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Abstract

The ubiquitous use of mobile devices, sensors, and the linkage between them open up
opportunities for new applications using near real-time data processing and analytics.
Demands on information systems are high: huge amounts of data have to be processed
and results have to be delivered in near real-time. These needs are tackled by the field
of Data Stream Management. Processing data streams differs in many ways from static
data set processing as much of the data cannot be stored persistently. Likewise, de-
velopment methods for data stream-based applications have to be specifically adapted.
Process modeling has proved to increase the quality of information systems, but there
exists no model specifically for data stream applications. Furthermore, the production
of high quality applications requires means for a structured, iterative evaluation of the
application and its outcomes. Particularly, applications fed by unreliable data sources,
such as sensors, are prone to quality losses and errors. Hence, measurement, monitor-
ing, and optionally the correction of data quality problems must take a crucial part in
the development and evaluation of data stream applications. Data quality management
needs to be domain and application independent and smoothly integrated into a data
stream management system. These requirements have not been met satisfactorily so
far.

We counter the aforementioned issues by three main contributions. First, we pro-
pose a process model specifically tailored to the design, implementation, and, in par-
ticular, for the evaluation of data stream applications. To this end, we contribute a
thorough analysis of data stream management principles and technologies. We also an-
alyze existing process models in information management and discuss their suitability
to data stream applications. Second, we propose evaluation methodologies embedded
into the process model. Along these methodologies we design and implement a flexible
evaluation framework for data stream applications. Finally, we propose a methodology
and framework for data quality management for data stream applications. We first an-
alyze quality dimensions and metrics relevant to data stream applications. We elicitate
existing data quality management methodologies and present a methodology for data
stream-based applications. As a major contribution we implement a flexible, domain
and application independent data quality management framework for relational data
stream management systems based on the proposed methodology.

The process model and frameworks have been developed and empirically validated
and evaluated in the context of two domains, namely Connected Intelligent Transporta-
tion Systems and Mobile Health. Algorithmic solutions for particular problems in the
target domains have been devised and applied. Iterative evaluations using the proposed
frameworks led to crucial optimizations of the application results.
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Zusammenfassung

Die umfassende Nutzung von mobilen Endgeräten, Sensoren und deren Vernetzung
ermöglicht die Entwicklung neuer Anwendungen im Bereich der Echtzeitdatenverar-
beitung und -analyse. Die Anforderungen an Informationssysteme sind hoch: große
Datenmengen müssen verarbeitet und Ergebnisse in Echtzeit erzeugt werden. Das
Gebiet Datenstrommanagement beschäftigt sich mit diesen Anforderungen. Es unter-
scheidet sich sehr von der Verarbeitung statischer Datenmengen, da nicht alle Daten
persistent gespeichert werden können. Daher muss es auch spezielle Entwicklungsmeth-
oden für Datenstromanwendungen geben. Der Einsatz von Prozessmodellen kann zu
qualitativ besseren Informationssystemen führt, bisher gibt es aber kein Modell ex-
plizit für Datenstromanwendungen. Zur Erstellung qualitativ hochwertiger Anwendun-
gen muss man zudem eine fortlaufende, strukturierte Evaluierung durchführen. Ins-
besondere führen unzuverlässige Datenquellen, wie Sensoren, zu Qualitätseinbußen und
Fehlern. Daher müssen Messung, Überwachung und eventuelle Korrektur von Daten-
qualitätsproblemen bei der Entwicklung und Evaluierung von Datenstromanwendun-
gen eine zentrale Rolle spielen. Das Datenqualitätsmanagement sollte außerdem un-
abhängig von der Anwendung sein und sich gut in ein Datenstrommanagementsystem
integrieren. Dies wurde bisher nur unzureichend gelöst.

In dieser Arbeit gehen wir die genannten Probleme hauptsächlich mit drei Beiträgen
an. Zuerst schlagen wir ein Prozessmodell vor, das für das Design, die Implementierung
und speziell für die Evaluierung von Datenstromanwendungen geeignet ist. Dazu
analysieren wir ausführlich die Grundlagen und Technologien des Datenstrommanage-
ments. Wir analysieren existierende Prozessmodelle für Informationssysteme und deren
Eignung für Datenstromanwendungen. Als Zweites werden Methodiken für eine struk-
turierte Evaluierung erarbeitet und entlang dieser ein flexibles Evaluierungsframework
entworfen und implementiert. Als dritten Beitrag beschreiben wir eine Methodik und
ein Framework für das Datenqualitätsmanagement bei Datenstromanwendungen. Dazu
werden relevante Qualitätsdimensionen und -metriken analysiert, existierende Daten-
qualitätsmanagementmethoden beleuchtet und schließlich eine Methodik für Datenstro-
manwendungen präsentiert. Den zentralen Hauptbeitrag stellt das flexible, domänen-
und anwendungsunabhängige Framework zum Datenqualitätsmanagement für relatio-
nale Datenstrommanagementsysteme dar.

Das Prozessmodell und die Frameworks wurden im Kontext der Anwendungsfelder
Vernetzte Intelligente Transportsysteme und Mobile Gesundheit entwickelt, empirisch
validiert und evaluiert. Im Rahmen dieser wurden zusätzlich algorithmische Lösungen
für spezielle Probleme entwickelt und umfassend evaluiert. So konnten wir entschei-
dende Probleme und Einflüsse entdecken und Optimierungen vornehmen.
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Chapter 1

Introduction

Gartner prognoses that by 2020 a quarter billion connected vehicles will be on the road
and in general the number of connected things will reach 20.8 billion worldwide.12 The
amount of data produced by these devices will be tremendously large. Research in
information systems and management must provide means to tame the data and turn
it into business advantages.

Connectivity is a major requirement for many devices as users want to retrieve
additional information or send data to gain benefits, for example in terms of services.
The research fields of the Internet of Things (IoT) and Industry 4.0 address these
demands. Cheap sensors, high bandwidths, affordable mobile Internet connections,
and modern mobile devices promote excess data. Users not only demand to extract the
most of all data produced by the devices, but also to access the data in near real-time
to always get a current view on it. The abundance of real-time data opens up many
opportunities for new applications, research fields, and business branches. Real-time
trading of stocks or energy, health monitoring, sentiment analysis in social networks,
or monitoring of production lines are only a few examples of many, which evolved
due to the capabilities of real-time data processing. However, the huge amount of
data poses problems to common data management solutions, such as Data Warehouses
(DWHs). These solutions have worked fine for offline data analysis. For near real-time
querying and analysis of huge amounts of data (also termed Big Data) they are not
suited anymore.

Hofstee and Nowka (2013) describe the most demanding Big Data problems by four
V’s: volume, velocity, variety, and veracity. All four problems are tackled specifically
for real-time data by the research field of data stream processing. Data streams are
regarded as unbound sequences (i.e., with unknown end and size) of data items usually
being produced at a high rate and at a high amount (Babcock et al., 2002a). Data
Stream Management Systems (DSMSs) have been proposed to query, aggregate, or
filter this data in real-time enabling real-time data analysis (Golab and Özsu, 2010).

After about two decades of research, DSMSs have matured to distributed, powerful
data management products, which are used either as single solutions or as part of a
Big Data Analytics ecosystem (Dolas, 2015). Hence, real-time analytics also have been
adopted in industry and are utilized in a multitude of crucial business cases implement-
ing data stream applications. For example, Walmart monitors and analyzes its sales in
real-time, and Rolls-Royce monitors production lines using real-time analytics (Marr,
2016). However, to design and implement a complex, efficient, and reliable data stream

1http://www.gartner.com/newsroom/id/2970017
2http://www.gartner.com/newsroom/id/3165317
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CHAPTER 1. INTRODUCTION

application realizing such business cases is a challenging and time consuming task. As
with any other data management or software project, the project costs will multiply if
the solution is implemented different as required and expected.

Many steps and problems reoccur for all data stream applications during devel-
opment. Therefore, it would be beneficial for a developer to be guided through the
development process while considering the problems and tasks inherent to data stream
applications. Furthermore, the developer has to find out if the application behaves as
expected and produces the expected results. Hence, additional guidance for evaluating
the application is equally important.

Data analysis in mobile applications faces additional problems when involving con-
nected devices and sensors. The utilized devices may fail or deliver wrong data due
to many reasons including battery depletion, environmental influences, low production
quality, misconfiguration, or connection failures (Paradis and Han, 2007). Data analy-
sis applications based on such data sources inevitably produce results of lower quality
following the garbage-in garbage-out philosophy (Gabbay and Guenthner, 2002). Conse-
quently, applications consuming data from potentially error-prone data sources should
be provided means to detect and handle varying quality of the processed data. Hence,
the evaluation of data stream applications should consider data quality (DQ) problems
as well as implementation and system-related issues.

Based on these considerations, we define the research goals and the corresponding
contributions of the thesis in the following section.

1.1 Research Goals & Contributions

As discussed in the previous section quality is a crucial demand for applications pro-
cessing real-time data, in particular, if connected devices and sensors are involved.
Hence, the overall goal of this thesis is to make contributions to the improvement of
data stream applications and their outcomes. We want to do this by providing support
along the whole process of data stream application development. That means, that (1)
the development process of data stream applications should be structured to achieve
high quality real-time information management solutions, (2) means for a continuous
evaluation process of the applications and their results should be provided, and (3) the
monitoring and improvement of data quality throughout the whole application should
be enabled. These are the three main research goals of this thesis and we will derive
the according research questions and describe our contributions to each goal in the
following.

1.1.1 Structured Development Process

The definition and modeling of a process is important to make the process repeatable
and increase its quality. Approved steps and methods can be proposed to developers
to help them concentrate on the task. Thus, we want to elaborate such a structured
process for data stream application development. In the course of this task we
need to answer the following questions.

• What is a data stream application and how is it structured?
We first need to elaborate what are the characteristics of a data stream application
and which components it basically comprises. Furthermore, we have to know
about typical environments in which data stream applications are executed (i.e.,
data management architectures) and their specifics.
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• What are important steps in the development process?
As data stream applications can be categorized into the area of information man-
agement applications, it is worth looking into which abstractions of processes
(process models) have been proposed for other information management applica-
tion types. We then can analyze if these abstractions and the proposed steps are
also suited for data stream applications. We have to determine if parts could be
adopted and what is missing completely to support data stream applications. In
particular we want to focus on the evaluation of applications and their outcomes.
We also have to think of, how the steps are connected with each other and if some
of these should be repeated and when they should be repeated.

• What are methods to execute the steps in the development process?
The development process was regarded as an abstract description so far. However,
to be suitable for practical use we also have to think of which methods can fill
steps in such a development process description.

Contributions

We add a thorough analysis of data stream management principles and technologies.
Equipped with this knowledge we can derive implications about the development pro-
cess of data stream applications. Further, we will contribute a deep analysis of existing
process models in information management and a discussion of their suitability to data
stream applications. Also, we will contribute a discussion of practical methods usable
in the data stream application development process. Based on the gained knowledge we
will define a process model for the development of data stream applications.

1.1.2 Continuous Evaluation

Similar to software development, the development of a data stream application should
not be a static process. The outcome should be evaluated iteratively adapting internal
and external parameters to achieve the best performance in all senses. Hence, we
need a structured method to evaluate data stream applications continuously.
However, this goal also brings up several research questions which are as follows.

• How can we determine which parameters influence an application and
how? First we need to know which parameters of a data stream application and
its surrounding architecture can be changed. Are there general parameters valid
for all applications and systems? Which are the application specific parameters?
We have to determine how we can design and execute an evaluation to find the
degree of influence of the parameters. Furthermore, it has to be investigated how
combinations of parameters influence the application and its results.

• Do recurring steps and components for evaluation exist? It is also of
interest to know, if a common evaluation setup for stream applications could be
found, which can be used independently of domains and systems.

• How can the results of specialized algorithms in data stream applica-
tions be evaluated?
To fulfill complex tasks in data stream applications, such as prediction or clas-
sification, streaming algorithms have to be used. It is of interest how these al-
gorithms and their performance can be evaluated systematically. In particular,
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it is of interest to analyze which algorithm is suited best for which task which
parameters influence their results how, and how much do the results influence the
overall result of the application.

Contributions

We will provide guidelines and methods for a structured and repeatable evaluation
embedded into our process model. These will be exemplified on multiple applications
in two different domains. In particular, we will propose an evaluation framework
for data stream applications, which offers exchangeable components. Finally, we will
contribute comprehensive validations on the examples of data stream classification and
map matching algorithms.

1.1.3 Data Quality Management

One major issue in mobile applications with connected devices and sensors is data qual-
ity. Unreliable data sources make the production of high quality results very difficult.
Hence, we urgently need a flexible, general, and structured way to manage data
quality for data stream applications. This goal raises several research questions.

• Which aspects according to data stream applications have to be eval-
uated?
We first need to know what are typical quality problems in data stream applica-
tions and what are their causes. These comprise data quality problems as well
as implementation and system-related problems. Furthermore, it is of interest if
these quality problems differ depending on the domain or the application. Finally,
we need to elaborate how the quality can be expressed and calculated.

• What are crucial steps for the measurement of quality?
When it is known what should be measured and how will it be expressed, it
should be investigated, what high-level steps are required for the process of quality
measurement. Again it is worth finding out which DQ methodologies exist and if
they are suited for data stream management or can be adapted.

• How can data quality management be implemented for data stream
applications?
As soon as the general steps for DQ management are known the question arises
how these can be filled towards implementation for data stream applications and
DSMSs. In particular, it must be considered, how the implementation can be
made independent from domains, dimensions, metrics, and as good as possible
from the underlying system. With this in mind, we will contribute the implemen-
tation of a DQ management framework for relational DSMSs.

Contributions

We will deliver a thorough analysis of data quality dimensions and metrics in partic-
ular for data stream applications. Further, we contribute a detailed analysis of DQ
methodologies and propose a methodology for DQ management in data stream
applications. Finally, we enable a structured and detailed evaluation of data qual-
ity in stream applications by developing a DQ management framework for data
stream applications based on the provided methodology.
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The elaboration of the research questions and the presentation of the contributions
are structured as described in the following section.

1.2 Outline

The remainder of the thesis is organized as follows:

Part I: Foundations

In this introductory part we explain the fundamentals of our application domains.
Furthermore, a detailed introduction to the principles of data stream management and
processing are given.

Chapter 2: We introduce the field of Connected Intelligent Transportation Systems
(C-ITS) and its foundations and challenges as it is one of our two main application do-
mains. In particular, basic terminology, the important principles of traffic disruptions,
categorizations of traffic states, and the concepts of queue-ends are detailed. Further-
more, the most important measured traffic parameters are delineated. Stationary and
mobile data sources producing these traffic parameters are introduced and described.
Subsequently, traffic models, which are crucial for simulation tools, are introduced and
categorized. Finally, traffic applications from the C-ITS domain are explained. Parts
of this chapter have been previously published in (Geisler et al., 2012).

Chapter 3: Chapter 3 introduces the most important concepts of the second appli-
cation field of the thesis, namely Mobile Health (mHealth). A general architecture of
mHealth systems, its components, and main challenges of mHealth applications are
identified. Subsequently, the most common data sources of these applications are iden-
tified, which mainly comprise sensors. Types of medical sensors are briefly introduced,
followed by a brief description of Body Sensor Networks (BSN) and sensor fusion prin-
ciples. Finally, examples for data stream-based mHealth applications are given to show
potential application fields.

Chapter 4: This chapter forms the basis for the understanding of data streams and
their main concepts. The crucial challenges in data streams are presented and differ-
ent architectures types tackling these challenges are introduced while delimiting our
field of research. Moreover, we detail important foundations of data stream languages
emphasizing semantics and operators. Furthermore, the foundations of data quality
management in the context of data stream research are highlighted. Finally, the field
of data stream mining, in particular data stream classification, is covered. Parts of this
chapter have been previously published in (Geisler, 2013; Geisler et al., 2016, 2011).

Part II: Process Model & Applications

The second part of the thesis covers the explanation of the proposed process model for
data stream-based applications. Furthermore, its application in the domains C-ITS and
mHealth is demonstrated and evaluation results for each of the applications presented.
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Chapter 5: The chapter explains our process model for the design, implementation,
and evaluation of data stream-based applications. It starts with the discussion of pre-
vious process models and methodologies in information management and data mining.
Afterwards, we detail general approaches to the design of data stream applications. We
then present the overall view on the process model and go through each component
in the corresponding sections. For each step the purpose, the challenges, the desired
outcome, and possible ways to realize the step (methodologies) are presented.

Chapter 6: After we explained our process model we show the usage of the model in
two applications in the C-ITS domain in this chapter. First, the project context of the
applications, the Cooperative Cars project, is detailed. Subsequently, for each of the
chosen applications, Queue-end Detection (QED) and Traffic State Estimation (TSE),
we follow the process model and use one of the proposed methodologies. For each step
in the process model the outcome is shown and the results are discussed. Parts of this
chapter have been previously published in (Geisler et al., 2011, 2010; Geisler and Quix,
2012; Geisler et al., 2016, 2012).

Chapter 7: Chapter 7 utilizes the process model in the course of two mHealth
projects and applications. We introduce the context of each project. It presents a
different approach to the stream application development as the prerequisites differ to
the C-ITS applications in the previous chapter. Again for each application we go step-
by-step through the process model and show the results. Parts of this chapter have
been previously published in (Geisler et al., 2016).

Part III: Data Quality Management & Structured Evaluation of Algorithms

Chapter 8: In this chapter we first discuss the related work in the field of data
quality management in data streams. Subsequently, we propose a general data quality
management methodology for data streams and delineate the implementation of our
DQ management framework. Finally, we evaluate the DQ framework in the applications
we described and implemented in Chapters 6 and 7. Parts of this chapter have been
previously published in (Geisler et al., 2016; Geisler and Quix, 2012; Geisler et al.,
2011).

Chapter 9: In the course of the C-ITS applications implemented in Chapter 6, we
used a simple Map Matching algorithm. Previous evaluation results showed that im-
provement of the algorithm is beneficial to the overall accuracy. Hence, we describe
the development of our own Map Matching algorithm in this chapter after discussing
related work. Furthermore, the evaluation of the algorithm for the C-ITS applications
and the corresponding results are highlighted. Finally, we present the results of our al-
gorithm achieved in a Map Matching contest in the ACM SIGSPATIAL GIS Cup 2012
(Ali et al., 2012) in comparison to state-of-the-art algorithms. The work presented in
this chapter has partly been developed and evaluated in the scope of a Master Thesis
by Mitre (2012) supervised by us.

Chapter 10: The last chapter of this part highlights the evaluation of data stream
classification algorithms on the example of the C-ITS applications. We first present the
results of the comparison of different data stream algorithm types. We then investigate
the influence of over- and undersampling on the algorithms and present a dynamic
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balancing algorithm for data streams. Finally, we also delineate the results of our
experiments investigating the influence of concept drift. Parts of this chapter have
been previously published in (Geisler et al., 2012; Geisler and Quix, 2012).

Part III: Epilog

This part concludes the thesis by discussing the contributions in a narrow and broad
perspective. Finally, an outlook is given on possible avenues for further research on the
topic.

Some of the material covered in this thesis was developed in in Bachelor, Diploma, and
Master theses supervised by me (Chen, 2009; Soleimankhani, 2010; Weber, 2011; Mitre,
2012; Jongiran, 2013; Claßen, 2013). I would like to thank the people involved for their
support and contribution.
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Chapter 2

Application Domain I: Connected
Intelligent Transportation
Systems

In this part we introduce two important domains which pose challenges for real-time
data processing - Connected Intelligent Transportation Systems (C-ITS) and Mobile
Health (mHealth). These are just two examples for many other domains which have
(near) real-time data analytics requirements. Although we are not restricted to these
domains, they are interesting and fruitful domains with common and diverse properties,
which support the development and evaluation of our contributions. Many examples in
the following chapters are also based on the two example domains. Hence, a thorough
understanding of the most important terms and concepts used in these domains is
indispensable.

There exist several definitions for the term Intelligent Transportation System (ITS).
The U.S. Department of Transportation, for example, defines that ITS “apply well-
established technologies in communications, control, electronics, and computer hard-
ware and software to improve surface transportation system performance.”(Sussman
et al., 2000) The definition names the most important components of an ITS, but it
remains vague, as it is not clear what the term “well-established” means. The Journal
of Intelligent Transportation System issued by Taylor & Francis gives a more detailed
and research oriented definition: “Intelligent transportation systems [. . . ] are char-
acterized by information, dynamic feedback, and automation that allow people and
goods to move efficiently. They encompass the full scope of information technologies
used in transportation, including control, computation and communication, as well as
the algorithms, databases, models, and human interfaces.”1

In this chapter, we are especially interested in the implementation of ITS and the
components mentioned in the last definition by means of mobile data sources, termed
Connected ITS (C-ITS) (European Comission, 2016) or Vehicle-2-X (V2X) or Car-
2-X (C2X) applications where X stands for other vehicles and infrastructure (V2V:
Vehicle-2-Vehicle, V2I: Vehicle-2-Infrastructure, likewise it is C2C: Car-2-Car, C2I:
Car-2-Infrastructure). These represent an particularly interesting domain as they incor-
porate streaming data and static data from a multitude of data sources. The streaming
data is constituted of high volumes of geospatial and other data produced in a short
period of time. These promise a better resolution and coverage in terms of location

1http://www.tandfonline.com
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and enable real-time ITS applications.

Figure 2.1: Connected Intelligent Transportation Systems2

In Figure 2.1 the possible components and participants of a C-ITS are depicted.
Typically, a positioning system, such as GPS or GALILEO is required to determine the
position of a vehicle. This can also be done via cellular networks, but a satellite driven
system usually has a better positioning precision. As both are not perfectly correct, the
measured positions might not exactly lie on a road. Hence, to make assumptions about
traffic parameters, the positions need to be matched to a road network. The algorithms
estimating the match are termed Map Matching algorithms. An introduction to Map
Matching is given in Chapter 9. Furthermore, the C-ITS uses one or more wireless tech-
nologies which comprise cellular networks (e.g., LTE, UMTS, GSM), wireless networks
with standardized common protocols (IEEE 802.11 b/g/n), and specific protocols for
automotive applications (IEEE 802.11p). Similar to the components in Figure 2.1 the
ETSI (European Telecommunication Standards Institute) summarizes the components
in subsystems: personal ITS subsystem (e.g., mobile phone), vehicle ITS subsystem
(including sensors and in-vehicle networks), central ITS subsystem (central ITS station
and network with gateways, routers etc.), and Roadside ITS subsystems (e.g., roadside
network with gateways, routers etc.) (ETSI EN 302 665, 2010).

In the following, we first explain the most important basic terms and concepts
related to transportation. Subsequently, common data sources used in the traffic do-
main for ITS and C-ITS are introduced followed by a categorization and explanation
of existing ITS projects. Finally, the applications used in this work’s case studies are
explained.

2http://www.continental-corporation.com
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2.1 Traffic Engineering Terminology

Queues in traffic are events which have negative effects regarding many perspectives.
Besides being annoying for the individual drivers (in 2015 German drivers spent on
average 29.57 hours in congestion)3, they also have negative economical and environ-
mental influences. Cargo is not reaching its destination on time, working persons are
not productive and even miss appointments. Furthermore, the amount of exhaust gases
increases. Finally, traffic jams also pose a big safety risk in form of queue-ends. Acci-
dents with vehicles driving into a queue-end are happening frequently and often result
in injured persons or even fatalities. Hence, queue-end detection and corresponding
warnings are an interesting application in C-ITS, as they could prevent accidents by
increasing the driver’s awareness (Bogenberger and Dinkel, 2009). This application is
especially challenging for C-ITS as the queue-end moves quickly and a real-time track-
ing of the queue-end is necessary. Real-time traffic state estimation and tracking is
offered by several commercial and public service providers. However, it is still a chal-
lenge to offer an accurate real-time estimation based on diverse data sources, though
traffic state estimation seems like a relatively simple task to implement at first sight.

In the following, we will first explain the concepts crucial for traffic states, in partic-
ular queues, and queue-ends. Then, we will explain the most common and important
traffic parameters that are relevant for the selected applications. The data sources
which can be used to measure those traffic parameters will be detailed in the subse-
quent section.

2.1.1 Basic Terms and Road Infrastructure

The basis of almost all traffic applications is a road network, which spans a certain
geographical area (cf. Figure 2.2(a)). A road network consists of a set of roads or links,
each labeled with a unique identifier. Links have a start point, an end point, and a
direction, i.e., two directions of the same road are two individual links. Links can be
classified according to different aspects, e.g., to their type, such as highway, urban roads,
or rural roads, or according to the admitted velocity. Each link consists of one or more
lanes. Each link can further be divided into sections, which are equally or differently
sized parts of the link. On a link vehicles are driving. Figure 2.2(b) illustrates how
these terms are related to each other. There exist different classifications for vehicles,
e.g., according to their type (car, truck, motorcycle, bus etc.), their speed (slow moving
etc.), or their purpose (e.g., public and individual transport). Additionally, a road has
an infrastructure. The infrastructure consist of dynamic and static road signs, and
units to measure, process, and communicate. This infrastructure varies, depending on
the type of the road.

The typical infrastructure in the German highway network is divided into several
regional sub-networks which all have the same hierarchy: a Traffic Control Center
(TCC), a sub control center, and a section station with data measurement and output
facilities and a control unit (Kirschfink, 2000). The section station gathers the data
from the measurement units, aggregates them and manages the traffic control systems.
The measurements are executed lane-wise and comprise the measurement of traffic
volume and speed of all vehicles and trucks separately. Traffic control systems can be
categorized into Rerouting Systems, Line Control Systems, Systems for temporary Hard

3http://ec.europa.eu/transport/facts-fundings/scoreboard/compare/

energy-union-innovation/road-congestion_en#2015
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(a) Example Road Network
(Extract from Open-
streetmap)

Link

Section

Lane

(b) A Simple Link

Figure 2.2: Visualization of Basic Terms

Shoulder Running, and Ramp Metering systems.4 Rerouting Systems are dynamic road
signs proposing alternative routes to drivers in cases of road blockages or congestion and
inform the drivers about the cause. Line Control Systems are variable road signals,
which adapt speed limits, warnings, and overtaking bans for lanes and links to the
current traffic and weather situation. Hard Shouldering Systems enable the opening
of hard shoulders (lanes on the very right of the highway for broken down vehicles) in
cases of heavy traffic. Ramp Metering systems control the flow of vehicles entering a
highway when traffic volume is high.

A Traffic Control Center (TCC) monitors and controls the highway infrastructure.
In particular a TCC has the following tasks:5

• harmonization of traffic flows,

• road condition warnings,

• proposals for alternative routes,

• determination and analysis of traffic situation,

• monitoring and controlling of traffic control systems,

• monitoring of tunnels, and

• other services, e.g., finding free spots for trucks on parking lots.

Not all traffic control and sub control centers in Germany use the same software
to manage and analyze their data and to control the infrastructure. However, there
exists an initiative called NERZ e.V.6, in which eight federal states of Germany have
committed to maintain and develop the ERZ Software (Einheitliche Rechnerzentralen-
software für Verkehrsleitsysteme, Engl.: unified traffic center software for traffic control
systems). The software consists mainly of a data broker, which loosely connects data
sources and traffic applications (beck et al. projects GmbH, 2006). Data brokers can
also be coupled to support load balancing and failure safety.

4http://www.svz-bw.de/vba.html
5http://www.svz-bw.de/vrz.html
6http://www.nerz-ev.de
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2.1.2 Principles of Traffic Disruptions

Traffic States

Traffic states or Levels of Service (LOS) are a classification of the current traffic situa-
tion and occupancy of a road section. There have been several approaches for modeling
these levels. For example, Kerner (2004) defines three states (free, synchronized, and
congested traffic), while the Highway Capacity Manual of the U.S. Transport Research
Board proposes six states ranging from A to F (A = free flow, B = reasonably free
flow, C = stable flow, D = approaching unstable flow, E = unstable flow, F = forced
or breakdown flow). The Federal German Highway Research Institute defines a clas-
sification which has been widely implemented in German Traffic Management Centers
(BASt, 1999). It distinguishes four levels of traffic: free, dense, slow-moving and con-
gested traffic. For each level and a number of lanes a threshold for the mean speed and
the local density are defined. For example, for a highway with two lanes the traffic state
is slow-moving, when the mean speed is above or equal 30 km/h and below 80 km/h
and the density is below or equal 50 veh/km. The ERZ software (beck et al. projects
GmbH, 2006), which is widely used in Germany, has a more fine-granular classification
with six levels: free flow, vivid, dense, slow-moving, partially congested, congested (cf.
Figure 2.3).

Figure 2.3: Screenshot from the ERZ Software Visualizing Traffic States7

The determination of the traffic state for a section of the road network is called
Traffic State Estimation (TSE). Methods for traffic state estimation and prediction are
discussed in Section 2.4.1.

7http://www.nerz-ev.de
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Traffic Disruptions

The types, causes, and movements of traffic disruptions are a huge research area them-
selves. There exist different approaches on how to describe the phenomenon of con-
gestion. Based on the observation of individual vehicles’ movements, queues can be
categorized into short speed drop (vehicle brakes, but accelerates very quickly again),
stop and go (in a section the vehicle brakes multiple times and accelerates again), wide
congestion (driving at declined speed for a long time), and stationary traffic (vehi-
cle remains at the same position for a longer time) (Bogenberger and Dinkel, 2009).
Disruptions and instabilities in the overall traffic flow are a combination of several
influential factors. The capacity of a road is one aspect. The rule of thumb for the
capacity of a lane is 1800 veh/h based on the recommended time gap between two
vehicles. Normally, the very right lane has a lower capacity due to the higher number
of trucks. Another aspect is the speed of the vehicles. Flowing traffic is categorized
into free traffic where vehicles can choose speed and lane freely (target speed) and are
not influenced by other vehicles. In bound traffic other vehicles influence the speed of
an individual vehicle, which in the worst case may lead to synchronized traffic where
all vehicles drive at the same speed (Kerner, 2004; Mensebach, 2004). If the traffic
volume reaches the capacity of the lane, the traffic is bound. Furthermore, the distance
between vehicles makes a difference, because vehicles have to adapt their speed if the
distance to the vehicle in front is getting too small. The overall braking time consists
of reaction time for braking and accelerating, and the braking and acceleration time
of the vehicle to adapt the speed to (Treiber and Kesting, 2010). All of these factors
are of course connected. If the capacity of the road is exceeded by the traffic demand,
vehicles cannot freely choose their speed anymore and this will lead to instabilities and
a breakdown of the traffic flow. Causes for instabilities and capacity excess could be
bottlenecks, high traffic volume, and disruptions in traffic flow (hard braking actions,
overtaking trucks etc.). Instabilities can be categorized according to the number of af-
fected vehicles, size of disruptions, direction of propagation of the disruption (upstream,
downstream, or both), and wavelength of disruptions (because disruptions propagate
in waves). Disruptions can move and grow in one direction, which is called convective
instability (Treiber and Kesting, 2010). The dynamics of disruptions can be classified
by six patterns: pinned localized clusters, moving localized clusters, triggered stop-and-
go, oscillating congested traffic, homogeneous synchronized traffic, and homogeneous
congested traffic (Treiber and Kesting, 2010).

Queue-ends

There also exist different categorizations and definitions of a queue-end. A queue-end
in this work designates the spatial position where a vehicle enters the disruption up-
stream. In the literature also the temporal end of the queue (disruption is resolved)
or the downstream queue-end (vehicle leaves the last disrupted section) are defined.
Furthermore, soft and hard queue-ends are distinguished. Soft queue-ends are char-
acterized by synchronized traffic flowing upstream towards the disruption resulting
in “soft” deceleration. Hard queue-ends cause a high deceleration, because traffic is
flowing freely towards the queue-end. Bogenberger and Dinkel (2009) summarize char-
acteristics of hard and soft queue-ends which are, amongst others: lane speed, speed
difference on lanes, lane changes, lane occupancy, vehicle convoys, and type of speed
drop. Furthermore, queue-ends can be visible or hidden, depending on the road topol-
ogy (Bogenberger and Dinkel, 2009). This results in four different classes of queue-ends
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which pose different levels of safety risks for approaching vehicles.

2.1.3 Traffic Parameters

”Traffic can be seen as a process which is described by measured traffic parameters and
which is continuous in space and time” (Hoyer, 2003). The parameters which are used
for different traffic applications can be gathered in different ways. Raw data can be
measured by several kinds of detectors, especially stationary and mobile detectors, but
it can also be obtained from other sources such as traffic planning data. In this section
common traffic parameters and their measures are shortly explained.

Traffic parameters can be categorized according to different aspects as follows:

• Type: The traffic data can be raw, i.e., directly observed by a detector or read
from other sources, such as topological information. This data can be further
aggregated to decrease the level of granularity, such as aggregation of values per
minute to values per hour. Furthermore, data can be calculated or derived from
other data to gain new information.

• Reference Point: The different parameters can be distinguished according to
the geographic granularity they cover. Local data, for example, can be measured
at a single geographic position on the road (in stationary detection also called
gauging section), such as the local velocity. Other data references a part of the
road (section-based data) or a specific network.

• Detection Mechanism: The technique how data is measured determines several
criteria of traffic data, such as the unit or the level of granularity, the accuracy,
and the reliability. In general, the following categories for data sources are dis-
tinguished:

– Stationary Detection: Detectors measure traffic data at a fixed position.

– Mobile Detection: The vehicles themselves have technical equipment to re-
port their geographic position and other data.

– Traffic Planning Data: Data available from traffic planning, such as the type
of road, location of detectors, or the traffic capacity of a road are written
down in traffic plans.

– Detectors for Stationary Traffic: These detectors are used to obtain infor-
mation about parking cars, for example detectors at parking garages.

– Environment Measurements: These detectors do not produce traffic data
directly, but the information can be used in different applications to enrich
or derive traffic information.

– Traffic News: This includes messages issued by the police or automobile
clubs and also messages about road works.

– Historical Data: Measurements and aggregated data from the past, which
have been permanently stored, can be used to enhance the quality of cur-
rent measurements by resolving erroneous or missing measurement data. Of
course also long-term analyses can be based upon historical data.

The data sources are described in detail in Section 2.2.
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• Measurement Site: Not only the point of reference is important in traffic ap-
plications, but also the kind of roads which are addressed in the application.
Techniques for applications, such as traffic estimation and forecasting, differ ac-
cording to the road type they address. A coarse distinction can be made between
urban areas and highways, but there also exist more fine grained categorizations,
using categories such as motorways, residential roads, and urban main roads.

• Individual Car / Traffic Flows: The traffic data can also be categorized
according to the point of view on the traffic. For individual cars data such as
acceleration, lurch, or velocity can be measured. Furthermore, traffic can be seen
in whole and described by parameters such as traffic volume or density.

In Appendix A.1 the most important parameters measured for individual vehicles
(cf. Table A.1)and traffic flows (cf. Table A.2) are listed. For individual vehicles
distance (m), occupancy (true or false), speed and velocity (m/s or km/h), travel time
(h), and vehicle type are the most used measures. For traffic flows these comprise
traffic volume (vehicles/h or vehicles/s), traffic density (vehicles/km), average travel
time (min), and traffic capacity (#vehicles · (km/h))2. In the following section the data
sources delivering these and other measures are explained.

2.2 Data Sources

We now highlight different types and dimensions of data sources used in the course of
C-ITS applications.

2.2.1 Stationary Detection

Stationary detection mechanisms are the most common and established data sources
for gathering traffic data. They are installed permanently in road surfaces, at road
sides, are integrated into traffic signaling systems, or are affixed to road infrastructure
components, such as street lights. In Germany, one of the most used devices are
induction loops, which can measure different parameters, such as presence, occupancy
time, vehicle type, or speed. We will not go into detail of stationary detection, as we are
not that much interested in the stationary devices, but in the data they are measuring.
We have summarized the most important stationary detection sensors and methods in
Table A.3 in Appendix A.2 along with a brief technical description, and the measured
parameters based on Hoyer (2003); Treiber and Kesting (2010).

2.2.2 Mobile Detection

In contrast to the stationary detection of traffic parameters where detectors are installed
at fixed positions, in mobile detection sensors and detectors are carried in the vehicles,
i.e., the vehicles are themselves moving sensors in the traffic flow. This data can further
be categorized into Floating Car Data (FCD) and Floating Phone Data (FPD). For
FCD one mobile identifier is connected with one vehicle. Hence, the vehicle itself is
connected via cellular networks or via Wireless LAN mostly to a proprietary system
provided by the car producer. The FCD system is deeply integrated into the vehicle and
has access to the vehicle’s sensors. For FPD individual phones belonging to individual
people, not vehicles, are registered. In the following we will describe both kinds of data
sources and discuss advantages and disadvantages in detail.
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Floating Car Data

For FCD manual and automatic detection can roughly be distinguished. In manual
detection so called traffic jam detectors, such as employees of the ADAC and private
persons, report traffic jams and other traffic events using a mobile phone. However, the
manual detection lacks accuracy due to a rating subjectivity (e.g., rating of the traffic
state) (Steinauer et al., 2006), and events and all-clears may be reported irregularly. For
automatic acquisition of FCD vehicles report first and foremost their measured position
and possibly aggregated data to a central unit. Therefore, vehicles, which serve as FCD
probes, require four things in general: a positioning facility, a communication facility,
sensors to measure parameters of interest, and a processing unit preparing the data
for transfer and is able to receive data. The four components of the system can be
implemented in different ways, which will be discussed in the remainder of this section.

Communication The transfer of FCD can technically be done in several ways, e.g.,
via a mobile phone using cellular networks, such as LTE, the navigation system of the
vehicle, Wireless LAN, Terrestrial Broadcasting, Satellite Broadcasting, Bluetooth, or
a beacon system (Treiber and Kesting, 2010; Huber, 2001a),(ETSI EN 302 665, 2010).
Beacons can be infrared senders and receivers with which the vehicle can communicate
over a special on-board device. The beacons are installed at roadsides and the vehicles
send the measured data to the beacon as they pass it. The beacon system has two
disadvantages. First of all the system can only report with a certain delay. Events are
not detected until the vehicle passed the last beacon of the respective section, i.e., it can
report the event in a section only when it already passed it. This makes it unsuitable
for real-time reporting of events. The second disadvantage, the costs of additional
infrastructure elements, led to the non-acceptance of the beacon technique (Steinauer
et al., 2006).

For Wireless LAN a set of standards has been elaborated for Vehicular Ad-hoc
Networks (VANETs) in the US and Europe, which is called WAVE (Wireless Access for
Vehicular Environment, IEEE 1609 standard). It subsumes the IEEE 802.11p standard
on the physical and MAC layer (Ahmed et al., 2013). WAVE can operate at high data
rates of up to 27 MBit/s in a specific frequency band range which is dedicated for
VANET applications. It enables V2V as well as V2I applications. VANETs usually
are composed of network devices in the vehicle, which can communicate with the in-
vehicle infrastructure and the external infrastructure, road side infrastructure, an access
network, and a core network (Ahmed et al., 2013). Advantages of VANETs are, amongst
others, the easy deployment, use of mature technology, and native support of V2V
communication. Disadvantages are scalability issues, unbounded delays, and lack of
deterministic QoS guarantees, and the required infrastructure for reliable connections
(Araniti et al., 2013).

Cellular networks pose another possibility for communication in C-ITS. A long time
cellular networks have not been considered for ITS applications as the bandwidth was
limited and latency was unacceptable, especially for safety applications. Nowadays,
UMTS and especially LTE changed this situation. Data rates of up to 300 MBit/s
can be reached. Furthermore, the existing infrastructure with a high spatial coverage,
market penetration, capacity, and acceptance rate make cellular networks attractive
for C-ITS (Araniti et al., 2013).

The ITS communication architecture proposed by the ETSI allows to combine sev-
eral technologies to make advantage of the positive aspects of multiple communication
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ways and to decrease the negative effects of using them individually (ETSI EN 302 665,
2010).

Message Standards To make C-ITS a success, the penetration rate of equippend
vehicles has to be high. Hence, standardization of communication protocols is an
important task as vehicles of all vendors and types should be able to communicate. For
this purpose multiple message standards have been proposed which will be introduced
briefly in the following.

One data communication standard for FCD is GATS, the Global Automotive Telem-
atics Standard, which was invented by Mannesmann Autocom und Tegaron Telematics
in the late 90s (Behrens et al., 2010). It is an open industry standard for the com-
munication between service centers of telematics providers and on-board devices, such
as navigation systems, which are also called GATS-devices, if they support the GAT
standard. It is mainly intended for highways, not for urban areas. In this standard
GPS is designated for positioning and cellular networks for communication. For data
transfer the SMS (short message service) of the GSM network is used in both directions.
The standard defines communication protocols with certain transmission criteria, i.e., a
message is only send, if a certain criterion is fulfilled (event-based). Events are already
identified in the car, e.g., if the car drives into a traffic disruption, the car recognizes
it and sends a message. A two-step process generates the messages. First, the GPS
locations and velocities are summarized in a time variation curve. The time variation
curve is aggregated to the average travel speed and variance of speed, which is also
called the micro profile (Steinauer et al., 2006). Additionally, a driving profile is gen-
erated, i.e., important positions on the way are stored and when an event arises, the
series of locations (trajectory) is transferred with the event. This chain of locations can
enable a more accurate process to map positions to a road network. One disadvantage
of the GAT Standard is the data transfer using SMS. Due to its size (140 Byte per
message) the transfer rate is not very high. Hence, event messages have to be short or
several messages in a row have to be send. Also the delay imposed by sending SMS
makes it unsuitable for events which have to be send immediately to other drivers,
such as emergency braking events. Furthermore, the GAT-B standard requires maps
in the vehicle, which means that map updates may not be done frequently to include
new or changed sections and road works, which influences the quality and reliability of
gathered FCD (Steinauer et al., 2006).

A very frequently used standard is Alert-C of the RDS-TMC (Radio Data System
Traffic Message Channel) (ISO 14819-1, 2013; ISO 14819-2, 2013) which is used by a
multitude of information providers, e.g., it is commonly used in navigation systems.
The TMC system consists of several subsystems and messages are transferred via radio
broadcast (public and commercial providers). The transfer rate of RDS-TMC is rela-
tively low; it just reaches 60 bit/s which is not suitable for time critical applications
such as queue-end warnings. Furthermore, the vehicles can only receive messages, but
cannot send messages, which make it unusable for V2X applications.

In 2014 ETSI published two standards for messaging in V2X applications: a stan-
dard for Cooperative Awareness Messages (CAM, (ETSI EN 302 637-2, 2014)) and a
standard for Decentralized Environmental Notification Messages (DENM, (ETSI EN
302 637-3, 2014)). CAMs are sent out on a regular basis by the individual participants
in the ITS. They contain general information about the participant, e.g., the vehicle
type and size, and current status information, such as a timestamp, the current po-
sition and motion state, and the currently activated systems. Furthermore, CAMs of
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vehicles can include a specific message container depending on the role of the vehicle,
such as a dangerous goods transport. These containers include additional information
according to the role. The information in the CAMs can be used for ITS applications
in different ways, such as collision warnings or selective geospatial reception of mes-
sages (GeoBroadcasting). The dissemination interval, depending on the participant
and channel traffic, can vary between 1 Hz and 10 Hz (ETSI EN 302 637-2, 2014).
The ETSI standard for CAMs also includes specifications for quality and confidence
requirements of the sent information, such as the speed accuracy and the correspond-
ing confidence value for this accuracy. The DENM standard, defined in (ETSI EN 302
637-3, 2014), describes dissemination, reception, and format of traffic event messages.
DENM are sent by ITS applications in cases of road hazards or traffic disruptions, or
by the ITS participants themselves, e.g., when a vehicle brakes hard. The messages can
be exchanged via V2V or V2I communication using the DENM protocol in a relevant
geospatial area (e.g., only in downstream direction before a road hazard). Furthermore,
the relevancy of the message for each vehicle is checked by the corresponding ITS ap-
plication. DENM can also be relayed, e.g., to warn approaching vehicles even when
the sending vehicles already left the event area. A DENM contains information about
the event, such as the event type, position, a timestamp, and the duration. In addition
to the general event information, containers for specific event types, such as accidents
or roadworks, are defined, which contain event specific data. Additionally, there exist
container types for the event location and miscellaneous data. In the DENM protocol
messages can report a new event, but also update, cancel, or negate an existing event
(ETSI EN 302 637-3, 2014). The CAM and DENM formats have been defined in the
standard documents in the Abstract Syntax Notation One (ASN.1) language8, which
is used to describe data structures in a unified way.

Floating Phone Data

Cellular networks have been invented in the early 80s and introduced to end consumers
in the 90s. Since then, the coverage and penetration of cellular networks and mobile
devices has incredibly risen. In 2014, statistically each German inhabitant had 1.4
SIM cards to connect to a cellular network resulting in a 139% penetration rate and
112.63 million active subscribers (Crowley-Nicol et al., 2015). The two most widespread
standards and technologies used today to operate cellular networks are GSM (Global
System for Mobile Communication) and UMTS (Universal Mobile Telecommunication
System). GSM as a standard of the second mobile telecommunication generation (2G)
provides mainly voice connections and the Short Message Service (SMS). Later on, data
transmission standards EDGE or GPRS have been added to the GSM standard. The
successor of GSM, UMTS being the 3rd generation technology (3G), integrates voice
connections as well as data transmission into one standard. With the later extensions
HSDPA (High Speed Downlink Package Access) and HSUPA (High Speed Uplink Pack-
age Access) the possible data rates have been increased substantially. Finally, the 4th
generation standard, LTE (Long Term Evolution), has been set into operation 2010 as
UMTS also reached its capacity limits (Sauter, 2011). In 2014 in Germany 13 Mio.
of 112,63 Mio. active SIM cards used LTE where LTE reached a population coverage
of up to 80%. Due to the high data rates and prevelance of smartphones, the data
transfer rates also increased a lot (393 GB of data have been transferred via all cellular
networks in 2014 (Crowley-Nicol et al., 2015)).

8http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=x.680
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GSM, UMTS, and LTE have a lot of technical differences whose details will not be
explained here. An important aspect all of them have in common is that each network
is organized in cells. A cell is defined as the area an antenna tower, or so called Node
B (UMTS), or base transceiver station (short: base station, GSM), covers. The size
of a cell depends, amongst others, on the technology and frequencies used and on the
actual and expected number of users. Hence, cells in urban areas are usually smaller
than in rural areas. In UMTS, for example, cell sizes can vary between a few hundred
meters up to 180 kilometers (Sauter, 2011).

Due to the excellent penetration rate in many countries, cell phones have been
found to be very useful as a data source. In this regard, the location of the phones is of
particular interest. From the location of a phone its track could be followed through a
road network or from an accumulation of phones traffic events could be derived. Hence,
the determination of a phone’s location, or positioning, is detailed in more depth in the
following.

There are several ways to determine the position of a mobile device based on the
cellular network’s properties and technologies. These positioning technologies can be
categorized according to various aspects. First, techniques can be categorized into
network-based and handset-based positioning (Izadpanah and Hellinga, 2007), depend-
ing on where the measurements and the estimation of the position takes place – in
the network infrastructure or on the mobile phone itself. Usually, the handset-based
techniques use a GPS receiver for their measurements. Smartphone operating systems,
such as Android, Windows, or Apple iOS, and apps such as Waze9, collect the GPS
data of the smartphones anonymously and use them for their traffic services (Jeske,
2013).

Furthermore, techniques can be active or passive (Valerio et al., 2009). In active
techniques additional actions are taken to estimate the handset’s position. One example
is Enhanced Observed Time Difference in UMTS networks where Node Bs send a signal
to the handset which estimates its location calculating the intersection of the signal
hyperbolas. Passive techniques do not require any additional signaling traffic. Already
available information from the network’s operation is used. In ITS mostly passive
techniques have been used as the sole data from network providers can be used without
any further effort. Mostly, data from Local Area Update (LAU) and handover events
are used, which will be explained in the following as these are the most frequent events
in a network (Tettamanti et al., 2012).

A phone that is switched on reports its location every time it enters a new Location
Area (LA) comprising several cells. This procedure is called Location Area Update
(LAU). Given the size of cells this is a very imprecise location method, but it is sufficient
for the network to contact the phone when a call or SMS comes in. When the phone
is in an active call and moves between two cells, a handover procedure is initiated
by the current base station to ensure the call is not interrupted. To decide, when
a handover is necessary, in GSM networks the handset regularly sends measurement
reports including signal strength and quality of the current base station and stations
in near vicinity every 480 seconds. In UMTS networks the reports can also be sent
event-based (Gundlegard and Karlsson, 2009) and can be sent more frequently. There
is also a technical difference between GSM and UMTS in how the handover works. In
UMTS hard handovers and soft handovers are distinguished. While in hard handovers
the handset is only connected to one Node B to transmit the call and data, in soft
handovers the transmission is carried out over several Node B’s. Hence, with hard

9https://www.waze.com
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handovers the connection can shortly be interrupted while this is not the case for soft
handovers. Hard handovers are also used in GSM (Sauter, 2011). For positioning the
handover type makes a difference - while with hard handovers only one position is
determined, in soft handovers each time the handset is connected to a new Node B
or disconnected from a Node B a position can be determined. Hence, soft handovers
offer more information, but can also add ambiguity and complexity. Experiments by
Gundlegard and Karlsson (2009) show that the average error in positioning is lower
for UMTS (6.3 meters) than using GSM handovers (23.1 meters) in a suburban area.
They have also shown that travel times and speed inferred from UMTS handovers are
more accurate than for GSM handovers. In general, the positioning using handovers is
more accurate than using LAU events. Traffic parameters are derived by calculating
the traversal time, that is the time between two events (Janecek et al., 2015).

The time a cell phone is registered at a base station between two handovers is called
Cell Dwell Time (CDT) and can also be used to derive road traffic-related parameters
such as congestion (Steenbruggen et al., 2011a). The handover event can be detected
either by a client software on the handset, e.g., Nokia Mobile Quality Analyzer (Tetta-
manti et al., 2012), or a handover report is created by the network provider. Hence, the
handover data is very often used to derive other information as no additional equipment
has to be installed or means have to be taken for positioning. But it also has some
drawbacks: the phone has to be in an active call and a call maybe terminated before a
handover happens. Furthermore, there may be a time difference between two consec-
utive calls which does not allow inference about the actual path of the phone through
several cells (Caceres et al., 2012). However, there are also approaches which try to
track the location from devices in active calls and idle devices to increase the network
coverage. For example, Janecek et al. (2015) propose an approach which retrieves the
identifier of the cell the handset is connected to in cases of data transfer, SMS, calls,
and location area updates.

In general, it is not easy to map phones to vehicles. A phone maybe carried by
pedestrians, cyclists, or multiple people in a vehicle or train. This multitude of possi-
bilities could distort derived traffic information. For example would a pedestrian area
nearby a road falsify an assumption about the number of vehicles on this road. Fur-
thermore, specific events could also influence the call behaviour, e.g., a peak in SMS
messages and calls after 12 am on January 1 or during a football game. From the
handover and LAU events single position estimates can be determined or a number of
events in a certain area per time (handover or LAU rate, respectively) can be identified.
Also, an increase or drop in the number of calls or SMS messages could be related to
the change of certain traffic parameters (Steenbruggen et al., 2011b). Furthermore, the
observation of the measure Erlang (1 Erlang = 60 minutes of phone use per person)
can reveal information about the traffic situation (Steenbruggen et al., 2011a). Basyoni
and Talaat (2015) proposed an approach to cluster cell phones of one vehicle using data
swarm clustering. Hence, it is possible to identify single vehicles even when they carry
more than one handset.

Overall, FPD are a useful source to derive traffic parameters. Parameters which
can be derived from FPD comprise vehicle and link speed (Fontaine and Smith, 2007;
Gundlegard and Karlsson, 2009)), travel times (Janecek et al., 2015; Wunnava et al.,
2007; Gundlegard and Karlsson, 2009), Origin-Destination (OD) matrices (Caceres
et al., 2008), traffic volume, density, and flow (Valerio et al., 2009), incident detection
(Steenbruggen et al., 2011b), traffic state (Pattara-atikom et al., 2007), vehicle type
(Basyoni and Talaat, 2015) and mobility patterns.
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2.2.3 Additional Data Sources

Besides data acquired by the mentioned stationary and mobile traffic detection mecha-
nisms, other data sources are of high value for ITS applications. These include weather
data from weather stations or corresponding weather services. Furthermore, data about
roadworks, incidents, and speed checks can be useful. This could either be retrieved
from public institutions, such as the police, or reported by private persons (e.g., as
implemented in Waze10). Also archived historical traffic data can be very useful, e.g.,
speed profiles, to predict future traffic states. Finally, raw or processed traffic data is
also offered by many free and commercial services and marketplaces. For example, the
German Federal Highway Research Institute (BaST) is maintaining the Mobility Data
Marketplace (MDM)11 where round about 500 data providers and 250 data consumers
are registered. Also other companies, such as PTV in collaboration with TomTom12

offer archived and live traffic data.

2.3 Traffic Modeling

Traffic is a complex ecosystem which is not easily understood and reproduced in a
realistic way. Many mathematical models have been proposed to describe movements
of individual vehicles, traffic flows, and driver behaviour in traffic. To emulate traffic,
especially “the density-flow relation, the spontaneous formation of jams and the spatio-
temporal evolution of such jams” have to be modeled in a realistic manner (Schreck-
enberg et al., 2001). Fundamental diagrams are mostly used to compare simulations
with reality. They depict the relationship between traffic flow and traffic density and
velocity and density, respectively. Fundamental diagrams are used to expose impor-
tant characteristics of a traffic situation. In this section, we will briefly introduce the
most important ones. These models are the basis for simulation software used in traffic
research and planning.

Traffic models can be mainly categorized by their resolution detail, namely, into
microscopic and macroscopic models. Microscopic models emulate the behaviour of
individual vehicles, while macroscopic models are based on flows of traffic. Microscopic
models offer a higher variety of possibilities, as many traffic parameters are directly ac-
cessible (Mazur et al., 2005). Additionally, macroscopic dimensions can also be derived
from microscopic models by aggregation for clearly defined spatial extensions (e.g.,
a link or a section). However, microscopic models require a high processing effort in
simulation, but allow for real-time analysis of traffic (Treiber and Kesting, 2010). Meso-
scopic models combine the former models, e.g., when macroscopic measures influence
a microscopic model.

2.3.1 Microscopic Models

For microscopic models different mathematical approaches are used. The most com-
mon methods are car-following models or follow-the-leader models, which are based on
coupled ordinary differential equations with time as continuous independent variable
(Treiber and Kesting, 2010). Based on the vehicle’s own velocity and the distance to
the vehicle ahead and its velocity, the velocity and position is adapted accordingly (ac-
celeration function). An example is the Optimal Velocity Model (Bando et al., 1998),

10http://www.waze.com
11http://www.mdm-portal.de/en
12http://vision-traffic.ptvgroup.com/de/produkte/traffic-data/live-daten/
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where the vehicles try to reach an optimal velocity, compared to the vehicle ahead,
by adapting their velocity by acceleration or deceleration and taking into account the
drivers response delay and the sensitivity of the driver by a weighting factor. Other
common models are the Intelligent Driver Model (IDM) (Treiber et al., 2000) or the
car-following model by Newell (Newell, 1961).

A subcategory of car-following models are cellular automata. While the former
models are continuous at least in time but can also be continuous in space, cellular
automata (Schreckenberg et al., 2001; Nagel and Schreckenberg, 1992) subdivide the
road into cells of a fixed size where a cell is either empty or occupied by one vehicle
with a discrete velocity (measured in cells per time step). Furthermore, the model
advances in time steps, i.e., space and time are modelled discrete. The use of discrete
variables makes the models computationally less expensive. All vehicles behave in each
time step using four consecutive steps: (1) the vehicle increases its velocity v by 1 while
keeping a certain distance of cells to the next vehicle and not exceeding a maximum
velocity, (2) the vehicle decelerates, if the distance to the next vehicle gets to low and
adapts its speed to the velocity of the vehicle ahead, (3) the velocity v of the vehicle is
reduced by one with probability p (simulates unforseeable human behaviour), (4) the
vehicle moves forward v cells. The first approaches are for single lanes, but there exist
also multi-lane approaches (Nagel et al., 1998). The influential Nagel-Schreckenberg
cellular automaton approach has been extended in several approaches to include more
realistic traffic behaviour. An important extension has been made by Kerner et al.
(2002) emulating the behaviour described in the three-phase traffic theory (Kerner,
2004). Recent models are all based on one of these two models and extend them in
various ways.

Other driver models (used for example in the simulation software VISSIM13) are
psycho-physical car-following models based on Wiedemann (Wiedemann, 1974) con-
sisting of two components. The psychological component is integrating the speed and
distance the driver desires. The physical component implements perception thresh-
olds and deficient vehicle control. Four states depending on the distance to the car
ahead and on the velocity are distinguished: free driving, approaching, following, and
hazard. The model can be intensively parameterized, e.g., deviations in acceleration
and distance, maximum acceleration, and distance to vehicle ahead in standstill. Also
the probability of a temporary attention drop of drivers or a sudden distortion can be
configured (Leonhardt, 2012).

Additionally, for complex simulations with multiple lanes, lane changing behaviour
models also have to be defined. Lane changing is usually modelled with multiple steps,
consisting of a tactical phase where the driver considers and prepares the lane change
by deceleration or acceleration, and the operational phase, where the driver rates the
possibility of the immediate change and decides, and the realization phase, where the
driver executes the change (Kesting et al., 2007; Treiber and Kesting, 2010), if possible.
Lane changing models are discrete decision models, which underlie defined rules mim-
icking driver decisions. The rules and parameters used vary depending on the model.
There exist several methods to approach this decision process from simple implementa-
tions of the rules as process flows (Gipps, 1986) to complex agent-based systems (Hidas,
2002). Furthermore, lateral driving behaviour inside a single lane can be modelled, e.g.,
when bicycles overtake other road users.13

13http://vision-traffic.ptvgroup.com/de/produkte/ptv-vissim
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2.3.2 Macroscopic Models

Macroscopic models emulate traffic as a flow comparable with fluids or gases. Hence,
many approaches are derived from fluid dynamics (Treiber and Kesting, 2010; Mazur
et al., 2005). Macroscopic approaches model traffic as the “continuous time and space
evolution of the density and mean velocity of the flow of vehicles” (Bellomo and Dogbe,
2011). They use partial differential equations with time and space as continuous inde-
pendent variables (Treiber and Kesting, 2010). These models are often based on static
models, such as the fundamental diagram, to define certain relationships of parameters.
In general, static models describe “the pairwise relationship between the measures den-
sity, flow, velocity, or occupancy.”(Treiber and Kesting, 2010). Further models which
can be used for macroscopic modeling are cellular automata or coupled iterated maps
where time is modeled in a discrete manner (Treiber and Kesting, 2010). We do not
go into much detail about macroscopic models, as we only use microscopic models in
this work. A comprehensive survey on macroscopic models can be found in (Bellomo
and Dogbe, 2011).

2.4 Traffic Applications

After we have discussed the most important fundamentals of transportation, in this
section we describe common applications of C-ITS. According to the ETSI, traffic ap-
plications can be categorized into road safety applications, traffic efficiency applications,
and other applications (ETSI TS 102 637-1, 2010). Examples for road safety applica-
tions are notifications in cases of an emergency vehicle approaching, emergency braking,
wrong way driving vehicle, certain traffic conditions (queue-end, traffic jam), adverse
weather conditions, roadworks, or human presence on the road (ETSI TS 101 539-1,
2013; ETSI TS 101 539-3, 2013). Depending on the application, notifications can be
triggered either automatically based on sensor readings and algorithmic processing, or
manually. Examples for traffic efficiency applications are notifications regarding traf-
fic information, speed limit notification, driving assistance, or cooperative navigation
(ETSI TS 102 637-1, 2010). Other services may comprise points of interest, parking
management and automatic access, electronic commerce, fleet management, or loading
zone management (ETSI TS 102 637-1, 2010).

All of these applications have different requirements regarding data and function-
ality. Hence, for each of the application a requirements analysis must be done to
determine which detection methods and parameters are useful for the application.

The applications used for examples and case studies throughout this work, namely
Traffic State Estimation and Queue-end Detection and corresponding existing ap-
proaches, will be described in more detail in the following.

2.4.1 Traffic State Estimation

Traffic state estimation (TSE) or also termed traffic state detection or traffic state
analysis derives the current traffic status of a road section for a certain point in time.
The process is an estimation, as the traffic state cannot be measured directly, but has
to be derived from measured and observed traffic data (Van Hinsbergen et al., 2012).
The result of the traffic state estimation is a complete traffic state description which
reflects the current traffic status by estimated traffic flow variables, which can exceed
the number of measure parameters (Wang et al., 2007). The tempo-spatial traffic state
description is the basis for the creation of a traffic state report and also crucial for

26



A Systematic Evaluation Approach for Data Stream-based Applications

traffic forecasting and network-based data fusion and control (Hoyer, 2003). There are
different ways to describe a traffic state (cf. Section 2.1.2). The description as well as
the estimation techniques may differ depending on the context. Mainly approaches for
urban and non-urban traffic are distinguished, but due to the increase of mobile data
sources and probes (cf. Section 2.2.2) also systems for all road types exist. There is
a multitude of free and commercial services which offer traffic state reports (Dirscherl,
2016). Especially, real-time reports are of high interest to users today. Navigation
systems (in-vehicle or on mobile devices) often already integrate traffic state information
into the routing information. Also other services outside of navigation systems combine
maps, navigation, and traffic state reports. Popular services are Google Maps/Traffic,
Waze, Nokia Here, TomTom Traffic, or Bing Maps. Most of these use mutliple data
sources from static and mobile detection. For the algorithmic part of traffic state
estimation different approaches have been proposed which are explained in the further.

Threshold Methods

Threshold methods are the simplest form of traffic state estimation. In general, the
input of such a system are values measured for example by successive gauging sections
(stationary detectors) on highways. The measured and aggregated values are then
compared with certain thresholds to identify the traffic state. For each gauging section
with an inductive loop a threshold of 50 km/h is defined. If the speed of a single
car falls below this value, the section from the last exit to the next exit is assumed
to be congested. However, the congestion is only reported when the measured values
constantly lie below this threshold for ten minutes. The method can only distinguish
two traffic states and can only report the congestion when it is really observed by a
detector (ddg, 2000).

One example for a more sophisticated threshold system is the VKDIFF approach.
For each gauging section i a dimensionless value VK is calculated by the following
equation:

VK(i, t) = [(
Vfree − Vm(i, t)

Vfree
)2 + (

k(i, t)

kmax
)2]

1
2 (2.1)

where V (i, t) is the velocity at a time t and the gauging section i, k(i, t) is a measure
for the traffic density (vehicles per kilometer) which has to be estimated from the data.
Vfree and kmax are constants. VK can be said to be the deviation of the average velocity
from the free flow velocity and the ratio of the current density and the maximum density.
To estimate the traffic state the VKDIFF measure is calculated using two successive
gauging sections which are subtracted from one another.

If the VKDIFF value is high, the two VK values have an opposing development,
which indicates a hazard. For the VKDIFF value different thresholds exist indicating
the traffic state. According to Hoyer (2003) this method can be used for lane control
systems in traffic control centers and sub control units.

Fuzzy Logic

A drawback of simple threshold methods is the low number of states which are de-
tectable and more sophisticated threshold methods have been found some of which
utilize fuzzy logic. Fuzzy logic has been widely used for many different traffic applica-
tions. With fuzzy logic the thresholds are not fixed at a distinct value, but described
by fuzzy sets. For each fuzzy set a membership function assigns an affiliation value to
each input element indicating how much a value belongs to the fuzzy set. This allows
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for a more flexible and sophisticate description of thresholds and traffic states, respec-
tively. To implement the fuzzy logic an inference machine is used which represents a
decision process. Components of the inference machine are rules consisting of logical
operators. Result of the fuzzyfication process is a distinct decision (this process is also
called defuzzyfication) which delivers a concrete value for the output parameter, e.g.
the traffic state.

A proposal invented at Siemens uses the VKDIFF and two trend factors as input to
a fuzzy system (Hellendoorn and Baudrexl, 1995). The rules employed are based on a
dynamic fundamental diagram and the system takes into consideration several impact
factors as fuzzy variables, such as the time of day, the weather, or the season. A famous
approach used in the XFCD system by BMW is based on fuzzy logic (Huber, 2001b).
Huber (2001b) identified important traffic parameters which indicate a congestion. The
first parameter is a delay parameter which interprets a strong decrease of velocity in
a short time period. The second parameter is an indicator which can rate a slow
velocity profile, i.e., it can detect if the vehicle is driving slowly over a certain period
of time (similar to the threshold method). Additionally, flash lights are observed as
they are a strong indicator for a vehicle driving towards the rear end of a traffic jam
(Huber, 2001b). Furthermore, the state of the right direction indicator is also included
in the decision process, as it may indicate that the vehicle is turning off the road. The
processing is done inside the vehicle, such that the vehicle can report only the event and
does not have to send all of the detailed data to a server to do external processing, saving
communication costs. A different approach which uses fuzzy logic to estimate the traffic
state is described in (ddg, 2000). Here traffic data is first summarized to parameter
vectors which are intended to describe the traffic state. The traffic parameters include
velocity, traffic flow, and density. The method uses a data stream approach where the
incoming records represent a stream of the parameter vectors. A window is defined
which only contains the parameter vectors of a certain time period (e.g., one minute)
and of a certain location interval. The measured values are therefore obtained as a
moving time function (ddg, 2000). Finally, the parameter vectors are used as an input
for a fuzzy logic system which classifies the parameter vectors into the different traffic
states using a membership function for each dimension of the parameter vector. For
each parameter different results for the single states are output. These results can be
summed up and standardized to retrieve the overall traffic state result for each single
location. To get the traffic state for a road section the location vectors with the traffic
states are extrapolated with a Gaussian filter over the location dimension.

Fuzzy sets are also used in combination with other approaches, e.g., in the FOTO
system by Kerner (2004).

Section-based Balancing

In these methods, at the beginning and the end of a section with known length velocity
and traffic flows are measured (ddg, 2000). The measured parameters are balanced
between start and end point of the section. If at the end of the section the traffic flow
decreases but at the beginning the same amount of vehicles flows in, a congestion in the
section can be assumed. The congestion can be detected before it reaches the second
detector at the end of the section.
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Kalman Filtering

Kalman Filters are algorithms for producing an optimal estimate for linear dynamic
physical processes and systems. Physical parameters are estimated to approximate the
true state of the linear system at a time k. It is assumed that the system is observed
by measurements. These are described by an observation model or function which also
includes measurement noise (Gaussian with zero mean). The system itself is described
by a state transition model/function. Additionally, it accepts input modelled by a
control function and finally, noise is added to reflect process and system errors. The
result is a vector representing the system state at a time k based on the previous
state at time k − 1. Extended Kalman Filters expand this idea to cover non-linear
dynamic systems by modeling observation and transition by differentiable instead of
linear functions. Extended Kalman Filtering is the most popular method for traffic
state estimation (Van Hinsbergen et al., 2012; Wang and Papageorgiou, 2005). In traffic
state estimation Extended Kalman Filters are used in combination with stochastic state
models for macroscopic modelling of the traffic flow. It calculates the output values
based on the measured input values and the macroscopic model parameters. The
output parameters are continuously compared to the real measured values and the
model parameters are adapted. The output parameter is the section-related profile of
the traffic state parameters (Hoyer, 2003). For example, a popular approach by Wang
and Papageorgiou (2005) uses a spatio-temporally discretized macroscopic flow model to
model the traffic on a highway. It utilizes aggregated variables for traffic density, space
mean speed, and traffic flow and is described in terms of differential equations. Errors
are represented by zero-mean Gaussian white noise. The measurements are represented
by modeling detectors for traffic flow and mean speed and also include zero-mean
Gaussian white noise. The Extended Kalman Filter is then represented by an equation
which includes the application of the above macroscopic model applying corrections
based on the measurement model. Due to its popularity new approaches for Extended
Kalman Filtering in TSE are proposed once in a while, e.g., by Van Hinsbergen et al.
(2012). Other groups of algorithms where TSE is regarded as a filtering problem and
which try to outperform Kalman Filters are particle filters (Wu et al., 2015; Bi et al.,
2013) or Probability Hypothesis Density (PHD) filters (Canaud et al., 2013).

Cellular Automaton

The cellular automaton method is an approach which models dynamic systems solely
with discrete integer variables (Treiber and Kesting, 2010). For an explanation, please
see Section 2.3.1. The traffic state can then be derived from the model by feeding
it continuously with measured data and observing the resulting state. This approach
can be used in urban and extra-urban areas and has been successfully deployed in the
autobahn.NRW project by the University of Duisburg now called Verkehr.NRW.14

Fundamental Diagrams

In the MARZ description (BASt, 1999) fundamental diagrams are used to determine the
traffic state. Fundamental diagrams can describe the state of traffic flows (Kuhne, 2011;
Schnabel and Lohse, 1997) by showing the relationship between traffic flow, velocity,
and density. In (BASt, 1999) the assignment of the data from the fundamental diagram
to corresponding traffic states is done by using decision tables dependent on the number

14http://www.verkehr.nrw.de
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of lanes, velocity, and density from smoothed 1-minute values (Hoyer, 2003). In this
model four different states are used to describe the traffic state: free, dense, tough-
flowing and congested traffic. In the City-FCD approach (Steinauer et al., 2006), also
fundamental diagrams are used. Thresholds in the fundamental diagram which have
been derived from simulations determine the traffic state ranges. For highways four
states have been used (free flow, dense traffic, tough-flowing traffic, traffic jam). The
thresholds are dependent on the link considered and expectation values defined for it.
The states are furthermore not strict, but can overlap (Steinauer et al., 2006). For rural
roads City-FCD distinguishes three states (capacity available, no capacities, traffic jam)
and on urban streets only “no traffic jam” and “traffic jam” are distinguished.

Three Phase Theory

The three phase theory is an empirical model by Kerner (2004). This approach distin-
guishes three traffic phases on extra urban roads: free flow, wide moving jam, and syn-
chronized flow. The approach assumes that traffic can be described by spatio-temporal
patterns as traffic is always related to location and time. Therefore, according to
Kerner (2004) a traffic phase is a traffic state considered in space and time which can
be described by spatio-temporal features which are only specific to that traffic phase.
In general, congested traffic is seen as complementary to free flow and the average
vehicle speed is lower than the minimum possible speed in free flow. A traffic jam is
bordered by two fronts, the upstream jam front and the downstream front. The wide
moving jam phase describes a traffic jam which ”maintains the mean velocity of the
downstream front of the jam as the jam propagates” (Kerner, 2004), i.e., the velocity
of the downstream front is not influenced by the state of the following jam zone. The
vehicles in the upstream front only drive at a very low speed or halt, while the vehicles
in the downstream front always accelerate almost from halt (stop-and-go). Therefore,
the jam and its fronts move along the road. Additionally, the traffic volume leaving the
traffic is independent from the traffic volume driving into the traffic jam, the jam is only
getting longer. In the synchronized flow phase the downstream front is often fixed in
a bottleneck (Kerner, 2004). Hence, the downstream front separates the synchronized
flow upstream from free flow downstream. In this phase the traffic volume leaving the
traffic jam is dependent from the vehicles entering the congestion.

Kerner (2004) developed two models, the ASDA (Automatische Staudynamikanal-
yse, Engl: Automatic Tracking of Moving Jams) model and the FOTO (Forecasting
of Traffic Objects) model based on the three phase theory, which automatically detect
and track congested spatio-temporal traffic patterns on freeways. The FOTO model is
used to identify the traffic phases and to track synchronized traffic, while the ASDA
model tracks the moving jam propagation. In the models traffic is described by means
of macroscopic models. Each object, which can be a wide moving jam or a synchro-
nized traffic flow, has properties such as the object width, locations of the upstream
and downstream front, velocities of the upstream and downstream fronts, and an object
lifetime. The creation of the objects is done by the FOTO model, which firstly iden-
tifies the traffic phases based on measurements of two successive detectors locally. It
uses Fuzzy Logic to interpret the measured parameters and determine the traffic state.
As input parameters mainly the traffic flow rate and the vehicle’s speed are taken.
The values for the membership functions have been determined empirically with mea-
sured data. Secondly, both models recognize the moving fronts of the phases at the
gauging sections. After front detection the properties for the size and position of the
corresponding traffic objects can be derived. Finally, the models track the identified
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objects. With the models it is possible to predict the development of the traffic jams,
e.g., when two wide moving jams or two synchronized flows are merging (a mixture is
not possible) even when the jams are not directly observed. So not only TSE but also
traffic flow prediction can be done.

Traffic State Estimation using Floating Phone Data

As described in Section 2.2.2 for FPD either the GPS readings are transferred or the
phones are detected in the cellular network. Hence, the parameters used in TSE differ
accordingly. While GPS readings might also submit speed values (Habtie et al., 2015),
in the cellular network other parameters such as the number of active calls (Caceres
et al., 2012), the Cell Dwell Time (Pattara-atikom et al., 2007), or handoff events
(Alessandri et al., 2003) on the link are used to derive the traffic volume.

Systems are proposed which utilize the Cell Dwell Time in cellular networks to
estimate the traffic state on urban roads (Pattara-atikom and Peachavanish, 2007;
Pattara-atikom et al., 2007). The authors assume that high Cell Dwell Times are
an indicator for traffic hazards. To acquire the Cell Dwell Time on mobile phones
a software had been installed on the phones which collects the data. Besides of the
measured Cell Dwell Time, date and time, the MCC, the MNC, the LAC and the cell
ID are collected in idle and active mode of the phone each time a handoff takes place.
The collected data are then send to a server and classified by firstly smoothing the
gathered data by averaging the data with historical values and the moving average
technique. In the next step the data are classified into three different congestion states
(free-flow traffic, moderate traffic and heavily congested traffic) by using a three level
feedforward backpropagation neural network. Input for the neural network are the
time, the LAC, the cell ID and the Cell Dwell Time as vectors. The output is the level
of congestion. The LAC and cell ID have been used along with the CDT to identify
the geographic location of the cell and in conclusion determine the size of the cell. The
neural network can then learn the comparative cell size from the relationship between
CDTs and observed congestion levels. In the second system by Pattara-atikom et al.
(2007) the same data collection and smoothing method are used. In addition to the
moving average smoothing also a weighted exponential average method is used. For
classification into the different traffic states (which are also the same) the authors use
a simple threshold technique and fuzzy logic instead of the neural network. For the
simple threshold technique empirical thresholds for the average CDT at a time t are
defined for each traffic state. The membership functions for the fuzzy logic system are
defined similarly.

Another approach utilizing data from mobile phones uses a microscopic traffic model
that allows for the representation of active mobile phones in freeway traffic (Alessandri
et al., 2003). In the model a freeway is partitioned in sections, defined by the cell
sizes of the cellular network. The approach was tested by using a microscopic freeway
simulator and a cellular network simulator which simulates mobile phone activity and
tracks handoffs to provide the density of active mobile phones in a cell and flows from
one cell to another. It is assumed that the distribution of cars along a freeway is
uniform. The traffic simulator feeds data (traffic flows of vehicles entering the section
and traffic flows leaving a specific section) into a traffic predictor which is implemented
with the macroscopic model to estimate traffic density and velocity for comparison with
the Extended Kalman Filter. The vehicle positions generated by the macroscopic model
are then passed to the cellular network simulator. Furthermore, the data of the traffic
simulator is fed into the Extended Kalman Filter which uses the macroscopic model and
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a dynamic model of the active mobile phones. The Extended Kalman Filter estimates
for each section the following state variables by using the mobile phone densities and the
handoffs for the corresponding cells: density of vehicles, mean velocity, and percentage
of active mobile phones. The simulation setup does not implement a specific cellular
network technology. The estimated values are compared with the mean velocity and
density which are output by the traffic simulator. The authors obtained good results
with the Extended Kalman Filter and a constant rate of 5% active cell phones. Velocity
is estimated with a maximum error of 5 km/h while density differed up to a maximum
of 100 veh/km.

A recent approach by Habtie et al. (2015) uses positions, speeds, and timestamps of
GPS measurements of handsets recorded every second. About 450 probes are emulated
by the SUMO traffic simulation. The problem of unwanted probes (such as peasants)
is assumed to be solved by subscription - only handsets subscribed to the service are
taken into account. The speeds are aggregated using a window of ten minutes. An
artificial neural network is used to predict the average speed on a link. Finally, the
traffic state estimation is done using a simple threshold method and three traffic states.

2.4.2 Queue-end Detection (QED)

Queue-end or rear-end collision detection and warning systems aim at the prevention
of this highly dangerous hazard. One specific challenge of these systems is the very
low processing delay allowed. While QED was a difficult task using stationary sensors,
the advent of in-vehicular sensor networks and V2X communication opens up new
opportunities to prevent rear-end collisions. In the following we discuss some solutions
to the problem.

Huber (2001b) studied the opportunities in traffic information collection using
XFCD. He analyzed which in-vehicle information, e.g., collected over CAN bus and
sensors, can be used to detect certain local traffic events. One example he investigated
is the queue-end detection using a deceleration parameter, an indicator for low speed
level, right turn signals, the road type, and warning flashers. The event determination
is implemented using fuzzification and a rule base. To reach 90% probability that a
vehicle arrives at an incident in a one minute interval a penetration rate of 6.9% is
required already. The high penetration rate is not really suitable for local real-time
hazard warnings. The system does not use any learning for fuzzification and rules –
these are manually defined. Chan et al. (2003) present a system for real-time queue
tracking based on the average speed detected on road sections by identifying three traf-
fic zones and analyzing the arrangement of these zones. Though, the authors base their
work on stationary detection and have to rely on larger sections (minimum of 500 m
between loop detectors on a comprehensively equipped highway), the idea of identifying
the parts of the queue seems appealing. Other works on queue-end detection use meth-
ods from the field of artificial intelligence. Khan (2007) presents a simulation study
using stationary sensors as data source. They analyze the data using artificial neural
network models, predicting the current queue length based on accumulated numbers of
cars and trucks at fixed locations. Although they postulate real-time processing in their
information system, the used algorithm is not capable of online learning, i.e., it cannot
adapt to concept changes. As mentioned earlier the introduction of V2V opens up new
opportunities to prevent rear-end collisions. Early warnings can be send to vehicles to
make them aware of the situation ahead. Usually, sensor readings, for example from
emergency brake lights or radar, are used to indicate a hazard. A warning is then issued
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by the corresponding vehicle. An approach which is based on V2V communication and
in-vehicle sensors is presented by Chen et al. (2011a). This approach assumes that each
participating vehicle is equipped with a GPS receiver and a distance sensor in the front,
which enables the vehicle to locate its own position, measure the distance to the vehicle
in front of it, and the speed of the vehicle ahead. A warning message is propagated in
a warning group of vehicles when an emergency braking event took place. The group
is built based on distances between the vehicles.

2.4.3 Data Stream Applications in ITS

Data stream management systems and data stream mining algorithms have been stud-
ied intensively, and some approaches apply these techniques to traffic management
applications. In the product MineFleet (Kargupta et al., 2010) data stream mining is
integrated into vehicle embedded systems for fleet monitoring to analyze vehicle health,
emissions, or driver behavior. Another approach detecting driver behavior is presented
by Horovitz et al. (2007), which uses a combined approach of unsupervised data stream
clustering and fuzzy logic to detect drunken driver behavior. Liu et al. (2006) propose a
distributed traffic stream mining system for the determination of congestion level using
Frequent Episode Mining. On a central server frequent patterns are determined based
on historical data and are then distributed to stationary detectors, which use the pat-
tern to classify data from the sensors. Linear Road (Arasu et al., 2004b) is a well known
benchmark in the area of DSMS, but it focuses on the performance of the DSMS and
not on the characteristics of the traffic application. A contest at the International Con-
ference on Data Mining (ICDM) in 2010 (Wojnarski et al., 2010) evaluated the quality
of data mining algorithms for traffic applications. However, the challenge focused only
urban traffic and did not take into account different parameters of the DSMS or the
traffic application. Biem et al. (2010) implemented a data stream application for travel
time and shortest path estimations using GPS probes from taxis and trucks in the city
of Stockholm. A recent approach combines data stream management, complex event
processing, and crowd sourcing for traffic state estimation (Artikis et al., 2014). The
authors use the STREAM system, the Event Calculus System for CEP, and a custom
model and implementation for crowd sourcing suitable for a data stream setting. Kuka
et al. (2013) present a system for context modeling for autonomous vehicles where sen-
sor readings of static and mobile sensors are fused in the DSMS Odysseus for moving
object prediction. Quality also plays a crucial role here and is embedded into Odysseus.
The system is implemented along the JDL Data Fusion Process model (Hall and Llinas,
1997). Only the last approach by (Kuka et al., 2013) is concerned about data quality
and evaluation, while all others lack structured evaluation and quality assessment.

2.5 Conclusion

In this chapter we discussed one example application domain for this work. Traffic data
for C-ITS applications may be produced in real-time while the data of many users has
to be processed. Real-time applications, such as real-time traffic states and incident
warnings are highly demanded by road users. Hence, the applications have to produce
results in (near) real-time as well. In particular, safety applications require low latency,
fast processing, and high quality results. As depicted in this chapter, data sources vary
in granularity, availability, and quality. The presented traffic applications rely heavily
on unreliable data sources, such as sensors. Further, many parameters influence the
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results of a traffic application, such as the data source types, the density of probes, or
the weather and road conditions.

There is a huge variety of algorithms utilized for the implementation of these ap-
plications. To develop effective traffic applications, a thorough evaluation of the tech-
niques employed is necessary. The output quality of the traffic application is not only
dependent on the choice of the DSMS and of the processing algorithm; there are many
parameters that have to be considered to achieve a certain quality level in the derived
traffic information. Recurring general questions, such as how much data is required to
produce reliable application results, or which data sources are beneficial for the results,
need to be tackled in a structured way. But also domain specific problems, such as
real-time Map Matching or parameterization of data stream mining algorithms, have
to be evaluated. However, a structured approach to test and find the optimal parame-
ters and algorithms for real-time C-ITS applications is missing. Furthermore, a general
and flexible way to measure and rate the quality of the application results is lacking.

We address these issues in the next part by providing a process model for the
structured design and evaluation of stream-based applications in Chapter 5. The model
is applied on two C-ITS case studies in Chapter 6 comprising a structured preliminary
evaluation. A detailed data quality assessment for the traffic applications is carried
out in Chapter 8 using the proposed data quality framework. Also, a new online Map
Matching algorithm is evaluated in Chapter 9 using the proposed methods, followed by
the detailed evaluation of different data stream algorithms in the two case studies in
Chapter 10.
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Chapter 3

Application Domain II: Mobile
Health Systems

Mobile Health, short mHealth, as the second application field for our research has
many interesting aspects and properties, which demand for quality-oriented real-time
processing. Mobility in the health domain is in particular an expression of the desire for
independence, autonomy, and self-control. Wireless technologies, specifically powerful
smartphones, have pushed forward the mobility aspect and opened up new opportu-
nities for applications. Especially, in the health domain much of the data is produced
at high rates by unreliable data sources while at the same time high reliability and
data quality are necessary. Typical problems are sensor misplacement or distortion, in-
subject variability, signal distortion by the mobile communication unit, or intentional
data quality degradation for performance improvement (Kumar et al., 2013).

mHealth is currently an intensively discussed and researched topic. With the ad-
vent and the further development of mobile devices, the publications about mHealth
applications also increased rapidly (Fiordelli et al., 2013). Many countries in the world
are actively conducting projects or offering services in the area of mHealth (Global
Observatory for eHealth, 2011). According to the World Health Organization (WHO)
mHealth is defined as “medical and public health practice supported by mobile devices,
such as mobile phones, patient monitoring devices, personal digital assistants (PDAs),
and other wireless devices”.(Global Observatory for eHealth, 2011) The European Com-
mission put special emphasis on mHealth since 2014: they published a green paper on
the topic (European Comission, 2014), initiated a public consultation to elicitate the
ideas and issues of the public according mHealth applications, and published a legal
guideline for “developers of lifestyle and well-being apps” (European Comission, 2015).

The distinction to other fields, such as Electronic Health (eHealth), telemedicine,
and telehealth is not easy (Bashshur et al., 2011). The area of mHealth can be seen
as a subarea of eHealth. Telehealth and telemedicine differ from mHealth in that they
particularly focus on the remote support or care by health professionals. mHealth ap-
plications do not necessarily have that aspect and focus more on the mobility of the
user, which is often not a property of telehealth applications (Pankratov and Znamen-
skaya, 2014). Special advantages of mHealth in contrast to the other fields mentioned
before comprise the high coverage, reachability, and penetration rate. This is due to
the ubiquitous use of mobile devices, cellular networks, and Wireless LAN, which is es-
pecially helpful in developing countries and at locations, where many people live at the
countryside. In these cases access to cellular networks is available, but a fixed phone
network does not exist (Global Observatory for eHealth, 2011; Economist Intelligence
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Unit, 2012; Bashshur et al., 2011). Furthermore, mobile devices are personalized, users
are skilled in the use of the devices, and no or minimal additional training to handle the
device is needed for application users. Hence, the initial conditions for user acceptance
are promisingly good. The mobile aspect as such opens up many more opportunities
to realize applications in contrast to desktop applications.

Besides of eHealth, telemedicine, and telehealth, a common term in the context
of mHealth is Pervasive Health. It is defined as “healthcare to anyone, anytime, and
anywhere by removing locational, time and other restraints while increasing both the
coverage and the quality of healthcare” (Varshney, 2007). While the definition and
term of Pervasive Health is describing somehow the goal of the applications, mHealth
is more focused on the technical implementation. But in principle the architecture of
pervasive health applications (Varshney, 2007) is almost identical with the mHealth
architecture described in the following. Pervasive Health applications and mHealth
applications are often the same or similar (Pankratov and Znamenskaya, 2014).

3.1 General mHealth Architecture

The general architecture of a mobile health application, as depicted in Figure 3.1, con-
sists of a set of mobile and/or stationary sensors (optional), a mobile processing device
with internal sensors, a communication network, and optionally a server processing
complex and resource-intensive tasks. Additionally, other external data sources, such
as weather data or archived data, can be integrated with the health data to make
the output richer or to infer new information. Depending on the application’s com-
plexity more or less of these components are required. There are simple SMS-based
applications, which are already considered as mHealth applications. An example is an
SMS-based prenatal care application with which women get important information and
advices via SMS at certain times in their pregnancy (Global Observatory for eHealth,
2011). But there also complex applications, which include many sites, sensors, and al-
gorithms, for example as elaborated in the HealthNet running application (Quix et al.,
2013) described in Section 7.1.

Communication
Network

Mobile Devices

Internal
Sensors

Sensors (opt.)

Application Servers (opt.)

Figure 3.1: General Architecture of mHealth Systems (sensor images taken from Mi-
crosoft3and San Diego Union Tribune)4
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Sensors as an optional component in mHealth architectures got ubiquitous in our
daily lives. Smartphones and other cellular phones include a lot of internal sensors,
such as gyroscopes, GPS, cameras, microphones, light, and temperature sensors. But
also the rest of our environment gets more and more populated by sensors: smart homes
monitor and control your personal space, sensors in cars make driving easier, safer, and
more comfortable, and environmental sensors give us information about air pollution,
weather, or animal trails. The Internet of Things (IoT) utilizes sensors for the idea of
making items from our daily life smart and connected, such that new service and safety
applications can be implemented in a user-friendly and unobtrusive way.

In particular, mHealth already has proved to be very helpful in personal and pro-
fessional health care. Prime examples are systems for patients suffering from chronic
diseases. Many of them require regular condition monitoring and instructions for ac-
tions in critical or atypical situations. These use cases can be assisted by mHealth
systems. Another typical example is fitness applications, which monitor and advise
laymen and athletes during their workout. Mobile fitness and activity trackers have
gained huge popularity due to the ability to couple them with a smartphone and to
analyze the data.5

Applications for chronic diseases and fitness management are also the ones, which
are mostly targeted by application developers (research2guidance, 2014; Fiordelli et al.,
2013). Furthermore, mobile systems for the assistance of elderly in their daily life help
to keep them independent as long as possible. This is particularly interesting in the
light of the current staff shortage of certified personnel in elderly care in Germany. This
topic is also addressed by research in the area of Ambient Assisted Living (AAL).

3.2 Properties of mHealth Applications

For data management mHealth application scenarios also pose many challenges, as a
lot of data can be created by the utilized sensors and devices, the processing power on
the mobile devices may be limited, or processing has to be distributed. Disruptions in
Internet and cellular network connections as well as failing sensors have to be taken
into consideration in the data management and system development. Further challenges
relate to data privacy and security.

The amount of mHealth applications already commercially available is overwhelm-
ing. In 2014 the biggest app stores provided more than 100.000 mHealth apps (re-
search2guidance, 2014).

There are several criteria, which help to categorize mHealth applications, some of
which are:

• Application Context: The environment for which the application is conceptu-
alized. There exist systems for personal home care and personal fitness, doctors’
practices, hospitals, health care centers, and emergency units. The systems may
be designed for indoor or outdoor usage, or both.

• Type of Mobile Devices: We can distinguish off-the-shelf devices and propri-
etary devices. The type of devices can be either off-the-shelf cellular phones or

3https://www.microsoft.com/microsoft-band/en-us
4http://www.sandiegouniontribune.com/business/biotech/sdut-soteras-visi-

mobile-vital-sign-tracker-okd-2012aug21-story.html
5http://www.livescience.com/42144-activity-monitors-popularity.html
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tablets, wearables including smart watches, or other mobile proprietary devices,
such as mobile monitors.

• Sensor Types: The kind of sensors used for the applications varies a lot. The
technology used for sensing as well as the sensed data can be different. Some
systems rely on invasive sensors (sensors for whose installation or measurement
the body is penetrated), while most of them are non-invasive.

• Type of Sensing: Khan et al. (2013) distinguish the kind of sensing, i.e., how
much users are involved in the sensing process and architecture. Participatory
Sensing involves the user, i.e., the user initiates and executes the sensing process.
For example, a patient initiates a blood pressure measurement or a runner starts
a run measurement. In opportunistic sensing, the application decides if, when,
and how long the sensing is executed. Both kinds can further be distinguished
into personal, social, and public sensing (Khan et al., 2013). Personal sensing
concentrates solely on the acquisition of information of the current user. Social
sensing collects social information and shares it with other participants in a social
network. Public sensing acquires data for the public benefit, such as sensing traffic
information or weather data.

• System Architecture: The architectures are very diverse. Many applications
only run locally on mobile devices using solely the intrinsic features of the phone.
Some applications rely on bigger architectures using peer-to-peer, client-server,
or cloud-based architectures.

• Communication Channels: Depending on the features of the mobile device,
different communication channels may be used by the applications. Some only
rely on GSM, others are dependent on access to the Internet, enabled by 3G/4G
or Wireless LAN. Additionally, in many applications external sensors rely on
communication with the mobile device by using short-range communication, such
as Bluetooth or ZigBee.

• Purpose: As mentioned before, the goals of the applications are manifold.
Amongst others the application fields comprise health and fitness monitoring and
self-management, disease surveillance and control, enhancement of clinical diag-
nosis, prevention, therapy, health promotion, community mobilisation, education
and learning, training for health professionals, drug and treatment adherence,
emergency response services and information, management of patient care, and
decision support for health professionals (Global Observatory for eHealth, 2011;
Mechael and Sloninsky, 2008).

3.2.1 Challenges

Challenges for mHealth applications are manifold. Depending on the functionality and
equipment used, battery consumption is an issue. The usage of Bluetooth, GPS, Wire-
less LAN, sensors, and the display of information stresses the battery. Furthermore,
the sensors and devices must be unobtrusive and not burden the users - and they have
to be as portable as possible to fulfill the mobile character. As in almost all health
applications the (wirelessly) exchanged data is typically sensitive, such that means for
data security and privacy have to be provided. Mobile health applications often also
have real-time requirements, especially when sensors are involved, as data is produced
in real-time and, depending on the applications, users expect results in (near) real-time.
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This poses challenges for data processing and management. Furthermore, phys-
iological intra- and inter-subject variability make health applications a challenge for
the utilized algorithms as they have to be adaptive to different patients and different
conditions of one patient. If data is coming from several sources describing the same
event, sensor fusion has to be executed to represent the full picture. This is not trivial,
as we will discuss in Section 3.3.4. Finally, the wireless communication is an issue. The
application needs a fallback solution, if the connection is breaking down, e.g., in areas
where there is no cellular network signal.

In medicine, a plethora of medical devices is used for diagnosis and therapy. These
devices mostly use proprietary protocols and data formats to export the measured data
(and this is still the case for some of the new devices). However, the urgent need to
exchange medical data between professional health services brought up standardized
medical data formats. Especially, the advent of Electronic Health Records (EHR)
pushed this development. Hence, many medical devices are capable today to output
their data in a standardized way. The most important standards are ISO 11073/IEEE
1073 for data exchange between medical devices, HL7 (Health Level 7) as a set of
standards for exchange of a broad range of health information, and DICOM (Digital
Imaging and Communications in Medicine) for medical images (Schmitt et al., 2007).
For mHealth in HL7 recent efforts are made to standardize short messages used in
mobile communication, such as SMS (Datta et al., 2016). These standards can be
important for the creation of mHealth applications when these applications are planned
to send their data to the interfaces of other systems, such as Hospital Information
Systems. Hence, the interoperability with other systems may be another challenge to
be tackled by mHealth systems.

All of the challenges mentioned above are important to keep in mind during design
and implementation of an mHealth application and the corresponding data management
(when selecting the data sources, in the design of the algorithms, data processing and
analysis, and so on). In Chapter 5 we introduce a methodology for the design and
implementation of streaming applications addressing many of these issues.

3.3 Data Sources

In this section we will discuss which kinds of data sources are relevant for health care
and specifically for mHealth applications. The most important data sources are sensors.
They are intensively used in health applications to describe the condition of a patient
along with the context she is in. Sensors can be combined to sensor networks, where
the sensors communicate with each other. In the health domain, medical devices often
do not adhere to general open standards, but implement proprietary interfaces and
protocols. Others adhere to standards commonly used in hospitals as briefly sketched
in the previous section.

3.3.1 Sensor Data

The National Cancer Institute Thesaurus (NCIT)6 defines sensors as follows: “A device
that responds to a stimulus, such as heat, light, or pressure, and generates a signal that
can be measured or interpreted.” Technically speaking, a sensor is a small device, which
measures a certain phenomenon. The device consists of a sensing unit and optionally a
transducer to convert the signal into a more convenient format (Hoffmann, 2011). The

6https://ncit.nci.nih.gov
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raw output of a sensor is an electric signal (including noise), which can be described
by frequency, amplitude, and form and time of their occurrence (Hoffmann, 2011).
Properties of such a signal are that it is typically continuous, it is limited in energy or
band, respectively, and it fulfills the Markov property (Sathe et al., 2013). The signal
can be further processed by using amplification, filtering, digitalization, linearization,
noise recognition, and filtering. Smart sensors are chips extended, amongst others,
with microcontrollers and memory. They have some intelligence integrated on a single
chip to convert the sensor signal into a more convenient format, and possibly process it
in many other ways, e.g., executing data mining techniques (Eren, 2014). A sensor can
furthermore be extended by communication interfaces and batteries, to enable wireless
and mobile transmission. The sensor can then be used as a node in a sensor network.
The sensor output can range from “simple scalar numerical or categorical values, to
complex data structures” (Sow et al., 2013). Typically, a time series is produced, which
includes timestamped data. In Figure 3.2 a sensor node including typical components
is depicted, where RF stands for Radio Frequency and ADC is an analog-to-digital
converter (Chen et al., 2011b).

Figure 3.2: Architecture of a Typical Sensor Node (Chen et al., 2011b)

3.3.2 Medical Sensors

Medical sensors or biosensors measure biosignals as phenomenons to describe the cur-
rent condition and changes in conditions of patients. Biosignals can be characterized
according to their properties. The properties can be structural parameters, e.g., length
or volume, or functional parameters, e.g., temperature or pressure (Hoffmann, 2011).
The type of biosignal measured can be categorized into acoustic, biochemical, elec-
trical, electromagnetic, mechanical, optical, thermal, and spatial signals (Eren, 2014;
Hoffmann, 2011). The sensors can be invasive or non-invasive, and can be used for liv-
ing objects and non-living objects, such as tissues and body liquids. The sensors differ
in modality, i.e., the technology the sensor is based on, size and costs, and the utilized
communication technology (Ko et al., 2010). Sensors do not necessarily have to be
devices directly measuring the target object - people can also serve as sensors by obser-
vation or environmental sensors can be used to analyze additional context information
(Sow et al., 2013).
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3.3.3 Body Sensor Networks

The outputs of several sensors can also be combined to describe complex situations.
Sensors can deliver their output to another sensor to combine the measurements or send
them to a central processing unit. These tasks are covered by Wireless Sensor Networks
(WSN). Body Sensor Networks (BSN) or Body Area Networks (BAN) are a specific
kind of WSN tackling the special challenges posed by a human body. For example, they
are very small in size, have to deal with motions, comprise a small number of sensors,
and have high requirements regarding data protection (Yang et al., 2014b). A BSN
consists of several body sensor nodes (sensors with communication unit, battery, low-
level processing unit), an optional local central master node, and a personal server (i.e.,
either a proprietary device or an off-the-shelf mobile device) (Chen et al., 2011b; Poon
et al., 2015; Yang et al., 2014b). The sensor nodes may be worn on the body, inside the
body, or somewhere near (in the range of two meters) (Chen et al., 2011b). The master
node has more processing, memory, and power resources than the other nodes to fulfill
its tasks and it can help to organize the data collection from the other nodes (Espina
et al., 2014). Intra-BAN communication connects the sensors with each other, typically
using a star topology and short-range communication, such as Bluetooth or radio.
However, the used topology is dependent on the targeted application (Espina et al.,
2014). The local processing unit can fuse and preprocess the sensed data and transmit
it to the personal server also using short-range communication. The personal server
can then transmit the data via WAN to the next instance, such as dedicated access
points, cloud servers, or remote application servers (Chen et al., 2011b). Sensors and
in particular BSNs can produce high amounts of data in a very short time, which poses
big challenges to the data processing and management. Hence, efficient means have to
be found to get the most of the data while providing (soft) real-time requirements and
accurate analysis results in the target applications, and keeping energy consumption
and communication costs low.

BSNs can be used for monitoring of patients with chronic diseases (prognosis, pro-
gression, adherence to therapy plan, and so on), in hospital monitoring, home moni-
toring, care for the elder, self-monitoring, wearable and other health-related robotics,
personalized health, and sports applications (Yang et al., 2014b). It can also be used for
therapy systems, e.g., for Closed Loop Systems, which automatically adapt the therapy
to measured parameter values (building a loop) and measure the effect of the changes
(Hoffmann, 2011; Yang et al., 2014b).

Three types of BSN network architectures can be distinguished whose use is de-
pendent on the target application: Standalone BSNs, Pervasive Sensor Networks, and
Global Healthcare Connectivity (Espina et al., 2014). Standalone BSNs only consist of
the BSN, its nodes, and a central processing unit. Pervasive Sensor Networks integrate
contextual information with BSNs to accomplish an overall picture of a situation as
complete as possible. Finally, Global Healthcare Connectivity includes a connection
to the Internet to transmit the information to other services, such as hospitals. This
can be done to (1) offer special services based on the measured data, e.g., heart pacer
maintenance, (2) to complete the gathered information for the mobile application, e.g.,
using Electronic Health Records (EHR), or to (3) store the data for later use or deeper
analysis.
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3.3.4 Sensor Fusion

Sensor Fusion or Multi-Sensor Fusion describes a multi-step process and technologies
for correlating and combining data from one or several sensors (or sources in general)
to describe an event, the condition of an object, or a process, also taking into account
the context of the object (Khaleghi et al., 2011; Yang et al., 2014a). Hall and Llinas
(1997) describe sensor fusion as a transition between measured parameters and a final
decision or inference, which reflects the process of abstraction from raw signal data to
a final outcome, such as detection of a dangerous blood glucose level for a diabetes
patient.

Based on the application requirements and hence, on the reason why multiple kinds
of sensors are used, competitive, complementary, and cooperative sensor fusion models
are distinguished (Yang et al., 2014a). Competitive fusion strives to increase the quality
of the data by using several sensors observing the same parameter of an object. Sensor
readings can be compared and reliability increased, while a higher fault-tolerance is
achieved. But it can also lead to conflicting and confusing results, if the sensors read-
ings differ too much. Complementary fusion uses several different sensors measuring
different, but correlated aspects of an object to enhance fault tolerance and resolve
ambiguities. Finally, cooperative fusion combines the data of several sensors to derive
information, which could not be obtained using only a single type of sensor. The type
of fusion model determines on which level in the data processing the sensor fusion takes
place (Yang et al., 2014a). Using the competitive model, fusion can already be done on
the raw data level, because sensor readings have the same dimensions and context. This
is also called direct data fusion. Algorithms used on this level can be simple averaging
or detection and estimation methods (Hall and Llinas, 1997; Yang et al., 2014a). As
mentioned for competitive fusion, this setting is helpful to increase data quality, but
can also be used for self-calibration of the BSN (Yang et al., 2014a). If direct data fu-
sion is done in a master node in the BSN, it has the advantage of lower communication
costs, as less data has to be transmitted to other processing components. On the other
hand, it burdens the battery and more processing power and memory is required.

If the sensors are not measuring the same parameters, sensor fusion has to be done
either on feature or on decision level. For the fusion on the feature level, features,
which represent the sensor data well, are extracted from each kind of involved sen-
sor. To this end, feature detection and extraction methods are used. For continuous
sensor signals, features may describe the characteristics of the signal, i.e., analysis in
the time or frequency domain, or both domains correlated. Subsequently, relevant fea-
tures (selected by using common analysis methods, such as the Receiver Operating
Characteristic (ROC)) are combined to a feature vector, which is processed by a data
mining algorithm, such as pattern recognition or classification algorithm (Hall and Lli-
nas, 1997; Yang et al., 2014a). But also fuzzy logic or probabilistic algorithms can
be used. Depending on the problem, application, and corresponding requirements at
hand, the algorithms for sensor fusion vary a lot. Khaleghi et al. (2011) describe the
multitude of algorithms along a taxonomy categorizing the quality problems tackled by
the algorithms. For BSN neural networks and probabilistic methods are particularly
important (Yang et al., 2014a).

The fusion on decision level uses already processed, e.g., aggregated data, where each
data source describes the event or object condition already on a very abstract level.
The results are then combined by using inference and other probabilistic techniques,
fuzzy logic, or classification algorithms (Hall and Llinas, 1997). Big data techniques,
such as MapReduce, can support the fusion process for huge amounts of sensor data
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(Yang et al., 2014a).

As we have described in this section, sensor fusion is an important means to integrate
data from different sensors and can be done on different levels depending on the sensors
and requirements. In the presented framework, sensor fusion could be implemented on
different levels and we will see for the C-ITS as well as the mHealth case studies how
this can be done.

3.4 Stream-based mHealth Applications

Many mHealth applications, which are enabled by data stream management, are related
to the monitoring of vital parameters to support chronically ill patients. In particular,
the most frequent case studies are about cardiovascular diseases, diabetes, and psychi-
atric conditions. But also monitoring of the general well-being is an important area,
such as the health monitoring of soldiers, athletes, firefighters, or astronauts. After we
have reviewed sensors as most important data sources and sensor fusion as way to pro-
cess the data, we discuss briefly mobile and non-mobile health monitoring applications,
which have been implemented with the help of data stream technology. We will not go
into much detail, but we will consider which kind of applications are possible and what
is required.

An early mHealth application based on data streams is presented by Chen et al.
(2004). The application is used to monitor ECG and heart rate. It is able to filter
out disturbances by movements using accelerometers. In this implementation, patients
wear a mobile ECG sensor unit and accelerometers. All sensor nodes send their data
wirelessly (via ISM and Bluetooth) to stationary and mobile end devices. These devices
send the data to a server, which runs T2, a successor of the DSMS Tribeca (Sullivan,
1996). On the server, the data can be analyzed by permanent queries. From the ECG
data the heart rate is extracted in the DSMS, the average heart rate is determined,
and irregularities are detected. A disadvantage in the used stream processing is the
fixed sizes of considered heart cycle windows (distinct parts of the ECG data), as
inter- and intra-subject variabilities have to be considered in the data. Lindeberg et al.
(2010); Stoa et al. (2008) analyse ECG measurements from surgical experiments with
pigs to detect myocardial ischemia (blood supply for the heart muscle is insufficient as
occurring before heart attacks). The authors adapted the DSMS Esper7 to implement
windows whose sizes are dynamically adaptable to the length of a complete cardiac
cycle (distance between to heart beats). The system uses signal processing techniques,
such as Fast Fourier Transform, to detect ischemia.

Brettlecker and Schuldt (2007) propose the distributed data stream architecture
OSIRIS-SE, which is particularly tailored to mobile applications. It also provides spe-
cific means in case of the failure of nodes in the distributed system to avoid data loss.
As an important use case an mHealth monitoring application is presented. The ap-
plication makes use of ECG sensors, blood pressure sensors, and a webcam to detect
critical conditions in patients suffering from chronic heart diseases. The web cam is
used to detect red areas in the face of the patient. The ECG sensor sends its data to
a PDA, which carries the OSIRIS-SE software. All other sensors send their data to
a laptop also equipped with the OSIRIS-SE software. The laptop is used as a base
station for sending out alarms, when one of the sensors measures or detects values in a
critical range. The alarms are sent to the mobile device of a medical professional (also

7http://www.espertech.com/products/esper.php
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running the software).
A completely mobile health monitoring data stream mining application without any

server is presented by Haghighi et al. (2009). A quite simple mobile phone (Nokia N95)
is used to analyze data from a blood pressure sensor (systolic and diastolic blood pres-
sure and heart rate) and context information. This context information is represented
by geometrical objects in multidimensional spaces, the context spaces, extended by
fuzzy logic to abstract to situations. A Light Weight Clustering algorithm (a specific
data stream mining algorithm) is used, whose parameters are dynamically adapted in
real-time to detect abnormal blood pressure conditions such as hypertension or hy-
potension.

The framework ARTEMIS, which is based on the commercial DSMS IBM InfoS-
phere, has been used for the monitoring and analysis of astronauts (McGregor, 2015).
Originally, the system was designed for neonatal intensive care monitoring. In a space
craft astronauts can carry different wearable sensors, amongst others, ECG sensors
measuring the ECG signal, breathing movements, and derived heart and breathing
rates, pulse oximeters for measuring oxygen saturation and heart rate, and blood pres-
sure cuffs. The system uses methods from clinical decision support for analysis, such
as knowledge bases, inference, and data mining techniques. For example, the heart
variability has been analyzed. The heart variability can be used in combination with
other context information to detect irregular conditions, which can occur during space
flights, such as fatigue or depression (McGregor, 2015). The stream analysis framework
is deployed in the spacecraft and at mission control to analyze and visualize the data,
which is replicated and transmitted to mission control.

3.5 Conclusion

In this section we introduced the most important concepts of mHealth applications.
Although acknowledged standards exist for data exchange, in (m)Health applications
the wealth of data sources, data types, and formats pose many challenges to consum-
ing information systems. Even more than in the domain of C-ITS in many mHealth
applications sensors and real-time data processing play a crucial role. Sensor fusion
integrates data from different sensors, but is a complex task and might be prone to
errors. However, while using sensor data at the same time the quality of the appli-
cation results must be high to be suitable in a health setting. We gave examples of
applications, which are already implemented using streaming technologies. Similarly,
as in the case of the C-ITS domain the need for finding the optimal parameterization,
algorithms, and circumstances for optimal application results is given. Both domains
also share their requirements regarding real-time processing and data quality assess-
ment. However, also for the field of mHealth a structured approach for designing and
evaluating applications is missing. There is a strong need for data quality management
of these applications (Kumar et al., 2013), as data quality plays a crucial role in the
health domain. Hence, we present the design and implementation of two case studies
in the mHealth domain in Chapter 7 using the proposed process model from Chapter 5
for data stream applications. Finally, we evaluate the application of the data quality
management framework using the case studies in Chapter 8.
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Chapter 4

Foundations: Data Stream
Processing

Chapters 2 and 3 presented monitoring applications from the C-ITS and mHealth do-
main, which rely in particular on the use of sensors and real-time data. This data
typically occurs in the form of continuous data streams. Other important examples for
monitoring applications are weather observation and environment monitoring in gen-
eral, monitoring of assembly lines in factories, or RFID monitoring. But there are also
other typical applications producing data streams (further termed stream applications),
such as social media analysis, stock price analysis, or network traffic monitoring, which
all can produce even millions of samples per second. All these applications share char-
acteristic properties, which are especially challenging for a data management system
processing the generated data. The data is produced at a very high frequency, often
in a bursty manner. This poses real-time requirements on applications processing the
data and may allow them only one pass over the data. Data streams are typically
unbounded, i.e., it is not known, if and when a stream will end. Also the mapping of
recorded data to a time domain is important to rate the timeliness of the data and to
make it interpretable in that dimension. This is also connected to another problem in
data streams - namely disorder of data, which is likely to happen when the protocol
used for transmission cannot guarantee to sustain order or network latencies occur (Sri-
vastava and Widom, 2004). Depending on the application, data from multiple sources
also have to be fused or integrated and analyzed subsequently to get a comprehensive
picture of a situation. For example, data from several health sensors (such as ECG,
temperature, blood pressure) may be integrated to derive that a patient is in a critical
situation. Another challenge is caused by the pure mass of data. Due to limited sys-
tem resources in terms of storage, memory, and CPU time, algorithms analyzing the
data cannot store and process the entire data, but can process the data only once (the
one-pass property) utilizing the available resources. It may be also required to combine
streaming data with historical or static data from a common database. Typically, data
is prone to quality defects. In particular, sensor data likely includes errors introduced
by the imprecision of measurement techniques, loss of packet data, environmental in-
fluences, internal electronic failures, depleted batteries, or communication interruption
(Paradis and Han, 2007). The more complex the architecture is the higher is the po-
tential for errors. If a wireless sensor network is used, data quality may be additionally
hampered due to communication errors and failures between the nodes of the network
(Mahmood et al., 2015).

To tackle the aforementioned challenges in data stream processing, a specific system
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type, namely Data Stream Management Systems (DSMSs), has evolved. The properties
of the stream applications discussed before lead to a long list of requirements for DSMSs.
In contrast to common data management systems and based on the nature of stream
applications, DSMSs have to react to incoming data and deliver results to listening
users frequently (Stonebraker et al., 2005). This is also termed as the DBMS-Active,
Human-Passive model, while the DBMS-Passive, Human-Active model is implemented
by common Database Management Systems (DBMS) (Carney et al., 2002). In DSMSs
a reactive behaviour is realized by continuous queries, which are registered by a user in
the system. Once registered the queries are executed on the incoming data incessantly.
But applications may at the same time require to allow ad-hoc user queries (Abadi
et al., 2003a) or the definition of views (Golab and Özsu, 2010). Data flowing through
a DSMS must not only be processed and forgotten, but the system also has to react to
changes induced by the data items, which may lead to recalculation of already produced
results. This requires an appropriate change management in the system (Abadi et al.,
2005; Arasu et al., 2003a).

Handling unbounded data streams while having only a limited amount of mem-
ory available and being restricted in CPU time for processing the data is one of the
main challenges for a data stream management system. The creation of incremental
results for critical data processing operations and the application of window operators
as discussed in Section 4.2.1 are only two examples of how these issues are solved in
DSMSs. As already mentioned, most of the applications pose real-time requirements
to the data processing system (Stonebraker et al., 2005). This implicitly comprises the
requirement to be scalable in terms of data rates, which in turn demands techniques for
load balancing and load shedding. However, the system must also be scalable in terms
of queries as some application contexts can get complex and require the introduction
of several queries at the same time. Therefore, the demand for and the adaptability to
newly registered, updated, or removed queries is obvious (Chandrasekaran et al., 2003).
This also brings up the need for multi-query optimization, e.g., by sharing results of
operators in an overall query plan. Query plan modification during query processing is
not only desirable for query optimization, but also to serve Quality of Service demands
under varying system resource availabilities (Raman et al., 2003).

Additionally, a DSMS must address the imperfectness of data. Unordered data has
to be handled adequately, and may be tolerated in controlled bounds. Means to rec-
ognize and rate the quality of the data processed are also crucial to make assumptions
about the produced answers or results (Tran et al., 2010). Finally, as Stonebraker et al.
(2005) demand, a DSMS also has to have a deterministic behaviour, which outputs pre-
dictable and repeatable results to implement fault tolerance and recovery mechanisms.
This contrasts with non-deterministic components in a DSMS, such as a component
randomly dropping tuples to compensate a high system load (Zdonik et al., 2004).

4.1 Architectures

Due to the system requirements for DSMSs their architectures differ in several aspects
from the traditional relational DBMS architecture. Querying has to be viewed from a
different angle as data is pushed into the system and not pulled from the system (Chan-
drasekaran et al., 2003). In Data Stream Management Systems queries are executed
continuously over the data passed to the system, also called continuous or standing
queries. These queries are registered in the system once. Depending on the system, a
query can be formulated mainly in two ways: as a declarative expression, mostly done
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in an SQL-dialect, or as a sequence or graph of data processing operators. Some of the
systems provide both possibilities. A declarative query is parsed to a logical query plan,
which can be optimized. Similar to DBMS this logical query is afterwards translated
into a physical query execution plan (QEP). The query execution plan contains the
calls to the implementation of the operators. Besides of the actual physical operators,
query execution plans include also queues for buffering input and output for the opera-
tors. A further auxiliary element in QEPs are synopsis structures. DSMSs may provide
specific synopsis algorithms and data structures, which are required when an operator,
e.g., a join, has to store some state to produce results. A synopsis summarizes the
stream or a part of the stream. It considers the trade-off between memory usage and
accuracy of the approximation of the stream. Additionally, load shedders can be inte-
grated in the plan, which drop tuples on high system loads. In most systems, execution
plans of registered queries are combined into one big plan to reuse results of common
operators for multiple queries. The physical query plan may be constantly optimized
based on performance statistics, for example. In Figure 4.1 the query processing chain
is depicted.
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Figure 4.1: Query Processing Chain in DSMSs (Krämer and Seeger, 2009)
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Figure 4.2: A Generic Architecture of a DSMS Merging Ideas from (Ahmad and
Çetintemel, 2009; Golab and Özsu, 2010)

In Figure 4.2 a generic architecture of a DSMS merging ideas from (Ahmad and
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Çetintemel, 2009; Golab and Özsu, 2010) is shown. First of all a DSMS typically gets
data streams as input. Wrappers are provided, which can receive raw data from a
source, buffer, and order it by timestamp (as e.g. implemented by the Input Manager
in the STREAM system (Srivastava and Widom, 2004)) and convert it to the format
of the DSMS. Systems, which adopt a relational data model, represent data stream
elements as tuples, that adhere to a relational schema with attributes and values.
The Stream Manager coordinates the creation and processing of streams and stream
elements. After reception the tuples are added to the queue of the next operator
according to the query execution plan. This can be done e.g. by a Router component
as implemented in the Aurora system (Abadi et al., 2003b). The management of queues
and their corresponding buffers is handled by a Queue Manager. The Queue Manager
can also be used to swap data from the queues to a secondary storage if memory
resources get scarce. To enable access to data stored on disk many systems employ
a Storage Manager, which handles access to secondary storage. This is used, when
persistent data is combined with data from stream sources, when data is archived or
swapped to disk. In addition it is required when loading meta-information about, inter
alia, queries, query plans, streams, inputs, and outputs. These are held in a system
catalog in secondary storage.

While the queue implementation decides which element is processed next, a Sched-
uler determines which operator is executed next. The Scheduler interacts closely with
the Query Processor, which finally executes the operators. Many systems also include
some kind of Monitor, which gathers statistics about performance, operator output
rate, or output delay. These statistics can be used to optimize the system execution in
several ways. The scheduler strategy can be influenced, e.g., prioritizing specific sub-
plans. Furthermore, the throughput of a system can be increased by a Load Shedder,
i.e., stream elements selected by a sampling method are dropped. The Load Shedder
can be a part of a Query Optimizer, a single component, or part of the query execution
plan. Furthermore, the statistics can be used to reoptimize the current query execution
plan and reorder the operators. For this purpose a Query Optimizer can be included.

DBMSs and DSMSs share some of their query optimization goals – both try to
minimize computational costs, memory usage, and size of intermediate results stored
in main memory. But obviously the priorities for these goals are different for the
two system types. DBMS mainly try to reduce the costs of disc access (Elmasri and
Navathe, 2004) while DSMSs mainly have to reduce memory usage and computation
time to be fast enough. Of course these different goals stem from the different data
handling strategies (permanent storage vs. real-time processing). In a DSMS a query
is also not only optimized before execution, but it is adaptively optimized during its
run time. This enables the system to react to changes of input streams and system and
network conditions.

4.1.1 Distributed Systems

Distribution is also a very important aspect of many DSMSs today. To divide up
tasks and data processing load, many DSMSs offer the possibility to define nodes (i.e.,
processes, which are running on separated machines or in a cluster). Borealis (the
successor of Aurora), was one of the first systems to provide a distributed architecture.
Distributed streaming systems differ in multiple aspects. First, the topology of the
node networks may be different. There are centralized, hierarchical systems in which
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one master node distributes the workload to worker nodes, such as Apache Storm1 or
Apache S4.2 Apache Storm is maintaining a master node, called the Nimbus. The
Nimbus distributes parts of the process graph to be executed (the topology) (i.e., code)
and hence, work load, to slave nodes (the Supervisors) inside a Storm cluster network. A
Zookeeper cluster coordinates the communication between Nimbus and Supervisors and
keeps states of the network to make it fail-proof. Similarly, the stream processor Apache
S4 runs a platform for coordination and distribution of tasks to the S4 nodes. The S4
nodes run in clusters (a group of nodes), which execute the applications (operator
graphs). Other network topologies are designed in a peer-to-peer fashion, such as in
the OSIRIS-SE system (Brettlecker and Schuldt, 2007), where each node of the network
hosts one or more streaming operators including their state (an aggregation of the so
far seen data). If a node fails, the other nodes take care of migrating the operators and
their states to another node, using replicated metadata. Peer-to-peer systems are more
complicated to implement and maintain and hence, are not found so often.

Another aspect in which distributed systems may vary is how workload is distributed
(statically or dynamically (Schneider et al., 2012)) and what is distributed (parallelism
on operator/data-level or on query/graph-level (Castro Fernandez et al., 2013; Heinze
et al., 2014)). Some systems allow only a simple, manually designed distribution, but
this is cumbersome and error-prone (Schneider et al., 2012), such that most of the
contemporary distributed systems have a system-integrated automatism. Distribution
of data to the different nodes on operator-level is, for example, done by Apache S4 by
dispatching data based on its key.3 Data can also be distributed to nodes randomly as
done in Aurora. Apache Storm offers more complex operators, which can dispatch the
tuples based on different criteria, e.g., based on attributes, i.e., that tuples with the
same values for the defined attributes will be dispatched to the same thread in a node
(field grouping).4 Dynamic rebalancing, i.e., scaling up and down in terms of operators
and resources, are supported by many systems as it is an important requirement for
today’s data volumes. This is mainly done based on costs, such as operator selectivity
(ratio of operator input and output) (Schneider et al., 2012). The distribution on query
level is creating algorithms for the distribution of operators to machines (e.g., Bolts in
Apache Storm). These algorithms can be distinguished according to their optimization
goal, execution model, and run time (Heinze et al., 2014).

4.1.2 Big Data Streaming Architectures

In the last years streaming architectures have evolved especially towards their scalabil-
ity. Heinze et al. (2014) termed this the third generation of streaming systems, because
they are based on systems such as Aurora or STREAM, but go beyond them providing
properties which allow for even higher input and lower latency. These systems put more
effort in offering parallelization, elasticity, and distribution and apply techniques from
NoSQL and cloud-based systems, such as MapReduce, to increase their efficiency. A
nice overview of the evolution of many data streaming systems can be found in (Heinze
et al., 2014). Those streaming systems nowadays do not exist on their own, but are
often part of a Big Data Analytics ecosystem (Dolas, 2015).

Big Data Analytics ecosystems combine components from large-scale data mining

1http://storm.apache.org
2http://incubator.apache.org/s4/
3http://incubator.apache.org/s4/doc/0.6.0/overview/
4http://storm.apache.org/releases/current/Tutorial.html
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frameworks, data collection systems (e.g., Apache Flume5), distributed message queue-
ing middlewares (e.g., Apache Kafka6), NoSQL database management systems and
processing frameworks, DSMSs, and other data management solutions (Ranjan, 2014;
Dolas, 2015). Dolas (2015) distinguishes three general layouts for such ecosystems with
emphasis on streaming data. Firstly, a linear streaming architecture basically consists
of several components lined up. The components may comprise the data sources, a
data collection system, a messaging middleware, and a real time processing system
(such as Apache Storm7). From here, events or results can either directly be provided
to consumers or the results are persisted in a permanent big data storage platform,
such as Hadoop.

Secondly, to account for streaming and batch data sources in parallel, the general
Lambda Architecture presented by Marz and Warren (2015) tries to make the data
available using views. The architecture combines batch and stream processing by im-
plementing a batch, a speed, and a service layer. In the batch layer data is stored
in an HDFS store holding the master copy of this data. The batch layer uses the
common MapReduce paradigm to prepare precomputed views (so called batch views)
for the data which are stored in a NoSQL database in the service layer. The service
layer provides a query interface which enables to query the views. As soon as a view is
precomputed by the batch layer, it is injected into the service layer database. Hence,
data is missing in the service layer, namely the data which has arrived after the last
upload of a view. To fill this gap an additional speed layer is introduced, where only
recent data is processed and provided to the service layer, such that a query can access
both kinds of data. Reprocessing of the data is possible and the input data remains
unchanged (Kreps, 2014). Drawbacks are, that the data processing code has to be im-
plemented twice - for the batch and the stream part, and that there is an architectural
overhead (Kreps, 2014).

The Kappa Architecture (Kreps, 2014) proposes to just use a little trick to make re-
processing possible without implementing application code for stream processing twice.
For the stream processing a common stream processing engine, such as Apache Storm,
is used which runs a job on the current data and stores results in an output table in a
service database. This table can be queried by end users or applications. A messaging
middleware, such as Apache Kafka8, is logging the streaming data for a certain amount
of time. If data has to be reprocessed because the application code has changed, a par-
allel job processes the data logged with Kafka and stores it in a second output table.
This is done until the new job has caught up with the current time and finally the old
output table is substituted by the new one.

There exist also some streaming extensions to MapReduce batch processing sys-
tems. Queries can be handled by batch processing systems in an extremely efficient
manner. However, data stream processing in real-time and low latency updates are
mostly lacking. To tackle this issue Apache Spark, for example, is extended by Spark
Streaming using the abstraction of Discretized Streams, short DStreams (Zaharia et al.,
2012). DStreams consist of so called resilient distributed datasets (RDDs) which are
the smallest batch unit to be processed in parallel by Spark operators. However, this
is somehow a very limited and untypical stream processor, as RDDs are built as fixed
interval batches (similar to tumbling windows, cf. Section 4.2.1), which do not allow

5https://flume.apache.org
6http://kafka.apache.org
7http://storm.apache.org
8http://kafka.apache.org
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for data element by data element processing (Beggs, 2015). Another “workaround” for
near real-time insertions in NoSQL systems, such as Hadoop, is offered by SQLStream’s
s-Server.9 It provides an adapter, which can ingest data into Hadoop at a very high
scale (448 MB/s).10

4.1.3 Complex Event Processing

Parallel to DSMSs, the terms Event Processing, Complex Event Processing (CEP), or
Event Stream Processing have evolved. These terms are referring to a concept which is
closely related to the notion of data streams. The corresponding systems are specialized
on the processing and analysis of events to identify higher level events, such as predicting
a political development from Twitter tweets or detecting a serious condition from vital
parameter readings. DSMSs have a broader application scope, but CEP applications
can also be rebuild with DSMSs (Etzion and Niblett, 2011). Cugola and Margara (2012)
distinguish DSMSs and CEP systems as data processing and event detection systems
denoting the different focuses. The focus disparities result, among others, in differences
in architectures, data models, and languages between CEP systems and DSMSs.

CEP as well as extended Big Data architectures are beyond the scope of this work.
They open up interesting features, which may be helpful to implement complex applica-
tions. However, we will concentrate solely on the use of DSMSs for which we presented
important features of their architectures. In the following sections we will discuss the
specific query languages, data models, and semantics used in DSMS. Subsequently, the
basics of data quality management and data stream mining are explained, to built the
foundation for the understanding of the rest of this work.

4.2 Query Languages

Basically, two main types of query languages for DSMSs can be distinguished: declara-
tive languages (mostly relational, based on SQL) and imperative languages which offer a
set of operators (also called box operators) to be assembled to a data-flow graph using a
graphical user interface or code. The imperative languages often also include operators
which represent SQL operations. SQL-based languages are widely used though SQL
has many limitations for querying streams (Law et al., 2004). Systems which include a
declarative SQL-based language are, for example, STREAM (Continuous Query Lan-
guage, CQL) (Arasu et al., 2006), PIPES (Krämer and Seeger, 2009), or StreamMill
(Expressive Stream Language, ESL) (Thakkar et al., 2008). A system which solely
uses SQL standard queries without any extra operators is SQLStream s-Server.11 Im-
perative languages are supported for example by the Aurora/Borealis system (SQuAl)
(Abadi et al., 2003b), Apache Storm12(amongst others: Java, Python), Apache S413

(Java), or System S/InfoSphere Stream14 (SPADE/SPL) (Gedik et al., 2008).
Because a stream is potentially unbounded in size, it is neither feasible nor desirable

to store the entire stream and analyze it. Some of the operations known from traditional
query languages, such as SQL, might wait infinitely long to produce a result, as the
operation would have to see the entire stream to generate a result (defined as blocking

9http://www.sqlstream.com/blaze/s-server/
10http://www.sqlstream.com/products/stream-processing-architecture
11http://www.sqlstream.com
12http://storm.apache.org
13http://incubator.apache.org/s4
14http://ibm.com/software/data/infosphere/streams
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operations) (Babcock et al., 2002a). The missing support of sequence queries, i.e.,
retrieving sequential data, is one crucial limitation known from relational databases
and SQL (Law et al., 2004). One simple yet powerful way is to first extract only a
desired portion of the stream and use this portion (called window) in the remainder of
the query. Therefore, a very important requirement for a DSMS query language is the
provision of windows (Cherniack and Zdonik, 2009; Arasu et al., 2003b; Patroumpas and
Sellis, 2006). Windows are operators, that only select a part of the stream according to
fixed parameters, such as the size and bounds of the window. Hence, they provide an
approximation of the stream, but are at the same time implementing the desired query
semantics (Babcock et al., 2002a). A window is updated based on fixed parameters
(Patroumpas and Sellis, 2006) and internal matters of the system (e.g., in principle,
a result can be updated whenever a new element arrives or whenever time proceeds)
(Jain et al., 2008). We will detail the different types and parameters of windows in
Section 4.2.1.

Besides the definition of windows in the language, also an approved set of query op-
erations accompanied by established semantics is beneficial for a DSMS query language
(Arasu et al., 2003b). This can be accomplished, e.g., by using a common (standard-
ized) query language based on relational algebra and its operators for operations on
finite tuple sets (commonly called relations). The advantage is the reuse of opera-
tor implementations and transformations for query optimization (Arasu et al., 2003b).
But such an approach also risks to be complicated, because the closure under a con-
sistent mathematical structure, such as bags in relational algebra, is crucial to enable
nested queries and algebraic optimization. Cherniack and Zdonik (2009) investigated
the property of DSMS query languages to be closed under streams. A language is closed
under streams if its operators get streams as an input and if the output of the oper-
ators are streams as well. They state that most languages provide stream-to-stream
operators by either implicitly using operators for windowing and conversion to streams
or special stream-to-stream operators. Only CQL provides the possibility to explicitly
formulate the conversion of relations to streams by specific relation-to-stream opera-
tors. These operators can either add output elements to a result stream when a new
element compared to the last time step is in the result set (Istream operator), or when
an element has been removed from the query result relation compared to the last time
step (Dstream operator), or all elements which are present in the result set in the cur-
rent time step (Rstream) are added to the stream (Arasu et al., 2006, 2003b). But to
avoid an inconsistent query formulation producing results not closed under streams,
CQL also offers many default query transformations. In fact, Arasu et al. (2003b)
showed that a stream-only query language (only using stream-to-stream operators) can
be build based on the set of CQL operators. We will detail the types of operators used
in continuous query languages in Section 4.2.1. To illustrate the use of data stream
operators we will now give examples from the C-ITS domain introduced in Chapter 2.

Example 4.1 Suppose we want to monitor the number of speeders in a reduced
speed area. We would like to retrieve the number of V2X messages which have been
sent in the last minute and which contain a speed greater than 30 km/h. Additionally,
we also want to retrieve an update every 10s. In CQL the query from Listing 4.1 could
be formulated to fulfil our information requirement.

The same query can be formulated in an imperative query language by assembling
box operators. In Figure 4.1 a query formulated in Aurora’s SQuAl is depicted. The
Filter operator is similar to the selection in relational algebra - it retrieves all tuples
with speed greater than 30.0. Furthermore, an Aggregate operator is connected to the
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Filter operator, which can be parametrized with the aggregate function and details for
an implicit window integrated in the operator.

Listing 4.1: Query 1

SELECT I s t r e am Count (∗ ) FROM
V2XMessage [ Range 1 Minute S l i de 10 s ]

WHERE Speed > 30 .0

Filter(Speed > 30.0)

Aggregate(CNT, Assuming O, Size 1 minute, Advance 10 second)

Figure 4.3: Query 1 Formulated in an Imperative Language

Another requirement to DSMS query languages is the extension of the language by
custom functions and operators to include more complex actions, such as data mining
or custom aggregates (Law et al., 2004). Most of the languages provide a possibility
for custom extensions. Examples for systems allowing for extensions are System S by
IBM (Gedik et al., 2008), Aurora (Abadi et al., 2003b), or StreamMill (Thakkar et al.,
2008). In Apache Storm so called Bolts are derived Java classes, which can contain any
Java code processing the incoming tuples,15. However, Apache Storm can be extended
to also allow for high-level declarative querying with SQL by using the SQLstream for
Storm16 API for Storm. SQLstream builts Bolts based on a continuous SQL query and
integrates them into the processing graph (topology) or lets them run in parallel.

4.2.1 Data Models and Semantics of Data Streams

Before we go into detail on continuous queries and operators used in the queries, we
have to understand what is exactly meant by the term “data stream”. In this section
we will also break data streams down to their indivisible components and examine the
data models applied in DSMSs.

Data Models

Depending on the desired application realized with the DSMS and the data sources to
support there are different demands on the adopted data model and the semantics of the
query language. In the literature, the relational model is very dominant, presumably
due to the well-defined semantics, the established set of relational algebra operators,
and the very well studied principles of DBMS. Also, from a user’s perspective, the step
from SQL towards its streaming extensions seems to be quite small. However, there are
also data sources which do not conform to the flat table concept for discrete data offered
by the relational data model (Maier et al., 2005). There exist specialized systems and
corresponding query languages, which deal with those. There are systems processing

15http://storm.apache.org/releases/current/Tutorial.html
16http://www.sqlstream.com/storm
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XML data using XML-QL (Chen et al., 2000), XPath (Peng and Chawathe., 2003) or
XQuery (Botan et al., 2007), RDF streams (Barbieri et al., 2009), continuous signal
data, object streams, graph-based models (Feigenbaum et al., 2005; Sun et al., 2007;
Angel et al., 2012), logical models (Zaniolo, 2012) or spatio-temporal data streams.
Finally, there exist also generic systems and models, which allow the use of multiple
languages, such as the Odysseus framework (Bolles, 2009) or the PIPES system (Krämer
and Seeger, 2009). Overviews of systems, models, and query languages have been
presented by Geisler (2013); Golab and Özsu (2010); Heinze et al. (2014). However,
in this work we will concentrate on declarative relational models and query languages,
but are not limited to it. In the following semantics for the relational streaming model
is presented.

Representations and Semantics of Data Streams

A data stream S can be understood as an unbounded multiset of elements, tuples,
or events (Law et al., 2004; Babcock et al., 2002a; Demers et al., 2005; Krämer and
Seeger, 2009). This means, each tuple can occur more than once in the stream which
is denoted by a multiplicity value. Each tuple (s, τ) ∈ U , where U is the support of the
multiset S, has to adhere to the schema of S. The support U of a multiset S is a set
which consists of the elements which occur in the multiset S at least once. Multiset
and support can be defined as follows (Syropoulos, 2000; Singh et al., 2007):

Definition 4.1. (Multiset and Support of a Multiset) A multiset is a tuple A = (B, f),
where B is a set and f is a function f : B → N, assigning a multiplicity to the tuple
(number of occurrencies of the tuple in the stream). The support of A is a set U which
is defined as follows:

U = {x ∈ B|f(x) > 0},

i.e., U ⊆ B.

The schema of a stream is constituted of attributes A1, . . . , An. Each tuple contains
also an additional timestamp τ from a discrete and monotonic time domain. Most
definitions of data stream semantics do not consider the timestamp as a part of the
stream schema (Arasu et al., 2006; Krämer and Seeger, 2009; Abadi et al., 2003b) and
therefore, it is always separately listed in the tuple notation.

We use the following formal definition of a data stream (Geisler, 2013) which is
based on the definition of Arasu et al. (2006):

Definition 4.2. (Data Stream) A data stream S is an unbounded multiset of data
stream elements (s, τ), where τ ∈ T is a timestamp attribute with values from a mono-
tonic, infinite time domain T with discrete time units. s is a set of attribute values of
attributes A1, A2, . . . , An with domains dom(Ai), 1 ≤ i ≤ n, constituting the schema of
S. A stream starts at a time τ0. S(τi) denotes the content of the stream S at time τi,
being

S(τi) = {< (s0, τ0),m0 >,< (s1, τ1),m1 >, . . . , < (si, τi),mi >}

.

Example 4.2 The schema of the V2X message stream from Example 4.1 would be
written according to this definition as:

V2XMessage(Timestamp, TS, AppID, Speed, Acceleration, Latitude, Longitude)
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In this example the timestamp Timestamp has been generated by the DSMS and TS is
the creation timestamp defined by the application. The different kinds of timestamps
are detailed in Section 4.2.2.

Depending on the data model, the attributes A1, . . . An can contain values of primi-
tive data types, objects or XML data. For example, Krämer and Seeger (2009) consider
tuples to be drawn from a composite type (in the relational case this is the schema)
and its attributes can contain objects. This generic definition allows them to be open
to different data models.

Data streams commonly adhere to an append-only principle, i.e., data once inserted
in the stream will not be removed or updated (Babu and Widom, 2001). But to enable
updates in the streams, there are also systems which do not only support insertion of
tuples, but also updates and deletions, for example, in Borealis (Abadi et al., 2005),
or STREAM (Arasu et al., 2006). In the PIPES (Krämer and Seeger, 2009) and
STREAM systems, streams are separated into base streams and derived streams to
denote the origin of the stream. Base streams are produced by an external source and
derived streams are produced by internal system operators. Furthermore, in PIPES
stream notations are distinguished based on the level in the query processing chain.
Streams from external sources are termed raw streams and adhere to the attributes
plus timestamp notation described above (according to which the tuples are ordered
in the stream). Streams on the logical or algebraic level are termed logical streams.
The tuples of a logical stream contain attributes corresponding to the stream schema,
a timestamp τ and a multiplicity value. The multiplicity value indicates how often the
tuple occurs at time τ in the stream, which implements the bag semantics explicitly.
Finally, the PIPES system also introduces a physical stream notation. The notation is
used to represent streams in query execution plans, which in addition to the attributes
include a validity time interval with start and end timestamp.

While above we have described the representations of streams and tuples, the se-
mantics or denotation of a stream (i.e., the underlying mathematical concept) can be
separated from these representations (Maier et al., 2005). So far we used the rough
semantics of an unbounded multiset for a stream. This rough semantics raises the
questions of how tuples are organized in the stream, which tuples are included, and
how a stream evolves with the addition of tuples. A stream denoted as a multiset or
bag of elements, allows duplicate tuples in the stream (Arasu et al., 2006; Bai et al.,
2004; Krämer and Seeger, 2009). The denotation as a set, i.e., without duplicates, is
also possible. Furthermore, a stream could also be interpreted as a sequence of states
(Maier et al., 2005), where a relation transitions from one state to another (on arrival
of tuples or progression of time). For example, the insertion of a new tuple in a stream
denoted as a bag can be recursively defined by describing what will be the following
state, i.e., the “result bag”.

Inclusion of Persistent Relations

The sole querying of streams is often not sufficient to implement certain applications.
Take the traffic state estimation application as an example. To improve our assertion
about the traffic state we could also integrate information from other streams, such as
Floating Phone Data, or from persistent sources such as historical data about the traffic
state at the same time last week or last year on the same street. This would involve to
join data of streams with other streams and to join streams with persistent data from
“static” data sources. In (Cherniack and Zdonik, 2009) this ability is called correlation.
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Most languages support joins between streams and relations, because they are easy to
implement. In principle, each time new tuples arrive in the stream these are joined
with the data in the relation and the operator outputs the resulting join tuples. The
join between streams is a little bit more complicated. Most languages require at least
one stream to be windowed (Cherniack and Zdonik, 2009) which results in the former
situation of joining a stream with a finite relation. Some offer also specific operators
for joins without windows.

The use of persistent relations in queries requires them to be represented in the
query language. In SQL-based languages these are noted in the same way as streams
(it is maybe more correct to say that the streams are represented in the same way as
relations). Representations for relations can also be related to the notion of time. A
relation at time τ then consists of a finite, unbounded bag of tuples which is stored in
the relation at time τ (Arasu et al., 2006). In CQL, a time-related relation is called an
instantaneous relation, and analogously to streams, base relations and derived relations
are distinguished.

Continuous Queries and Algebraic Operators

Now that we have clarified the main constituents of continuous queries in DSMSs,
namely, streams, tuples, and relations, we will proceed to explain continuous queries
and operators for languages based on the relational algebra. So what is the difference
between a continuous query and an ad-hoc query? One goal of Tapestry (Terry et al.,
1992), one of the first data management systems processing continuous data, was to give
the user the impression that a query is continuously executed (which is not possible).
To achieve this in DSMSs, the result of a continuous query at time τ is equal to the
result of the query executed at every time instant before and equal to τ (Terry et al.,
1992; Arasu et al., 2006). That means it takes into account all tuples that arrived up
to τ . Depending on the language the result of the query can be a stream or a finite
set of tuples. For example, in CQL the result can be either, while other languages only
support streams.

There are three main models how data is processed in a DSMS, i.e., when continuous
queries are executed. When a time-driven model (Jain et al., 2008) is used, a query
will be updated with progression of time (on every time step of the system). In a
tuple-driven model a query is evaluated on the arrival of each tuple, unless the query
includes some temporal restriction, such as a time-based window (Jain et al., 2008).
The event-driven model allows to define events or triggers on whose firing the query is
executed, e.g. in OpenCQ (Liu et al., 1999). Of course these could be also temporal
events or an amount of tuples seen so far, but these could be also user-defined events,
such as a fired alert or an incoming e-mail.

One main problem for operators processing streams is the fact that streams are
unbounded. Especially, blocking operators, i.e., operators which do not produce a re-
sult tuple before they have seen all tuples on their inputs (Babcock et al., 2002a) are
problematic. The set of these operators comprises aggregations, groupings, but also set
operations, such as NOT IN or NOT EXISTS (Law et al., 2004; Gurevich et al., 2007).
For example, if we would like to calculate the average over the speed of the incoming
C2X messages, a classical average operation has to wait until the stream of messages
ends (but we do not know when the stream ends) to produce the desired result. In con-
trast, non-blocking operators produce results periodically or on arrival of new tuples,
i.e., incrementally (Law et al., 2011). Partially blocking operators are operators which
can produce intermediate results but also a final result in the end (Law et al., 2004).
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Obviously, a language for continuous queries can then only be based on non-blocking
operators (Law et al., 2004; Babcock et al., 2002a). But the set of non-blocking oper-
ators is neither in relational algebra nor in SQL sufficient for all expressible relational
queries (Law et al., 2004). Another type of challenging operators are stateful opera-
tors (Zaharia et al., 2012; Krämer and Seeger, 2009; Maier et al., 2005) (in contrast to
stateless operators). These operators, e.g., joins, require to store a state for their op-
eration, which for streams is unbounded in size. Hence, one remedy to these problems
is to approximate processing the stream as a whole as good as possible. One simple
yet powerful approach is the partitioning of the stream into small portions, so-called
windows. Each window is a finite bag or set of tuples and can be processed also by the
common relational blocking operators. A second possibility is to provide incremental
implementations of these operators, which are able to update the result with new tuples
and output “intermediate” results. Finally, an approximation of the stream in form
of a summary or synopsis can be used to operate on. In the following we will detail
window operators and their semantics, as these are intensively used in this work.

Windows

In continuous query languages based on SQL, windows are a crucial extension to the
algebraic set of operators. It depends on the language which types of windows are
supported. A window is always built according to some ordered windowing attribute
which determines the order of elements included in the window (Patroumpas and Sellis,
2006; Maier et al., 2005). The type of window, i.e., how it is determined which elements
are valid in the current window, according to (Patroumpas and Sellis, 2006) can be
described by its measurement unit, the edge shift, and the progression step. The
measurement unit can be either a number of x time units (time-based window) or tuples
(tuple-based window) declaring that the elements with timestamps within the last x time
units or the last x elements are valid for the window at the point in time of the query. In
the following different types of windows and their properties are described. We define
a time-based window of size l (Geisler, 2013) similar to the definition in (Patroumpas
and Sellis, 2006) in Definition 4.3. We assume that the stream elements are ordered by
timestamp τ before a window operator is applied.

Definition 4.3. (Time-based Window) A time-based window WlT (with window size
lT ∈ T) over a stream S at time τi ∈ T is a finite multiset of stream elements

WlT (S(τi)) = {< (sk, τk),mk > | (sk, τk) ∈ U, τi − lT ≤ τk ≤ τi, τk ≥ τ0},

where mk is the multiplicity of the tuple in the subset and U is the support of stream
S(τi).

The definition for a tuple-based window of size lN is similar:

Definition 4.4. (Tuple-based Window)

Let S(τi) = {< (s0, τ0),m0 >, . . . , < (sn, τn),mn >}, τi ≥ τn ≥ τ0 ∧ τj ≥ τj−1 ∀j ∈
{1, . . . , n}, be the content of stream S at time τi. Then a tuple-based window WlN

(with window size lN ∈ N) over stream S at time τi ∈ T is a finite multiset of stream
elements
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WlN (S(τi)) = {< (sk, τk),mk > | (sk, τk) ∈ U, j ≤ k ≤ i,

∃m′j ,m′′j m′j ≥ 0,m′′j > 0,

mj = m′j +m′′j , m′′j +
i∑

`=j+1

m` = lN}

where (sn, τn) ∈ U, ∀τj ∈ U τn > τj, and U is the support of stream S(τi).

This means that we go backwards in the stream from time τi on and search for the
last point time τn at which elements arrived. We collect exactly N tuples in the stream.
We assume that the last tuple which (partially) fits into the window is < (sj , τj),mj >.
Then only the multiplicity portion m′′j which still fits into the window will be added to
the window.

In the Aurora system (Zdonik et al., 2004; Abadi et al., 2003b) value-based windows
as a form of generalization of time-based windows are presented. These windows im-
plement the idea of having a different windowing attribute instead of a timestamp - the
attribute just has to be ordered. Furthermore, the value-based window should return
only those tuples whose value of the particular attribute is within a specific interval
(hence, value-based windows). A similar concept are predicate-windows (Ghanem et al.,
2006) suited for systems which work with negative and positive tuples. Partitioned win-
dows (Li et al., 2005; Arasu et al., 2006) are applicable to time- or tuple-based windows
and follow the idea of dividing the stream into substreams based on filter conditions
and of windowing them separately. Afterwards, the windows of the substreams are
unioned to one result stream (Abadi et al., 2003b).

The edge shift of a window describes the motion of the upper and lower bounds
of the window. Each of them can either be fixed or moving with the stream. For
example, in the most common variant, the sliding window, both bounds move, while
for a landmark window one bound is fixed and one is moving.

Finally, the progression step or periodicity defines the intervals between two sub-
sequent movements of a window. This again can either be time-based or tuple-based,
e.g., the window can move every 10 seconds or after every 100 arrived tuples. When
the contents of windows in each progression step are non-overlapping, this is termed a
tumbling window, i.e., size and sliding step have an equal number of units. Windows
can also be punctuation-based. A notification tuple sent with the stream indicates the
window operator that it should evaluate. We will explain punctuations in Section 4.2.2.

In the following, one of the most commonly used forms of a moving window, a
sliding time-based window, is defined as:

Definition 4.5. A sliding time-based window with window size lT ∈ T and slide value
v ∈ T over a stream S at time τi ∈ T is a finite multiset of stream elements

WlT ,v(S(τi)) = {< (sk, τk),mk > | (sk, τk) ∈ U,∃j ∈ N : τ0 + j · v ≤ τi,
τ0 + (j + 1) · v > τi, τi ≥ τ0 + lT ,

τ0 + j · v − lT ≤ τk ≤ τ0 + j · v, τk ≥ τ0}

where U is the support of stream S(τi)

Example 4.3 In our traffic example we would like to retrieve the number of V2X
messages with speed greater than 30 km/h from the last minute every 10s. We realize
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this by defining a time-based sliding window WlT , v of size lT = 60s and with a sliding
step of v = 10s over the V2X message stream. In Figure 4.4(a) the content of the
window after 1 minute is shown. This is the first point in time, where the query with
the window delivers results (hence, τi ≥ τ0 + lT ). The window contains the elements
1,2,4,5,6. After 10 more seconds the window slides, element 1 is dropped from the
window and element 7 is added (Figure 4.4(b)). After another slide after 10 seconds
element 2 is dropped and element 8 is added to the window (Figure 4.4(c)).

120s110s100s90s80s70s60s50s40s30s20s10s

65421 1087

W60,10(S(τ60))

τ

(a) Window after 60s

120s110s100s90s80s70s60s50s40s30s20s10s

76542 1081

W60,10(S(τ70))

τ

(b) Window after 70s

120s110s100s90s80s70s60s50s40s30s20s10s

87654 1021

W60(S(τ80))

τ

(c) Window after 80s

Figure 4.4: Example of a Sliding Window with Size of 1 Minute and Slide Step of 10
Seconds

Depending on the language windows can either be implicitly included in an operator
(see the definition of the Aggregate operator in Example 4.1, Figure 4.1) or defined as
a separate operator in the query language. In SQL-based declarative languages the
window construct included in the SQL:2003 standard is extended, e.g., by a SLIDE

keyword to enable the definition of a sliding step.

4.2.2 The Notions of Time and Order

We already mentioned before that time plays an important role in DSMSs. In all
DSMSs the processed tuples have some kind of timestamp assigned from a discrete and
monotonic time domain. The timestamps allow to determine if a tuple is in order or
not and enable the definition of time-based windows (Srivastava and Widom, 2004).

Time

The prominent status of timestamps can already be seen from several stream definitions
in corresponding semantics. The timestamp is always handled as a specific attribute
which is not part of the stream schema (Patroumpas and Sellis, 2006; Arasu et al., 2006;
Krämer and Seeger, 2009). A monotonic time domain T can be defined as an ordered,
infinite set of discrete time instants τ ∈ T (Patroumpas and Sellis, 2006; Arasu et al.,
2003b). For each timestamp exists a finite number of tuples (but it can also be zero).
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In the literature, there exist several ways to distinguish where, when, and how
timestamps are assigned. First of all, the temporal domain from which the timestamps
are drawn can be either a logical time domain or physical clock-time domain. Logi-
cal timestamps can be simple consecutive integers, which do not contain any date or
time information, but serve just for ordering. In contrast, physical clock-time includes
time information (e.g., using UNIX timestamps). Furthermore, systems differ in which
timestamps they accept and use for internal processing (ordering and windowing). In
most of the systems implicit timestamps (Babcock et al., 2002a; Zdonik et al., 2004),
also called internal timestamps or system timestamps are supported. Implicit times-
tamps are assigned to a tuple, when it arrives at the DSMS. This guarantees that
tuples are already ordered by arrival time when they are pipelined through the system.
Implicit timestamps assigned at arrival in the system also allow for estimating the time-
liness of the tuple when it is output (Abadi et al., 2003b). Besides a global implicit
timestamp (assigned on arrival), there exists also the concept of new (local) timestamps
assigned at the input or output queue of each operator (time of tuple creation). This
could also be implicitly expressed by the tuple’s position in the queue (Zdonik et al.,
2004). In contrast, explicit timestamps (Babcock et al., 2002a; Zdonik et al., 2004), ex-
ternal timestamps (Bai et al., 2004) or application timestamps (Srivastava and Widom,
2004) are created by the data stream sources and an attribute of the stream schema
is determined to be the timestamp attribute. Depending on the semantics of a data
stream, tuples can include more than one timestamp, e.g., denoting the start and end
of an event (Demers et al., 2005).

An interesting question is how timestamps should be assigned to results of binary
operators and aggregates to ensure semantic correctness. Babcock et al. (2002a) pro-
pose two solutions to assign a timestamp to results of a join. The first option is to
use the creation time of a join output tuple when using an implicit timestamp model.
The second option is to use the timestamp of the first table involved in the join in the
FROM clause of the query, which is suited for explicit and implicit timestamp models.
For aggregates similar considerations can be made. For example, if a continuous or
windowed minimum or maximum is calculated, the timestamp of the maximal or min-
imal tuple, respectively, could be used. When a continuous sum or count is calculated,
the creation time of the result tuple or the timestamp of the latest element included in
the result can be used. If an aggregate is windowed there exist additional possibilities.
The smallest or the highest timestamp of the elements in the window can be used as
they reflect the oldest timestamp or most recent timestamp in the window, respectively.
Both maybe interesting, when timeliness for an output tuple is calculated, but which
one to use depends obviously on the desired outcome. Another possibility would be to
take the median timestamp of the window.

Order

Many of the systems and their operators rely on (and assume) the ordered arrival of
tuples in increasing timestamp order to be semantically correct (Srivastava and Widom,
2004). For example, in the STREAM system (using a time-driven execution model)
time can only advance to the next time instant, when all elements in the current time
instant have been processed (Arasu et al., 2006). This has been coined as the ordering
requirement (Srivastava and Widom, 2004). But as already pointed out, this can not
be guaranteed especially for explicit timestamps and data from multiple sources. In
the various DSMSs basically two main approaches to the problem of disorder have been
proposed.
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One approach is to tolerate disorder in controlled bounds. The Aurora system, for
example, does not assume tuples to be ordered by timestamp (Abadi et al., 2003b).
The system divides operators into order-agnostic and order-sensitive operators. The
first group of operators does not rely on an ordering of elements. The order-sensitive
operators are parametrized with a definition how unordered tuples should be handled.
The definition contains the attribute which indicates the order of the tuples and a
slack parameter. The slack parameter denotes, how many out-of-order tuples may
arrive between the last and next in-order tuple. All further out-of-order tuples will
be discarded. The order can also be checked for partitions of tuples, specified by
an additional GROUP BY clause in the order definition. A general concept of a slack
parameter, called adherence parameter has been presented for the STREAM system
(Arasu et al., 2004a; Babu et al., 2004). The adherence parameter is a measure for
how well a stream “adheres” to a defined constraint. The authors define a set of k-
constraints one of which is the ordered-arrival-k-constraint. This constraint conforms
to the slack parameter’s ordering semantics. The second way to handle disorder is
to dictate the order of tuples and reorder them if necessary. While the use of implicit
timestamps is a simple way of ordering tuples on arrival (Srivastava and Widom, 2004),
the application semantics often requires the use of explicit timestamps. Heartbeats
(Srivastava and Widom, 2004) are tuples sent with the stream including at least a
timestamp. These markers indicate to the processing operators that all following tuples
have to have a timestamp greater than the timestamp in the heartbeat. Heartbeats are
only one possible form of punctuation (Tucker et al., 2003). Punctuations, in general,
can contain arbitrary patterns which have to be evaluated by operators to true or false
(Tucker et al., 2003). Therefore, punctuations can also be used for approximation.
They can limit the evaluation time or the number of tuples which are processed by an
otherwise blocking or stateful operator. Other methods for reordering tuples in limited
bounds use specific operators, e.g., the BSort operator in Aurora (Abadi et al., 2003b).

4.3 Data Quality Management

The quality of utilized data is one of the most important factors determining if an
application is successful or not. Poor quality can lead to dissatisfied users, financial
losses – in the worst case it can also risk people’s health and lives (Redman, 2004; Wang
and Strong, 1996). Decisions based on data of poor quality will inevitably be wrong in
most cases. While the availability of huge masses of data and data streams enables new
applications, common sources producing these data streams (such as sensors) pose new
problems to data quality assessment as they may be failure- and error-prone. Common
problems especially with sensor data are the loss of packet data, environmental influ-
ences, internal electronic failures, depleted batteries, or communication interruption
(Paradis and Han, 2007). Due to the high volume of data produced continuously by
sensors, traditional data quality procedures cannot be applied, while the various types
of sensors may pose further problems (Campbell et al., 2013).

Especially, critical applications such as systems for tornado warnings (Tran et al.,
2010), heart attack prediction (Lindeberg et al., 2010), or traffic safety applications
require a high reliability of the data. In the ITS context safety applications require
high quality output which demands for data with corresponding quality. Consequently,
the determination, monitoring and improvement of data quality (DQ) is a crucial issue
in sensor- and data stream-based systems. Furthermore, for big data applications, in
which the data is often also processed in a stream-like way, the interest of industry in
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tools for DQ is rising (Judah and Friedman, 2014).
But what exactly is data quality? According to Juran (1999), quality is (1) the

set of properties of a product which satisfy user needs and (2) when a product is free
of deficiencies or errors, which is also termed “fitness for use” (Juran and Godfrey,
1999b). This definition has been adopted for data by Redman (2004) defining “data to
be of high quality if they are fit for their intended uses in operation, decision making
and planning.” Hence, Redman (1996) rates the quality of data according to the grade
of how the data satisfies user needs, which makes it on first glance hard to quantify,
hard to measure, and highly dependent on the application. But what this definition
is supposed to convey is that information system designers have to analyse each ap-
plication and the data’s planned use to determine which aspects of data quality are
important. Also in ITS literature it is recommended that data quality design should
be closely connected to the “application requirements and cost implications” (Tarnoff,
2002). Furthermore, not only the application, but also the view on the data and the
role of the user can make a difference (Jarke et al., 1999). Wang and Strong (1996)
emphasized that data quality cannot be rated according to a single aspect. Even for
a single application field and a single set of data, multiple facets must be considered
to assess the quality of the corresponding data. Hence, Wang and Strong (1996) intro-
duced the concept of a data quality dimension being “a set of data quality attributes
that represent a single aspect or construct of data quality.” We simplify this definition
for our purposes as follows:

Definition 4.6 (Data Quality Dimension, Data Quality Metric, and Data). A data
quality dimension is considered as an atomic attribute which has a clear definition
and is measurable using one or more well-defined metrics. A data quality metric is
a function mapping one or more data items to a numeric DQ value. Under the term
data we subsume all kinds of value items which are produced or processed - no matter
if they are measured as raw values or derived or calculated values.

Now that we explained the foundations of DQ management, we will review and
discuss existing DQ management models in the following.

4.3.1 Data Quality Management Models

As mentioned in the last section, DQ dimensions are single attributes describing a single
quality aspect of the data at hand and are measured using metrics. A crucial question
is, how we can get an application’s data quality requirements and define corresponding
dimensions. In fact, an overall management process is required to not only determine
the dimensions, but also to find out how to measure, to control, and to improve data
quality throughout the usage of the data. Batini and Scannapieco (2006) define a DQ
methodology as “a set of guidelines and techniques, that [. . . ] defines a rational process
for using the information to measure and improve the quality of data of an organization
through given phases and decision points.”

Data quality management models have taken ideas and concepts from general qual-
ity management methodologies, where products, customers, and processes are in the
focus. In principle, data can also be seen as a product (Wang, 1998) whose properties
might differ from properties of other resources, such as intangibility (Redman, 1999),
but at the same time they are as valuable for businesses relying on them as other re-
sources are. Hence, it is comprehensible that models such as Total Quality Management
have been adopted, but adapted to the specifics of data.
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Total Quality Management (TQM) is a term which has developed since the 60’s as
a pure quality end control of products in factory processes until today to an enterprise-
wide bundle of processes and concepts to measure and improve quality (Koch, 2011). It
involves all departments, groups, employees, and collaborators and is not restricted to
factories or production. It implements, depending on the version of the TQM model,
an action cycle (Plan-Do-Check-Act (PDCA), Plan-Do-Study-Act (PDSA), Deming,
or Shewhart (Moen and Norman, 2006)) which iterates through these action phases to
manage product quality. Wang (1998) adapted the TQM model to a Total Data Quality
Management (TDQM) methodology, regarding data as a product. The methodology
includes a TDQM cycle which is based on the Deming cycle defining steps suited for
data quality management. The cycle is composed of four successive steps:

1. Define: Determination of DQ requirements and dimensions

2. Measure: Definition and execution of DQ metrics.

3. Analyze: Analysis of DQ problems and corresponding costs.

4. Improve: Application of techniques for DQ improvement.

As a competitive or successor model of Total Quality Management the concept of Six
Sigma has evolved. Originally, a concept developed by Motorola, which only allowed a
certain percentage of parts per minute to be defective, it became an enterprise quality
management strategy later on (Schroeder et al., 2008). The Six Sigma model has four
major elements: (1) parallel meso-structure (quality measures are developed in paral-
lel to normal business on multiple organizational levels), (2) improvement specialists
(groups of trained employees in each project to be improved), (3) structured method
(use of a method for improvement, such as the define, measure, analyze, improve and
control (DMAIC) model), and (4) performance metrics (set of metrics which are suited
to measure certain parameters of the process and user satisfaction) (Schroeder et al.,
2008). This concept has also been applied to data quality management. For example,
in the transportation field it was used in the project ROSATTE (Schützle, 2009) for
managing data quality for road safety attributes, such as positions of warning signs.
In ROSATTE specifically the DMAIC model has been adopted, being implemented
mainly as a manual approach, where process improvement is emphasized (Schützle
et al., 2010).

There are also models which have been specifically elaborated for data quality man-
agement. Lee et al. (2002) proposed the AIMQ methodology, which consists of a model
to organize determined data quality dimensions into four categories, a questionnaire to
measure the values of these dimensions from users and weight them. Furthermore, the
authors aggregated the results for each of the four dimension categories to four values.
These values are finally analyzed by a benchmarking tool which compares the values
with data quality values of competitors’ and a best practice solution (gold standard).
For DQ management in Data Warehouses (DWH) Jarke et al. (1999) proposed the
DWQ methodology based on the Goal Question Metric (GQM) paradigm proposed by
Basili and Rombach (1988) originally for software engineering processes. What is spe-
cial about the DWQ methodology is that data quality management is integrated into
the DWH architecture and described by a meta-model. The meta-model is formulated
in Telos (Mylopoulos et al., 1990), a knowledge representation language, which includes
concepts and relationships between them. In the meta-model goals for data quality can
be defined. For each goal several quality dimensions can be assigned. Each of the
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dimensions is assessed by measurement agents which store the results also in the DWH
repository. For each of the goals, quality queries (the question in the GQM approach)
can be formulated in the meta-model and executed over the repository to retrieve the
measurement results. This integrates the quality management tightly into the DWH,
but makes it at the same time highly flexible.

Batini et al. (2009) analyzed multiple data quality methodologies in literature and
identified the following general process steps:

1. State Reconstruction: analyzes the application’s processes, services, and their
costs and also data quality problems. Can be seen as a requirements analysis for
data quality management design. The result of this phase are the DQ dimensions
to be measured.

2. Assessment/Measurement: actions to acquire the values of the identified data
quality dimensions. In Measurement values are determined unbiased, while in
Assessment the measured values are additionally compared with a reference value.

3. Improvement: process to counteract when quality is poor. The according means
can either be process-driven or data-driven, describing the level on which the
improvement is made.

This also complies with the three steps Juran (1993) describes for quality manage-
ment in general: quality planning, quality control, and quality improvement (Godfrey,
1999). Batini and Scannapieco (2006) base their Complete Data Quality Methodology
(CDQM) on these three steps. The outcome of the state reconstruction is here the re-
quirements analysis and a processes/organizations matrix, describing who participates
in which process and with which role. In the Assessment phase the definition and
measurement of DQ dimensions is done, while in the Improvement phase improvement
actions are considered and documented in a data/activity matrix.

All the aforementioned approaches have one crucial disadvantage: they all require
a lot of manual effort especially for the design, analysis and improvement tasks. This
is not feasible for a data stream setting, where data passes by rapidly and is volatile.
But some of the ideas of these classical approaches are very useful and approved and
can be adopted for a DQ management in DSMSs. For example, the metadata-driven
approach of DQ management in the DWQ project automates at least a part of the
analysis phase.

4.4 Data Stream Mining

Data stream mining algorithms provide the ability to analyze the data while it is
streaming by. Achieving this and at the same time being efficient the algorithms have
to fulfill certain properties (Domingos and Hulten, 2003; Lee et al., 2015). These
properties include:

• the one-pass property (every record can only be seen once),

• the amount of memory for the model has to be limited,

• the amount of time to process each element has to be constant,

• distribution between multiple processes has to be taken into consideration,
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• any-time learning must be possible,

• the algorithm should be able to adapt to concept drift, i.e., it should update the
model whenever the process creating the data or the underlying data distribution
changes (Tsymbal, 2004; Aggarwal, 2015a).

The requirement of a constant processing time has to be discussed. A new class of
algorithms, called anytime mining algorithms (Kranen, 2011) do not require to deliver
a result in a constant time, but allow mining on demand (Aggarwal, 2015a). These
algorithms only use the time available between two stream elements to create and refine
an initial result in the available time slot.

Many variants of mining algorithms for data streams from different parts of the
field have been introduced, such as clustering algorithms (Silva et al., 2013; Aggarwal
and Yu, 2008) or finding frequent item sets (Jiang and Leung, 2013; Cheng et al.,
2008). In this thesis we will concentrate on data stream classification algorithms as
these were most important in our application scenarios. The framework introduced in
this thesis is not limited to classification algorithms and can be extended, e.g., to use
clustering algorithms. In the following we will briefly introduce some basic principles
of data classification, explain the specifics of data stream classification, and discuss
different categories of data stream classification algorithms. Besides decision trees
other classification schemes have been adapted to or have been newly implemented
for data streams. These include Support Vector Machines (Laskov et al., 2006) or
fuzzy-rule classification (Angelov and Zhou, 2008). Furthermore, Gama and Rodrigues
(2009) pointed out that neural networks are well suitable for data streams without
any changes, using stochastic sequential training. We extensively use decision tree
algorithms suited for data streams in our experiments. Hence, we will explain these in
detail in this chapter. Furthermore, the important aspects of concept drift and class
balancing are explained briefly, as these are also studied in the experiments.

4.4.1 Data Classification

Classification is the problem of assigning one of a set of class labels to a data record
based on a set of features. A classifier is built with a (supervised) learning technique
using a set of (labeled) training data. The output of this learning phase, the classifier,
is represented by a model which is utilized to predict a class for unknown data records
(Aggarwal, 2015b; Han and Kamber, 2006). Commonly, the set of training data used to
build the model is carefully segregated from a set of test data which is used to evaluate
the accuracy of the model (percentage of correctly predicted elements) in the testing
phase. To determine which features are characterizing the data records of the set or
stream very well in terms of the targeted class labels, several feature selection methods
exist. These are either integrated into a classification algorithm (Wrapper Models) or
are independent means and determine the features by certain criteria (Filter Models),
such as the Gini Index, Entropy, or the Fisher’s Index (Aggarwal, 2015b). The Gini
Index calculates for a single value of the feature for all classes how often it results in
each class compared to the overall occurrence of this class label and sums this up (and
using normalization), to see how discriminative the feature value is for the class label.
In the end, weighted averaging over the index values is done to determine the degree
of balance in the data set for that feature. For Entropy this is done similarly.

After discriminating features have been identified a mining algorithm can be applied
on those. There exist different categories of classification algorithms which mainly are:
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probabilistic methods, decision trees, rule-based methods, instance-based learning, and
Support Vector Machines (SVM) (Aggarwal, 2015b). In classification, the performance
of models and corresponding algorithms is typically rated according to the ratio of
class errors in comparison to overall classified elements. In two-class problems usually
training elements are termed as positives (P), if they are labeled with the desired or
more important class and as negatives (N), when the opposite is true. Types of errors
are then false positives (FP) (the algorithm tells you, you have a heart attack, but
you have not) or false negatives (FN) (the algorithm tells you, you do not have a
heart attack, but actually you have). The importance of each of these errors depends
on the application. Correctly classified elements are termed true positives (TP) and
true negatives (TN), respectively. This schema is known as confusion matrix analysis
(Batista et al., 2004).

Common metrics to rate a learned model based on error rates are precision, recall
(or sensitivity), specificity, f-measure, and accuracy. These are defined as follows:

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• Specificity = TN
FP+TN

• Accuracy = TP+TN
P+N

• F-measure = 2 · Precision ·Recall
Precision+Recall

In this chapter, we will only elaborate the principles of the algorithms relevant and
specific for data stream mining. These will be detailed in the corresponding subsections.

4.4.2 Data Stream Classification

Unlike in the traditional setting in data stream classification the amount of training
and test data is not a problem – data superabounds. However, algorithms cannot rely
on having the complete training set in memory. Therefore, new training and evaluation
methods to work on streams have to be found. Incremental learning approaches these
new challenges. It is characterized by using the derived knowledge from the prior seen
data for incoming new data and it is integrating new data into that knowledge without
accessing the old data (He et al., 2011; Rutkowski et al., 2014b; Hoens et al., 2012).
In data stream mining it is assumed that training and test data are represented as
streams and may also be mixed in one stream (Lee et al., 2015; Aggarwal, 2015a). Two
procedures for stream mining proved to be suitable (Bifet et al., 2010a,b).

The Interleaved Test-Then-Train or Prequential approach uses each incoming stream
element first for testing the model and then for training, allowing a very fine-granular
evaluation. In the prequential method accuracy can also be evaluated only over clas-
sification results of a window containing the last n elements (Gama et al., 2009). The
Holdout method periodically evaluates the model with a set of elements held back,
giving a snapshot of the current accuracy of the model. Furthermore, the type of al-
gorithms can be distinguished into incremental and decremental learners (Aggarwal,
2015a). While incremental learners change their model constantly based on the recent
incoming data, decremental learners are using windows to forget data which is no longer
in the window.
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In this work we mainly use the interleaved test-then-train approach and incremental
decision trees and Bayes networks as classification algorithms. Hence, we will describe
only those in detail.

Decision Trees

Decision trees can be considered as one of the most popular and also a very efficient
type of classification algorithms. A decision tree is a directed graph with nodes and
edges, where each inner node represents a splitting rule on one or more attributes of the
data (e.g., Average Speed <= 20) determining to which of its child nodes the data is
routed next until the item reaches a leaf node. Each leaf node is labeled with a class into
which the data is categorized (e.g., slow-moving traffic). The used attributes and
classes can be either categorical (discrete) or numerical (continuous) (Han and Kamber,
2006). There are algorithms building binary trees as well as algorithms creating n-ary
trees.

Most learning algorithms recursively build a tree as described above by using a
greedy top-down tree induction (Han and Kamber, 2006). Top-down tree induction
tries to find a set of splitting rules which discriminates the available data best. For
each new node the splitting rule can be found by optimizing a certain goal. For decision
trees common goals are the error rate (how many elements would end up with a false
class label?), information gain, Gini index, and many more (Han and Kamber, 2006).
There exist also specific goals for binary trees (Lee et al., 2015). If a new node would
only process data from the same class, class purity is reached and the node is created
as a leaf node with the corresponding class label (Rutkowski et al., 2014b).

During tree induction it can happen that a tree adapts too much to the training set
it reads (overfitting). This is reflected by an increasing error rate on unseen examples.
Also, a bigger sized tree might result in performance drops, which may be not justified
by a small gain in accuracy. Hence, decision tree algorithms may apply two different
kinds of pruning. In Prepruning node creation is stopped based on a criterion such as
a maximum tree size or a threshold for an information gain delta (Han and Kamber,
2006; Lee et al., 2015). Postpruning substitutes branches of a completed tree by a
leaf based again on specific criteria such as the cost complexity (function of number of
leaves and error rate) (Han and Kamber, 2006). Popular and commonly used greedy
decision tree algorithms are ID3, C4.5, and CART (Han and Kamber, 2006; Lee et al.,
2015). Basically, these differ in the type of tree produced (binary or non-binary), the
strategies for node splitting (Rutkowski et al., 2014b), and strategies for pruning.

Decision tree algorithms for streaming are either based on a greedy or on a statistical
strategy (Lee et al., 2015). Furthermore, there are algorithms which use single learners
and others use ensemble learning. We will briefly discuss some algorithms from each of
these categories.

Well-known approaches for statistical techniques are the Very Fast Decision Tree
(VFDT) (Domingos and Hulten, 2000) and algorithms based on it. VFDTs are based
on Hoeffding Trees which use a statistical measure called Hoeffding bound. The bound
determines how many examples are required at each node to choose a split attribute.
It guarantees that with a given probability the same split attribute is selected as the
attribute which would have been chosen if all training elements were known already.
The algorithm first determines the two best attributes by using a relevance measure
such as information gain or the Gini index. Afterwards, if the difference between the
two attributes’ relevance values excels the calculated Hoeffding bound for the examples
seen so far, the best attribute is chosen for the split.
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This algorithm has been further extended to Concept-adapting VFDTs (Hulten
et al., 2001). The algorithm detects concept drift in time-changing data streams and
grows alternative branches for subtrees with an insufficient accuracy. When the alter-
native subtrees deliver better accuracy values than the old ones, they substitute them
in the tree. The training data is processed using a sliding window which decreases the
impact of older data (Aggarwal, 2015a).

There are also streaming variants of classical greedy algorithms. Based on the
ID3 algorithm several streaming variants (ID4, ID5, ID5R) have been proposed (Lee
et al., 2015) for solving two-class problems. ID4 cuts down all children of a node if
it detects that the discriminating attribute of this node does no longer have the best
information gain. ID5R improves this algorithm by not discarding but restructuring
subtrees beneath a node with such an attribute by pulling up nodes below. This
algorithm guarantees that ID3 would produce the same tree on a set of data seen so
far.

Other approaches use hybrid variants combining ideas from the greedy and VFDT
techniques. For example, Rutkowski et al. (2014b) introduce a streaming algorithm
based on VFDT and CART. CART creates a binary tree and uses the Gini index
to decide on node splitting. In principle the algorithm is similar to the VFDT, but
calculates the Gini gain for deciding which attributes are the most discriminating two
attributes and uses not the Hoeffding bound, but the Gaussian approximation to decide
if the best attribute is sufficiently better than the second one to justify a split. They
also use a tie breaking parameter to force a split after a certain amount of elements
although the two best attributes have not been sufficiently different. The Gaussian
Decision Tree algorithm based on ID3 and VFDT (Rutkowski et al., 2014a) is similar
to the above described algorithm, but is applicable to two-class problems only and it
uses prepruning. The prepruning tests if one class dominates the other in the so far
seen examples. If yes, further examples are awaited before the split condition is tested.

There have also been approaches which use ensemble techniques for learning. En-
semble algorithms learn and use multiple models in parallel for classifying an element
using a basic model type (the base learner), e.g., a Hoeffding Tree. In addition, each
example in the training set is weighted to determine its importance and the different
models can also be weighted to denote how reliable their classification results are. Al-
gorithms differ in how they weight the examples and the models (Bifet and Kirkby,
2009a). The most famous variants are bagging and boosting algorithms. Bagging algo-
rithms train their different models on different training sets which have been assembled
by randomly drawing (with replacement) a set of examples from a common training
set with the same size as this training set. The votes of all models have the same
weight, i.e., they are unweighted. Boosting algorithms combine several so called weak
learners (very simple models) to build a strong learner. This is done in an iterative
process, where models are chained and successive models learn from the failures of pre-
vious ones. The models are weighted according to their overall accuracy representing
their reliability. Boosting algorithms train their models in an iterative way. They feed
training examples into a model which classifies them. A set of these examples is for-
warded to the next model. This set consists of an equal number of falsely and correctly
classified examples. The next model is only trained with examples which have been
classified contradictorily by the former models. For example for data streams Hashemi
et al. (2009) propose a one-versus-all-classifier technique, where for each class a binary
classifier is trained, i.e., the tree only decides between the class it is specialized on and
all other classes. For each element all classifiers decide if the element is in their own
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class and the classifier with the highest confidence value gets the vote. For data streams
online bagging and online boosting algorithms have been proposed (Oza and Russell,
2001; Oza, 2005).

4.4.3 Class Balancing

There are certain cases, where the imbalance of data elements in the classes is very
high. However, situations which occur seldom in the overall data may be particularly
important for the application at hand. For example, a heart attack is more important
to be detected reliably as opposed to normal heart activity. Class imbalance has an
impact on performance of learning algorithms as shown, for example, by Prati et al.
(2015). If the class imbalance is 1/99 percent, then on average a 20% performance loss
could be observed, while 20/80 had a loss of 5% on average. The loss is significant if the
minority class is only present in 10% of the cases (Prati et al., 2015). While Support
Vector Machines are quite immune to class imbalance, decision trees suffer particularly
from class imbalance and class overlap. Decision trees may create many nodes to learn
the minority classes, but these might be sacrificed in postpruning again. Also, more
leaves will be labeled with the majority class than with the minority class (Batista et al.,
2004). Furthermore, Batista et al. (2004) showed that resampling methods positively
effect the performance of learning algorithms with imbalanced data sets. Hence, we will
discuss these algorithms briefly as our case studies involve imbalanced data sets. In the
next section we will also discuss concept drift as the combination of class imbalance
and concept drift is one core challenge in incremental learning (Hoens et al., 2012).

To stress the importance of a class for a learning algorithm, there exist two main
approaches, namely example weighting and example resampling (Lee et al., 2015). Ex-
ample weighting assigns higher weights to more important classes or examples or assigns
costs to certain types of errors. Hence, it does not change the set of training data, but
gives algorithms a hint what to learn more intensively. However, not all algorithms
are suited for these techniques (Prati et al., 2015). Resampling techniques change the
training set sizes for the different classes, e.g., artificially adding more examples to un-
derrepresented minority classes and removing examples from overrepresented majority
classes. Due to alteration of the training set this influences learning, either prolongation
of learning or having less examples to learn (Domingos, 1999). The used algorithms are
the same or similar to the ones in the common data classification scenario (Lee et al.,
2015). However, there are some stream specific algorithms and we will describe some
of the algorithms from both categories, which we use in this work as examples.

Resampling techniques can be categorized into undersampling, oversampling, and
hybrid techniques, combining the two former ones. The oversampling techniques with
the best performance are random oversampling and SMOTE (Batista et al., 2004; Prati
et al., 2015). Random oversampling picks examples from the minority class of the data
set randomly and clones these to create balance. SMOTE (Chawla et al., 2002) executes
interpolation on the minority class examples to artificially create new data elements.
There are extensions such as LN-SMOTE, Borderline SMOTE, and Safe-Level SMOTE
which extend SMOTE by interpolating over the k-nearest neighbours of the minority
examples (Maciejewski and Stefanowski, 2011). In ADASYN (He et al., 2008) hard
to learn examples from the minority class are getting a higher weight than others.
For these more artificial examples than for other examples of the minority class are
generated.

Undersampling techniques are less successful then oversampling techniques (Prati
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et al., 2015). However, there are some popular algorithms, which are frequently used.
Random undersampling again just removes randomly picked examples, which might
include important information for the learning algorithm. Algorithms based on Con-
densed Nearest Neighbour (CNN) reduction try to find for randomly picked examples
from the training data set those, which lie at the boundaries of the element’s neigh-
bourhood. This means that an NN algorithm determines the nearest element that has
a different class and uses this for the reduced result set (of course only majority class
examples are removed (Batista et al., 2004). This indicates that elements with a high
potential of differentiation are used and less discriminating ones are removed. Adap-
tions of the original algorithm, such as the well-known algorithm by Tomek (1976),
improve the way how examples are picked from the source training set (ordered, close
to the boundaries of classes etc.). All of these algorithms aim to reach as good results
with the reduced set as with the complete data set (Tomek, 1976).

Hybrid techniques which use over- and undersampling in the same algorithm also
proved to achieve good performance results (Maciejewski and Stefanowski, 2011; Batista
et al., 2004). These combine for example SMOTE with CNN or Tomek links.

Data stream specific approaches to the class imbalance problem mainly concern
algorithms for sampling data. To represent a data stream, which is unbounded in size,
as good as possible is a complex problem, which also concerns the selection of training
examples from this data stream. Reservoir sampling (Vitter, 1985) is an acknowledged
method for this problem (Hall et al., 2009). Reservoir sampling maintains a set of
size n (the reservoir) which is initialized with the first n elements of the stream on
start up. The algorithms randomly pick data from the data stream and substitute
elements in the reservoir. Its properties are that the data is processed in one pass and
true randomness (Vitter, 1985). Algorithms mainly differ in the way the samples are
selected and substituted, and if the size of the reservoir changes (Al-Kateb et al., 2007).
(Babcock et al., 2002b) introduce two different algorithms to sample from a sliding
window over a stream. One approach is chain sampling, i.e., reservoir sampling, but
with removing elements which expired in the tuple-based window and adding the newly
arriving element instead. Those samples would only represent recent stream history,
which is suitable for data stream mining especially in view of concept drift, but will
only work for tuple-based windows (Babcock et al., 2002b). For time-based windows
they propose priority sampling which assigns randomly a priority to each new window
element. In the sample the non-expired element with highest priority will be included.
A further common approach is Bernoulli sampling and its extensions (Gemulla et al.,
2006). Each new element is inserted in the sample with a certain probability. The
sample size is random as it is determined by the binomial distribution and has no
upper bound. Finally, also specific ensemble learning algorithms help to cope with
class imbalance (Hoens et al., 2012). For example, decision tree algorithms which grow
multiple trees specialized on distinct classes and intensify learning on wrongly classified
elements (Hashemi et al., 2009).

4.4.4 Concept Drift

Concept drift is a specific problem of data stream mining. Data streams are potentially
unbound in size. A hypothetical function creating elements for the stream may change
over time. This can lead to (1) a change in the a-priori probability of a certain class,
(2) a change in the probability for the membership of a data element in a given class
(class distribution), or (3) given a certain element, that the probability to be in a
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certain class might change (posteriori probability) (Hoens et al., 2012). These cases all
may lead to a performance decrease of a classifier as it has learned to classify elements
according to former content of the data stream. This change in data distribution is
called concept drift (Tayal, 2005; Hoens et al., 2012). As the hypothetical function and
the assumed change in distribution are not known (Hoens et al., 2012) the only way
to tackle concept drift is to detect it and adapt the classifiers accordingly. (Tsymbal,
2004) distinguishes different types of concept drift. First, concept drift can develop
suddenly or gradually. Second, real and virtual concept drifts can be distinguished,
depending on which of the three probabilities may change, but both lead to a necessary
change in the model (Hoens et al., 2012). Concept drift in combination with class
imbalance is even more problematic as a concept drift in the minority class might never
be detected as elements occur rarely (Hoens et al., 2012). Algorithms coping with
detected concept drift are adaptive learning algorithms, which are able to change the
model when drift occurs (e.g., the CVFDT algorithm (Hulten et al., 2001), ensemble
learners which create alternative models to compensate drift (e.g., the one-versus-all
ensemble decision tree algorithm by Hashemi et al. (2009)), or algorithms adapting the
training set (e.g., FLORA by (Widmer and Kubat, 1996)) (Hoens et al., 2012). We
will not go into details of concrete algorithms, but will describe these where they have
been used in this work.

4.5 Conclusion

This chapter introduced data streams and the most important basic concepts. Empha-
sis was put on architectures, systems, and query languages for relational DSMS. These
basics help to understand the specific requirements for a process model to design, imple-
ment, and evaluate data stream applications. We will discuss existing process models
for the design of information systems and present our own data stream-specific and
quality-oriented process model in Chapter 5. Furthermore, we introduced the field
of data quality management and corresponding management models for information
systems. None of the existing models are directly applicable to the data stream set-
ting as often manual effort is involved. However, basic ideas can be used to create a
methodology specifically for data streams, whose design we will present in Chapter 8
along with the description of a data quality management framework implementing the
methodology. We further introduced the field of data stream mining. We highlighted
classification algorithms and the specific problems of class imbalance and concept drift.
It turns out that it depends in general very much on the application at hand which
algorithms can be used to produce satisfying results. A structured way has to be found
to elaborate which algorithms suit which task in a data stream application best. To this
end, we also discuss the applicability of process models for data mining in Chapter 5
and show, that they are not sufficient for the data stream case. Furthermore, we use
the proposed evaluation framework from Chapter 5 and the data quality management
framework from Chapter 8 to experiment with different data stream mining algorithms
in the field of C-ITS in Chapter 10.
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Chapter 5

Process Model for Development
and Evaluation of Data Stream
Applications

The design and implementation of stream-based applications involve many aspects.
They differ from the design of non-streaming information systems in many ways and
we will discuss each design aspect in detail. One aspect is data management. Data has
to be retrieved and processed. The input streams have to be modeled and corresponding
continuous queries to be defined to model the process flow of data within the appli-
cation. As queries can be registered and de-registered during run time, and streams
might change their schema, the classical conceptual modeling techniques might not
work anymore (Roussopoulos and Karagiannis, 2009). Applications are more and more
data-driven and hence, data models and management methods should be too (Brodie
and Duggan, 2014a,b).

Furthermore, if learning is involved, also aspects of data mining have to be consid-
ered, modeled, and implemented taking data stream specifics into account. Also, data
quality must be an integral part of the design and DQ requirements should be defined
right from the start, because stream data sources are often prone to errors (e.g., read-
ings from sensors). For data streams, data quality monitoring and improvement must
be executable at any time, on different levels, and in a timely manner, which makes it
even more challenging. Finally, the evaluation of stream applications is very important.
It has to be tested, if the application is doing what it is ought to do and if the qual-
ity measures actually reflect the quality of the measured instances. Due to those and
further characteristics of data streams, a new or at least adapted process model, which
takes these aspects into consideration, has to be defined. So far no stream application
specific process model has been proposed - only partial aspects have been covered in
literature.

In general, a process model can be defined as a description of which tasks have
to be done to reach a goal (e.g., to design and implement a stream application). A
methodology describes steps and means how these tasks can be carried out (Mariscal
et al., 2010).

In this chapter we will first discuss existing process models for the design of in-
formation systems, data mining, and data stream management. Subsequently, we will
propose our approach to a process model specifically designed for the creation and
evaluation of data stream applications. We will discuss each of the steps in the process
model in depth: Requirements Analysis, Design & Implementation, and Configuration
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& Evaluation. For each of them, we will describe aspects to be considered, the outcome
of the steps, and methodologies, how these steps could be executed in practice. We can
only recommend methodologies - of course other methodologies might be applicable
as well. The core of the Design & Implementation step is the proposal of a frame-
work, which comprises the main components for the implementation, configuration,
and evaluation of data stream applications.

5.1 Related Work

Process models for the creation of information systems have a long tradition and evolved
over time. In the following we discuss the models which have been proposed for Infor-
mation Systems in general. Subsequently, process models specialized on data mining
and knowledge discovery applications are described. Although no complete process
model for data stream applications is known, approaches for specific aspects of the
design of data stream applications will be covered.

5.1.1 Process Models for Information Systems

A classical database application comprises usually one or more databases, software ac-
cessing these databases, and possibly a Data Warehouse. This kind of architecture
strictly separates the data management design from the operational or process design.
Data is sitting more or less statically in the database, applications send queries to
retrieve the data for their purposes and produce results based on it. For both as-
pects research has come a long way and approved methodologies exist. One of the
first structured process models for databases has been described by Teorey and Fry
(1982). It is divided into four steps: requirements formulation and analysis, conceptual
design (creating entity-relationship (ER) models), implementation design (transferring
the ER-model to a specific database), and physical design (efficient implementation
of the data processing) (Teorey and Fry, 1982; Kemper and Eickler, 2009). The ap-
proach also describes a methodology to fulfill the steps. These steps can be iterated
to improve the quality of the resulting system. Because this process model is mainly
tailored to relational database systems, the corresponding methodology steps, e.g.,
the requirements specification, focus on finding and modeling entities, attributes, and
relationships between entities. These are covered in the information structure require-
ments. An interesting approach by Zachman (1987) describes a process model which
utilizes three concepts to describe an information system, namely Material (i.e., data),
Function (i.e., process), and Location (i.e., network model, distribution). These three
aspects are also expressed by the questions “What, How, and Where”. Along these
aspects a process model for the creation of information systems is developed. They
present alternatives to fill the steps by methodologies using a second dimension, which
represents a view, e.g., the view of the designer, owner, or builder of the system. Each
view could be regarded as one step in the process model. This process model is highly
interesting as it also could apply to data stream applications though it has been created
in times where relational databases came up. The distinction between the modeling of
data, processes, and locations makes also sense for data streams, as all three aspects
have to be considered individually, but integrated in the end.

Another very famous process model is the CASE method introduced by Barker
(1990) consisting of seven phases: Strategy, Analysis, Design, Build, Documentation,
Transition, and Production (Langer, 2007). It also focuses on relational information
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systems. All phases are build on the Strategy phase in which a Strategy Document is
built. This document is structured along several aspects, such as logical data modeling,
business process modeling, system boundaries (e.g., interfaces to other systems), and
project management aspects (e.g., budget). The following phases refine this document
and the information system is designed and implemented along the documentation.
This method mixes the technical aspects of creating an information system with gen-
eral project management tasks. It has many advantages to have a holistic view on a
project and consider technical and project management aspects in a process model.
The technical design aspects of this approach in some extent can also be useful for data
stream applications. However, the project management aspects will not be covered
here.

In times of big data the quite static modeling of data management in beforehand
and the creation of a conceptual model, which might change once in a while, is no longer
applicable. Schema-before, schema-after, and schema-never, are concepts which might
not be timely anymore for new application concepts. Instead continuous modeling is
advised (Roussopoulos and Karagiannis, 2009). This is especially true for data stream
applications. Data sources, continuous queries, and operators are orchestrated to a
stream application and might change dynamically by registration and de-registration
during run time, depending on the system. Furthermore, process and data are not
strictly separated anymore. Due to the data-driven nature of today’s applications
Brodie and Duggan (2014a) opt for the use of ensemble models, i.e., using different
models for different kinds of information systems. Hence, the modelling of data stream
applications has to be different from the classical relational modelling although we focus
on relational streams here.

For Data Warehouses (DWH) Jarke et al. (1999) proposed to model activities for
the development of DWHs in a meta-model. They employ a formal modelling process
where all components of a DWH, including static components, processes (dynamic com-
ponents), and data quality are stored and managed in a metadata repository. A process
model, called Information Engineering, has been defined by Martin and Finkelstein
(1988). They distinguish four stages: information strategy planning, business area anal-
ysis, system design, construction with encyclopedia (repository with information about
all phases, dictionary and plans, models, and design tools) constituting the heart of the
approach. Finkelstein (2006) proposed a business-driven variant of Information Engi-
neering, which includes active participation of business experts in analysis and design.
It consists of three technology-independent phases (strategic business planning, data
modelling, process modelling) and two technology-dependent phases (system design,
implementation). The Information Engineering process model is very business-oriented
and focuses on business processes. This is totally fine for the information systems and
their ecosystems, where task and data can be clearly separated. For data-intensive,
data-centric applications, where business and data processing are fusing, these pro-
cess models might not be adequate. Another process model focusing on the business
view of an information system, is the Architecture for Integrated Information Systems
(ARIS) (Scheer, 1992) and its extension, the ARIS-HOuse for Business Engineering
(HOBE) (Scheer and Nüttgens, 2000). Similarly to the Information Engineering ap-
proach these focus on modeling business processes. The concept is to create information
systems by gathering requirements, model business processes, and assemble existing
software components (Scheer, 2013), accordingly. For data fusion, i.e., sensor fusion, a
process model has been proposed by (Hall and Llinas, 1997). It concentrates mainly
on sensor fusion and the tasks specific to sensor fusion. It can be used to implement
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Figure 5.1: CRISP-DM Process Model (Chapman et al., 2000)

data stream applications dealing with object and context modeling (Kuka et al., 2013),
but cannot be generalized for data stream applications per se. The quality aspect is
sketched briefly by the process refinement component, which should monitor the per-
formance of the fusion, identify information for the improvement of the fusion results,
and allocate other sensors and sources. The authors also propose techniques which can
be used for each step.

5.1.2 Process Models for Data Mining

Data stream application design is closely related to the design of data mining applica-
tions and also overlaps in multiple cases. Hence, it is fruitful to investigate method-
ologies and process models in the area of data mining. One of the most famous and
most often used process models for data mining is the CRISP-DM (CRoss-Industry
Standard Process for Data Mining) (Mariscal et al., 2010). It was proposed in 1996 by
mainly four companies, amongst others Daimler Benz, and has been officially published
in 2000 (Shearer, 2000; Chapman et al., 2000). As depicted in Figure 5.1, it comprises
six steps, which are conducted in cycles iteratively: Business Understanding, Data Un-
derstanding, Data Preparation, Modeling, Evaluation, and Deployment (which has no
point of return).

It emphasizes the importance of a thorough analysis of requirements and knowledge
of the task, data, and domain. It mainly addresses static data sets and also considers
data quality, fusion, integration, and formatting of data. Hence, some of its concepts
can be useful for a process model for data stream applications, but have to be modified
to be applied in a streaming scenario. Most of the objectives defined for the CRISP-DM
model are also true for the design of data stream applications, such as “insurance of
the quality of results, reduction of skills, integration of experience for reuse, general
purpose, robust, and tool and technique independent” (Mariscal et al., 2010). Many
other process models are based on CRISP-DM, such as the Guerilla Analytics model
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presented by Ridge (2015). Guerilla Analytics is a data analytics approach which
assumes (Ridge, 2015)

• a very dynamic project environment (change in data, requirements, resources)

• team with limited resources (time, tools)

and requires reproducible, transparent, and traceable results. It consists of the steps
Extract, Load & Receive, Analytics, Consolidate, Reporting, and Work Products. This
approach is very interesting with respect to data streams as it is more iterative than the
classical CRISP-DM. In Guerilla Analytics the process has to react to new requirements
and data fast, it has to deal with multiple data inputs. Hence, the process allows to
get back to any of its steps at any time. Furthermore, it emphasizes the evaluation of
the analyses results which corresponds to the CRISP-DM model. Guerilla Analytics
has many characteristics which apply to data streams, such as fast changing data and
multiple inputs. Hence, some of the ideas in the process model could be interesting for
a process model for the creation of data stream applications.

The second very famous but less used model is the Knowledge Discovery in Databases
(KDD) approach by Fayyad et al. (1996). It describes several steps for knowledge dis-
covery, but is concentrating very much on the actual data mining process and is less
general described to reflect the data management and analysis process required for data
stream applications. Hence, we will not further describe it here.

5.1.3 Discussion

In a nutshell, there exist approved and famous process models for information systems
in a broad sense (including data mining and knowledge discovery). Most of them ad-
dress relational and static data sources. For data stream applications several specifics
have to be considered, which have not been covered so far by existing process mod-
els. Furthermore, the evaluation and data quality aspect has to be integrated which is
considered only in some of the discussed process models or as separate process models
(cf. Chapter 8). Hence, we propose a process model for data streams in the follow-
ing, which is based on approved methods, but extends them by aspects for stream
processing, evaluation, and data quality.

5.2 A Process Model for Data Stream Applications

We propose a process model that can be used to evaluate and create streaming ap-
plications for arbitrary domains. For complex streaming applications a testing and
evaluation phase is necessary, as the efficiency and effectiveness of a stream application
is dependent on many factors. These must be revealed before the actual application
can be set to a productive state. In traffic applications, for example, the output of an
application might be dependent on the number of vehicles and the quality of the data.
Or a health application might be dependent on the type of data available to get desired
answers. Hence, we propose an evaluation-based meta process model which consists of:

1. Evaluation Phase: In this phase the dependencies and resulting configuration
of an application are investigated.

2. Configuration & Productive Phase: Based on the results of the evaluation
phase the application is configured in the productive phase. The application
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owner has a good understanding of the conditions under which results are pro-
duced.

Each of the phases can be organized along a detailed process model. This is de-
scribed in the next section.

In general, we distinguish three ways how a data stream application may be ap-
proached and created.

1. Completely data-driven, explorative: A huge amount of data is produced,
e.g., in social media, by sensors, computer networks, or during stock trade. The
data is explored to get new insights and discover new aspects about the domain,
but there is no concrete task to be solved. Examples are applications using Data
Lakes (Dixon, 2010, 2014), where raw data is gathered along with its metadata
and the information needs are developed and issued as queries by users over time.
Hence, we call this kind of application completely data driven - it deals with the
data available and offers space to explore the data and experiment with it.

2. Partly data-driven, fixed goal: In many cases the goal of an application is
very clear, but the data sources dictate the data and parameters available to
the application. Many of the data sources are only available in a limited scope
or not available at all, e.g., for a specific geographic area or in a certain time
period, or for a specific group of people. In these cases the data determines what
and how results are produced and maybe new ways to reach the goal have to be
found based on the available data. Sometimes, the goal can even be only partially
reached or only in a limited way.

3. Application-driven, fixed goal: In these cases, the application goal is also
very clear and the developer is not limited in her choice of data sources to reach
the goal. Hence, the application design particularly includes also the selection
and modelling of data sources. Constraints regarding, amongst others, costs,
volume, or frequency have to be considered of course. This will be detailed in the
following description of the process model.

Depending on the chosen way the steps and their order in the process model may
differ. An overview of the proposed process model is depicted in Figure 5.2.

The process model for the evaluation phase, as most of the other information system
design process models, starts with the requirements analysis.

5.3 Requirements Analysis

One of the foremost activities which have to be done to create any information system is
the analysis and description of the target domain and application. Data management is
never done for its own sake - it always serves a higher goal in a specific domain. Hence, a
deep understanding of the field including its characteristics, processes, users, and quirks
(all of which influence each other and belong together) is needed. RA and/or business
modeling is an integral part of almost every process model, but it might differ in what
is analyzed. Though in data stream applications data management and processes are
not as strictly separated as in classical database applications, it makes sense

1. to have a look at which tasks have to be fulfilled without being biased by imple-
mentation details,
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Figure 5.2: Process Model to Design and Implement Quality-affine Stream Applications

2. to see which data sources are required, which data sources are available, and what
properties do they have, and

3. to define the quality requirements for the application to integrate quality measures
and means right from the start.

Hence, we consider three different types of requirements in the process model that
are vital for the design of data stream applications. According to the three approaches
to an application defined in the beginning of the section the order of the steps in the
requirement analysis may differ. A completely data-driven approach starts with the
requirements for the data sources as all data is fed into the system and the task is not
clearly defined. Task and data quality requirements may follow later and maybe less
detailed than for other approaches. For the partly data-driven approach both steps
- data source requirements and task requirements - are valid points to start at. The
task-driven approach should definitely start with the task requirements which influence
data source requirements substantially.

The requirements analysis does not only have an impact on what will be imple-
mented in the end, but also which means are used for this. Some criteria, such as the
data model, might limit the choice of a DSMS, the libraries used, or the data mining
algorithms. The different parts of the RA influence each other and there will be several
iterations of writing and updating the RA document. In a completely data-driven ap-
proach the available data influences the tasks. In a task-driven approach the task will
influence the requirements of data sources. Depending on the data context the data
sources will influence the data quality requirements as well as the task does. But also
the requirements posed on the data quality have influence on the data sources, e.g.,
when a high accuracy for positions is required a data source using GPS coordinates
might be preferred over mobile phone data.

In the following we will detail each step in the requirements analysis.
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5.3.1 Task Requirements

It is quite common in process models for software and information systems engineering
that the data management part is separated from modeling the business processes
that should be reflected or carried out by the application to be built. A very well-
known example is the ARIS process model (Scheer and Nüttgens, 2000). Data stream
applications are networks fed by one or more producers and which in the end deliver
output to consumers. Depending on the functionality of the system this could be the
DSMS itself, a web application showing the data on a map, a database, or any other
software. Hence, this is the point where the RA should start - namely at the end of
the chain, i.e., we propose a goal-oriented approach for the task of RA, similar to the
Goal-Question-Metric method by Basili (1992), a top-down approach for the definition
of metrics for software measurement. First, specific goals for the measurement are
fixed and questions are defined to help to refine the goal. Subsequently, metrics are
elaborated, which help to answer the questions (Koziolek, 2008).

For stream applications, the following steps are suggested for an analysis of the
task.

1. Goal Definition: Task modeling starts with the definition of the overall goal of
the data stream application. Which problem does the user want to be solved?
What information does she need? For example, does she want to have near real-
time visualization of animal movements on a map or real-time estimations for
energy prices which are fed into an ordering software? A description via UML
use-cases is a possible implementation in a methodology.

2. Output Definition: The output is somewhat the “data goal” of the stream
application. In the end the application produces again data that will be used in
other applications, e.g., is visualized, further processed, or archived for later use.
Hence, it must be defined what the output is, what is done with it afterwards, and
who the consumers are. Here already a very detailed description of the output
can be done. This includes for example, the format and the granularity of the
output. For the animals movement example this could be position data with
coordinates and additional data about the animal itself, e.g., a calculated speed
or a heart rate.

3. Quality of Service: For the output it should be also very clear, which re-
quirements the application should fulfill for the delivery of the output. At which
frequency should the output be created and is there any delay allowed? What hap-
pens with outdated information? Are there any requirements regarding buffering
or throughput? Load, latency, or bandwidth are only some of the possible QoS
measures (Lakshmanan et al., 2008).

4. Provenance: For the choice of the DSMS it must be further elaborated, if data
provenance is an important requirement of the application and for the users. For
example in health monitoring applications this may be a crucial aspect. For
streams provenance can be tracked on different levels. In stream applications
the DSMS often already include some basic functionality for implementing prove-
nance, e.g., adding a timestamp when the stream element has entered the DSMS,
a timestamp by which operator the stream element has been created (please see
Section 4.2.2 for a detailed discussion of timestamps), or the name of the oper-
ator which created the stream element. Beyond this basic information created
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usually by one operator, there exist approaches to track provenance over several
operators in the network (Glavic et al., 2013; Misra et al., 2008). For example, if
aggregates or joins have been included as operators the resulting stream elements
carry information, how they have been created.

5. Users: Finally, also the users and their usage of the final system and the data
must be defined.

Outcome

The output of this step should be a detailed documentation of the task requirements,
which can be integrated in an overall requirements document (the requirements spec-
ification). The documentation will be used for reference in the further requirements
analysis process and in the design phase for selecting system components and building
the operator network or designing the queries, respectively.

Methodology

Requirements analysis (RA) has been studied very extensively and we will not go into
much detail about how RA can be done. Expert interviews, literature research, UML-
and scenario-based variants of RA and documentation are widely known (Pohl, 2010).
Interviews are conducted with project partners, domain experts, and potential users
of the application. Especially, semi-structured interviews are useful, as they follow a
predefined interview guideline. The guideline helps to acquire the desired information,
but still leaves room for open discussions, which may bring up important insights (Hove
and Anda, 2005). Furthermore, literature research is indispensable, as the domain has
to be understood in depth and experiences from former and current projects are very
valuable.

The results of the requirements analysis are usually documented in one big doc-
ument (the requirements specification). There are basic elements which are always
included, such as the status quo of the context, the unique numbering and prioritiza-
tion of each requirement, and the distinction between functional and non-functional
requirements. Visualizations, such as Use-case diagrams, help the readers to easily
understand which functionality the application should provide and build a solid basis
for discussions.

5.3.2 Data Source Requirements

One side of a data stream application has been covered already, namely the desired
output of the application. The other side, the input, is equally important. In the
introduction of this chapter we distinguished three ways to approach the development
of stream applications. These are categorized along the availability of data sources.
Hence, it makes sense to distinguish between the description of available data sources
(status quo) and the requirements of desirable data sources. The existing data sources
should be described first to see what is already there. Based on these descriptions
requirements for new data sources are elaborated.

For the description of data source requirements approaches exist, which mainly refer
to relational databases (Wang et al., 1993; Zachman, 1987; Barker, 1990). In these
approaches requirements are retrieved from the users and modeled using a conceptual
modeling paradigm, such as the Entity-Relationship (ER) model. Of course there exist
also modeling approaches for other structured and semi-structured data sources. For
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XML, modeling with DTD, XML Schema, UML, or the specific conceptual modeling
languages for XML, such as XSEM (Necasky, 2007), can be done. For RDF or OWL
sources ontology modeling techniques and visualizations can be used.

The data sources for a data stream application can be very diverse. Hence, a
general description, which applies to different kinds of data sources should be used. All
information which is important for the further handling in the DSMS must be gathered.
The general description must include properties amongst others, the format, the size,
interfaces, or the update frequency.

Outcome

The outcome of this step should be a detailed description of the general and semantic
properties of each of the data sources, existing or required.

Methodology

For the RA analysis and documentation of data sources, we propose to use predefined
forms, which help to remember the most important aspects for each data source and
to collect that information in a uniform way.

We propose a form, called Data Source Documentation (DSD), found in Appendix B.
It can be used for the documentation of existing data sources, but also for the elicita-
tion of requirements for new data sources (or required data sources). We distinguish
two aspects of requirements: functional and non-functional or semantic requirements.
Functional requirements describe properties of data sources not connected with the
content or meaning of the data, but about general information, such as the size or the
format. Non-functional requirements describe properties of the data with respect to
its semantics and content. Hence, the part General Description as well as the Schema
Description part should be taken into consideration for them.

For required data sources the description might include a lot of blanks, because
not all information is known or not relevant at the moment. But surely a structured
description of the data sources will help to discuss them with project partners and
customers. They may have a different view on it or an idea where to get the desired data.
Definitely the requirements for the data sources also depend on the task requirements
and description. In the design step the DSD can be utilized to model the data sources
in a meta-data model.

5.3.3 Data Quality Requirements

As we have stressed earlier, data quality is a very important aspect in stream applica-
tions and helps to interpret the intermediate and final results of an application. Hence,
the analysis of which DQ aspects should be considered should be an integral part of a
requirements analysis for stream applications. In the following we propose aspects con-
siderable for the data quality RA. There exist several approaches which guide software
developers through the definition of DQ requirements.

The Goal-Question-Metric paradigm describes an RA for software measurement
(Basili, 1992). It has to be stressed, that the GQM paradigm does not distinguish
dimensions and metrics as done in this thesis, but combines them and terms the com-
bination metric. The top-down approach defines goals and corresponding questions,
whose answers, measured by metrics, should help to reach the goals. Wang et al.
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(1993) propose a very detailed methodology for RA for data quality where they dis-
tinguish subjective and objective quality dimensions (both are DQ attributes). While
subjective dimensions depend on the context and definition (e.g., timeliness), objec-
tive dimensions do not leave room for interpretation (e.g., the creation time of data).
A conceptual model of the application, i.e., an Entity-Relationship model, is created
and annotated with subjective and objective dimensions resulting in a data quality
model. If there are several application views the resulting DQ models are integrated
into one big schema. The Quality Function Deployment (QFD) is a management ap-
proach originally invented in the 70’s in Japan. It is used for the design of products
in many business branches, such as manufacturing of any kind. Hauser and Clausing
(1988) proposed a tool called the “House of Quality” for QFD, which combines several
QFD matrices to an overall matrix which looks like a house in the end. The basis of
the house are user requirements (rows) and actions (columns) which help to fulfill the
requirements. An additional column contains a number to rate the relative importance
of the requirement. The content of the cells includes a value, which indicates the effect
of the action in fulfilling the requirement. Besides of the requirements other rows can
be added, such as the costs for the action (Hauser and Clausing, 1988). Redman (1996)
applied the QFD matrices approach to determine data quality requirements. His ap-
proach transforms user requirements into data quality requirements and performance
requirements in five steps.

As the design of the operator network has not been done yet, the approaches by
Wang et al. (1993) and Hauser and Clausing (1988) are not applicable, but will be
useful in the design phase. The approach by Redman (1996) is too static and operates
on a too high level, to be adopted for our purposes. Hence, we will not further consider
it.

In our approach, we again follow similarly to the GQM approach a top-down ap-
proach by defining the goals for the quality measurement first and afterwards consid-
ering, which dimensions should be measured, to reach this goal.

• Goal/Output: Similar to the goal of an application, it must be also defined
which goal(s) the DQ measurement is aiming at. For example, one goal could be
to detect failures in a production process or to analyze how much data of a sensor
gets lost during a certain time period. After defining the goal(s) it has to be
considered with which kind of data and dimensions these goals can be achieved.
A concrete example could be a traffic application that detects a hazard on the
road. The goal is to output the degree of confidence, that the hazard is actually
existent, to filter out unreliable information and improve the user experience.

• Quality Dimensions: Once the goal has been defined, it is important to think
about how the goal could be achieved and which data and DQ dimensions could
help to reach it. Data quality can be measured on many levels (please refer to
Section 4.3) and can have many manifestations. Examples for DQ dimensions are
completeness, accuracy, or timeliness. We do not want to anticipate design and
implementation in this step. At this stage it is not important to know exactly for
which data which quality should be measured how. However, it makes sense to
name and describe what kind of data quality dimensions are important for

1. the domain,

2. the application in question,

3. and specifically for the goals described before.
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The earlier such definitions are discussed and thought through, the better they
are understood and agreed upon. A requirement analysis description should al-
ways include a glossary of domain terms which helps to see if project partners
have the same understanding of the domain terms (Balzert, 2010). The DQ di-
mension description is exactly this: an agreement on the understanding what the
dimensions mean. The interpretation of the dimensions and the metrics might
vary from domain to domain and context to context, but also from object to ob-
ject whose DQ is reflected by that dimension. Hence, the detailed definition has
to be done in the DQ Model designed in the Design and Implementation step.
It makes also sense to see if there might be already other applications in that
context measuring DQ. For the concrete example of the confidence value for the
hazard application the dimensions which are required to determine the confidence
value have to be considered. Amongst others, surely timeliness is important as
well as the amount of data used to detect the hazard.

Outcome

Basically, the outcome of this step should be:

• a description of the quality goals,

• a first description of quality dimensions.

Methodology

The quality descriptions of the outcome can be integrated into the overall requirements
specification in a separate chapter for DQ requirements.

5.4 Design & Implementation

After the requirements analysis has been done, it is time to design the stream appli-
cation. The design process could in turn lead to new requirements or the need to find
out more about certain requirements. In accordance with the RA we propose the con-
sideration of three main aspects. The first aspect is the modeling of the data sources.
The availability of the right data is crucial for an application. Secondly, the modeling
of the data processing to achieve the goals defined in the RA takes some time. Finally,
the design of a data quality model helps to integrate DQ management into the data
management process. In the following we will describe the three aspects in detail.

5.4.1 Selection and Modeling of Data Sources

Data stream applications need input data to be processed. Hence, the applications are
dependent on the data sources they can use. Data sources are usually connected via
adapters to a DSMS to convert and feed the data to the processing operators. The
adapters can also regulate the data flow. Data sources can vary according to several
properties. From the creation of the data until the reception and processing by the
DSMS multiple aspects have to be considered. For the data source modeling we distin-
guish two aspects:
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1. Data Provisioning
The data sources, whose requirements have been described in the RA, are now
selected. Depending on the data and task requirements, a corresponding DSMS
must be selected. For example, if the most important data sources are RDF, XML,
or binary streams, a different system may be selected than for data sources which
can be broken down to relational streams and tuples. If provenance is required,
this also has to be offered by the DSMS at the desired level. Furthermore, the
decision whether a simulation is used or a real-world data source is used has
to be made. We present a detailed discussion on this issue in Excursion 5.4.1.
Additionally, costs of communication, latency, and any other issues regarding
data transfer have to be considered and documented.

2. Data Modeling
After the selection of the desired data sources, these have to be described as de-
tailed as possible. After the general description each data source can be described
semantically using the most appropriate modeling approach, or by using a meta-
model such as the Generic Role-based Meta-model (GeRoMe) by Kensche et al.
(2007).

Excursion 5.1: Real-world or artificial data?

A thoroughly created RA constitutes the basis for the right choice of data sources.
From the requirements it must also be clear which kind of data is needed. Often the
data sources are given by a project or the customer. Especially in research, it can
be part of the problem to find out which data sources could help to solve the task.
If all or some data sources are not given, the requirements may lead the way. For
example, if several experiments have to be done and the parameters must be fully
controllable, it is questionable if this can be done in a real world scenario. If the
scenario contains parameters which cannot be controlled (e.g., natural observations,
dynamical systems), a simulation or otherwise artificially created data sources can
be used. On the one hand, if the application must be tested within a scenario
as realistic as possible, or simulations are not existent or difficult to create, the
use of real world data sources is advised, but not always possible. There may be
online sources available, but they might not contain all the data needed for an
experiment or application. Or there are fixed data sets available, but these do not
change and only represent a snapshot of the scenario needed – limited in time and
space and might not be fully reproducible. On the other hand, simulations also
involve several difficulties and issues which might not be desirable. Simulations
are very complex and often only creatable by very costly software. One has has to
fully understand the underlying mathematical and physical models. Furthermore,
all configuration possibilities must be known. This means a high effort in learning
how to use the software.

Again not all desired data might be available or may not be creatable in sim-
ulation. And finally, saying it with Magritte: “Ci n’est pas une pipe.” (This is
not a pipe. He meant, that it is only a painting of a pipe, and not a real pipe.)
In the end only the real world is real and a simulation is only an approximation
of this world, not exactly the world itself. The creation of simulation scenarios
is a too complex topic to be discussed here in detail. It depends highly on the
domain and application. We will describe the consideration, selection, and model-
ing of a simulation data source for the traffic systems domain in Chapter 6. For
the design and implementation a very detailed model and experimental setup plan
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and documentation has to be made, to exactly know the relevant parameters and
the mathematical and physical models behind the simulation. After designing the
simulation, this may serve as a data source and its output can be handled as any
other data source. A combination of both, real world data, and artificial data is
also possible. Interpolation of data or creation of data based on empirical knowl-
edge might also be a feasible solution. But this has to be considered carefully,
because data are falsified and experiments based on it can easily be criticized. For
the case of missing data features another possibility is the integration of data from
different data sources. But this is also not easy and the pros and cons have to be
carefully weighed. For further reading, we recommend the thorough and acknowl-
edged discussion of which experimental setting is applicable to a given problem at
hand for information systems found in (Benbasat et al., 1987).

Outcome

The outcome of this step is

• a selection of data sources,

• a detailed description of the general properties of each data source (format, name,
size etc.), which completes the description from the RA,

• a detailed description of the underlying specifics of the data source, e.g., mathe-
matical model, simulation parameters, if applicable,

• and a data model for each data source.

Methodology

As a follow-up of the requirements analysis, the Data Source Description found in the
Appendix B can be extended and completed to design and describe the required and
existing data sources. As explained earlier, it depends very much on the type of data
source, which modeling means are used to visualize and describe the data of the data
source.

5.4.2 Task Modeling & Implementation

After data sources have been selected, modeled, documented, and prepared for data
processing, the actual design and implementation of the task process model has to be
done. In the RA one important thing was to have a look at the output - i.e., the actual
data which is produced in the end. It has to be mentioned right from the beginning, that
many design and implementation issues and restrictions (as with any other information
and software systems) are dependent on the system and underlying language at hand.
For example, while several systems offer the possibility to design operator networks
hiding query language details from the designer, many rely on the manual definition of
queries or even require implementation of code. We refer the reader to Chapter 4 to
compare the different systems and languages.

Hence, it makes sense to have a sharp look at the requirements and the chosen data
sources and data model, and search for aspects which allow only for the selection of
specific systems. Partly, this has been done in the last step. But that consideration
should not only involve the required data models, but also time and processing models.
For example, when should the system in general proceed with processing? When a new
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element arrives or on the next time tick? Additionally, Quality of Service (QoS) has
to be considered for the DSMS selection. Previously, requirements for QoS have been
defined, which have to be fulfilled by the system and the final application. The target
DSMS has to provide means to measure and adapt QoS in these regards.

Furthermore, the corresponding adapters for the data sources must be designed
and implemented if they are not already included in the system. Finally, these are
customized for the concrete data sources. In the next step the operator network,
corresponding queries, and other specialized processing steps, such as data mining,
have to be defined. It is advised to test the stream application after adding a new step
to see if the resulting stream is delivering results as expected.

Outcome

The outcome of this step should be:

• a selection of the DSMS,

• an implementation of adapters for the corresponding system and data sources,

• an implementation and first configuration of the operator network,

• a detailed description of the network, e.g., using an operator network diagram,

• descriptions of applied data mining algorithms and preliminary configuration,

• and a detailed description of the distributed network, if applicable.

Methodology

Depending on the system at hand this design step could be visualized by an operator
network diagram which describes the changes of the stream schemata at each single step.
Not only the purpose of each step but also the incoming and outgoing streams must be
described. This includes, amongst others, the description of windows, aggregates, and
sampling. Additionally, also the expected data rates and values should be documented.
Such a network description does not only document the data processing, but helps again
to communicate with project partners and customers and to compare with results in
tests of the running application. In the textual description the detailed queries and
algorithms can be explained. If the chosen system is distributed a network diagram
can be constructed.

To implement the stream applications, we propose a framework which includes the
following main components:

• A Data Stream Management System which includes a Data Processor to
enable the processing of data streams and queries,

• Comprehensive Data Mining facilities, either integrated in the DSMS or the
DSMS should offer means for extension (e.g., enable use of a library). Data
Mining is a crucial part of many data stream applications and hence, a framework
should offer the corresponding functionality to achieve this requirement.

• Data Quality Management components to enable easy integration of DQ mon-
itoring into the data processing,
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Figure 5.3: A Framework for the Creation and Evaluation of Data Stream Applications

• Adapters for streaming as well as non-streaming data sources,

• Export functionality to provide data to other systems and users.

An overview of the proposed framework is depicted in Figure 5.3

5.4.3 DQ Modeling & Implementation

Data quality management should be an integral part of each stream application. Sensor
data has often a minimized data quality, due to hardware, software, environmental, or
communication problems (Paradis and Han, 2007). Results based on this data are
influenced by its quality. To rate the value of the produced information, its quality
has to be determined. After the initial requirements for DQ for the application have
been inquired, it is time to model it for the concrete stream application. By now, data
sources and data management processes should be clear, and streams, operators, and
data processing plans defined and implemented. Now, for each of the involved data
objects it must be determined if data quality will be measured and which dimension
will be measured how. Not later than at this point, each dimension needs a concrete
textual definition. Because dimensions might be reused in different contexts they can
have different meanings (Redman, 1996; Wang et al., 1993). Hence, it is important to
distinguish dimensions using unique names and describe their purpose in detail. For
each combination of dimension and data object, a metric must be defined, which allows
for the measurement of the dimension. For each combination of dimension, data object,
and metric a weight can be defined.

Outcome

The outcome of this step should be

• a mapping of dimensions and metrics to data objects described by a DQ model,

• a detailed documentation of dimensions and metrics,

• a weighting schema for dimensions and data objects.
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Table 5.1: Metrics Matrix

Dimension1 Dimension2 Dimension3

Streams

Stream1 Metric2

Attributes

Attribute1 Metric1 Metric2

Attribute2 Metric3 Metric4

Table 5.2: Weighting Matrix

Stream Object Dim1 Dim2 Dim3

CombDim1 Attribute1 Value Value Value

CombDim2 Stream2 Value Value Value

Methodology

In the discussion of the DQ requirements we already mentioned the House of Quality
(HoQ) (Hauser and Clausing, 1988) as an appropriate means to elaborate and document
requirements. But in the process model we propose, it was to early to apply it in the
requirements step, as the concrete operator network and streams have not been known.
At the current step we can now proceed with designing the DQ. As described in the
previous section, the HoQ consists of several matrices which can be combined to create
an overall DQ overview (the house). These can easily be understood by partners,
customers, and users from other domains and help to agree on the DQ part of data
processing. For data stream applications, similar to the HoQ, the following matrices
are proposed to understand the user’s and application’s needs:

The Metric Matrix has a row for each stream object, such as whole streams or
attributes of streams in the relational case. Each dimension is represented by a column.
For each stream a separate matrix can be used to keep it manageable, but the different
levels of objects, such as the whole stream, windows, and attributes, should be denoted
by different categories in the matrix. In the cells the corresponding metric can be noted,
subsequently. This allows for a quick overview of what dimensions are measured for
which element and how. An example structure is given in Table 5.1.

A Weighting Matrix documents combinations of dimensions for each element and
the weighting of each of the dimension in the result. An example structure is shown in
Table 5.2.

Finally, in an Action Table and Counteraction Table for each stream object and
dimension, actions, and counteractions, respectively, can be documented. Both have
the same layout. An example for the Action Table is given in Table 5.3

This knowledge can be additionally modeled in a DQ model extending the operator

Table 5.3: Action Table

Dimension1 Dimension2 Dimension3

DQ Att1 Action1 + Rule1 Action2 + Rule2

DQ Att2 Action3 + Rule3
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network model of the data stream application by dimensions attached to the streams
and attributes in the network model. After documenting the DQ design in the matrices,
this knowledge can be implemented in a machine readable format easily to make it
(re)usable for a later DQ processing. The design can be seen as a kind of documentation
in this case and of course both representations should be kept synchronized. For the
implementation a conceptualization, such as an ontology or a database, can be used.
Important features for the conceptualization are relationships between objects and
reusability of, amongst others, dimensions, metrics, and the data objects themselves.
We describe our implementation of the DQ management in Chapter 8 in detail.

5.5 Configuration & Evaluation

After the stream application, including data quality management, has been imple-
mented, this setup can be used to carry out experiments. A detailed experiment plan
helps to organize these activities. A description of the purpose and the expected re-
sults needs to be elaborated. As data sources (e.g., simulations), the stream application,
DSMS, and the DQ management can be configured in many ways, all configuration pa-
rameters must be documented for each experiment. The evaluation of the results must
also be documented and the resulting data ideally has to be recorded to allow for a
comprehensible end-to-end evaluation. Of course the extent of the experiments depend
on the kind of application and task. Parameters which might be configurable are from
the following categories:

• Simulation parameters

• System parameters, e.g. fixed sampling size, QoS parameters

• Data management parameters, e.g., window sizes, aggregates

• Algorithmic parameters, e.g., for parameters for data mining algorithms

• Data Quality parameters, e.g., weights

Experiments which rely on random variables should be carried out several times with
different seeds for the random variables. For the results of these runs the mean can be
calculated, which is in the end more representative than individual measurements. If
the evaluation results are not meaningful enough, this indicates issues in the processing
chains, or certain goals have not been reached. For example, if the performance is low,
this might lead to a reconfiguration or even to changes in the task, data source or, DQ
model. This again requires a new set of experiments.

Outcome

The outcome of this step should be

• a detailed documentation of experiment setups and configurations,

• a rating of the application results based on the DQ measurements,

• and a result data set for evaluation.
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Methodology

For the documentation of the experiments it is advised to manage something like a
laboratory book: each experiment is noted down with its date, configurations, data in,
data out, and everything noteworthy for the experiment. Depending on the data at
hand, coded tests, similar to unit tests, can be written (Ridge, 2015). These compare
the expected data with the actual outcome. For data streams this is not always easy, as
the results might not exactly be the same for each run. Influences, such as system load
or communication speed, might cause slight differences in the results. For example,
windows always shift at the same time, but they might include different data, if this
does not arrive exactly as it has arrived in the last run.

5.6 Conclusion

We have presented a proposal for a process model for the development of data stream
applications. Existing process models do not satisfy all the needs of data stream ap-
plications. In particular, the demand for evaluation and data quality assessment for
data stream applications has only been addressed unsatisfactorily. We distinguished
three different types of how to approach the development of stream applications. The
different steps of the process model, their relationships to each other, and possible re-
currences have been delineated. Furthermore, for each step the desired outcome and
potential methods to execute the step have been explained. But how can a process
model be evaluated? Commonly, this is done by applying it to case studies and gath-
ering experiences from developers using it (Wirth and Hipp, 2000). Also, case studies
are an appropriate and acknowledged means for the evaluation in information system
research (Runeson and Höst, 2009; Benbasat et al., 1987). Case studies must fulfill
certain properties to be suitable for the problem at hand (Runeson and Höst, 2009).
To be suitable for the evaluation of the proposed process model, we must show its
applicability, flexibility, and generalizability to different cases. Hence, the case studies
should

• have different application goals in different domains,

• have different starting points for the choice of data sources (fixed, flexible),

• comprise typical data sources for the domains including both, simulated and real-
world data,

• vary in requirements, e.g., according to latency and data quality,

• and involve complex and domain specific algorithms.

To this end, in the next two chapters we will show the application of the model to
four different case studies from two different domains. First, we apply the model to the
applications of Queue-end Detection and Traffic State Estimation in the C-ITS domain
in Chapter 6. Both case studies are very well suited to study the effectiveness of the
process model and the proposed methodologies, particularly the evaluation framework.
They use real-time Floating Car and Floating Phone Data, but for different purposes
and with different properties. QED is a traffic safety application where latency and
quality are crucial. The results serve as incident warnings and hence, a high confidence
of the produced information is required. TSE is dealing with more data from many
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vehicles and covers a larger area, but is more relaxed according to latency and qual-
ity. Both applications require complex algorithms for their implementation and many
system and environmental factors may influence the overall result of the applications.
Furthermore, crucial questions, such as how much data is required for satisfying appli-
cation results, must be elaborated, for which a structured evaluation using the proposed
evaluation framework is helpful.

In Chapter 7 the process model is applied in two case studies from the mHealth
domain. Both involve real-time sensor readings from sensors worn at a human subject’s
body. Data is coming from a single or multiple users and sensors. The quality of the
data varies a lot as subjects move and mobile communication and positioning may
be prone to failure. The applications are less complex than the C-ITS case studies
but show the easy use, flexibility, and generality of the model and also require quality
assessment.
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Chapter 6

Validation of the Process Model
in the C-ITS Domain

We already gave a detailed introduction to C-ITS in Chapter 2 and stressed that
Vehicle-2-X applications became a very important topic in the area of public and private
transportation in the last decade. We will evaluate the process model and evaluation
framework elaborated in the previous chapter intensively in the context of the project
Cooperative Cars (CoCar)1 and its successor Cooperative Cars eXtended (CoCarX)2.
In the following, we will first describe the projects to build the foundation for a re-
quirements analysis. Afterwards we will describe a walkthrough of the process model
step by step explaining our realization of the steps.

6.1 The Cooperative Cars (eXtended) Project

There exist a multitude of research projects and initiatives, which investigated or are
still investigating opportunities of C-ITS using a multitude of technologies. Popular
examples of recent and completed projects comprise the Cooperative C-ITS Corridor3,
the European Comission C-ITS platform4, CIMEC5, Car 2 Car Communication Con-
sortium6, Drive C2X7, MYCAREVENT8, and CVIS.9

CoCar and its successor CoCarX were subprojects of the project aktiv (Adaptive
and Cooperative Technologies for Intelligent Traffic) funded by the German Federal
Ministry of Education and Research Germany (Bundesministerium für Bildung und
Forschung, BmBF). Key players from the area of transportation and communication,
such as Daimler AG, Ford, Volkswagen AG, MAN Nutzfahrzeuge AG, Vodafone Group
R&D Germany, Ericsson, and PTV AG, but also research institutes, such as Fraun-
hofer FIT, Informatik 5 at RWTH Aachen University, and BASt (Bundesanstalt für
Straßenwesen, German Federal Highway Research Institute), were involved in different
stages of the project. The projects investigated the suitability of UMTS technologies

1http://www.aktiv-online.org/english/aktiv-cocar.html
2http://www.aktiv-online.org/deutsch/aktiv-cocarX.html
3http://www.c-its-korridor.de
4http://ec.europa.eu/transport/themes/its/c-its_en.htm
5http://cimec-project.eu
6https://www.car-2-car.org
7http://www.drive-c2x.eu/project
8http://www.fir.rwth-aachen.de/forschung/forschungsprojekte
9http://www.ecomove-project.eu/links/cvis
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and their extensions (LTE) for the direct, targeted transmission of traffic data aris-
ing from both, stationary and vehicle-based sensors. Furthermore, the efficiency and
effectiveness of mobile communication for real-time traffic applications has been inves-
tigated, e.g., to see if the transmission delay is small enough to enable warnings for
queue-ends or collisions at crossings (Fiege et al., 2011).

In the course of the projects a complex modular system architecture has been elab-
orated to implement not only the requirements mentioned before, but several other
services, such as infotainment, flexible billing, or security and privacy aspects (Fiege
et al., 2011). The overall CoCar system architecture is depicted in Figure 6.1.

Figure 6.1: CoCarX Architecture Model (Fiege et al., 2011)

In the lower part of the figure vehicles drive along a road and communicate with
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each other and the infrastructure via cellular networks and pWLAN (ad-hoc wireless
network according to IEEE standard 802.11p, specifically designed for transportation
scenarios).10 The provided services comprise hazard warnings, multimedia streaming,
and information services. These are enabled by multiple backend systems. The project
envisioned data retrieval from a marketplace, where service providers offer and buy
traffic data. It has been implemented as Mobility Data Marketplace11 (MDM) and is
operational today.

In the CoCarX project vehicles disseminated data via messages. There were two
kinds of messages: CAM (Cooperative Awareness Messages) which are send out on
a regular basis and DENM (Dedicated Event Notification Messages), which are used
for hazard warnings. In the project a custom JSON format, the CoCar or CoCarX
message, has been used intensively for test purposes. But also other data sources, such
as Floating Phone Data, have been investigated according to their usefulness for certain
traffic applications.

Two applications have been picked to showcase the near real-time data processing,
management, and creation in the the CoCar architecture.

1. Queue-end detection (QED): Queue-end detection has been picked, as rear-
end collisions are one of the most frequent accidents with fatalities as the drivers
perceive the queue-end often too late. Queue-end detection is therefore an impor-
tant traffic application which could reduce the severe consequences caused by such
accidents significantly. Furthermore, queue-end detection requires a low latency
and very frequent updates which have to be tackled by a system with real-time
capabilities.

2. Traffic State Estimation (TSE): Traffic state estimation has been selected,
as it is a very common application, very well known, and comprehensible for end
users. Doing TSE in real-time poses some extra challenges to the system as a high
volume of data has to be processed in a short time period. Interesting research
questions open up, such as which data sources are relevant, how much data is
sufficient for a reliable estimation, and how frequent does the state change.

In the following we will start with the classification of the two applications according
to the three ways of approaching data stream applications explained in Section 5.2. Sub-
sequently, we will elicitate the requirements on the three levels of tasks, data sources,
and data quality. However, we will not present an exhaustive requirements analysis,
but will only summarize the most important points.

6.2 Queue-end Detection

As explained in Chapter 2 queue-end detection is the process of determining positions or
areas in a road network where the end of a queue poses a hazard to approaching vehicles.
In this work we consider hard queue-ends located upstream of the approaching vehicles
and we are especially interested in hidden queue-ends (cf. Section 2.4). A queue-end
is thereby the rear-end of a queue where vehicle speed drops rapidly. We realize the
implementation of the queue-end detection using a partly data-driven approach with
a fixed goal (cf. Section 5.2). We know exactly what the outcome of the application

10https://standards.ieee.org/findstds/standard/802.11p-2010.html
11http://www.mdm-portal.de
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should be, but we are only partly free to select appropriate means and data sources
due to constraints from the project context.

In the following we describe the requirements for the application of locating such
a queue-end. The requirements have been raised in the course of the project with the
project partners and additional literature research.

6.2.1 Task Requirements

We explained in Section 5.3 that the task requirements analysis in our process model
comprises three steps, namely the goal description, the output definition, and descrip-
tions of Quality of Service and provenance requirements. In the following we will detail
those points for the QED application.

• Goal Description: For the queue-end detection our goal is to get the precise
position (in a range of 100 to 400 m) for each queue-end present in a road network.
This position is send in a message to vehicles in near vicinity of the queue-end
over the CoCarX Geocast Service to warn vehicles approaching this position. The
Geocast Service is able to disseminate messages into a certain spatial area (Fiege
et al., 2011). The message with the queue-end warning should only be sent if the
information’s reliability is sufficiently high. The scenario is depicted in Figure 6.2.
Further goals are to research if the data from V2X messages is sufficient to ensure
reliable results for the detection or if further data sources are required. Further-
more, the question arises which type of information from the messages is crucial
for the application. Also the overall required data volume for the application
and a sufficient ratio of equipped vehicles and non-equipped vehicles to represent
the traffic situation correctly is of interest. Finally, we require the application to
learn and detect by itself when a queue-end is present or not based on former and
current data.

Figure 6.2: Queue-end Detection Application

• Output Definition: The output of the application should be a data element,
event, or message, which contains the data from Table 6.1.

• Quality of Service: The output should be sent as soon as information is avail-
able (push basis). The system should revise the current situation at least every
30 seconds for each part of the road network. The latency in the system from
receiving data from vehicles to creating a warning should be in the range of a
few milliseconds to ensure quick information of approaching vehicles. If informa-
tion is outdated, the information should be discarded. There are no requirements
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Table 6.1: Required Output for QED Scenario

Name Description Data
Type

Latitude The latitude value of the queue-end position. Float

Longitude The longitude value of the queue-end position. Float

Timestamp A timestamp including milliseconds which in-
dicates when the queue-end has been detected.
This should be the creation date of the message
or event announcing the queue-end.

Integer

Confidence A confidence value, which indicates how reliable
the detected event is.

Float

regarding buffering. The throughput should be high as bursts of messages from
vehicles can be expected.

• Provenance: For the research purpose of the system provenance has not been
taken into account. But for a real system this definitely has to be considered.

• Users: End users of the data are first of all researchers who elaborate the param-
eters and conditions beneficial for optimal results of the application. The targeted
end users are vehicle drivers, which get warning messages from the application
making them aware of the queue-end as a hazard.

6.2.2 Data Source Requirements

After we identified the rough goals of the queue-end detection application we now
can analyze which are potential data sources. As we mentioned already, there are some
constraints from the project according to the data sources. In the course of the CoCarX
project one research question is to see if a queue-end detection can be successfully
implemented using only the individual V2X messages created by the vehicles in the
CoCarX infrastructure (FCD). Hence, the first and provisionally only data source is
the stream of CoCar messages.

In the CoCarX project two types of CoCar messages are used: CAM (Coopera-
tive Awareness Messages) which are send out on a regular basis and DENM (Dedicated
Event Notification Messages) which are send on an event basis. For testing purposes in-
stead of the standardized CAM and DENM mainly messages in a custom JSON format
are used in the project. These messages only contain the required basic information.
In the CoCarX project three types of event messages and one type of periodic messages
have been used:

• Emergency Break Light (EBL): These messages are send by a vehicle every
time it brakes very hard.

• Warning Light Announcement (WLA): A vehicle sends a WLA every time
it turns its warning light flashers on.

• Emergency Vehicle Warning (EVW): Special purpose vehicles, such as am-
bulances or police cars, send these messages regularly when they are in an oper-
ation.
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• Vehicle Probe Data (VPD): Awareness message, which transmits the current
position and status of the vehicle.

In the following we exemplify the use of the Data Source Documentation from
Appendix B for the CoCar messages.

General Data Source Description

Table 6.2: The Properties of the C2X Message Data Source

Property Value

Functional Requirements

Name Vehicle Probe Data

Version Unknown

Origin Vehicles equipped with CoCarX technology. The messages
are sent to a central server, which routes them to the QED
application.

Format / data model Each element is sent as a JSON object.

Update Frequency On event basis. EVW messages are periodically sent in op-
eration.

Schema Semi-structured schema. But the fields in the elements do
not change.

Size The single elements are very small. The size of the stream
depends on the covered area, the traffic volume, and the
penetration rate of CoCars.

Costs and Availabil-
ity

No costs, as this is project internal data. The data is not
available as only one or two CoCar prototypes are existent
at implementation time of the application. A very simple
custom simulation was available at the start of the project.

Communication
requirements

The data is accessible over TCP with all advantages and dis-
advantages TCP brings with it. That is, simple communi-
cation protocol and high reliability as a connection-oriented
protocol. The overhead depends on how messages are sent
(in bulk or individually).

Non-functional Requirements

Time Range The data is immediately send by the vehicles and routed.
No specific time range has to be considered.

Spatial extension The data is related to a spatial area. Single elements include
a GPS position. The spatial extension from which messages
come may span a road network of the size of a city or smaller,
but depends highly on the use case, the system architecture,
and the available resources.

Timestamps The data is timestamped with a UTC timestamp with sec-
ond precision.

Purpose /Description The CoCarX messages are event and periodic messages
which either warn of hazards or send regularly the position
and status information about the vehicles to the CoCarX
server.
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Table 6.2: The Properties of the C2X Message Data Source

Property Value
Models The messages are created depending on their type. EBL

messages are created when a certain negative acceleration is
measured in the vehicle. WLA are created when the warning
lights are turned on. The same is true for EVW messages for
the light bars on the special purpose vehicles, such as ambu-
lances. The periodicity of the VPD messages is configurable.
The optimal frequency still has to be found.

Specifics The messages have to be converted from the JSON for-
mat to the targeted format of the anticipated DSMS. For
a relational-based DSMS, this means, the messages’ nested
structure has to be flattened to be usable as message tuples.

Schema Description

The CoCar messages are represented as nested JSON objects. They have the following
general structure:

Listing 6.1: Constituents of a CoCar Message

<Gene ra l Part><App l i c a t i o n Part>

The general part is present in all CoCar messages. The application part is filled
depending on the type of the message. It remains empty for VPD messages and has
extra information for the other message types. An example VPD JSON object is
exemplified in the following.

Listing 6.2: CoCarX Message Structure

{
” ac t i o n ID ” : ”3 ab1c05b2a56261a ” , # un ique i d e n t i f i e r
” c e l l i d ” : 123456 , # mob i l e network c e l l
” t s ” : 1237898126 , # timestamp i n s
” t t l ” : 8 , # t ime to l i v e i n s
”wgs84” : { # WGS84 c o o r d i n a t e s

” l a t ” : 50 .790596 , # l a t i t u d e
” l ng ” : 6 .064266 , # l o n g i t u d e
” e l e v ” : 123 ,45 # e l e v a t i o n i n m

} ,
” head ing ” : 175 .64 , # d i r e c t i o n i n Grad
” speed ” : 4 . 55 , # speed i n m/ s
” a c c e l ” : 2 ,5 , # a c c e l e r a t i o n i n m/ s2

”VPD” : {}
}

A detailed description of the data can be found in Appendix B.3.
It is obvious that for a queue-end detection application we need data from a medium

to high amount of vehicles over a longer period of time. For all available traffic states
the application needs to be prepared and tested.

Based on the CoCarX messages and given the goal of detecting a queue-end based
on these messages, we can discuss if the given attributes of the CoCar messages could
be helpful for queue-end detection. As we are searching for a hard queue-end, speed and
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acceleration are expected to be of high importance for the detection. Of course also the
position, heading, and the timestamp are required to locate vehicles and estimate the
currency of the event. Furthermore, the information if a vehicle turned on its warning
light flashers might be a strong indicator for a queue-end, as this usually only done by
drivers on a highway when they approach end of a queue or in an emergency (break
down, driver is not feeling well, other hazard on the road). If vehicles brake hard this
could also be an indicator of a hazard on the road. But a single vehicle braking or
turning on its warning light flashers is not enough to detect a queue-end. A certain
amount of vehicles testifying this situation is required.

Though the studies should first only comprise CoCarX messages, we further consider
using Floating Phone Data as it poses an interesting data source for traffic data (cf.
Section 2.2). Such a data source should include a position of the handset (longitude
and latitude) as exact as possible and frequency and coverage should also be as high
as possible.

Based on these first considerations about the existing and required data sources,
requirements for the corresponding required data quality can be described.

6.2.3 Data Quality Requirements

In this section we will discuss which DQ dimensions are important for the domain of
C-ITS. Adhering to the methodology, we will then define the overall DQ goals for the
application and which dimensions are particularly important for QED.

There exist already a set of approved and common dimensions which are generally
applicable. However, each application may introduce new aspects of DQ which are
specific for this application or domain. As Redman (2004) points out, there exist “hun-
dreds of dimensions of data quality, a relatively few dimensions are most important in
practice.” Hence, it is crucial to determine the ones relevant for the target application.

There exists a plethora of classifications which structure and describe DQ dimen-
sions, such as the Total DQ Management (TDQM) classification (Wang and Strong,
1996; Strong et al., 1997), the Redman classification (Redman, 1996), or the Data
Warehouse Quality (DWQ) classification (Jarke et al., 1999). The classifications cat-
egorize the dimensions according to different aspects. Fan and Geerts (2012) identify
in particular timeliness, completeness, and consistency as central issues in data qual-
ity. Specifically for ITS, several sources of deficiencies are inherent to the way data is
acquired. Static as well as mobile sensors are subject to errors and failure. Roadway-
based sensors (such as inductive loops) can introduce errors from 2% to 10% in volume
and speed measurements caused by, for example, environmental conditions, incorrect
placement, calibration problems, bad maintenance, and operational failures. These
causes also apply to non-intrusive sensors, such as radar sensors (Margiotta, 2002).
Hence, the monitoring of data quality right from the acquisition of the data is crucial
to make proper estimations. Also problems in road network coverage, sampling rate,
and aggregation interval are quality issues (Margiotta, 2002). Dalgleish and Hoose
(2008) define three categories of errors in traffic data. Systematic errors (constant de-
viations from a reference value), random errors (error values with a certain distribution
around a mean), and blunders (unforeseeable errors, e.g., human fault). There have
been several works, which also try to analyze quality issues in traffic applications. In
Table 6.3 the proposed dimensions are summarized.

Now that we have reviewed general DQ dimensions for ITS applications we will
analyze the DQ requirements for the application at hand.
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Table 6.3: DQ Dimensions in ITS Literature

(Turner,
2002)

ITS America
(Turner,
2002)

(Tarnoff,
2002)

(Schützle,
2009)

(Baumgartner
et al., 2010)

Accuracy X X X X X
Completeness X X X
Timeliness X X X X X
Coverage
Breadth

X X X

Coverage
Depth

X

Accessibility X
Confidence X X
Availability X X X
Consistency X X X

• Goal and Output: As we have described for the application goal in the task
requirements, the application should deliver a confidence value for each detected
queue-end, such that a message will or will not be sent to the end users. This
should decrease the probability that users do not trust the application and get
annoyed quickly. Finally, false alarms are better than a missing alarm in case of
a real queue-end. As the detection of a queue-end is expected to be a non-trivial
task which will be based on several data attributes of the CoCarX messages,
the confidence value should be a compound value. The confidence value should
represent the quality of the process to detect the queue-end and at the same time
reflect the quality of the used data. It should be possible to weight the single
components contributing to the confidence value’s calculation as some aspects
might be more important than others for the final result.

• Quality Dimensions: Besides confidence, other dimensions are important for
the QED application. We plan to employ an algorithm which determines the
position of a queue-end based on the given data. Hence, we also need quality
metrics which rate the accuracy of the algorithm. In this section we introduced
several metrics, which can be used as DQ dimensions in the DQ management.
Furthermore, we need the basic dimensions data volume and timeliness. Data
volume is required to research if the number of items used to make the result is
related to the overall result quality. And timeliness is needed to see if latency is
kept in an acceptable range. Completeness can be used to see if data is missing,
e.g., if a sensor does not deliver data which results in null values. Other dimen-
sions which are related to the semantics of the data have to be determined later,
when all data attributes for the application are known.

6.2.4 Selection and Modeling of Data Sources

After raising the requirements and describing the available data sources, further con-
siderations have to be made. The CoCarX messages being the most important data
source in the short run for this application is problematic. There exist only very few
prototypes which are far not enough to deliver data to test the intended application.
Hence, the data has to be artificially created to ensure sufficient data volume. Two
ways can be considered, namely the adaption of recorded real-world data, and the use
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of a traffic simulation software extended by a mechanism to create CoCarX messages.
We discussed the pros and cons of using real-world data and using a simulation already
in Chapter 5. As we also consider to use Floating Phone Data at the same time, it is
also very hard to find data sources which provide both: traffic data with V2X messages
and data of cell phones. In the case of the QED application we decided to use a traffic
simulation as we wanted to

• have full control over the traffic situation and the parameters influencing it,

• repeat the situation arbitrary times in the exact same way, and

• use predefined and common microscopic models.

There are powerful macroscopic and microscopic simulations (cf. Chapter 2 for
further information about traffic models) which are used to research traffic phenomena.
These tools have proved to replicate traffic situations in a realistic manner. We pose
the following requirements to a tool to simulate CoCarX messages and FPD:

• microscopic model for simulation as each individual vehicle should be able to
disseminate messages depending on the situation,

• creation of artificial maps as well as import of real maps must be possible,

• extendability to integrate own code and functionality,

• configurable traffic volume,

• configurable composition of different vehicle types,

• configurable number of persons in a vehicle for potential simulation of multiple
cell phones (Floating Phone Data),

• simulation of cellular networks,

• simulation of multiple kinds of motor vehicles and trains, as well as pedestrians
and bicycles,

• accessible output of data for each simulated road user,

• at least position, timestamp, speed, and acceleration should be provided for each
road user

We evaluated the traffic simulations VISSIM by PTV AG12, the open source plat-
form SUMO13, and the simulation framework VanetMobiSIM14. VISSIM15 is a micro-
scopic simulation software and a flagship of the PTV AG. It provides microscopic,
mesoscopic, and hybrid traffic models. For the microscopic models the Wiedemann
psycho-physical car-follow models have been implemented (cf. Section 2.3). It has
many plug-ins to extend the original product and may be extended by using a COM
interface and Python code. For research purposes a free full version license can be
ordered. The newest version is 8.0, the version at the beginning of the CoCar project

12http://vision-traffic.ptvgroup.com/de/produkte/ptv-vissim
13http://sumo.dlr.de/wiki/Main_Page
14http://vanet.eurecom.fr
15http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/
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was 5.10. Simulation of Urban Mobility (SUMO)16 is an open-source traffic simulation
software developed by the Aerospace Center Germany (Deutsche Luft- und Raumfahrt,
DLR). At the project start it had version 0.10.3 and moved forward today to 0.27.1.
It “is a microscopic, inter- and multi-modal, space-continuous and time-discrete traf-
fic flow simulation platform.” (Krajzewicz et al., 2012) SUMO supports the import of
many formats for roadway networks and enables the simulation of different road user
types. Networks of whole cities can be simulated and other features, such as on-line
control, i.e., changing parameters during simulation, and emission simulation are in-
tegrated. VANETMobiSIM is an open-source simulator framework which extends the
CanuMobiSIM user mobility simulation with a traffic simulation (Härri et al., 2006).
For mobile user simulation different tools, such as n2, are supported. It provides macro-
scopic and microscopic traffic simulation. The microscopic simulation utilizes multiple
models, such as Fluid Traffic Model or models which can also take into account other
vehicles’ movements (Intelligent Driver Model with Intersection Management and the
Intelligent Driver Model with Lane Changes) (Härri et al., 2006). There exist also mul-
tiple models specifically dedicated to pedestrians. The current software version is 1.1,
which has not changed since the beginning of the project. Hence, we can assume, that
its development is discontinued. In Table 6.4 the comparison of all three simulation
applications is presented.

Table 6.4: Comparison of Traffic Simulation Software

Feature SUMO VanetMobiSIM VISSIM

Microscopic
Model

X X also macroscopic X also mesoscopic
and mixed (meso +
micro), but only since
VISSIM 8.0

New Maps X X X
Map Import X many formats

supported.
From TIGER
database.

X only from VI-
SUM (ANM format),
with custom code
also from Open-
StreetMap17

Network Size X ? X
Extendability by
Code

X plug-ins/tools
written in
Python

C++ and OTcl COM interface,
C2X module pro-
grammable using
Python

FCD or FPD Sim-
ulation

Only Bluetooth
or WLAN out-
put, not usable
as event in the
simulation.

n218 (VANET sim-
ulation) or other
mobile network
simulators

Only simple C2X
simulation, but
programmable and
usable in the simula-
tion.

Configurable
Traffic Volume

X X X

16http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
17https://www.openstreetmap.de
18http://nsnam.sourceforge.net/wiki/index.php/User_Information
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Table 6.4: Comparison of Traffic Simulation Software

Feature SUMO VanetMobiSIM VISSIM
Unlimited Num-
ber of Road Users

X ? X

Configurable
Composition of
Vehicle Types

? ? X

Simulation of
Multiple Vehicle
Types, Peasants,
Bicycles, public
transport

No dedicated
models for bicy-
cles, peasants,
and trains, only
workarounds

Only cars, trucks,
pedestrians, buses

X

Time Steps In seconds ? In seconds

Persons in Vehi-
cles

— — X

Accessible Real-
time Output

X (in newer ver-
sions, before: file
output)

only file output X over Python code
possible

Information in
Output

Limited, e.g., ac-
celeration miss-
ing

Limited X

A detailed description and further comparison of all three tools according to the
aspect of simulating FPD can be found in (Chen, 2009). We decided to use the VIS-
SIM simulation software for the CoCar project and for the QED application, because
it fulfills all posed requirements and offers a detailed simulation of many vehicle types
with corresponding models which is not the case for all of the other simulations. It
is parametrizable in many ways and enables extension by code to integrate own func-
tionality. Furthermore, a lot of information can be output by the simulation and it
provides the identification of queues and their length.

After deciding for VISSIM as a simulation software, we need to model how it can
be utilized as a data source for our needs. Several components need to be considered:

• design of a road network for simulation,

• abstractions for queue-ends,

• design and implementation of the V2X messages,

• output interface for V2X messages, and

• design of parameterization of simulation runs for the network

We will describe all of these tasks in the next sections.

Road Network Design

In VISSIM road networks consist of links and connectors. A link is a curve composed of
a sequence of geometry points with a start and an end point. A link is unidirectional and
consists of a number of fixed lanes. A link has at least one lane. Vehicles can change
lanes within a link. Two links are connected via connectors (also curves) with each
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other. With connectors also junctions are modeled. For each link a driving behaviour
can be defined (e.g., speed limits, no overtaking). Each link and each connector have a
unique identifier.

As we aim at developing an application for detecting a queue-end, we pick the
typical traffic situation and network geometry of a hidden queue-end. Hence, we start
with an artificial network consisting of a highway with two links, each comprising two
lanes. Both links have a length of 5 km. The speed limit is unrestricted. The links are
almost straight, with one sharp turn as depicted in Figure 6.3(a). One link contains a
hazard (a construction site with an excavator) narrowing the street to one lane, shown
in Figure 6.3(b). A reduced speed area encloses the construction site, restricting the
maximum speed to 70 km/h.

(a) The Network Geometry for the QED Application

(b) Close-up of Road Works in the QED Scenario

Figure 6.3: The Network and Setup of the QED Scenario in VISSIM

Abstraction for Queue-ends

The next challenge is to consider how a queue-end could be represented in such a
scenario and how we can identify it. We are interested in the position of the queue-end
as exact as possible to send warnings to vehicles in near vicinity by GeoCast. For
this we need the geographical coordinates, i.e., longitude and latitude, or a reference
location, where the queue-end is located. For a queue-end an exact geographic location
is not really necessary. Particularly on highways vehicles typically approximate a hard
queue-end fast and hence, warnings should be sent early to vehicles about 1-2 km before.

As a result, it is sufficient to locate a queue-end only on a section of a link and
we aim at the division of links into sections with unique identifiers per link. As we
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need the links and sections as spatial objects, e.g., for Map Matching, we use a spatial
database to store the road network as curves and divide its links into sections, i.e.,
curves of a fixed length. The last section of the link contains the remainder of the
overall length of the link. We first used the spatial data features of SQL Server 2008
to implement such a spatial database. Due to performance problems we migrated the
database to PostgreSQL using PostGIS as spatial feature extension during the project.
PostGIS adds spatial data types and functions to the database and is compliant with
the OGC specifications for GIS. We import the spatial representation of the links in
the VISSIM network into the spatial database as line strings (sequence of points in a
two-dimensional space represented as a string).

The division into sections is done using stored procedures. The schema of the
relational database comprises tables connected via foreign keys for the networks, sec-
tions, and links (including their spatial representation). For the example network from
Figure 6.3 an example division into sections is depicted in Figure 6.4.
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Figure 6.4: Division of the QED Network into Sections

Our idea is to collect data for all vehicle positions which are located on a specific
section and, based on this data, determine whether a queue-end is present on that
section or not. Hence, it can be interpreted as a classification problem with two classes.
To provide automatic detection of a queue-end a possible approach is to use supervised
classification algorithms (cf. Section 4.4.1). A requirement for these algorithms is the
provision of examples to enable learning. To create examples for queue-end detection
it has to be known, if a queue-end is present on a section or not. We utilize the queue
counter feature of VISSIM for the determination of the queue-end. Queue counters
can be positioned on links of a VISSIM network and measure the average and the
maximum queue length starting from the position of the counter. The criteria when
a vehicle is considered as queuing can be configured in VISSIM. In our configuration
of the simulation a vehicle starts queuing when it is slower than 15 km/h and has a
maximum distance of 20 m to the vehicle in front. It stops queueing if it is faster than
30 km/h. The queue lengths are measured every ten seconds. We extend VISSIM with
Python to collect this information in code and create corresponding data elements. The
information comprises the event’s timestamp, the length of the queue, and the counter
id. The positions of the counters are also stored in the spatial database and a stored
procedure can be used to determine the position where the queue-end is located. Now
that it is known where actually queue-ends are located on a map, the modeling of V2X
messages has to be done.

Design of V2X Messages

The next challenge is to extend VISSIM with V2X capabilities. We use and extend
the C2X Python library and the COM interface provided by VISSIM to create V2X
messages. The different types of messages required and simulated have been detailed
in Section 6.2.2. In VISSIM a special C2X vehicle type is defined. Hence, the ratio of
C2X equipped vehicles in the overall traffic volume can be defined. Only those vehicles
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are able to send messages. Based on its state in simulation the C2X vehicle sends a
message in the following cases:

• VPD: Vehicle Probe Data messages are created every 10 seconds. They include
the current status information of the vehicle sending the message, such as position,
speed, or acceleration.

• EWL: The conditions for sending an EWL message is checked in every timestep.
If the acceleration of the vehicle is below -5 m/s2 and speed is above 0 m/s, a
message is issued.

• EVW: The conditions for sending a WLA message are checked in every timestep.
If the speed is below 10 m/s and acceleration below 0 m/s2, a WLA message is
issued. The message is only issued every 10 seconds to avoid sending too many
messages.

• WLA: Vehicles which are marked as emergency vehicles or road work vehicles
issue a message every 10 seconds.

We implemented the corresponding Python classes for message creation and sending.
Messages are encoded as JSON objects (as it is the case in the real-world CoCarX
scenario) and are appended to a TCP server, because this was the supposed setup in
the real-world CoCarX project. A TCP client is also provided which is able to receive
the estimated queue-end from the QED application.

Ground Truth Messages

We have mentioned, that we like to employ classification algorithms to solve the problem
of QED. We abstract QED to a two-class problem as we try to determine for a road
section on a link based on aggregated traffic data, if the section contains a queue-end or
not. For supervised classification algorithms we require to know the ground truth, i.e.,
if the section really contains a queue-end or not in the given situation. With the help
of the queue-end counters we can determine the queue-end and can send corresponding
messages with the queue-end position likewise via TCP.

Simulation Parameterization

After creating a network and enabling C2X message creation and sending, the param-
eterization of the simulation has to be done. We will briefly explain which parameters
are important for the QED application and will be used and varied throughout this
work. In Table 6.5 the parameter list and their descriptions are given.

After we have modeled the C2X message data source by using the VISSIM traffic
simulation and providing a TCP server to send the messages, we can proceed with
modeling and implementing the QED application using a DSMS.

6.2.5 Task Modeling & Implementation

As detailed in Chapter 5 the next step in the creation of data stream application is the
modeling and implementation of the data processing part. The first task is to select a
DSMS which fits the data management requirements.
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Table 6.5: Simulation Parameters

Parameter
Name

Description Example
Value

Car-follow Model The algorithm which is used to
model the behaviour of vehicles.

Wiedemann79

Traffic Volume The overall number of vehicles per
hour independent of their type.

2500 veh/h

Truck Ratio The ratio of trucks in the overall
number of vehicles.

12%

C2X Penetration
Rate

Ratio of C2X vehicles (cars and
trucks) in the overall number of
vehicles.

10%

Section Length The length of the equally sized
sections in a network link.

100 m

Selection of a DSMS

In the case of the QED application we deal with JSON object streams which are send
via a TCP server. In prospect of further applications and data sources in the CoCarX
project we decided to use a relational DSMS. Other data formats, such as JSON, can
be transformed to the flat relational model with low effort. As no other special data
formats, such as RDF data or XML data are expected, the relational model is sufficient.
Further requirements are that we want to be able to extend the DSMS with own code to
implement special features such as DQ management and integrate custom algorithms.
We decided to use the Global Sensor Network (GSN)19 system (Aberer et al., 2006), as
it provides all these features and additionally, it is very easy to implement new stream
applications. In the following we describe the most important principles of GSN.

The Global Sensor Network System

GSN provides a flexible, adaptable, distributable, and easy to use infrastructure. It
wraps functionality required for data stream processing and querying around existing
relational database management systems, such as MySQL or Microsoft SQL Server.
We decided to use the MySQL in-memory database to ensure efficient processing. GSN
mainly consists of the following components:

• Stream Element: Data processed by the system has to be in the form of a
stream element. A stream element can be viewed as a data record in a table (as
in relational databases) which has a certain schema, defined by the wrapper or
virtual sensor producing or forwarding the element, as its output structure.

• Wrapper: A wrapper is a component which receives data from data sources. It
consists mainly of a Java class which determines its behavior. An example for a
wrapper is a JSON wrapper, which enables to retrieve JSON messages (the V2X
messages) via TCP. Each wrapper has a shortcut to identify it.

• Virtual Sensors: A virtual sensor is a component processing the data inside
the GSN system. Once a data stream element has been retrieved by a wrapper, it
is forwarded to the virtual sensors attached to the wrapper. Each virtual sensor

19http://sourceforge.net/projects/gsn
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also can have virtual sensors attached to it retrieving data from it. In this way,
wrappers and virtual sensors build a dependency graph. Each virtual sensor
consists of an XML configuration file and a Java class controlling the behavior of
the sensor. An example for an XML configuration is given in Listing 6.3 (virtual
sensor MemoryMonitorVS delivered with GSN).

Listing 6.3: Virtual Sensor Configuration File

1 <v i r t u a l s enso r name=”MemoryMonitorVS” p r i o r i t y=”11”>
2 <proce s s ing c l a s s>
3 <c l a s s name>
4 gsn . vsensor . Br idgeVi r tua lSensor
5 </ c l a s s name>
6 <output s t r u c t u r e>
7 < f i e l d name=”HEAP” type=” double ” />
8 < f i e l d name=”NON HEAP” type=” double ” />
9 </output s t r u c t u r e>

10 </ proce s s ing c l a s s>
11 <d e s c r i p t i o n>None</ d e s c r i p t i o n>
12 < l i f e c y c l e pool s i z e=”10” />
13 </ addre s s ing>
14 <s t o rage h i s to ry s i z e=”1” />
15 <streams>
16 <stream name=” input1 ”>
17 <source a l i a s=” source1 ” sampling ra t e=”1”
18 storage s i z e=”1m” s l i d e =20s>
19 <address wrapper=”memory usage ”>
20 <p r e d i c a t e key=” sampling ra t e ”>1000</ p r e d i c a t e>
21 </ address>
22 <query>SELECT HEAP,NON HEAP,
23 PENDING FINALIZATION COUNT,
24 TIMED FROM wrapper
25 </ query>
26 </ source>
27 <query>SELECT HEAP,NON HEAP,
28 PENDING FINALIZATION COUNT,
29 TIMED FROM source1
30 </ query>
31 </ stream>
32 </ streams>
33 </ v i r t u a l s enso r>

This virtual sensor retrieves data from a wrapper, which monitors the system
memory. After the definition of the sensor name and its priority (line 1), the
corresponding class (lines 3 − 5) and its output structure, i.e., the schema of
stream elements produced by the sensor, (lines 6 − 9) are defined. The streams
section (lines 15 − 32) defines the streams the virtual sensor acquires data from
(the example includes only one, source1). For each stream the corresponding
source has to be defined, which can be either a wrapper or another virtual sensor
(lines 19 − 21). Depending on the wrapper or sensor several parameters can be
configured (line 20) for it. In this example the number of milliseconds between two
readings of the system memory size is configured. Afterwards, the query retrieving
the data from the wrapper is given (lines 22−25). The data can be windowed by
defining a corresponding storage-size (number of tuples or time period) in line 18.
Also the sliding step of the window can be determined (line 18) using the slide
parameter. Finally, in line 17 a sampling-rate can be defined which indicates how
many elements from the stream should be dropped for load shedding, where 1

111



CHAPTER 6. VALIDATION OF THE PROCESS MODEL IN THE C-ITS DOMAIN

means none, and 0.5 means 50%). Lines 27− 30 denote the overall query which
determines the output of the virtual sensor. Here data from one or multiple
source streams defined before can be joined, aggregated, or otherwise used in one
statement. The SELECT clause of this overall query has to include all attributes
which are listed in the output structure.

Design of Data Stream Processing for QED

We now have a closer look at how the data is processed inside the DSMS. An overview of
the data flow in the system and the implemented components is depicted in Figure 6.5.

GSN

VISSIM
Traffic Simulation

Car-2-X Wrapper

Degradation
of Positions

Map Matching

Ground Truth
Wrapper

Map Matching

Integration &
Aggregation

Data Mining Export

Figure 6.5: The QED Application using GSN Wrappers and Virtual Sensors

As we have detailed in the previous section, GSN provides two structures to work
with data streams: wrappers and virtual sensors. The wrappers manage the connections
to the data sources, receive the data, and convert it to GSN stream elements, which
are in fact relational tuples.

Using Definition 4.2 for data streams, the schema of the stream produced by the
wrapper receiving the CoCar messages looks as follows (we only include the attributes
which are of importance to the case studies):

CoCarMsg(Timed, TS, Lat, Lng, Speed, Accel, ApplicationID)

where Timed is the implicit timestamp given by GSN, TS is the explicit timestamp,
Lat is the latitude of the vehicles position, Lng is the longitude of the position, Speed
is the speed of the vehicle at that time, Accel is the acceleration, and ApplicationID

denotes the type of the message, which can either be an Emergency Brake Light mes-
sage (EBL), a Warning Light Announcement message (WLA) or a Vehicle Probe Data
message (VPD). In the queue-end detection scenario the ground truth messages contain
the position of a queue-end and their schema is:

QueueEnd(Timed, TS, Lat, Lng)

where Timed and TS are defined as before, and Lat and Lng represent the position of
the queue-end. The ground truth messages for the queue-end still have to be matched
to a link and section of the network.

One common issue in mobile data detection is, that the measured positions contain
some error whose amount depends on the used positioning technique. This error influ-
ences the accuracy of traffic information which has been shown, e.g., by Geisler et al.
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(2010), and therefore, has to be taken into consideration. In case of the V2X messages
we can assume GPS positioning accuracy as in the CoCarX project a GPS device in
the vehicle is used for positioning. To approximate reality as close as possible the ex-
act positions in the messages created by VISSIM have to be degraded. To that end,
the stream elements created from the CoCar messages are forwarded to a degradation
virtual sensor. We use a normal distribution to model the error. When working with
real data sources this step is obsolete, of course. The accurate positions are replaced
by the degraded positions in the stream elements and forwarded – the schema and all
other data remain unaltered.

The next virtual sensor matches the positions of the V2X messages to the road
network, which is termed Map Matching. Map Matching is the process of finding the
closest link and point to the position where the road user actually is located. We use
a simple Map Matching technique, where the link and the section with the shortest
perpendicular distance to the measured point are selected utilizing the spatial repre-
sentation and functions of the road network in the spatial database. More sophisticated
methods also consider the trajectory of a vehicle and the topology of the network. The
V2X messages do not contain any identifying information about the vehicle sending the
message because of privacy reasons. Without information about the trajectory of the
vehicle, we can only utilize this simple Map Matching technique. We also experimented
with our own more complex Map Matching algorithm, which is described in detail in
Chapter 9. For the first implementation of the application only the simple technique is
used.

The Map Matching also contributes to a realistic scenario as it introduces an error
common in traffic applications, too. For the positions in the ground truth messages
of the scenarios, it is mandatory that they are accurate and therefore, these are not
degraded. The ground truth messages then have the following schema:

QueueEnd(Timed, TS, Lat, Lng, LinkID, SectionID, HasQueueEnd)

The attribute HasQueueEnd will be always 1 as the stream will only contain tuples
for the sections with a queue end. However, to determine the links and sections the
ground truth positions are located on, in the queue-end scenario the corresponding
stream elements are forwarded from the wrapper to a second map matching sensor.
This sensor works in the same way as the Map Matching sensor. It introduces no error,
because the positions lie exactly on the sections and are matched precisely.

In the Map Matching sensors, we add the new information of link and section
number to the stream element. Hence, the schemas of the forwarded stream elements
have to change:

CoCarMsg(Timed, TS, Lat, Lng, Speed, Accel, ApplicationID, LinkID, SectionID)

After the position of each message has been matched to a section, we need to prepare
the data for data stream mining. The overall goal of the mining process is to determine
a class value for a section, characterized by a set of data. In our approach, we aggregate
CoCar messages with positions lying on a particular section for a certain time window.
This means, we calculate the following parameters from the CoCar data stream elements
for one section number and a time-based window over the last x time units:

• average speed (AvgSpeed)

• average acceleration (AvgAccel)

• number of Emergency Brake Light messages (EBLNo)
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• number of Warning Light Announcement messages (WLANo)

In the QED scenario no VPD is used. We solely rely on the event messages of types
EBL and WLA. To complete the training data set for the data stream mining, we have
to join the aggregated data with the ground truth stream elements, which define the
true class value of each data set. Both streams are joined over the section and the time
window. The join is obsolete if no training is performed.

We now formulate the queries used to aggregate and join the data from the CoCar
messages stream and the ground truth streams using the semantics from Section 4.2
and the extended relational algebra semantics (Garcia-Molina et al., 2009). First, we
define the queries retrieving the data from the two windowed streams:

vQueueEnd = πLinkID,SectionID,HasQueueEnd(

γLinkID,SectionID,HasQueueEnd(W120,10(QueueEnd)))

vCoCar = πSpeed,Accel,ApplicationID,SectionID,LinkID,TS(W120,10(CoCarMsg))

The γ-operator in this extended relational algebra expression performs the grouping
over the input relation. In this example, the sliding window over the QueueEnd stream is
grouped by LinkID, SectionID, and HasQueueEnd. In GSN, the results of these queries
are represented by views and therefore, can be used as relations in the integrating query.
The integrating query for the queue-end example looks as follows in relational algebra
(note, that we do not need to specify a window here anymore):

πAvgSpeed,AvgAccel,HasQueueEnd,WLANo,EBLNo,LinkID,SectionID(vQueueEnd

2(γSectionID,LinkID,AV G(Speed)→AvgSpeed,AV G(Accel)→AvgAccel(vCoCar)

1(σApplicationID=′WLA′(γSectionID,LinkID,Count(∗)→WLANo(vCoCar))

1(σApplicationID=′EBL′(γSectionID,LinkID,Count(∗)→EBLNo(vCoCar))))))

This query results in the creation of stream elements which contain the desired
aggregated values per section and the ground truth class for training. The stream
elements are now ready to be fed into the data stream mining algorithm. The resulting
schema looks as follows:

MiningElement(Timed, AvgSpeed, AvgAccel, HasQueueEnd,

WLANo, EBLNo, LinkID, SectionID)

We already mentioned, that we only use classification in our case study. As depicted
in Figure 6.5 with dashed and solid arrows, we can setup the scenario according to the
two classical supervised learning modes: training and classification. If a classification
without training is required, the obsolete virtual sensors can easily be removed. We
integrated the data stream mining framework Massive Online Analysis (MOA) into
GSN by encapsulating it into a virtual sensor. MOA is based on the well-known mining
framework Weka20. In the mining virtual sensor, the incoming data stream elements
are converted into MOA compatible instances.

After the mining algorithm classified an instance, the statistics of the classifier are
updated and the classifier is trained on the instance. The statistics of the classifier
comprise values of a confusion matrix. For N classes a confusion matrix contains NxN
values for each combination of predicted class and true class (cf. Section 4.4.1). Then,

20http://www.cs.waikato.ac.nz/~ml
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a corresponding message is generated and can be exported, e.g., archived in a database,
send to the traffic simulation, or in the real-world scenario to vehicles in near vicinity.
A detailed description of the data mining process and the different algorithms we exper-
iment with are described in Chapter 10. In the first implementation of the application
we used the Hoeffding Tree (cf. Section 4.4) for classification. The stream elements
produced by the mining sensor have the following schema for queue-end detection:

ClassifiedElement(Timed, AvgSpeed, AvgAccel, HasQueueEnd,

WLANo, EBLNo, LinkID, SectionID, ClassQueueEnd)

where ClassQueueEnd is the predicted class.

When a queue-end is determined (HasQueueEnd = 1) a hazard warning message is
sent by the export sensor in JSON format via TCP to the traffic simulation to visualize
the proximity between the positions of the real queue-end and the estimated queue-end.
The visualization of the estimated and real queue-ends in the traffic simulation based
on the created messages is depicted in Figure 6.6.

Figure 6.6: Visualization of Simulated and Estimated Queue-ends

After we have setup the data processing in the DSMS the DQ design and imple-
mentation of the application will be executed in the next step.

6.2.6 Data Quality Design and Implementation

The design and implementation of DQ management is a very important step in the
process model. Some methodologies have been mentioned in the corresponding de-
scription of the process model. In this work we present our own methodology which is
specifically suited for DSMS and data stream applications. The methodology provides
a framework consisting of a metadata model to describe DQ management concepts in
general and allows to be extended to specific applications by defining dimensions, met-
rics, and actions. Furthermore, a framework is provided which extends DSMSs with
DQ management capabilities, i.e., the measurement of the specified dimensions for the
data stream elements to which they have been assigned. We will defer the descrip-
tion of the complete framework to Chapter 8 and exemplify its use with the two ITS
applications described in the chapter at hand.

At this point we will just show one example for the use of the matrices proposed in
the process model for one wrapper of the QED application in Table 6.6.
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Table 6.6: Metrics Matrix for the Car-2-X-Wrapper

Attribute Accuracy Consistency Timeliness

Speed 0.9 (constant) 0 <= SPEED ∧
SPEED <= 180

Acceleration 0.95 (constant) accel < 5 ∧ accel >
−7 5

TS currentTime - ts

LAT −3250 < LAT ∧
LAT < 1300

LNG LNG < 130∧ 25 <
LNG

In the following section, we will proceed with a first evaluation of the so far imple-
mented QED stream application to answer first questions and possibly conduct some
reconfiguration of the system.

6.2.7 Evaluation Setup and Results

In this evaluation, we focus on the effect of various application-related parameters on
the accuracy of the detection method. We analyze three parameters, which seem to
be most promising in the queue-end scenario: the penetration rate of CoCars, the
traffic volume, and the length of the sections. In addition, we study one system-related
parameter: the window size of the queries in the DSMS, i.e., the amount of data from
the past which is taken into account by the data stream mining methods. For the
queue-end detection time-based windows have been used to select data from the last
defined period of time, e.g., the last minute.

For the evaluation, a default configuration of these parameters has been determined.
We set the penetration rate to 5%, the traffic volume to 2500 veh/h, and the section
length to 100 m. The window size was chosen to be 120 s. To investigate the influ-
ence of one parameter, this parameter is varied and all other parameters keep their
default value. The following evaluation metrics of the data mining results have been
calculated for each run, whereby we define two classes to be identified by the classi-
fier: sections with a queue-end, denoted as positives, and sections without a queue-end,
denoted as negatives. True positives are the correctly identified queue-ends, whereas
false positives are instances erroneously classified as sections containing a queue-end.
Correspondingly, true negatives and false negatives are defined (cf. Section 4.4.1).

• Overall accuracy: Determines the ratio of instances with correctly classified
classes to the number of all instances classified so far.

True Positives + True Negatives

Positives + Negatives
(6.1)

• Sensitivity: Sensitivity is the ratio of correctly identified queue-ends to the
number of all real queue-ends.

True Positives

True Positives + False Negatives
=

True Positives

Positives
(6.2)
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In this scenario, we are highly interested in the sensitivity, because it is more
dangerous to leave a real queue-end unrevealed as to forecast a non-existent queue-
end.

• Specificity: Specificity is defined as the ratio of the number of correctly classified
sections without queue-end to the number of all Negatives.

True Negatives

True Negatives + False Positives
=

True Negatives

Negatives
(6.3)

Each evaluation starts with a new tree, i.e., the classifier has not seen any training
instances so far. To ensure comparability, all components in the framework have to
work in a reproducible manner, i.e., all randomized elements have to be set to a fixed
seed. For example, each traffic simulation run configured with the same parameters
is identical, i.e., the raw data produced by the vehicles is always the same as well as
the traffic state in each time step. To test the comparability, two identical evaluation
runs with default values have been made before starting the actual tests. The runs had
almost identical accuracy gradients and differed no more than 1% in value. Differences
in values can be explained by minor time shifts induced by TCP transfer in GSN and
differences in time between start of the simulation and start of the GSN system. That
means, the time windows might not be at the exact same position in the time line as
they had been in the run before and therefore, might not result in identical averages.
For the experiments we turned off the degrading to analyze the algorithm in the ideal
situation. Comparisons between runs with and without degrading showed that it has
an influence, especially on the sensitivity but the overall trend was the same. Each
simulation run had a duration of 45 minutes. The average time for mining one element
was about 0.6 ms, while the algorithm mined up to 11014 elements per run. In the
following, we describe each parameter that has been evaluated before we show and
discuss the most interesting results of the experiments.

Window Size

The window size determines how much data of the past is included in the aggregated
data of the instances. A good window size would be very close to the average time
for which the queue-end stays in one section. For example, if the queue-end is 50 s in
section A and 50 s in section B, then with a window size of 100 s (or more) the system
would not be able to make a distinction between section A and B. On the other hand,
if the window size is too small, the mining algorithm will not get enough information to
determine that a queue-end is in a particular section. Based on some initial observations
on the time needed for a queue-end to go from one section to the next (we observed
times between 10 s and 110 s for the default traffic volume), we decided to vary the
window size parameter between 10 s and 300 s. The results for accuracy and sensitivity
are shown in Figure 6.7 and Figure 6.8, respectively.

The results for accuracy are not helpful to identify a good window size as there are
much more examples for negatives than positives, especially for the smaller window sizes
(4% positives in the 10 s run, 19% in the 300 s run). Therefore, a window size of 10 s
has the best accuracy although there are only very few true positives (cf. Figure 6.8).

The noisy start phase of about 400 s should not be taken into account as the traffic
jam has not been established yet and the mining algorithms could not be trained on
many positives up to that point. The results for sensitivity show, that the bigger
the window gets, the better is the sensitivity. This can be explained by the residence
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Figure 6.9: Accuracy for Varying Traffic Volumes

time of a true queue-end in the windows. As soon as an actual queue-end is reported
for one section, it is included in a window. For bigger windows, an actual queue-
end occurs correspondingly longer in the sliding windows (for 300 s it would occur 30
times, for a 10 s window only once). Hence, the number of examples for positives is
higher. On the other hand, the specificity is decreasing the bigger the window gets. We
decided to keep 120 s as the default window size, at it seems to be a good compromise
between sensitivity and specificity and also corresponds to the maximum of the observed
duration of a queue-end to stay in one section.

Traffic Volume

The traffic volume is given in vehicles per hour. It is expected that, when the traffic
volume increases, more vehicles will be present in one section. This will also lead to a
higher volume of CoCars per section and enhance the number of messages per section.
Additionally, a queue will grow faster when the amount of traffic is higher, which, in
turn, results in a higher rate of vehicles actively braking and switching on their warning
flashers. It can be assumed that a higher amount of messages will lead to a more reliable
approximation of the actual traffic situation in one section. Therefore, we expect the
accuracy to increase when the traffic volume is rising. According to current statistics
published by the German Federal Highway Research Institute on German highways
traffic volume averages 1500 veh/h calculated from the daily traffic volume (including
the low-traffic night)21. However, traffic queues occur at higher volumes during the
day. Therefore, we experimented with 2000, 2500, 3000, and 3500 veh/h (additionally,
1500 veh/h did not lead to any queueing in our traffic scenario).

The accuracy results depicted in Figure 6.9 fulfill our expectations: the accuracy
rises with an increased traffic volume. Skipping the noisy start phase, it can be observed

21http://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Aktuell/zaehl_

aktuell_node.html
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that the accuracy is above 80% for all tested traffic volumes, even above 90% for a
traffic volume of more than 2500 vehicles per hour. As expected, the highest traffic
volumes deliver the best results. The number of seen examples increases in each run
(which is also dependent on the duration of the run). While in the 2000 veh/h run
the classifier trained on 2634 instances, in the 3500 veh/h run the classifier observed
8033 examples which corroborates the assumption, that the number of messages rises
with increasing vehicle volume. However, the analysis of the specificity and sensitivity
evaluation showed, that the biggest portion of the correctly classified instances are
constituted by true negatives. The specificity reaches accuracies of 98% at maximum
in the 3000 veh/h run and shows the same pattern (rising values with rising volumes),
while the sensitivity only reaches about 49% in the 3000 veh/h run and no clear trend
in the runs can be observed. It can be seen in the training data that the sensitivity
gets rapidly worse when the queue reaches the bounds of the network. The trained
algorithm gets in this case contradictory information about how a queue-end looks like
in the data (queue-end sections are no longer distinguishable from congested sections,
because the queue-end counter reports only the last section of the network as the queue-
end) and hence, returns no true positives anymore. This seems to be a sign that the
used mining attributes allow a distinction between a section with queue-end and a
congested section.

To avoid that the queue reaches the network bounds during simulation time, we
extended the links of the network to 10 km length. We experimented with 2500, 3000,
3500 and 4000 veh/h. For these experiments the accuracy and specificity showed no
clear trend, but as in the 5 km experiments the 3000 veh/h run was slightly better than
the others. For the sensitivity the 4000 veh/h run turned out to be slightly better than
the other runs, but also deteriorates at the end of the simulation to the same level than
the others.

An analysis of the ratio of the actual positive to negative examples reveals, that
with increasing traffic volume and simulation time and hence, increasing queue length,
obviously the portion of sections from which messages are received and are containing a
queue-end in a time window decreases (from 14% in 2000 veh/h run to 9% in 4000 veh/h
run), while the fraction of sections which do not contain a queue-end increases. The
latter group are most likely sections with congested traffic, but do not contain the
queue-end. This leads to a gradual deterioration of sensitivity from the middle to the
end of the simulation time.

Penetration rate

One of the most common and interesting questions for traffic applications based on
data from mobile sources is: how many vehicles must be equipped with the technology
to deliver acceptable results for an application? Huber revealed in his analysis (Huber,
2001b), that a general assumption for FCD penetration rates cannot be made, but that
it has to be evaluated in the context of the information system, the traffic application,
and the required output quality at hand. The penetration rates he identified in the
analyzed studies vary between 1 − 5%. We took these values as a basis and made
experiments with 1%, 3%, 5%, 7% and 10% penetration rate. It is expected that a
higher penetration rate leads to a higher accuracy, as it can be assumed that a higher
amount of messages per section is produced. The results for this experiment were
inconclusive – no clear trend could be identified in the available simulation time.

In Figure 6.10 the accuracy results are shown. Surprisingly, the experiment showed
that all penetration rates converge to a value between 87% and 93%, which would
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Figure 6.10: Accuracy for Varying Penetration Rates

lead to the assumption, that the penetration rate has no substantial influence on the
accuracy. Again, the specificity is the most influential indicator, showing the same
pattern as the overall accuracy, while the sensitivity is only partially conclusive: it can
be observed, that the higher penetration rates of 5%, 7% and 10% deliver better results
than the lower rates. Though 5% and 7% perform better in the beginning, 10% has a
steeper learning curve and seems to catch up in the end.

Section Length

The section length influences the amount of data that passes through the system, be-
cause smaller sections lead to a higher amount of mining instances. Furthermore, with
smaller sections the real queue-end can be approximated to a higher degree if classified
correctly, because the mean distance between the real queue-end and the forecasted
queue-end (at the middle of the section) is smaller. Due to the lack of empirical data,
we selected section lengths in a way, that results in a tolerable mean error of distance
to the real queue-end (at most half of the section length). We experimented with 30 m,
50 m, 100 m, 150 m, and 300 m. We expected that a maximum in accuracy can be
identified for a certain section length for the following reasons. Too small sections pro-
duce a too small amount of messages which are not sufficient to determine whether
there is a queue-end or not. Too long sections are expected to be harmful to accuracy,
because they can contain too many messages, which do not indicate the correct class.
We present the sensitivity results in Figure 6.11. In contrast to our expectations, it
can be observed that for values between 30 m and 150 m there is no substantial dif-
ference neither in accuracy nor in specificity. However, sensitivity results get better
with increasing section length. As a consequence, we should switch to a section size
larger than our current default (100 m) when deploying the system and make additional
experiments with higher section lengths to see if we reach a maximum.
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Figure 6.11: Sensitivity for Varying Section Lengths

Discussion of Results

In conclusion, the first results of the experiments show trends of influential parameters
and reveal promising accuracy values also for smaller penetration rates. However, the
results are not sufficient to draw final conclusions as we need to evaluate different
traffic scenarios and fine tune the data stream mining algorithm. In particular, the low
sensitivity rates and inconclusive results need further investigation. Balancing positive
and negative examples seems to be a promising direction for improving sensitivity, but
it requires further investigation such that the overall accuracy is not decreased. We
will further investigate these issue in the next chapters. In combination with the DQ
management a more detailed analysis is possible by then.

6.3 Traffic State Estimation

In the following we first discuss the goals of the Traffic State Estimation (TSE) ap-
plication and the task requirements. Hence, we again follow the process model, but
only stress the differences to the QED application as both share similar properties and
hence, a similar setup for the TSE application can be used. We approach the TSE
application with a partly data-driven approach as in the case of the QED as we have
given the data sources, but we are free in the modeling and usage of the sources.

6.3.1 Goal and Task Requirements

Traffic State Estimation (TSE) is determining the current traffic situation on a road or
highway based on current and historical traffic data (cf. Chapter 2). It is the second
application evaluated in the CoCarX project regarding the question if we just can use
CoCarX messages for this and which kind of CoCarX messages are sufficient (only event
messages or is probe data also required?). A further question is if additional data from
cellular probes (Floating Phone Data) is beneficial for the accuracy of the results.
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Table 6.7: Required Output for QED Scenario

Name Description Data
Type

SectionID The ID of the section whose traffic state is de-
termined.

Integer

Traffic
State

One of the four traffic state classes. String

Confidence A confidence value, which indicates how reliable
the detected state is.

Float

In our approach, traffic state estimation is the determination of a class representing
the current traffic state or Level of Service (LOS) for each section of a link. There have
been several approaches for modeling these levels (see Section 2.1.2). In this approach,
we use a traffic state model, which has been described by the Federal German Highway
Research Institute in (BASt, 1999) and has been widely implemented in German Traffic
Management Centers. It distinguishes four levels of traffic: free, dense, slow-moving
and congested traffic. We use these four levels as the classes for data stream mining.

Hence, the output of this application can be defined as given in Table 6.7.

The QoS requirements are not as strict as for QED. Real-time traffic state estimation
usually operates in ranges of half a minute to a few minutes. Though, due to the
data volume a high throughput should be provided to keep latency relatively low.
Provenance is not required. End users could be users of navigation software and devices
or visitors of websites which show the current and prospective traffic situation.

The next section describes the requirements for the additional required data sources.

6.3.2 Data Source Requirements

For the TSE application also the V2X messages from the CoCarX project have to
be used. Furthermore, an interesting source we wanted to examine in the project
are Floating Phone Data (FPD). FPD are anonymously collected positions of mobile
phones. From these positions other traffic data, such as the vehicle speed, can be
derived. The derivation of traffic information from anonymously located handsets (i.e.,
mobile devices which are able to connect to a cellular network) is a vibrant research
field. Most approaches using Floating Phone Data include the following steps (Smith
et al., 2004):

1. Localization of the handset as exact as possible.

2. Map matching to determine the position in a road network.

3. Derivation of traffic information using the estimated positions, e.g., link speed.

Of course, the derived information is not exact. The precision of the estimated
values is influenced by several factors. There has already been a lot of related work done
investigating the feasibility of using mobile phone data for traffic parameter estimation
and we discussed the measurable parameters and techniques in Chapter 2. All in all
the reviewed works agree in the feasibility and the potential FPD can have for traffic
applications. The feasibility is also shown by commercial systems, such as TomTom
HD TrafficTM (TomTom, 2010).
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In previous works (Geisler et al., 2010; Chen, 2009) we also investigated factors
influencing the accuracy of FPD. These insights can be used in designing FPD as a
data source for the TSE application. We require the FPD to include the position of the
handset, a timestamp, and some message identifier. For the sake of realism no further
information should be included. In the next section we will describe, how this data is
simulated using VISSIM.

6.3.3 Data Quality Requirements

DQ requirements for TSE do not differ much from the ones for QED. We also need
some confidence value for the overall result, and we need accuracy values for speed and
positions, and ratings for data volume and timeliness.

6.3.4 Selection and Modeling of Data Sources

For the V2X message nothing changes for the TSE application. The messages will be
issued by vehicles on events or periodically as probe data. The generation of Floating
Phone Data is also simulated in the VISSIM traffic simulation. Based on our previous
work we use several factors which influence their generation. The number of persons
in a vehicle is fixed by the traffic simulation. We use a probability function to assign a
handset to those persons. That means, every time a vehicle is spawned in the simula-
tion, the persons in the vehicle get assigned a mobile phone with a certain probability.
A list of those vehicles and handsets is kept until the vehicle disappears. A second
probability function determines when a handset is sampled, i.e., if it issues a message
including its position. The positions are degraded according to a distribution error
function to simulate the varying quality of positioning for cellular networks.

For the TSE application we use an artificial, but more complex road network than
the one used in the QED scenario. It is depicted in Figure 6.12.

Link 1 
Length: 8 km 

Link 2 
Length: 5 km 

Link 3 
Length:  3.5 km 

Link 4 
Length:  4 km 

Figure 6.12: Artificial Network for Traffic State Estimation

The network consists of four links with two lanes each and covers an area of approx-
imately 4 km by 8 km. For the links there is no speed limit defined by default. One
difficulty when working with classification algorithms in traffic applications is, as we
have seen from the QED application, the balancing of training examples. There have
to be sufficient examples for each of the traffic levels, such that all are well learned by
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the algorithm. This is challenging in simulation-based studies, as we have to prompt
the simulation to produce these states in a very realistic manner. Congestion can be
provoked in VISSIM by several means. One possibility is to use a stop line to block a
lane. This forces the vehicles to stop before this line, or if possible, change the lane, but
leads to less realistic driver behavior (no zip merge). This can be avoided by using lane
reduction, i.e., a link with two lanes is connected with a link with one lane, thereby
also modeling a blocked lane. To create slow-moving traffic, reduced speed areas (a
defined part of a link with a speed limit) in combination with varying traffic volumes
can be utilized.

To provoke an even more realistic scenario, we import a real road network from
the area of Mönchengladbach, where several highways cross. The network is exported
from OpenStreetMap22 (OSM), but VISSIM does not provide a direct import of OSM
networks. Hence, we have written our own tool which converts the network from OSM
to ANM which can then be imported into VISSIM. The former map in OSM is shown
in Figure 6.13(a) and the resulting network in VISSIM is shown in Figure 6.13(b). It
includes the road network topology and important things such as signaling.

(a) Road Network in OpenStreetMap (b) Road Network in VISSIM

Figure 6.13: The Imported Road Network

Furthermore, we implement the definitions of the traffic levels to generate ground
truth class values in the traffic simulation. We utilize the definitions from (BASt, 1999),
where for each level and a number of lanes a threshold or a range is defined for the
mean speed and the local density at a stationary sensor. For example, for a highway
with two lanes the traffic state is slow-moving, when the mean speed is above or equal
30 km/h and below 80 km/h and the density is below or equal 60 veh/km. In VISSIM it
is possible to measure traffic data on a section basis, e.g., measuring the mean speed for
all equal sized sections of a link. These values have been used to calculate the ground
truth classes for traffic states online and they are send as ground truth messages to the
DSMS. The sections in VISSIM comply with the sections in our spatial database.

6.3.5 Task Modeling and Implementation

We again utilized GSN as DSMS and could reuse the sensors from the QED application.
Differences exist in the ground truth messages send by VISSIM.

These are constituted of the following fields:

22https://www.openstreetmap.de
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TrafficStateGT(Timed, TS, LinkID, SectionID, TrafficState)

In the DSMS, the CoCar messages and ground truth messages are integrated and
aggregated using a 60 s window which slides every 10 s. For the data stream mining
evaluation in this scenario, we used the prequential method described in Section 4.4
with a window size of 20 elements.

As link and section are already known, no additional map matching to get the
specific section is necessary. All other steps are the same: the traffic data is aggregated
and integrated with the ground truth messages. The elements are fed into the data
stream mining sensor and either used for training or for classification to determine which
traffic state is present on the section at hand. Finally, the results can be exported. The
exported data elements are used for the visualization of traffic states on a real-time
map.

For evaluation and demonstration purposes we implemented a third map which
is imported from OSM to VISSIM. It contains several highways and primary roads
around Düsseldorf, Germany, as 1394 links in an area of about 10 by 5 km. The
network implemented in VISSIM is depicted in Figure 6.14.

Figure 6.14: The Highway Crossings around Düsseldorf imported into VISSIM

The visualization of traffic states is depicted in Figure 6.15, where green is free-flow,
yellow is slow-moving traffic, and red is congested.

6.3.6 Evaluation and Results

The goal for the evaluation is to test how well the application is able to estimate traffic
states for all road sections based on the given traffic data. Furthermore, it should
be determined which parameters influence the results and if additional data sources
are beneficial. In the evaluation of the TSE application, we record the number of
combinations of correct and predicted classes (traffic states) of the classification result
in a confusion matrix which is shown in Table 6.8.

The columns are the predicted classes and the rows the correct classes. The values
aii on the diagonal represent the number of correctly identified traffic states for each
class. All other cells represent the number of elements which have been falsely predicted
to class p<Class>, but should be c<Class>. In the example table, a12 is the number of
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Figure 6.15: Traffic State Visualization in OSM

Table 6.8: Confusion Matrix for Traffic States

pFree pDense pSlow pCongested

cFree a11 a12 a13 a14

cDense a21 a22 a23 a24

cSlow a31 a32 a33 a34

cCongested a41 a42 a43 a44

elements which have been predicted with class dense, which were actually class free.
With the recorded values we can now calculate the mining accuracy. For each class the
number of correctly classified elements in this class is divided by the overall number of
classified elements. To reward, when the algorithm was only slightly wrong, but not
completely wrong, we introduce a constant factor 0.6 with which we multiply the count
of similar traffic state classes and add the result to the number of correctly classified
elements. The resulting equations for the accuracy in each class are defined as follows:

FreeAcc =
a11 + (0.6 · a21)

a11 + a21 + a31 + a41

DenseAcc =
a22 + (0.6 · (a12 + a32))

a12 + a22 + a32 + a42

SlowAcc =
a33 + (0.6 · (a23 + a43))

a13 + a23 + a33 + a43

CongestedAcc =
a44 + (0.6 · a34)

a14 + a24 + a34 + a44

The overall accuracy is calculated by:

Acc =
(a11 + (0.6 · a21)) + (a22 + (0.6 · (a12 + a32))) + (a33 + (0.6 · (a23 + a43))) + (a44 + (0.6 · a34))∑n

i,j=1 aij
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The evaluation process comprised several simulation runs with varying parameters for
the traffic simulation and the data stream mining algorithms. Each run started with a
420 s setup phase in which the network was populated with traffic. Afterwards, in the
evaluation phase of 1800 s the data stream processing and mining was carried out to
analyze the traffic state estimation accuracy. For each run a classifier was learned from
scratch. If not varied in a test, we used for the segment length 400 m and 10% CoCar
penetration rate as default values. The concept-adapting Hoeffding Option Tree with
Näıve Bayes prediction strategy was used as the default classifier as it delivered the
best results in comparison to other algorithms. The detailed results of the evaluation
of data stream mining algorithms are presented in Chapter 10.

Inclusion of Probe Data

In the first tests we made, we only used EBL and WLA messages and the corresponding
data for aggregation and mining. As these messages are only created in situations with
congested traffic, the class congested has been classified in these tests in the mean
with an accuracy over 96% while other classes had a very bad accuracy. Therefore,
the simulation was extended by introducing an additional CoCar message type, the
Vehicle Probe Data (VPD) message type. These messages are sent by the vehicles
periodically, i.e., every 10 s, and only contain basic information such as position, speed,
and acceleration. This enabled the mining algorithms to learn the other classes with
a higher accuracy. Furthermore, the preliminary traffic volume of 2500 veh/h turned
out not to be sufficient to learn dense traffic very well, but only free flow. This was
due to the fact, that with 2500 veh/h only at the location where the link was narrowed
congested traffic was created and the traffic was flowing freely otherwise. To produce
also situations with dense and slow-moving traffic, the traffic volume was increased
to 3500 veh/h. However, this led to false classification of many elements with class
dense to class free and the few examples for the class free were not sufficient to
learn this class with an acceptable accuracy. Therefore, different traffic volumes were
used on different links to balance the number of examples for each class. Still, the
algorithms were not able to distinguish properly between the classes dense and free.
As the ground truth also includes the density as a distinctive property for the different
traffic states, we added the number of VPD messages as a new input attribute to the
training examples. This led to an increase in accuracy for the classes free, dense as
well as slow-moving as can be seen in Figure 6.16 for dense traffic. The diagram also
shows the increase in accuracy between 2500 veh/h and 3500 veh/h. Hence, in further
experiments we used VPD messages and the VPD message count as an attribute.

Section Length

As seen from the queue-end detection case study, the section length can have an impact
on the mining accuracy. Therefore, we also experimented with varying section lengths
in this scenario. Section lengths between 100 m and 1000 m have been tested, geared to
the distances between inductive loop detectors on German highways. It turned out that
longer section lengths are less beneficial for the accuracy as depicted in Figure 6.17.
While lengths between 800 m and 1000 m produce results of around 80%, lengths of
200 m and 400 m deliver the best results of approximately 87%. This is due to the fact,
that in longer sections the probability is higher that they include more than one traffic
state class. Thus, a section length of 400 m is used as a default parameter in further
tests. These results may also depend on the traffic volume in the network and therefore,
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Figure 6.16: Accuracy for Dense Traffic with Varying Traffic Volume and with and
without VPD Message Count as Attribute

further tests with varying traffic volumes and section lengths have to be carried out.

CoCar Penetration Rate

It seems to be plausible that, with an increasing penetration rate, more information is
available in each section and therefore, the mining accuracy should be higher. In the
results of the queue-end detection case study, the CoCar penetration rate turned out
not to have too much impact on the mining accuracy. To see if this is also the case for
the traffic state estimation, we tested CoCar penetration rates between 5% and 20%.
Figure 6.18 indicates that the above assumption has also been proven wrong for traffic
state estimation. The results vary slightly between 88% and 91%, but no clear trend
can be identified. However, an increased penetration rate inevitably leads to a higher
network coverage and hence, is always rated as beneficial.

Applicability to Realistic Maps

Using artificial maps for the training of a model is beneficial, as traffic situations can
be controlled to create sufficient examples for every kind of traffic state class. However,
these networks may not reflect traffic situations as they would occur in a realistic road
network. Hence, we rebuild a German highway interchange nearby Mönchengladbach,
where the highways A52 and A61 are crossing. The network covers a 3 km by 3 km
area and includes all links, slip roads and exits, as depicted in Figure 6.13(b) with the
corresponding OpenStreetMap excerpt23 in Figure 6.13(a).

In the simulation runs the traffic volume of each link was varied to simulate realistic
traffic situations under varying loads in the network. We tested traffic volumes of
2000 veh/h to 5000 veh/h, which were the same for all links in the same run. For the

23http://www.openstreetmap.org
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Figure 6.17: Accuracy for Varying Section Lengths
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tests, a trained model with very good accuracies in the tests with the artificial network
was used. The model was only used for classification and was not further trained
during these runs. In Figure 6.19 the results show, that for a very low traffic volume of
2000 veh/h the model can estimate the traffic state with a very good (98%) accuracy. A
very high traffic volume of 5000 veh/h reaches an acceptable value of (87%) accuracy.
3000 veh/h and 4000 veh/h reach 83% to 84%. This can be explained by a higher
rate of dense and slow-moving traffic occurring in these simulation runs. The accuracy
for these classes was also lower in the artificial network, as it is easier to predict the
‘extreme’ situations (free and congested traffic) than to predict dense and slow traffic.
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Figure 6.19: Accuracy Using a Trained Classifier on a Realistic Map for Simulation

As in the case study of queue-end detection, for traffic state estimation we also
observed that imbalanced training data harms the results of the classifier. Therefore,
the artificially road network is constructed in such a way that training data for the four
traffic classes are generated almost equally. The last experiment has shown that the
classifier trained on the artificial network delivers also very good results on a real road
network.

In general, the results for traffic state estimation are more conclusive than for queue-
end detection. We were able to identify a turning point for the section length (400 m)
and higher traffic volumes generate a higher accuracy. In addition, if the classifier is
trained in multiple runs, we can see that after the second run, the classifier is very
stable and the accuracy changes only very little at a level of 90%.

Performance

Performance of data processing is a crucial aspect in data stream management systems
as a huge amount of data has to be processed in a short time. Hence, we measured
the processing time of the data stream elements for each sensor using the timeliness
dimension. This means, that for each V2X message the time between its creation in
the traffic simulation and the processing time in the sensor is calculated. When data is
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aggregated over a window, the timeliness of the oldest stream element in the window
is used as the timeliness value. Figure 6.20 shows the timeliness over simulation time
for the Düsseldorf case study smoothed with a Bézier function. In this performance
experiment in a 40 minutes simulation run, about 19000 CoCar messages have been pro-
cessed, aggregated to nearly 50000 data stream elements which have been subsequently
mined by a data stream mining algorithm. It can be seen from Figure 6.20 that the
sensors before aggregation only need a few milliseconds to process the stream elements,
where the processing time is slowly increasing with simulation time. In the aggregation
sensor, data of the last 120 seconds has been aggregated, hence the timeliness values
are higher per se.
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Figure 6.20: Timeliness of Stream Elements Measured over Simulation Time

6.4 Conclusion

We have presented the design, implementation, and evaluation of two C-ITS applica-
tions along our process model. The guidance by the process model was very helpful in
many aspects. The description of data source requirements and their modeling supports
the detailed and structured documentation of the data sources. The task requirements
and modeling is similar to requirements engineering in software engineering projects
and helps to reflect about the goals of and expectations towards the application. Task,
data sources, and data quality requirements could easily be held separately. However,
the description of DQ requirements and DQ modeling is sometimes mixed up and it
took some time (and changes in the description of the process model) to find a good
way to separate them. There is still room for improvement, for example, with respect
to writing the Data Source documentation, which was a bit tedious and led to a long
document. This could be alleviated by the use of special tools and graphical represen-
tations of the data source and DQ models (as indicated in Chapter 8). The evaluation
framework has been filled by components suitable for the implementation of the C-ITS
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applications. This worked for the two case studies very well - they utilize the same
data sources, but for example different outputs. The guidance of the framework helped
to organize the components accordingly.

Still, the process model provides a substantial guidance in developing data stream-
based applications as the planned and structured procedure helps to order thoughts and
development steps. A preliminary structured evaluation of the applications was carried
out by changing several parameters in the system and in simulation, but without using
dedicated data quality management. To make more complex evaluations, to employ
real DQ monitoring, and to implement automated DQ improvement, we need DQ
management integrated into the data stream management process. We present the
description of the DQ management implementation for the case studies in detail in
Chapter 8, where the data quality methodology and framework are first introduced in
detail and afterwards evaluations are carried out. A detailed evaluation regarding Map
Matching algorithms and the proposal of our own online Map Matching algorithm are
delineated in Chapter 9. The analysis of the performance of the data mining algorithms,
i.e., which parameters are the best, which algorithm suits best for which applications,
does balancing and handling of concept drift help, are presented in Chapter 10.

133



CHAPTER 6. VALIDATION OF THE PROCESS MODEL IN THE C-ITS DOMAIN

134



A Systematic Evaluation Approach for Data Stream-based Applications

Chapter 7

Validation of the Process Model
in the mHealth Domain

In this chapter we will demonstrate the independence of our approach from the domain
and its general flexibility according to the properties of the applications. In the last
chapter we showed, that for C-ITS applications the process model conveniently can be
used to design, implement, and evaluate the applications. The specific circumstances
in the C-ITS domain required the use of simulation data to test influencing parameters.
We were more or less free in the choice of data sources, while the task was fixed. In the
case studies we carry out in the mHealth domain the situation is different: we have real-
world data to analyze but the tasks are less strictly defined. In the following we first
describe each project context and then follow the methodology to design, implement,
and evaluate the according stream applications.

7.1 The UMIC HealthNet Project

The HealthNet project was part of the research excellence cluster Ultra-Highspeed Mo-
bile Information and Communication (UMIC).1 HealthNet was a joint research project
of several chairs of the RWTH Aachen University from electrical engineering, mechan-
ical engineering, and computer science. In the project a wearable textile platform was
designed, which enables an unobtrusive measurement of health parameters, such as
ECG, pulse, or skin temperature. The measured parameters are processed to summa-
rize and predict further parameters which are of interest for sports, fitness, or health
care applications. The HealthNet architecture is presented in Figure 7.1.

Sensor

Master 
node

Smartphone

Bluetooth IEEE 802.11 /
UMTS

Multiple Streams 
Mining & Analysis

Mobile Trusted Parties
Registry Server

IEEE 802.11 /
UMTS

Light‐weighted Single‐stream 
Mining & Analysis

Figure 7.1: Architecture of the HealthNet System (Quix et al., 2013)

1https://www.umic.rwth-aachen.de
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The textile platform is a shirt in which conductive yarns have been used for signal
reception and transmission. Furthermore, the user wears a body sensor network (BSN)
called IPANEMA (Kim et al., 2009). The BSN is very flexible as it may consist of
multiple slave nodes carrying different kinds of sensors and a master node which com-
municates with the slave nodes and sends the gathered data to another entity, such as
a mobile device, via Wireless LAN. In the HealthNet project the BSN sends the data
to a smartphone, where a mobile application processes it. The setup worn by the user
is depicted in Figure 7.2.

Slave Node Smartphone

Master Node

(a) Master and Slave Sensors, Mobile
Device at Upper Body

(b) Slave Sensor at Leg

Figure 7.2: HealthNet Body Sensor Network

On the smartphone the data is aggregated and displayed to the user. Additionally,
the first steps of a multi-step prediction algorithm are executed which tries to predict
parameters. The mobile application architecture is modular, such that many different
applications can be implemented using the architecture. It comprises a central Health-
Net controller organizing data distribution, a cache, and a windowing mechanism for
sensor data, and a data transmission unit. Optionally, the data is forwarded by the
mobile device to another mobile device (e.g., a trainer device) or a server, where a
detailed analysis of the data and prediction is executed. The mobile device offers four
transmission modes to authorized receivers: on request, periodically, direct transmis-
sion, and manual transmission. The architecture of the mobile application is shown in
Figure 7.3.

The analysis of the data uses a multi-step anytime classification algorithm with in-
cremental learning and a distributed sensor clustering algorithm for aggregating similar
sensor data (Quix et al., 2013; Hassani and Seidl, 2012; Kranen et al., 2010). As a proof
of concept the architecture has been used to implement a runner application. We made
several interviews with runners and trainers from the RWTH Aachen University Sports
department to elicitate the overall requirements according to the runner application.
Each runner of a team wears the setup of shirt, BSN, and smartphone as depicted in
Figure 7.2. On the phone runners can observe their own data, such as position or heart
rate, while running. They can switch between different kinds of views, such as data
view, or map view. A trainer can observe the data of all team members on a mobile
device with the corresponding trainer application as presented in Figure 7.4. Humidity,
pulse, distance, speed, and temperature have been measured, and the estimated arrival
time has been predicted. The application has been showcased and tested in the Lous-
berg Run, a local running event in Aachen, in 2011 and 2012. We recorded the data of
the Lousberg Runs for later analysis. The data is used to find new stream applications.

136



A Systematic Evaluation Approach for Data Stream-based Applications

Display Engine

Personalisation 

Engine

Data Cache

Display 

Cache

Property 

Widget

Sensor

Data 

Widget

HealthNet 

Controller

Data 

Transmission 

Unit

Measure

Figure 7.3: Architecture of the Mobile Health Application

In the following we will detail the process of application design and implementation.

(a) Data View (b) Map View

Figure 7.4: HealthNet Trainer Application

7.1.1 Goal and Task Requirements

In the HealthNet application no clear goal regarding data analysis has been given.
We know, that it is helpful to observe the data of the runners for the trainers and
the runners themselves, but there is still much room to think of potential streaming
applications. Hence, we can say, that the stream application is completely data-driven
and explorative. We are quite limited to the data delivered by the mobile device. Based
on literature research and on the interviews with the sports people we identified two
potential applications considered to be useful using the combination of shirt, BSN, and
mobile device:

• Emergency & Physical Overload Detection: The application detects a phys-
ical overload and warns the sports person and optionally a trainer to avoid injuries
and states of exhaustion. If an emergency is detected an automatic emergency
message can be issued to the trainer or an emergency instance. Especially in runs
and trainings with amateur athletes this regularly happens. A very good example
is the Lousberg run 2010, where 23 people where treated by health professionals
due to the hot weather, four had to be brought to hospital, and one even had to be
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reanimated in the finish area. They were suffering from circulatory collapse and
feeling of faintness (Zander and Eimer, 2010). Hence, the detection of such events
in beforehand or right away would be beneficial for runners. In the following we
will term this kind of application Overload Application.

• Real-time Monitoring & Automated Training Advices: Based on the
observed health data, the application can give training advices regarding the
pace. Furthermore, the data could be recorded to be used for follow-up analysis
of trainings and runs. A real-time comparison with runs in the past on the same
track could also be useful according to the interviewees. This application will be
referred to as Monitoring Application.

For both applications the output may look similar. For the first application we pro-
pose to send a message with the estimation of the runner state (emergency or overload)
and either the raw data or the aggregated data (averages over the last X minutes) and
a confidence value can be included in the message. For the second application the raw
data or aggregated data should be output to allow online analysis and/or storage in
another data management system or file. Regarding Quality of Service, it is crucial for
the case of the Overload Application that the throughput and results are produced near
real-time to enable fast help and countermeasures. Also the confidence value has to be
high enough to avoid false alarms. Provenance is also a crucial issue in a productive
system especially for the Overload Application.

7.1.2 Data Source Requirements

We are limited in the choices of our data sources for the two applications. The central
data source are data streams sent by each runner’s mobile device. So far, for the
Overload Application we only can rely on the health parameters measured with the
sensor shirt and the mobile device. The data source delivers data elements which have
the schema described in Table 7.1.

The described data source comprises five data sets (one for each runner) from the
Lousberg run 2011, where each data set has on average only 335 data elements. The
sampling rate is 10 seconds to keep communication costs low and spare battery life. The
runs have an overall duration of 63 minutes on average. The data has been recorded in
csv files. Additional data sources for both applications could be humidity and temper-
ature of the environment from weather stations, track information from map services,
and historical data of former runs. Also information manually entered by the user, such
as recovery pulse, or ranges for pulse in training could be helpful.

7.1.3 Data Quality Requirements

Regarding data quality two extremes clash. On the one hand, in the HealthNet project
and the running applications we deal with very unreliable sources. Due to the move-
ment of the runner, the sensors may lose contact and the produced signal is distorted.
Furthermore, the applications are mobile and based on cellular networks. Hence, the
UMTS signal may be weak or lost during the run and GPS fixes may also be incom-
plete. Figure 7.5 shows the UMTS coverage on the track of the Lousberg run. The
color scale is ranging from green (best signal strength) to red (no signal).

The figure shows, that the UMTS signal has only seldom full strength and that there
are some spots where there is no signal at all. This leads to elements arriving too late on
connected applications, such as the trainer app. On the other hand, health applications,
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Table 7.1: Data Element Schema Produced by the HealthNet Architecture

Field Description Data
Type

Example

id ID of the message Integer 121

runner id The unique hexadecimal ID of the run-
ners device.

String 38-E7-D841-
93-37

acc x Acceleration sensor value representing
the x-axis.

Float 1.424

acc y Acceleration sensor value representing
the y-axis.

Float -2.424

acc z Acceleration sensor value representing
the z-axis.

Float -0.48

temperature Measured skin temperature of the run-
ner.

Float 24.0

humidity Current skin humidity of the runner. Float 1.0

ecg Current ECG value measured with a
three lead placement of ECG sensors.

Integer 1303

heartrate Currently measured heart rate of the
runner.

Float 68.0

longitude Longitude value of the current GPS po-
sition.

Float 6.079763174

latittude Latitude value of the current GPS po-
sition.

Float 50.78586817

speed Currently measured speed of the run-
ner in km/h.

Float 1.5

distance The covered distance since start of the
measurement in meter.

Integer 4317

Figure 7.5: UMTS Coverage on Lousberg
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such as the Overload Application require reliable information and statements. Hence,
data quality management is also useful in these applications to rate the data used
to create a certain information. Similar to the C-ITS applications there are some
quality dimensions generally relevant to the domain and some relevant only to specific
applications.

We did a literature research to find DQ dimensions specifically important in the
health domain. The papers analyze studies according to the dimensions which have
been rated as the most important and frequent ones. Table 7.2 summarizes our findings.

Table 7.2: DQ Dimensions in the Health Domain

(Mawilmada
et al., 2012)

(Hogan and
Wagner,
1997)

(Thiru et al.,
2003)

(Liaw et al.,
2013)

Timeliness X X X
Relevance X X
Completeness X X X X
Accuracy X X X X
Consistency X X X
Precision X X
Reliability X X X

Hence, it can be said, that completeness and accuracy are most important, but also
timeliness, consistency, and reliability are relevant. For the Overload Application surely
timeliness, consistency, and completeness (for the entire stream element, but also for
individual attributes, such as gps) can be considered. For the monitoring application
it is not really clear, what is important, as it depends on what exactly is monitored
and what is done with the data. For sole monitoring the general dimensions already
named are sufficient.

7.1.4 Data Source Design and Implementation

As we use real data with a given schema, the design of data sources is very limited.
No simulation is involved and no artificial data is added. To make experiments with
the data from the five runners in the Lousberglauf with a real-time data management
system, we need to replay the data in real-time preserving the original time periods
between the elements. The data was originally stored in csv files. We import the data
into five tables, one for each runner, in a PostgreSQL database. We wrote a simple
Replay Tool which is capable of replaying data from one or more tables in a database.
The data of each table is streamed over a separate TCP port. Additionally, it can
be configured if the original timestamps or current timestamps should be used (but
still the period between the messages is preserved). Figure 7.6 shows the simple user
interface of the Replay application.

7.1.5 Task Implementation

We again use the GSN system for data processing as we also work with flatly structured
data elements easily transferable into a relational schema. The setup of the application
is presented in Figure 7.7.

For each of the simulated mobile devices we provide an instance of the same wrapper
which receives the data elements and converts them into data stream elements. The
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Figure 7.6: A Simple Replay Application
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Figure 7.7: The Setup of the Lousberg Scenario

elements are analyzed depending on the application (represented by the Analyze virtual
sensors). If the analysis of a common value would be required, the data from all five
runners could be integrated by a single virtual sensor located after the analyze sensors.
Finally, one or more export sensors deliver the output of the application to a consuming
instance, e.g., a web service. We did only first a simple implementation for monitoring
to preliminary check the data and its quality. Based on these findings we will proceed
to the detailed implementation.

7.1.6 Data Quality Implementation & Evaluation

For the two applications (Overload and Monitoring) the heart rate definitely is a crucial
parameter. From the interviews and literature research we know that runners try to
keep their heart rate in a certain range in training to reach optimal training results and
to improve their performance. During contests the heart rate is interesting to avoid
exhaustion and critical situations. Hence, we first start with analyzing the heart rate
and its consistency. The heart rate normally lies in certain physiological ranges. We
define the following metric to rate the plausibility (or consistency) of the heart rate
value according to physiological ranges:

• HR >= 60 ∧HR <= 160 : Plausibility = 100

• HR >= 0 ∧HR < 60 : Plausibility = HR
60

• HR > 160 ∧HR <= 260 : Plausibility = HR
100
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• HR < 0 ∨HR > 260 : Plausibility = 0

This metric creates values between 0 and 1 representing the percentage. Similarly,
we define a dimension and metric for speed consistency. The speed is calculated based
on distance and time and given in km/h. For the position we check, if the position
fields contain values or not, represented by the latitude field. The attached dimensions
are exemplified for one runner in Figure 7.8.

GSN

Mobile
Device

Wrapper Analyze

DQ HEARTRATE CONSISTENCY

DQ SPEED CONSISTENCY

DQ LAT CONSISTENCY

Export

Figure 7.8: The Setup of the Lousberg Scenario incl. DQ Dimensions

Figure 7.9 shows the representation of the replayed data in GSN including the data
quality and visualized on a map.

Figure 7.9: The Lousberg Run Replayed in Real-time in the GSN System

The detailed implementation of the DQ processing and the evaluation using the DQ
values are presented in Chapter 8. In the next section we will show a second example
for the implementation of a streaming mHealth application along the process model.
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7.2 The MAS Project

The MAS project (Nanoelectronics for Mobile AAL (Ambient Assisted Living) Sys-
tems2) developed an AAL system with a communication platform and sensor devices
for collecting vital parameters of a patient. The goal of the project was to detect
problems in the cardiovascular system very early by monitoring the health status of a
patient. Hence, critical situations might be avoided and a more individual treatment
can be enabled. The system architecture is similar to the HealthNet architecture de-
scribed in Section 7.1. In MAS, modern mobile sensors have been used, such as an
in-ear pulsoxymeter. Various vital parameters are measured by the sensors, for exam-
ple, oxygen saturation, or heart rate. The sensor data is passed to a master node which
sends the data via Bluetooth to a smartphone. The smartphone does some preprocess-
ing on the data and sends it over an Internet connection to a server. On the server
side, the data can be analyzed and a medical expert can investigate critical situations
in more detail. As the sensors might not produce correct data due to movement of the
patient or a slight incorrect placement of the sensor, incorrect sensor data has to be
taken into account. It is therefore important to measure the quality of the sensor data
in such a context. Other problems, such as failing Internet connection, has to be taken
into account also.

7.2.1 Goals and Task Requirements

Similar to the HealthNet project we use a fixed data source consisting of a stream of
sensor data from one person wearing the pulsoxymeter. Hence, we also adopted the
completely data-driven, explorative approach as the task was not given in beforehand.
The only application goal was to monitor the person and gather the data in real-time for
online monitoring and later analysis. The Quality of Service requirements comprise the
near real-time processing of the data. Provenance may be an issue in a later productive
system, when transparency of the result origin is important.

7.2.2 Data Source Requirements

The data source is given by the measurements carried out in the MAS project. The
measurements were made with a pulsoxymeter which measures heart rate and oxygen
saturation by sending light beams through the skin (e.g., on the finger or on the ear)
and measuring the difference in the reflected light received by the oxymeter. The data
has been recorded with a new pulsoxymeter device developed in the MAS project. The
data has been recorded over a time period of about 40 seconds. In this time, 2990 PPG
measurements have been produced, which result in an average data rate of about 100
elements per second. The data source schema is structured as given in Table 7.3. The
data was recorded in a csv file.

7.2.3 Data Quality Requirements

As the sensors might not produce correct data due to movement of the patient or a
slight incorrect placement of the sensor, incorrect sensor data has to be taken into
account. It is therefore important to measure the quality of the sensor data in such a
context. We concentrate in this case study on the PPG data as it is used to determine
other parameters, such as the heart rate. Although there are differences in the PPG

2https://www.fit.fraunhofer.de/de/fb/life/projects/mas.html

143

https://www.fit.fraunhofer.de/de/fb/life/projects/mas.html


CHAPTER 7. VALIDATION OF THE PROCESS MODEL IN THE MHEALTH DOMAIN

Table 7.3: Data Element Schema Retrieved from the MAS PPG Sensor

Field Description Data
Type

Example

pk The ID of the measurement. Integer 22

timed The timestamp of the measurement
in ms.

Integer 1380039350867

pulse The current heart rate of the pa-
tient.

Integer 62

spO2 The current value of the oxygen sat-
uration of the patient.

Integer 98

ppg Photoplethysmogram value mea-
sured by the pulsoxymeter. It repre-
sents the absorption of light by the
skin send out by the pulsoxymeter.
For each cardiac cycle a peak is
shown in the PPG.

Integer 155

data of various patients (intersubject variabilities), the PPG of one person should have
a regular waveform. Each peak represents a cardiac cycle. Hence, the regularity should
be reflected in a consistency or regularity DQ value. Furthermore, the timeliness of the
messages could be very interesting to determine the throughput and response capacity
of the system.

7.2.4 Data Source Design and Implementation

As the data source was fixed, we only needed to recreate a real time scenario with
the real-world data where several runs for tests can be realized. Hence, we again use
the Replay application to simulate the real measurements. We described the schema
already in Section 7.2.2. The data is imported into a PostgreSQL database in one table.
The Replay application uses the timestamps in the data to exactly reproduce the time
periods between the measurements. We again use the GSN system as we also work
with flatly structured data elements easily transferable into a relational schema.

7.2.5 Task Implementation

To implement the application, which analyzes the uniform periodicity of the PPG
measurements, we designed a simple network consisting of a wrapper and virtual sensors
in GSN depicted in Figure 7.10.

GSN

Mobile
Device

Monitoring
Wrapper

Calculate
PPG

Difference

Average
Calcu-
lation

Export

Figure 7.10: The Virtual Sensor Network of the PPG application
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Our approach to estimate the uniform periodicity of PPG values calculates the dif-
ference between two consecutive sensor measurements. If the average difference over
a window of 50 elements is high, this indicates low data quality. This rule can be
expressed by the formula in Equation 7.1

consistency = 100− (max (

∑k=i+49
i=2 PPGi − PPGi−1

50
− 5; 0) ∗ 10) (7.1)

We integrate a tolerance value of 5 and a minimum value of 0. To get a percentage
value we multiply the result by 10 and subtract it from 100.

The mobile device of the user sends the measurement data of the pulsoxymeter via
TCP to the Monitoring Wrapper which converts the data elements into data stream
elements processable by GSN. The first virtual sensor (Calculate PPG Difference) im-
plements the first window on the incoming data stream elements with a window size
of 2 and calculates the difference between the current and the former PPG value. The
difference is added as a new field into the schema of the data stream. The next virtual
sensor (Average Calculation) just retrieves the data from the previous virtual sensor
and enables the second windowing in the DQ management to calculate a consistency
value.

7.2.6 Data Quality Implementation and Evaluation

As we have already mentioned in the requirements, the task is to find out, how regular
the periodicity of the PPG measurements is. This regularity is a sign for a healthy car-
diovascular system and good quality of the sensor measurements, as related parameters
calculated from the PPG value are more reliable. For the DQ processing we implement
the consistency measure as described in Equation 7.1. The detailed implementation of
the DQ processing and the evaluation is presented in Chapter 8.

7.3 Conclusion

In this chapter we presented the application of the process model to two case stud-
ies from two projects in the domain of Mobile Health. The case studies were simpler
than for the C-ITS domain, but still they showed, that the process model was also
applicable without problems though the applications had different requirements and
starting points for the design. The data sources delivered real-world data, where pa-
rameterization is difficult. Hence, evaluation cannot be steered as in the C-ITS case,
but experiments must be designed to consider the given circumstances, such as slow or
fast moving runners. Both cases are supported by the process model, reflected by the
design of more or less options for parameterization and iterations. Even unclear appli-
cation goals as in the case of the HealthNet project could be mapped by the process
model. Additionally, the evaluation framework could also be applied to the specific
requirements of the mHealth applications. Some of the components had to be real-
ized differently, but core components, such as the DSMS, have been kept. It can be
concluded, that the process model and the framework are well applicable to different
domains and case studies with different demands.
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Chapter 8

Data Quality Management

We have stressed in Chapter 4 and Chapter 5 that data quality makes a difference in
data intensive applications and it should be considered in the planning of an application
in which sense and degree DQ should be monitored and evaluated. To support the DQ
monitoring, evaluation, and optionally countermeasures, the data stream architecture
must provide a corresponding framework. In this chapter we propose a framework
to enable DQ management in DSMS. The framework allows for an easy definition,
configuration, and control of data quality values.

In the following section, we will discuss, which requirements are posed to a DQ
framework for DSMS and the solution we propose to fulfill these requirements.

8.1 Requirements

Data quality management is not only an issue in DSMS. Data quality is one of the
most important success factors of an application. Poor quality may lead to dissatisfied
users, financial losses – in the worst case it can also risk people’s health and lives (Red-
man, 2004; Wang and Strong, 1996; Judah and Friedman, 2014). Especially in the
transportation context, safety applications require high quality output based on data
with corresponding quality. In our work, we adopt the definition of data quality as
“fitness for use” as this notion of quality applies to products as well as to data (Juran,
1999; Redman, 1996). As a consequence, DQ cannot be defined by a single measure,
rather multiple facets must be considered to assess the quality of the corresponding
data (Wang and Strong, 1996). The complexity of DQ definition and measurement re-
quires a well-defined methodology to establish DQ management techniques in a system.
These methodologies are often adopted from product quality management models.

However, existing DQ methodologies (Batini et al., 2009), such as the TDQM (Total
Data Quality Management, (Wang, 1998)) model, are not applicable in the context of
data streams as the analysis and improvement steps do take not into account the
dynamic and continuous nature of a DSMS (cf. Section 4.3). Actions to improve DQ
in a DSMS need to be performed during runtime while data is being processed; thus,
the system should be able to invoke methods to improve DQ automatically, if the DQ
measurements are not within the desired range. Though the concrete actions cannot
be adopted as such, it is also reasonable for a DQ framework in DSMS to require a
structured process for DQ in which the main phases of design, measurement, analysis,
and improvement are included.

DQ measurements can be very complex and might require more expressivity than
offered in a simple SQL query. For example, in traffic information systems, positions
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from GPS sensors (Global Positioning System) have to be matched to a particular part
of a road (Map Matching). Such applications require application-specific DQ metrics
and DQ dimensions, because the rating of the matching confidence can only be rated
by the method itself. Redman (2013) even describes DQ as subjective – its definition
may vary from case to case and user to user. Therefore, we aim at a DQ framework
which is easily extensible and is not restricted to certain quality dimensions. Since DQ
is multi-dimensional (i.e., an element might have several DQ values in different DQ
dimensions), the computation of a DQ value based on individual DQ values should be
possible. This computation should be done by user-defined evaluation formulas. Hence,
users can adjust the computation of the composite DQ value according to their needs
and personal preferences. In principle, a general method has to be found, which enables
to implement any dimension and any metric independent of the application field.

Furthermore, DQ management in data streams should be holistic and not only
focused on the quality of the output stream. It is important to monitor DQ throughout
the whole DSMS : incoming tuples may already contain quality information which needs
to be maintained as data “flows” through the DSMS. This also includes that semantics
of query operations (which might require a recalculation of the DQ values, e.g., by
aggregation, joins or similar operations) has to be considered in the DQ management.
Additionally, new DQ dimensions have to be added which either can be computed based
on existing DQ values, or by application-specific functions, or by semantic rules. Thus,
to provide quality information in each data processing step, a solution must facilitate
the extension of data stream elements with DQ values.

The knowledge about the quality of the utilized data helps to rate the significance
of calculation results based on this data. Besides the sole observation of decreasing
or low DQ, it is desirable to take countermeasures to improve the quality if possible.
Hence, a DQ framework should also include a comfortable way to define rules which
specify the DQ values that are checked regularly. Furthermore, it should be possible
to define actions which should be executed when a rule is violated.

A data analyst may also be interested in data quality measures which involve the
windowing of the original data, e.g., an average value of a parameter over the last five
minutes or 50 elements. The windowing may only be required for data quality analysis
and should not be carried out when this DQ measurement is not needed. Hence, a
flexible solution to create a data window for analysis purposes should be provided.

DSMSs belong to the group of real time systems (Stonebraker et al., 2005), which
are operating in narrow time frames and memory bounds. Hence, the integration of
DQ processing needs to satisfy real time requirements and may not pose significant
additional overhead to memory usage or CPU time. Also a maximal degree of automa-
tism is required. There is no time for manual processes which redefine the data flow
in a DSMS. Furthermore, the DQ management should be an optional feature – if DQ
information is not required or desired, it should be possible to turn off the DQ features
without affecting the data processing.

Finally, to allow easy customization and extension, the DQ framework must be
metadata-driven, i.e., the processes for measuring DQ should be configured by meta-
data that is managed in a central component. This enables also the separation of the
definition of the DQ-related functions and the processing of data streams.

In the following section, first related work for DQ frameworks in DSMS will be
discussed. Subsequently, the overall methodology will be presented in Section 8.3.
Finally, the proposed data quality framework for DSMS will be described in detail.
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8.2 Related Work

DSMSs can implement means to monitor the system performance during query pro-
cessing and adapt the system configuration if certain quality criteria are not met. This
is usually summarized under the term Quality of Service (QoS). For example, if the
system is overloaded and the output delay or the throughput is low, a DSMS can drop
tuples with sampling techniques (e.g., in the Aurora system (Abadi et al., 2003b)). In
the QStream system (Schmidt et al., 2004), two descriptors for each output stream
are defined – a content quality descriptor which includes the dimensions inconsistency
and signal frequency defined by Schmidt (Schmidt, 2006), and a time quality descrip-
tor consisting of values for data rate and delay. The quality dimensions are calculated
throughout the whole query process. All operators in the query execution plan comprise
functions used to calculate the value of each quality dimension when new tuples are
processed. At the end of the processing chain quality values are output for the result
streams of each continuous query. In Borealis (Abadi et al., 2005), the QoS model of
Aurora has been refined to rate QoS not only for the output, but also for each inter-
mediate operator. To this end, each tuple includes a vector with quality dimensions,
which can be content-related (e.g., the importance of an event) or performance-related
(e.g., processing time for an event up to this operator). The vectors can be updated by
operators in the query execution plan and a scoring function is provided (Abadi et al.,
2005).

A crucial limitation of the previous approach is that the quality dimensions in the
vector are equal for each stream, which does not allow for an application-specific DQ
rating of the stream content. To achieve a more fine-granular rating of DQ on attribute,
tuple and window level and to also include application-specific DQ dimensions, Klein
and Lehner (2009) extended the PIPES system (Krämer and Seeger, 2009) with mod-
ified operators. DQ information becomes thereby a part of the stream schema. Klein
et al. distinguish four different types of operators based on the operator’s influence on
the stream data (modifying, generating, reducing or merging operators). Changes on
the data can in turn result in updates of the DQ of an attribute, tuple, or window. In
addition, the size of their DQ windows (the part of the stream for which data quality is
evaluated) is dynamically adaptable based on an interestingness factor, e.g., the window
size is decreased when there are interesting peaks in the stream data. A drawback of the
approach is the deep integration of DQ features into the operators. The implementation
of operators has to be changed substantially to include the quality information. Fiscato
et al. (2009) integrated data quality into the data model of streams as defined in the
STREAM system (Arasu et al., 2003a). They extended the definition of a stream by
three DQ dimensions (weight, recall, and utility) which are fixed. Using this definition
the authors integrated DQ into the data model, but without providing flexibility. Kuka
and Nicklas (2014b) extend the DSMS Odysseus by features for probabilistic processing
and quality processing. They extend their data stream model by creating tuples with
three parts: one for the metadata of the stream element with an validity time interval
and an uncertainty value for the existence of the tuple. The second part includes qual-
ity values for continuous values calculated by Gaussian Mixture models and an online
Expectation Maximization algorithm. The third part includes the common relational
representation of the tuple for discrete values. Continuous values are represented by a
reference to the second part. Similar to the system by Klein and Lehner (2009), rela-
tional operators of the Odysseus system are adapted to the specific data stream model,
which integrates the DQ management deep into the system, sacrificing flexibility and
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generality. Kuka and Nicklas (2014a) propose an ontology-based quality management
extension to the Odysseus system. The quality assessment is integrated into a map
operator which adds quality values to each data stream element based on metadata
stored in an ontology. However, quality measures can only be defined by relational
predicates with Boolean result or with intervals, which restricts the possibilities of DQ
values.

8.3 Data Quality Management Methodology for DSMS

Common methodologies in DQ management have been approved in industry and re-
search. Hence, it is reasonable to utilize this knowledge and extract the aspects which
are suited for a data stream setting. We chose to adapt the aforementioned TDQM
cycle (see Section 4.3.1) to data streams. We adopt the four phases Design, Measure,
Analyze, and Improve, but add an additional step in the cycle. Furthermore, for the
data stream setting, we distinguish between steps which have to be done manually
during design time and steps which are automatically executed during runtime. For
the four phases the following actions are desired:

1. Define: Similar to other models, in this phase, the requirements for the appli-
cations to be implemented are acquired. Based on the requirements, DQ dimen-
sions and corresponding metrics are defined. Furthermore, mappings between
the dimensions, metrics, and data stream components, e.g., attributes have to be
specified. These steps are done during design time. During the runtime of the
system no definition step is required. Also, rules for the automatic analysis and
improvement can be defined in this step.

2. Measure: Based on the defined mappings between dimensions, metrics, and
stream components, the corresponding DQ values can be measured. This has to
be done during runtime of the system, as the DQ values have to be as current as
the underlying data.

3. Analyze: The measured DQ values are also evaluated during runtime. The
online analysis enables the system and users to react timely to low DQ values,
which is a big advantage compared to classical DQ methodologies. The rules for
the analysis are defined during design time to enable an automatic monitoring of
DQ values.

4. Improve: There are two levels of improvement possible. First, measures de-
fined during design time, e.g., the activation of additional data sources, are au-
tomatically executed at runtime, when DQ monitoring in the Analysis phase has
determined a decrease in DQ values. This online improvement can help to fix
problems, which have been identified during the Define phase, as soon as they
occur. The effects of the improvement, if existing, can in turn be detected in the
Measurement phase. Secondly, of course also offline improvement of processes,
data sources, etc. can be done when reviewing the measured DQ values. Finally,
the meta-data defined in the Define phase can be updated to improve the runtime
DQ measurement, analysis and improvement processes, e.g., a missing dimension
can be added or a new countermeasure can be defined.

The complete cycle is depicted in Figure 8.1.
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AnalyzeImprove

Design Time Run Time

Figure 8.1: DQ Management Methodology for Data Streams

In the subsequent section, an overview of the architecture of the DQ framework
is described. All architecture components are classified into the four phases of the
methodology.

8.4 Ontology-based Data Quality Framework Architec-
ture

Based on the requirements, we identified three major aspects in data stream applica-
tions and data stream processing, for which the DQ of elements and attributes have
to be calculated. First, the content of the data stream and its elements should be
rated according to their semantics. This can be done by semantic rules, which describe
the acceptable ranges for values of one attribute or values of combinations of several
attributes in one data stream element. Such rules are semantic because they use the
domain specific semantics of a data item. For example, a rule could define an upper
bound for speed measurements of vehicles. If a vehicle exceeds a speed of 280 km/h,
the DQ value for this attribute should be very low. DQ measurements of this type are
done by a Content-based Quality Service. Second, to rate the DQ in each step of the
data processing, also the query processing operators (e.g., join, aggregation) in a DSMS
have to be taken into account, as they can alter the DQ values of stream elements flow-
ing through the system. Hence, a framework should incorporate means to analyze the
queries and recalculate quality values accordingly. We assign these tasks to a Query-
based Quality Service. Finally, in data stream applications customized and application
dependent data processing and analysis is implemented which may also add or change
DQ values. These tasks are subsumed under the component Application-based Quality
Service. Additionally, a Data Quality Monitor observes the data quality values and
invokes actions if necessary to counteract low quality. The metadata of these services
and of the quality monitor is stored in the DQ ontology; the overall architecture is
depicted in Figure 8.2.

We propose a DQ framework which extends a DSMS, i.e., the DQ Framework is
an (optional) add-on to the DSMS. We adhere to relational DSMS and the well-known
multiset or bag semantics for data streams we introduced in Chapter 4. Hence, a single
data stream is defined by a set of attributes (the schema) and consists of data stream
elements or tuples adhering to the schema. When incorporating DQ, the set of data
stream attributes can be extended by a set of DQ attributes, where each attribute repre-
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Figure 8.2: Architecture of the Ontology-based DQ Framework

sents a DQ dimension. We define these streams as quality-affine data streams as follows:

Definition 8.1 (Quality-affine Data Stream). A quality-affine data stream Sdq
of a stream S is a (possibly infinite) multiset of data stream elements (s, τ, q), where
τ ∈ T is a timestamp attribute with values from a monotonic, infinite time domain T
with discrete time units ∈ N. s is a set of attributes (A1, A2, . . . , An) with domains
dom(Ai), 1 ≤ i ≤ n, constituting the schema of the stream S. q is a set of attributes
Adq1 , Adq2 , . . . , Adqm with domains dom(Adqj ), 1 ≤ j ≤ m, representing the measured
data quality dimensions. Together s and q constitute the schema of Sdq.

Syntactically, quality attributes are not distinguishable from data attributes. Se-
mantically, they are handled differently and must be recognizable during data process-
ing. For instance, a Car-2-X message data stream (the messages include information
from vehicle sensors) could be extended by DQ information in the following way:

Messagedq = (Timed, ID, Latitude, Longitude, Speed, Acceleration, RoadID,

Timelinessdq, SpeedAccuracydq)

Timelinessdq rates the age of the message and SpeedAccuracydq rates the error of
the measured speed. The aforementioned quality services manage the DQ attributes in
a data stream element. The metadata is managed in an ontology that provides a DQ
ontology (or Semantic DQ Model). The Quality Metadata Provider acts as an interface
to this ontology. The DQ Processor invokes the Content-based and Application-based
Quality Services as required by the definitions in the ontology. The Query-Based Qual-
ity Service interacts directly with the Quality Metadata Provider and the Data Proces-
sor, as queries have to be modified in the data processing steps. All colored boxes are
DQ components and are added by the framework to the DSMS. The components will
be detailed in the following sections.
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8.5 Semantic Data Quality Components

The DQ Ontology represents the metadata which is required for the DQ measurement,
including DQ dimensions and DQ metrics, linked to concepts in the domain of data
stream applications. This allows the evaluation of DQ for tuples, windows, and at-
tributes. We decided to use an ontology for structuring this semantic knowledge. The
ontology enables us to define domain knowledge, DQ dimensions, and metrics sepa-
rately, and relate them to each other in a modular way. In the following, we will first
discuss and derive suitable DQ dimensions and metrics. Afterwards, we will detail the
structure of the ontology and describe the components of the framework processing the
ontology.

8.5.1 DQ Dimensions in DSMS

DQ dimensions have been defined as features of data items that can be measured, and
DQ metrics are coined as methods performing these measurements (i.e., assigning a
DQ value to a data item, see definition 4.6). As it has been emphasized in several DQ
methodologies and also in our approach (cf. Section 8.3), the first important step in
DQ management is the identification of application requirements and the derivation of
relevant DQ dimensions and metrics. There exist already a set of approved and common
dimensions which are generally applicable. However, each application may introduce
new aspects of DQ which are specific for this application or domain. As Redman
(2004) points out, there exist “hundreds of dimensions of data quality, a relatively
few dimensions are most important in practice.” Hence, it is crucial to determine the
ones relevant for the target application. We already listed some of them in the DQ
requirements of the corresponding domains in Chapters 6 and 7.

There exists a plethora of classifications which structure and describe DQ dimen-
sions, such as the Total DQ Management (TDQM) classification (Wang and Strong,
1996; Strong et al., 1997), the Redman classification (Redman, 1996), or the Data
Warehouse Quality (DWQ) classification (Jarke et al., 1999). The classifications cate-
gorize the dimensions according to different aspects. Fan and Geerts (2012) identify in
particular timeliness, completeness, and consistency as central issues in data quality.

Klein and Lehner (2009) proposed a classification of DQ dimensions for data streams,
which is relevant for our work. In Table 8.1, we list a non-exhaustive set of DQ di-
mensions, which we think are of importance for DQ rating in a DSMS. In particular,
we selected dimensions which we deemed relevant for traffic and health applications
(based on (Klein and Lehner, 2009), Table 6.3 and Table 7.2). Other dimensions may
be also relevant and our system is not restricted to the selected dimensions. For ex-
ample, Kuka and Nicklas (2014a) use the Semantic Sensor Network (SSN) ontology1

which provides quality dimensions specifically for sensor data. Using an extensible on-
tology, we are able to model an arbitrary set of dimensions and corresponding metrics.
We distinguish two categories of dimensions. Application-based DQ dimensions rate
the application-specific semantics of data. In addition, performance related issues are
considered by system-based DQ dimensions. For example, Quality of Service (QoS) for
various performance aspects of a system has to be tracked and taken into account in
query processing. There are also dimensions which are in both categories. Further-
more, the DQ for a dimension can be measured on different levels. It can be measured
system-wide, e.g., an output rate, on operator level, e.g., the selectivity of an operator,

1https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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or on window, tuple, or attribute level.

Table 8.1: Example DQ Dimensions

DQ Dimen-
sion

Informal Description Example Metric Application-
based /
System-based

Complete-
ness

Ratio of missing values or tu-
ples to the number of received
values/tuples

The number of non-null
values divided by all val-
ues including null values
in a window

Application-
based

Data Volume The number of tuples or val-
ues a result is based on, e.g.,
the number of tuples used to
calculate an aggregation

Quantity of tuples in a
window

System- and
Application-
based

Timeliness The age of a tuple or value Difference between cre-
ation time and current
system time

System and
Application-
based

Accuracy Indicates the accuracy of the
data, e.g., a constant mea-
surement error or an estima-
tion of result quality

An externally calculated
or set value, e.g., the re-
sult confidence of a data
mining algorithm

Application-
based

Consistency Indicates the degree to which
a value of an attribute adheres
to defined constraints, e.g., if
a value lies in certain bounds

Rule evaluation, check of
constraints

Application-
based

Confidence Reliability of a value or tuple,
e.g., the confidence to have
estimated the correct traffic
state

A weighted formula that is
calculated from values for
other DQ dimensions

Application-
based

Drop Rate Indicator for the system per-
formance.

The number of tuples
dropped during stream
processing due to laten-
cies.

System-based

In the next section, the DQ ontology is proposed in which the identified dimensions
can be represented and can be put into the context of DQ management for data streams.

8.5.2 Data Quality Ontology

An ontology is a well suited tool to (1) model the knowledge about DQ concepts as
well as about domain concepts and their relationships to each other, (2) modularize the
knowledge and make it reusable, (3) be changed by users due to its human-readability
and availability of a wide range of tools, and (4) be used as a configuration in an
automatic process of evaluating DQ.

Several ontologies have been proposed regarding DQ2, 3, 4, DQ management clean-
ing (Preece et al., 2008; Brüggemann and Grüning, 2008), The DQ Management Vo-
cabulary Specification 5, and data streams 6, (Kolozali et al., 2014). But many are not
accessible or only sparsely described in papers. And those who are accessible could not
fulfill our needs completely. Several concepts of DQ are repeated in multiple ontologies,

2http://bioportal.bioontology.org/ontologies/IDQA
3http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=

32575
4http://www.iso.org/iso/catalogue_detail.htm?csnumber=50798
5http://semwebquality.org/dqm-vocabulary/v1/dqm
6http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao
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Figure 8.3: Visualization of the DQ Ontology

such as DQ dimensions, metrics, and so on. But some are also unique to the application
at hand.

In respect to the overall framework architecture, the DQ Ontology has been modeled
to link the components in data stream applications (tuples, windows, attributes) where
DQ evaluation is desired with the corresponding quality dimensions and metrics. The
DQ Ontology can be also seen as a metamodel for DQ information; it has been inspired
by the DWQ metamodel for DQ management in data warehouse systems (Jarke et al.,
1999). It differs to the DWQ metamodel in that it includes concepts from the data
stream domain and does not include data warehouse related concepts. Furthermore, it
is designed along the trisection of the approach. Figure 8.3 delineates the structure of
the DQ ontology. Colored concepts describe the scope in data stream applications, e.g.,
data stream windows or attributes of data stream elements. White concepts illustrate
the DQ assessment components including metrics to rewrite SQL queries, evaluate
semantic rules, as well as applying user-defined operations to applications. Dashed
arrows denote object properties (i.e., relationships) where the arrow points into the
direction of the “used” object, e.g., a DQ Window has a DQ Factor. The solid arrows
represent isA-relationships.

The concept of DQ Factors, which has been adopted from the DQ evaluation
methodology for data warehouses (Jarke et al., 1999), provides the linkage of Stream
Objects, DQ Metrics and DQ Dimensions to DQ assessment tasks in the scope of data
stream components. The metrics are categorized according to their purpose, way, and
type of calculation. A Semantic Metric is related to one or multiple semantic rules. A
Semantic Rule can be expressed by arbitrary mathematical expressions, e.g., Boolean
expressions or arithmetic expressions (depending on the power of the mathematical

157



CHAPTER 8. DATA QUALITY MANAGEMENT

expression parser used to evaluate the expressions during online quality assessment in
the system). For example, we can define a Semantic Rule instance, which limits rea-
sonable speed values by an expression speed < 280. To characterize intrinsic properties
of the data (e.g., according to EU directives we fixed the intrinsic measurement error
of a speedometer to 0.9), a Constant Metric can be defined whose instance will include
constant values for a DQ dimension.

An Application Metric provides an interface for user-defined functions and corre-
sponding DQ dimensions. The calculation of an Application Metric is defined in the
user-defined code in the DSMS. Finally, the SQL Metric accounts for two cases: (1) a
DQ dimension is introduced, which is calculated using SQL operators (e.g., complete-
ness), and (2) DQ values change during the processing of SQL queries (e.g., when joins
or aggregations are used in the query). Each SQL Metric instance is related to one or
more Function instances, which can identify either the SQL operator changing the qual-
ity value (input) or the SQL expression used to calculate the new DQ dimension value
(called output or replacement function). The rewriting of SQL queries with the input
functions using the defined output functions is defined by a Query Rule instance. These
rules link DQ dimensions, SQL operators, and functions to replacement functions. The
rewriting of queries will be described in Section 8.6.

The ontology, as it was described so far, is generic, i.e., domain independent – it
could be applied to any domain. To implement the DQ requirements of the desired
applications, for the modeled concepts instances have to be created. Figure 8.4 outlines
an example usage of an SQL metric to assess the completeness of an attribute in a rela-
tional tuple of a window. The stream attribute Speed is assigned with a DQ factor that
links the DQ dimension Completeness with an SQL metric. Completeness is defined
by an expression consisting of arithmetic operators and SQL functions (count/all).
The variables count and all are references to functions. Each function has an SQL
Mapping, which denotes the SQL expressions inserted into the query to calculate the
variable value. The placeholder # in the definition of the mapping is replaced by the
corresponding attribute name (in this case Speed). The expressive power of the SQL
mappings is limited to the expressions which are allowed in the SELECT clause of an
SQL query; more complex expressions could be realized with an application metric.

Another requirement described in Section 8.1 is the possibility to define bounds for
DQ values and corresponding countermeasures if the value is not within the desired
bounds. Hence, a concept DQ Bound is implemented in the ontology which relates
the tested DQ Factor, a Semantic Rule describing how to check the bound, a stream
object for which the DQ Factor is defined, and one or more Bound Actions to be
executed when the bound is violated. For each bound action one or more Counter
Bound Actions can be defined. These are executed when the DQ value is again in a
tolerable range. For each bound an Incubation Value is definable, which determines how
often the measured DQ value has to go beyond or fall below the bound before taking an
action. For example, assume that we monitor the number of elements used to calculate
the average speed using a DQ Factor. If there are only a few elements, we activate
another data source to increase the accuracy of the average speed value. Hence, as
depicted in Figure 8.5 a bound for a DQ factor Data Quality Factor Volume, a stream
aggregateAndIntegrate (representing the aggregated and integrated data) with an
incubation time of 5, and a corresponding bound rule are defined. The bound rule
checks if more than 50 C2X messages have been used in the current time window, i.e.,
the rule would be dq car2xno datavolume ≤ 50. The Bound Action addMobilePhones

will be invoked, when the rule has been evaluated five consecutive times to true. When
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Figure 8.4: Illustration of a SQL DQ Metric in the Ontology

the rule has been evaluated five consecutive times to false, the method defined in
counter action removeMobilePhones is called.

Finally, a flexible solution to create windows only for data quality analysis was
demanded in the requirements. Although there is already a concept Window in the
ontology, a new concept DQ Window is introduced for this purpose. The first concept is
part of the application logic while the second is only required for DQ analysis purposes.
The DQ Window is also connected to the DQ Factor to indicate the parameters of DQ
to be measured and to connect to a corresponding stream object. Each instance of
this concept has two attributes - size and slide - which determine the size of the DQ
window and the slide step (both can be value-based or time-based). In the following,
we describe how the ontology is loaded during initialization of the system and provided
to the DQ components of the framework. The definition of the attributes, sensors,
dimensions, metrics, and rules has to be done only once for an application. Due to
the modular design of the ontology it is possible to reuse instances for dimensions,
metrics, and so on. The ontology has been implemented in OWL, is available at http:
//dbis.rwth-aachen.de/projects/DQStream, and has been submitted for indexing
to Swoogle and Watson. The DQ information is provided by the Metadata Provider
and processed by the DQ Processor and corresponding services.

8.6 Data Quality Processing

Subsequent to the Define phase in the extended TDQM cycle (cf. Section 8.3) the Mea-
surement phase has to be prepared and executed. The ontology contents created in
the Define phase are utilized to configure the Measurement phase, or more specifically
speaking, to configure the system for runtime. This means, that for each of the stream
components the assigned DQ dimensions and metrics are integrated into the DSMS pro-
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Figure 8.5: Bound Definition for DQ Control in the Ontology

cesses and data flow, such that the DQ measurements can be executed during runtime.
The components responsible for the preparation of the measurements are explained in
the following. The actual measurements are carried out by the Data Quality Services
described in Section 8.6.

As the framework focuses on the optional extension of a relational DSMS with DQ
assessment features, all underlying components that contribute to the data processing
and are part of the used DSMS are subsumed under the term Data Processor. This com-
prises the data manipulation and execution of queries (rewritten and original queries)
in the system. The Data Processor acquires the stream tuples and propagates them to
the system. When DQ processing is enabled, it delivers tuples to the DQ Processor,
which will calculate DQ values according to the loaded metrics. Corresponding to the
three aspects identified for data processing, three different DQ assessment services have
been designed. The DQ Services are divided into two groups. First, the offline DQ
processing is executed in the initialization phase of the system, which performs the
rewriting of queries corresponding to the SQL Metrics. Second, the online DQ services
perform real time evaluation of semantic rules and integrate DQ measurement results
from applications.

The Quality Metadata Provider represents the interface between the DQ evaluation
information (defined in the DQ ontology) and the DQ Processor, which will be out-
lined subsequently. The DQ Processor loads the ontology into main memory during
initialization of the DSMS or when a continuous query is registered or changed. The
DQ Processor retrieves the DQ information from the Quality Metadata Provider, and
enables the real time DQ processing in the DSMS. The processor analyzes the reg-
istered data stream components and looks up the corresponding DQ dimensions and
metrics in the Quality Metadata Provider. For each DQ dimension and attribute a
field is added to the data stream elements at hand (i.e., the stream is converted to
a quality-affine stream). The processor identifies which metric is used for each DQ
attribute. It delegates the processing of the Constant Metrics, Semantic Metrics, and
Application Metrics to the corresponding service components (Application-based Qual-
ity Service and Content-based Quality Service). The SQL Metrics are processed by the

160



A Systematic Evaluation Approach for Data Stream-based Applications

Query-based Quality Service, which directly communicates with the Quality Metadata
Provider. The Quality Services are detailed in the subsequent section.

8.6.1 Query-based Quality Service

Since the relational DSMS allows data processing and filtering by relational operators,
this also has to be taken into account for DQ measurement. Parsing and analysis of
queries allows identification of operators that have influence on DQ values in data pro-
cessing steps, such as aggregation, join, or selection. Furthermore, new DQ attributes
which can be calculated by SQL expressions, can also be inserted by rewriting the ini-
tial query. For that reason, in the initialization phase of the DSMS or when registering
a new query, the Query-based Quality Service rewrites the continuous queries. These
queries are executed by the Data Processor of the DSMS and process DQ information
in stream elements. By this, we enable the system to handle data streams and quality-
affine data streams in the same way. For instance, if the number of Car-2-X messages
used to calculate the average speed for a road is relevant for DQ measurement, an SQL
Metric speed datavolume would be defined for the attribute speed. Analogue to the
example from Figure 8.4, a variable count and an SQL Mapping COUNT(#) are defined,
which denote how the query should be rewritten to calculate the value of an attribute
SpeedDatavolume. Based on this metric the original query Q1 (see Listing 8.1) would
be rewritten to a query Q2.

Listing 8.1: Query rewriting example

Example 8.1 (t)
Q1 : SELECT RoadID , AVG( Speed )

FROM message
GROUP BY RoadID

Q2 : SELECT RoadID , AVG( Speed ) ,
COUNT(Speed) AS SpeedDatavolume DQ
FROM message
GROUP BY RoadID

8.6.2 Content-based Quality Service

In contrast to the rewritten queries, this service is executed as data stream elements
arrive and when corresponding metrics and dimensions are available. The Content-
based DQ Service computes DQ values based on data values in the stream elements’
fields. These calculations are based on the evaluation of semantic rules of Constant
Metrics and Semantic Metrics in the ontology. The rules are expressed by mathematical
expressions using the name of attributes as variable identifiers. The total results of
the calculations are inserted into the corresponding DQ attributes. The Semantic
Metrics also allow defining rules using multiple attributes from one stream element.
Equation 8.1 exemplifies a semantic rule that has been defined to identify speed values
below or above reasonable bounds.

SpeedConsistencydq(Speed) = 0 > Speed ∧ Speed ≤ 280 (8.1)
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Figure 8.6: Illustration of User-defined Operations

8.6.3 Application-based Quality Service

The Application-based Quality Service provides an interface for user-defined function-
ality to add DQ values to every data stream element. This allows the definition of
arbitrary user-defined DQ assessment methods (as long as they can be coded in Java).
To take into account the complexity and unknown parameters of user-defined opera-
tions, the evaluation of DQ is dedicated to the particular application. For instance,
a data mining classification algorithm could provide its accuracy (i.e., the correctly
estimated elements compared to all classified elements) as DQ attribute. Figure 8.6
sketches the application of a user-defined operation: A Map Matching algorithm ex-
pects GPS coordinates as input and matches these to the corresponding road of a road
network. Besides the matching result, the user-defined function also provides quality
information according to its computations and configuration, respectively.

8.6.4 Data Quality Monitor

The DQ monitor observes the quality of the processed stream objects, and invokes
bound actions and corresponding counteractions as required. Hence, it implements two
of the steps in the DQ methodology from Section 8.3, namely the Analysis and the
Improvement phase. In the example from Section 8.5.2, the number of C2X messages
available in a time window, represented by the DQ value dq car2xno datavolume will
be monitored. For each stream object, the semantic rules are evaluated in the same way
as the semantic rules used in the Content-based Quality Service. The only differences
are, that the resulting values are not added to a stream element and that the rules must
evaluate to true or false. If a rule returns true the corresponding bound is regarded
as violated and a violation counter is increased. The incubation value determines how
many consecutive violations are tolerated before an action is taken. When the maximum
incubation value is reached, a method (e.g., addMobilePhones) is executed whose name
has also been defined as bound action in the ontology together with the DQ bound.
The method is invoked using reflection in Java. When the rule has not been violated
as many consecutive times as the incubation value determines, the specified method
for the counter action (e.g., removeMobilePhones) is executed in the same way as the
bound action.

The framework has been implemented on top of the Java-based DSMS Global Sen-
sor Networks, which has already been used for the implementation of case studies in
Chapters 6 and 7. In the following, we will briefly present the implementation of the
described components for the GSN system.
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8.6.5 Proof of Concept

GSN comprises a flexible architecture: wrapper components are used to abstract from
data sources, and virtual sensors are applied to combine data processing and filtering.
Based on the configurations the system arranges all virtual sensors in a dependency
graph, which determines the data flow of stream elements. We described GSN and its
components in detail in Section 6.2.5. To take into account DQ processing, the semantic
descriptions for the DQ assessment are loaded from the ontology at system start. Based
on this information, the virtual sensor configurations are rewritten recursively, including
the queries and the output structure of each virtual sensor in the dependency graph.
Aside from the offline DQ assessment that is rewriting the virtual sensor configurations,
the evaluation of semantic rules and the interface for user-defined operations has been
implemented into the Java base class for all virtual sensors. The extension allows
adapting the output structure of stream elements and enables online DQ evaluation of
rules by a math expression parser. Likewise, it provides an option to contribute DQ
values to every stream element from user code.

8.7 Evaluation

The evaluation of the DQ framework was carried out to test several aspects. First, we
aim at a proof of concept in the domain of traffic applications to show the usefulness and
adaptability of the system. For this, we used the queue-end detection scenario presented
in Section 6.2. Second, it has to be demonstrated, that the framework does not influence
the real-time processing capabilities of the DSMS. Therefore, the CPU usage, memory
consumption and time complexity of the DQ framework has been examined. Also,
the effectiveness should be demonstrated: we varied the source quality of the data
and tested, if the changes have been reflected in the derived DQ values of the output
streams. Finally, we evaluated the DQ handling in two additional case studies in a
second and totally different application field, namely health monitoring, to show the
flexibility and adaptability of the framework.

8.7.1 Case Study Queue-end Detection

Queue-ends should be detected with high reliability as otherwise road users will ignore
the information if there are too often false positives. As the DQ of the real-time mes-
sages may fluctuate due to the issues discussed in Section 8.5.1, e.g., caused by measure-
ment inaccuracies, low data volume, outdated information, missing values, misleading
information, or inconsistencies, the reliability of the results of the data processing can-
not be ensured at all times and in all aspects. It is desirable to disseminate only those
messages to road users that correspond to a high level of DQ. Therefore, an overall
confidence value based on multiple DQ values is calculated, which reflects the reliabil-
ity of the queue-end estimation. Road users can then configure an individual filter such
that they receive only queue-end messages above a certain confidence level. We already
described the steps of the queue-end detection scenario and their implementation in
GSN in detail in Section 6.2. For each of the steps we identify DQ dimensions which
influence the overall reliability. The DQ ontology was extended to model the required
DQ dimensions and metrics for this scenario. In Figure 8.7, the DQ dimensions for all
components are shown. As an example, we describe the DQ dimensions of the Car-2-X

Wrapper in more detail in the following.
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Figure 8.7: Data Flow of the Queue-end Detection Scenario

In real life, the inaccuracies introduced by the speedometer and the acceleration
sensor have to be considered which we do in the simulation by introducing a statistical
measurement error. The DQ measurement for these values can be based on general
statistics or legal requirements (e.g., a speedometer must have an accuracy of 90% in
the EU). Therefore, we use constant DQ metrics here. An important DQ dimension
especially in real-time applications is timeliness. A timestamp (TS) is attached to each
incoming message which will be used to calculate the age of the messages in the system.
This is computed by an SQL DQ Metric. The data fields SPEED, ACCEL, LNG, and
LAT will be assessed with a Semantic DQ Metric that calculates the DQ value using
semantic rules for the dimension consistency. The rules express the reasonableness
and rationality of field values, and model domain-specific integrity constraints. The
consistencies for the fields LNG and LAT are measured according to restrictions of the
geospatial boundaries in the road network. The total confidence value, which should
indicate the reliability of the predicted hazard in the disseminated message, is handled
as a common DQ dimension. It is also calculated by a Semantic DQ Metric and rule
for which Equation 8.2 over various DQ values is defined in the ontology:

DQ Confidence =
1

16
· (2 · (1− (1− e− 1

400 ·DQ TS Timeliness))

+ 2 ·DQ Sectionno Accuracy + 2 ·DQ Linkno Accuracy

+ DQ AvgSpeed Accuracy + DQ AvgAccel Accuracy

+ DQ AvgSpeed Consistency + DQ AvgAccel Consistency

+ (1− e− 1
5 ·DQ AvgSpeed DataVolume) + (1− e− 1

5 ·DQ AvgAccel DataVolume)

+ DQ TailendX Accuracy + DQ TailendY Accuracy

+ 2 ·DQ Classtailend Accuracy

(8.2)
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The confidence formula is dependent on the application scenario and domain and
can therefore be easily adjusted by changing the corresponding element in the ontology.

Results

After adapting the DQ model to include the DQ dimensions and relationships for
the present data stream application, we ran traffic simulations on the artificial road
network of 5 km length presented in Section 6.2 and processed the data created by
the simulation in the GSN system with the components described above. The volume
of vehicles is set to 3000 vehicles per hour. 10% of the vehicles were equipped with
V2X communication technology. Each simulation run had duration of 30 minutes. The
experiments were executed on a machine with 8GB main memory, a 2.4GHz Intel Core
I5 dual core processor, and Windows 7 64bit operating system. The first simulation
run is considered as a reference run using the parameters and setup as described before.

Effect of DQ Changes in Derived DQ Information and Confidence Values

To assess how accurate the DQ information and the resulting confidence value reflect
changes in the quality of the processed data, we simulated these changes in the data.
First, we evaluated the effect of changes in the data volume of the incoming data on data
quality factors by varying the sampling rate for the message wrapper. In Figure 8.8
the varied sampling rate (1.0 means 100% elements are forwarded, 0.25 means 75%
of the elements are randomly dropped) and its influence on the data volume quality
dimension for the average speed of the Integration & Aggregation component are shown.
The sampling rate directly influences the data volume as data is dropped and hence
less data is forwarded and aggregated, subsequently. Obviously, an average speed value
for a road section is more accurate the more data (i.e., messages) is used to calculate
it. Hence, the data volume is an important DQ dimension to rate the average speed.

The influence of this DQ factor is also reflected in differences in the varying confi-
dence values (cf. Figure 8.9). As this DQ factor has only a weight of 1

16 in the overall
confidence value, the difference is not very significant.

In a second experiment we compared accuracies of positions and their influence on
the overall DQ. We varied the error of positioning for the messages using a normal
distribution for GPS localization accuracy with a deviation of 5 meters (which is the
case for Floating Car Data, FCD) and cellular network localization using a deviation
of 75 meters (which is the case for Floating Phone Data, FPD). This should have an
impact on the map matching accuracy and of course also on the confidence values.
Figure 8.10 shows the accuracy and confidence values for the two different cases with
increasing message amount. It is easily observable, that the accuracy and confidence
value of map matched messages using FCD positioning are both higher than the values
for messages with FPD positioning. The difference for the map matching accuracy is
higher, because again the confidence value is composed of several DQ values and the
map matching accuracy influences it only with 2

16 .

System Performance

One crucial requirement for the extension of a real-time data processing system is
that the DQ assessment should not, or only slightly, influence the system performance.
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Therefore, we did several experiments comparing simulation runs with and without DQ
assessment.

Figure 8.11 shows the average timeliness for each virtual sensor of the scenario
presented in the previous section. The timeliness is the absolute time between the
creation of an element and its processing in the sensor. For this experiment we used
a window size of 30 seconds and a sliding step of 10 seconds. The diagram shows the
fast processing time of elements in the system. The high increase in timeliness can be
explained by the windowing (the average timeliness of elements in the window is 15
seconds).

We were also interested whether a DSMS using the DQ framework requires sig-
nificantly more CPU power or main memory than a DSMS without DQ framework.
Figure 8.12 shows, that the CPU usage is only higher during the initialization phase
of the system. During initialization, the ontology is loaded and DQ information is pro-
cessed by a reasoner. Also, the query rewriting is in this phase. After the initialization
phase no substantial difference can be noticed.

The same applies also for the memory consumption (cf. Figure 8.13) which is
significantly higher during initialization due to loading the ontology. However, at the
end of the simulation run the amount of memory is about the same in both situations.
We assume that the slow decrease of the memory consumption is caused by the Java
VM Garbage Collection.

Effect of Data Quality Monitoring and Control

The monitoring of quality values is important to take counter measures when data
quality is insufficient for reliable results. On the other hand, the performance of the
system has to be kept up. To see, how effective the DQ monitoring and the corre-
sponding actions can be used, we monitored the number of CoCar messages aggregated
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to average and count values for data mining in one time window (cf. the example in
Section 8.5). This data quality value is important as it reflects how accurate the aggre-
gation results are. The more data is aggregated, the better reality can be approximated
and in conclusion a better estimation of the current traffic situation can be made. For
this experiment, we varied the penetration rate (meaning the percentage of CoCars in
the overall traffic) in the traffic simulation. In the first 1000 seconds of a simulation
run 5% CoCars are simulated. After that time, the penetration rate is decreased to
1%, such that after that point in time less CoCar messages are expected.

We defined a DQ Bound with a rule which evaluates to true when less than 50
CoCar messages have been observed in a time window. When the DQ Monitor observes
that the rule has been “true” for five consecutive times, additionally, data from mobile
phone positioning is integrated, aggregated, and fed to the data mining. For the mobile
phone positioning we simulated the position of 100 phones in the traffic application
simultaneously and calculate the speed of the mobile phones from two consecutive
positions of each mobile phone in the DSMS (in detail described in (Geisler et al.,
2010)). These speed values and the number of mobile phone observations are also used
in the aggregation and mining process. When the number of CoCar messages in the
aggregation time window is greater than 50 (i.e., the rule is evaluated to “false”) for five
consecutive times, mobile phone data is no longer acquired and again only the CoCar
messages are used in the aggregation to save performance and communication costs.
Figure 8.14 shows that the data mining accuracy (number of true positives and true
negatives divided by all classified elements) is slightly higher, when mobile phone data
is included in periods, where only a low number of CoCars is available. On the other
hand, accuracy is not influenced when enough CoCar messages are available. Mobile
phone data is used from the beginning as only few cars are in the network in the first 15
minutes. After approximately 900 seconds, there are enough CoCar messages such that
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mobile phone data is turned off. After about 1200 seconds, the decreased penetration
rate shows an effect and the mobile phone data is used again in the data mining process.

The confidence values for the run with switching mobile phone data on and off are
up to 3% lower and more fluctuating than in the run without mobile phones. This can
be explained by conflicting data quality value changes. On the one hand data mining
accuracy increases when mobile phones are added; on the other hand, other values,
such as the accuracy of matched positions and speed, are lower because, mobile phone
positioning and the resulting computed speeds have also a lower accuracy.
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8.7.2 Case Study Traffic State Estimation

We demonstrated the usefulness and flexibility of our framework in a second case study
which utilized the scenario of traffic state estimation (cf. Section 6.3). The traffic
simulation was run on a real map (a part of the city of Düsseldorf). We further
extended the ontology by additional instances for this second case study. In line with
the queue-end detection scenario, an overall confidence value for the information was
calculated. The results were visualized in a real-time web application, depicted in
Figure 8.15, showing the most important values of the DQ assessment during runs of
the traffic simulation.

8.7.3 Case Studies Health Monitoring

We applied the data quality framework to the domain of health monitoring in the
context of the HealthNet project (cf. Section 7.1) and the MAS project (cf. Section 7.2).
We present the implementation and the results of the evaluation of both in the following.
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Figure 8.15: Visualization of DQ Information for the Traffic State Estimation Scenario

Evaluation in the HealthNet Project

As mentioned in the application development description of this case study, we replayed
the data of five runners from the Lousberg run 2011. After the replay we evaluated
first the consistency of the heart rate. We plotted the heart rate quality against the
position to get a first visual impression of how many values were in acceptable ranges
and how many were not. Furthermore, we wanted to know if there are certain sections
on the track which cause the quality of the heart rate (due to bad contact of sensors)
to drop. The heart rate consistency is represented by a color scale between green (light
green represents 100%) and red (light red represents 0%). Figure 8.16 shows the results
for two runners.

We can derive several observations from the figures. First, the quality range of
the heart rate value differs a lot between the runners. Apparently, the Runner 1 had
much better sensor contact than Runner 2. This let us doubt that further investigation
into the emergency application based on this data is fruitful the data are not reliable
enough to for example train an algorithm to detect an overload situation. Furthermore,
from the data we see that nearby the start / finish area the signal was very good for
both runners, because they moved only slowly waiting for the start or recovering after
the run. Furthermore, the heart rate consistency of both runners also drop when they
reach steep bumpy downwards sections on the track. Steep upwards sections do not
seem to make a difference. This may be explained by more movement and higher speed
when running downhill. Hence, we also analyzed if the heart rate quality is related
to the speed of the runner. We took Runner 1 as an example. Figure 8.17 shows the
relationship between heart rate consistency and speed.

The comparison of both lines shows that there is some correlation between speed
and heart rate consistency. It can be seen that a higher speed results in lower heart rate
consistency and the other way around. Especially in the extreme situations (such as
standing around beside the track, going steep uphill or downhill) this can be observed.
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Figure 8.16: Heart Rate Consistencies of the Two Runners
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8.7.4 Evaluation in the MAS Project

Our approach to estimate the data quality in the MAS project tries to measure a
“regularity”: it calculates the difference of two consecutive sensor measurements of PPG
values. If the average difference over a window of 50 elements is high, this indicates low
data quality. This rule can be expressed by the formula already detailed in Equation 7.1
in Chapter 7.

Having a close look at Equation 7.1, it gets apparent, that we need to window
the incoming data twice. First, we need a window to get two consecutive PPG values
and calculate the difference between them. Second, we need a window of 50 elements
for the average calculation. The first sensor, Calculate PPG Difference, is used to
implement the first windowing of two elements as described before to calculate the PPG
difference from two consecutive readings. The second sensor technically just forwards
the data and the two DQ dimensions DQ PPG DATAVOLUME and DQ PPG DIFF AVERAGE

are introduced here.

In the last sensor, the consistency is calculated as defined in Equation 7.1 and
defined in the ontology as a Semantic Metric. The second window of 50 elements
required for the final calculation of the consistency is implemented using the feature of
defining a window in the ontology for analysis purposes (as described in Section 8.5.2).
The instantiation of the windowing in the ontology is depicted in Figure 8.19.

Results

We tested the health monitoring scenario using real world data recorded with the
oximeter device over a time period of about 40 seconds. In this time, 2990 PPG
measurements have been produced, which results in an average data rate of about
100 elements per second. At the beginning of the measurements the finger with the
device was held still and at the end (after about 2250 elements) the finger was moving
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Figure 8.19: Ontology Extended by Instances for Windowing in the Health Monitoring
scenario

which should result in bad consistency values as the measurements are no longer as
regular as they are expected to. The results of the consistency assessment are shown
in Figure 8.20. The evaluation period is extremely short, but this is a great example to
show how fast our framework is able to detect decreasing (and likewise increasing) data
quality. With only a little marginal delay, which is also attributed to the windowing,
the irregularity is detected and the consistency degrades rapidly.

8.8 Conclusion

In this chapter, a flexible, holistic DQ framework for relational DSMSs has been pre-
sented. The framework is based on our DQ management methodology for DSMS.
Existing methodologies were not applicable to the data stream setting, as they do
not consider that DQ assessment, control, and improvement has to be continuous and
automated as much as possible. We could show that due to the definition of DQ di-
mensions, metrics, and mappings to data streams and their attributes in an ontology,
the DQ framework is very flexible and easily adaptable to different applications, tasks,
and domains. We used the framework to evaluate parameters and their influence on
the overall result of the applications and it turned out, that both, simple and complex
DQ metrics, can be implemented. The three-fold approach for measuring DQ gives
the developer many options for DQ assessment, even custom code can be used to mea-
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Figure 8.20: Consistency Measurements for the Health Monitoring Case Study

sure quality parameters. Furthermore, we showed that DQ management reduces the
performance of the system only marginally, which is very important for DSMSs. The
smooth integration with the DSMS by handling DQ values as the other values in the
stream element, is beneficial as DQ values can be reused in continuous queries and
the DQ management can also be turned on and off as required. However, the imple-
mentation of the framework is in some aspects dependent on the underlying DSMS. In
particular, the decoupling of the query rewriting component from the specifics of the
system and extraction to a modular library could help to proceed towards a general
solution. For future work, other query dialects and operators could be considered by
using inheritance and plug-ins for the rewriter.
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Chapter 9

Real-time Map Matching

In Chapter 5 we introduced an evaluation framework for data stream applications and
implemented it for two case studies from the domain of C-ITS in Chapter 6. In this
chapter we will use it to evaluate a new map matching algorithm as a problem specific
to traffic applications.

Map matching is the basic process to map a measured geographic position to a road
network. Amongst others, map matching is crucial for traffic applications based on
V2X applications, such as traffic state estimation, or driver assistance systems. V2X
communication can enable traffic applications or improve their quality, but it raises
privacy concerns and might also increase communication costs. Thus, map matching
methods which require frequent position updates or which allow to build a trajectory of
the car, are not applicable in this context. In addition, map matching and data analysis
have to be done in real-time which means that only a minimal amount of data can be
used for map matching. Depending on the application, also a high amount of positions
has to be matched in a short period of time which also demands for a very efficient
algorithm. In this chapter, we present a new topological map matching algorithm, that
incorporates the aforementioned three requirements. These requirements have not been
addressed in combination by algorithms so far. The proposed approach needs only two
consecutive GPS position fixes and the vehicle heading to estimate a position match;
neither a previously matched position or road section nor turn restriction information
are required. First, we are building a set of candidate sections using probabilistic map
matching. From this set, the segment with the highest total weighted score is chosen.
The weighted score is calculated by combining four criteria, taking into account, e.g.,
the angle between the heading of the vehicle and the candidate section heading.

We evaluate the algorithm in the context of the QED and Traffic State Estimation
applications. The evaluation show that the algorithm is robust against changes in po-
sition and heading accuracy, fulfils real-time requirements, and that it has an accuracy
comparable to existing algorithms. In the following the related works of the approach
are presented and compared.

9.1 Related Work

Map matching algorithms can be categorized along multiple aspects. First, online or
real-time and offline or postprocessing algorithms can be distinguished (Levin et al.,
2012; Quddus et al., 2007). Online algorithms map match each position of a vehicle
directly after its creation, while offline algorithms utilize and match the complete tra-
jectory of a vehicle at the end of a trip. Furthermore, algorithms can also be categorized
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according to the degree map information is utilized Quddus et al. (2007). Depending
on how many positions of the trajectory of the vehicle are used, local, incremental,
and global algorithms can be distinguished (Lou et al., 2009; Goh et al., 2012). Local
algorithms only use the current position, while incremental algorithms utilize a small
portion of the trajectory of the vehicle. In contrast, global algorithms take the com-
plete trajectory seen so far in consideration. Geometric MM only considers the shape
of single links (point-to-point, point-to-curve, and curve-to-curve matching). Topologi-
cal MM additionally includes information about the relationship of several links, such
as connectivity, adjacency, and orientation, and also previously matched positions or
links (Quddus et al., 2007; Velaga et al., 2009). Probabilistic MM algorithms(Ochieng
et al., 2003; Zhao et al., 2003) define a region (an ellipse, circle, or other shape) around
a position fix, based on the error of the measuring device. The region is used to iden-
tify candidate sections among which the section with the highest score according to
defined criteria is chosen for position matching (Quddus et al., 2007). Furthermore,
algorithms can be distinguished in the frequency of processable updates. According to
Lou et al. (2009) low-sampling algorithms have updates only once in two minutes or less
frequent, while high-sampling algorithms have one reading every 10-30 seconds. More-
over, algorithms differ in the additional information required besides position fixes.
Some algorithms require the speed of the vehicle, the previous matched position or
link, the vehicle heading, or positioning errors. Also the number of required position
fixes varies, where most of the algorithms require two fixes. More advanced approaches
use more complex techniques such as Kalman Filters, Fuzzy Logic, neural networks,
particle filters, or Hidden Markov Models. Many of the proposed algorithms are com-
binations of multiple MM methods, e.g., topological algorithms using probabilistic MM
or geometric MM as initial matching method (limiting the sections or nodes to finally
be matched to). As we are targeting online map matching of positions attached to the
stream elements, we review some current online algorithms in Table 9.1.

Table 9.1: Categorization of Different Online Algorithms

Work Algorithm Type
& Used Information

Local /
Global
/ Incre-
mental

Low /
High
Sam-
pling
Rate

Online
/ Of-
fline

Lou et al.
(2009)

Geometric and Toplogical.
Uses temporal and speed con-
straints, candidate sections,
shortest path distance, fixed
windowing of the trajectory,
and weighted costs

Global Low Online,
incre-
mental
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Table 9.1: Categorization of Different Online Algorithms

Work Algorithm Type
& Used Information

Local /
Global
/ Incre-
mental

Low /
High
Sam-
pling
Rate

Online
/ Of-
fline

Liu et al.
(2012)

Based on simplification of maps
and road network (use only in-
tersection and start and end
points). Use also only two
points and weights: use inter-
section of Euclidean distance
radius and topological distance
to determine candidate sec-
tions for next match. Can-
didates are ranked by calcu-
lating weighted measures us-
ing projection distance between
second fix and link, angle be-
tween the line of the two fixes
and the link, traversing dis-
tance from start point of the
link to the line between the
fixes, and traversing angle be-
tween the line between the fixes
and the line between the start
point of the link and the second
fix.

Local High
Sampling
Rate (up
to 30s)

Online

Quddus
and Wash-
ington
(2015)

Topological. Weight-based al-
gorithm using the A* algorithm
for shortest path calculation
between two points. Weights
perpendicular distance, differ-
ence between vehicle heading
and link direction, distance
along the shortest path, and
distance along trajectory. It
considers link connectivity and
turn restrictions at junctions.

Incremental
/ Global

High
(1-60s)

Online
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Table 9.1: Categorization of Different Online Algorithms

Work Algorithm Type
& Used Information

Local /
Global
/ Incre-
mental

Low /
High
Sam-
pling
Rate

Online
/ Of-
fline

Hunter
et al.
(2014)

Topological. Uses a Bayesian
probability function for the
current vehicle state with prior
knowledge about the previous
trajectory. For an observed
GPS point multiple current
candidate states for the vehicle
are calculated. For each state
a number of candidate paths
to reach this state are calcu-
lated using the A* algorithm.
A probabilistic framework with
a discrete filter is used to deter-
mine the most probable trajec-
tory.

Global /
Incremen-
tal

High (1s)
& Low (1
min)

Online

Goh et al.
(2012)

Utilize an online Hidden
Markov model. Use proba-
bilistic weights for GPS coor-
dinates, vehicle speed, speed
limit, road width, inferred
vehicle heading directions, and
topological constraints

Incre-
mental
with a
variable
sliding
window.

High (3s)
& Low (5
min)

Online

In the following we will discuss pros and cons of the different solution types.

9.1.1 Discussion

For the map matching in a streaming application definitely an incremental online al-
gorithm has to be found as we cannot wait until the complete trajectory of the vehicle
has been seen. Hence, offline and global algorithms are not suitable for our case. The
sampling can vary a lot depending on e.g., the degree of traffic volume, but we focus
more on techniques which can cope with high sampling. Many algorithms use the ve-
hicle heading as an additional information, but the value of this information depends
on its source. If the vehicle heading is determined based on the estimated positions, it
decreases the accuracy of the final match. The usage of a dead reckoning (DR) system
or the GPS heading improves this situation. Also additional topological information
such as disallowed turns on intersections proved to be beneficial in reducing the set of
possible links to which a vehicle may have driven.

Geometric solutions are quite suitable for online map matching as they do only
require one or two position fixes, are easy to implement, and are quite fast. However,
they have a very low accuracy as they lack additional topological information. Topo-
logical algorithms use more information but may have problems in situations where
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sampling is low and at intersections. Probabilistic methods have a better accuracy as
they consider more information and build up a set of candidate links or sections by
using a confidence region. Building this region is costly in terms of time and hence,
can only be considered for a subset of the positions to be matched, such as at junctions
or at the start (Ochieng et al., 2003; Greenfeld, 2002). The latter algorithms mostly
require to know the previous link which is not possible in our scenario. We do not
have any prior information about the vehicle. The same is true for many of the more
complex algorithms where prior information is required. Hence, we came up with our
own simple weighted probabilistic approach which only utilizes two consecutive posi-
tion fixes and the vehicle heading. We will detail the algorithm and its evaluation in
the remainder of this chapter.

9.2 Real-time Map Matching Algorithm using Two Posi-
tions

The proposed algorithm consists of four major consecutive steps as depicted in the
overview in Figure 9.1. Each step will be detailed in the following.

V2X
Message

Build
candidate
section set

1
Calculate
weighted

scores

2
Select sec-
tion with

highest score

3

Match to
selected section

4

Matched
Position

Figure 9.1: Map Matching Process

9.2.1 Input

The input of the algorithm is taken from a V2X event message sent by a vehicle.
There are various standardized message formats as described in Chapter 2. Usually,
these message formats can be adapted to include additional required information. Our
algorithm trusts, that the event message includes two consecutive positions P1 and
P2 (measured using GPS or cellular network positioning) and a heading hDR from a
calibrated in-vehicle dead reckoning (DR) system using, for example, a gyroscope and
an odometer. The integration of GPS positions and the DR heading, is beneficial as
it minimizes the errors inherent to both technologies (Quddus et al., 2003; Ochieng
et al., 2003). The integration of GPS positions and DR heading can be done using
Extended Kalman Filters (Zhao et al., 2003) and is used today in some high-end in-
vehicle navigation systems. In our approach, we also use both pieces of information to
complement each other in the score calculation for candidate sections. We match the
second of the two consecutive position fixes, P2, to road network, while P1 is required
in the decision process for the section to match to. One specificity of the input is, that
the processed event messages do not carry any information about the identity of the
vehicle, i.e., it cannot be determined, which message has been sent by which vehicle.

9.2.2 Select Candidate Sections

Efficient map matching algorithms do not consider all available sections of a road
network, but restrict their computationally complex search to an initial and potentially
smaller set of candidate sections sc. When there is no trajectory information available,
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a first set of sections has to be found, one section has to be selected from this, and
the position fix has to be matched to this section. This process of matching the initial
position is termed initial map matching (Quddus et al., 2007; Velaga et al., 2009;
Ochieng et al., 2003). Algorithms which are based on the creation of a trajectory, use
prior matches and the trajectory for the map matching of subsequent position fixes of
the same vehicle. As the provided V2X messages do not include the vehicle’s identity,
our algorithm does not use the trajectory of a vehicle as an input to the map matching
process. Hence, our approach is similar to initial map matching methods used in other
approaches. The selection of candidate sections and can be regarded as a projection
mmi over a set of sections s and is defined as follows:

mmi : s→ sc (9.1)

The selection of candidate sections heavily influences the final map matching accu-
racy. If the section the vehicle is actually travelling on, is not in the candidate set, then
the position will definitely be matched with a greater error (dependent on the size of
the sections) and further matching steps will base on this wrong result. In our work, we
compare two methods identifying the candidate sections - Closest Point Identification
and (CPI) and Error Region Identification (ERI).

Closest Point Identification

One method to select a first set of sections is to first find the closest node (start or
end point of a link) calculating the perpendicular distance to the position fix. All
road sections that are connected to this node – including the section the node is on –
are included in the candidates set sc (Quddus et al., 2003; Greenfeld, 2002). Though
this method is easy to implement and efficient, because only a subset of points in the
network have to be considered, it is not very accurate as this method depends very
much on the length and shape of the sections. Hence, we adapted the method and
calculate the distance between all shape points of the sections and the position fix.
Every section which is connected to a shape point Ai is put in the set sc. This initial
map matching method also has several drawbacks. First, it has to go through all the
links of the network and calculate for each of the points the distance to the position
fix, which might pose a performance problem, depending on the size and shape of the
sections. Second, the MM accuracy may vary a lot depending on the accuracy of the
network representation. Finally, sections with many shape points will be preferred
over sections with fewer shape points by the MM method. An advantage is the easy
implementation.

Error Region Identification

To overcome the drawbacks of the CPI method techniques from probabilistic map
matching have been proposed for the candidate sections identification (Quddus et al.,
2007; Velaga et al., 2009; Ochieng et al., 2003). In this method, an error rectangle,
ellipse, or circle, whose size is based on the error of the positioning hardware, is drawn
around the position fix P1. Depending on the approach, every section which intersects
with, is tangent to, or is inside this geometrical error shape, will be included in sc
(Velaga et al., 2009; Quddus et al., 2007; Ochieng et al., 2003). In our approach, we
use a circular region with a radius of 3-drms (distance root mean square error) as it
is expected, that 99% of the actual positions of GPS measurements lie in this radius
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(Quddus et al., 2007). In the evaluation of the algorithm in Section 9.4, we assess both
candidate section identification techniques as part of the algorithm and compare the
results. In the ERI method we use the CPI method as a fallback solution, if no section
lies within the error region.

9.2.3 Weighted Score Calculation

The next step in the map matching process is to select the section for which we have the
highest confidence to be correct. This confidence value is determined by using a set of
four weighted scores: (1) similarity in direction, (2) proximity, (3) segment intersection,
and (4) relative position. None of them are sufficient for themselves to determine the
best candidate section, but have to be combined. These criteria have been proposed
by Quddus et al. (2003) and we will summarize them in the following.

Score for Direction Similarity

A good indicator for a correct match to a section is a high similarity in the direction of
the vehicle and the section (Greenfeld, 2002). For this, the heading of the vehicle and
the heading of the section have to be determined. As the vehicle heading calculated
from two consecutive GPS positions is not reliable enough (Quddus et al., 2007), we
use the heading measured by the DR system determined at the second of the two
consecutive position fixes. To have a common reference point for both, the vehicle
and the link heading, the azimuth is calculated for both of them. The azimuth is the
angle between the northing and the direction vector of the corresponding object. We
calculate the difference between the two azimuths to determine the direction similarity:

∆θ = θDRi − θsj (9.2)

where θDRi is the azimuth of the vehicle direction for the V2X message i and θsj
is the azimuth of the candidate section sj . The smaller the angle, the more similar
the two directions are. We normalize the difference to angles between [−180◦; 180◦] as
the maximum value for the angle is the complete opposite direction which would be
−180◦ or 180◦, respectively. We use the following normalization function to produce
∆θ′ (Quddus et al., 2003):

∆θ′ =


∆θ −180◦ ≤ ∆θ ≤ 180◦

360◦ −∆θ ∆θ ≥ 180◦

360◦ + ∆θ ∆θ ≤ −180◦
(9.3)

The score for direction similarity is then calculated as follows:

SDir = WDircos(∆θ
′) (9.4)

The cosine is used to give more weight to smaller values, and finally to produce
negative values for more than 90◦ difference (Greenfeld, 2002; Velaga et al., 2009). It
produces values in the range of [−1; 1]. WDirection is the relative weight given to this
score.

Score for Proximity

Another important factor in determining the best candidate section, is the proximity of
the position fix to this section. The closer the section to the position, the more likely,
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that it is the correct candidate section (Greenfeld, 2002; Velaga et al., 2009). Hence,
we calculate the perpendicular distance of each candidate section to the position fix,
i.e., the smaller the distance, the higher the confidence, that it is the correct section.
This is expressed by the following formula for the proximity score:

SProx =
WProx

D
(9.5)

where D is the perpendicular distance and WProx is the weight for this score. If the
perpendicular line does not intersect with the section curve, the distance to the nearest
section node is calculated. During the evaluation we noticed that, if the perpendicular
distance from the position fix to the candidate section is very small, the value of the
score gets very high in comparison to the other scores. Hence, we use the following
cases for D:

D =

{
1 D < 1

D otherwise
(9.6)

Score for Segment Intersection

In our approach, we only have the two position fixes P1 and P2 available. These two
positions indicate a kind of mini trajectory of position fixes (not matched positions),
which can also be compared to the candidate sections. The intersection of this trajec-
tory with a section curve also leverages the confidence, that it is the correct section
(Greenfeld, 2002; Quddus et al., 2003). This confidence is expressed in the size of the
the intersection angle. We define the score as follows:

SIntersec = WInterseccos(∆β) (9.7)

where ∆β is the inner (acute) angle between the trajectory curve and the section
curve and WIntersec is the weight for this score. The direction of the trajectory curve
is not considered, as the heading from the DR system is more accurate.

Score for Relative Position

Finally, Quddus et al. (2003) point out, that the angle between the closest node or shape
point of a candidate section and the position fix is also an indicator, if the section is
the actual section the vehicle is on (Quddus et al., 2003; Ochieng et al., 2003). The
score is calculated as follows:

SRelPos = WRelPoscos(α) (9.8)

where α is the angle between the position fix and the candidate section curve and
WRelPos is the weight of this score.

9.2.4 Section Selection

The total score for each candidate section is calculated by simply summing up the four
scores (Quddus et al., 2003):

TS = SDir + SProx + SIntersec + SRelPos (9.9)
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Former research showed, that more weight has to be given to the heading compared
to the relative position (Quddus et al., 2003; Greenfeld, 2002). In turn, the relative
position should be more emphasized than the segment intersection and the proximity
criteria. The last two are both considered as proximity scores and hence, get the same
weight. Briefly, this relationship of the weights can be summarized with (Quddus et al.,
2003):

WDir = aWProx

WRelPos = bWProx

where a and b > 1 are corresponding weighting factors to balance the relationship.
These are dependent on the network and the used sensors and have to be fixed using
sample data (Quddus et al., 2003). Finally, the candidate section with the highest score
is used to match the position fix P2 to.

9.2.5 Determine Vehicle Position on Section

After the target section has been determined, the position is matched to this section us-
ing simple geometrical matching. This is achieved by doing a perpendicular projection
of the position fix to the section. If the perpendicular does not intersect the section,
again the closest node of the section is used as the match. This simple matching is
accurate and efficient enough for our purposes. There exist more complex matching
methods (Quddus et al., 2003), but have not been considered in this approach.

9.3 Implementation & Evaluation Setup

The efficiency and effectiveness of the map matching algorithm is evaluated in the two
C-ITS applications, namely QED and TSE (cf. Chapter 6). Map matching is a crucial
aspect in the aforementioned scenarios, as we aggregate the data not only over time,
but also over location. If a high percentage of positions is matched incorrectly, this
may mislead the data stream mining algorithm, as data, which is actually not related,
is aggregated to one section. Finally, this would result in a wrong information about
the section, e.g., an undetected queue-end or a wrong traffic state for a section. Hence,
we also compared the overall accuracy of the applications using the proposed map
matching algorithm and using a very simple map matching technique.

9.3.1 Evaluation Setup

As mentioned before, we utilize the existing evaluation framework to assess map match-
ing algorithm in the context of V2X applications. For this purpose, we added new
virtual sensors and exchanged the original map matching sensor as depicted in Fig-
ure 9.2. The goal is to first determine the ground truth (actual position and section in
the network) and compare it later with the estimated position and section.

We will detail the involved components in the following.

9.3.2 Traffic Simulation

V2X messages are produced by the traffic simulation at certain conditions, for example,
when a vehicle brakes very hard (acceleration below a certain value). For the assessment
of the algorithm, traffic is simulated on two different road networks (one for each
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Figure 9.2: Steps for Map Matching in GSN

scenario). For the queue-end scenario we use the simple, artificial network consisting of
two links in opposite direction and about 5 km long with 100 meter maximum section
length, pictured in Figure 6.3. Both links have two lanes, but on a part of one link the
lanes are merged to one lane to enforce a queue.

For the traffic state estimation scenario an excerpt of a real map from Open-
StreetMap has been imported into the traffic simulation software. The network includes
1394 links, consisting of 7030 sections of 400 meter length max around Düsseldorf. It
is depicted in Figure 6.14.

On both networks traffic is simulated which contains cars as well as trucks (12%).
The percentage of vehicles equipped with V2X software can be configured and is by
default 5%. For each vehicle data, such as current position, speed, and acceleration can
be retrieved in each time step. Each simulation run was executed in real-time, i.e., one
time step equals 100 ms. As the algorithm requires two consecutive position fixes and
the identity of a vehicle is not revealed in an event message, the consecutive positions
have to be included in one message. Hence, in the traffic simulation the current and
the previous position from the time step before are kept for each vehicle in each time
step. The positions are totally accurate, i.e., no positioning error is included and the
current position is used as ground truth in the evaluation of the algorithm. The vehicle
heading is not available in the traffic simulation. Therefore, we emulate the heading in
the DSMS based on the two consecutive positions.

9.3.3 Spatial Database

For the map matching in the DSMS we also need a digitization of a map to match to. As
we use a traffic simulation, the road network simulated on is already available in digital
form, i.e., links are represented in a 2D graph with nodes and lines. Links in VISSIM are
one-directional. Two-directional links have to be represented by two links in opposite
directions. To make more fine granular statements about traffic conditions than on a
link basis, we divide the links in the spatial database into smaller chunks of road sections
of equal size (e.g., 400 meters). For the map matching we implemented a two-level
subdivision. While we need equal sized sections for data aggregation (cf. Figure 9.3(a)),
for map matching a more fine-granular representation of the section curves is required.
On this second level each section is a line between two shape points (cf. Figure 9.3(b)).
That means a first-level section of 400 meters with n shape points (including start and
end point) is further divided into n-1 sections. Both levels are separately stored in two
relations in the spatial database to enhance performance. We will refer to the 1st-level
sections in the following as sections and to the 2nd-level sections as subsections. The
division is done in beforehand not at run-time.

186



A Systematic Evaluation Approach for Data Stream-based Applications

(a) Equal-sized Sections, Stored with Start and End Point Only

(b) Subsections Used for Map Matching

Figure 9.3: Two-level Subdivision into Sections

9.3.4 Ground Truth and Heading Emulation

The V2X messages are received by the DSMS using a wrapper. The data stream
elements produced by the wrapper have the following (simplified) structure:

V2XMessage(Timed, TS, Lat, Lng, PrevLat, PrevLng, Speed, Accel)

where Timed is the timestamp when the element was created by the DSMS, TS is the
actual creation timestamp at the traffic simulation, Lat is the latitude of the current
position fix, Lng the corresponding longitude, PrevLng and PrevLat the longitude
and latitude of the previous position, Speed and Accel are the vehicle’s speed and
acceleration at that time step.

As the goal is to match the positions to sections and links in the road network to
finally aggregate the data related to them, we have to identify the real sections and
links the positions have been measured on. We mentioned before, that the positions
included in the V2X messages are exact as they have been directly retrieved from the
traffic simulation. Hence, we can use a simple perpendicular projection in the DSMS
to identify the correct section and link for both positions in each message in the spatial
database.

Furthermore, we have to emulate the heading which in reality would be measured
by an in-vehicle DR system. There are two possible ways, given the data we have. (1)
With the two exact consecutive positions P1 and P2 at hand, the vector of the line
between them can be used to calculate the heading. (2) When we know the subsection
the current position P2 is located on, we can use the heading of this subsection from
the spatial database. For the same reasons as the DR heading was considered to
complement GPS positions (Zhao et al., 2003; Quddus et al., 2003) the second option
is preferred over option (1). For example, when the two positions do not lie on the same
subsection, the positions’ vector depicted as blue arrow in Figure 9.4 does not represent
the heading correctly, while the subsection vector (red arrow) is what is desired.

After retrieving the corresponding subsection curve from the database the azimuth
is calculated, i.e., the angle between the north direction and the vector. This converts
the heading vector ~AB to a scalar, where A(x1, y1) is the start and B(y1, y2) is the end
point of the subsection. The scalar makes the degradation, required in a later step,
easier. The azimuth is calculated as follows:
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Figure 9.4: Determination of Vehicle Heading

Az ~AB = tan−1 x2 − x1

y2 − y1
(9.10)

To normalize the azimuth to a value range of [−180◦; 180◦] as the worst case is the
opposite direction, the following rules are applied:

Aztotal =

{
Az ~AB + 180◦ (y2 − y1) < 0

Az ~AB + 360◦ Az < 0
(9.11)

Finally, the ground truth values for the two consecutive positions, the link, section,
and subsection, the message has been created on, and the vehicle heading have been
assembled. This information is added as attributes to the produced stream element
resulting in:

V2XMessage(Timed, TS, Lat, Lng, PrevLat, PrevLng,

Speed, Accel, LinkID, SubsectionID, Heading)

9.3.5 Degradation of Positions and Heading

In a simulation study it is of great importance, that reality is approximated as close
as possible to make achieved results useful. Hence, errors inherent to measurement
devices, such as GPS receivers and DR systems have to be integrated into the so
far exact data. This is also a big advantage in simulation studies. Errors can be
varied, i.e., distributions with different types, means, and deviations can be tested and
the influence on the algorithm can be assessed. For this purpose we implemented a
degradation virtual sensor which is retrieves stream elements from the ground truth
sensor in the DSMS.

In a DR system, devices can be error-prone due to several factors, e.g., environ-
mental influences or scale factor errors (Ochieng et al., 2003). Because there are many
factors involved, an appropriate way to model these heading is a zero-mean Gaussian
distribution. The standard deviation can be configured for the virtual sensor in the
XML file, such that this can be varied in the experiments.

For the positions GPS accuracy was assumed by default. This means the error for
both, latitude and longitude, have to be modeled as independent Gaussian distributions.
We assume a maximum error of 7.8 meters which includes 95% of GPS measurements
and results in a standard deviation value of 2.81 for both deviations. This can also be
configured and varied in the virtual sensor. This enables us to also experiment with
other positioning techniques such as positioning in cellular networks. In general, we
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modeled the errors for the DR system and GPS system independently to open up a
greater variety of configuration possibilities.

After degradation the degraded values are also added as new attributes to the
stream element produced by the virtual sensor. The produced stream elements include
all information required for map matching itself and its assessment, i.e., degraded
positions and heading and the corresponding ground truth data.

V2XMessage(Timed, TS, Lat, Lng, PrevLat, PrevLng, Speed, Accel, LinkID,

SubsectionID, Heading, DegHeading, DegLat, DegLng, DegPrevLat, DegPrevLng)

9.3.6 Map Matching

The stream elements of the degradation sensor are consumed by the virtual sensor exe-
cuting the actual map matching for both points P1 and P2. Note, that only the wrapper
and this sensor are necessary when we use real world data. The other sensors are just
for the assessment of the map matching performance. In the map matching sensor the
three stages of the MM algorithm as described in Section 9.2 are implemented. For
candidate selection, both methods, closest point identification (CPI) and error region
identification (ERI) have been implemented. For the CPI method a spatial query is
executed, which gets the start or end point of all subsections with the shortest perpen-
dicular distance to the point at hand. All subsections which include this point are put
in the candidate section set. For the ERI method, also a query on the spatial database
is formulated. In the query, a circular buffer of specified size is built around the point
at hand and retrieves all subsections which intersect with the buffer. If no subsection
intersects, the CPI method is used as fall back solution. The weighting scores to rate
the candidate subsections have been implemented according to the principles in Sec-
tion 9.2 in Java code. We briefly summarize the specifics of their implementation here.
Each of the scores is calculated for each candidate subsection and the current point P2.

• SDir: The vehicle heading is already included in the V2X message. The head-
ings of each candidate subsection are calculated the same way. Finally, for each
subsection the difference between vehicle and subsection heading is calculated.

• SProx: The perpendicular distance from position fix P2 to each subsection is
calculated using a query to the spatial database. If the perpendicular does not
fall onto the subsection, the distance to start and end point are calculated and
the smallest chosen.

• SIntersec: If a subsection and the segment between P1 and P2 do not intersect,
the score is 0.

• SRelPos: The relative position of P2 to the subsection at hand is calculated by
determining the closest end point A of the subsection to the current position
and calculating the azimuth of the segment between P2 and A. The difference
of the azimuth of the subsection heading and this azimuth is the result for this
score. But as we want to have as less accesses to the spatial database as possible,
an alternative calculation was made using the cosine law. In principle, we can
assume, that the three points A, B, and P2, where A and B are the end points
of the subsection, build a triangle (see Figure 9.5).

The length of each side of the triangle can be easily determined based on the
Pythagorean theorem as all coordinates of the points are known. Then the cosine
law can be applied
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Figure 9.5: Calculating the Relative Position Using the Cosine Law

a2 = b2 + c2 − 2bc · cosα (9.12)

and the acute angle is determined by:

α = arccos(
b2 + c2 − a2

2bc
) (9.13)

Determine Position on Section

Once the best candidate subsection has been identified, the position has to be matched
to a point Pm on this section. As mentioned before, a perpendicular projection is
applied. To spare access to the spatial database, we use the coordinates A and B of
the subsection and the position P2 to calculate the relative position r of Pm as follows:

r =
(yA − yP2)(yA − yB)− (xA − xP2)(xB − xA)

(xB − xA)2 + (yB − yA)2
(9.14)

with the following meanings for the values of r:

r



= 0 then Pm = A

= 1 then Pm = B

< 0 then Pm on backward extension of AB

> 1 then Pm on forward extension of AB

> 0 ∧ < 1 then Pm lies between A and B

(9.15)

Finally, the coordinates of the matched point are determined as follows:

xPm = xA + r(xB − xA)
yPm = yA + r(yB − yA)

The coordinates of the matched point are also added as attribute to the stream
element.

9.4 Evaluation

We evaluate the performance and accuracy of the implemented algorithm in the follow-
ing. There are different parameters which can influence the algorithm’s performance
and which we will vary in the evaluation, including:

• Weighting schema

• Candidate section identification method
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• Road network

• Heading error standard deviation

• Position error standard deviation

• Maximum section length

To rate the accuracy of the algorithms we define two metrics.

1. Correct Section / Link Identification: The ratio of correctly identified sec-
tions or links to the overall number of V2X messages.

2. Horizontal Accuracy: Distance between the ground truth position of the vehi-
cle and the matched position in meters, where average, maximum, and minimum
horizontal error are distinguished.

9.4.1 Results

The experiments have been carried out with a default set of parameters for the afore-
mentioned factors. We used as simulation software VISSIM and the Düsseldorf network
as default road network. It comprises 1394 links and 7030 sections with a maximum
length of 400 meters. In the Düsseldorf network we do not distinguish between sections
and link accuracy as the number of links and sections is the same for 400m section
length. The traffic simulation is executed always in the same way with 10000 V2X
messages sent. As the map matching accuracy always stabilized after 2000 messages,
only the first 2000 messages are included in the evaluation. The heading degradation
has a default value of 30◦.

Weighting Schema

The weighting schema defines values for all four scores in the algorithm. The evaluation
aims at finding an optimal combination of weights. Findings in prior research showed
that heading and relative positions are more important than distance or intersection
scores (Quddus et al., 2003). As distance and intersection scores are both proximity
scores, they get the same weight. This results in the following schema, where a, b > 1
are the weighting factors:

WHead = a ·WProx

WRelPos = b ·WProx

a represents the importance of the heading score Shead when compared to the proximity
scores SDist and SIntsec. b represents the importance for the relative position score
SRelPos. We start with base weights a = 5 and b = 2 based on (Quddus et al., 2003).

Ratio of Weights

We first try to find a proper ratio of a to b, to see if the heading score or the relative
position score should have a higher weight. The results with different combinations of
a and b values are shown in Figure 9.6 where the heading degradation is 30 degrees
and Figure 9.7 where the heading degradation is 50 degrees. Both are carried out on
the Düsseldorf road network.
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Figure 9.6: Ratio of a to b with 30◦ Heading Degradation on the Düsseldorf Network

 65

 70

 75

 80

 85

 90

a=5, b=2 a=5, b=3.5 a=5, b=5 a=7.5, b=2 a=10, b=2 a=1, b=1 Simple MM
 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

Weight Configuration

Section Accuracy in % Average Horizontal Error in m

Figure 9.7: Ratio of a to b with 50◦ Heading Degradation on the Düsseldorf Network
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We start with the recommended weights and then increase a and b separately by 1.5
in each step, i.e., the other weight is kept constant and vice versa. Finally, we test how
accuracy and error change, when both weights are 1 (i.e., no weights). We also always
compare with the simple map matching method (i.e., smallest perpendicular distance
to the next link). It can be noticed from the results that the section accuracy does not
vary much when the weight ratio is varied. For both heading degradation values, the
difference is just 1.55% which is 31 sections from 2000. The increase of b with constant
a results in a decrease of the section accuracy and an increase of the average horizontal
error. The increase of a with constant b has only a minor effect on the section accuracy
and causes an increase in the average horizontal error. Based on these results, the ratio
between a and b is optimal for a = 5 and b = 2. Compared with the simple map
matching algorithm the new algorithm provides a significant improvement.

Magnitudes of Weights

After confirmation of the optimal ratio between the weights, we try to find the optimal
magnitudes for the weights. In Figure 9.8 and Figure 9.9 the results of the experiments
with different magnitudes for a and b are presented.
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Figure 9.8: Variation of Weight Magnitudes for 30◦ Degradation and the Düsseldorf
Network

Combinations of a = 3.75, b = 1.5, and a = 2.75, b = 1.1 with a fixed ratio of
a
b = 5

2 are tested and compared with original weights combination and the simple map
matching algorithm.

For 30◦ heading degradation the section accuracy does not really change, while the
average horizontal error decreases with decreasing values. For 30◦ heading degradation
the section accuracy and horizontal error fluctuate and no clear trend is visible. For
both heading degradation values, the combination of a = 3.75 and b = 1.5 provide the
best results. Hence, this combination will be used in subsequent experiments.
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Figure 9.9: Variation of Weight Magnitudes for 50◦ Degradation and the Düsseldorf
Network

Variation of Heading Degradation

We are also interested how the degradation of the heading accuracy influences the
section and link accuracy as well as the average horizontal error. We vary the angular
degree of degradation between 10◦ and 50◦ for the simple network and between 10◦ and
60◦ for the Düsseldorf network. The results of experiments with a = 3.75 and b = 1.5
for the simple network are presented in Figure 9.10 and for the Düsseldorf network they
are presented in Figure 9.11.

Both figures reveal the expected results: with increasing degradation the section
and link accuracies decrease and the average horizontal error increases. It can be
remarked that even with 50◦ or the proposed map matching algorithm degradation
still performs way better in terms of section accuracy than the simple map matching
algorithm. In the simple network it also outperforms the simple algorithm in terms of
average horizontal error, while it is worse for 50◦ and 60◦ degradation in the Düsseldorf
network. The good results of the algorithm in the simple network can be accounted to
the fact that it is less complex than the Düsseldorf network and not so many pitfalls
(such as intersections etc.) are present in this network.

Variation of Candidate Identification Method

As mentioned in Section 9.3 we implemented two different ways to identify candidate
sections: building an error region around the fix (Error Region Candidate Identification,
ERCI) or calculating the closest node (Closest Node Candidate Identification, CNCI).
The comparison of both methods with the simple map matching method is presented
in Figure 9.12. We used the Düsseldorf network for simulation, a = 3.75 and b = 1.5
as weights, and a heading degradation of 30◦.

The results impressively show, that the ERCI method outperforms the CNCI method
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Figure 9.10: Variation of Heading Degradation for the Simple Network
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Figure 9.12: Variation Candidate Identification Method in the Düsseldorf Network

and the simple map matching method in both networks. The bad performance of the
CNCI method can be accounted to the way how links and sections are represented in
the spatial database. As links and sections are unidirectional, the CNCI method picks
the wrong section with 50% chance, because start and end point are just exchanged for
the sections of both directions.

Position Degradation

Depending on the type of positioning system, positions are tracked with more or less
error. The GPS error usually has a standard deviation about 2.81 mfor each coordinate.
We expect the positioning error to have effect on the overall performance of the map
matching. Hence, we experiment with 2.81 m, 4 m, and 6 mstandard deviation for the
positioning error. For degradation we use the Degrade virtual sensor from the QED
and TSE applications, respectively. We again use a = 3.75 and b = 1.5 as weights
and a heading degradation of 30◦. The results for the simple network are shown in
Figure 9.13 and for the Düsseldorf network in Figure 9.14.

From the results we see, that, as expected, the section accuracy decreases with
increasing positioning error. The average horizontal error increases with the increasing
positioning error for the simple network and the new map matching algorithm from
3.66 m for 2.81 m standard deviation to 7.49 mfor 6 m standard deviation. For the
Düsseldorf network and the new Map Matching algorithm it increases from 3.54 m for
2.81 m standard deviation to 7.97 m for 6 m standard deviation. For the simple Map
Matching algorithm a similar trend is observable, but the new algorithm is much more
robust to changes in the positioning error.
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Figure 9.13: Variation of Position Degradation in the Simple Network
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Figure 9.14: Variation of Position Degradation in the Düsseldorf Network
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Variation in Section Length

Finally, we want to know if the length of the sections on the links makes a difference
in section accuracy and average horizontal error. Hence, we varied the division into
sections in the spatial database and made experiments with maximum section lengths
of 400 m, 200 m, 100 m, and 50 m. We used the Düsseldorf network for simulation,
a = 3.75 and b = 1.5 as weights, and a heading degradation of 30◦. The results are
depicted in Figure 9.15.
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Figure 9.15: Variation of Section Length in the Düsseldorf Network

It can be observed that the section accuracy decreases faster than the link accuracy
with decreasing section length. This is explainable when the average section length
is analyzed. For a maxmimum of 400 m the average section length is 18.7 m, while
for a maximum of 50 m the average is 14.6 m. This means, that the average section
length only varies slightly, though the maximum section length has been changed as the
Düsseldorf network seems to include only very small sections. Nevertheless, the section
length influences the section more than the link accuracy while the average horizontal
error decrease is 0.03 mbetween 400 m maximum section length and 50 m maximum
section length.

9.4.2 Evaluation in the ACM GIS Map Matching Cup

To compare our map matching algorithm with other recent algorithms, we participated
in the ACM SIGSPATIAL GIS Cup 2012 (Ali et al., 2012). In the contest the algorithm
was tested on a road network from Washington State, USA with 535.452 nodes and
1.283.540 edges (this corresponds to links and sections in our networks) with their
corresponding geometry (sequence of nodes constituting the link). The algorithm was
run on several real world data sets with varying numbers of GPS readings and high
sampling frequencies (between 1 and 10 seconds). For each correct match contestants
earn a point weighted by the confidence of the rating algorithm about the correctness.
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Table 9.2: Comparison of Runtimes

i5 MM (Tang et al.,
2012)

(Levin
et al., 2012)

10 Files, 1s Sampling 275,467 s 1,646 s 18,877 s

10 Files, 5s Sampling 205,363 s 1,259 s 14,384 s

10 Files, 10s Sampling 197,851 s 1,339 s 14,279 s

100 Files, 1s Sampling 589,078 s 2,213 s 39,095 s

Table 9.3: Comparison of Correct Link Percentages

i5 MM (Tang et al.,
2012)

(Levin
et al., 2012)

10 Files, 1s Sampling 84,73 % 97,45 % 98,28 %

10 Files, 5s Sampling 85,06 % 98,79 % 95,74 %

10 Files, 10s Sampling 85,56 % 95,16 % 97,37 %

100 Files, 1s Sampling 84,73 % 97,45 % 98,28 %

If the match is false, one point weighted with the same confidence is subtracted. Hence,
the overall rating is calculated as follows:

sum of weight. corr. matches− sum of weight. incorr. matches

run time
(9.16)

Furthermore, the initial map loading time was also rated. In the end, our algorithm
achieved the 11 place of 31. In the following we present our results compared to the
first and fifth best algorithms of the contest. Table 9.2 presents the run time results,
while Table 9.3 shows the percentage of correctly matched positions.

The results show that our algorithm still can be improved in terms of run time. It is
a magnitude of 10 to 100 slower than the fifth best algorithm. In our own experiments
with the Düsseldorf network we reached 16 ms per map matching of a position using
the PostgreSQL database. The percentage of correctly matched positions differs from
the other approaches between 10 to 14%. These are promising results which still can be
improved. But all in all we are very satisfied with the 11 place out of 31. Unfortunately,
the results of other participants are not available.

9.5 Discussion and Conclusion

In this chapter we presented a new weighted topological algorithm with two alternative
methods for candidate section identification for matching a V2X position to a road
network. The algorithm just needs two consecutive positions and the heading of the
vehicle to match the position. The algorithm is structured into four consecutive steps:
(1) First a candidate set of sections is assembled. (2) For each candidate section
weighted scores are calculated. (3) The candidate section with the highest score is
selected for matching. (4) A simple map matching procedure matches the position
to the selected section. After determining the optimal ratio and magnitudes of the
weights, we used our evaluation framework to evaluate different factors which influence
the performance of the algorithm. The performance is measured by the section accuracy
and the average horizontal error. We found that the heading error, the positioning error,
and the average section length influence the performance of the algorithm. Furthermore,
we identified the Error Region Candidate Identification method as the best method for
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selecting the candidate sections. Most importantly, we proved that the new algorithm
outperforms the simple map matching algorithm. In the ACM SIGSPATIAL GIS Cup
contest we compared our algorithm with other algorithms and showed that we are
among the first 12 algorithms according to matching accuracy and run time, but that
there is still improvement necessary. Finally, we determined that the algorithm is
suitable for V2X real-time Map Matching as map matching a position only takes 16
ms on average with the PostgreSQL database including the PostGIS extension.
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Chapter 10

Data Stream Classification

In Chapters 6 and 7 the data processing of data streams for C-ITS and mHealth ap-
plications using examples has already been detailed. We explained that we use data
stream classification algorithms to learn to derive further information based on the in-
coming data. So far only the Hoeffding Tree algorithm from the MOA framework has
been used in the applications for evaluation. But there are still many questions open
regarding the choice of the data stream mining algorithm. The Hoeffding Tree might
not be the best choice for all applications and in all situations. Hence, we conducted
several experiments to find out, which algorithm suits which task best, what param-
eters specific to the mining influence the algorithms, if balancing makes a difference,
and which kind of balancing is best, and which algorithms perform best for concept
drifts.

10.1 Classification Algorithms

In the MOA mining framework various stream mining algorithms are readily available,
most of them based on the basic algorithm of Hoeffding Trees detailed in Section 4.4.
To find out, how well the algorithms are suited to be used in the application of traffic
state estimation, several tests with varying algorithms have been made. One distinction
of the implementations of the algorithms is in their prediction strategy. The prediction
strategy is the method to decide at the leaves in the decision tree, which class for the
element to classify is assigned. There are three different prediction strategies imple-
mented in MOA: Majority Voting, Näıve Bayes Leaves and Adaptive Hybrid (Bifet and
Kirkby, 2009a). While majority voting assigns the class, for which the most examples
arrived at this leaf, the Näıve Bayes Leaves uses the Bayes theorem and the proba-
bilities of the attribute values to determine the probability of each class and selects
the class with the highest probability. The Adaptive Hybrid strategy is a combination
of both. For each strategy the accuracy is calculated and the Näıve Bayes decision is
only used if its accuracy was higher before. In Figure 10.1 the accuracy results of all
three strategies for a Hoeffding Tree are shown. On average, the Näıve Bayes and the
Adaptive Hybrid strategy were very similar in their results, but both outperformed the
Majority Voting strategy.

Ensemble algorithms often deliver better results than single learners as they can
learn more diversely. However, they are computationally more expensive. Implementa-
tions of various stream ensemble algorithms are also included in MOA. We analyzed all
of them in our evaluation framework using the Hoeffding Tree as the base learner. The
ensemble algorithms comprise the online boosting and bagging algorithms by Oza and
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Figure 10.1: Accuracy for Hoeffding Trees with Varying Prediction Strategy

Russell (Oza and Russell, 2001; Oza, 2005), the Online Coordinate Boosting algorithm
presented in (Pelossof et al., 2009), and an Option Tree algorithm introduced in (Bifet
and Kirkby, 2009a). Option trees grow new alternative branches at so called option
nodes. Examples are pipelined to all branches and leaves connected with the option
node and the overall result is determined by combining the results of the nodes beneath
the option node. We do not go into the details of these algorithms, but refer the inter-
ested reader to the cited papers. Figure 10.2 shows the results for the tested ensemble
algorithms. The boosting algorithm is slightly better than the other algorithms with
accuracies of up to 92%. On average, it delivers also only a slightly better accuracy
than the best single classifier algorithm in Figure 10.1.

So far, a new classification model has been used for each simulation run. Each
simulation run was 1800 s long. If the model is trained over a longer period of time, it
is assumed that the accuracy will also be increased, as the model has more examples
to learn on. Therefore, multiple simulation runs have been carried out, reusing the
trained model in each run and thereby incrementally extending it. The results shown in
Figure 10.3 corroborated our assumption. The overall accuracy of the mining increased
from approximately 88% to 91%, which denotes an improvement, but not as high as
expected.

10.2 Class Balancing

In the experiments before, we identified the unbalanced ratio of examples for negatives
and positives as a problem in particular for the QED case study. This is a problem
very well known in machine learning, but often not the only one which contributes to
a bad learner performance (Batista et al., 2004). We decided to analyze the problem
and assess the influence of the unbalanced ratio of negative and positive examples for
the three measures accuracy, sensitivity, and specificity. In the queue-end detection
application we are especially interested in the true positives, as these reflect the cor-
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Figure 10.2: Accuracy of Multiple Ensemble Algorithms
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rectly identified queue-ends. Hence, the sensitivity is the most important evaluation
measure we have to look at. In the following, we did several experiments with different
balancing techniques (undersampling as well as oversampling).

10.2.1 Undersampling Techniques

First, we implemented a very simple undersampling algorithm suited for streams. For
each negative example we draw a random number from an equal distribution of numbers
between 1 and 100. A negative example is dropped when the random integer is less
or equal to the percentage of negatives which should be dropped (if 75% should be
dropped all elements with integers below 76 are dropped).

We used as parameter values penetration rate to 5%, the traffic volume to 2500 veh/h,
the section length to 100 m, and the window size to 120 s for all runs. We tested per-
centages of elements between 0% and 90%. Figure 10.4 shows the results.
24 5 Evaluation
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Figure 5.1: Sensitivity for random undersampling with varying undersam-
pling rates [GQSJ12]

In the CoCarMessage data stream, the tuples have an explicit timestamp
as above mentioned. When the CoCarMessage data streams arrive in the
DSMS, an implicit timestamp is appended to the stream element. The Co-
CarMessage looks as follows, where Timed is the implicit timestamp given
by GSN and Timestamp is the explicit timestamp:

CoCarMessage(Timed, T imestamp,AppID, Speed,Accel.Latitude, Longitude)

Timed is needed since Timestamp can cause disorder of tuples due to delay of
messages caused by transmission channel problem or issues with the sources.
Hence, we kept Timed for our case studies (QED and TSE), which orders
the sequence of tuples in the processing system.

In the queue-end scenario the position of a queue-end is described as
follows:

QueueEnd(Timed, T imestamp, Latitude, Longitude)

where Timed and Timestamp are defined as above, and Latitude and Longi-
tude describe the position of the queue-end.

Since data from Geisler et al.’s experiments were recorded, it seemed to be
the best choice to reproduce their results using the Replay Application tool.

Figure 10.4: Sensitivity for Random Undersampling with Varying Undersampling Rates

It can be derived from the results that dropping a high number of negatives is very
beneficial for the sensitivity. But the results for the specificity reveal, that this has
the opposite effect on the specificity (only reaches a little more than 50% for the 90%
run), though the ratio of positives to negatives is almost equal (1.2:1). A good trade-off
seems to be 85%, where the ratio is 0.85:1. Here the sensitivity reaches values of about
65% while the specificity is around 82%.

We also rerun the experiment with three different seeds for the probability distri-
butions in the simulation and calculated the average. As simulation parameters we
used a road network with 5km, a penetration rate of 5%, a traffic volume of 3000veh/h,
a section length of 100m , and a time-based window of size 120s. As these provide
the best results for sensitivity, specificity, and accuracy, we used them as the default
parameters in the following experiments. Figure 10.5 shows, that the results are similar
and tendencies are the same compared with Figure 10.4.

For the same application we also implemented and tested other undersampling
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Figure 5.2: Sensitivity for Equal Distribution (random undersampling) with
varying undersampling rates

We attempted to evaluate the simple random undersampling in this manner
several times. Unfortunately, it was not possible to reproduce the exact
results of Figure 5.1 since apparently, not all necessary data was recorded,
but only part of it. Thus, we decided to do rerun the experiment by means
of the VISSIM system, which indeed produced similar results as depicted in
Figure 5.2.

All components in the framework have to work in a reproducible manner,
e.g., all randomized elements (seeds) have to be set to a fixed seed, in order
to guarantee comparability. With identical parameters and identical random
seed, the raw data from vehicles is always the same in each simulation. We
use three different random seeds in the VISSIM and the sampling algorithms,
namely 3, 42 and 43. In each experiment, we started one run for each of the
three random seeds. The results presented are calculated as the mean value
from these runs. It should be noted that for each seed value, VISSIM starts
the training phase at a different point in time.

We delete the classifier model at each evaluation run, so that the classifier
is not affected by previous training instances. Similar to [GQSJ12], we turn
off the degradation of position in the experiments to analyze the algorithm
in the ideal situation. As stated by Geisler et al., there is indeed an influence
on the sensitivity with and without degradation of position, but the overall

Figure 10.5: Sensitivity for Random Undersampling Algorithm Using Different Rates
and Averaging over Different Seeds

techniques. We implemented a variation of the original Bernoulli Sampling algo-
rithm (Gemulla et al., 2006). The variation does not consider a set for the sampling,
but is also working in an incremental fashion. It is similar to the random sampling
technique, but uses float numbers instead of integers to draw from. The results for the
sensitivity are depicted in Figure 10.6.

The results also resemble the results from the previous undersampling technique.
With increasing dropping rate the sensitivity also increases.

Finally, we also implemented a version of the Reservoir Sampling algorithm. We
do not maintain an actual reservoir, but drop an item, if the condition for including
the element in the “intended” reservoir is fulfilled. That is, an item is dropped with
probability M

N where M is the reservoir size parameter and N is the number of elements
seen so far. Figure 10.7 shows the results for the sensitivity values.

The results for sensitivity show, that with increasing reservoir size the sensitivity
value drops. This is a logical consequence as the probability to keep an element is
higher with a higher reservoir size. While sensitivity drops, accuracy and specificity
are increasing as can be seen from Figure 10.8 and Figure 10.9.

A good compromise cannot be found based on these values as either accuracy and
specificity or sensitivity fall below 50%, e.g., for a reservoir size of 50. Hence, the
reservoir sampling method seems not to be a good alternative.

10.2.2 Oversampling Techniques

Besides undersampling techniques we also experimented with oversampling techniques.
We implemented a simple form of random oversampling for which a window with the
last x elements is maintained in a first-in first-out manner. From the window new
elements are artificially generated (i.e., copied). A parameter determines with which
ratio new items are generated. A value of 50% means generation of one new item for
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Figure 5.4: Sensitivity for Bernoulli sampling with varying undersampling
rates

5.1.1 Bernoulli Sampling

In a first series of experiments, we evaluated our implementation of the
Bernoulli sampling algorithm for varying undersampling rates. Figure 5.4
indicates that the higher the dropping rate is, the better the sensitivity value.
In this case the dropping rate of 90% performs the best. But in contrast to
sensitivity, Figures 5.5 and 5.6 show the opposite effect on the specificity and
accuracy values, respectively. In the case of specificity and overall accuracy,
the dropping rate 90% is the worst. Therefore, there is a trade-off between
these measures. Since as mentioned above, sensitivity is most important, a
good compromise appears to be an undersampling rate of 85%, where the
sensitivity achieves values of approximately 57% while the specificity is about
85%.

The results are very similar to those obtained in Geisler et al.’s origi-
nal experiments (Figure 5.1). This was to be expected as it was stated in
Section 4.1, our Bernoulli sampling technique is very similar to their Equal
Distribution sampler.

Figure 10.6: Sensitivity for Bernoulli Undersampling with Varying Sampling Rates
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Figure 5.7: Sensitivity for varying reservoir size parameters

5.1.2 Reservoir Sampling

In another series of experiments, we tested our implementation of the Reser-
voir sampling technique. As said in Section 4.2, the dropping rate parameter
is ignored in the case of Reservoir sampling, so it makes no sense to try dif-
ferent values for the undersampling rate. Instead, the decision of whether
an item is dropped or kept depends on the reservoir size parameter and the
number of items processed so far. For this reason, we started simulation
runs with different values for the reservoir size parameter, namely 10, 50,
100 and 500. As depicted in Figure 5.7, a larger reservoir size (which means
a larger probability to keep the item) leads to worse performance in terms of
sensitivity. On the other hand, the larger the reservoir size, the better the
specificity and accuracy, as depicted in Figures 5.8 and 5.9.

Here we have again a similar trade-off, however between different values
for the reservoir size parameter. A good compromise seems to be a value of
50 if we again place higher weight on sensitivity than specificity and overall
accuracy. The value of reservoir size parameter influences the number of
majority class examples to be dropped, but in a different manner than a
constant dropping rate. With an increasing number of examples N and a
fixed reservoir size M , the probability M

N
of keeping an example approaches

zero. This means that more examples are kept at the beginning, and more

Figure 10.7: Sensitivity for Reservoir Undersampling with Varying Reservoir Sizes
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Figure 5.8: Specificity for varying reservoir size parameters
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Figure 5.9: Accuracy for varying reservoir size parameters

Figure 10.8: Specificity for Reservoir Undersampling with Varying Reservoir Sizes

5.1 Queue-End Detection 33

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  200  400  600  800  1000  1200  1400  1600  1800  2000  2200  2400  2600

Sp
ec

ifi
ci

ty
 [

%
]

Time [s]

10
25
50

100
500

Figure 5.8: Specificity for varying reservoir size parameters

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  200  400  600  800  1000  1200  1400  1600  1800  2000  2200  2400  2600

Ac
cu

ra
cy

 [
%

]

Time [s]

10
25
50

100
500
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each pair of old items. If the value is greater than 100% more than one new item is
created per each old item. We experimented with different oversampling ratio values
and a window size of 10 elements. The results are presented in Figures 10.10 to 10.12.
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Figure 5.11: Sensitivity for random oversampling with varying oversampling
rates

presents the specificity values. The ordering is opposite of the results for the
sensitivity. In the specificity, the generating rate of 500% performs the worst.
Hence, a good trade-off in both cases appears to be 400%. The sensitivity
achieves values of approximately 58% while the specificity is about 85%.

When we compare these results to the ones for Bernoulli undersampling,
it makes sense that the generating rate of 400% shows the best overall perfor-
mance because it is closest to the dropping rate of 85%. If the latter would
be 80%, then it means that we drop 4 out of 5 examples of the negative
class. With a generating rate of 400%, we produce 4 additional positive class
examples per one real positive example. If the ratio of positive to negative
examples is approximately 1:5, both of 80% undersampling and 400% over-
sampling will produce a balanced sample set. Figure 5.14 shows the actual
numbers of positive and negative examples, and Figure 5.15 depicts the frac-
tion (in percent) of positives and negatives among the overall set of examples.
As can be seen, the ratio is not constant over the time of the experiment,
but varies. The above mentioned ratio of 1:5 corresponds to a fraction of 1

6

positive examples, i.e., approximately 17%. Looking at Figure 5.15, a value
of 17% seems to be a good approximation for a constant fraction, as the
curve is first above this value, and then beneath it.

Figure 10.10: Sensitivity for Random Oversampling with Varying Oversampling Ratio
Values

Figure 10.10 shows, that with increase of the examples for the minority class (the
positives) also sensitivity is increasing while specificity and accuracy are decreased.
However, 200% (i.e., two new elements are created per one old element) or 350% seem
to be good compromises to balance sensitivity and specificity.

10.2.3 Dynamic Balancing

What could be seen for some of the results from the previous sections is, that sensitivity
deteriorates the longer the simulation runs. One reason could be that more examples of
the minority class are produced. To approach such a change in the class distribution,
we implemented dynamic variants of the sampling algorithm described before. The
algorithms use the statistics recorded by the data mining algorithm, i.e., the overall
examples and the examples of each class seen by the algorithm so far. The dynamic
undersampling algorithms calculate the drop rate for each class c using Equation 10.1.

dropRatec =
elementsSeenc − elementsSeenmin

elementsSeenc
(10.1)

The number of seen elements for the minority class min is substracted from the ele-
ments seen of class c and divided by those number. As an example, let elementsSeenc =
9 and elementsSeenmin = 3 for class c being the negatives (no queue-end). Then the
dropping rate is 0.75.

For the oversampling algorithms the oversampling rate for each class c is calculated
using Equation 10.2.
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Figure 10.11: Specificity for Random Oversampling with Varying Oversampling Ratio
Values
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oversamplingRatec =
elementsSeenmaj − elementsSeenc

elementsSeenc
(10.2)

Reusing the example before, the oversampling rate would be 2 (200%) given that
class c are the positives (queue-end).

We made experiments with each of the dynamic variants, using the parameter
configuration from beforehand. The results for sensitivity, specificity, and accuracy are
shown in Figures 10.13 to 10.15.
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Figure 5.16: Sensitivity for dynamic sampling algorithms

5.1.4 Dynamic Balancing

Finally, we started a series of experiments where instead of using fixed un-
dersampling or oversampling ratios, we used our dynamic balancing tech-
nique. Figure 5.16 shows the resulting sensitivity values. Random oversam-
pling shows the best performance. Bernoulli and random undersampling are
somewhat worse and show almost identical results. Reservoir sampling is the
worst, but it is still comparable to the baseline case where no sampling is
applied. Note that in the case of Reservoir sampling (here we used the value
50 for the reservoir size parameter), the dynamically adjusted undersampling
rate has again no influence. The curve here looks different as the one in Fig-
ure 5.7 because there, only negative examples were dropped, but with our
dynamic balancing technique, it may also happen that positive examples are
discarded.

Figures 5.17 and 5.18 provide the results in terms of specificity and overall
accuracy, respectively. Here, Reservoir sampling is best, but all methods are
very close to each other, and also close to the baseline case without sampling.
Since we still put higher weight on sensitivity, the Random Oversampling
technique seems to provide the best trade-off for the three metrics. Note
that the values to which Random Oversampling converges here are almost
identical to those for the best static oversampling ratio (400%) as shown in

Figure 10.13: Sensitivity for Dynamic Balancing with Varying Sampling Algorithms

The results in Figure 10.13 show, that for sensitivity Random Undersampling and
Random Oversampling perform the best. But in comparison to the static random
variants, the results of the dynamic variants are worse with about 8 to 10% in the end.
But the results are more stable for the dynamic variants and do not deteriorate that
much over time. For specificity and accuracy the results are very good and also keep
stable.

In the previous experiment, we have investigated the influence of the dynamic bal-
ancing variants on the measures sensitivity, specificity, and accuracy for the QED ap-
plication. The QED application was considered as a two class problem as elements
were only classified into queue-end or no queue-end classes. For the TSE application
this is different as already discussed in Chapter 6. In the TSE application four classes
are distinguished, which makes balancing more difficult. We wanted to know if the
dynamic balancing is working better for the TSE application and more balanced data
sets. Here, we only use the accuracy as a measure. The equations to calculate the
accuracy for the classes have been introduced in Chapter 6 in Section 6.3.6. We ex-
perimented with the Düsseldorf network with varying traffic volumes, window size of
120s, 5% penetration rate, and 100m section size. Simulations were done with three
different seeds for the random components for each algorithm and the result represents
the average of the three seeds. Figure 10.16 shows the accuracy results.
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Figure 5.17: Specificity for dynamic sampling algorithms

Section 4.4 Bernoulli and Random undersampling also perform very similar
to their counterparts for the best static undersampling ratio (85%).

5.2 Traffic State Estimation

We also wanted to ascertain the accuracy of data stream mining algorithms
in the traffic state estimation (TSE) scenario. In this section, we present
the evaluation for the case of the dynamic sampling algorithms. We did
not perform experiments with static undersampling or oversampling rates
since in this scenario we have four classes, namely free, dense, slow-moving
and congested described by the Federal German Highway Research Institute
[BAS99]. Therefore, there is no single minority and majority class, but we
would have to manually determine undersampling or oversampling rates for
each class. The number of different combinations of values would therefore
be exponential in the number of classes, i.e., for k different values (under-
sampling and oversampling rates) and n classes, we would have to do kn

experiments, in our case 64 = 1296. A systematic analysis is not possible in
this manner with limited time.

We used a more complex road network in VISSIM, i.e., the highway net-
work around Düsseldorf as shown in Figure 5.19. The network consists of

Figure 10.14: Specificity for Dynamic Balancing with Varying Sampling Algorithms
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Figure 5.18: Accuracy for dynamic sampling algorithms

Free Dense Slow Congested
Prediction Prediction Prediction Prediction

Real Free a11 a12 a13 a14
Real Dense a21 a22 a23 a24
Real Slow a31 a32 a33 a34

Real Congested a41 a42 a43 a44

Table 5.2: Confusion matrix for the TSE application (based on [GQSJ12])

1394 links. We used a segment length of 400m and a 10% CoCar penetration
rate as default values. The simulation duration is 45 minutes. The default
classifier is the concept-adapting Hoeffding Option Tree.

In the DSMS, a 60s window which slides every 10s is used to integrate
and aggregate the CoCar messages and ground truth messages. All other
processes are the same as mentioned previously in the queue-end detection
application, except the Map Matching of the ground truth messages. Map
Matching of the ground truth messages is not applied in the traffic state
estimation application since they are obsolete as they already contain the
section and link identifiers. We also turn off the degradation of positions. For
data stream mining, we again use the prequential (test-then-train) approach.

The numbers of combinations of real (correct) and predicted classes of the

Figure 10.15: Accuracy for Dynamic Balancing with Varying Sampling Algorithms
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the TSE Application

In contrast to the QED application, for the TSE application no sampling and Ran-
dom Oversampling outperfom the other algorithms. In comparison to the results in
Section 6.3.6 and Section 10.1 the balancing is harmful to the accuracy. The accuracy
is about 10% to 15% lower than without balancing.

10.3 Concept Drift

In Chapter 4 we have discussed that class imbalance and concept drift are the main
causes which harm results of data stream mining algorithms. Hence, we also analyzed
algorithms adapting to concept drift according to their accuracy. First, we wanted
to see, how the concept-adapting algorithms perform comparably well to the other
algorithms without an actual concept drift being present. Hence, we used first the
“normal” QED scenario and network to evaluate them, as it does not exhibit a concept
drift. Subsequently, we will describe the implementation of two scenarios exhibiting
concept drift and present the corresponding results.

MOA provides four different algorithms. They implement the online bagging algo-
rithm by Oza and Russell using an Adaptive-Size Hoeffding Tree (ASHT) as the base
learner. The ASHT is limited in the number of splitting nodes. When the maximum
number is reached, nodes are deleted. (Bifet and Kirkby, 2009a) argue, that smaller
trees can adapt faster to changes than bigger trees, while the latter ones are more accu-
rate for stationary streams due to the higher number of examples seen. Furthermore,
they combine the Oza and Russell bagging with a concept detection algorithm called
ADWIN, which has been proposed in (Bifet and Gavalda, 2007). ADWIN maintains
a window which can adapt its size to the degree of change in the stream, meaning
that the window always represents the average of the streams numeric attributes. If
the current window content does not represent the average anymore, concept drift has
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taken place and the window adapts its size. Furthermore, an implementation of a single
classifier combined with a concept drift detection method from (Gama et al., 2004) has
been integrated as well as an adaptive version of the Hoeffding Option Tree. Details
about all implemented algorithms in MOA can be found in (Bifet and Kirkby, 2009b).
Figure 10.17 reveals that all of the concept-adapting algorithms perform with almost
identical accuracy. Compared to the ensemble techniques in Figure 10.2 they do not
provide substantial improvements in accuracy – actually, the Oza and Russell online
boosting is better in the average.
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Figure 10.17: Accuracy of Multiple Concept-adapting Algorithms

10.3.1 The Winter Scenario

The scenarios described so far did not exhibit any concept drift. Hence, we created an
event which produces a typical concept drift for traffic applications, namely the onset of
winter, artificially. We utilize the QED scenario and road network and adapt it towards
this winter scenario. The change in driving behaviour for an onset of winter has been
analyzed in detail in literature. In Table 10.1 we summarize the most crucial differences
we identified in literature between winter and summer conditions. Furthermore, we
explain how we adapted the simulation to simulate this change. We defined specific
“winter” vehicle types (for V2X vehicles as well as for unequipped vehicles) in VISSIM
which fulfill the requirements named in Table 10.1. The penetration rate of CoCar
vehicles is 5%.

The winter scenario causes a sudden concept drift as the concept changes in a very
short period of time. In Figure 10.18 the results for the winter scenario are presented.

In the figure the change of the underlying conditions and the point in time where the
concept drift gets apparent in the data is indicated by two black lines. In comparison
the results of the single classifiers deteriorate when the concept drift occurs. Hence, it
can be said the ensemble classifiers perform more stable than the single classifiers.
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Table 10.1: Parameter Configuration of the Winter Scenario

Property Transfer to Simulation

Vehicle Speed We reduce the speed limits on the links by be-
tween 30 km/h as this has been observed for Ger-
man highways (Durth et al., 1989) and 50 km/h.
Hence, summer cars have a speed distribution between
88 km/h and 130 km/h, while the summer truck speed
distribution is ranged between 75 km/h and 100 km/h.
In winter cars drive speeds between 58 km/h and
68 km/h, while trucks drive between 40 km/h and
45 km/h.

Reduced Braking
Distance

This is fixed to 15m in VISSIM by default. To simulate
increased distances we changed this value based on
a field study (Durth and Hanke, 2004) on German
highways between 50 m and 80 m, respectively.

Average Deceler-
ation

Based on (Maurer, 2007; Mitunevičius et al., 2009)
we set the desired deceleration of the winter cars to -
2.7 m/s2 and -3.3 m/s2 and for winter trucks between
-0.7 m/s2 and -1.3 m/s2, respectively. For summer
cars the desired deceleration is between -4.7 m/s2 and
-5.3 m/s2, for summer trucks it is between -1 m/s2 and
-1.5 m/s2.

Reduced Road
Capacity

This is simulated in our scenario by reducing the traffic
flow in two steps. We start with 3000 veh/h consisting
of summer vehicles, after 1000s we reduce to 2500 ve-
h/h consisting of summer vehicles, and finally we have
2500 veh/h only winter vehicles.
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Figure 5.3: Accuracy test on winter model

at the time the queues began to dissolve, there was an output ’D’ in the
console. In the graphic, the Single Classifier with DDM showed significant
bends on the curves. The bends were on the time interval from 3000s until
3300s. There were two times following output of ’D’ at about 3114 seconds.

We configured VISSIM to run the traffic simulation in real time. Before
the classification began, there was a setup-time where the roads were filled
with cars. So the classification began when our simulation already ran about
600s. Because we ran the simulation over VPN and an internet connection,
when VISSIM simulated 1000 seconds, in reality it took about 1400 seconds.
So under consideration of this factor and the initial setup-time, in our graph
our ’winter phase’ began at about 2735 seconds, whereas in VISSIM only
2500s elapsed. The time shown at the x-axis in Figure 5.3 is the real time.

The performance of the single classifiers (firstly Naive Bayes is used
as the base learner, secondly Hoeffding Tree is used as the base learner)
reached about 92% accuracy. On the other hand, the ADWIN+Bagging,
ASHT+Bagging, AdaHOT+Bagging showed nearly identical accuracy per-
formances about 95% and without significant bends. We predicted that these
three algorithms could cope with the concept drift very well. As remarks,
these three algorithms are ensemble algorithms which use many classifiers
instead of one classifier. Therefore, the performance is better than the per-
formance of one single classifier. Our prediction turned out to be true.

Figure 10.18: Accuracy for the Winter Scenario Comparing Different Concept-adapting
Algorithms

10.3.2 The Football Match Scenario

In the former scenario a good example for a sudden concept drift has been given. Due
to the weather conditions the overall driving behavior changes. Other good scenarios
for sudden concept drifts are events which cause many vehicles to drive from one area
into another in a very short period of time, while this is not the case for other periods.
That means, the capacity of a road or a road network is exceeded. Such an event is a
football match which occurs only once a while in a certain area of a city. In a very short
period of time, many vehicles drive to the parking lots, and drive back after the match.
This should cause a rapid change in the concept. We simulated a football match for
the QED application by increasing the traffic volume stepwise. We use the 10km QED
artificial road network, a simulation time of 3600s, and a V2X penetration rate of 5%.
We varied the learning algorithms as before. The following increases in traffic flow were
made during simulation run time:

• 0s - 1200s: 2500 veh/h

• 1200s - 1800s: 3000 veh/h

• 1800s - 2400s: 4000 veh/h

• 2400s - 3600s: 4500 veh/h

The results of the experiment are shown in Figure 10.19.

Unfortunately, only a slight drift could be created by the selected parameter con-
figuration (most probably at 1900s). As already seen in the winter scenario the single
classifier performs slightly worse than the others, while the ensemble algorithms are
almost the same. No real difference could be determined.
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Figure 5.5: Football match model second run

could assume that there was a slight drift at the time interval 1900s by mean
of the slightly bend on the curve. The second reason for the observation
of the slight drift is that the output console had given out an output ’D’
at the middle of the simulation run time when the Single Classifier (Naive
Bayes)+DDM was applied.

5.3 Discussion
We can detect a concept drift in our ’winter’ model clearly. The drift can
be seen by the bend in the graphic of accuracy test in which Single Clas-
sifier+DDM was applied (cf. Figure 5.3). The accuracy test focused on
Queue-End Detection. The accuracy rate dropped a little bit at first because
of the concept drift and after a while, it increased again slowly. A reason for
the drift might be that the current model is changed by the ’winter’ model
as the ’winter’ begins. As we mentioned before, the ’winter’ model is con-
structed by varying vehicle parameters such as speed and deceleration of the
vehicles. The ’winter’ vehicles are not able to brake as hard as the ’sum-
mer’ vehicles. Thus, the braking distance in winter is longer than the one in
summer.

In contrary to ’winter’ model, we could not be so sure that in the ’football
match’ model a concept drift occurred. We had modeled the ’football match’

Figure 10.19: Accuracy for the Football Match Scenario Comparing Different Concept-
adapting Algorithms

10.4 Conclusion

In this chapter we used our evaluation framework to study the use of different variants
of data stream classification algorithms. The experiments showed that for the voting
strategies Naive Bayes and Adaptive Hybrid outperformed Majority Voting. Further-
more, we identified in the non concept-adaptable ensemble the boosting algorithms to
perform best. We found out that the classification result of the Hoeffding Tree stabi-
lizes at some point in time even when the simulation runs for a very long time. For
balancing we identified undersampling techniques as performing best compared to over-
sampling algorithms and among these the random under- and oversampling algorithms
outperformed the others. The implementation of a dynamically adapting balancing
variants did not show any improvement. Instead the results got worse. A windowed
implementation of this dynamic balancing is interesting to research, but is subject to
future work. Finally, we presented two scenarios invoking sudden concept drifts. For
the winter scenario we identified the ensemble concept-adapting algorithms to perform
better than the single concept-adapting classifiers. The second scenario did not show
an as obvious concept drift as in the first scenario, but here also the single classifier
performed the least good.
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Epilog
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Chapter 11

Conclusion & Outlook

In this chapter, we will review the research goals and questions formulated initially,
and we discuss how our contributions help in answering these questions. We conclude
by outlining future work.

11.1 Conclusion

In this thesis we presented a holistic contribution to the development and evaluation of
high-quality data stream applications. The contribution consists of three major parts,
namely (1) a structured guidance for developers to design, implement, and evaluate
data stream applications with a focus on data quality, (2) assistance for the struc-
tured evaluation of such applications, and finally (3) flexible, automated, domain- and
task-independent data quality assessment throughout the whole process of data stream
management. In the following, we will briefly describe how we reached these goals in
the thesis.

Structured Development Process

A detailed research of data stream management principles, DSMS architectures, and
corresponding query languages led to the identification of important characteristics and
components of data stream applications and their development process. The thorough
review of existing process models for information system and data mining application
development revealed that none of them are suitable for data stream applications which
demand quality assessment and structured evaluation. Based on the aforementioned
knowledge we elaborated a quality-oriented process model tailored to data stream ap-
plications in Chapter 5. The process model comprises steps, and method proposals
for the structured design, implementation, and evaluation of data stream applications
with a special emphasis on data quality. Furthermore, we distinguished three different
ways of approaching the data stream application development which are all covered by
our process model. These influence the content and order of the steps in the process
model. To evaluate the model and demonstrate the applicability, flexibility, and gener-
alizability we utilized four case studies from actual research projects. We selected case
studies from domains in which applications use real-time and sensor data as these are
typical examples for data stream management settings, namely Connected Intelligent
Transportation Systems (C-ITS) and Mobile Health (mHealth). For all case studies,
we examine applying the process model (cf. Chapters 6 and 7). Although the domains,
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preconditions, and requirements for the case studies were quite different, we could cover
most of the specifics and problems using the process model.

In conclusion, we contribute a general guidance for data stream application devel-
opers with which they can organize and document the design, implementation, and
evaluation of data stream applications in a structured way.

Continuous Evaluation

The evaluation of a data stream application is a major and complex task. Parameters
and conditions influencing the application results are manifold and have to be deter-
mined. We proposed a structured way to do this guided by appropriate tools. To this
end, we first reviewed important characteristics and applications of the two selected
domains C-ITS in Chapter 2 and mHealth applications in Chapter 3. This led to a
deep understanding of important steps in the development and evaluation process of
corresponding data stream applications. We proposed an evaluation framework, which
can be instantiated for the application at hand. It guides the developer in selecting
which and what kind of constituents may be useful for the implementation but also for
the evaluation of the applications. We showed the implementation of the framework
in the four case studies for C-ITS in Chapter 6 and for mHealth in Chapter 7. We
found that due to the characteristics of data stream applications several iterations of
evaluation in very different directions are required. The iterations are necessary to find
out which parameters are influencing the results and how. For many of the parameters
we could find optimal values and we reused these in the next evaluation iterations.
Furthermore, it proved to be beneficial to test parameters one by one though some
of them were connected to one another. An in-depth evaluation was done for algo-
rithms specific for the domain of C-ITS. The improvement of application results by a
devised online Map Matching algorithm was evaluated and shown in a structured way
in Chapter 9. A further detailed evaluation was carried out for data stream mining
algorithms, including solutions for the problems of class imbalance and concept drift in
Chapter 10. The structured evaluation found the best combination of algorithms for
the task at hand.

The combination of process model, evaluation framework, and data quality manage-
ment framework contributes a powerful toolbox for developers to conduct structured
and iterative evaluations of data stream applications.

Data Quality Management

The measurement of data quality throughout the whole application and data stream
management process provides a powerful tool to identify problems and potential opti-
mizations. To achieve this goal we first presented and analysis of important require-
ments for DQ management for data streams in Chapter 8. Based on this knowledge and
a discussion of existing DQ management methodologies, we designed a methodology
which provides the most important steps for DQ management for relational DSMSs.
Along the methodology we designed a flexible, holistic DQ management framework.
We showed its applicability to and usefulness for different domains and applications
using the four case studies presented in Chapters 6 and 7. Previous approaches for
DQ management in data streams either focused on system-related aspects or were very
tightly integrated into the DSMS which hampers the extension of DQ management
with new DQ metrics or DQ dimensions. Our approach provides flexibility by storing
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the DQ metadata in an ontology which is easily adaptable. Detailed evaluations for the
case studies in Chapter 8 showed the usefulness of the approach to identify DQ issues.

We offer developers a powerful and flexible tool to define, measure, monitor, and
improve data quality in their data stream applications independent of the domain or
application.

11.2 Outlook

Though the work in this thesis has provided a substantial step towards the improvement
of the design and evaluation processes for data stream applications, there are still things
which are of interest for future research.

In its current manifestation, the proposed process model assumes basic standalone
data stream management architectures. More complex data ecosystems for data an-
alytics have evolved and DSMS are part of them (Ranjan, 2014; Dolas, 2015). An
important research aspect would be to elaborate the suitability and adaptivity of the
model to such ecosystems. The concepts of the Lambda architecture (Marz and Warren,
2015) or a combination of an architecture with Streaming Data Warehouses (Golab and
Özsu, 2010) pose interesting challenges to the evaluation and data quality assessment
of applications implemented in such a setting.

Process models are mostly evaluated by applying them. Someone has to use them
for the targeted purpose and, in the end, rate whether it fulfills the expectations and
requirements. We presented the application of the proposed process model in different
case studies. Several process models for information systems, data mining, and data
quality management either spawned directly from industry or were evaluated in several
big industrial or research projects (Hauser and Clausing, 1988; Wirth and Hipp, 2000;
Schroeder et al., 2008). To alleviate the evaluation of our process model to the next
level, it needs to be evaluated by more developers from research and industry in more
domains. Another form of evaluation could be to apply the process model to do a
backwards analysis: the process model is applied to describe and evaluate existing
architectures, such as for the probabilistic and quality-oriented architecture in (Kuka
and Nicklas, 2014b). If all aspects of the architecture and implemented applications
can be mapped by the process model, it is suitable to guide the design and evaluation
of the applications.

A further open research challenge is the use of user interfaces for data quality mod-
eling and implementation. We have designed a metadata model for the definition of
data quality dimensions, metrics, and their relationship to data objects. The developer
has to design the ontology manually in an ontology editor. This is comfortable, but
requires some knowledge about ontologies. A more user-friendly way would be a ded-
icated data quality user interface. If possible, this should be integrated into a visual
design tool for data stream applications as provided already by some DSMS, such as
IBM InfoSphere1. In a drag-and-drop fashion dimensions could be attached to data
streams and their attributes and metrics could be defined customly or selected from
a library. In the background a corresponding metadata model would be updated to
reflect the changes. A crucial and difficult aspect is to define the logic behind this as it
has to consider correlations between attributes and operations and many special cases.
The combination with a data quality dashboard similar to visualization tools for big
data analytics (Zhang et al., 2012) would provide a powerful, but user-friendly toolbox

1http://www-01.ibm.com/software/data/infosphere/streams
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for developers.
The challenge of developing effective, efficient, and high-quality data stream appli-

cations is a huge task which cannot fully be tackled by this thesis alone. However, we
made a series of contributions to offer developers a tool set to guide them through the
whole process of design, implementation, and evaluation of data stream applications
emphasizing the importance of data quality in every step.
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Part V

Appendix
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Appendix A

Traffic Parameters & Data
Sources

A.1 Traffic Parameters

In Table A.1, basic traffic parameters, i.e., parameters which directly can be used to
describe a traffic situation and which correspond to a single vehicle are listed (Treiber
and Kesting, 2010; Schnabel and Lohse, 1997; Hoyer, 2003; Steinauer et al., 2006;
Mensebach, 2004).

Table A.1: Basic Traffic Parameters for Individual Cars

Parameter
name

Description Unit

Displacement Way from the starting point to the current point
(the objects overall change in position). There-
fore, it is a vector quantity.

m or km

Distance Total distance between two points on the road
(how much ground has an object covered).
Therefore, it is a scalar quantity.

m or km

Speed The rate at which an object covers distance
(scalar quantity).

m/s or km/h

Velocity Displacement per time unit (the rate at which
an object changes its position). In contrast to
speed, velocity includes a direction and is there-
fore a vector quantity. The direction is simply
the one in which the object is moving.

m/s or km/h

Average Veloc-
ity

Total displacement of an object in an interval
divided by time.

m/s or km/h

Acceleration Change of velocity per time unit. m/s2

Jar Change of acceleration per time unit. m/s3

Vehicle Type Indicates the kind of vehicle passing by a gaug-
ing section.

Enumeration
of vehicle
types

Occupancy
Time

The time a car occupies a detector. s
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Table A.1: Basic Traffic Parameters for Individual Cars

Parameter
name

Description Unit

Presence Detects if a car is present or not. Boolean

Travel time The time required by a vehicle to travel from a
start point to an end point including the halt
times.

h

Travel velocity The average velocity of a vehicle travelling from
a start point to an end point.

km/h

Halt time The time a vehicle halts travelling from a start
to an end point.

h

Further parameters according to an individual car which might be of interest for dif-
ferent traffic applications are measures describing the braking behaviour of a car, such
as emergency braking or detection of a hidden queue-end. In the literature, mainly
Service Braking (average brake delay of up to 3 m/s2), i.e., braking in common situ-
ations such as at traffic lights, and Emergency Braking (average brake delay of up to
6 m/s2), i.e., in case of a critical situation are distinguished (Mensebach, 2004). In
general, the time until a car stops consists mainly of the reaction time and the brak-
ing time. Furthermore, the braking time includes the response time, the time until
full braking pressure is reached and the effect time. There may be also some delay
caused by environmental circumstances, such as black ice, which has to be added to
the braking time.

In Table A.2 important parameters according to traffic flows (in contrast to indi-
vidual vehicles) are explained. The measures are classified according to their spatial
reference, i.e., if the measurement is made for a single position (local) or a section
(section-based).

Table A.2: Basic Traffic Parameters (Traffic Flows)

Parameter
Name

Description Unit Local /
Section-
based

Traffic Volume
(Intensity)

The quotient of the number of vehi-
cles passing the gauging section and
the time span T. This can be ad-
ditionally divided in the volume of
cars and volume of trucks. (Hoyer,
2003).

vehicles/h or
vehicles/s

L

Traffic Density
(Concentra-
tion)

Quotient of the number of vehicles
and the distance.

vehicles/km S

Local velocity Velocity measured at a certain gaug-
ing section in an interval.

m/s or km/h L
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Table A.2: Basic Traffic Parameters (Traffic Flows)

Parameter
Name

Description Unit Local /
Section-
based

Average local
velocity

The average velocity of all vehicles
in a time interval measured at a cer-
tain gauging section. This can be
additionally divided in the average
velocity of cars and average velocity
of trucks. (Hoyer, 2003).

m/s or km/h L

Momentary
Velocity

Velocity of all vehicles at a fixed
point in time on a fixed road sec-
tion.

m/s or km/h S

Net Time Gap Time difference between two cars
driving one after another passing
the same gauging section. The time
is measured between the back end of
the first car and the front end of the
second car.

s L

Gross Time
Gap

Time difference between two cars
driving one after another passing
the same gauging section. The time
is measured between the front end
of the first car and the front end of
the second car.

s L

Net Distance
Gap

Distance between two cars driving
one after another passing the same
gauging section. The distance is
measured between the back end of
the first car and the front end of the
second car.

m L

Gross Distance
Gap

Distance between two cars driving
one after another passing the same
gauging section. The distance is
measured between the front end of
the first car and the front end of the
second car.

m L

Traffic Capac-
ity

— #vehicles · (km/h)2 S

Average Travel
Time

Is the average travel time of n vehi-
cles travelling from a start point to
an end point.

min S

Time to Colli-
sion (TTC)

An indicator for traffic safety. Cal-
culated from the distance and the
speeds of two vehicles driving in a
row.

Net
distance/Speed
difference

S
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A.2 Stationary Detection Devices

Table A.3: Stationary Detection Mechanisms

Name Description Parameters

Induction
Loops

Depending on the setup they are used at traf-
fic signals for demand actuation, at parking
garages for counting and on highways for vehicle
detection, speed measurements and determina-
tion of the vehicle type. Actually, they are the
most common mean to measure local traffic data
on urban roads and on highways (Hoyer, 2003;
Treiber and Kesting, 2010). Induction loops can
be installed under or evaporated onto the sur-
face in different setups. Depending on the appli-
cation one-loop, two-loop and three-loop setups
can be distinguished.

Presence, count-
ing, speed, occu-
pancy time, pres-
ence, traffic vol-
ume, vehicle type,
time gap

Laser / Li-
DAR sensor

A sender sends out light pulses which are re-
flected by the vehicle and sent back to a receiver.
A processor analyses the differences between the
sent out signal and the received signal.

Traffic volume,
speed, vehicle
type, time gap,
occupancy time,
presence

Radar Sends out electromagnetic waves and measures
the differences in the reflected signals (Doppler
effect).

Traffic volume,
speed, vehicle
type, time gap,
occupancy

Light bar-
rier / Light
sensors

Light barriers detect when a vehicle interrupts
the light beam sent out by the device. Light
sensors measure the difference in light, when a
vehicle passes the sensors.

traffic volume,
speed

Microwave
Systems

Microwave sensors send out waves to a certain
road area with constantly changing frequencies.
Signals are reflected back to the sensor and ve-
hicles are detected.

traffic volume, oc-
cupancy, average
speed, and vehicle
type.

Ultrasonic
Systems

Emit sound waves very quickly and are reflected
by the vehicles to a sensor. The difference of the
signal is measured (Doppler effect).

Traffic volume,
speed, vehi-
cle type, time
gap, occupancy,
presence.

Infrared
Systems

Passive and active systems. traffic volume,
speed, vehi-
cle type, time
gap, occupancy,
presence
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Table A.3: Stationary Detection Mechanisms

Name Description Parameters
Video
Image
Processors

Video detection via video cameras and infrared
cameras

Traffic volume,
speed, vehicle
type, time gap,
occupancy time,
presence, number
plate recognition,
trajectories, traf-
fic volume, lane
changes.

Pneumatic
road tubes

Similar to induction loops. One or more tubes
are fixed with mastic tape and webbing onto the
road surface crossing one or more lanes. When
vehicles drive over them, the pressure change
indicates an event (McGowen and Sanderson,
2011).

Counting, speed,
traffic volume, ve-
hicle type

Pressure
sensors

Piezo or fibre sensors in the road surface to de-
tect vehicles.

Speed, traffic
volume, vehicle
type, presence,
occupancy, time
gap
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Appendix B

Data Source Documentation

B.1 General Description

Authors:
Version:
Date:

Table B.1: General Part of the Data Source Documentation

Property Value Description

Functional Requirements

Name The name of the data source.

Version The version of the data source.

Origin Describes where the data came from and who
owns it.

Format / data
model

Either a standardized format or a custom one.
If custom, please use the format description field
for further information.

Format descrip-
tion

A description of the custom format.

Update Fre-
quency

Describes how often data items in the data
source are updated. If this is done frequently,
this should contain a number, e.g., 1 MHz or
100/ms. If data is produced infrequently, then
the estimated minimum and maximum period
between two updates should be documented.

Schema Describes if a schema is used (unstructured,
semi-structured, structured) and if a schema
is used, to which standard it complies. The
schema itself should be described in the later
part of this documentation.

Size Describes the estimated size of single items (e.g.,
a tuple or object) or the whole data set.
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Table B.1: General Part of the Data Source Documentation

Property Value Description
Costs and Avail-
ability

The costs for retrieving the data, i.e., data
provider costs, communication costs. Is the data
available all the time or is the access limited?

Communication
requirements

Is the source online? Which protocol is used
to retrieve data? Which interfaces? Is there a
delay introduced?

Non-functional Requirements

Time Range If for the data in the data source a temporal
aspect is important, the period in which the data
has been recorded has to be documented.

Spatial extension Documentation of the geographical area or spa-
tial extension of the recorded data, e.g., Munich,
Germany, a living room of 2m x 2m.

Timestamps Describes if data is timestamped and which
field(s) contains the actual timestamp. If ap-
plicable, different types of timestamps must be
distinguished, e.g., the creation timestamp, last
update timestamp and so on.

Purpose /De-
scription

Overall description of the contents of the data
source.

Models Some data sources and are created based on spe-
cific models, such as mathematical or physical
models. This especially the case for simulation
data and data produced in data mining. The
process of creating the data should be very clear
to rate the data at hand.

Specifics Are there any data transformations needed to
make value of the data? Is implicit knowledge
included? If so, which knowledge?

B.2 Schema Description

This section is to be filled for all structured and semi-structured data sources which have
schema (ideally) created with a standardized schema description language (e.g., SQL,
DTD, RDF, XML Schema, OWL). A correct and comprehensive description of a schema
depends very much on the type of the schema. In general, we recommend to describe
the schema along logically separated units, such as tables or XML nodes. Additionally
and if applicable, the relationships between units must be described. Depending on the
schema type a diagram is helpful to depict units and relationships. Important aspects
for the later use of the data are the properties of the single data items (e.g., fields in
tables, XML properties) which contain the actual data.

These also have mainly functional and semantic aspects which should be described.
For each field the following properties could be useful, but might also vary depending
on the data source and its format:
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Table B.2: Schema Description of Data Source Documenta-
tion

Property Value Description

Name The name of the data field.

Description The semantics of the field should be de-
scribed.

Data Type The data type of the values in the field.

Numeric precision If numeric data is contained, what is the pre-
cision?

Value Range In which range does the data lie? What are
possible values?

Granularity Has the data been aggregated? And if so,
how?

Frequency How often is this data updated?

Geospatial Infor-
mation

If it is a geospatial field, what is the system
used to define it (e.g., GALILEO, GPS)?

Temporal Infor-
mation

Is this a timestamp and what is its precision?

Optional Boolean value indicating, if the field has to
contain a value. The value can be yes or no.

B.3 Case Study Queue End Detection

General part:

Property Value

Name actionID

Description A unique identifier for each message.

Data Type A string with letters and digits.

Frequency The value is unique for each object.

Optional No

Property Value

Name cell id

Description A unique identifier for a mobile network cell.

Data Type Integer

Optional Yes

Property Value

Name ts

Description The timestamp of the object.

Data Type Integer

Temporal
Information

Seconds since 1.1.1970 UTC

Optional No
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Property Value

Name ttl

Description Time to live.

Data Type Integer

Temporal
Information

In seconds.

Optional No

Property Value

Name wgs84

Description WGS84 coordinates as separate JSON-Object

Data Type Object

Geospatial
Information

GPS coordinate according to the WGS84 system. Consists of lat-
itude (lat), longitude (long), and elevation (elev)

Optional No

Property Value

Name heading

Description The direction of the vehicle in Grad.

Data Type Float

Numeric
Precision

Two decimal digits.

Optional No

Property Value

Name speed

Description The current speed of the vehicle in m/s.

Data Type Float

Numeric
Precision

Two decimal digits.

Optional No

Property Value

Name accel

Description Acceleration of the vehicle in m/s2.

Data Type Float

Numeric
Precision

One decimal digits.

Optional Yes

EBL Part

Property Value

Name vtype

Description The vehicle type.

Data Type String

Value
Range

car, truck, motorcycle

Optional No
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Property Value

Name tsms

Description Milliseconds as addition to the timestamp.

Data Type Integer

Temporal
Information

In milliseconds.

Optional Yes

Property Value

Name L

Description The length of the vehicle in cm.

Data Type Integer

Property Value

Name W

Description The width of the vehicle in cm.

Data Type Integer

Optional Yes

Property Value

Name H

Description The height of the vehicle in cm.

Data Type Integer

Optional Yes

Property Value

Name offL

Description GPS antenna length offset from front in cm.

Data Type Integer

Optional Yes

Property Value

Name offW

Description GPS antenna width offset from left in cm.

Data Type Integer

Optional Yes

EVW Part

Property Value

Name lightbar

Description Status of the light bars of the vehicle

Data Type String

Value
Range

not equipped,disabled,enabled,engaged

Optional No

Property Value

Name sirene

Description Status of the sirene

Data Type String

Value
Range

not equipped,disabled,enabled,engaged

Optional No
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Property Value

Name restype

Description Type of event.

Data Type String

Value
Range

unknown,special right of way, non-emergency, pursuit, safeguard
danger, on work, blocking lane, blocking direction, slow driving,
hindering passing, convoy

Optional Yes

WLA Part

Property Value

Name lightbar

Description Status of the light bars of the vehicle

Data Type String

Value
Range

not equipped,disabled,enabled,engaged

Optional No
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Mitunevičius, V., Nagurnas, S., Unarski, J., and Wach, W. (2009). Research of car
braking in winter conditions. In 6th International Scientific Conference TRANS-
BALTICA 2009, pages 156–161. Vilniaus Gedimino Technikos Universitetas.

Moen, R. and Norman, C. (2006). Evolution of the PDCA Cycle. Technical report,
Process Improvement Detroit.

Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M. (1990). Telos: Representing
Knowledge About Information Systems. ACM Transactions on Information Systems
(TOIS), 8(4):325–362.

Nagel, K. and Schreckenberg, M. (1992). A cellular automaton model for freeway traffic.
Journal de physique I, 2(12):2221–2229.

Nagel, K., Wolf, D. E., Wagner, P., and Simon, P. (1998). Two-lane Traffic Rules for
Cellular Automata: A Systematic Approach. Physical Review E, 58(2):1425.
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Wojnarski, M., Góra, P., Szczuka, M. S., Nguyen, H. S., Swietlicka, J., and Zeinalipour-
Yazti, D. (2010). IEEE ICDM 2010 Contest: TomTom Traffic Prediction for Intel-
ligent GPS Navigation. In Fan, W., Hsu, W., Webb, G. I., Liu, B., Zhang, C.,

259



BIBLIOGRAPHY

Gunopulos, D., and Wu, X., editors, 10th IEEE Intl. Conf. on Data Mining – Work-
shop Proceedings (ICDMW), pages 1372–1376, Sydney, Australia. IEEE Computer
Society.

Wu, P., Xue, H., and Hu, X. (2015). Particle filter based traffic data assimilation with
sensor informed proposal distribution. In Proceedings of the 48th Annual Simulation
Symposium, pages 173–180. Society for Computer Simulation International.

Wunnava, S., Yen, K., Babij, T., Zavaleta, R., Romero, R., and Archilla, C. (2007).
Travel time estimation using cell phones (ttecp) for highways and roadways. Technical
report, Florida Department of Transportation.

Yang, G.-Z., editor (2014). Body Sensor Networks. Springer.

Yang, G.-Z., Andreu-Perez, J., Hu, X., and Thiemjarus, S. (2014a). Multi-sensor
Fusion. In (Yang, 2014), chapter 8, pages 301–350.

Yang, G.-Z., Aziz, O., Kwasnicki, R., Merrifield, R., Darzi, A., and Lo, B. (2014b).
Introduction. In (Yang, 2014), chapter 1, pages 1–54.

Zachman, J. A. (1987). A framework for information systems architecture. IBM Systems
Journal, 26(3):276–292.

Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I. (2012). Discretized streams: an
efficient and fault-tolerant model for stream processing on large clusters. In Proceed-
ings of the 4th USENIX Conference on Hot Topics in Cloud Computing (HotCloud),
pages 1–6.
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