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Model falsification diagnosis and sensor placement for leak
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Abstract

Pressurized pipe networks used for fresh-water distribution can take advantage of recent

advances in sensing technologies and data-interpretation to evaluate their performance.

In this paper, a leak-detection and a sensor placement methodology are proposed based

on leak-scenario falsification. The approach includes modeling and measurement

uncertainties during the leak detection process. The performance of the methodology

proposed is tested on a full-scale water distribution network using simulated data.

Findings indicate that when monitoring the flow velocity for 14 pipes over the entire

network (295 pipes) leaks are circumscribed within a few potential locations. The

case-study shows that a good detectability is expected for leaks of 50 L/min or more.

A study of measurement configurations shows that smaller leak levels could also be

detected if additional pipes are instrumented.

Keywords: System identification, leak detection, sensor placement, data interpretation,

water distribution, uncertainty, error-domain model falsification

1. Introduction

The quantity of fresh water lost due to leaks in water supply networks may reach

up to 50% of the input in cases of insufficient maintenance [23, 26]. Leaks involve not

only costs; they may also pose a threat to the environment and human health [7, 30].

For these reasons, current research aims to extend the usefulness of computer-aided

diagnosis techniques for the detection of leaks in pressurized pipe networks.

Current computer-aided leak-detection techniques can be divided into two categories:

external and internal leak detection systems [1]. Since the 1990’s acoustic logging

has become the most widely used external detection method [27, 29]. Either vibration

sensors or hydrophones are fixed to the pipes to record ambient noise. Leaks are detected

when the signal deviates from the normal recordings. Even through these techniques are

able to detect small leaks, they usually require a large number of sensors spread over

the entire network.

Other external methods such as ground penetrating radar have received an increasing

interest in recent years [12, 19]. This non-destructive approach provides cross sectional
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profiles of the soil around pipes in order to detect water leakage. However, its application

is time consuming and not suited to large urban areas. Other liquid detection methods

use sensing cables buried beside pipes to detect impedance changes when soil gets

saturated with fluid [18]. Cables are connected to a central processing system where the

data is collected and interpreted. Although accurate, this system has the disadvantage of

being invasive.

The second category of leak-detection methods gathers techniques that use con-

tinuously monitored data (usually water velocity or pressure) to infer the position of

leaks using models. These techniques are referred to as internal or inferential methods.

One of the first methods was introduced by Ligget and Chen [24] and have since been

derived in a number of techniques [8, 9, 13, 14, 22, 28, 33]. These methods are able to

take advantage of the interconnectivity of networks to reduce the number of sensors

required.

In the field of model-based data interpretation, several approaches are calibrating

model parameters (e.g. the leak location) by minimizing the discrepancy between

predictions and measurements [20, 25]. These approaches are known for their poor

predictive capability in case where models contain simplifications compared with the

real systems [2, 3, 5]. Approaches such as GLUE [3, 4] and error-domain model

falsification [15–17] may be used to identify parameter values such as leak locations

using models without having to define completely the error structure associated with

model predictions. The error-domain model falsification approach was developed in the

field of structural identification. The central idea is to falsify model instances (parameter

sets) for which the difference between predictions and measurements are larger than the

maximal plausible error. Maximal plausible errors are determined through combining

modelling and measurement uncertainties.

This paper builds on the error-domain model falsification methodology to provide

a leak detection methodology for pressurised pipe networks. The main objective is to

investigate the viability of a detection system at the scale of a city through quantifying

the relationship between the number of sensors used and the expected leak-detection

performance. Section 2 describes the data-interpretation approach and Section 3 presents

a case-study where the leak detection capability is studied using a full-scale water

distribution network located in Lausanne, Switzerland. Finally, a discussion of results is

provided in Section 4.

2. Methodology

In the context of leak detection, the hypothesis tested is that a leak is occurring at

a specific location in the network. Such hypothesis is parametrized in the model of

the system as a leak scenario. A leak scenario is falsified if the differences between

predicted and measured flow velocities in the network are larger than the maximal

plausible error, for any measurement location.

Prior to measurement, choices have to be made regarding where to place sensors on

the network to most efficiently detect leaks. These decisions are founded on a systematic

methodology using simulated measurements. The next subsections describe the system

variables (§2.1), provide details on how to falsify leak scenarios (§2.2), and shows how

to generate simulated measurements to design optimized measurement systems (§2.3).

2.1. Description of the system variables

When the right values for a vector of model parameters θ∗ = [θ∗1 , . . . , θ
∗
max] are

known, the predictions returned by a model g(θ∗) corresponds to the real quantity Q

2



Goulet, J., Coutu, S., and Smith, I. (2013). Model falsification diagnosis and sensor

placement for leak detection in pressurized pipe networks. Advanced Engineering

Informatics, 27(2):261— 269.

plus a modeling error ǫmodel. The same happens with observations where a measurement

y represents the real quantity Q plus a measurement error ǫmeasure. This relation is

expressed in Equation 1.

g(θ∗)− ǫmodel = Q = y − ǫmeasure (1)

By reorganizing terms of Equation 1, the residual of the difference between a model

prediction and a measurement is equal to the difference of model and measurement

errors. This relation is expressed in Equation 2.

g(θ∗)− y = ǫmodel − ǫmeasure (2)

The real value for an error ǫ cannot be exactly known. Instead, the probability of error

values can be described by a random variable U having a probability distribution function

(pdf), fU (ǫ). Uc,i is a random variable representing the combined uncertainty obtained

by computing the difference between modeling and measurement uncertainty sources for

a comparison point where predictions and measurements are available i ∈ {1, . . . , prec}.

In the case of pressurized pipe networks, the quantities compared are the fluid velocities

in pipes recorded and predicted for prec locations, where prec is smaller or equal to the

total number of pipes pmax. The combined uncertainty represents the expected residual of

the difference between predicted and measured values. Techniques available to combine

uncertainties are presented in ISO guidelines [21]. Leak scenarios are considered as

plausible if the residual outcomes are included in the intervals [Tlow,i, Thigh,i]. These

threshold bounds define the shortest intervals including a target probability φ ∈]0, 1] for

the domain T (see Equation 3).

T = [Tlow,1, Thigh,1]× [Tlow,2, Thigh,2]× . . .× [Tlow,prec
, Thigh,prec

] ⊆ R
prec (3)

Also, threshold bounds can be conservatively set to be the shortest intervals [Tlow,i, Thigh,i]
including a target probability φ1/prec as presented in Equation 4.

{

Tlow,i, Thigh,i : φ
1/prec =

∫ Thigh,i

Tlow,i

fUc,i
(ǫc,i)dǫc,i

}

∀i ∈ {1, . . . , prec} (4)

This methodology employs the S̆idák correction [32] where the realizations of

random variables Uc,i have a probability larger or equal to φ of simultaneously lying

within threshold bounds (see Equation 5). It ensures that the methodology do not

wrongly discard a leak scenario with a probability larger or equal to 1 − φ. This has

been shown to be feasible without requiring the definition of uncertainty dependencies

defining the error structure between several comparison points [16].

P (∩prec

i=1 Tlow,i ≤ Uc,i ≤ Thigh,i) ≥ φ (5)

2.2. Leak-scenario falsification

In the following section, gi(θ) represents the model of the network where i ∈
{1, . . . , prec} corresponds to the pipe number where flow velocity predictions vi are

extracted from the model. θ = [θ1, . . . , θnmax
] is a vector containing leak flows for each

node location where leak scenarios are simulated and nmax is the number of nodes in

the network. An illustrative example of a network is presented in Figure 1. Here, there

are prec ≤ 7 possible measurement locations and nmax = 6 possible leak scenarios,

considering that leaks occur at one location at the time.
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Figure 1: Simple network illustrating the leak flows and and water velocities in pipes. The total number of

nodes is nmax = 6 and the total number of pipes is pmax = 7.

Leak scenarios are generated by simulating a demand of θj = C L/min at a node j ∈
{1, . . . , nmax}, when the demand at all other nodes is set to 0, ∀k ∈ {1, . . . , nmax} \
{j} : θk = 0. A leak scenario (θj 6= 0) is falsified if the residual of the differences

between predicted and measured values is outside threshold bounds for any comparison

point i ∈ {1, . . . , prec}. This corresponds to the situation where Equation 6 is not

satisfied.

∀i ∈ {1, . . . , prec} : Tlow,i ≤ gi(θ)− yi ≤ Thigh,i (6)

Leak scenario falsification is schematically presented in Figure 2, where flow ve-

locity measurements are compared with a database containing prec flow velocity pre-

dictions computed for nmax simulated leak scenarios. Based on the model and mea-

surement uncertainties, unlikely leak scenarios are falsified leading to a set containing

CL ∈ {1, . . . , nmax} candidate leak-scenarios.

2.3. Measurement system design and simulated measurement

In order to analyze the efficiency of measurement systems, simulated measurements

are used to quantify the number of candidate leak-scenarios that are expected to be

identified. When a leak is simulated at a node j (θj 6= 0), the variation of flow velocity

simulated in each pipe due to this leak is stored in a vector vθj of length prec. prec is

the number of pipes where predictions and measurements are compared.

Based on Equation 1, a vector ys containing simulated measurements is defined as

the difference between the predicted flow velocities vL for a randomly selected leak

scenario and a vector Uc = [Uc,1, . . . , Uc,prec
]T containing realizations of the random

variables that correspond to the combined uncertainty for each comparison point. This is

presented in Equation 7, where L is a discrete uniform random variable defined between

1 and nmax.

ysim = vL −Uc (7)

Each instance of simulated measurements ysim is used to emulate the falsification

of unlikely leak scenarios according the the methodology presented in §2.2. Each time

simulated measurement instances are generated, the number of candidate leak-scenarios

CL that remains non-falsified is stored in a vector ΥCL. Also, the radius RD including

all candidate leak-scenarios is stored in the vector ΥRD. After evaluating ΥCL and

ΥRD for several instances of simulated measurements (usually several hundreds), the
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Figure 2: Framework for the identification of leak scenarios compatible with measurements. (a) An initial set

of leak scenarios is created by simulating leaks at each location j and predicting flow velocities for pmax

locations. (b) The network is instrumented with pmax flow velocity sensors. (c) Predicted and measured

velocities are compared for each location i. Unlikely leak scenarios are falsified leading to a set of candidate

leak-scenarios (d).

number of expected candidate leak-scenarios and the expected radius including them

are represented by empirical cumulative distribution functions (cdf s) FΥCL
(CL) and

FΥRD
(RD). These cdf s represent, for a given measurement system, the probability

of obtaining a maximal number of candidate leak-scenarios and a maximal radius

including all leaks. The metric used to quantify the performance of a flow velocity sensor

configuration is the inverse cdf of ΥCL determined for a probability φF , F−1

ΥCL
(φF ). In

the example of cdf presented in Figure 3 there is a probability φF = 0.95 or obtaining a

candidate leak-scenarios set containing less than 40% of the initial number of scenarios;

F−1

ΥCL
(0.95) = 40%. Examples better and worse expected identifiability are also

presented.

For practical applications, it is not possible to test all combinations of sensors.

Therefore, optimization algorithms are necessary to reach an acceptable performance

while testing a limited number of sensor configurations. For this study, an inverse

greedy algorithm [17] is used to find an optimized population of sensor configurations.

The optimization method starts by computing the expected number of candidate leak-

scenario F−1

ΥCL
(φF ) obtained for the measurement configuration using all N = prec

sensors. After, it iteratively tests each possible combination of N − 1 sensors to find the

set of sensors leading to the lowest number of candidate leak-scenarios. This iterative

process is repeated until a single sensor location is left. This algorithm provides a front

of optimized sensor configurations in less than p2max/2 iterations.

The output of the optimization provides multiple solutions having optimized per-

formance and numbers of sensors. Figure 4 illustrates the type of relationship obtained

between the number of sensors used and the number of expected candidate leak-scenarios
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a maximal candidate leak-scenario set size. In this example, there is a probability of 0.95 of identifying a set

of candidate leaks containing less than 40% of the initial set of possible leaks.

F−1
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(φF ) computed for a certainty of φF . Decision-makers may use results presented

in this plot to decide which sensor configuration to use based on the performance sought

and budget constraints.
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Figure 4: The influence of the number of sensors used on the efficiency of locating a leak within a limited

number of locations

Figure 5 presents a flowchart summarizing the steps involved in the evaluation

of sensor configuration performance. Note that this flowchart is presented so it is

independent of the optimization algorithm used. In the first step, a sensor configuration

is chosen. Then the maximal number of candidate leak scenarios F−1

ΥCL
(φF ) is computed

using 1000 instances of simulated measurements to emulate the falsification of unlikely

leak scenarios. In other similar studies [16, 17] this number of simulated measurements

was sufficient to obtain stable empirical cumulative distribution functions FΥCL
(CL)

and FΥRD
(RD). When the empirical distribution function is not smooth or diverges

significantly from a Gaussian cdf, a convergence study may be required to ensure

that the number of samples taken is sufficient. If either all or a sufficient number of

combinations of sensors have been tested, the algorithm stops and plots the optimal

front of measurement configurations. Otherwise, additional sensor configurations are
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tested. The criteria used to determine if a sufficient number of combinations of sensors

have been tested depends on the optimization algorithm chosen.

3. Case-study

The methodology proposed is applied to the water distribution network of the city

of Lausanne, Switzerland. This network is made of several independent sub-networks

of different sizes. In this study, we focus on one of the sub-networks, shown in Figure 6.

A model of this network is created using the software EPANET [31].

This network contains pumps feeding a tank located at the top right of the network.

This reservoir provides water to the network made of 295 pipes and 263 junctions

(nodes). Consumption varies between 50 and 250 m3/h, with an average demand of

150 m3/h. Leaks in the network are reported at nodes in order to avoid adding nodes in

the model for the purpose of simulating leaks. This simplification does not influence the

end results because this approach look for possible regions where leaks may occur rather

than looking for their exact leak location. In this study, only one leak is considered at a

time. Therefore, there are nmax = 263 possible leak scenarios.

To identify leaks accurately, flow is monitored when water consumption is low. If

measurements are taken during high consumption hours, water demands may be too

large to differentiate between what is attributed to consumption and what part of the

flow is attributed to a leak.

3.1. Monitoring devices

The accuracy of commercially available ultrasonic flow-meter devices is taken to

be ±2% of the measured flow. This study considered these devices because of their

non-invasive characteristics and their relatively high accuracy. Considering that a flow

sensor can be installed on each pipe, there are Pmax = 295 possible sensor locations.

No measurement data is employed; simulated measurements are generated (see §2.3).

This approach is necessary to determine good sensor configurations prior to sensor

installation.

3.2. Uncertainties

There are several sources of uncertainty associated with the flow velocity model, the

measurements and the water network itself. All uncertainties are represented by random

variables described as follows.

Secondary-parameter uncertainties are those having a direct influence on the network

flow-velocity model. In water distribution networks, common secondary-parameters

uncertainties are: node elevations, pipe diameters, minor losses, roughness coefficients

and water demand.

The uncertainty in the elevation of nodes is described using a Gaussian distribution

with a mean value of 0 mm and standard deviation of 50 mm. Such a level of accuracy

on the node position can be obtained using local non-invasive measurements such as

ground penetrating radars to accurately locate pipe depth [6, 19]. Uncertainties in pipe

diameters are described by a Gaussian distribution with a mean value of 0 mm and a

standard deviation of 5 mm. Uncertainties in minor-loss coefficients are described by

a Gaussian distribution with a mean value 1.8 and standard deviation 0.1. This value

is taken from specifications found in the EPANET documentation [31]. Uncertainty in

roughness coefficients is represented by a Gaussian distribution having a mean value

of 1 mm and a standard deviation of 0.1 mm. Uncertainty in the water demand at each
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Figure 6: Schematic representation of the water distribution network studied

node is modeled by an exponential distribution with a mean equal to the minimal water

demand on the entire network divided by 263 nodes. This distribution is chosen to

represent the situation where most consumptions are low and where there are few high

consumption locations. The total instantaneous minimal water demand in the network is

fixed at 25 m3/h. This flow demand is based on hourly averaged flow recordings made

over a year on the network. The minimum hourly demand is of approximately 50 m3/h.

The values for hourly averaged demand is presented in Figure 7.
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Figure 7: Typical hourly averaged water consumption measured over one day

These uncertainty sources lead to uncertain parameters within the model of the

network. Their influence on predicted flow velocities is found by propagating the uncer-

tainties related to parameter values in the model to obtain the uncertainties associated

with predicted velocities for each pipe. The sensor resolution uncertainty is taken as a

uniform distribution having as lower and higher bound ±2% of the measured value. The

uncertainty associated with model simplifications is represented by an extended uniform

distribution (EUD [16]) having a lower and higher bound of ±20% of the predicted

value and a β factor of 0.3. The EUD represents the uncertainty of bound positions as a

fraction β ∈ [0, 1] of the initial interval width. Here the model uncertainty is centered

on zero because of the close coupling of the system that makes the systematic bias

in model prediction difficult to estimate. Additional uncertainties attributed to other

minor sources are also modeled by an extended uniform distribution. The lower and
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higher bounds have a value of ±1% of the predicted value and a parameter β = 0.3.

For the purpose of generating simulated measurements, uncertainties are assumed to be

independent due to the close coupling of the system. Table 1 presents a summary of

uncertainty sources included in the analysis.

Table 1: Summary of uncertainty sources.

Uncertainty source Distribution type Distribution parameter Unit

Node elevation Gaussian mean = 0, σ = 50 mm

Pipe diameter Gaussian mean = 0, σ = 5 mm

Minor loss coefficient Gaussian mean = 1.8, σ = 0.1 -

Pipe roughness Gaussian mean = 1, σ = 0.1 mm

Water consumption Exponential mean = 25 m3/h

Sensor resolution Uniform ±2% % of the measured flow

Model simplifications EUD ±20%, β = 0.3 % of the mean predicted flow

Additional uncertainties EUD ±1%, β = 0.3 % of the mean predicted flow

3.3. Optimization of measurement-system configurations

Simulated measurements taken from potential leak scenarios are generated to design

an efficient measurement-system and to test the applicability of the approach. Iteratively,

a random leak scenario is chosen from the 263 possible scenarios. For the purpose

of designing the monitoring system, the leak level is taken to be C =100 L/min. The

flow velocity predictions associated with each simulated leak scenario are transformed

in simulated measurements to emulate the model falsification process. Examples of

simulated measurements are presented in Figure 8, where squares represent the location

of flow measurements, circles with a cross are the simulated leaks and filled circles are

the candidate leak-scenarios.

For this network, it is not feasible to perform an exhaustive search to find the optimal

measurement-system because more than 1088 combinations of sensors are possible.

The inverse greedy algorithm [17] is used to find optimized configurations of sensors.

Figure 9 presents the expected number of candidate leak scenarios F−1

ΥCL
(φF ) for each

optimized sensor configuration found. Here, the target φF = 0.95. In Figure 9, the

vertical axis corresponds to the expected number of candidate leak scenarios and the

number of sensors used is plotted on the horizontal axis.

In Figure 10, the expected radius for all leak scenarios is presented for the sensor

configurations tested. The vertical axis is the expected radius within which all potential

leaks are included. For both the number of candidate leak-scenarios and their radius, the

expected performance increases rapidly with the number of sensors used until it reaches

an asymptote. For engineering purposes, a good tradeoff between the expected perfor-

mance and the number of sensors used is reached with 14 sensors. The measurement

configuration is presented in Figure 11 where the 14 sensors chosen are represented by

squares.

Using the optimized sensor configuration found, the expected number of leak sce-

narios is studied for several levels of leak flow. This expected identifiability of the

monitoring system is presented in Figure 11 for leak levels of 100, 75, 50, and 25 L/min.

The cumulative distribution function for each leak level is shown in Figure 12.

For high certainty levels (φF = 0.95), the expected number of leak scenarios

identified remains low for leaks under 75 L/min. For lower certainty levels (φF =
0.50) good results are expected up to 50 L/min. The sensor placement optimization

procedure is repeated for a leak level of 25 L/min to test if by increasing the number

of measurements, the performance may be increased. Results are presented in Figure

10
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Figure 8: Examples of simulated measurements for Lausanne fresh-water distribution network.
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Figure 9: Relation between the expected number of candidate leak-scenarios and the number of flow

measurements used.
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Figure 10: Relation between the radius including all candidate leak-scenarios and the number of flow

measurements used.
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Figure 11: Optimized sensor configuration using 14 flow measurements.
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13. In this case, when monitoring 100 pipes, the number of expected leak scenarios

may be reduced almost by half compared with the situation where only 14 sensors are

used. Therefore, efficiently locating leaks in the water distribution network for a leak of

25 L/min is feasible if a sufficient number of pipes can be instrumented.
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Figure 13: Relation between the expected number of candidate leak-scenarios and the number of flow

measurement points used, for a leak level of 25 L/min.

If the identification of lower leak flow levels is required, an option could be to

reduce uncertainties associated with the model and measurements. The most important

uncertainty sources are water consumption and model simplifications. If these uncer-

tainties are reduced, better performance is expected for lower leak levels. Therefore

an important challenge for future work is to quantify more accurately uncertainties

associated with water consumption and flow distribution models.

4. Discussion

This work presents a model-falsification methodology for detecting leaks in water

distribution network. The falsification approach locates candidate leaks by falsifying

improbable leak scenarios. Local investigation techniques such as acoustic detection

systems can be used to further refine the actual leak location from candidate scenarios.

The approach is expected to be able to identify the location of a leak of 50 L/min

using 14 sensors. For lower leak flows, the detection performance of this approach

may be improved for instance, by increasing the number of sensors on the network.

Also, there is the possibility to couple the information gained using computer-aided

data-mining of past breakage history with this leak detection strategy in order to increase

its performance [10, 11].

In this paper, the methodology was tested with scenarios where leaks are always

located at a single location. Applying the methodology to spatially separated leaks

would require more research to maintain the leak detectability to the level obtained

in this paper. There is additional complexity associated with searching in a space of

possible leak combinations that grows exponentially with the number of simultaneous

leaks. Moreover, in addition to detect leaks, this methodology may as well be used for

other purposes such as the quantification of demands across networks.

Future work should compare the performance of the measurement system design

using the greedy algorithm with other stochastic search approaches. Also, the perfor-
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mance of the leak identification approach could be compared in laboratory with other

identification methods using reduced-scale benchmark pipe networks.

Conclusion

The leak-detection methodology is able to detect leaks in fluid-distribution pressur-

ized pipe networks and it is able to support the design of measurement systems. In the

case of the Lausanne water distribution network, based on simulated data using only

14 flow velocity measurements, leaks of 100 L/min in a radius of 500 m are expected

to be detected. The approach is also expected to be able to identify efficiently the

location of leaks of 50 L/min. For lower leak flows, the performance of this approach

can be improved, for example, by increasing the number of sensors in the network or by

reducing modelling and consumption uncertainties.
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nique Fédérale de Lausanne, Lausanne, Switzerland, 2012.

[16] J.A. Goulet, C. Michel, and I.F.C. Smith. Hybrid probabilities and error-domain structural identification

using ambient vibration monitoring. Mechanical Systems and Signal Processing, In press, 2012.

[17] J.A. Goulet and Ian F.C. Smith. Performance-driven measurement-system design for structural identifi-

cation. Journal of Computing In Civil Engineering, (accepted for publication, 2012).

[18] J.M. Henault, G. Moreau, S. Blairon, J. Salin, J.R. Courivaud, F. Taillade, E. Merliot, J.P. Dubois,

J. Bertrand, S. Buschaert, et al. Truly distributed optical fiber sensors for structural health monitoring:

From the telecommunication optical fiber drawling tower to water leakage detection in dikes and

concrete structure strain monitoring. Advances in Civil Engineering, (Article ID 930796):13 pages,

2010.

[19] J. Hugenschmidt and A. Kalogeropoulos. The inspection of retaining walls using GPR. Journal of

Applied Geophysics, 67(4):335–344, 2009.

[20] C.J. Hutton, L.S. Vamvakeridou-Lyroudia, Z. Kapelan, and D.A. Savic. Uncertainty quantification

and reduction (UWS) modelling: Evaluation report. Technical Report D3.6.1 PREPARED 2011.005,

PREPARED Enabling Change, 2010.

[21] JCGM. Guide to the expression of uncertainty in measurement supplement 1: Numerical methods for

the propagation of distributions. Number ISO/IEC Guide 98-3:2008/Suppl 1:2008. JCGM Working

Group of the Expression of Uncertainty in Measurement, 2008.

[22] S.H. Kim. Extensive development of leak detection algorithm by impulse response method. Journal of

hydraulic engineering, 131(3):201–209, 2005.

[23] A.O. Lambert. International report: Water losses management and techniques. Water science and

technology: water supply, pages 1–20, 2002.

[24] J.A. Liggett and L.C. Chen. Inverse transient analysis in pipe networks. Journal of Hydraulic Engineer-

ing, 120(8):934–955, 1994.

[25] W. Lijuan, Z. Hongwei, and J. Hui. A leak detection method based on EPANET and genetic algorithm

in water distribution systems. Software Engineering and Knowledge Engineering: Theory and Practice,

114:459–465, 2012.

[26] R. Mamlook and O. Al-Jayyousi. Fuzzy sets analysis for leak detection in infrastructure systems: a

proposed methodology. Clean technologies and environmental policy, 6(1):26–31, 2003.

[27] R. Pilcher. Leak location and repair guidance notes and. . . .. the never ending war against leakage.

Proceedings Water Loss, 2, 2007.

[28] Z. Poulakis, D. Valougeorgis, and C. Papadimitriou. Leakage detection in water pipe networks using a

Bayesian probabilistic framework. Probabilistic Engineering Mechanics, 18(4):315 – 327, 2003.

[29] A. Prodon, S. DeNegre, and T.M. Liebling. Locating leak detecting sensors in a water distribution

network by solving prize-collecting steiner arborescence problems. Mathematical Programming,

124(1):119–141, 2010.

[30] R. Puust, Z. Kapelan, DA Savic, and T. Koppel. A review of methods for leakage management in pipe

networks. Urban Water Journal, 7(1):25–45, 2010.

[31] L.A. Rossman. EPANET 2: users manual. US Environmental Protection Agency, Cincinati, OH, 2000.

[32] Z. S̆idák. Rectangular confidence regions for the means of multivariate normal distributions. Journal of

the American Statistical Association, 62:626–633, 1967.

[33] J.P. Viotkovskyo, A.R. Simpson, and M.F. Lambert. Leak detection and calibration using transients and

genetic algorithms. Journal of Water Resources Planning and Management, 126(4):262–265, 2000.

15



Goulet, J., Coutu, S., and Smith, I. (2013). Model falsification diagnosis and sensor

placement for leak detection in pressurized pipe networks. Advanced Engineering

Informatics, 27(2):261— 269.

Notation

N Number of loops

Q The true value for a quantity

T Threshold lower and upper bounds

T Multidimensional domain where threshold bounds are defined

U Uncertainty source described by a random variable

g(. . .) Model of the water network

nmax Number of nodes in the network

pmax Number of pipes in the network

prec Number of pipes measured

v Predicted flow velocity

y Measured flow velocity

ysim Simulated measured flow velocity

ΥCL&ΥRD Vectors containing respectively the number of candidate leak scenarios and the radius

including all leaks for each simulated measurement instance.

Υ Random variable describing quantities used during the computation of

expected identifiability metrics

ǫ Error instance

θ Physical parameter of a model. For leak detection it corresponds to leak flow

φ Target probability content ∈]0, 1]
φF Target certainty used as metric to quantify the performance of measurements ∈]0, 1]
fX Probability density function (pdf ) of a random variable X

FX Cumulative distribution function (cdf ) of a random variable X

F−1

X
Inverse cumulative distribution function of a random variable X
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