOP						20)	SIGTSTP
21)	SIGTTIN						22)	SIGTTOU						23)	SIGURG							24)	SIGXCPU						25)	SIGXFSZ
26)	SIGVTALRM				27)	SIGPROF						28)	SIGWINCH					29)	SIGIO								30)	SIGPWR
31)	SIGSYS							34)	SIGRTMIN					35)	SIGRTMIN+1			36)	SIGRTMIN+2			37)	SIGRTMIN+3
38)	SIGRTMIN+4			39)	SIGRTMIN+5			40)	SIGRTMIN+6			41)	SIGRTMIN+7			42)	SIGRTMIN+8
43)	SIGRTMIN+9			44)	SIGRTMIN+10		45)	SIGRTMIN+11		46)	SIGRTMIN+12		47)	SIGRTMIN+13
48)	SIGRTMIN+14		49)	SIGRTMIN+15		50)	SIGRTMAX-14		51)	SIGRTMAX-13		52)	SIGRTMAX-12
53)	SIGRTMAX-11		54)	SIGRTMAX-10		55)	SIGRTMAX-9			56)	SIGRTMAX-8			57)	SIGRTMAX-7
58)	SIGRTMAX-6			59)	SIGRTMAX-5			60)	SIGRTMAX-4			61)	SIGRTMAX-3			62)	SIGRTMAX-2
63)	SIGRTMAX-1			64)	SIGRTMAX	

	

Troubleshooting	IBM	MQ

Documentation

The	MQ	library	has	links	to	documentation	for	all	versions	of	MQ:	http://www-
01.ibm.com/software/integration/wmq/library/index.html

	

Basic	Display	Commands

dspmqinst	lists	the	MQ	installations	on	the	machine

dspmqver	shows	the	MQ	version	and	patch	level

dspmq	lists	queue	managers	on	the	local	machine,	and	the	status	of	each	one

	

Multiple	Installations	of	MQ	on	the	Same	Machine

Starting	with	MQ	v7.1,	it	is	possible	to	install	multiple	copies	of	MQ	(of	the	same	or	different	version)	on	a
single	machine.	(Prior	to	this,	MQ	directory	pathnames	had	been	hard-coded	so	it	was	not	possible	to	install
more	than	one	copy	of	MQ.)	Each	separate	instance	of	MQ	on	a	machine	is	referred	to	as	an	"installation,"
and	you	can	choose	where	in	the	filesystem	each	installation	should	be	based,	subject	to	a	few	restrictions.
All	installations	still	share	a	common	MQ	data	directory	tree	--	it	is	only	the	MQ	binaries	which	are	kept
separate	for	different	installations.	On	Unix-like	systems,	the	/etc/opt/mqm/mqinst.ini	command	lists	the
currently-existing	installations,	and	the	directory	path	to	each	one.	The	dspmqinst	command	also	lists	the
installations	on	a	machine.

http://www-01.ibm.com/software/integration/wmq/library/index.html

There	is	a	command	named	setmqinst	which	can	be	used	to	set	all	appropriate	environment	variables	to	point
to	a	particular	installation,	as	a	means	of	determining	which	of	the	multiple	MQ	installations	on	a	machine
will	be	referenced	when	you	issue	other	MQ	commands.	For	example,	".	/opt/mqm/bin/setmqenv	-s"	on	a
Linux	machine	sets	the	MQ	environment	variables	to	refer	to	the	copy	of	MQ	that	lives	in	/opt/mqm.	If	you
are	having	problems	with	"command	not	found"	errors	or	the	like,	you	may	need	to	issue	the	setmqenv
command.	Each	queue	manager	is	associated	with	a	particular	installation,	so	you	may	also	need	to	issue
setmqinst	if	you	get	errors	saying	that	your	queue	manager	is	associated	with	a	different	installation.

	

Log	Files

There	is	a	"high-level"	errors	directory	at	the	top	of	the	MQ	tree,	and	each	queue	manager	also	has	its
own	errors	directory.	The	high-level	errors	directory	has	messages	that	do	not	pertain	to	a	specific
queue	manager.	Note	that	the	high-level	MQ	directory	named	"log"	contains	transaction	logs,	not	error
logs.

Unix	default	locations:	/var/mqm/errors	and	/var/mqm/qmgrs/<QM_NAME>/errors

Windows	prior	to	MQ	v8.0:	\Program	Files\IBM\WebSphere	MQ\errors	and	\Program
Files\IBM\WebSphere	MQ\qmgrs\<QM_NAME>\errors

Windows	v8.0:	C:\ProgramData\IBM\MQ\errors	and	C:\ProgramData\IBM\MQ\qmgrs\
<QM_NAME>\errors;	note	that	the	C:\ProgramData	directory	is	typically	a	"hidden"	directory

Each	"errors"	directory	always	contains	exactly	3	log	files:	AMQERR01.LOG,	AMQERR02.LOG,	and
AMQERR03.LOG

MQ	automatically	rolls	the	log	files,	so	AMQERR01.LOG	is	always	most	recent

Maximum	size	can	be	controlled	via	ErrorLogSize	in	the	QMErrorLog	stanza	of	qm.ini	on	Unix,	or	via
MQ	Explorer	on	Windows	(queue	manager	Properties	>	Extended)

Application	event	log	on	Windows	also	contains	MQ	events

Location	of	error	logs	on	all	MQ	platforms:	http://www-01.ibm.com/support/docview.wss?
uid=swg21172370

	

Reason	Codes	and	Error	Messages

The	mqrc	command	can	decode	a	4-digit	MQ	reason	code,	for	example:	mqrc	2035

Understanding	common	MQ	reason	codes:	http://www-01.ibm.com/support/docview.wss?
uid=swg21167821

Common	MQ	error	messages	(AMQxxxx	codes)	and	most	likely	causes:	http://www-
1.ibm.com/support/docview.wss?uid=swg21265188

Complete	list	of	MQ	8.0	reason	codes

2007	MQ	Problem	Determination	presentation:	http://www-01.ibm.com/support/docview.wss?
uid=swg27009878

	

First-failure	Support	Technology	(FST),	First-failure	Data	Capture	(FDC)

http://www-01.ibm.com/support/docview.wss?uid=swg21172370
http://www-01.ibm.com/support/docview.wss?uid=swg21167821
http://www-1.ibm.com/support/docview.wss?uid=swg21265188
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.tro.doc/q040710_.htm
http://www-01.ibm.com/support/docview.wss?uid=swg27009878

Intended	to	log	enough	information	about	unexpected	events	(not	routine	MQ	errors)	that	the	problem
can	be	resolved	without	further	recreation	and	tracing.

Located	in	the	top-level	errors	directory,	plain	text	format,	never	purged	by	MQ.

Named	like	AMQnnnnn.x.FDC

Probe	severity:	1	=	Critical,	2	=	Error,	3	=	Warning,	4	=	Informational

Issue	the	ffstsummary	command	from	the	errors	directory	to	get	a	summary	listing

IBM	Hursley	lab	article	on	FFST	files:
>https://hursleyonwmq.wordpress.com/2007/05/04/introduction-to-ffsts/

Tech	note	on	FFST	files:	http://www-01.ibm.com/support/docview.wss?uid=swg21304647

	

Tracing

MQ	tracing	can	be	started	and	stopped	from	the	command	line,	and	also	from	MQ	Explorer.

Command-line	options	allow	you	to	choose	the	desired	level	of	detail

Output	goes	to	the	"trace"	subdirectory	at	the	top	of	the	MQ	tree

One	active	trace	output	file	per	MQ	process;	suffixes	.TRC	and	.TRS	are	used	for	rollover	(.TRC	is
more	recent)

Unix	requires	an	additional	step,	to	format	the	trace	output	into	humanreadable	form	(.FMT	files)

New	in	MQ	v7:	strmqtrc	-c	to	start	tracing,	and	automatically	stop	after	an	FDC	when	a	specific	Probe
ID	is	generated

Detailed	tracing	instructions	for	various	MQ	components	on	many	OS	platforms:	http://www-
1.ibm.com/support/docview.wss?uid=swg21174924

"Open	mic:"	MQ	developers	talk	about	MQ	tracing:	http://www-01.ibm.com/support/docview.wss?
uid=swg27018159

Tracing	and	debugging	2035	authorization	failures:

http://www-01.ibm.com/support/docview.wss?uid=swg21166937

http://www-01.ibm.com/support/docview.wss?uid=swg21299319

http://www-01.ibm.com/support/docview.wss?uid=swg21377578

	

Commands	to	Enable	and	Disable	Tracing

Enable	tracing:	strmqtrc

Reproduce	the	problem

End	tracing:	endmqtrc

On	Unix:	use	dspmqtrc	to	translate	binary	trace	output	files	to	text	format

https://hursleyonwmq.wordpress.com/2007/05/04/introduction-to-ffsts/
http://www-01.ibm.com/support/docview.wss?uid=swg21304647
http://www-1.ibm.com/support/docview.wss?uid=swg21174924
http://www-01.ibm.com/support/docview.wss?uid=swg27018159
http://www-01.ibm.com/support/docview.wss?uid=swg21166937
http://www-01.ibm.com/support/docview.wss?uid=swg21299319
http://www-01.ibm.com/support/docview.wss?uid=swg21377578

Result:	text	files	with	names	ending	in	.TRS	and	.TRC	on	Windows;	binary	.TRS	and	TRC	and
human-readable	.FMT	files	on	Unix

	

Real	Time	Monitoring

Checking	queue	manager	and	channel	statistics	while	MQ	is	running

Must	be	enabled	before	MQ	will	start	recording	data	(default	is	not	to	collect	most	of	this	information)

Queue	manager	attributes	MONQ,	MONCHL

NONE	=	disabled,	no	matter	what	the	queues/channels	say

OFF=	off,	but	individual	queues	and	channels	can	override

LOW,	MEDIUM,	HIGH	=	enabled,	individual	queues	and	channels	can	override

Queue	attribute	MONQ	and	channel	attribute	MONCHL

QMGR	=	use	the	queue	manager	attribute	setting

OFF,	LOW,	MEDIUM,	HIGH	(LOW,	MEDIUM,	and	HIGH	are	equivalent	for	queues

Defaults	are	queue	manager	OFF,	queue	and	channel	=	QMGR

runmqsc

DISPLAY	QSTATUS	(queueName)

DISPLAY	CHSTATUS	(channelName)

MQ	Explorer:	right-click	the	queue	name,	click	Status

Fields

MSGAGE:	age	of	oldest	message	on	the	queue,	in	seconds

QTIME:	average	time	in	microseconds	between	put	and	get	(recent	average	and	long-term
average)

LGETTIME	and	LGETDATE:	time/date	of	last	get	operation

LPUTTIME	and	LPUTDATE:	time/date	of	last	put	operation

UNCOM:	pending	uncommitted	puts	and	gets

Some	queue	status	attributes	do	not	require	monitoring	to	be	enabled:

CURDEPTH:	current	queue	depth	(number	of	messages	on	the	queue)

IPPROCS,	OPPROCS:	number	of	processes	that	have	the	queue	open	for	input	(can	get
messages)	and	for	output	(can	put	messages)

DISPLAY	QL	(queueName)	CURDEPTH	IPPROCS	OPPROCS

MONCHL=off

STATUS;	MCASTAT,	SUBSTATE:	channel	and	MCA	state	information

CURSEQNO:	sequence	number	of	last	message	sent	or	received

BTYSSENT,	BYTSRCVD:	number	of	bytes	sent	and	received	since	the	channel	was	started

MSGS:	number	of	messages	sent	or	received	since	the	channel	was	started

LSTMSGTI,	LSTMSGDA:	time	and	date	of	last	message	sent	or	received

MONCHL=enabled

NETTIME:	recent	and	long-term	average	network	round-trip	times	in	microseconds	for
request/response	to/from	the	other	end	of	the	channel

Requires	MONCHL	=	MEDIUM	or	HIGH

XQTIME:	average	times	in	microseconds	that	messages	were	on	the	transmission	queue	before
being	retrieved

Requires	MONCHL	=	HIGH

Sender	channels	only	(same	with	NETTIME)

	

Event	Monitoring

An	instrumentation	event	is	a	logical	combination	of	events	that	is	detected	by	a	queue	manager	or
channel	instance.	Such	an	event	causes	the	queue	manager	or	channel	instance	to	put	a	special
message,	called	an	event	message,	on	an	event	queue.

Event	messages	go	to	one	of	a	small	set	of	system-defined	event	queues
(SYSTEM.ADMIN.*.EVENT),	depending	on	their	type.	Event	message	payloads	are	in	binary	format,
not	human-readable	text.

Decode

There	is	a	sample	program	in	the	InfoCenter	to	partially	decode	them,	and	you	could	build	on
that	program;	OR

Use	Support	Pac	MS0P:	an	extension	to	MQ	Explorer	that	decodes	event	messages	into	readable
text

Windows	Perfmon	can	also	be	used	to	visually	monitor	queue	depth

Queue	Depth

Queue	depth	events,	a	type	of	performance	event,	will	show	up	in	the
SYSTEM.ADMIN.PERFM.EVENT	queue

Documented	here:

http://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/mo11150_.htm

Enable	PERFMEV	on	the	queue	manager

Enable	some	or	all	of	QDPMAXEV,	QDPHIEV,	QDPLOEV	on	the	queue

Set	MAXDEPTH,	QDEPTHHI,	QDEPTHLO	(the	last	two	are	percentages)	on	the	queue

ALTER	QMGR	PERFMEV	(ENABLED)

http://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/mo11150_.htm

DEFINE	QLOCAL	(MY_Q)
ALTER	QL	(MY_Q)	MAXDEPTH	(10)	QDPMAXEV	(ENABLED)	+
QDEPTHHI	(50)	+	QDPHIEV	(ENABLED)	+
QDEPTHLO(30)	QDPLOEV	(DISABLED)

Now	put	messages	on	the	queue	(I	attempted	to	put	11	messages,	using	amqsput;	the	11th	put
failed,	of	course)

CURDEPTH	of	SYSTEM.ADMIN.PERFM.EVENT	is	incremented	after	the	5th	and	the	11th
put

	

MS0P

MS0P:	http://www-01.ibm.com/support/docview.wss?uid=swg24011617

Installation	is	just	a	matter	of	unzipping	into	the	right	place,	modifying	one	text	file,	then	strmqcfg	-c

After	that,	you	can	right-click	a	queue	manager,	then	do	Event	Messages	>	Format	Events...

Can	watch	individual	queues,	showing	number	of	puts	and	gets,	plus	bargraph	of	queue	depth,	every	N
seconds	(configurable	via	Window	>	Preferences)

	

Not	Authorized	Events

"Queue	manager	events"	include	six	types	of	"not-authorized"	events

Messages	appear	in	SYSTEM.ADMIN.QMGR.EVENT

To	enable:	ALTER	QMGR	AUTHOREV	(ENABLED)

	

Put	and	Get	Programs

"Bindings	mode"	(communicate	with	queue	manager	via	IPC,	works	only	on	the	queue	manager
machine):	amqsput,	amqsget

"Client	mode"	(uses	TCP	and	MQ	channels,	works	from	remote	machines	too):	amqsputc,	amqsgetc

Command-line	arguments:	queue	name	and	queue	manager	name;	e.g.	amqsput	ORDERQ	QM_1

Need	full	path	(e.g.	/opt/mqm/samp/bin/amqsput)	on	Unix

"Put"	programs	allow	you	to	type	text,	sending	one	message	for	each	line;	"get"	programs	retrieve	and
display	messages

	

SupportPacs

A	few	useful	SupportPacs:

IH03	(RFHutil):	GUI	to	put	and	get	messages,	decode	and	display	message	headers,	etc

MO04:	SSL	setup	wizard

http://www-01.ibm.com/support/docview.wss?uid=swg24011617

MQ	Health	Checker

http://www.ibm.com/support/knowledgecenter/SSFKSJ_7.5.0/com.ibm.mq.mon.doc/q036150_.htm

MQ	SupportPacs:	http://www-01.ibm.com/support/docview.wss?uid=swg27007205

developerWorks	article	about	SupportPacs:
http://www.ibm.com/developerworks/websphere/techjournal/0909_mismes/0909_mismes.html

	

Message	Monitoring

The	process	of	identifying	the	route	a	message	has	taken	through	a	queue	manager	network

Can	be	done	in	two	ways:

Setting	a	flag	in	any	MQ	message	can	cause	special	"activity	report"	messages	to	be	generated;
or

Special	"trace-route"	messages	can	be	sent;	activity	information	is	accumulated	in	the	message
payload

The	dspmqrte	program	uses	these	techniques	to	trace	message	flow	through	an	MQ	network

SupportPac	MS0P	also	has	trace-route	functionality

Setup	SOURCE	and	TARGET	queue	managers

Right-click	Q.ON.TARGET	(a	remote	queue	definition	on	queue	manager	SOURCE)	in	MQ	Explorer,
select	Trace	Route

Reference:
http://www.ibm.com/support/knowledgecenter/SSFKSJ_7.5.0/com.ibm.mq.mon.doc/q036600_.htm

	

Retry	on	Server	Down

To	retry	for	server	going	down	(e.g.	reason	code	2162):	Application	Servers	>	$SERVER	>	Message
Listener	Service	>	Content	>	Additional	Properties	>	Custom	Properties

MAX.RECOVERY.RETRIES=N

RECOVERY.RETRY.INTERVAL=60

	

Troubleshooting	WXS

Hung	Thread	Detection

WXS	has	hung	thread	detection	similar	to	that	available	in	WAS.	For	example:

[3/13/15	7:33:09:631	PDT]	00000032	XSThreadPool		W			CWOBJ7853W:	Detected	a	hung	thread	named	"XIOPrimaryPool	:	202"	TID:3c14	BLOCKED.
Executing	since	3/13/2015	07:32:40:520	-0700.
Stack	Trace:
				com.ibm.ws.classloader.CompoundClassLoader.loadClass(CompoundClassLoader.java:549)
				java.lang.ClassLoader.loadClass(ClassLoader.java:357)

http://www.ibm.com/support/knowledgecenter/SSFKSJ_7.5.0/com.ibm.mq.mon.doc/q036150_.htm
http://www-01.ibm.com/support/docview.wss?uid=swg27007205
http://www.ibm.com/developerworks/websphere/techjournal/0909_mismes/0909_mismes.html
http://www.ibm.com/support/knowledgecenter/SSFKSJ_7.5.0/com.ibm.mq.mon.doc/q036600_.htm

				com.ibm.ws.xs.util.XSUtilities.loadClass(XSUtilities.java:77)
				com.ibm.ws.xs.io.ObjectStreamPool$ClassForNamePrivilegedAction.run(ObjectStreamPool.java:467)
				com.ibm.ws.xs.io.ObjectStreamPool$ReusableInputStream.resolveClass(ObjectStreamPool.java:388)
				java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1610)
				java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1515)
				java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1769)
				java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1348)
				java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
				java.util.HashMap.readObject(HashMap.java:1155)
				sun.reflect.GeneratedMethodAccessor22.invoke(Unknown	Source)
				sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
				java.lang.reflect.Method.invoke(Method.java:606)
				java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017)
				java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1891)
				java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796)
				java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1348)
				java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1989)
				java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1913)
				java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796)
				java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1348)
				java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
				com.ibm.ws.objectgrid.datagrid.BaseAgentCommand.inflateAgent(BaseAgentCommand.java:323)
				com.ibm.ws.objectgrid.datagrid.BaseAgentCommand.setBaseMap(BaseAgentCommand.java:173)
				com.ibm.ws.objectgrid.server.impl.ServerCoreEventProcessor.processCommand(ServerCoreEventProcessor.java:1454)
				com.ibm.ws.objectgrid.server.impl.ServerCoreEventProcessor.processClientServerRequest(ServerCoreEventProcessor.java:2596)
				com.ibm.ws.objectgrid.server.impl.ShardImpl.processMessage(ShardImpl.java:1469)
				com.ibm.ws.objectgrid.server.impl.ShardActor.handleContainerMessage(ShardActor.java:503)
				com.ibm.ws.objectgrid.server.impl.ShardActor.receive(ShardActor.java:333)
				com.ibm.ws.xs.xio.actor.impl.XIOReferableImpl.dispatch(XIOReferableImpl.java:110)
				com.ibm.ws.xsspi.xio.actor.XIORegistry.sendToTarget(XIORegistry.java:977)
				com.ibm.ws.xs.xio.transport.channel.XIORegistryRunnable.run(XIORegistryRunnable.java:88)
				java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
				java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
				com.ibm.ws.objectgrid.thread.XSThreadPool$Worker.run(XSThreadPool.java:309)

[3/13/15	7:34:20:345	PDT]	000035ab	XSThreadPool		W			CWOBJ7854W:	Thread	named	"WXS	:	89"	TID:35ab	RUNNABLE	is	no	longer	hung.
Runnable:	com.ibm.ws.objectgrid.util.security.SecurityContextRunnable@5fa09130.

	

Unable	to	Load	Data	into	the	Grid

Strategy	1:	Object	grid	failed	to	start

Execute	the	command	$WXS_HOME/bin/xsadmin.sh	-primaries

Two	common	culprits	are:

1.	 Firewall	rules	blocking	something	that	shouldn't	be
2.	 The	numInitialContainers	value	is	set	higher	than	the	total	number	of	containers	being	started	(in

deploy.xml).

	

Troubleshooting	WebSphere	MQ
This	content	has	been	moved	to	Troubleshooting	IBM	MQ.

	

HCL	Commerce

In	general,	Commerce	tuning	is	similar	to	WAS	tuning	because	Commerce	is	basically	just	a	large	(though
very	complicated)	web	application.	However,	there	are	many	application-specific	and	well-known	(for
Commerce)	WAS	tuning	topics	covered	in	the	Commerce	performance	tuning	chapter	in	the	documentation
that	should	be	reviewed.

Performance	Tuning	Documentation
General	Documentation
Commerce	tuning	Redbook
Mastering	DynaCache	in	WebSphere	Commerce

	

Caching

Dynacache

Review	the	following	topics:

https://help.hcltechsw.com/commerce/9.1.0/developer/concepts/chclcache.html
https://help.hcltechsw.com/commerce/9.1.0/admin/concepts/cdc_cacheinv.html
https://help.hcltechsw.com/commerce/9.1.0/admin/concepts/cdc_productionenv.html

Consider	using	the	NOT_SHARED	sharing	mode	in	Dynacache.

	

HealthCenter
Commerce	recommends	running	with	HealthCenter	in	production:
https://help.hcltechsw.com/commerce/9.1.0/admin/tasks/tighealthcenterprod.html

Note	that	the	above	instructions	disable	the	sampling	profiler	to	reduce	overhead	(using
com.ibm.diagnostics.healthcenter.data.profiling=off).

	

Redbooks
Note	that	these	Redbooks	are	old	and	you	should	double	check	the	latest	recommendations	in	the
documentation	links	above.

WebSphere	Commerce	High	Availability	and	Performance	Solutions
Mastering	DynaCache	in	WebSphere	Commerce

	

Deployment
Unless	deploying	Commerce	EAR	files	less	than	500	MB	in	size	to	production	systems,	EAR	deployment
timeout	tuning	is	recommended.	This	involves	several	JVM	custom	properties,	especially	if	you	use	rollout
updates:

com.ibm.websphere.management.application.updatesync.appExpansionTimeout
com.ibm.websphere.management.application.updateClusterTask.serverStopWaitTimeout
com.ibm.websphere.application.updateapponcluster.waitforappsave
com.ibm.ws.webcontainer.ServletDestroyWaitTime

https://help.hcltechsw.com/commerce/9.1.0/admin/concepts/cpm_performancecycle.html
https://help.hcltechsw.com/commerce/9.1.0/admin/concepts/cpm_performancecycle.html
https://help.hcltechsw.com/commerce/9.1.0/landing/wc_welcome.html
https://www.redbooks.ibm.com/redbooks/pdfs/sg247512.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg247393.pdf
https://help.hcltechsw.com/commerce/9.1.0/developer/concepts/chclcache.html
https://help.hcltechsw.com/commerce/9.1.0/admin/concepts/cdc_cacheinv.html
https://help.hcltechsw.com/commerce/9.1.0/admin/concepts/cdc_productionenv.html
https://help.hcltechsw.com/commerce/8.0.0/install/tasks/tigconfigreplication.html
https://help.hcltechsw.com/commerce/9.1.0/admin/tasks/tighealthcenterprod.html
https://www.redbooks.ibm.com/abstracts/sg247512.html
https://www.redbooks.ibm.com/abstracts/sg247393.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/xrun_jvm.html

	

Troubleshooting

Web	server

Tips	for	using	the	IHS	Access	Log	feature	for	WebSphere	Commerce	sites:
http://www.ibm.com/developerworks/library/co-websphere-access-feature/index.html

	

HCL	Portal
Portal	tuning	guide
Tuning	Documentation
General	Documentation

	

Appendix
Sub-Chapters

Resources
Opinions
IBM	Installation	Manager
POSIX
Git
Internet	Domains
OpenLDAP
Wily	Introscope
OpenOffice,	LibreOffice
Acronyms
Firefox
Other
Revision	History
Notices
Full	Table	of	Contents

	

Resources
WebSphere	Application	Server	Performance	Tuning	Documentation:

WAS	traditional
WebSphere	Liberty

IBM	Java	Performance	Tuning	Documentation
OpenJ9	Java	Performance	Tuning	Documentation
IBM	HTTP	Server	Performance	Tuning
Top	10	Performance	and	Troubleshooting	tips	for	WebSphere	Application	Server	traditional	and
Liberty
Self-paced	WebSphere	Application	Server	Troubleshooting	and	Performance	Lab
Troubleshoot	WebSphere	Application	Server	(The	Basics)

http://www.ibm.com/developerworks/library/co-websphere-access-feature/index.html
https://support.hcltechsw.com/csm?id=kb_article&sysparm_article=KB0074411
https://help.hcltechsw.com/digital-experience/9.5/install/tune_servers.html
https://help.hcltechsw.com/digital-experience/9.5/welcome/wp95_welcome.html
https://www.ibm.com/support/knowledgecenter/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/welc6toptuning.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_tun.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.80.doc/performance.html
https://www.eclipse.org/openj9/docs/introduction/#performance-tuning
https://publib.boulder.ibm.com/httpserv/ihsdiag/ihs_performance.html
https://techtv.bemyapp.com/#/conference/5f8f5646a6e08100205ee8ce
https://ibm.biz/troubleshoot2-replay
https://ibm.biz/troubleshooting1-replay

	

Opinions

IBM	HeapAnalyzer	versus	the	Eclipse	Memory	Analyzer	Tool

IBM	HeapAnalyzer	(HA)	is	a	fast-loading	and	simple-to-use	heapdump	analysis	program.	However,	there
are	major	issues	with	HeapAnalyzer:

1.	 All	IBM	development	effort	has	moved	to	the	Eclipse	Memory	Analyzer	Tool	(MAT).
2.	 HeapAnalyzer	calculates	retained	heaps	using	heuristics	rather	than	more	accurate	graph	theory	as	in

MAT.	This	may	sometimes	cause	object	"sizes"	to	be	incorrect	(in	some	cases	being	larger	than	the
maximum	heap	size).

3.	 HeapAnalyzer	was	originally	designed	for	PHDs	that	do	not	have	memory	contents	so	it	is	harder	to
use	for	system	dumps	and	HPROFs.

4.	 HeapAnalyzer	has	limited	capabilities	for	accurate	GC	accounting	with	system	dumps.
5.	 HeapAnalyzer	lacks	MAT's	paths-to-GC	roots	queries.

If	you	are	new	to	heapdump	analysis,	consider	using	MAT.	If	you	are	used	to	HeapAnalyzer,	you	can
continue	to	use	it	for	simple	problems,	but	use	MAT	for	problems	HA	doesn't	solve.

	

IBM	Installation	Manager	(IM)
Documentation:	http://www-01.ibm.com/support/knowledgecenter/SSDV2W/im_family_welcome.html

	

Offline	Installations

Use	the	Packaging	Utility	in	Installation	Manager	to	install	packages	into	machines	without	internet	access:
http://www-
01.ibm.com/support/knowledgecenter/SSDV2W_1.8.0/com.ibm.im.articles.doc/topics/entdeployment.htm

	

imcl

imcl	is	the	command	line	version	of	the	IBM	Installation	Manager:	http://www-
01.ibm.com/support/knowledgecenter/SSDV2W_1.8.1/com.ibm.cic.commandline.doc/topics/c_imcl_container.html

	

Help

Invoke	help:	$	imcl	help

For	example	to	list	the	parameters	and	options	being	accepted	by	updateAll:	$	imcl	help	updateAll

	

List	Installed	Packages

$	imcl	listInstalledPackages
com.ibm.websphere.ND.v80_8.0.9.20140530_2152

https://www.ibm.com/support/pages/ibm-heapanalyzer
https://www.ibm.com/support/pages/why-are-some-java-objects-alive
http://www-01.ibm.com/support/knowledgecenter/SSDV2W/im_family_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSDV2W_1.8.0/com.ibm.im.articles.doc/topics/entdeployment.htm
http://www-01.ibm.com/support/knowledgecenter/SSDV2W_1.8.1/com.ibm.cic.commandline.doc/topics/c_imcl_container.html

com.ibm.websphere.PLG.v80_8.0.3.20120320_0536
com.ibm.websphere.IHS.v80_8.0.3.20120320_0536

	

List	Installed	Features	of	a	Package

$	imcl	listInstalledFeatures	com.ibm.websphere.ND.v80_8.0.9.20140530_2152
com.ibm.sdk.6_64bit
ejbdeploy
embeddablecontainer
samples
thinclient

	

Other	Examples

List	available	packages	and	features	in	a	repository:	$	imcl	listAvailablePackages	-repositories
/repository.config	-features	-long

Installing	WAS8	with	64Bit	Java:	$	imcl	install
com.ibm.websphere.ND.v80,core.feature,ejbdeploy,com.ibm.sdk.6_64bit	-repositories	/disk1	-
installationDirectory	-accessRights	nonAdmin	-acceptLicense	-log	/tmp/WAS8_install.log	[-
sharedResourcesDirectory]

Installing	an	iFix	(PM48831):	$	imcl	install	8.0.0.0-WS-WASND-IFPM48831_8.0.0.20111110_1512	-
installationDirectory	-acceptLicense	-log	/tmp/WAS8_iFix_install.log	-repositories	[-
sharedResourcesDirectory]
Note:	You	might	need	to	run	imcl	listAvailablePackages	to	determine	the	[-sharedResourcesDirectory]	of
the	iFix

Uninstalling	an	iFix	(PM48831):	$	imcl	uninstall	8.0.0.0-WS-WASND-IFPM48831_8.0.0.20111110_1512	-
installationDirectory	-log	/tmp/IFPM48831_uninstall.log

Running	a	fill	installation	of	course	works	as	well	-	however	the	properties	list	is	depending	on	the	product
being	used.	As	most	products	provide	a	sample	response	file	it's	the	easiest	way	to	determine	the	properties
from	there.	Look	at	the	""	lines	in	the	respone	files.	Each	"key-name"	is	converted	to	a	property.	Note:	As
properties	are	separted	by	","	you	have	to	double	the	","	in	the	"key-name"	if	the	"key-name"	contains
commas.

	

Save	Credentials

If	a	repository	requires	authentication,	you	must	save	the	password	to	a	local	file:	http://www-
01.ibm.com/support/knowledgecenter/SSDV2W_1.8.1/com.ibm.cic.commandline.doc/topics/t_imcl_store_credentials.html

First,	create	a	master	password	file	with	a	plain	text	password:

$	cat	>	master_password_file.txt
${PASSWORD}
^D

Next,	create	the	credential	file:

$	imutilsc	saveCredential	-url	${URL}	-userName	${USER}	-userPassword	${PASSWORD}	-secureStorageFile	credential.store	-masterPasswordFile	master_password_file.txt
Successfully	saved	the	credential	to	the	secure	storage	file.

Use	the	-secureStorageFile	and	-masterPasswordFile	imcl	options	to	specify	these	files.	For	example:

http://www-01.ibm.com/support/knowledgecenter/SSDV2W_1.8.1/com.ibm.cic.commandline.doc/topics/t_imcl_store_credentials.html

$	imcl	-acceptLicense	-secureStorageFile	credential.store	-masterPasswordFile	master_password_file.txt	updateAll

If	these	passwords	and	files	are	sensitive,	remove	them	after	the	operations	are	complete	and	clear	your	shell
history.

	

Update	Package

One	way	to	update	a	package	is	to	enable	only	the	repositories	with	those	package	updates	(this	can	be	done
easily	under	Preferences	in	console	mode)	and	then	use	the	updateAll	command.	For	example:

$	imcl	-acceptLicense	-secureStorageFile	credential.store	-masterPasswordFile	master_password_file.txt	updateAll
Updated	to	com.ibm.websphere.IHS.v80_8.0.10.20150116_1534	in	the	/opt/IBM/HTTPServer	directory.
Updated	to	com.ibm.websphere.ND.v80_8.0.10.20150116_1534	in	the	/opt/IBM/WebSphere/AppServer	directory.
Updated	to	com.ibm.websphere.PLG.v80_8.0.10.20150116_1534	in	the	/opt/IBM/WebServer/Plugins	directory.

	

Console	Mode

Console	mode	is	a	feature	of	imcl	which	lets	you	navigate	through	IM	like	you	would	through	the	GUI	but
through	a	shell:

$	imcl	-c

=====>	IBM	Installation	Manager

Select:
					1.	Install	-	Install	software	packages
					2.	Update	-	Find	and	install	updates	and	fixes	to	installed	software	packages
					3.	Modify	-	Change	installed	software	packages
					4.	Roll	Back	-	Revert	to	an	earlier	version	of	installed	software	packages
					5.	Uninstall	-	Remove	installed	software	packages

Other	Options:
					L.	View	Logs
					S.	View	Installation	History
					V.	View	Installed	Packages

					P.	Preferences

					A.	About	IBM	Installation	Manager

					X.	Exit	Installation	Manager

	

Installing	Fix	Packs	and	i-Fixes

http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/tins_install_fixes_dist.html

	

POSIX
sh:	https://pubs.opengroup.org/onlinepubs/9699919799/utilities/sh.html

	

Shells

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/tins_install_fixes_dist.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/sh.html

Current	Shell

There	is	a	convention	that	if	the	logged	in	user	is	root,	then	the	shell	prompt	character	is	#,	while	non-root
users	show	$.

To	print	which	shell	you're	currently	using,	try	one	of	these	options:

$	echo	$0
bash
$	echo	$SHELL
/bin/bash
$	ps	-p	$$
	PID	TTY										TIME	CMD
6549	pts/4				00:00:00	bash

	

Cross-Shell	Topics

POSIX-compatible	shell	scripting

POSIX	defines	a	standard	for	shell	scripts.

	

Variable	Expansion

Variable	expansion	supports	the	following	operations:

Return	the	value	of	a	variable	or	a	default	value:	${VARIABLE:-DEFAULT}
Return	the	value	of	a	variable	if	non-null	or	a	DEFAULT	value	if	null:	${VARIABLE:-DEFAULT}
Return	the	length	of	a	variable	value:	${#VARIABLE}
Return	the	value	of	a	variable	with	the	specified	suffix	removed:	${VARIABLE%SUFFIX}
Return	the	value	of	a	variable	with	the	specified	prefix	removed:	${VARIABLE#SUFFIX}

	

Create	a	file	in	one	command

Without	variable	expansion	(single	or	double	quotes	around	the	heredoc	word):

cat	>	diag.sh	<<	'EOF'
#!/bin/sh
OUTPUTFILE="diag_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt"
echo	"[$(date)]	Started	command"	>>	"${OUTPUTFILE}"	2>&1
uname	>>	"${OUTPUTFILE}"	2>&1
echo	"[$(date)]	Finished	command"	>>	"${OUTPUTFILE}"	2>&1
EOF

In	most	shells,	a	dash	at	the	end	of	<<	will	strip	leading	tabs	(but	not	spaces);	for	example:

cat	>	diag.sh	<<-	'EOF'
				#!/bin/sh
				OUTPUTFILE="diag_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt"
				echo	"[$(date)]	Started	command"	>>	"${OUTPUTFILE}"	2>&1
				uname	>>	"${OUTPUTFILE}"	2>&1
				echo	"[$(date)]	Finished	command"	>>	"${OUTPUTFILE}"	2>&1
EOF

To	use	variable	expansion,	remove	the	single	or	double	quotes	around	the	heredoc	word.

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_06_02

If	a	wrapper	command	is	needed	such	as	sudo:

sudo	sh	-c	"cat	>	diag.sh"	<<	'EOF'
#!/bin/sh
OUTPUTFILE="diag_$(hostname)_$(date	+%Y%m%d_%H%M%S).txt"
echo	"[$(date)]	Started	command"	>>	"${OUTPUTFILE}"	2>&1
uname	>>	"${OUTPUTFILE}"	2>&1
echo	"[$(date)]	Finished	command"	>>	"${OUTPUTFILE}"	2>&1
EOF

	

test

The	test	command	is	often	used	in	boolean	expressions	and	the	short-hand	is	[]:

Check	if	a	string	is	empty	(-z	could	be	used	but	this	is	more	readable):

if	["${1}"	=	""];	then
		echo	"First	argument	missing"
		exit	1
fi

Check	if	a	string	is	non-empty	(-n	could	be	used	but	this	is	more	readable):

if	["${1}"	!=	""];	then
		echo	"First	argument	missing"
		exit	1
fi

Check	string	equality	(note	that	==	is	not	standard	but	supported	by	many	modern	shells):

if	["${1}"	=	"somestring"];	then
		echo	"First	argument	is	somestring"
		exit	1
fi

Check	if	file	exists:

if	[-f	"${1}"];	then
		echo	"File	exists	and	is	a	regular	file"
		exit	1
fi

Check	if	file	doesn't	exist:

if	!	[-f	"${1}"];	then
		echo	"File	does	not	exist"
		exit	1
fi

Check	if	directory	exists:

if	[-d	"${1}"];	then
		echo	"Directory	exists"
		exit	1
fi

	

Globs

When	using	a	glob	(*)	in	a	terminal	to	expand	to	a	list	of	files	and/or	directories,	by	default,	files	beginning
with	a	dot	(.),	also	known	as	dotfiles	or	hidden	files,	are	not	included	in	the	list.	To	include	these,	first
disable	this	behavior	by	running:

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/test.html

bash:

shopt	-s	dotglob

zsh:

setopt	GLOB_DOTS

	

set

set	is	a	command	to	configure	options	for	the	current	context.	One	or	more	flags	may	be	specified	at	the
same	time.

set	-e	exits	the	script	if	a	command	receives	an	error.
set	-x	prints	each	command	to	stderr	before	it	is	run.

It	is	common	to	put	set	-e	at	the	top	of	a	script	to	exit	if	an	error	is	observed:

#!/bin/sh
set	-e

	

case

The	case	structured	is	describe	in	Case	Conditional	Construct.	Each	case	supports	wildcards.	Example:

case	"${somevariable}"	in
		ta0*)
				echo	"First	branch";
				;;

		itc*)
				echo	"Second	branch";
				;;

		*)
				echo	"Default	branch";
				;;
esac

	

POSIX-compliant	one-liners

Generate	random	character	sequence	of	a-z,	A-Z,	or	0-9	(replace	-w	22	with	the	count):

cat	/dev/random	|	LC_ALL=C	tr	-dc	'a-zA-Z0-9'	|	fold	-w	22	|	head	-n	1

Loop	through	a	list	of	numbers	(replace	MAX=10	with	the	maximum;	exclusive):

i=1;	MAX=11;	while	["$i"	-ne	$MAX];	do	echo	$i;	i=$(($i	+	1));	done

	

Script	template

#!/bin/sh
#	Comment	about	this	script

usage()	{

https://www.gnu.org/software/bash/manual/html_node/The-Shopt-Builtin.html
http://zsh.sourceforge.net/Doc/Release/Options.html#Option-Aliases-1
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#set
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_09_04_05

		printf	"Usage:	%s	[-v]	[-d	DELAY]	COMMAND	[ARGUMENTS...]\n"	"$(basename	"${0}")"
		cat	<<"EOF"
													-d:	DELAY	between	executions	in	seconds.
													-v:	verbose	output	to	stderr
EOF
		exit	22
}

DELAY="30"
VERBOSE=0

OPTIND=1
while	getopts	"d:hv?"	opt;	do
		case	"$opt"	in
				d)
						DELAY="${OPTARG}"
						;;
				h|\?)
						usage
						;;
				v)
						VERBOSE=1
						;;
		esac
done

shift	$((OPTIND-1))

if	["${1:-}"	=	"--"];	then
		shift
fi

if	["${#}"	-eq	0];	then
		echo	"ERROR:	Missing	COMMAND"
		usage
fi

printInfo()	{
		echo	"[$(date	'+%Y-%m-%d	%H:%M:%S.%N	%Z')]	$(basename	"${0}"):	${@}"
}

printVerbose()	{
		echo	"[$(date	'+%Y-%m-%d	%H:%M:%S.%N	%Z')]	$(basename	"${0}"):	${@}"	>>	/dev/stderr
}

printInfo	"started	with	delay	${DELAY}"

["${VERBOSE}"	-eq	"1"]	&&	printVerbose	"Commands:	${@}"

"$@"

printInfo	"finished"

	

bash

Change	the	command	prompt	to	include	more	information:

$	export	PS1="[\u@\t	\w]\$	"

Search	command	history	using	Ctrl+R	and	typing	and	recall	with	ESC	or	execute	with	ENTER:

$	less	/etc/hosts
$	othercommand1
$	othercommand2
$	#	Now	type	Ctrl+R	and	type	less
(reverse-i-search)`less':	less	/etc/hosts

Recall	and	execute	the	last	command	with	!!:

$	/opt/IHS/bin/apachectl	restart
$	sudo	!!

Recall	and	execute	the	first	previous	command	containing	a	search	string	with	!?:

$	/opt/IHS/bin/apachectl	restart
$!?apachectl

Recall	and	execute	the	last	command	but	replace	all	instances	of	one	expression	with	another:

$!!:gs/stop/start/

Use	the	last	argument	of	the	previous	command	with	!!:$,	or	all	arguments	of	the	previous	command	with
!!:*

Search	history	and	re-run	a	particular	command	based	on	its	position	in	history:

$	history	|	grep	startServer.sh
527	/opt/IBM/WebSphere/profiles/node01/bin/startServer.sh	server1
543	/opt/IBM/WebSphere/profiles/node01/bin/startServer.sh	server2
$!543

Print	the	name	of	the	current	user:

whoami

Extract	all	.tar.gz	files	into	subdirectories	using	the	name	of	the	file	without	the	extension:

for	i	in	*.tar.gz;	do	mkdir	`basename	$i	.tar.gz`	&&	mv	$i	`basename	$i	.tar.gz`	&&	pushd	`basename	$i	.tar.gz`	&&	tar	xzvf	$i	&&	rm	$i	&&	popd;	done

Extract	all	.tar	files	into	subdirectories	using	the	name	of	the	file	without	the	extension:

for	i	in	*.tar;	do	mkdir	`basename	$i	.tar`	&&	mv	$i	`basename	$i	.tar`	&&	pushd	`basename	$i	.tar`	&&	tar	xvf	$i	&&	rm	$i	&&	popd;	done

Extract	all	.zip	files	into	subdirectories	using	the	name	of	the	file	without	the	extension:

for	i	in	*.zip;	do	mkdir	`basename	$i	.zip`	&&	mv	$i	`basename	$i	.zip`	&&	pushd	`basename	$i	.zip`	&&	unzip	$i	&&	rm	$i	&&	popd;	done

Gunzip	all	.gz	files	in	a	directory:

find	.	-type	f	-name	"*gz"	-print	|	while	read	line;	do	pushd	`dirname	$line`;	gunzip	`basename	$line`;	popd;	done

Change	to	a	directory	by	replacing	a	part	of	the	current	directory:

cd	${PWD/Dmgr01/AppSrv01}

Recall	the	last	word	of	the	previous	command	using	Alt+.

	

Command	line	navigation

^	refers	to	the	Ctrl	key.	The	⎇	refers	to	the	Alt	key.

Move	cursor:

Beginning:	^a	or	^xx
Beginning	of	word:	⎇b
End:	^e
End	of	word:	⎇f
First	occurrence	of	character	X	to	the	right:	^]X

First	occurrence	of	character	X	to	the	left:	^⎇X

Delete	content:

Delete	to	the	beginning:	^u
Delete	to	the	end:	^k
Delete	a	word	to	the	left:	^w
Delete	a	word	to	the	right:	⎇d
Paste	what	was	deleted:	^y

	

Global	aliases

For	truly	global	aliases,	update	the	scripts	for	both	interactive	shells	(/etc/profile.d/*)	and	non-interactive
shells	(/etc/bashrc	or	/etc/bash.bashrc,	depending	on	the	distribution).

First,	create	a	shell	script	with	the	commands	you	want	to	run	and	place	it	in	a	common	location	such	as
/etc/globalprofile.sh:

#!/bin/sh
alias	x="exit"
alias	l="ls	-ltrh"
export	PS1="[\u@\t	\w]\$	"

Then	add	the	execute	permission:

#	chmod	+x	/etc/globalprofile.sh

Finally,	append	the	following	line	to	both	interactive	and	non-interactive	shell	script	locations	(e.g.
/etc/bashrc):

source	/etc/globalprofile.sh

	

zsh

Completion

Initialize	completion	by	putting	the	following	at	the	top	of	~/.zshrc:

autoload	-U	compinit;	compinit

When	you	start	a	new	terminal	tab,	if	you	receive	the	error	"zsh	compinit:	insecure	directories,	run
compaudit	for	list.",	then	run	compaudit	and,	for	each	directory,	run:

sudo	chown	-R	$(whoami):staff	$DIR
sudo	chmod	-R	755	$DIR

	

Script	to	watch	netstat	to	create	file	triggers

1.	 watchoutbound.sh:

#!/bin/sh
SEARCH="10.20.30.100:50000"
SOCKETTHRESHOLD="150"
SLEEPINTERVAL="30"

while	true;	do
		currentcount="$(netstat	-an	|	awk	'{print	$5}'	|	grep	-c	"${SEARCH}")"
		if	[${currentcount}	-ge	${SOCKETTHRESHOLD}];	then
				echo	"$(date)	Threshold	exceeded	with	${currentcount}	outbound	connections	to	${SEARCH}"	>>	/tmp/trigger.txt
		fi
		sleep	${SLEEPINTERVAL}
done

2.	 chmod	+x	watchoutbound.sh

3.	 nohup	./watchoutbound.sh	&

	

awk

This	section	has	been	moved	to	awk.

	

Truncating	Logs

While	some	operating	systems	have	commands	specifically	for	truncation	(e.g.	"truncate"	on	Linux),	it	is
simpler	and	more	cross-platform	to	simply	write	/dev/null	on	top	of	a	file	to	truncate	it:

cat	/dev/null	>	file.log

This	does	not	work	with	sudo	because	the	redirection	operator	occurs	outside	of	the	sudo.	In	that	case,	you
can	use	tee:

cat	/dev/null	|	sudo	tee	file.log

	

Defunct	Processes

Use	ps	-elf	|	grep	defunct 	to	monitor	defunct	processes.

"Processes	marked	<defunct>	are	dead	processes	(so-called	"zombies")	that	remain	because	their	parent	has
not	destroyed	them	properly."	(http://man7.org/linux/man-pages/man1/ps.1.html)

"A	defunct	process,	also	known	as	a	zombie,	is	simply	a	process	that	is	no	longer	running,	but	remains	in	the
process	table	to	allow	the	parent	to	collect	its	exit	status	information	before	removing	it	from	the	process
table.	Because	a	zombie	is	no	longer	running,	it	does	not	use	any	system	resources	such	as	CPU	or	disk,	and
it	only	uses	a	small	amount	of	memory	for	storing	the	exit	status	and	other	process	related	information	in	the
slot	where	it	resides	in	the	process	table."	(http://www-01.ibm.com/support/docview.wss?
uid=isg3T1010692)

Defunct	processes	are	processes	that	have	exited	and	are	waiting	for	the	parent	process	to	read	its	exit	code.
Most	of	the	resources	of	the	exited	process	are	released;	however,	the	PID,	exit	code,	and	process	table
entries	are	still	resident	and	a	persistent	and	large	number	of	defunct	processes	can	limit	scalability.	Every
process	will	be	defunct,	but	normally	it	is	only	for	a	short	period	of	time.	Normally,	persistent	defunct
processes	mean	that	the	parent	process	is	hung.	In	the	case	of	WAS,	this	is	usually	the	nodeagent	process.	To
remove	defunct	processes,	kill	the	parent	process.	Before	doing	this,	gather	diagnostics	on	the	parent	process
such	as	performing	activity	on	it	to	see	if	it	is	still	alive,	requesting	a	thread	dump,	and	finally	requesting	a
core	dump.	Killing	the	parent	process	will	cause	the	parent	process	of	the	defunct	process	to	become	the	init
(1)	process	which	will	then	read	the	exit	code	and	allow	the	defunct	process	to	finish.

	

http://man7.org/linux/man-pages/man1/ps.1.html
http://www-01.ibm.com/support/docview.wss?uid=isg3T1010692

Example	C	Program	that	Crashes

test.c:

#include	<stdio.h>

int	main(int	argc,	char**	argv)	{
		char	*p	=	0;
		printf("Hello	World\n");
		printf("p:	%d\n",	*p);
		return	0;
}

Run:

$	gcc	-g	test.c
$./a.out

	

SSH

To	bypass	any	configured	private	keys:

$	ssh	-o	PubkeyAuthentication=no	user@host

	

SSH	Port	Forwarding

Often	you	can	SSH	into	a	box	but	other	ports	that	you	want	to	access	are	blocked	by	firewalls.	You	can
create	an	SSH	tunnel	that	takes	traffic	on	your	machine	at	some	port,	forwards	it	through	an	SSH	connection
and	sends	it	to	a	different	port	on	the	target	server.	For	example,	let's	say	hostX	has	something	that	is
listening	on	port	8879	which	you	can't	access	from	outside	that	box.	You	can	create	a	tunnel	like	this:

$	ssh	-L	9999:hostX:8879	sshuser@hostX

Now	you	should	have	a	listening	port	on	localhost	port	9999.	You	can	access	this	port	through	your	client
program	as	you	would	access	port	8879	on	hostX.

This	can	also	be	done	with	programs	such	as	putty	by	using	the	tunnel	option:

		

kill

kill	is	used	to	send	signals	to	processes.	The	general	format	of	the	command	is:

$	kill	-${SIGNAL}	${PID}

${SIGNAL}	is	either	a	number	or	the	name	of	the	signal.

For	example,	to	send	the	equivalent	of	Ctrl+C	to	a	process	123:

$	kill	-INT	123

	

less

less	is	a	common	command	to	browse	files	and	input:

$	less	input

Tips:

Jump	to	the	beginning	of	input:	g
Jump	to	the	end	of	input:	G
Jump	to	a	line	number	N:	Ng
Go	to	the	next	input:	:n
Search	for	something:	/SEARCH
Find	next:	n
If	you	jump	to	the	end	of	input	and	it	says	"Calculating	line	numbers,"	press	Ctrl+C	if	you	don't	need
to	do	this	to	stop	the	calculation.
Start	tailing	a	log:	Shift+F
Enable	any	command	line	option	after	the	file	has	been	loaded:	-OPTION	}	Enter.	Common	ones:

Show	line	numbers:	-N

Show	percent	progress	in	file:	-m
If	it	shows	byte	X	then	less	doesn't	know	how	many	bytes	are	available	in	total	so	it	can't
calculate	a	perecentage.	Go	to	the	end	and	then	the	beginning:	G	}	g

Show	file	name:	-M
Don't	wrap	lines:	-S

	

tail

tail	may	be	used	to	skip	the	first	N	lines	of	input	using	-n	(N+1).	For	example,	to	skip	the	first	line	of	input:

$	tail	-n	+2	input

	

sort

Sort	by	a	particular	column	using	-k:

$	sort	-k	3	input

Sort	numerically:

$	sort	-k	3	-n	input

	

bc

paste	and	bc	may	be	used	to	sum	a	set	of	numbers	from	input:

$	cat	input	|	paste	-sd+	|	bc

	

sed

sed	and	bc	may	be	used	to	do	simple	math	on	input:

$	cat	input	|	sed	's/$/*1024/'	|	bc

Print	lines	4-10:	sed	-n	'4,10p'
Delete	first	5	lines:	sed	'1,5d'
Delete	blank	lines:	sed	'/^$/d'

	

Perl

perl	is	a	commonly	used	scripting	language.	A	perl	script	normally	has	the	.pl	extension	and	starts	with	this
shebang	line:

#!/usr/bin/env	perl

Useful	command	line	options:

perldoc	perlrun:	Man	page	of	executing	the	perl	interpreter.
-e:	Specify	perl	code	on	the	command	line	rather	than	a	perl	file.
-p:	Run	specified	perl	command	on	each	line	of	standard	input.

-n:	Same	as	-p	except	that	each	line	is	not	also	printed.

For	example,	to	convert	a	POSIX	date	epoch	into	a	human-readable	time:

$	date	+%s	|	perl	-ne	's/(\d+)/localtime($1)/e;'

The	$_	variable	will	contain	each	line	of	the	file.

Code	may	be	run	at	the	start	and	end	using	BEGIN	{}	and	END	{}	blocks,	respectively:

$	date	+%s	|	perl	-ne	'BEGIN	{	print	"Starting\n";	}	s/(\d+)/localtime($1)/e;	END	{	print	"Finished\n";	}'

Useful	things	to	remember	in	perl:

$x	=\~	/$REGEX/:	Return	true	if	$REGEX	matches	$x
$x	=\~	s/$REGEX//g:	Replace	all	occurrences	of	$REGEX	in	$x	with	nothing.

Commonly	used	regular	expression	tokens:

Match	zero	or	more:	*
Match	one	or	more:	+
Any	character:	.
White	space	character	(space,	tab,	or	newline):	\s
Opposite	of	white	space	character:	\S
Word	character	(a-z,	A-Z,	0-9,	or	underscore):	\w
Non-word	character:	\W
Digit	character	(0-9):	\d
Non-digit	character:	\D

	

wget

wget	may	be	used	to	execute	an	HTTP	request:

$	wget	http://ibm.com/
Saving	to:	"index.html"

When	multiple	URLs	are	passed	to	wget,	if	possible,	wget	will	attempt	to	re-use	the	same	TCP	socket.	Use
Perl	to	automate	generating	the	same	URL	many	times	on	the	command	line.	In	the	following	example,	64
requests	will	be	attempted	over	the	same	socket:

$	wget	-O/dev/null	`perl	-e	'print	"http://ibm.com/	"	x	64;'`

To	review	response	headers	and	(short)	bodies,	a	useful	one-liner	is:

$	wget	-qS	http://ibm.com/	-O-

	

netcat	(nc)	/	openssl	s_client

When	you	want	more	control	over	what	goes	into	the	HTTP/HTTPS	request,	you	can	use	printf	and	netcat	or
openssl	s_client:

$	printf	"GET	/	HTTP/1.1\r\nHost:	example.com\r\n\r\n"	|	nc	0	80
$	printf	"GET	/	HTTP/1.1\r\nHost:	example.com\r\n\r\n"	|	openssl	s_client	-connect	0:443	-ign_eof

	

openssl

Show	a	remote	TLS	certificate	(replace	both	instances	of	localhost):

echo	|	openssl	s_client	-showcerts	-servername	localhost	-connect	localhost:8880	2>/dev/null	|	openssl	x509	-inform	pem	-noout	-text

	

find

The	/usr/bin/find	command	searches	for	files	recursively	based	on	their	name	or	metadata.	Check	the	bottom
of	the	Linux	manual	for	examples.

$	find	/opt/IBM/WebSphere	-name	server.xml
$	find	/opt/IBM/WebSphere	-size	+100M	(note:	the	M	suffix	is	not	portable)
$	find	.	-name	server.xml|grep	-vi	Templates|xargs	grep	startupTraceSpecification

	

gpg

File	Encryption

Encrypt	a	file	for	storage	or	transit:

$	gpg	--s2k-mode	3	--s2k-count	65536	--force-mdc	--cipher-algo	AES256	--s2k-digest-algo	sha512	-o	${OUTPUTFILE}.pgp	--symmetric	${INPUTFILE}

	

File	Decryption

Decrypt	a	PGP-encrypted	file:

$	gpg	--output	${OUTPUTFILE}	--decrypt	${INPUTFILE}.pgp

	

touch

changes	the	timestamp	of	a	file	(=access/modification	time)	to	the	current	date	and	time:

$	touch	input

Tip:	"touch	[non-existing	filename]"	will	create	a	new	empty	file	(no	directories).	You	can	also	create
several	new	files	using	"touch	[newfile1	newfile2	newfile3]"

	

Filenames	and	special	characters

Special	characters	in	the	terminal	include	$	<>	&	|;"'\

If	you'd	like	to	use	them,	you'll	need	to	precede	"escape"	them	with	a	\	[back	slash].	There	is	no	way	you	can
create	a	filename	with	a	/	[forward	slash]	or	null	character.

	

Auto	completion

Use	"cd	+	[first	few	letters	of	your	filename]	+	TAB	{+	TAB}"	to	change	directory	to	files	starting	with	the
letters	you	specified	using	auto	completion:

$	cd	+	inp	+	TAB	{or	TAB	+	TAB	to	display	all	options}

"ls	+	TAB	+	TAB"	will	open	up	a	list	of	suggestions	which	you	can	use	with	a	given	command.

	

Keyboard	shortcuts:

Tips:

Move	to	the	beginning	of	a	line:	CTRL+A
Move	to	the	end	of	a	line:	CTRL+E
Move	one	word	backwards	at	a	time:	ALT+B
Delete	character	at	cursor	location:	CTRL+D
Cut	text	from	the	cursor	location	to	the	end	of	the	line	(beginning	of	the	line):	CTRL+K	(U)	and	use
CTRL+Y	to	paste	it	back;	"kill"	text	and	"yank"	it.
Convert	the	current	word	[at	the	beginning	of	a	word]	to	lowercase	(uppercase):	ALT+L	(U)

	

tac

Show	contents	of	filename1	and	filename2	in	a	reverse	order:

$	tac	[filename1][filename2]

	

nl

Add	line	numbers	to	input	lines.

	

Types	of	commands

To	list	all	available	built-in	shell	commands	for	a	particular	shell	use:

$	compgen	-b

To	display	your	command	type	you	can	use	"type	[command	name]	OR	file	[absolute	path	to	command]":

$	type	cd	
OR	type	ifconfig	and	file	/sbin/ifconfig

Alternatively,	you	can	use	the	"which"	command	to	display	an	executable	location/the	absolute	command
path	(not	working	for	shell	built-ins):

$	which	ifconfig

To	check	if	a	command	name	is	already	in	use	or	may	be	used	as	an	alias	you	may	use	"type	[potential	alias
name]":

$	type	myalias

	

Combining	commands

To	combine	1stcommand	and	2ndcommand	etc.,	use	"1stcommand;	2ndcommand;...."	Correct

commands	will	be	executed	unless	you	use	exit:

$	date;	cal

Alternatively,	you	can	use	"&&"	to	combine	commands.	However,	this	will	only	execute	until	it
encounters	an	error	("short	circuit	evaluation"):

$	date	&&	cal

	

Wildcards

Represents	or	matches	any	characters:	*
Represents	or	matches	a	single	character:	?
Match	a	range	of	characters:	[range	of	characters]
Not	match	a	range	of	characters:	[!range	of	characters]
Any	number	from	numbers	of	the	digit	range:[digit-digit]*
Uppercase:	[[:upper:]]
Lowercase:	[[:lower:]]
Digit:	[[:digit:]]
Alphabetical:	[[:alpha:]]
Alphanumeric:	[[:alnum:]]
NB:	To	negate	this	use	[![....:]]

	

htpasswd

Create	10	users	with	random	passwords:

i=1;	MAX=11;	OUTPUT=users.htpasswd;	while	["$i"	-ne	$MAX];	do	PASSWORD="$(cat	/dev/random	|	LC_ALL=C	tr	-dc	'a-zA-Z0-9'	|	fold	-w	22	|	head	-n	1)";	htpasswd	$(if	!	[-f	"${OUTPUT}"];	then	printf	"%s"	"-c";	fi)	-B	-b	"${OUTPUT}"	"user${i}"	"${PASSWORD}";	echo	"user${i}	=	${PASSWORD}";	i=$(($i	+	1));	done

	

Makefiles

make	uses	a	Makefile	to	automate	tasks.

	

Makefile	Basics

A	Makefile	is	a	set	of	rules	of	the	form:

$TARGET:	$PREREQUISITES
TABCOMMAND
TABCOMMAND
[...]

Each	$COMMAND	is	run	in	its	own	shell.

For	example:

a.out:	test.c
				gcc	test.c

Make	will	only	run	a	rule	if	the	last	modification	time	of	$TARGET	is	older	than	the	last	modification	times	of
its	$PREREQUISITES.	A	target	without	$PREREQUISITES	always	evaluates	to	needing	to	be	executed;	for
example:

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html

clean:
				rm	a.out

Comments	begin	with	#.

The	first	$TARGET	is	the	default	target	when	running	make.	Otherwise,	specify	the	targets	with	make
$TARGET...;	for	example,	make	a.out.

To	ensure	POSIX-compliance,	the	first	non-comment	line	should	be	the	following:

.POSIX:

Makefiles	may	use	macros	of	the	form	$(MACRO)	and	these	may	be	nested.	Default	values	may	be	specified
with	assignment;	for	example:

CFLAGS=-g

Macros	may	be	overridden	with	environment	variables	in	the	calling	shell	or	on	the	command	line	with
MACRO=value;	for	example,	make	CFLAGS="-g	-O".	The	$<	macro	expands	to	the	prerequisite.

	

Makefile	Example

.POSIX:

CC=gcc
CFLAGS=-W	-O	-g	-fno-omit-frame-pointer
PREFIX=/usr/local

all:	a.out
install:	a.out
				mkdir	-p	$(DESTDIR)$(PREFIX)/bin
				cp	-f	a.out	$(DESTDIR)$(PREFIX)/bin
a.out:	test.c
				$(CC)	$(LDFLAGS)	$<
clean:
				rm	-f	a.out

	

PHONY

The	special	.PHONY	target	specifies	a	list	of	targets	which	will	be	executed,	if	requested,	even	if	a	file	name
matching	the	target	exists.	For	example:

When	one	directory	contains	multiple	programs,	it	is	most	convenient	to	describe	all	of	the
programs	in	one	makefile	./Makefile.	Since	the	target	remade	by	default	will	be	the	first	one	in
the	makefile,	it	is	common	to	make	this	a	phony	target	named	‘all’	and	give	it,	as	prerequisites,
all	the	individual	programs.	For	example:

all	:	prog1	prog2	prog3
.PHONY	:	all

prog1	:	prog1.o	utils.o
								cc	-o	prog1	prog1.o	utils.o

prog2	:	prog2.o
								cc	-o	prog2	prog2.o

prog3	:	prog3.o	sort.o	utils.o
								cc	-o	prog3	prog3.o	sort.o	utils.o

https://www.gnu.org/software/make/manual/html_node/Special-Targets.html
https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html

	

Git
Git	is	a	distributed	verson	control	system.

	

Squash	a	Pull	Request

Assuming	a	pull	request	is	from	a	branch	that	is	X	commits	ahead,	squash	into	one	commit	with:

1.	 Determine	the	number	X	by	looking	at	git	log
2.	 Replace	X	in	the	following	command:

git	rebase	--interactive	--gpg-sign=user@domain	HEAD~X

3.	 This	will	bring	up	an	editor	with	a	list	of	commits	and	options	on	how	to	process	them;	for	example:

pick	7d68f53	Add	new	options
pick	fc44c33	Add	log	if	new	options	are	set
pick	e5b4d1d	Fix	whitespace
pick	9f3740d	Fix	copyright

#	Rebase	433de9e..9f3740d	onto	433de9e	(4	commands)
#
#	Commands:
#	p,	pick	<commit>	=	use	commit
#	r,	reword	<commit>	=	use	commit,	but	edit	the	commit	message
#	e,	edit	<commit>	=	use	commit,	but	stop	for	amending
#	s,	squash	<commit>	=	use	commit,	but	meld	into	previous	commit
#	f,	fixup	[-C	|	-c]	<commit>	=	like	"squash"	but	keep	only	the	previous
#																				commit's	log	message,	unless	-C	is	used,	in	which	case
#																				keep	only	this	commit's	message;	-c	is	same	as	-C	but
#																				opens	the	editor
[...]

4.	 Do	not	change	the	first	pick	line	but	change	the	second	and	subsequent	pick	lines	to	squash;	for
example:

pick	7d68f53	Add	new	options
squash	fc44c33	Add	log	if	new	options	are	set
squash	e5b4d1d	Fix	whitespace
squash	9f3740d	Fix	copyright
[...]

5.	 Quit	and	save	the	editor
6.	 This	will	bring	up	the	editor	again	which	will	have	all	of	the	commit	messages	appended	together.

Modify/combine	the	messages	into	one	coherent	message,	save,	and	quit.
7.	 Force	push	to	the	branch:

git	push	-f

This	procedure	is	described	in	detail	in	the	manual	on	git	rebase:

If	you	want	to	fold	two	or	more	commits	into	one,	replace	the	command	"pick"	for	the	second
and	subsequent	commits	with	"squash"	or	"fixup".

	

Internet	Domains

https://git-scm.com/
https://git-scm.com/docs/git-rebase#_interactive_mode

Reserved	Domains

example.com	is	a	commonly	used	test	domain:	https://tools.ietf.org/html/rfc2606

	

OpenLDAP
OpenLDAP	Software	is	an	open	source	implementation	of	the	Lightweight	Directory	Access	Protocol:
http://www.openldap.org/

The	older	slapd.conf	file	is	deprecated,	and	the	newer	configuration	files	under	slapd.d	should	be	edited
using	LDAP	utilities	rather	than	manually:	http://www.openldap.org/doc/admin/slapdconf2.html

	

Configuration

Dump	all	configuration:

$	ldapsearch	-Y	EXTERNAL	-H	ldapi:///	-b	"cn=config"

Configuration	is	modified	by	creating	an	LDAP	Data	Interchange	Format	(LDIF)	file	with	the	desired
changes	and	running:

$	ldapmodify	-Y	EXTERNAL	-H	ldapi:///	-f	${file}.ldif

In	recent	versions,	the	main	configuration	is	contained	in	LDIF	files	under	some	directory	such	as
/etc/openldap/slapd.d/cn=config;	however,	these	files	should	not	be	edited	directly.	Instead,	create	an	LDIF
file	with	the	changes	and	run	ldapmodify.

For	example,	in	a	simple	configuration,	it	is	common	to	change	olcSuffix,	olcRootDN,	olcRootPW,	and
olcAccess.	Create	an	update_configuration.ldif	file,	replace	dc=example,dc=com	with	your	domain,	and	run
slappasswd	to	generate	the	input	for	olcRootPW:

dn:	olcDatabase={0}config,cn=config
changetype:	modify
replace:	olcRootPW
olcRootPW:	{SSHA}ugwz71gwNPJuw5bQzyqIMATp8wOPu7Io
-

dn:	olcDatabase={2}bdb,cn=config
changetype:	modify
replace:	olcSuffix
olcSuffix:	dc=example,dc=com
-
replace:	olcRootDN
olcRootDN:	cn=Manager,dc=example,dc=com
-
replace:	olcRootPW
olcRootPW:	{SSHA}ugwz71gwNPJuw5bQzyqIMATp8wOPu7Io
-

dn:	olcDatabase={1}monitor,cn=config
changetype:	modify
replace:	olcAccess
olcAccess:	{0}to	*	by
		dn.base="gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth"
		read	by	dn.base="cn=Manager,dc=example,dc=com"	read	by	*	none
-

Input	this	file	to	ldapmodify:

https://tools.ietf.org/html/rfc2606
http://www.openldap.org/
http://www.openldap.org/doc/admin/slapdconf2.html

$	ldapmodify	-Y	EXTERNAL	-H	ldapi:///	-f	update_configuration.ldif

	

LDAP	Data	Interchange	Format	(LDIF)

LDIF	is	specified	through	RFC	2849:	https://tools.ietf.org/html/rfc2849

The	general	form	is:

#	Comment
key:	value
		continuation

A	continuation	occurs	when	a	line	starts	with	one	space.	That	one	space	is	removed	and	the	rest	is
concatenated	to	the	previous	line.	Therefore,	it's	almost	always	necessary	to	use	two	spaces	so	that
there	is	a	space	between	the	concatentation.
If	a	key	is	followed	by	two	colons,	the	value	is	Base-64	encoded.
When	using	ldapmodify,	operations	are	separated	by	a	line	with	a	dash	in	it,	followed	by	a	blank	line.
This	does	not	apply	to	ldapadd.

	

ldapadd

Instead	of	creating	an	LDIF	file	beforehand,	you	may	omit	-f,	enter	the	LDIF	in	the	standard	input	and	then
type	Ctrl+D.	For	example:

$	ldapadd	-D	cn=Manager,dc=example,dc=com	-w	password
dn:	...
Ctrl+D

	

Example:	Create	Organization

Here	is	an	example	create_organization.ldif	with	a	single	user:

dn:	dc=example,dc=com
objectClass:	dcObject
objectClass:	organization
dc:	example
o:	example

dn:	ou=Users,dc=example,dc=com
objectClass:	organizationalUnit
ou:	Users

dn:	cn=User1,ou=Users,dc=example,dc=com
cn:	User1	LastName
sn:	LastName
objectClass:	inetOrgPerson
userPassword:	password
uid:	1

dn:	ou=Groups,dc=example,dc=com
objectClass:	organizationalUnit
ou:	Groups

dn:	cn=Group1,ou=Users,dc=example,dc=com
cn:	Group1
objectClass:	groupOfNames
member:	cn=User1,ou=Users,dc=example,dc=com

https://tools.ietf.org/html/rfc2849

Then	add	all	of	the	items	with:

$	ldapadd	-f	create_organization.ldif	-D	cn=Manager,dc=example,dc=com	-W

	

Example:	Add	User

$	ldapadd	-D	cn=Manager,dc=example,dc=com	-w	password
dn:	cn=Admin,ou=Users,dc=example,dc=com
cn:	Admin						
sn:	Admin
objectClass:	inetOrgPerson
userPassword:	{SSHA}baYn/l/wd41jpw5k0GvSPn99DboceyQZ
uid:	2
^D

	

ldapsearch

Example	output:

$	ldapsearch	-LLL	-x	-b	'dc=example,dc=com'	'(objectclass=*)'
dn:	dc=example,dc=com
objectClass:	dcObject
objectClass:	organization
dc:	example
o:	example

dn:	ou=Users,dc=example,dc=com
objectClass:	organizationalUnit
ou:	Users

dn:	cn=User1,ou=Users,dc=example,dc=com
cn:	User1	LastName
cn:	User1
sn:	LastName
objectClass:	inetOrgPerson
userPassword::	cGFzc3dvcmQ=
uid:	1

dn:	ou=Groups,dc=example,dc=com
objectClass:	organizationalUnit
ou:	Groups

dn:	cn=Group1,ou=Users,dc=example,dc=com
cn:	Group1
objectClass:	groupOfNames
member:	cn=User1,ou=Users,dc=example,dc=com

	

Example:	Find	Users	by	Attribute

$	ldapsearch	-LLL	-x	-b	'dc=example,dc=com'	'(&(sn=LastName)(objectclass=inetOrgPerson))'
dn:	cn=User1,ou=Users,dc=example,dc=com
cn:	User1	LastName
cn:	User1
sn:	LastName
objectClass:	inetOrgPerson
uid:	1
userPassword::	e1NTSEF9M0FjcXdzMFVPRmlSQ1Z2cGZaR3JQUWczNXRsejhOMng=

	

Example:	Find	Groups	that	Contain	a	User

$	ldapsearch	-LLL	-x	-b	"dc=example,dc=com"	-D	cn=Manager,dc=example,dc=com	-w	password	"(&(objectclass=groupOfNames)(member=cn=User1,ou=Users,dc=example,dc=com))"
dn:	cn=Group1,ou=Users,dc=example,dc=com
cn:	Group1
objectClass:	groupOfNames
member:	cn=User1,ou=Users,dc=example,dc=com

	

ldapmodify

Instead	of	creating	an	LDIF	file	beforehand,	you	may	omit	-f,	enter	the	LDIF	in	the	standard	input	and	then
type	Ctrl+D.	For	example:

$	ldapmodify	-D	cn=Manager,dc=example,dc=com	-w	password
dn:	...
changetype:	...
Ctrl+D

	

Example:	Modify	User	Password

$	ldapmodify	-D	cn=Manager,dc=example,dc=com	-w	password
dn:	cn=User1,ou=Users,dc=example,dc=com
changetype:	modify
replace:	userPassword
userPassword:	{SSHA}3Acqws0UOFiRCVvpfZGrPQg35tlz8N2x
^D

	

Example:	Add	Member	to	Existing	Group

$	ldapmodify	-D	cn=Manager,dc=example,dc=com	-w	password
dn:	cn=Group1,ou=Users,dc=example,dc=com
changetype:	modify
add:	member
member:	cn=Admin,ou=Users,dc=example,dc=com
^D

	

ldapwhoami

Use	ldapwhoami	to	test	user	credentials.

Example	success:

$	ldapwhoami	-vvv	-D	"cn=User1,ou=Users,dc=example,dc=com"	-x	-w	password
ldap_initialize(<DEFAULT>)
dn:cn=User1,ou=Users,dc=example,dc=com
Result:	Success	(0)

Example	failure:

$	ldapwhoami	-vvv	-D	"cn=User1,ou=Users,dc=example,dc=com"	-x	-w	test
ldap_initialize(<DEFAULT>)
ldap_bind:	Invalid	credentials	(49)

	

Monitoring

OpenLDAP	monitoring:	https://www.openldap.org/doc/admin24/monitoringslapd.html

Examples:

Print	all	statistics:

#	ldapsearch	-LLL	-H	ldapi://	-Y	EXTERNAL	-b	'cn=Monitor'	-s	sub	'(objectClass=*)'	'*'	'+'	2>/dev/null

Number	of	active	connections:

#	ldapsearch	-LLL	-H	ldapi://	-Y	EXTERNAL	-b	'cn=Current,cn=Connections,cn=Monitor'	-s	base	'(objectClass=*)'	'*'	'+'	2>/dev/null	|	grep	monitorCounter:
monitorCounter:	1

Number	of	available	connections:

#	ldapsearch	-LLL	-H	ldapi://	-Y	EXTERNAL	-b	'cn=Total,cn=Connections,cn=Monitor'	-s	base	'(objectClass=*)'	'*'	'+'	2>/dev/null	|	grep	monitorCounter:
monitorCounter:	1057

Maximum	configured	threads:

#	ldapsearch	-LLL	-H	ldapi://	-Y	EXTERNAL	-b	'cn=Max,cn=Threads,cn=Monitor'	-s	base	'(objectClass=*)'	'*'	'+'	2>/dev/null	|	grep	monitoredInfo:
monitoredInfo:	16

Active	threads:

#	ldapsearch	-LLL	-H	ldapi://	-Y	EXTERNAL	-b	'cn=Active,cn=Threads,cn=Monitor'	-s	base	'(objectClass=*)'	'*'	'+'	2>/dev/null	|	grep	monitoredInfo:
monitoredInfo:	1

Bytes	used:

#	ldapsearch	-LLL	-H	ldapi://	-Y	EXTERNAL	-b	'cn=Bytes,cn=Statistics,cn=Monitor'	-s	base	'(objectClass=*)'	'*'	'+'	2>/dev/null	|	grep	monitorCounter:
monitorCounter:	23738

Number	of	entries:

#	ldapsearch	-LLL	-H	ldapi://	-Y	EXTERNAL	-b	'cn=Entries,cn=Statistics,cn=Monitor'	-s	base	'(objectClass=*)'	'*'	'+'	2>/dev/null	|	grep	monitorCounter:
monitorCounter:	225

Total	number	of	operations	(note	that	this	query	itself	adds	to	the	operation	count):

#	ldapsearch	-LLL	-H	ldapi://	-Y	EXTERNAL	-b	'cn=Operations,cn=Monitor'	-s	base	'(objectClass=*)'	'*'	'+'	2>/dev/null	|	grep	monitorOp
monitorOpInitiated:	215
monitorOpCompleted:	214

Total	number	of	searches	(note	that	this	query	itself	adds	to	the	search	count):

#	ldapsearch	-LLL	-H	ldapi://	-Y	EXTERNAL	-b	'cn=Search,cn=Operations,cn=Monitor'	-s	base	'(objectClass=*)'	'*'	'+'	2>/dev/null	|	grep	monitorOp.*:
monitorOpInitiated:	71
monitorOpCompleted:	70

	

Wily	Introscope
Consider	(https://communities.ca.com/servlet/JiveServlet/downloadBody/231148897-102-1-
8258/Java%20Agent%20Performance%20Tuning%20Recommendations.docx):

introscope.agent.disableAggregateCPUUtilization=true
introscope.agent.sqlagent.sql.maxlength=[1-990]
introscope.autoprobe.dynamicinstrument.enabled=false
introscope.agent.remotedynamicinstrumention.enabled=false

https://www.openldap.org/doc/admin24/monitoringslapd.html
https://communities.ca.com/servlet/JiveServlet/downloadBody/231148897-102-1-8258/Java%20Agent%20Performance%20Tuning%20Recommendations.docx

introscope.autoprobe.logfile=logs/AutoProbe.log
log4j.appender.logfile=/dev/null
log4j.logger.IntroscopeAgent=OFF

Consider	(https://communities.ca.com/servlet/JiveServlet/downloadBody/14500143-102-1-
3242/CA%20Global%20Webcast%20Jan%2027%202011%20Introscope%208x%20Performance%20Troubleshooting%20Presentation.pptx

transport.outgoingMessageQueueSize=6000
transport.override.isengard.high.concurrency.pool.min.size=10
transport.override.isengard.high.concurrency.pool.max.size=10

	

OpenOffice/LibreOffice

Calc

Tips

1.	 If	cells	contain	numbers	that	start	with	an	apostrophe	('),	then	things	such	as	aggregate	functions	in
pivot	tables	will	not	work,	even	if	the	cells	are	formatted	as	"Number."	To	remove	the	apostrophes:
Edit	>	Find	&	Replace	>	Search	for	=	".*",	Replace	=	"&",	More	Options	>	Check	"Regular
Expressions"

	

Dates/Times

Dates	and	times	are	interpreted	in	terms	of	days,	so	if	you	want	to	add	or	a	subtract	a	numeric	amount	of	time
to	a	value,	convert	the	numeric	value	to	days	first.	For	example,	let's	say	A1	holds	a	time	(e.g.	07:34:53.123)
and	let's	say	you	want	to	add	100	milliseconds	to	it.	Let's	say	the	100	is	in	cell	A2.	The	equation	would	be
=A1+(A2/(1000*60*60*24))

To	convert	a	text	value	of	a	date/time	in	ISO8601	format:

=DATE(MID(A2,	1,	4),	MID(A2,	6,	2),	MID(A2,	9,	2))+(MID(A2,	12,	2)/24)+(MID(A2,	15,	2)/(60*24))+(MID(A2,	18,	2)/(60*60*24))+(MID(A2,	21,	3)/(1000*60*60*24))

Truncate	milliseconds	from	a	time:	=TIME(HOUR(A1);	MINUTE(A2);	SECOND(A2))

	

Acronyms
RAS:	Reliability,	Availability,	Serviceability

	

Firefox
Firefox	Debug	Logging

	

Enable	Firefox	Debug	Logging	at	Runtime

1.	 Go	to	about:networking

https://communities.ca.com/servlet/JiveServlet/downloadBody/14500143-102-1-3242/CA%20Global%20Webcast%20Jan%2027%202011%20Introscope%208x%20Performance%20Troubleshooting%20Presentation.pptx
https://firefox-source-docs.mozilla.org/networking/http/logging.html

2.	 Click	Start	Logging
3.	 Copy	the	file	name	where	it	says	it	is	writing	to
4.	 Reproduce	the	problem
5.	 Click	Stop	Logging
6.	 Review	the	file	mentioned	above

	

Enable	Firefox	Debug	Logging	at	Startup

1.	 Open	terminal
2.	 Set	environment	variables:

MOZ_LOG=timestamp,sync,rotate:200,nsHttp:5,cache2:5,nsSocketTransport:5,nsHostResolver:5,cookie:5
MOZ_LOG_FILE=/tmp/log.txt

3.	 Start	Firefox
4.	 Reproduce	the	problem
5.	 Review	the	file	mentioned	above

	

Source

Downloadable	source	tarballs	(under	$RELEASE/source/)
Online	browsable	sources

Response	header	logic

	

Other

VSCode

Tips:

Quick	open	file:	⌘P
Comment/uncomment	line(s):	^/
Block	select:	Shift+Alt	or	Shift+⌥,	and	mouse	select

	

HCL	Notes

Change	Email	Format

Preferences	}	Mail	}	Internet	}	Internet	Mail	Format

	

Revision	History
This	version	was	built	on	2024-07-16T08:34:47.054-0500.

	

1.0.59	(October	2023)

https://archive.mozilla.org/pub/firefox/releases/
https://searchfox.org/mozilla-central/source/
https://searchfox.org/mozilla-central/source/netwerk/protocol/http/nsHttpResponseHead.cpp
https://code.visualstudio.com/docs/getstarted/tips-and-tricks

Due	to	time	constraints,	updates	are	being	made	without	summaries	in	this	revision	history;	however,
the	date	above	is	always	updated	on	a	new	build.

	

1.0.58	(January	2023)

Migrate	to	local	CSS	and	image	resources.

	

1.0.57	(October	2022)

Clean	up	the	home	page	and	move	the	full	table	of	contents	into	the	Full	Table	of	Contents	page.

	

1.0.56	(August	2022)

Move	the	Recipes	chapter	to	the	top	and	update	the	introduction.
Some	of	the	anchors	for	the	General	sub-chapters	may	be	broken.

	

1.0.55	(February	2021)

Note	that	Liberty's	JAX-RS	client	has	changed	to	RESTEasy
Add	Linux	iotop	batch	example
Describe	OOM	killer	task	dump	RSS	to	bytes	calculation

	

1.0.54	(January	2021)

Add	Linux	perf	recipe
Add	Wireshark	Time	Sequence	Graph	(tcptrace)	section
Add	Windows	pktmon	recipes	for	all	ports	and	a	single	port
Add	Linux	perf	probe	and	bpftrace	sections
Add	Linux	recipe	item	to	check	for	CPU	cgroup	throttling
Add	AIX	Example	Script	to	Deny/Allow	Packets	on	a	port
Add	notes	on	AIX	DNS	and	ARP	caches
Add	example	HotSpot	JIT	code	cache	compilation	exclusion
Add	OpenShift	General	Troubleshooting	Recipe
Update	Health	Center	download	instructions
Update	GCMV	download	link

	

1.0.53	(December	2021)

Add	note	that	IBMJCEPlus	is	enabled	by	default	since	IBM	Java	8.0.7.0
Revamp	the	Linux	perf	section	including	discussion	of	call	stack	walking	with	--call-graph	dwarf
and	--call-graph	lbr,	frame	pointer	omission	with	J9,	and	perf	and	J9	with	assembly	annotated
profiling	of	JITted	code
Add	Linux	eBPF	section
Add	Linux	KUTrace	section
Add	WAS	traditional	Intelligent	Management	recipe

Update	Memory	Analyzer	Tool	download	link
Add	link	to	HotSpot	async-profiler
Add	section	on	CPU	registers	such	as	the	stack	pointer	and	the	call	stack,	the	frame	pointer,	and	call
stack	walking	and	frame	pointer	omission	(FPO)
Add	note	about	the	difference	between	 Intel	and	AT&T	assembly	syntax
Add	section	about	assembly	syntax
Add	IBM	Operational	Decision	Manager	(ODM)	chapter
Add	IBM	Business	Automation	Workflow	(BAW)	chapter

	

1.0.52	(November	2021)

Clarify	that	IBM	Support	Assistant	and	GCMV	are	supported	as-is.
Add	Java	J9	in	Containers	recipe	items	for	-XX:+ClassRelationshipVerifier	and	issues	with	tight
container	memory	limits.
Add	note	that	the	Liberty	mpMetrics-x.x	and	microProfile-x.x	features	implicitly	enable	monitor-
1.0	that	has	some	overhead	and	some	ways	to	tune	this.
Add	Liberty	JSF	section	and	performance	note	on	-
Dorg.apache.myfaces.INITIALIZE_SKIP_JAR_FACES_CONFIG_SCAN=true
Add	migration	performance	note	about	SCC	being	cleared	on	fixpack	upgrade.
Highlight	new	%{remote}p	HTTP	access	logging	option	in	Liberty.
Add	discussion	of	Forcing	Revalidation	of	HTTP	Cached	Responses.
Add	discussion	of	Apache	HttpClient	Keep-Alive.
Add	jdmpview	example	of	figuring	out	what	caused	a	core	dump
Add	macOS	zprint	command	for	kernel	memory.
Add	example	to	print	approximate	bytes	free	on	macOS.

	

1.0.51	(July	2021)

Note	that	TCP	retransmits	may	also	cause	the	socket	to	switch	into	'slow	start'	mode	which	may	affect
subsequent	packet	performance/throughput.
Note	that	IBM	Java	Health	Center	is	currently	not	shipped	with	nor	supported	on	OpenJ9	and	IBM
Java	11.
Created	J9	Native	OutOfMemoryError	Recipe	including	a	link	to	a	!belowthebar	jdmpview	query	that
helps	with	NOOMs
Add	Wireshark	section	on	how	to	Visualize	TCP	Response	Times.
Add	Wireshark	section	on	how	to	Visualize	HTTP	Response	Times.
Update	default	J9	JIT	compilation	thread	count.
Note	new	J9	-XX:+GlobalLockReservation	option	for	AIX	and	Linux	on	Power.
Add	z/OS	netstat	-A	example.
Add	Http(s)URLConnection	connect	and	read	timeout	options.
Add	Windows	instructions	on	getting	a	core	dump	on	a	crash	with	"EXE	has	stopped	working".
Add	example	of	how	to	create	a	custom	jdmpview	DDR	command.
Updates	associated	with	OL	App	Stack	Intro	changes.

	

1.0.50	(April	2021)

Add	recipe	items	for	WAS	traditional	and	Liberty	to	avoid	client	keepalive	socket	churn	for	HTTP/1.0
and	HTTP/1.1	by	setting	maximum	keepalive	requests	per	connection	to	unlimited.
Add	recipe	items	for	WAS	traditional	and	Liberty	to	increase	the	keepalive	idle	timeout	for	servers
with	incoming	LAN	HTTP	traffic	from	clients	using	persistent	TCP	connection	pools	with	keep	alive
(e.g.	a	reverse	proxy	like	IHS/httpd	or	web	service	client).

Add	recipe	items	for	WAS	traditional	and	Liberty	to	minimize	the	number	of	application	responses
with	HTTP	codes	400,	402-417,	or	500-505	to	reduce	keepalive	socket	churn.
Add	recipe	item	to	Liberty	to	consider	using	local	interface	or	no-interface	equivalents	if	using
non-@Asynchronous	remote	EJB	interfaces	in	the	application	for	EJBs	available	within	the	same	JVM
to	avoid	extra	processing	and	thread	usage.
Note	virtual	and	physical	memory	constraints	as	another	factor	for	potentially	explicitly	tuning	the
Liberty	executor	thread	pool
Add	AIX	recipe	item	on	disabling	TCP	delayed	ACKs	and	monitoring	for	retransmissions
Add	discussion	of	AIX	network	dog	threads	that	may	help	with	network	processing	bottleneck	with	the
default	single-CPU	interrupt	processing	model
Add	discussion	of	using	AIX	netstat	-v	to	ensure	that	network	switches	are	not	sending	PAUSE
frames.
Add	IHS	discussion	of	%X	and	%k	to	check	incoming	connection	re-use
Add	Apache	HttpClient	page	and	discussions	of	tuning	its	connection	pool	and	using	a	custom	user
token	handler	to	maximize	pool	re-use	in	mutual	authentication	scenarios.
Add	discussion	on	determining	bottlenecks
Add	WAS	traditional	Hung	Thread	Detection	Recipe
Add	WebSphere	Liberty	HTTP	Access	Log	Recipe
Add	AIX	nmon	recipe
Add	AIX	vmstat	recipe
Add	AIX	perfpmr	recipe
Add	AIX	iptrace	recipe
Add	discussion	of	the	DB2	z/OS	type	2	JDBC	driver	using	under-the-2GB-bar	native	memory	which
can	drive	native	OutOfMemoryErrors
Add	z/OS	IPCS	VSMDATA	command	for	reviewing	under	the	2GB	bar	native	memory	usage
Add	Java	ODR	discussion	of	its	use	of	the	'Default'	thread	pool
Add	J9	example	of	late	attach	diagnostic	logging
Add	note	about	APAR	IJ31667	for	 J9	-Xgc:classUnloadingKickoffThreshold
Add	discussion	of	Java	Unicode	surrogate	representation
Add	macOS	pstack-equivalent	lldb	example
Move	POSIX	awk	section	to	a	dedicated	awk	page
Rename	IBM	MAT	page	to	Eclipse	MAT
Add	MAT	examples	to	run	in	headless	mode
Add	odo	example	on	creating	an	application
Add	discussion	of	Oracle	AWR	reports
Add	IBM	InfoSphere	Master	Data	Management	including	discussion	of	monitoring	its	ODBC	database
transaction	responses

	

1.0.49	(March	2021)

Add	Linux	instructions	to	disable	delayed	ACKs	with	quickack	1	and	add	to	the	Linux	recipe
Add	OpenShift	Review	Logs	Recipe
Add	discussion	of	HotSpot	-Xlog:gc	option
Add	IHS	LogFormat	time	until	first	response	bytes	option	with	%^FB
Add	Wireshark	discussion	of	sequence	and	acknoledgment	numbers
Add	notes	on	k8s	CPU	limits	causing	throttling
Add	Linux	discussion	of	tmpfs	and	RAM	usage
Add	Linux	tcpdump	Recipe
Add	Linux	tcpdump	on	a	port	Recipe
Add	Linux	nmon	recipe
Add	Linux	vmstat	Recipe
Add	%{R}W	to	WAS	traditional	and	Liberty	HTTP	access	log	examples
Add	Add	WAS	traditional	HTTP	Access	Log	Recipe
Add	WAS	traditional	Dynamic	Diagnostic	Trace	Recipe
Add	WAS	traditional	Diagnostic	Trace	from	Startup	Recipe
Add	WAS	traditional	Dynamic	verbosegc	Recipe

Add	WAS	traditional	verbosegc	from	Startup	Recipe
Add	WAS	traditional	collector	recipe
Add	Liberty	Docker	one	liner
Add	discussion	about	macOS	mds_stores	high	CPU	usage
Add	example	Java	code	using	ThreadLocal	SimpleDateFormat	for	debug	traces
Add	Java	example	of	running	hello	world	in	a	container
Update	citation	of	the	potential	revenue	impacts	of	performance	tuning

	

1.0.48	(March	2021)

Update	links	to	performance	tuning	education	topics
Add	more	details	about	TCP	congestion	control	and	the	congestion	window.	Add	TCP	buffer	tuning
item	to	Linux,	AIX,	and	z/OS	recipes.	Add	Linux	slow	start	on	idle	tuning	recipe	item.
Add	Linux	kernel	symbol	table	details
Add	various	recipes	for	OpenShift:	Use	Image	Registry,	Remote	into	a	Container,	Analyze	a	Pod,
Analyze	a	Node,	etc.
Add	note	that	Liberty	doesn't	work	with	Health	Center	dynamic	enablement	if	some	jndi	related
features	are	loaded
Add	discussion	of	Kubernetes	CPU	and	memory	resource	requests	and	limits
Move	Troubleshooting	Recipes	to	the	top	level
Add	WAS	traditional	notes	on	 tuning	database	transaction	log	concurrency
Add	Linux	notes	on	fio	and	NVMe	SSDs
Update	the	Dynacache	recipe
Add	example	code	to	take	J9	dumps
Add	AIX	details	about	compress	and	split
Add	z/OS	discussion	of	system	dumps,	IPCS,	XL	C/C++	compiler,	dbx,	EzWAS,	MCEVS1,	and
PLPSC
Add	z/OS	uncompress	and	pax	examples
Add	WAS	traditional	PasswordEncoder	examples

	

1.0.47	(January	2021)

Add	warning	about	possible	native	OutOfMemoryErrors	to	Health	Center	usage	and	recipes.
Add	discussion	about	RAM	corruption	and	ECC	RAM.
Add	tWAS	enableJDBCTiming	for	tracking	long	JDBC	queries.
Add	OpenShift	web	console	examples.
Remove	HotSpot	Java's	no-longer-valid	option	-XX:+HeapDumpOnCtrlBreak.
Add	details	on	J9	percolate-collect.
Add	J9	jdmpview	commands	to	find	min/max	heaps.
Update	Linux	Kernel	Log	description.
Update	the	AIX	recipe	to	highlight	the	importance	of	tuning	Virtual	Ethernet	Adapter	buffers	and	add
an	item	for	watching	for	network	PAUSE	frames.
Add	WAS	Plugin	discussion	of	IgnoreAffinityRequests.
Add	Dynacache	flush	to	disk	on	stop	details.
Add	Linux	Pressure	Stall	Information	discussion	for	CPU	and	memory
Add	discussion	about	AWS	EFS	PercentIOLimit

	

1.0.46	(November	2020)	(14	major	updates)

Add	Java	J9	recipe	item	to	check	if	the	JIT	code	cache	is	full
Add	Apache	CXF	note	about	-Dorg.apache.cxf.JDKBugHacks.gcRequestLatency=true	to	avoid

full	GCs
Add	-Djava.net.preferIPv4Stack=true	-Djava.net.preferIPv6Addresses=false	to	the	Java
recipes
Add	Java	in	Containers	recipes
Add	Liberty	in	Containers	recipe
Add	WebSphere	Application	Server	traditional	in	Containers	recipe
Add	awk	tip	to	allow	processing	a	lot	of	files	from	find	using	ARGV	instead	of	xargs
Add	note	that	WAS	servlet	caching	adds	a	CACHED_RESPONSE	header	if	served	from	cache
Add	note	about	the	WAS	traditional	WSVR0652W	thread	pool	size	warning
Add	J9	HealthCenter	-Dcom.ibm.diagnostics.healthcenter.data.profiling=off	option	to
disable	profiling.
Add	Logging	Custom	PMI	Data	with	Dynacache	recipe
Add	note	about	getting	accumulated	CPU	time	of	threads	from	Windows	minidump	through	jdmpview
Add	Linux	recipe	item	to	change	the	CPU	speed	governors	to	performance	if	power	consumption	isn't
a	concern.
Add	lots	of	OpenShift	okd	examples.

	

1.0.45	(October	2020)	(23	major	updates)

Suggest	testing	with	disabling	delayed	ACKs	to	all	OSes	as	generally	recommended	by	John	Nagle
Add	Linux	EarlyOOM	discussion
Add	tips	on	launching	Eclipse
Add	J9	jdmpview	examples	of	finding	if	a	core	was	taken	with	exclusive	access	and	which	thread	has
exclusive	access
Note	that	zWLM	with	one	service	class	does	not	overflow	into	discretionary
Add	Wireshark	discussion	about	TCP	streams
Add	details	about	-Dcom.ibm.CORBA.SocketWriteTimeout	and	-Dcom.ibm.CORBA.FragmentSize
Add	details	on	J9	gencon	concurrent	marking
Add	Troubleshooting	macOS	page	including	instructions	on	creating	core	dumps
Add	Example	C	Program	that	Crashes
Add	tWAS	hung	thread	detection	overhead	discussion
Add	java.util.logging	configuration	section
Add	jdmpview	commands	for	dumping	byte	codes	of	a	method	from	a	core	dump
Add	zWAS	WLMStatefulSession	discussion
Add	Java	patching	discussion
Add	Java	Swing	page
Add	Java	Enterprise	Edition	(JEE)	page
Add	AIX	tar/compress/gzip	instructions
Add	Health	Center	recipes
Update	Windows	perfmon	instructions
Add	Windows	PowerShell	and	wmic	commands	including	an	example	of	printing	pooled	paged-	and
non-paged	bytes
Add	example	Linux	commands	to	induce	network	delay	with	tc
Add	Java	options	for	connect	and	read	timeouts	of	HttpURLConnection
Add	HotSpot	Mission	Control	recipe

	

1.0.44	(September	2020)	(41	major	updates)

Refresh	Liberty	and	tWAS	recipes.
Add	Liberty	Web	Response	Cache	discussion.
Add	MAT	Dark	Matter	issue	discussion.
Fix	HCL	Commerce	links.
Add	lots	of	Linux	CPU,	network,	and	disk	tools.
Add	discussion	of	how	peak	throughput	may	drop	when	response	times	increase.

Add	Wireshark	discussion	of	calculating	packet	loss	and	finding	SYNs	without	SYN/ACKs.
Update	IBM	Java	ORB	tuning	discussion.
Add	general	guidance	on	tuning	timeouts.
Add	Traditional	WAS	recipe	on	logging	TPV/PMI	data.
Add	Linux	section	on	installing	kernel	debug	symbols	for	various	distributions.
Add	general	guidance	on	investigating	Java	lock	contention.

	

1.0.43	(August	2020)	(57	major	updates)

Update	DB2	driver	discussion	of	timerLevelForQueryTimeOut.
Add	discussion	about	Spring	JMS	cacheLevel=0.
Add	IHS	discussion	about	mod_event	and	KeepAlive.
Add	discussion	about	Wireshark	and	decrypting	TLS	traffic	with	SSLKEYLOGFILE.
Add	undocumented	HealthCenter	com.ibm.java.diagnostics.healthcenter.headless.filename	option.
Update	Linux	kernel	hang	script.
Add	Linux	basic	troubleshooting	script.
Add	Linux	Sysrq	discussion.
Add	note	about	Linux	systemd	killing	nohupped	processes.
Add	Bash	command	line	movement	examples.
Add	HealthCenter	instructions	on	getting	an	HCD	from	a	running	process.
Add	discussion	of	SIB	read	ahead.
Add	discussion	of	Docker	--pid=host.
Add	zWAS	WLM	HTTP	request	distribution	discussion.
Update	discussion	of	WAS	Plugin	MaxConnections.
Add	link	about	JMS	max	batch	size.
Describe	J9's	native	memory	allocation	header	and	footer	eye	catchers.
Add	advanced	SIB	ME	tuning	notes.
Add	discussion	of	HotSpot	-XX:+PreserveFramePointer.
Add	example	tshark	usage	including	long	DNS	lookup	times.
Describe	how	to	fix	AIX	nmon	PoolIdle	value	of	0.
Add	JEE	citation	to	JDBC	shareable	discussion.
Add	J9	Linux	perf-hottest	post-processor	script.
Add	DB2	discussion	of	a	WLM	pressure	valve	and	MALLOCOPTIONS.
Add	AIX	Virtual	Ethernet	Adapter	tuning.
Add	DB2	thread	dump	example.
Add	POSIX	script	to	watch	for	some	output	and	send	a	trigger	line	to	a	file.
Add	example	JMS	producer	and	MDB	consumer.

	

1.0.42	(July	2020)

Fix	missing	links	to	the	Troubleshooting	Java	pages.
Add	section	on	tuning	the	Java	XML	JAXP	ServiceLoader	classloading.
Add	Maven	sections	on	listing	archetypes	and	creating	a	simple	Liberty	app	using	an	archetype.
Add	examples	on	how	to	run	Java	code	on	application	startup.
Add	tWAS	CDI	tuning	options.
Add	awk	tips	on	printing	the	current	file,	current	line	number,	and	printing	to	stderr.
Add	section	describing	differences	between	tWAS	SIB	and	Liberty	embedded	messaging.
Add	Liberty	section	on	JakaraEE.
Add	simple	description	of	z/OS	CP,	zAAP,	zIIP,	and	IFL	processors.
Add	OpenShift	command	for	dynamically	forwarding	a	port	to	a	pod.
Add	example	Linux	systemd	Liberty	service.

	

1.0.41	(June	2020)

Add	information	on	k8s	sizing	of	clusters,	masters,	and	spanning	data	centers
Add	discussion	of	tWAS	on	z/OS	servant	contraction
Add	tWAS	idle	tuning	considerations	paper
Add	macOS	docs	on	XCode	Instruments,	log,	sysdiagnose,	Console,	and	Activity	Monitor
Add	Resiliency	page
Add	comment	about	how	to	deal	with	tWAS	serialized	startup
Add	tWAS	Startup	order	option
Add	information	on	Java	-Djavax.net.debug
Add	Liberty	HTTP	compression	element
Add	Liberty	consoleFormat=simple	option
Add	Liberty	startAfter	attribute
Add	openssl	dump	TLS	certificate	example
Add	discussion	about	killing	runaway	threads
Add	discussion	about	the	 'The	server	has	decided	to	close	this	client	connection.'	warning
Add	OpenJ9	Internals	Documentation
Move	cloud	paks	page	to	section	under	IBM	Cloud
Add	Liberty	section	on	how	to	investigate	OSGi	bundle	startup	times
Add	Liberty	section	on	how	to	pass	configuration
Add	glibc_malloc_info.py	to	investigate	glibc	malloc	free	lists
Add	discussion	of	SSLUtils.flushCloseDown	and	-DtimeoutValueInSSLClosingHandshake=0
Add	section	on	J9	-Xverify:none	deprecation	and	-XX:+ClassRelationshipVerifier	alternative

	

1.0.40	(June	2020)

Internal	format	conversion.

	

1.0.39	(May	2020)

Add	details	about	Linux	strace	and	ltrace	with	stacks.

	

1.0.38	(March	2020)

Add	details	about	TIME_WAIT	processing	in	Linux.

	

1.0.37	(February	2020)

Add	discussion	about	the	OpenJDK	JCL	HTTP(S)	Client	implementation.

	

1.0.36	(February	2020)

Add	sub-chapters	on	WAS/Java/IHS	configuration/log	analysis/healthcheck

	

1.0.35	(January	2020)

Add	Linux	network	analysis	commands:	iptraf-ng,	nethogs,	iftop,	jnettop,	trafshow,	and	speedtest-cli.

	

1.0.34	(November	2019)

Add	Linux	ip,	ss,	and	nstat	commands.

	

1.0.34	(November	2019)

Migrate	blog	content	(since	developerWorks	blogs	is	being	sunset)	to	various	sections	of	this
cookbook.

	

1.0.33	(October	2019)

Remove	link	to	developerWorks	forum	as	that	is	being	sunset.

	

1.0.32	(September	2019)

Change	chapter	order.

	

1.0.31	(August	2019)

Break	up	Java	chapters	into	J9	and	HotSpot
Add	details	about	TCP	KeepAlive

	

1.0.30	(April	2019)

Fix	Java	RMI	Explicit	GC	default	from	1	minute	to	1	hour

	

1.0.29	(February	2019)

Add	Containers	chapter

	

1.0.28	(January	2019)

Add	AIX	native	memory	debug	info

	

1.0.27	(November	2018)

Add	Linux	eBPF	example	for	native	memory	leaks

https://www.ibm.com/developerworks/community/blogs/kevgrig?lang=en

	

1.0.26	(November	2018)

Add	Linux	lsof

	

1.0.25	(November	2018)

Add	Linux	perf	On-CPU	stack	sampling	with	wallclock	timestamps

	

1.0.24	(October	2018)

Add	Traditional	WAS	page	to	discuss	Startup

	

1.0.23	(October	2018)

Update	GCMV	installation	instructions

	

1.0.22	(October	2018)

Added	information	on	tuning	DirectByteBuffer	pool	sizes	for	both	editions	of	WAS
Describe	how	to	request	exclusive	access	for	a	system	dump	on	IBM	Java	to	avoid	dumps	taken	during
GC

	

1.0.21	(May	2018)

Added	Mac	section
Added	Linux	Available	memory	reference

	

1.0.20	(March	2018)

Added	pureScale	section

	

1.0.19	(January	2018)

Add	WAS	traditional	instructions	on	setting	up	ODR	custom	logging

	

1.0.18	(September	2017)

Update	MAT	instructions	with	DTFJ	Java	8	note.

	

1.0.17	(August	2017)

Update	Memory	Analyzer	download	instructions.

	

1.0.16	(April	2017)

Change	IBM	Java	-Xverbosegclog	recommendation

	

1.0.15	(April	2017)

Add	Linux	swappiness,	OOM	killer,	and	swap	recommendations

	

1.0.14	(January	2017)

Change	major	tool	instructions	to	use	Eclipse	instead	of	ISA

	

1.0.13	(June	2016)

Fix	broken	Knowledge	Center	links.
Change	WAS	Classic	to	WAS	traditional

	

1.0.12	(February	2016)

Various	updates	based	on	field	work.

	

1.0.11	(December	2015)

Fix	error	referencing	META-INF/lib	instead	of	META-INF/resources	in	WAS	>	WAS	Classic	>
HTTP,	in	the	section	"ServletContext.getResource	performance"

	

1.0.10	(December	2015)

Change	graphs	from	R	to	gnuplot

	

1.0.9	(December	2015)

Update	Solaris	KSSL	guidance.

	

1.0.8	(December	2015)

Add	more	TPV/PMI	screenshots.
Add	more	Health	Center	screenshots.
Add	Liberty	request	timing	and	event	logging	details.

	

1.0.7	(December	2015)

Update	GCMV	page.

	

1.0.6	(September	2015)

Add	troubleshooting	recipes.

	

1.0.5	(August	2015)

Rename	WAS	traditional	Profile	to	WAS	Classic

	

1.0.4	(May	2015)

Remove	unused	Liberty	idle	tuning	option.

	

1.0.3	(April	2015)

Rename	Java	chapters.

	

1.0.2	(April	2015)

Add	example	Solaris	DTrace	scripts	and	vmstat	-p	information.

	

1.0.1	(February	2015)

Add	February	SPECj	benchmark	results.

	

1.0.0	(January	2015)

First	public	version.

	

Notices

Copyright

Copyright	International	Business	Machines	Corporation	2024.	All	rights	reserved.	U.S.	Government	Users
Restricted	Rights:	Use,	duplication	or	disclosure	restricted	by	GSA	ADP	Schedule	Contract	with	IBM
Corporation.

	

Statement	of	Support

While	IBM	welcomes	any	comments	or	suggestions,	this	Cookbook	is	not	supported	by	IBM	and	is	provided
on	an	"as-is"	basis	without	warranty	of	any	kind.	IBM	may	make	updates	if	needed	and	as	time	permits.

The	Cookbook	contains	techniques	and	tools	that	may	not	be	supported	by	IBM's	support	process.	For
example,	you	may	gather	some	form	of	trace	that	captures	a	problem	that	the	support	process	is	not
accustomed	to	analyzing.	If	you	have	any	question	about	any	content	or	recommendations,	particularly	if	you
are	about	to	do	something	in	a	production	environment,	please	first	open	a	support	case	to	ask	what	is	and
isn't	supported.

	

Terms	of	Use

IBM	Terms	of	use:	http://www.ibm.com/legal/us/en/

References	in	this	publication	to	IBM	products,	programs,	or	services	do	not	imply	that	IBM	intends	to	make
these	available	in	all	countries	in	which	IBM	operates.	Any	reference	to	an	IBM	product,	program,	or	service
is	not	intended	to	state	or	imply	that	only	IBM's	product,	program,	or	service	may	be	used.	Any	functionally
equivalent	product,	program,	or	service	that	does	not	infringe	any	of	IBM's	intellectual	property	rights	may
be	used	instead	of	the	IBM	product,	program,	or	service.	Evaluation	and	verification	of	operation	in
conjunction	with	other	products,	except	those	expressly	designated	by	IBM,	is	the	user's	responsibility.

IBM	may	have	patents	or	pending	patent	applications	covering	subject	matter	in	this	document.	The
furnishing	of	this	document	does	not	give	you	any	license	to	these	patents.	You	can	send	license	inquiries,	in
writing,	to:

IBM	Director	of	Licensing
IBM	Corporation
500	Columbus	Avenue
Thornwood,	New	York		10594	USA

	

Trademarks	and	Service	Marks

IBM,	the	IBM	logo	and	ibm.com	are	trademarks	of	International	Business	Machines	Corp.,	registered	in
many	jurisdictions	worldwide.	Other	product	and	service	names	might	be	trademarks	of	IBM	or	other
companies.	A	current	list	of	IBM	trademarks	is	available	on	the	web	at	"Copyright	and	trademark
information"	at	http://www.ibm.com/legal/us/en/copytrade.shtml

	

License

Any	examples	in	this	book	are	licensed	under	the	Apache	License	2.0

http://www.ibm.com/legal/us/en/
http://www.ibm.com/legal/us/en/copytrade.shtml
https://www.apache.org/licenses/LICENSE-2.0.txt

	

Authors

Kevin	Grigorenko	(kevin.grigorenko@us.ibm.com)	[Primary	Contact]
Alexandre	Polozoff	(polozoff@us.ibm.com)	[Secondary	Contact]
Andrea	Pichler
Andy	Henderson
Anuradha	Ramamoorthy
Ashish	Deb
Ed	Bernal
Eric	M	Covener
Gary	Hunt
Gary	J	DeVal
Hermann	Huebler
Jagdish	Komakula
Keith	B	Smith
Marco	Fabbri
Martin	Ross
Mike	Andrasak
Phil	Hirsch
Raquel	Maldonado
Surya	V	Duggirala
Vishal	A	Charegaonkar
Younes	Manton

	

Contributors

Andrew	Levandoski
Benedict	Fernandes
Chris	Bailey
Pavel	Malyutin
Rengan	Sundararaman
Stephen	A	Hellberg
Tom	Alcott
Walt	Adams

Thank	you	to	the	IBM	managers	that	helped	support	this	project:	Prasad	Imandi,	Dave	Schell,	Barry	Foster,
Melissa	Modjeski,	Keri	Olson,	Frank	Schembari,	Michael	Stuy,	Mike	Morin,	Sree	Ratnasinghe,	and	others.

	

Table	of	Contents
1.	 Introduction
2.	 Recipes

General	Recipes
Operating	System	Recipes

Linux	Recipes
AIX	Recipes
zOS	Recipes
IBM	i	Recipes
Windows	Recipes
Solaris	Recipes
HP-UX	Recipes

mailto:kevin.grigorenko@us.ibm.com
mailto:polozoff@us.ibm.com

macOS	Recipes
Java	Recipes

J9	Health	Center	Enable	at	Startup
J9	Health	Center	Enable	at	Startup	of	Limited	Duration
J9	Health	Center	Enable	at	Runtime
J9	Health	Center	Enable	at	Runtime	of	Limited	Duration
J9	Health	Center	Enable	at	Runtime	of	Limited	Duration	on	zOS
HotSpot	Mission	Control	Enable	at	Startup

WAS	traditional	Recipes
General	WAS	traditional	Performance	Problem
Large	Topologies	Recipe
Request	Metrics	Recipe
Tune	a	Thread	Pool
HTTP	Sessions	Recipe
Security	Recipe
Connection	Pool	Hangs	in	createOrWaitForConnection
Threads	in	socketRead0	in	JDBC	calls
Slow	or	Hung	Application
Threads	in	java.io.FileOutputStream.writeBytes
Logging	PMI	Data
Logging	Custom	PMI	Data	with	Dynacache

WebSphere	Liberty	Recipes
Web	Server	Recipes

IHS	and	WAS	Plugin	Performance
Some	Users	Reporting	Bad	Performance

Container	Recipes
Java	in	Containers	Recipes
Liberty	in	Containers	Recipe
WebSphere	Application	Server	traditional	in	Containers	Recipe

Caching	Recipes
3.	 Troubleshooting	Recipes

Troubleshooting	Operating	System	Recipes
Process	Crash	Recipe
Looping	Shell	Script	Recipe
Looping	Batch	Script	Recipe

Troubleshooting	Linux	Recipes
Linux	General	Recipe
Linux	tcpdump	Recipe
Linux	tcpdump	on	a	port	Recipe
Linux	vmstat	Recipe
Linux	nmon	Recipe
Linux	perf	Recipe
Linux	netstat	Recipe
Linux	basics	Recipe
Linux	X11	Forwarding
Linux	Override	Core	Dump	Processing

Troubleshooting	AIX	Recipes
AIX	nmon	Recipe
AIX	perfpmr	Recipe
AIX	iptrace	Recipe
AIX	iptrace	on	a	port	Recipe
AIX	vmstat	Recipe
WAS	traditional	on	AIX	Recipe

Troubleshooting	Windows	Recipes
Windows	pktmon	Recipe
Windows	pktmon	on	a	port	Recipe
Windows	11	perfmon	Recipe

Troubleshooting	OpenJ9	and	IBM	J9	Recipes

J9	Native	OutOfMemoryError	Recipe
J9	Java	Dump	Recipe
J9	System	Dump	Recipe
Javacore	Overhead
Sizing	OpenJ9	Native	Memory

Troubleshooting	HotSpot	Recipes
HotSpot	Native	Memory	Usage	Recipe

Troubleshooting	Memory	Leaks
Troubleshooting	WAS	traditional	Recipes

WAS	traditional	Dynamic	Diagnostic	Trace	Recipe
WAS	traditional	Diagnostic	Trace	from	Startup	Recipe
WAS	traditional	Hung	Thread	Detection	Recipe
WAS	traditional	HTTP	Access	Log	Recipe
WAS	traditional	Dynamic	verbosegc	Recipe
WAS	traditional	verbosegc	from	Startup	Recipe
WAS	traditional	Common	Diagnostic	Files	Recipe
WAS	traditional	collector	Recipe
WAS	traditional	runtime	diagnostic	trace	script

Troubleshooting	WebSphere	Liberty	Recipes
WebSphere	Liberty	HTTP	Access	Log	Recipe
WebSphere	Liberty	verbosegc	from	Startup	Recipe
WebSphere	Liberty	requestTiming	Recipe

Troubleshooting	Web	Servers	Recipes
Troubleshooting	Kubernetes	Recipes

Kubernetes	Basics	Recipe
Kubernetes	etcd	Issues	Recipe
Kubernetes	Modify	Container	Command

Troubleshooting	OpenShift	Recipes
OpenShift	Login	Recipe
OpenShift	General	Troubleshooting	Recipe
OpenShift	Use	Image	Registry	Recipe
OpenShift	Remote	into	Container	Recipe
OpenShift	Analyze	a	Pod	Recipe
OpenShift	Analyze	a	Node	Recipe
OpenShift	Investigate	ImagePullBackOff	Recipe
OpenShift	Review	Logs	Recipe
OpenShift	Download	Container	Files	Recipe
OpenShift	Investigate	Source	of	Signal
Liberty	in	OpenShift	Get	Javacore	Recipe
Liberty	in	OpenShift	Get	Heapdump	Recipe
Liberty	in	OpenShift	Get	System	Dump	Recipe
Replace	Container	Directory	in	OpenShift
Execute	a	Script	in	a	Container	on	Startup	in	OpenShift

4.	 Cookbook	General
Theory
Methodology
Statistics
Testing

5.	 Operating	Systems
Linux
AIX
zOS
IBM	i
Windows
Solaris
HP-UX
macOS

6.	 Java

Java	Virtual	Machines	(JVMs)
OpenJ9	and	IBM	J9	JVMs
HotSpot	JVM

Java	Class	Libraries	(JCLs)	and	Tools
OpenJDK	JCL	and	Tools
IBM	JCL	and	Tools

Java	Profilers
7.	 WebSphere	Application	Server

WAS	traditional
Scaling	and	Large	Topologies
Performance	Monitoring
Logging	and	Tracing
Thread	Pools
Java	Database	Connectivity	(JDBC)
HTTP
Startup
Database	Persistence
Dynamic	Cache
EJBs
Messaging
Web	Services
Asynchronous	Beans
Intelligent	Management
Security
Administration
Session	Initiation	Protocol	(SIP)
WAS	traditional	on	zOS

WebSphere	Liberty
Configuration	Analysis
Log	Analysis
Resiliency

8.	 Major	Tools
Garbage	Collection	and	Memory	Visualizer	(GCMV)
IBM	Thread	and	Monitor	Dump	Analyzer	(TMDA)
Eclipse	Memory	Analyzer	Tool
IBM	Java	Health	Center
OpenJDK	Mission	Control
Eclipse
Apache	JMeter
Wireshark
IBM	Support	Assistant
gnuplot
Python
R	Project
Apache	Bench
awk

9.	 Web	Servers
10.	 Applications

Java	Standard	Edition
Jakarta	Enterprise	Edition
Java	Enterprise	Edition
HTTP	Standard
HTTP2	Standard
Eclipse	MicroProfile
Maven
Spring
Hibernate
Cloud	Native

Go
Swing
Apache	CXF
Apache	HttpClient
Rational	Application	Developer
HTML
Transport	Layer	Security

11.	 Containers
Docker

Dockerfile
Docker	Registries
Docker	Compose
Containerfile

Podman
Kubernetes
Red	Hat
OpenShift

OKD
OpenShift	Container	Platform
OpenShift	Online
OpenShift	Dedicated

IBM	Cloud
Amazon	Web	Services	(AWS)
Java	J9	in	Containers
HotSpot	Java	in	Containers
Liberty	in	Containers
WebSphere	Application	Server	traditional	in	Containers

12.	 Virtualization
13.	 Databases

IBM	DB2
Oracle	Database
Apache	Derby
Other	Databases

14.	 Caching	and	WebSphere	eXtreme	Scale
15.	 IBM	MQ
16.	 Authentication
17.	 Competition	and	Migration
18.	 IBM	App	Connect	Enterprise
19.	 IBM	Business	Automation	Workflow
20.	 IBM	InfoSphere	Master	Data	Management
21.	 IBM	Maximo
22.	 IBM	Operational	Decision	Manager
23.	 Troubleshooting

Troubleshooting	Operating	Systems
Troubleshooting	Linux
Troubleshooting	AIX
Troubleshooting	zOS
Troubleshooting	IBM	i
Troubleshooting	Windows
Troubleshooting	macOS
Troubleshooting	Solaris
Troubleshooting	HP-UX

Troubleshooting	Java
Troubleshooting	OpenJ9	and	IBM	J9	JVMs
Troubleshooting	HotSpot	JVM

Troubleshooting	WebSphere	Application	Server
Troubleshooting	WAS	traditional
Troubleshooting	WebSphere	Liberty

Troubleshooting	Web	Servers
Troubleshooting	Containers
Troubleshooting	IBM	MQ
Troubleshooting	WXS

24.	 HCL	Commerce
25.	 HCL	Portal
26.	 Appendix

Resources
Opinions
IBM	Installation	Manager
POSIX
Git
Internet	Domains
OpenLDAP
Wily	Introscope
OpenOffice,	LibreOffice
Acronyms
Firefox
Other
Revision	History
Notices
Full	Table	of	Contents

	

WebSphere	Portal
This	section	has	been	renamed	to	HCL	Portal.

	

pureScale
DB2

WAS	Workload	Balancing	and	Automatic	Client	Reroute

Database	applications	running	in	a	DB2	pureScale	environment	can	use	the	DB2	transaction-
level	or	connection-level	workload	balancing	(WLB)	functionality.	WLB	balances	application
requests	among	all	members	of	the	DB2	pureScale	cluster.	When	WLB	is	enabled	the	DB2
clients	distribute	workload	or	application	request	based	on	the	capacity	(that	is,	the	priority	or
weight)	values	in	a	server	list	that	the	DB2	pureScale	server	returns.	These	capacity	values
indicate	the	current	load	on	a	DB2	pureScale	member.	A	member	with	a	capacity	value	below
that	of	the	other	members	in	the	server	list	is	busier	than	other	members.	[...]

DB2	Java	applications	with	the	supported	IBM	Data	Server	Driver	for	JDBC	and	SQLJ	(JCC
driver)	running	in	an	IBM	WebSphere	Application	Server	environment	can	use	the	WLB	or
client	affinities	features	to	access	databases	on	a	DB2	pureScale	cluster.	[...]

You	must	add	JCC	data	source	property	enableSysplexWLB	and	set	the	value	to	true	to	enable
WLB.	[...]

DB2	automatic	client	reroute	(ACR)	complements	a	continuously	available	DB2	pureScale
cluster	that	offers	24/7	availability	for	clients	connecting	to	mission-critical	production	systems.
ACR	is	a	feature	in	DB2	clients	that	takes	application	requests	that	are	directed	toward	an	offline

DB2	pureScale	member	and	reroutes	them	to	active	DB2	pureScale	members.	ACR	is
automatically	enabled	with	WLB	or	client	affinities	so	no	additional	steps	are	required	to	specify
which	member	the	application	should	connect	to	upon	encountering	an	outage.	[...]

To	enable	WebSphere	Application	Server	to	support	seamless	ACR,	from	the	Purge	policy	list,
select	FailingConnectionOnly.	(https://public.dhe.ibm.com/software/dw/data/dm-
1206purescaleenablement/wlb.pdf)

	

WebSphere	ESB
Processing	Large	Objects
Ensuring	optimum	performance	is	attained	on	systems	processing	large	objects	is	an	issue	commonly	faced
by	users	of	middle-ware	software.	In	general,	objects	of	1M	or	more	can	be	considered	to	be	'large'	and
require	special	attention,	please	review	the	following	articles	for	awareness	of	considerations	and	tuning	/
application	design	advice:

Large	Messages	dW	article:	https://www.ibm.com/developerworks/library/ws-largemessaging/

Claim	Check	Pattern:
http://www.ibm.com/developerworks/websphere/library/techarticles/1006_kharlamov/1006_kharlamov.html

	

Aggregation	Design	Patterns
There	are	several	application	design	considerations	that	should	be	understood	when	developing	Mediation
Flows	utilising	aggregation	design	patterns	in	order	to	attain	optimal	performance	and	avoid	unnecessary
processing	costs.	The	following	article	details	these	design	considerations:

Aggregation	dW	article:
http://www.ibm.com/developerworks/websphere/library/techarticles/1111_norris/1111_norris.html

Depending	on	whether	there	is	a	FanIn	Mediation	Primitive	downstream	of	a	FanOut	Mediation	Primitive
alters	the	logic	within	the	FanOut	mediation	Primitive.	When	using	a	FanOut	Mediation	Primitive	without
an	associated	FanIn	Mediation	Primitive	an	array	of	SMOs	is	created	up-front	before	the	output	terminal	is
first	fired.	If	there	is	an	associated	FanIn	then	each	SMO	is	created	as	required	instead	of	all	ahead	of	time.	If
the	SMO	is	large	in	size	or	a	large	number	need	to	be	created	(for	example,	iterating	on	a	large	array	of
elements,	firing	a	large	number	of	times,	or	a	large	number	of	branches),	then	this	can	have	a	significant
effect	on	memory	overhead.	For	example,	if	you	have	a	1MB	input	message	and	you	use	a	FanOut	to	iterate
over	an	element	that	repeats	1000	times,	transforms	the	message	and	passes	on	to	a	JMS	queue	(without	a
FanIn),	then	before	the	first	output	terminal	fire	on	the	FanOut,	1000	SMOs	will	be	created	each	of	~1MB	in
size	which	would	mean	you	would	have	a	1GB	array	allocated	to	the	JVM	Heap.	You	need	to	be	aware	of
this	behaviour	when	creating	your	application	and	tuning	the	size	of	the	JVM	Heap	and	application
threadpools.

	

Asynchronous	Invocation	of	Synchronous	Services	Design	Patterns
In	general,	synchronous	service	invocations	are	recommended,	because	they	have	less	processing	overhead
and	provide	better	performance.	In	some	cases	however,	asynchronous	invocations	can	reduce	the	overall
response	time	of	the	application	and	are	preferred,	such	as	in	the	simultaneous	invocation	of	multiple	long-

https://public.dhe.ibm.com/software/dw/data/dm-1206purescaleenablement/wlb.pdf
https://www.ibm.com/developerworks/library/ws-largemessaging/
http://www.ibm.com/developerworks/websphere/library/techarticles/1006_kharlamov/1006_kharlamov.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1111_norris/1111_norris.html

running	services.	When	invoking	a	synchronous	service	asynchronously,	however,	additional	processing	is
incurred	in	the	messaging	layer	of	the	product	that	needs	to	be	understood	and	tuned	appropriately.	The
following	article	details	these	considerations	and	processing	logic:

Parallel	Invocation	of	Synchronous	Services	dW	article:
http://www.ibm.com/developerworks/websphere/library/techarticles/1312_ross/1312_ross.html

NB.	You	do	not	need	to	switch	to	asynchronous	invocations	for	JAX-WS	Import	Bindings	to	impose	specific
time-out	settings	-	this	can	be	done	by	applying	an	appropriate	HTTP	Policy	configurable	through	the
Administration	Console	(and	can	be	exported	to	be	brought	into	the	development	environment)	which	does
not	incur	the	overhead	in	the	messaging	layer	of	the	product	-	as	with	the	switch	to	asynchronous
invocations..	There	are	some	small	caveats	that	need	to	be	considered	/	understood	-	please	see	the	"Defining
a	Timeout	on	Synchronous	JAX-WS	Imports"	section	below.

	

Shared	Libraries
The	default	setting	for	libraries	is	share	by	copy	-	this	means	that	each	Mediation	Module	referencing	a
particular	library	retains	its	own	copy,	which	can	result	in	bloated	and	redundant	memory	usage.	You	may
need	to	consider	shared	libraries	as	detailed	in	the	following	technote:

http://www-01.ibm.com/support/docview.wss?rs=2307&uid=swg21322617

Shared	libraries	can	also	benefit	run-time	performance	through	reduced	serialisation	in	addition	to	reducing
overall	memory	footprint	-	for	instance	in	Lazy	Parsing	applications	employing	SCA	Binding
componentisation.

	

Parsing	Modes
Don't	mix	parsing	modes	within	a	deployment.	Moving	between	a	Lazy	Parsing	module	an	Eager	Parsing
configured	module	through	SCA	Bindings	causes	increased	overhead	in	processing	costs	that	should	be
avoided.

Some	scenarios	will	perform	better	in	Eager	Parsing	mode	(lightweight	scenarios	with	small	payloads),
however,	mediation	modules	which	are	more	complex,	or	are	processing	larger	payload	workloads	will
typically	benefit	from	Lazy	Parsing	and	can	exhibit	significant	performance	improvements	(dependant	on
application	design).

	

Memory	Analyzer	Plugin
IBM	Extensions	for	Memory	Analyzer	for	WebSphere	ESB	is	an	extension	for	IBM	Monitoring	and
Diagnostic	Tools	for	Java™	--	Memory	Analyzer,	augmenting	data	structures	and	providing	reports	specific
to	WebSphere	ESB.	It	significantly	improves	the	effectiveness	and	efficiency	of	problem	diagnosis	and
resolution,	and	provides	a	deeper	understanding	of	your	WebSphere	ESB	deployment.	The	following	article
and	WebSphere	Technical	Exchange	show	you	how	to	use	the	IBM	Extensions	for	Memory	Analyzer	for
WebSphere	ESB	to	analyze	operating	system	level	dumps	or	portable	heap	dumps	from	a	WebSphere
Enterprise	Service	Bus	solution:

IBM	Extensions	for	Memory	Analyzer	for	WebSphere	ESB:
http://www.ibm.com/developerworks/websphere/library/techarticles/1206_ross/1206_ross.html

WebSphere	Technical	Exchange	on	Memory	Analyzer	Plugin	and	APARs	associated	with	memory

http://www.ibm.com/developerworks/websphere/library/techarticles/1312_ross/1312_ross.html
http://www-01.ibm.com/support/docview.wss?rs=2307&uid=swg21322617
http://www.ibm.com/developerworks/websphere/library/techarticles/1206_ross/1206_ross.html

management:	http://www-01.ibm.com/support/docview.wss?uid=swg27036363

	

Comparative	Transformation	Technologies	(XSLT	vs.	Business
Object	Map)
XSLT	Mediation	Primitives	are	designed	for	applications	that	have	.XSL	currently	or	that	want	to	utilise
specific	XSLT	function.

Business	Object	Mapper	Primitives	are	designed	for	improved	performance,	but	may	require	specific
function	to	be	coded	manually	within	the	map.

Business	Object	Maps	have	some	reduced	function	out	of	the	box,	but	much	can	be	implemented	in	simple
custom	Java	utilising	the	BO	API.	They	provide	improved	performance,	especially	for	larger	message
payloads,	as	they	work	at	the	API	so	do	not	need	to	be	passed	through	a	transformation	engine	which	will
produce	bytes	causing	additional	SMO	construction	and	serialization	/	de-serialization	costs.

In	IBM	Integration	Designer	V8.0	a	new	mediation	primitive	has	been	introduced	to	enable	the	developer	to
switch	between	the	targeted	run-time	transformation	technologies	through	a	simple	combo-box	-	previously	a
complete	re-write	of	the	transformation	would	be	required	within	the	new	primitive	if	a	customer	wanted	to
switch	between	technologies	for	improved	performance.

	

First	Messing	Response	Time
The	performance,	specifically	regarding	response	time,	of	the	first	message	entering	the	system	is	often	of
high	importance.	Typically	there	is	a	trade	off	between	artefact	initialisation	costs	being	associated	with
server	start-up	or	first	message	processing.	There	are	several	techniques	and	product	features	that	can	be
utilised	to	improve	and	control	the	system	when	response	times	are	critical	for	first	message	processing.

	

Synthetic	Messages

First	message	response	times	can	be	improved	by	priming	the	Mediation	Module	with	a	synthetic	message:

Synthetic	messages	TechNote:	http://www-01.ibm.com/support/docview.wss?uid=swg21589355

This	may	require	the	Mediation	Module	/	Components	to	have	an	additional	"no	op"	operation	or	flow	path
to	process	the	synthetic	message	without	affecting	downstream	systems,	but	will	result	in	the	vast	majority	of
initialisation	costs	to	have	been	met	prior	to	the	first	"production"	message	entering	the	system.

	

XPath	and	XSL	Pre-compilation

Pre-compilation	of	XSL	and	XPath	was	introduced	in	V7.5,	these	artefacts	are	now	compiled	at	deploy	time
rather	than	on	first	message	for	Lazy	Parsing	Modules	(the	transformation	engine	usitilised	for	Eager	Parsing
does	not	have	such	a	concept).	This	can	provide	substantial	improvements	to	first	message	processing	time
for	Lazy	Parsing	Mediation	Flows.	The	improvement	factor	is	dependent	on	the	number	of	XSLT	Mediation
Primitives	and	XPath	statements	in	the	intitial	path	through	the	Mediation	Flow,	and	the	complexity	of	the
XSL	/	XPath.

	

http://www-01.ibm.com/support/docview.wss?uid=swg27036363
http://www-01.ibm.com/support/docview.wss?uid=swg21589355

Pre-loading	of	Mediation	Flows

The	option	to	load	Mediation	Modules	and	associated	artefacts	and	resources	at	server	start	up,	opposed	to
on	first	message,	was	introduced	in	V7.5.1.	A	property	was	exposed	that	enables	the	user	to	use	wildcards	to
select	appropriate	Mediation	Modules	and	Components	and	define	how	many	instances	of	the	artefacts	to
load	into	the	runtime:

http://www.ibm.com/support/knowledgecenter/en/SS7J6S_7.5.1/com.ibm.websphere.wesb.z.administering.doc/topics/cadm_medflows.html

Test	cases	used	to	evaluate	this	feature	show	that	>50%	improvement	can	be	achieved	in	initial	message
processing	times	-	although	this	is	dependent	on	a	number	of	factors,	including	the	number	of	components	in
a	project	and	the	complexity	of	the	message	definitions.	This	not	only	builds	the	Message	Flows	but	also
many	of	the	objects	required	to	model	the	message	structures	during	server	start-up	and	applies	to	both	Eager
and	Lazy	Parsing	Modules.

	

Associated	APARS

Several	APARs	may	be	required	relating	to	pre-compilation	of	XSL	/	XPath	and	pre-loading	of	Mediation
Flows:

IC96060:	EXTRANEOUS	OR	MISLEADING	ERROR	MESSAGES	DURING	MEDIATION	FLOW	PRE-
LOADING
IC96845:	MULTIPLE	PROBLEMS	CACHING	XSL	MAPS	RESULTING	IN	SLOW	RESPONSE	TIMES
AND	UPDATES	NOT	BEING	PICKED	UP	AFTER	MODULE	RESTART
IC95917:	CACHE	PRECOMPILED	STYLESHEETS	PER	CONTEXT	CLASSLOADER	(http://www-
01.ibm.com/support/docview.wss?uid=swg1IC95917)
IC96799:	NULLPOINTEREXCEPTION	DURING	SERVER	STARTUP	WHEN	PRELOAD	VARIABLE
IS	SET	(http://www-01.ibm.com/support/docview.wss?uid=swg1IC96799)
IC91519:	POOR	PERFORMANCE/	EXCESSIVE	MEMORY	USE	OF	BO	MAPPINGS	IN	BPEL
PROCESSES,	OR	WHEN	MAPPINGS	ARE	APPLIED	IN	CUSTOM	CODE	(http://www-
01.ibm.com/support/docview.wss?uid=swg1IC91519)

	

Restricting	the	Instances	of	Mediation	Flows	on	the	JVM	Heap
For	WebSpere	ESB	a	Mediation	Flow	object	is	required	for	each	concurrent	thread	executing	a	unique	flow	/
operation	in	a	Mediation	Module.	Due	to	product	changes	introduced	in	V7.0	the	concepts	differ	depending
on	the	version	of	the	run-time	and	the	version	of	the	development	environment	used	to	generate	the	run-time
artefacts.

	

V6	Run-time	/	Applications

EAR	files	generated	prior	to	V7.0	utilise	the	EJB	Container,	whether	they	are	deployed	to	a	V6	or	V7	run-
time.	Each	Mediation	Module	"Application"	is	represented	by	a	stateless	session	EJB	-	the	number	of	EJBs
created	is	controlled	as	follows:

1.Transport	threadpool:	Controls	maximum	concurrency	in	the	system	(ie.	WebContainer	threadpool)
2.Application	EJB	threadpool	(default	min=50,	max=500):	Each	Application	will	create	up	to	the	maximum
defined	number	of	EJBs	in	a	module-specific	pool

If	the	min	value	for	an	EJB	pool	is	set	lower	then	we	might	free	up	memory	as	the	pool	contracts.	The
following	APAR	may	be	required:

http://www.ibm.com/support/knowledgecenter/en/SS7J6S_7.5.1/com.ibm.websphere.wesb.z.administering.doc/topics/cadm_medflows.html
http://www-01.ibm.com/support/docview.wss?uid=swg1IC95917
http://www-01.ibm.com/support/docview.wss?uid=swg1IC96799
http://www-01.ibm.com/support/docview.wss?uid=swg1IC91519

http://www-01.ibm.com/support/docview.wss?uid=swg1IC76728.

	

V7	Run-time	/	Applications

With	the	exception	of	EAR	files	generated	prior	to	V7.0	(but	deployed	to	a	V7	run-time)	the	number	of
Mediation	Flows	on	the	JVM	Heap	is	controlled	as	follows:
1.Transport	threadpool:	Controls	maximum	concurrency	in	the	system	(ie.	WebContainer	threadpool)
2.JVM	Managed:	Weak	/	Soft	references	will	clean	up	unused	resources

The	references	that	keep	the	Mediation	Flow	objects	alive	on	the	JVM	Heap	have	been	modified	in	V7
onwards	to	enable	clean-up	to	occur	when	the	JVM	Heap	is	under	stress.	The	following	APARs	may	be
required:

IC94803:	ALLOW	FOR	GARBAGE	COLLECTION	OF	CERTAIN	REFERENCES	(http://www-
01.ibm.com/support/docview.wss?uid=swg1IC94803)

IC82189:	ENABLE	MEDIATION	FLOWS	TO	BE	GCD	WHEN	HEAP	IS	UNDER	STRESS	(http://www-
01.ibm.com/support/docview.wss?uid=swg1IC82189)

	

Throttling	Individual	Applications
Often	it	is	required	to	"throttle"	individual	applications	that	may	be	having	an	adverse	effect	on	the	system
(to	limit	memory	usage,	or	CPU	consumption	for	instance).	The	concepts	and	methods	differ	depending	on
the	version	of	the	run-time	and	the	version	of	the	development	environment	used	to	generate	the	run-time
artefacts.

You	can	throttle	applications	by	tuning	/	restricting	the	appropriate	threadpools	on	which	they	run.	This
typically	has	a	global	impact	as	many	applications	may	be	running	on	the	same	threadpool,	however,	it	is
possible	to	isolate	applications	(or	groups	of	applications)	to	specific	threadpools	by	creating	new	transport
chains	through	which	to	invoke	them.

First	create	a	new	threadpool,	in	the	administrative	console	click	"Servers	>	Server	Types	>	WebSphere
application	servers	>	server_name	>	Thread	pools",	then	click	"New"	and	fill	in	the	required	details.	Next
create	a	new	transport	chain	as	detailed	in	the	following	article:

http://www-
01.ibm.com/support/knowledgecenter/SSAW57_7.0.0/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/trun_chain_transport.html

The	next	step	is	to	configure	the	transport	chain	that	has	just	been	created.	In	the	administrative	console
navigate	to	the	newly	created	transport	chain,	click	TCP	inbound	channel	and	modify	the	Thread	Pool	setting
to	use	your	new	threadpool.

NB.	If	you	create	a	new	web	container	transport	chain,	the	initial	value	for	the	writeBufferSize	attribute	is
8192,	which	is	too	small	for	most	web	container	transport	chains.	Navigate	to	the	newly	create	transport
chain,	click	Web	container	inbound	channel,	and	specify	32768	(or	appropriate	value)	in	the	Write	buffer
size	field.

You	may	also	need	to	configure	the	appropriate	virtual	host	as	described	in	the	following	article:

http://www-
01.ibm.com/support/knowledgecenter/SSAW57_7.0.0/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tcws_plugin_vhost.html

For	you	application	to	run	on	the	new	threadpool	you	must	invoke	it	through	the	appropriate	transport	chain
by	using	the	port	you	specified	on	its	creation.

http://www-01.ibm.com/support/docview.wss?uid=swg1IC76728
http://www-01.ibm.com/support/docview.wss?uid=swg1IC94803
http://www-01.ibm.com/support/docview.wss?uid=swg1IC82189
http://www-01.ibm.com/support/knowledgecenter/SSAW57_7.0.0/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/trun_chain_transport.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_7.0.0/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tcws_plugin_vhost.html

	

V6	Generated	Applications

EAR	files	generated	prior	to	V7.0	utilise	the	EJB	Container,	whether	they	are	deployed	to	a	V6	or	V7	run-
time.	Every	EJB	in	WebSphere	Application	Server	has	an	associated	pool	with	default	min,	max	value	of
50,100.

These	can	be	overridden	globally	or	modified	on	a	per	Application	basis	by	specifying	a	system	property	as
follows:

-Dcom.ibm.websphere.ejbcontainer.poolSize=<J2EE-bean-name>=min,max

The	J2EE-bean-name	is	formed	by	concatenating	the	application	name	(without	the	file	extension),	the
module	name	(without	the	file	extension)	and	the	name	of	the	bean	("ejb-name"	as	defined	in	the	bean's
deployment	descriptor),	using	a	#	separator.	For	example,	if	you	have	an	application	called	SMApp.ear	that
includes	module	PerfModule.jar,	and	module	PerfModule.jar	uses	a	bean	named	TunerBean,	the	J2EE	name
of	the	bean	is	specified	as	SMApp#PerfModule#TunerBean.

If	the	property	is	set	correctly	you	should	see	a	line	similar	to	the	following	output	in	the	system	log	on	first
invocation	of	an	operation	in	the	module:

[24/05/11	15:28:02:444	BST]	00000025	EJBMDOrchestr	I	CNTR0060I:	(Min,Max)	pool	size	is	(5,100)	for
bean	com.ibm.wsspi.sibx.mediation.flow.ejb.MediationFlowBean

Unfortunately,	every	WESB	module	will	output	a	message	with	the	same	class	name	but	the	pool	values	will
apply	to	individual	beans.

For	verification,	a	trace	string	of	com.ibm.ejs.container.BeanMetaData=all	will	output	the	details	of	every
bean	on	first	invocation	including	the	correct	J2EE	name	needed	above	and	the	current	pool	settings	for	the
EJB.

Reducing	the	min	value	of	an	EJB	pool	will	mean	that	during	quiet	spells	for	a	particular	application
(Mediation	Module)	the	pool	will	be	shrunk	down	to	that	minimum	value	and	any	associated	mediation	flow
objects	will	be	eligible	for	GC.	The	EJB	pool	is	shrunk	back	down	(in	increments)	to	the	minimum	size	after
the	pool	has	been	inactive	for	a	certain	period	of	time.	This	can	be	configured	from	the	admin	console	at
"Application	servers	>	server1	>	EJB	container",	the	setting	is	labelled	"Inactive	pool	cleanup	interval"	and
defaults	to	30	seconds.

	

Defining	a	Timeout	on	Synchronous	JAX-WS	Imports
Synchronous	JAX-WS	Bindings	do	not	offer	a	simple	setting	to	modify	the	default	time-out	options,	as	is
available	with	the	asynchronous	invocation.	However,	switching	to	asynchronous	invocations	introduces
unnecessary	overhead	that	can	affect	application	performance.	If	you	need	to	set	binding	/	application
specific	time-out	values	for	a	synchronous	JAX-WS	invocation	then	this	can	be	achieved	by	applying	an
appropriate	policy	set,	and	does	not	incur	any	additional	overheads.	To	achieve	this	follow	these	steps:

1.Create	a	new	policy	set	in	the	Administrative	Console.	Click	Services	>	Policy	Sets	>	Application	policy
sets	>	New
2.Add	an	HTTP	Transport	policy	and	configure	the	time-out	values	appropriately
3.Save	and	export	the	policy	set	from	the	Administrative	Console
4.Import	the	policy	set	into	the	development	environment	(Import	>	WebServices	>	WebSphere	Policy	Sets)
5.Attach	the	policy	set	to	the	Import	Binding	(Properties	>	Binding	>	Policy	Sets	>	Default	policy	set)

It	should	be	noted	that	if	a	time-out	occurs	the	exception	propagated	back	to	WebSphere	ESB	is	not	a
modelled	fault,	thus	the	failure	message	is	propagated	to	the	fail	terminal	(the	timeout	terminal	is	just	for

handling	time-outs	for	asynchronous	invocations).	The	SMO	failinfo	section	will	appear	as	follows:

<failInfo>
<failureString>javax.xml.ws.WebServiceException:	java.net.SocketTimeoutException:	Async	operation
timed	out</failureString>	<origin>External	Service</origin>	</failInfo>

The	reference	to	"Async	operation	timed	out"	just	refers	to	the	fact	that	it	is	using	the	Java	Async	IO	API,
nothing	to	do	with	the	existing	asynchronous	SCA	model.

	

Best	Practices	and	Tuning	Red	Papers
Best	Practices	and	Tuning	Red	Papers	-	BPM	/	WebSphere	ESB	V7.0:
http://www.redbooks.ibm.com/abstracts/redp4664.html?Open
Best	Practices	and	Tuning	Red	Papers	-	BPM	/	WebSphere	ESB	V7.5:
http://www.redbooks.ibm.com/abstracts/redp4784.html?Open
Best	Practices	and	Tuning	Red	Papers	-	BPM	V8.0:
http://www.redbooks.ibm.com/abstracts/redp4935.html?Open

	

WebSphere	DataPower
Performance	tuning	links:

http://www.ibm.com/developerworks/library/ws-dpperformance/

	

WebSphere	MQ
This	chapter	has	been	renamed	to	IBM	MQ.

	

WebSphere	Commerce
This	section	has	been	renamed	to	HCL	Commerce.

http://www.redbooks.ibm.com/abstracts/redp4664.html?Open
http://www.redbooks.ibm.com/abstracts/redp4784.html?Open
http://www.redbooks.ibm.com/abstracts/redp4935.html?Open
http://www.ibm.com/developerworks/library/ws-dpperformance/

	WebSphere Application Server Performance Cookbook
	Introduction

	Recipes
	General Performance Recipes
	Operating System Recipes
	Linux Recipes
	AIX Recipes
	z/OS Recipes
	IBM i Recipes
	Windows Recipes
	Solaris Recipes
	HP-UX Recipes
	macOS Recipe
	Java Recipes
	OpenJ9 and IBM J9 JVMs Recipe
	HotSpot JVM Recipe
	Java Profilers Recipe

	J9 Health Center Enable at Startup
	J9 Health Center Enable at Startup of Limited Duration
	J9 Health Center Enable at Runtime
	J9 Health Center Enable at Runtime of Limited Duration
	J9 Health Center Enable at Runtime of Limited Duration on z/OS
	HotSpot Mission Control Enable at Startup
	WAS traditional Recipes
	Additional Recipes

	General WAS traditional Performance Problem
	Reviewing the data

	Large Topologies Recipe
	Request Metrics Recipe
	Tune a Thread Pool
	HTTP Sessions
	Security Recipe
	Connection Pool Hangs in createOrWaitForConnection
	Strategy 1: Increase connection pool size maximum to 2x+1 (x = thread pool size maximum)
	Strategy 2: Disable "shareable" connections
	Strategy 3: Fix the application code

	Threads in socketRead0 in JDBC calls
	Strategy 1: Apply socketRead timeouts

	Slow or Hung Application
	Recommendations
	Strategy 1: Ran out of disk space OR Slow file system I/O OR Anti-Virus Protection OR Active backup
	Strategy 2: JDBC Connection Pool hang
	Strategy 3: Check trace levels
	Strategy 4: Check PMI levels

	Threads in java.io.FileOutputStream.writeBytes
	Strategy 1: Ran out of disk space OR Slow file system I/O OR Anti-Virus Protection OR Active backup

	Logging PMI Data
	Logging Custom PMI Data with Dynacache
	WebSphere Liberty Recipes
	Web Servers Recipes
	Additional Recipes
	IHS & WAS Plugin Performance
	Some Users Reporting Bad Performance
	Strategy 1: Add Logging of JSESSIONID in IHS to Identify the clone-id of the JVM the user is on

	Container Recipes
	Java in Containers Recipes
	IBM and Semeru Java in Containers Recipe

	Liberty in Containers Recipe
	WebSphere Application Server traditional in Containers Recipe
	Caching Recipes
	Troubleshooting Recipes
	Troubleshooting Operating System Recipes
	Additional Recipes
	Process Crash Recipe
	Looping Shell Script Recipe
	Looping Batch Script Recipe

	Troubleshooting Linux Recipes
	Linux General Recipe
	Linux tcpdump Recipe
	Linux tcpdump on a port Recipe
	Linux vmstat Recipe
	Linux nmon Recipe
	Linux perf Recipe
	Linux netstat Recipe
	Linux basics Recipe
	Linux X11 Forwarding Recipe
	Linux Override Core Dump Processing

	Troubleshooting AIX Recipes
	AIX nmon Recipe
	AIX perfpmr Recipe
	AIX iptrace Recipe
	AIX iptrace on a port Recipe
	AIX vmstat Recipe
	WAS traditional on AIX Recipe

	Troubleshooting Windows Recipes
	Windows pktmon Recipe
	Windows pktmon on a port Recipe
	Windows 11 perfmon Recipe

	Troubleshooting OpenJ9 and IBM J9 Recipes
	Java OutOfMemoryError (OOM)
	Additional Recipes
	J9 Native OutOfMemoryError Recipe
	J9 Java Dump Recipe
	J9 System Dump Recipe
	Javacore Overhead
	Sizing OpenJ9 Native Memory
	Diagnostics
	Review and Sizing
	Detailed Diagnostics

	Troubleshooting HotSpot Recipes
	HotSpot Native Memory Usage Recipe

	Troubleshooting Memory Leaks
	Troubleshooting WAS traditional Recipes
	Troubleshooting WAS traditional on z/OS
	Additional Recipes
	WAS traditional Dynamic Diagnostic Trace Recipe
	WAS traditional Diagnostic Trace from Startup Recipe
	WAS traditional Hung Thread Detection Recipe
	WAS traditional HTTP Access Log Recipe
	WAS traditional Dynamic verbosegc Recipe
	WAS traditional verbosegc from Startup Recipe
	WAS traditional Common Diagnostic Files Recipe
	WAS traditional collector Recipe
	WAS traditional runtime diagnostic trace script

	Troubleshooting WebSphere Liberty Recipes
	Additional Recipes
	WebSphere Liberty HTTP Access Log Recipe
	WebSphere Liberty verbosegc from Startup Recipe
	WebSphere Liberty requestTiming Recipe

	Troubleshooting Web Servers Recipes
	Troubleshooting Kubernetes Recipes
	Kubernetes Basics Recipe
	Kubernetes etcd Issues Recipe
	Kubernetes Modify Container Command

	Troubleshooting OpenShift Recipes
	OpenShift Login Recipe
	OpenShift General Troubleshooting Recipe
	From a browser
	From the command line
	Troubleshooting Tips

	OpenShift Use Image Registry Recipe
	OpenShift Remote into Container Recipe
	From a browser
	From the command line

	OpenShift Analyze a Pod Recipe
	OpenShift Analyze a Node Recipe
	From a browser
	From the command line
	Map container PID to node PID

	OpenShift Investigate ImagePullBackOff Recipe
	OpenShift Review Logs Recipe
	From the command line
	From a browser

	OpenShift Download Container Files Recipe
	From the command line

	OpenShift Investigate Source of Signal
	Liberty in OpenShift Get Javacore Recipe
	Liberty in OpenShift Get Heapdump Recipe
	Liberty in OpenShift Get System Dump Recipe
	Replace Container Directory in OpenShift
	Execute a Script in a Container on Startup in OpenShift

	Troubleshooting Java Recipes
	Troubleshooting IBM Java Recipes

	General
	Theory
	Aspects of Performance Tuning
	Why does performance matter?
	Basic Definitions
	Common Throughput Curve
	Response Time vs. Latency

	Architecture/Clustering

	Methodology
	Methodology Best Practices
	Is changing one variable at a time always correct?
	Keep a Playbook

	Statistics
	Basic statistics
	Amdahl's Law
	Queuing Theory
	Little's Law
	Practical Queuing Theory
	Tuning Timeouts
	Determining Bottlenecks

	Testing
	Use Cases to Test Cases
	100% vs 80/20 rule?

	Load Testing
	Stress Testing Tool
	Apache Bench

	Common Benchmarks
	DayTrader
	IBMStockTrader
	Acme Air

	Think Times

	Operating Systems
	Central Processing Unit (CPU)
	How many CPUs per node?
	How many application processes per node?
	Registers
	Assembly Language
	Assembly Syntax
	Instruction Pointer
	Program Stack
	Stack Pointer
	Frame Pointer
	Non-Volatile Registers

	Approximate Overhead of System Calls (syscalls)

	Random Access Memory (RAM), Physical Memory
	Virtual memory
	File/Page Cache
	Memory Corruption
	Paging, Swapping
	Overcommitting Memory
	Sizing Paging Space
	Non-uniform Memory Access (NUMA)
	32-bit vs 64-bit
	Large Page Support

	Input/Output (I/O)
	Disk

	Network Interface Cards (NICs) and Switches
	TCP/IP
	Bandwidth Delay Product
	Flow Control & Receive/Send Buffers
	CLOSE_WAIT
	TIME_WAIT
	Nagle's Algorithm (RFC 896, TCP_NODELAY)
	Delayed Acknowledgments (RFC 1122)
	Selective Acknowledgments (SACK, RFC 2018)
	Listen Back Log
	Keep-alive
	Monitor TCP Retransmits

	Domain Name Servers (DNS)
	Troubleshooting Network Issues
	The Importance of Gathering Network Trace on Both Sides

	Antivirus / Security Products

	Clocks
	POSIX
	Process limits (Ulimits)
	Choosing ulimits
	Setting ulimits
	Maximum number of open file descriptors
	Maximum number of processes
	Maximum data segment size
	How do you confirm that ulimits are set correctly?

	Process core dumps
	Core dump security implications
	Core dump disk implications
	Descructive core dumps
	Non-destructive core dumps
	Performance implications of non-destructive core dumps

	Core dumps and ulimits

	Ulimit Summary
	SSH Keys
	Step #1: Generate an "orchestrator" SSH key
	Step #2: Distribute "orchestrator" SSH key to all machines
	Step #3: Now you are ready to automate things
	Example Scripts
	Example Script to Stop Servers
	Example Script to Clear Logs
	Example Script to Execute perfmustgather
	Example Script to Gather Logs

	Linux
	Linux Recipe
	General
	Installing Programs
	Kernel Log
	journalctl

	Modifying Kernel Parameters
	Modifying Kernel Command Line Options
	TuneD
	TuneD Profiles

	Debug Symbols
	RedHat Enterprise Linux (RHEL)
	Fedora/CentOS
	Ubuntu
	SLES

	Processes
	cgroups
	Central Processing Unit (CPU)
	CPU Speed
	CPU Boosting
	Kernel Threads
	Hyperthreading
	CPU in cgroups
	CPU Pressure
	nice
	vmstat
	Per Processor Utilization
	top
	Per-thread CPU Usage
	pidstat
	Load Average
	atop
	sar
	nmon
	collectl
	perf Profiler Tool
	eBPF
	htop
	dstat
	glances

	System Tap (stap)
	WAS Performance, Hang, or High CPU MustGather
	Intel VTune Profiler
	Intel Performance Counter Monitor (PCM)
	KUTrace

	Physical Memory (RAM)
	Per-process Memory Usage
	tmpfs
	Memory in cgroups
	Memory Pressure
	free
	/proc/meminfo
	Paging
	Shared Memory
	Address Space Layout Randomization
	NUMA
	GLIBC malloc
	MALLOC_ARENA_MAX
	OOM Killer
	EarlyOOM
	File cache
	/proc/sys/vm/swappiness
	Kernel memory and slab
	pdflush
	Zero Swap Space
	Kernel Samepage Merging

	Input/Output (I/O)
	fatrace
	fuser
	iotop
	dstat
	ioping
	Flushing and Writing Statistics
	dd
	ncdu
	hdparm
	bonnie++
	parted
	blkid
	blkid
	fdisk
	fio
	I/O schedulers
	Solid State Drives

	Networking
	ip
	Permanent network interface changes
	mtr
	ping
	dig
	ss
	nstat
	TCP Keep-Alive
	TCP Delayed Acknowledgments
	netstat
	lnstat
	lsof
	Networked Filesystems (NFS)
	ethtool
	Socket Buffers
	Emulating Network Behaviors
	Monitor TCP Retransmits
	Monitor TCP State Statistics
	TIME_WAIT
	Changing the MTU
	TCP Reordering
	Other Network Configuration
	tcpdump
	arping
	tcping
	arp
	arpwatch
	iptraf-ng
	nethogs
	iftop
	jnettop
	trafshow
	iperf3
	nuttcp
	speedtest-cli
	traceroute
	mtr
	nmap
	Disable IPv6 DHCP Auto-negotiation
	NetworkManager
	resolvectl

	Kernel
	Thread Stacks

	Process Tracing
	strace
	ltrace

	Miscellaneous
	Hardware
	CPU

	Processor Sets/Pinning
	Interrupt Processing
	IRQ Pinning
	Interrupt Coalescing
	Consider Disabling IPv6
	Huge Pages
	Transparent Huge Pages
	hugetlb

	Process Limits
	Kernel Limits
	Crontab
	Processor Scheduling
	IBM Java on Linux
	systemd
	systemd Tips
	Example service
	Showing service status

	Other Tips
	Linux on Power
	-Xnodfpbd
	Hardware Prefetching
	Idle Power Saver
	Adaptive Frequency Boost
	Dynamic Power Saver (Favor Performance) Mode
	64-bit DMA Adapter Slots for Network Adapters
	Scaling Up or Out

	Linux on System z (zLinux, s390)
	Discontiguous Saved Segments (DCSS)

	AIX
	AIX Recipe
	Documentation
	General
	Kernel Parameters
	Central Processing Unit (CPU)
	Simultaneous Multithreading (SMT)
	CPU Terminology
	Micro-Partioning
	vmstat
	topas
	nmon
	tprof
	CPU Utilization Reporting Tool (curt)
	perfpmr.sh
	truss

	Physical Memory (RAM)
	vmstat
	svmon
	32-bit Memory Model

	Java
	Input/Output (I/O)
	Disk

	Networking
	Network interfaces
	Interface speed
	Interface statistics
	Ethernet statistics
	Kernel network buffers
	Hostname resolution
	Test network throughput
	TCP Delayed Acknowledgments
	TCP Congestion Control
	Virtual Ethernet Adapter (VEA)
	PAUSE Frames
	Dog threads
	ARP Table
	TCP Traffic Regulation
	Interrupt coalescing
	TIME_WAIT
	iptrace
	tcpdump
	TCP Keep-Alive

	Nagle's Algorithm (RFC 896, TCP_NODELAY)
	Other Kernel and Process Settings
	Processor sets/pinning
	attachrset

	Memory Affinity
	Disabling Hardware Prefetching
	Native Memory Allocation (malloc) Algorithms
	Example Automation Script

	z/OS
	z/OS Recipe
	Documentation
	General
	Unix System Services (USS) and OMVS
	ps
	USS Settings
	opercmd
	Tips
	Language Environment (LE)
	pax
	uncompress

	3270 Clients
	z/OS Version
	Interactive System Productivity Facility (ISPF)
	Central Processing Unit (CPU)
	SMF 98.1
	Display processors
	Display threads in an address space
	31-bit vs 64-bit
	zIIP/zAAP Processors

	System Display and Search Facility (SDSF)
	SDSF.LOG
	SDSF.DA

	Physical Memory (RAM)
	Job Entry Subsystem (JES)
	Workload Management (WLM)
	HTTP Request Distribution
	Execution Velocity

	System Management Facilities (SMF)
	Example JCL to Dump SMF
	Example JCL to Dump Live SMF Data Sets into a Permanent One
	Example JCL to Dump SMF
	Example JCL to Clear SMF

	Resource Measurement Facility (RMF)
	Workload Activity Report

	FTP
	Input/Output (I/O)
	Networking
	DNS
	TCP Congestion Control
	netstat

	Resource Recovery Service (RRS)
	SVCDUMPs, SYSTDUMPs
	svcdump.jar

	Security
	Global Resource Serialization (GRS)
	z/VM
	Memory Overcommit
	zLinux

	Hardware Counters

	IBM i
	IBM i Recipe
	Central Processing Unit (CPU)
	IBM iDoctor for IBM i PEX Analyzer
	IBM iDoctor for IBM i Job Watcher
	OS CPU Profiling
	Per thread CPU usage

	Physical Memory (RAM)
	Input/Output (I/O)
	Networking
	Using Collection Services Performance Data
	Gathering Javacores using WRKJVMJOB
	JVM Monitoring

	Windows
	Windows Recipe
	General
	Command Prompt
	Windows Registry
	Performance Monitor (Perfmon)
	View Live Data
	Logging Perfmon Data to Files
	Load Existing Logs into Perfmon

	typeperf
	Central Processing Unit (CPU)
	Per-Thread CPU Usage
	PsList
	Windows Performance Toolkit (WPT)
	TPROF
	Processor Performance Management (PPM)

	Memory
	Physical Memory (RAM)
	Process Memory Usage

	Input/Output (I/O)
	Defragmentation
	CIFS/SMB

	Networking
	TCP Congestion Control
	netstat
	Wireshark
	netsh
	Message Analyzer
	Network Monitor

	Process Monitor (ProcMon.exe)
	Thread Profiling Analysis

	Large Pages

	Solaris
	Solaris Recipe
	General
	Processes
	Central Processing Unit (CPU)
	vmstat
	Per processor utilization
	pgstat
	prstat
	Per-thread CPU usage
	CPU Statistics
	Interrupts
	Hardware Encryption

	Physical Memory (RAM)
	Input/Output (I/O)
	Zettabyte File System (ZFS)

	Networking
	snoop

	Kernel
	KSSL
	truss
	Modifying Kernel Parameters
	Networking
	Process Limits

	dtrace
	FlameGraphs

	Logical Domains, Zones, and Processor Sets/Pinning

	HP-UX
	HP-UX Recipe
	General
	Central Processing Unit (CPU)
	GlancePlus
	caliper
	HPjmeter
	jps

	Physical Memory (RAM)
	Input/Output (I/O)
	Networking
	nettl

	Profiling
	Modifying Kernel Parameters
	tusc
	Processor Sets
	Automation

	macOS
	macOS Recipe
	General
	System Information

	log
	Console
	Activity Monitor
	sysdiagnose
	spindump
	Instruments
	Capture System-wide CPU Sampling Profiler Data
	Analyze CPU Sampling Profiler Data

	Memory
	Kernel Memory
	Page Size

	nmond
	Tips
	Network
	File I/O
	fs_usage
	diskutil
	mds_stores

	Java
	Java Recipe
	General
	General Tuning
	JAXP ServiceLoader
	Garbage Collection
	Optimal Heap Size
	Generational Garbage Collectors
	The Sawtooth

	Verbose garbage collection (-verbose:gc)
	Enabling Verbosegc

	GC Threads
	Memory Leaks
	Determining Leaks with Generational Collectors

	InetAddress Cache
	32-bit versus 64-bit
	Synchronization and Lock Contention
	ReentrantLock
	Investigate Lock Contention

	Deadlocks
	Classloading
	Explicit Garbage Collection (System.gc, Runtime.gc)
	Common Callers of System.gc

	java.nio.DirectByteBuffers
	DirectByteBuffers and full garbage collections
	DirectByteBuffer native memory waste

	Reflection Inflation
	Serviceability
	Java Modules
	Java Agent
	Java Virtual Machines (JVMs)
	Sub-chapters
	OpenJ9 and IBM J9 JVMs
	OpenJ9 and IBM J9 JVMs Recipe
	J9
	General
	Garbage Collection
	Just in Time (JIT) Compiler
	Shared Classes (-Xshareclasses)
	-Xquickstart
	Container Support
	Reduce Memory Footprint
	-Xaggressive
	Large Object Area
	-Xrs
	IBM Semeru Runtimes
	Benchmark Ideas
	External Delays
	Lock Contention
	Lock Reservation
	Deadlocks
	Large Object Allocation Stack Traces
	Compressed References
	-Xgc:classUnloadingKickoffThreshold
	Method Tracing (-Xtrace methods)
	Xverify
	Javacore Thread Dump
	Stack Size (-Xss)
	Large Pages (-Xlp)
	OpenJ9
	Environment Variables
	z/OS
	Known Issues and Regressions

	HotSpot JVM
	HotSpot JVM Recipe
	General
	Garbage Collection
	PreserveFramePointer
	DTrace Integration
	Code Cache
	Environment Variables
	async-profiler
	Concurrent low-pause mark-sweep collector (CMS)

	Java Class Libraries (JCLs)
	Sub-chapters
	OpenJDK JCL and Tools
	java.util.logging (JUL)
	Reflection Inflation
	JSSE Debug
	HTTP(S) Client (HttpURLConnection)
	HTTP(S) Client (HTTP Client)
	Lightweight Directory Access Protocol (LDAP) Client
	ServerCommunicatorAdmin
	String.substring Performance
	DNS Cache

	IBM JCL and Tools
	Reflection Inflation
	Advanced Encryption Standard New Instructions (AESNI)
	Object Request Broker (ORB) and Remote Method Invocation (RMI)
	java.nio.DirectByteBuffer
	XML and XSLT
	DNS Cache

	Java Profilers
	Java Profilers Recipe
	Statistical/Sampling Profilers
	IBM Java Health Center
	HotSpot HPROF
	Java Mission Control (Formerly JRockit Mission Control)
	HotSpot VisualVM

	Tracing Profilers
	IBM Java -Xtrace
	Rational Application Developer (RAD) Profiler
	Rational Agent Controller (RAC)

	Performance Inspector
	IBM Java Runtime Environment
	Oracle Java Runtime Environment

	WebSphere Application Server
	Sub-Chapters

	WebSphere Application Server traditional
	WAS traditional Recipe
	WAS Basics
	Performance Tuning Templates
	General Tuning
	Shared Libraries

	Change Java Software Development Kit (SDK)
	Idle CPU
	Education
	Sub-Chapters
	Scaling and Large Topologies
	Scaling and Large Topologies Recipe
	Clusters
	Dynamic Clusters

	Large Topologies, High Availability Manager
	Core Group Bridges
	Large Topology Theory
	IBM_CS_DATASTACK_MEG

	WAS Performance Monitoring
	Performance Monitoring Infrastructure (PMI)
	What is PMI?
	Various Dimensions of Monitoring
	HTTP Metrics Endpoint
	Tivoli Performance Viewer (TPV)
	What metrics should you gather?
	Java Heap Utilization
	Configuring Custom PMI
	PMI Details

	Runtime Performance Advisors (RPA)
	Application Response Measurement (ARM) / Request Metrics
	Enabling Request Metrics
	Request Metrics Filters

	Sampling Profiler

	Logging and Tracing
	Trace Overhead
	Controlling Trace Levels
	High Performance Extensible Logging (HPEL)
	logViewer

	Cross Component Trace (XCT)
	First Failure Data Capture (FFDC)
	Transaction Log
	Database Transaction Log

	Networked Filesystem (NFS)
	CPU Starvation Detected Warning (HMGR0152W)

	Thread Pools
	Sizing Thread Pools
	Hung Thread Detection
	Hung Thread Detection Overhead
	OS Core Dumps on Hung Thread Warnings with J9
	Thread Pool Statistics

	BoundedBuffer
	How the JVM MBean dumpThreads method works

	Java Database Connectivity (JDBC)
	Investigating Long Executions
	Lightweight Query Trace
	Database Connection Pools
	Connection pool idle and aged timeouts
	Connection Pool Usage

	Statement cache
	Shareable versus Unshareable Connections
	More JDBC Connections than Threads
	DB2 JDBC Driver
	Oracle JDBC Driver
	Tracing
	Large memory usage

	Servlets
	WebContainer Thread Pool
	Keep Alive Connections
	Max requests per connection
	Idle timeouts
	Error codes closing keep-alive connections

	Class and JSP reload checking
	Invocation Cache
	NCSA Access Logs
	Enabling the NCSA Access Log

	Investigating Response Times
	WebContainer Channel Write Type
	SSLUtils.flushCloseDown
	com.ibm.ws.webcontainer.async.AsyncContextImpl.startUsingWCThreadPool
	DirectByteBuffer Pools
	JSP Buffers
	HTTP gzip compression
	Java Server Faces (JSF)
	MyFaces JSF Embedded JAR Search for META-INF/*.faces-config.xml

	HTTP Sessions
	Database Session Persistence
	Session Data Disappears on Fail Over

	Annotation Scanning
	ServletContext.getResource performance
	Timeouts
	WebContainer Diagnostic Trace
	IBM Java -Xtrace
	Transport Channels
	Asynchronous I/O (AIO) versus New I/O (NIO)
	TCP Transport Channel
	Maximum Open Connections
	503 Service Unavailable

	Apache HttpClient

	Startup
	Common Tuning
	Context and Dependency Injection (CDI)

	Application Startup
	Enabling Diagnostic Trace during Startup
	Startup Order

	Java Persistence API (JPA)
	OpenJPA

	Dynamic Cache (Dynacache)
	Dynacache Recipe
	General Dynacache Notes
	Dynamic Cache Replication - Data Replication Service (DRS)
	Architecture
	Potential Tuning
	ignoreValueInInvalidationEvent
	propogateInvalidationsNotSharedValue
	DRS Thread Pool

	ws/WSSecureMap
	System Dump or HPROF Heapdump Analysis
	Clearing Cache
	Servlet Caching
	Servlet Caching Example
	Servlet Caching by User
	cachespec.xml

	Monitoring
	baseCache
	Missed replication
	Disk Offload
	Flush to Disk on Stop

	Object Request Broker (ORB) and Remote Method Invocation (RMI)
	EJBs
	JNI Reader Threads
	Workload Management (WLM)

	Java Naming and Directory Interface (JNDI)
	InitialContext

	Message Driven Beans (MDBs)
	Activation Specifications versus Listener Ports
	Sizing Thread Pools for Message Driven Beans
	Activation Specifications
	Pausing and Resuming Activation Specifications

	Service Integration Bus (SIB)
	SIB Thread Pools
	General SIB Tuning Tips
	SIB Configuration
	Message Reliability
	Message Store
	Monitoring
	Useful PMI Statistics
	Message Visibility/Message Gathering
	Read ahead
	Administrative Console Monitoring
	Service Integration Bus Destination Handler
	Service Integration Bus Explorer
	Service Integration Bus Performance
	Advanced ME Tuning
	Lightweight Tracing

	WebSphere MQ Messaging Provider
	MDB Response Times
	JMS Connections Explained
	Listener Ports
	Pausing and Resuming Listener Ports

	Web Services
	General web service tuning tips
	Outbound Connection Cache
	WSPerf Tool
	Inbound Web Services Processing
	Preferring Local Execution

	Web Services Response Caching
	Service Servlet Caching
	JAX-RPC Client Caching

	Asynchronous Beans
	Work Manager

	Intelligent Management
	Intelligent Management Recipe
	Background
	Java On Demand Router (ODR)
	Default Thread Pool
	Maintenance Mode
	Custom Logging
	Binary Trace Facility (BTF)

	Dynamic clusters
	Application Placement Controller (APC)

	Service Policies
	CPU/Memory Overload Protection
	Health Policies
	Visualization Data Service
	Bulletin Board over the Structured Overlay Network (BBSON)
	High Availability Deployment Manager (HADMGR)
	PMI

	Security
	Authentication Cache
	Java Security
	Single Sign On (SSO)
	Security Attribute Propagation

	LDAP Authentication
	Secure Sockets Layer (SSL), Transport Layer Security (TLS)
	J2C Authentication Subjects
	CSIv2 Cache
	Administrative Security
	Expired Certificates
	Clock synchronization
	Trace
	PasswordEncoder

	Administration
	Administration Best Practices
	Deployment Manager
	wsadmin/JMX
	Examples
	Querying PMI

	Node Synchronization
	Notifications
	Copy WAS nodes or cells to other hosts
	Re-install Corrupt WAS on the same nodes

	Session Initiation Protocol (SIP)
	WAS traditional on z/OS
	WAS traditional on z/OS Recipe
	SMF 120 Records
	Response Times

	General Considerations
	Address Spaces
	Servants
	Control Region
	Daemon

	Thread Pools
	Joblogs

	Timeouts
	zIIP/zAAP Usage
	WLM
	WLMStatefulSession

	SMF 120
	MODIFY Command
	MODIFY Commands
	Console Dump
	Dispatch Progress Monitor (DPM)
	Acquire console dump with DPM

	TCP Packet Trace

	WebSphere Liberty
	WebSphere Liberty Recipe
	Documentation
	Continuous Delivery
	server.xml
	jvm.options
	Verbose Garbage Collection

	Logs and Trace
	messages.log
	console.log
	trace.log
	Request Timing
	Event Logging
	Binary Logging

	Thread Pools
	HTTP
	Keep Alive Connections
	Max requests per connection
	Idle timeouts
	Error codes closing keep-alive connections

	HTTP Access Logs
	HTTP Sessions
	HTTP Session Database Persistence

	HTTP Response Compression
	Web Response Cache
	HTTP/2
	Large request bodies

	Monitoring
	mpMetrics

	Centralized Logging
	Java Database Connectivity (JDBC)
	Connection pool idle and aged timeouts

	Admin Center
	Sampling Profiler
	Start-up
	Jandex
	Startup Timeout Warning
	Startup order
	OSGi Feature Startup Times

	Idle CPU
	Authentication Cache
	LDAP
	Web Services
	JAX-RS
	JAX-RS Client

	JSP
	JSF
	MyFaces JSF Embedded JAR Search for META-INF/*.faces-config.xml

	EJB
	Yoko Timeouts
	Remote Interface Optimization

	Messaging
	Activation Specifications
	Embedded Messaging Server

	Database Persistence
	JakartaEE
	Classloading
	Passing Configuration
	dnf/yum/apt-get repositories
	Security
	Failed login delays

	Basic Extensions using Liberty Libraries (BELL)
	JConsole
	JConsole with HotSpot

	Find Release for a Pull Request
	Java Support
	Quick Testing
	FFDC
	z/OS
	Monitoring on z/OS
	zIIPs/zAAPs

	JAXB
	Timed Operations
	Education
	Configuration Analysis
	WAS traditional Extracting Properties
	WebSphere Application Server Configuration Visualizer
	WebSphere Application Server Configuration Comparison Tool
	General Health Check Points
	WAS traditional Health Check
	Gather WAS traditional Health Check Data
	Analyze WAS traditional Health Check Data

	WebSphere Liberty Health Check
	Gather WebSphere Liberty Health Check Data
	Analyze WebSphere Liberty Health Check Data

	Java Health Check
	IBM HTTP Server and WAS Plugin Health Check
	Linux Configuration Health Check
	IBM Visual Configuration Explorer (VCE)

	Log Analysis
	IBM Trace and Request Analyzer for WAS (TRA)
	IBM Support Assistant 5
	Log Analysis

	Resiliency

	Major Tools
	Sub-chapters
	Garbage Collection and Memory Visualizer (GCMV)
	Installation
	Basic Usage
	Features and Benefits
	Analysis
	Cropping Data Analysis
	Customizing the Views
	Adding and removing line plots
	X-axis
	Zooming

	Comparing Different Runs
	Headless Mode
	References

	IBM Thread and Monitor Dump Analyzer (TMDA)
	Overview
	Features and Benefits
	Installation
	Usage
	Compare threads from different files
	Thread States
	Headless

	Eclipse Memory Analyzer Tool
	Overview
	Standalone Installation
	Usage
	First Dialog
	Leak Suspects Report
	Common Tasks
	Heapdump Theory
	Retained Sets
	Class Histogram
	Objects Held by Thread Stack Frames
	Comparing Heap Dumps
	Why are some Java objects alive?
	Object Query Language (OQL)
	SoftReferences
	Headless Mode
	Index Files
	Unreachable Objects
	Source Code
	IBM Extensions for Memory Analyzer (IEMA)
	Installation
	Offline installation of MAT, DTFJ, and IEMA
	Debugging MAT
	Tracing MAT
	Dark Matter Warnings

	References

	IBM Java Health Center
	Client Installation
	Agent Installation
	Agent Usage
	Health Center Recipe
	Overhead
	Gathering Data
	Headless mode
	Socket mode
	Enabling Health Center Dynamically

	Disabling Health Center
	Analyzing Data
	Profiling View
	Updating to the latest agent
	Platform-Specific Agent Update Notes
	Point to a different agent installation directory

	Low mode
	Hexadecimal Method Names
	Health Center Details
	Docker

	Gathering HCD at Runtime
	HCD File Name
	Agent Version
	Disabling Components
	Diagnostic Traces
	Large Memory Allocations
	Health Center Thread Stacks
	References

	OpenJDK Mission Control
	Recording data with the agent
	Starting the client
	Open JFR File
	Time Zones

	Eclipse
	Launching Notes
	Example Windows Launch Script
	Setting the Java Virtual Machine that Eclipse Uses
	IBM Java on Linux

	Eclipse Maximum Heap Size
	Offline Update Site Installation

	Apache JMeter
	Wireshark
	Wireshark Recipe
	Common Terms and Concepts
	Time zones
	Capture Statistics
	Packet Loss
	TCP Streams
	Useful Filters
	Find SYNs without SYN/ACKs
	Analyzing Sequence Numbers
	Time Sequence Graph (tcptrace)

	TLS Encrypted Alert
	Visualize TCP Response Times
	HTTP Streams
	Visualize HTTP Response Times

	Finding problems or delays in the network
	Finding gaps within an IP conversation in a network capture
	TCP Checksum Offloading Errors
	tshark
	TCP Handshakes
	Search for raw bytes
	DNS response times greater than 10ms
	capinfos

	editcap
	Split packet capture by time
	Lua Scripts

	Decrypt SSL/TLS Traffic
	Using a Log File with Per-Session Secrets

	Ports and Heuristics
	Working with Wireshark Source
	Custom Dissector

	IBM Interactive Diagnostic Data Explorer
	IBM Support Assistant (ISA)
	Installation
	Log Analysis
	Starting ISA5
	Java Web Start Tools
	Specifying the Java Maximum Heap Size

	gnuplot
	graphcsv.gpi
	Test Graphing

	Python
	Starting an Interactive Python Session
	Seaborn
	Histogram
	Empirical Cumulative Distribution Function

	R Project
	Install Package from Source
	Graphing CSV Data
	Package Versions
	Test Graphing
	Common Use Case
	Example graphing mpmstats data

	Apache Bench
	awk
	Pre-defined Variables
	Basic capabilities
	String functions
	Arrays
	Tips
	Concatenate all lines into a single, space-delimited output
	Parse hex string to decimal
	Calculate a Pearson correlation coefficient between two columns of numbers

	IBM Memory Analyzer Tool (MAT)

	Web Servers
	Web Servers Recipe
	General
	IBM HTTP Server
	Multi-Processing Modules (MPM)
	MinSpareThreads, MaxSpareThreads
	MaxRequestsPerChild

	Windows
	IBM HTTP Server for z/OS
	Access Log, LogFormat
	Time until first response bytes (%^FB)
	Access Log Response Times (%D)
	Access Log WAS Plugin Server Name (%{WAS}e)
	Client ephemeral port
	Commonly useful LogFormat

	Edge Side Includes (ESI)
	KeepAlive
	Checking incoming connection re-use

	Gzip compression
	mod_mpmstats
	TrackHooks

	mod_smf
	Status Module
	IHSDiag
	Fast Response Cache Accelerator

	Websphere Plugin
	ServerIOTimeout
	Retries
	Load Distribution
	MaxConnections

	WebSphere Caching Proxy (WCP)
	Load Balancers
	WebSphere Load Balancer

	nginx
	Containers
	Forward Proxy One-liner

	HAProxy
	Keep-Alive

	Applications
	Sub-chapters
	Java Standard Edition (JSE)
	Best Practices
	Synchronization

	Strings
	Unicode

	java.lang.ThreadLocal
	Migrating to Java 11
	Printing timestamps
	Speculative Tracing
	Sampled Timing Calls
	Always Timing Calls
	Request Heap Dump
	Request J9 Thread Dump
	Request J9 System Dump
	Requesting Thread Dumps, Heap Dumps, and System Dumps
	java.util.logging
	Finalizers
	XML Parsers
	Apache HttpClient
	WeakReferences and SoftReferences

	Logging
	Jakarta Enterprise Edition (JEE)
	Jakarta RESTful client
	JSON processing

	Java Enterprise Edition (JEE)
	Startup Code
	Security

	Web Applications
	HTTP Sessions
	Database Access
	JDBC Deadlocks

	Web Services
	Service Component Architecture (SCA)
	Object Caching
	MDB
	JMS Client
	HTTP Standard
	Caching
	Forcing Revalidation of Cached Responses

	HTTP2 Standard
	Flow Control

	Eclipse MicroProfile
	MicroProfile Configuration
	MicroProfile RestClient
	MicroProfile OpenTracing
	MicroProfile Metrics
	MicroProfile OpenAPI
	MicroProfile Fault Tolerance
	MicroProfile Health
	MicroShed Testing
	Garbage Collection Thrashing Health Check Example

	Maven
	List all archetypes
	Create an application using an archetype
	Run without tests
	Specify an explicit POM
	Run specific modules
	Install Loose JAR
	Standalone JAR
	Simple pom.xml
	Package dependencies in the JAR
	Dependency to a packaged JAR

	Spring
	JMS
	Session Concurrency

	Weaving

	Hibernate
	Object-Relational Mapping (ORM)
	c3p0

	Cloud Native
	Twelve-factor methodology
	Build to Manage
	Srangler Pattern
	Backend for Frontend
	Entity and Aggregate
	Adapter Microservice

	Go
	Basics
	Hello World
	Thread Dump
	Built-in thread dump
	Manually generated thread dump

	Heap Dump
	Manually generated heap dump
	Analyzing a Heap Dump from a Core Dump

	Signal processing
	Link options
	Stripping symbols

	Swing
	Focus
	Hello World

	Apache CXF
	JDKBugHacks

	Apache HttpClient
	Connection Pooling
	Keep-Alive
	User Token Handler
	Example
	Debugging HttpClient

	Rational Application Developer
	Tuning the workspace
	Automatically build and refresh the workspace
	Convert projects to binary form
	Capabilities
	Closing Projects
	Defragmenting
	Do not install features that are not required
	Plug-ins activated on startup
	Fresh workspaces
	JVM tuning
	JVM tuning - shared classes
	Label decorations
	Links (The Link Indexer)
	Publishing and annotations
	Quick Diff
	Remote test server
	Restarting projects
	Server configuration options
	Server Startup Options (Admin Console)
	Reducing memory
	Restarting Rational Application Developer
	Validation
	Workspace performance tuning

	HTML
	Example HTML5 Page

	Transport Layer Security
	RSA Key Exchange
	Ephemeral Diffie-Hellman Key Exchange
	Certificates
	Keystores and Truststores
	keytool
	Create JKS keystore from a host and port
	List JKS keystore certificates
	Use a global JKS truststore in a Java program

	Containers
	Sub-chapters
	Open Container Initiative
	Terms
	Continuous Integration
	Continuous Delivery
	DevOps
	Docker
	Managing Containers
	General Commands
	Seeing Host Processes
	Seeing Another Container
	Export Filesystem
	Image Size
	Debugging
	Rooting a Running Container
	Statistics

	Dockerfile
	Caching
	Secrets
	Show Dockerfile from Image
	Major Linux Flavors

	Docker Registries
	Docker Compose
	docker-compose.yml
	docker-compose build
	docker-compose up
	docker-compose logs
	docker-compose down
	docker-compose rm

	Containerfile

	Podman
	Prune Containers
	Installing on macOS/Windows
	Running on macOS/Windows
	Status on macOS/Windows
	SSH on macOS/Windows
	Root podman on macOS/Windows
	Capabilities
	Cross-compile on macOS

	Kubernetes
	Architecture
	Master Nodes

	kubectl
	Cluster Context
	High Availability

	Objects
	Labels

	Resources
	List resource kinds

	Namespace
	List namespaces
	Create namespace
	Show current namespace (if any)
	Change current namespace

	Nodes
	List Nodes

	Controllers
	Deployments
	List Deployments
	Create Deployment
	List pods for a Deployment
	Delete Deployment
	Scale Deployment
	Print logs for all pods in a deployment

	Pods
	Create, run, and remote into a new pod

	Operators
	Operator logs
	Operator Lifecycle Manager
	Operator Catalogs

	CPU and Memory Resource Limits
	CPU Resources
	Memory Resources

	Events
	View Latest Events

	Horizontal Pod Autoscaler
	Day X
	Pod Affinity
	NodePorts
	Clustering
	Jobs
	List jobs
	Create job
	Describe job
	Print job logs

	DaemonSets
	Services
	List Services
	Create Service
	Delete Service

	Ingresses
	Create nginx Ingress controller
	Create Ingress
	List Ingresses
	Describe Ingress
	Delete Ingress

	Authentication
	List Service Accounts
	Retrieve Default Service Account Token

	Role-Based Access Control
	List Roles
	List Role Bindings
	List Cluster Roles
	List Cluster Role Bindings

	Monitoring
	Tekton Pipelines
	Appsody
	Helm
	Common commands

	Kubernetes Dashboard
	Kubernetes Metrics Server
	Knative

	Red Hat
	Red Hat Universal Base Image
	Run Examples

	Quay.io

	OpenShift
	Architecture
	Operator Lifecycle Manager
	OpenShift Container Platform Web Console

	OpenShift Resources
	DeploymentConfigs
	Continuous Integration
	OpenShift Service Mesh
	OpenShift Image Registry

	Health Checks
	OpenShift Serverless
	Autoscaling

	OpenShift do (odo)
	Listing devfiles
	Create application

	CodeReady Workspaces
	Red Hat Ansible Automation Platform
	Networking
	Logging
	Application Configuration
	Environment Variables
	Secrets
	ConfigMaps
	Downward API

	Persistent Storage
	PersistentVolumeClaim

	Templates
	Prometheus
	Alert Rule

	YAML Examples
	Custom Resource Definition
	Jenkins BuildConfig Pipeline

	OKD
	CodeReady Containers
	minishift
	YAML Manifest
	oc

	OpenShift Container Platform
	Recipe
	Links
	Best practices
	Web Console
	Installation
	Persistent Storage

	OpenShift Online
	OpenShift Dedicated

	IBM Cloud
	IBM Cloud RedHat OpenShift Kubernetes Service (ROKS)
	IBM WebSphere Automation
	IBM Cloud Transformation Advisor (TA)
	Generate reports from traditional admin console

	Mono2Micro
	Architectures
	Resource Groups
	Hazelcast
	StockTrader Sample Application
	IBM Cloud Container Registry

	Amazon Web Services (AWS)
	Amazon Elastic File System (EFS)

	Java J9 in Containers
	Recipe
	Container Images
	Run Examples
	Containerfiles

	HotSpot Java in Containers
	HotSpot Java
	Run Examples

	Liberty in Containers
	Recipe
	Container Images
	Resources
	Background
	Environment
	Shared Class Cache in Containers
	Run Examples
	Log Analysis Dashboards
	WebSphere Liberty Operator
	Open Liberty Operator
	Containers
	Examples

	Adding server.xml Configuration
	Security
	Kubernetes
	Configuration Secrets

	Installing Fixes
	Containerfiles

	WebSphere Application Server traditional in Containers
	Recipe
	Container Images
	Resources
	Migrating from tWAS
	Log Analysis Dashboards
	Docker
	Examples

	Virtualization
	Virtualization Recipe
	Key Concepts
	Guest Mobility
	VMWare
	esxtop
	vMotion
	Networking
	Large Pages
	Ballooning

	Hyper-V
	Guest Operating Systems
	Virtualized Linux

	Cloud
	Key Concepts
	Trends
	Scalability and Elasticity

	Databases
	Sub-chapters
	IBM DB2
	IBM DB2 Recipe
	DB2 JCC Driver
	General JCC Recommendations
	Read Timeout
	timerLevelForQueryTimeOut
	Keep-alive
	DB2 on z/OS

	Server
	Query Execution Times
	Tablespaces
	Buffer Pools
	Indexing
	Logging
	Reorg
	Runstats
	Explain
	Isolation Levels
	Lock Timeouts
	Query Tuning
	Disk
	WLM Pressure Valve
	DB2 Configuration
	Snapshots
	db2batch
	IBM DB2 for z/OS
	DB2 on Linux on Power
	Write I/O to the Transaction Log
	Data Compression
	db2pd

	Oracle Database
	Client
	Read Timeout

	Server
	Basic Commands
	Automatic Workload Repository Reports
	Automatic Memory Management

	Apache Derby
	ij

	Other Databases
	Tibero Database

	Caching and WebSphere eXtreme Scale
	Caching Recipes
	General Caching Topics
	WebSphere eXtreme Scale (WXS)
	Catalog Servers
	Container Servers
	Example development objectGridDeployment.xml
	Example non-development objectGridDeployment.xml

	WXS Client
	Example objectGrid.xml
	Example code to put and get from a grid

	Best Practices
	Thread Pools
	Near Cache
	Spring Integration
	Monitoring
	Performance Tracing

	Offload Caching
	eXtreme IO (XIO)
	eXtreme Memory (XM)
	Data Serialization
	COPY_TO_BYTES
	ORB
	eXtreme Data Format (XDF)

	CAP Theorem
	Queries
	Setting eXtreme Scale tuning options
	For standalone client JVM
	For standalone container JVM:

	xscmd
	Suspend and Resume Status
	Performing Maintenance

	Application Considerations
	FIFO Queue
	Transactions

	IBM MQ
	IBM MQ Recipe
	MQ versus WAS SIB
	WAS Considerations
	WAS MQ Resource Adapter
	Best Practices
	MQ Documentation
	Basic MQ Display Commands
	DISPLAY QSTATUS
	Performance differences across MQ versions
	Windows and UNIX Performance Tuning
	WMQ JMS Client
	Resources

	Authentication
	Lightweight Directory Access Protocol (LDAP)
	LdapQuery.ear
	IBM Tivoli Directory Server (TDS)
	OpenLDAP
	Monitoring

	Competition and Migration
	Comparing Products
	WAS Migration Performance Differences
	Known Migration Issues
	Linux

	IBM App Connect Enterprise
	Terms
	Set JVM options
	jvmSystemProperty
	Using environment variables

	Verbose garbage collection
	Request Thread Dump
	Request Heap Dump
	Request System Dump
	JDBC
	Diagnostic Trace

	IBM Business Automation Workflow
	BAW Recipe
	Business Object Parsing Mode

	IBM InfoSphere Master Data Management
	General MDM Best Practices
	Database Response Times

	IBM Maximo
	MBO PhantomReferences

	IBM Operational Decision Manager
	Tuning Guide
	Rule Execution Server
	Performance Tuning
	Decision Engine
	Classic Rule Engine

	Troubleshooting
	Sub-chapters
	Troubleshooting Recipe
	The Scientific Method
	Tips
	Initial Engagement
	Analyzing Logs
	Organizing an Investigation
	Summary
	Problems
	Hypotheses for Problem #1
	Hypotheses for Problem #2
	Experiments/Tests

	Site Reliability Engineering
	Root Cause Analysis (RCA)
	Analysis versus Isolation
	IBM Support
	How to Upload Data to a Case

	WebSphere Application Server Troubleshooting and Performance Lab
	Problem Diagnostics Lab Tookit (PDTK)
	No modes: An exception?
	Troubleshooting Operating Systems
	Sub-chapters
	Debug Symbols
	Eye Catcher

	Troubleshooting Linux
	General Troubleshooting Commands
	Kernel symbol table
	pgrep/pkill
	kill
	Find who killed a process
	Find why a process killed itself
	Find who killed another process

	File I/O
	fsync

	sosreport
	systemd
	Killing nohup processes

	Signal handlers
	Process core dumps
	Request core dump (also known as a "system dump" for IBM Java)
	Core dumps from crashes
	systemd-coredump

	Process Virtual Address Space
	smaps
	pmap

	gdb
	Loading a core dump
	Common Commands
	Print Virtual Memory
	Process Virtual Address Space
	Debug a Running Process
	Process glibc malloc free lists
	gcore

	Shared Libraries
	glibc
	malloc

	strace
	Native Memory Leaks
	eBPF
	LinuxNativeTracker

	Debug Symbols
	Frame pointer omission
	SystemTap (stap)
	Network
	Process CPU Deep Dive
	Hung Processes
	Kernel Dumps
	Change root password
	Fix non-working disk
	journald
	Persist all logs

	Battery Status
	Administration
	Create New Superuser

	Basic Diagnostics
	Sending a kernel patch
	Error Codes (errno.h)
	Sysrq Keys
	Check if sysrq enabled
	Enable sysrq
	sysrq characters
	Execute sysrq

	Troubleshooting AIX
	Java interaction
	Request core dump (also known as a "system dump" for IBM Java)
	Signals
	Find PID that owns a socket
	Method 1
	Method 2
	Method 3

	Kernel Trace
	Trace source of kill signal

	Useful Commands
	Querying Queue Depth with Netstat
	Debug Symbols
	Analyzing Native Memory with svmon
	Native Memory Leaks
	dbx
	Tips
	proc
	thread
	Native Stacks
	where
	map
	coremap
	Print memory
	malloc
	corefile
	fd
	Related Commands

	Compressing Files
	compress
	tar.gz

	Splitting Files
	Network
	DNS Cache
	ARP
	Example Script to Deny/Allow Packets on a port

	error.h and errno.h

	Troubleshooting z/OS
	Signals
	Console Dump
	High CPU
	Sending messages to the MVS log and slip trapping on them
	System Dumps
	IPCS
	VSMDATA

	C/C++
	dbx
	LE Native Memory

	Troubleshooting IBM i
	Gathering Javacores using WRKJVMJOB
	Signals

	Troubleshooting Windows
	Common Commands
	Batch Scripts
	Example Batch Script
	Delayed variable expansion

	PowerShell
	gcim

	Windows Management Instrumentation (WMI)
	wmic

	Update the hosts file
	Request thread dump
	Request core dump (also known as a "system dump" for IBM Java)
	Minidump versus Full User Mode Dump

	Request core dump from Task Manager
	EXE has stopped working
	Determine the Current Working Directory of a Process
	Determine the File Locations of stdout and stderr
	Find who killed a process
	Error: No buffer space available (maximum connections reached?)
	windbg
	Symbols
	Process and Thread Info
	Crash Dump Analysis
	Virtual Address Space (!address)
	Native memory heaps (!heap)
	Dump virtual memory
	Native Stack Sizes
	Module
	Dump flags

	Frame Pointer Omission (FPO)
	Debug and Release Modules
	Symbols
	Desktop Heap
	BIOS and UEFI
	Hosts file
	Signals

	Troubleshooting macOS
	Signals
	xattr
	Core Dumps
	lldb
	Process Thread dump
	Core dumps

	Tips
	Open Application from Terminal
	Network
	mtr

	Security
	Termination Reason: CODESIGNING

	System Integrity Protection
	SIP Status
	Disable System Integrity Protection

	Enable Kernel Symbolication
	Recovery Partition
	Enable Non-Maskable Interrupt

	Add User to a Group
	Comparing and Merging Files
	Kernel core dumps

	Troubleshooting Solaris
	Mapping LWP ID to Java thread
	Request core dump
	Debug Symbols

	Troubleshooting HP-UX
	32-bit Native OutOfMemoryErrors
	gdb/wdb
	Print full command line of running program

	Troubleshooting Java
	Sub-chapters
	Request Heap Dump
	Excessive Direct Byte Buffers
	Java Surgery
	Core Dumps
	Ensure core soft and hard ulimits are set to unlimited
	Ensure core piping is configured properly or disabled on Linux

	Native Java Agents
	Java Serialization
	Verbose Garbage Collection
	Killing Threads
	Patching

	Troubleshooting OpenJ9 and IBM J9 JVMs
	IBM Java Versions
	Debug symbols
	Thread Dump (javacore.txt)
	Request Thread Dump
	Process Limits (ulimits)
	NATIVEMEMINFO
	Virtual Memory Layout
	Accumulated CPU Time
	Thread States

	Heapdumps and system dumps
	Portable Heap Dump (PHD)
	System Dumps (core.dmp)

	Late attach
	jextract
	jcmd
	-Xdump
	Changing the Default Directory of Dump Artifacts
	Stack Traces of Large Object Allocations
	Thrown Exceptions
	Tool Agent
	Caught Exceptions

	-Xtrace
	Tracing Methods
	Forced Garbage Collections
	Stack Traces of the Sources of Threads
	I/O Tracing
	Network Tracing
	Debugging File Leaks
	Tracing Profiler

	jdmpview
	List all instances of a class
	Show details of a class
	Java object information
	Static fields of a class with pointer
	Dump arbitrary memory
	Extracting Xtrace
	What caused a core dump
	Strong paths to GC roots
	Find details about an object and its heap generation
	Search for object references
	Accumulated CPU time of threads
	Advanced Commands
	Check if core dump is in an exclusively locked state
	Check which thread has exclusive access in a core dump
	Map method address to method name
	Dump byte codes of a class
	Dump byte codes of a method
	Query Min and Max Heap
	Custom DDR Command
	Debugging jdmpview

	-Xcheck
	Snap Traces
	Excessive Direct Byte Buffers
	JIT
	Excluding JIT methods
	Always JITting methods
	Tracing the JIT sampler

	OutOfMemoryError
	Native OutOfMemoryErrors on 64-bit
	Native Stack Size (-Xss)
	Known Crashes
	Debug Mode
	LaunchAnywhere
	Build OpenJ9

	Troubleshooting HotSpot JVM
	jcmd
	jmap
	histo

	jinfo
	Thread Dump
	Request Thread Dump

	HPROF Heapdumps
	Generating HPROF heapdumps

	Use DTrace to Produce Stacks Calling certain Methods
	Use -XX:OnOutOfMemoryError to Spawn jmap
	Use -XX:OnOutOfMemoryError to Spawn gcore
	Code to Request Diagnostics from within the JVM

	Troubleshooting IBM Java
	Troubleshooting Oracle Java
	Troubleshooting WebSphere Application Server
	Sub-chapters
	Education

	Preparing for Tracing
	Notes
	Increasing Resiliency for IBM WebSphere Application Server Deployments
	Malpractice: Broadly Disabling Core Logging
	Command line HTTP client with a keep-alive socket

	Troubleshooting WAS traditional
	Troubleshooting WAS traditional Recipe
	Server Start
	Initial Trace Setting
	Open for e-business
	Trace State Changed
	WAS and Java
	PID File
	Stopping Servers
	Request Thread Dump
	JVM.dumpThreads

	Request Heap Dump
	Request System Dump
	ClassLoader Leaks
	Thread IDs in Logs
	TrapIt.ear
	High Availability Manager
	JVM Panic

	Messaging
	Users Seeing other Users' Data
	Strategy 1: Open a PMR with IBM Support
	Strategy 2: Application code review

	DRS or HA Manager Errors
	Strategy 1: Check version/fixpack level of DMgr and JVMs putting out errors
	Strategy 2: Application code is using DistributedMap class

	Application Works in some Nodes
	Strategy 1: NoClassDefFoundError thrown

	Patching Java

	Troubleshooting WebSphere Liberty
	Troubleshooting WebSphere Liberty Recipe
	Application Start and Stop
	Server Dumps
	Request Thread Dump
	Request Heap Dump
	Request System Dump
	Client fails to Connect to Liberty Messaging Engine
	Strategy: Fix server.xml endpoints

	Sending messages.log and trace.log to stdout on Linux
	Override Context Root
	ws-javaagent.jar

	Troubleshooting Web Servers
	Troubleshooting Web Servers Recipe

	Troubleshooting Containers
	Linux Containers
	PID 1

	Troubleshooting IBM MQ
	Documentation
	Basic Display Commands
	Multiple Installations of MQ on the Same Machine
	Log Files
	Reason Codes and Error Messages
	First-failure Support Technology (FST), First-failure Data Capture (FDC)
	Tracing
	Commands to Enable and Disable Tracing
	Real Time Monitoring
	Event Monitoring
	MS0P
	Not Authorized Events
	Put and Get Programs
	SupportPacs
	Message Monitoring
	Retry on Server Down

	Troubleshooting WXS
	Hung Thread Detection
	Unable to Load Data into the Grid
	Strategy 1: Object grid failed to start

	Troubleshooting WebSphere MQ

	HCL Commerce
	Caching
	Dynacache

	HealthCenter
	Redbooks
	Deployment
	Troubleshooting
	Web server

	HCL Portal
	Appendix
	Sub-Chapters
	Resources
	Opinions
	IBM HeapAnalyzer versus the Eclipse Memory Analyzer Tool

	IBM Installation Manager (IM)
	Offline Installations
	imcl
	Help
	List Installed Packages
	List Installed Features of a Package
	Other Examples
	Save Credentials
	Update Package
	Console Mode

	Installing Fix Packs and i-Fixes

	POSIX
	Shells
	Current Shell
	Cross-Shell Topics
	bash
	zsh
	Script to watch netstat to create file triggers

	awk
	Truncating Logs
	Defunct Processes
	Example C Program that Crashes
	SSH
	SSH Port Forwarding
	kill
	less
	tail
	sort
	bc
	sed
	Perl
	wget
	netcat (nc) / openssl s_client
	openssl
	find
	gpg
	File Encryption
	File Decryption

	touch
	Filenames and special characters
	Auto completion
	Keyboard shortcuts:
	tac
	nl
	Types of commands
	Combining commands
	Wildcards
	htpasswd
	Makefiles
	Makefile Basics
	Makefile Example
	PHONY

	Git
	Squash a Pull Request

	Internet Domains
	Reserved Domains

	OpenLDAP
	Configuration
	LDAP Data Interchange Format (LDIF)
	ldapadd
	Example: Create Organization
	Example: Add User

	ldapsearch
	Example: Find Users by Attribute
	Example: Find Groups that Contain a User

	ldapmodify
	Example: Modify User Password
	Example: Add Member to Existing Group

	ldapwhoami
	Monitoring

	Wily Introscope
	OpenOffice/LibreOffice
	Calc
	Tips
	Dates/Times

	Acronyms
	Firefox
	Enable Firefox Debug Logging at Runtime
	Enable Firefox Debug Logging at Startup
	Source

	Other
	VSCode
	HCL Notes
	Change Email Format

	Revision History
	1.0.59 (October 2023)
	1.0.58 (January 2023)
	1.0.57 (October 2022)
	1.0.56 (August 2022)
	1.0.55 (February 2021)
	1.0.54 (January 2021)
	1.0.53 (December 2021)
	1.0.52 (November 2021)
	1.0.51 (July 2021)
	1.0.50 (April 2021)
	1.0.49 (March 2021)
	1.0.48 (March 2021)
	1.0.47 (January 2021)
	1.0.46 (November 2020) (14 major updates)
	1.0.45 (October 2020) (23 major updates)
	1.0.44 (September 2020) (41 major updates)
	1.0.43 (August 2020) (57 major updates)
	1.0.42 (July 2020)
	1.0.41 (June 2020)
	1.0.40 (June 2020)
	1.0.39 (May 2020)
	1.0.38 (March 2020)
	1.0.37 (February 2020)
	1.0.36 (February 2020)
	1.0.35 (January 2020)
	1.0.34 (November 2019)
	1.0.34 (November 2019)
	1.0.33 (October 2019)
	1.0.32 (September 2019)
	1.0.31 (August 2019)
	1.0.30 (April 2019)
	1.0.29 (February 2019)
	1.0.28 (January 2019)
	1.0.27 (November 2018)
	1.0.26 (November 2018)
	1.0.25 (November 2018)
	1.0.24 (October 2018)
	1.0.23 (October 2018)
	1.0.22 (October 2018)
	1.0.21 (May 2018)
	1.0.20 (March 2018)
	1.0.19 (January 2018)
	1.0.18 (September 2017)
	1.0.17 (August 2017)
	1.0.16 (April 2017)
	1.0.15 (April 2017)
	1.0.14 (January 2017)
	1.0.13 (June 2016)
	1.0.12 (February 2016)
	1.0.11 (December 2015)
	1.0.10 (December 2015)
	1.0.9 (December 2015)
	1.0.8 (December 2015)
	1.0.7 (December 2015)
	1.0.6 (September 2015)
	1.0.5 (August 2015)
	1.0.4 (May 2015)
	1.0.3 (April 2015)
	1.0.2 (April 2015)
	1.0.1 (February 2015)
	1.0.0 (January 2015)

	Notices
	Copyright
	Statement of Support
	Terms of Use
	Trademarks and Service Marks
	License
	Authors
	Contributors

	Table of Contents

	WebSphere Portal
	pureScale
	DB2
	WAS Workload Balancing and Automatic Client Reroute

	WebSphere ESB
	Processing Large Objects
	Aggregation Design Patterns
	Asynchronous Invocation of Synchronous Services Design Patterns
	Shared Libraries
	Parsing Modes
	Memory Analyzer Plugin
	Comparative Transformation Technologies (XSLT vs. Business Object Map)
	First Messing Response Time
	Synthetic Messages
	XPath and XSL Pre-compilation
	Pre-loading of Mediation Flows
	Associated APARS

	Restricting the Instances of Mediation Flows on the JVM Heap
	V6 Run-time / Applications
	V7 Run-time / Applications

	Throttling Individual Applications
	V6 Generated Applications

	Defining a Timeout on Synchronous JAX-WS Imports
	Best Practices and Tuning Red Papers

	WebSphere DataPower
	WebSphere MQ
	WebSphere Commerce

