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Abstract
In this thesis di�erent fragments of logics with team semantics and of existential

second-order logic will be studied. The fragments we are interested in are the union

closed fragments of these logics, inclusion logic of restricted arity and variants of logics

with team semantics using dependency concepts which can distinguish elements only

up to a given equivalence.

Logics with team semantics are extensions of �rst-order logic that allow to express

concepts like (in)dependence in the form of atomic statements. To this end formulae

are not evaluated against a single assignment but against so-called teams which are

sets of such assignments. There is a strong connection between these logics and Σ11,
the existential fragment of second-order logic, which is re�ected in the possibility

to express formulae of logics with team semantics as equivalent Σ11-sentences with

an additional predicate for the team and vice versa. Dependence logic goes back to

Väänänen and has the same expressive power as the fragment of Σ11 in which the

team predicate occurs only negatively. Independence logic, introduced by Grädel und

Väänänen, has, as Galliani has proved, the full expressive power of Σ11 and is equivalent

to inclusion-exclusion logic, in whose formulae so-called in- resp. exclusion atoms

can be used. If one allows only in- or only exclusion atoms, one speaks of the in- or

exclusion logic. The latter corresponds exactly to dependence logic, while Galliani

and Hella have shown that the inclusion logic corresponds to the greatest �xed-point

logic GFP. Even though formulae of inclusion logic are closed under unions, not every

union closed formulae is expressible in inclusion logic. This leads to the question how

such formulae can be characterised.

In this thesis, it will be proved that union closed Σ11-sentences can be characterised

syntactically by myopic Σ11-sentences. Towards this end, we will de�ne and study

novel inclusion-exclusion games that are precisely the model-checking games of Σ11.
Using these games it is also possible to identify a corresponding syntactical fragment

of inclusion-exclusion logic. Furthermore, these games give rise to the de�nition of an

atom that, when added to �rst-order logic, also precisely captures the union-closed

fragment.

Another, so far open, problem that this thesis deals with is the question of Rönnholm,

which fragment of GFP corresponds to the inclusion logic of restricted arity. In this

thesis such a fragment is going to be introduced and e�ective translations between it

and the restricted inclusion logic and vice versa are provided.

Finally, we study variants of logics with dependency concepts, which can distinguish

elements only up to a given equivalence. We juxtapose these new logics with equivalent

fragments of Σ11 and study their expressive powers on di�erent classes of structures.





Zusammenfassung
In dieser Arbeit werden verschiedene Fragmente von Logiken mit Teamsemantik

und der existenziellen Logik zweiter Stufe untersucht. Die Fragmente, an denen wir

interessiert sind, sind die unter Vereinigungen abgeschlossenen Fragmente dieser

Logiken, Inklusionslogik mit eingeschränkter Stelligkeit sowie Varianten von Logiken

mit Teamsemantik mit Abhängigkeitskonzepten, welche Elemente nur bis auf eine

gegebene Äquivalenz unterscheiden können.

Logiken mit Teamsemantik sind Erweiterungen der Prädikatenlogik, welche es erlau-

ben Konzepte wie (Un-)Abhängigkeiten in Form von atomaren Aussagen auszudrücken.

Dazu werden Formeln nicht mithilfe einer einzigen Variablenbelegung, sondern mit

sogenannten Teams, Mengen von solchen Belegungen, ausgewertet. Es gibt eine starke

Verbindung zwischen diesen Logiken und Σ11, dem existenziellen Fragment der Logik

zweiter Stufe, was sich in der Möglichkeit widerspiegelt, Formeln aus Logiken mit

Teamsemantik als äquivalente Σ11-Sätze mit einem zusätzlichen Prädikat für das Team

und umgekehrt auszudrücken. Die Abhängigkeitslogik geht zurück auf Väänänen und

hat die gleiche Ausdrucksstärke wie das Fragment von Σ11, in dem das Teamprädikat nur

negativ verwendet wird. Die von Grädel und Väänänen eingeführte Unabhängigkeitslo-

gik hat die volle Ausdrucksstärke von Σ11 und ist, wie Galliani bewiesen hat, äquivalent

zur Inklusion-Exklusionslogik, in deren Formeln sogenannte In- bzw. Exklusionsatome

verwendet werden können. Erlaubt man nur In- bzw. nur Exklusionsatome, so spricht

man von der In- bzw. Exklusionslogik. Letztere entspricht genau der Abhängigkeitslo-

gik, während Galliani und Hella gezeigt haben, dass die Inklusionslogik der größten

Fixpunktlogik GFP entspricht. Zwar sind Formeln der Inklusionslogik abgeschlossen

unter Vereinigungen, aber nicht jede unter Vereinigungen abgeschlossene Formel ist

in der Inklusionslogik ausdrückbar. Dies führt zu der Frage, wie man solche Formeln

charakterisieren kann.

In dieser Arbeit wird bewiesen, dass unter Vereinigungen abgeschlossene Σ11-Sätze

syntaktisch durch die myopischen Σ11-Sätze charakterisiert werden können. Dafür

werden neuartige Inklusion-Exklusionsspiele de�niert und untersucht, welche genau

die Modellauswertungsspiele von Σ11 sind. Mithilfe dieser Spiele ist es auch möglich,

ein entsprechendes syntaktisches Fragment von der Inklusions-Exklusionslogik zu

identi�zieren. Darüber hinaus ermöglichen es diese Spiele ein Atom zu de�nieren,

welches, hinzugefügt zur Prädikatenlogik, ebenfalls dieses Fragment beschreibt.

Ein weiteres bislang o�enes Problem, mit dem sich diese Arbeit befasst, ist die Frage

von Rönnholm, welches Fragment von GFP der Inklusionslogik mit eingeschränkter

Stelligkeit gegenüber zu stellen ist. In dieser Arbeit wird ein solches Fragment vorge-

stellt und e�ektive Übersetzungen zu und von diesem Fragment werden angegeben.

Schließlich betrachten wir Varianten von teamsemantischen Atomen, in denen

Elemente nur noch bis auf eine gegebene Äquivalenz betrachtet werden können. Diesen

neuen Logiken stellen wir äquivalente Fragmente von Σ11 gegenüber und untersuchen

dessen Ausdrucksstärke auf unterschiedlichen Strukturklassen.
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1 Introduction

The main goal of this thesis is to explore certain fragments of existential second-order

logic (Σ11), which is known to exhibit a strong connection to logics with team semantics.

The fragments we are interested in are the union closed fragment of Σ11 and inclusion-

exclusion logic, the arity hierarchy of inclusion logic and novel variants of logics for

(in)dependence up to a given equivalence. In the following we outline the development

of logics with team semantics, the current state of research and then we present our

contributions.

1.1 Team Semantics
Logics with team semantics are extensions of �rst-order logic whose formulae are eval-

uated against sets of assignments, called teams, rather than single assignments, which

are utilized in Tarski semantics. Special cases of these logics are logics of dependence

and independence (sometimes called logics of imperfect information) that originally

go back to the work of Henkin [Hen61], Enderton [End70], Walkoe [Wal70], Blass and

Gurevich [BG86], and others on Henkin quanti�ers, whose semantics can be naturally

described in terms of games of imperfect information. Later, independence-friendly

logics, which is �rst-order logic with annotations of independencies of quanti�ers on

each other, were introduced by Hintikka and Sandu [HS89]. Again, the semantics of

independence-friendly logics was originally de�ned in terms of games of imperfect

information. For more details about independence-friendly logics we refer to [MSS12].

The introduction of a model-theoretic semantics for independence-friendly logics by

Hodges [Hod97b] in terms of what he called trumps was an important step towards the

modern framework for logics of dependence and independence. Today, this semantics

is called team semantics, where a team is a set of assignments s ∶  → A, mapping

a common �nite domain of variables into the universe of a structure. Since such an

assignment s ∶  → A is already described by a tuple (s(v1), … , s(vn)) (for a �xed

enumeration {v1, … , vn} of ), teams correspond to relations or, more precisely, they

admit relational encodings. This fact already foreshadows the tight connection between

logics with team-semantics and existential second-order logic (abbreviated as ESO or

Σ11), which was studied by Galliani, Väänänen and Kontinen [Gal12, KV09, Vää07]. In

2007, Väänänen [Vää07] proposed dependence logic which is �rst-order logic together

with dependence atoms dep(x1, … , xm, y) expressing that the value of y is functionally

dependent on x1, … , xm. Besides functional dependence there are various other atomic

dependency notions that give rise to interesting logics based on team semantics. In

1



1 Introduction

[GV13] the notion of independence (which is more than just the absence of dependence)

and independence logics have been introduced. Furthermore, Galliani [Gal12] and

Engström [Eng12] have de�ned several other new logics with team properties based

on notions originating in database dependency theory. The most important new logics

are inclusion logic and exclusion logic which are both extensions of �rst-order logic

by inclusion resp. exclusion statements. An inclusion atom like x̄ ⊆ ȳ says that every

values occuring for x̄ also occurs for ȳ , whereas the exclusion statement x̄ | ȳ expresses

the disjointness of the possible values for x̄ and ȳ .

1.2 Previous Research
Exclusion logic has turned out to be equivalent to dependence logic [Gal12], while

inclusion logic has a strong connection to greatest �xed-point logics, which we will

denote as GFP
+
. Galliani and Hella have proven that inclusion logic and GFP

+
are

equally expressive [GH13, Corollary 17] and, later, Grädel has shown by analysing the

model-checking games for these logics that the formulae of inclusion logics correspond

to myopic GFP
+
-sentences, i.e. sentences of the form ∀x̄(X x̄ → '(X , x̄)) where X

is a relation symbol that occurs only positively in '(X , x̄) ∈ GFP
+

and is used to

represent teams by their relational encoding. It is worth pointing out that GFP
+

can

be considered to be a fragment of Σ11, because [GFP Rx̄ ∶ '(R, x̄)] (ȳ) is, due to the

Theorem of Knaster-Tarski, equivalent to ∃R(∀x̄(Rx̄ → '(R, x̄)) ∧ Rȳ). Galliani also

discovered in [Gal12] that FO(⊆, | ), the logic that results by adding both inclusion

and exclusion statements to �rst-order logic, captures precisely existential second-

order logic, which we denote as Σ11 or abbreviate as ESO. Again, in order to prove a

correspondence between these logics, Σ11-sentences '(X) with an additional relation

symbol X are considered where X ful�ls the task of representing teams in the form of

their relational encodings.

Such a sentence '(X) ∈ Σ11 is called downwards closed, if A � '(R) and S ⊆ R
already implies A � '(S). It was observed by Kontinen and Vänäänen [KV09], that

the downwards closed fragment can be characterized syntactically by demanding that

the relation symbol X occurs only negatively in '(X) ∈ Σ11. Clearly such sentences

are downwards closed and, conversely, every downwards closed sentence  (X) ∈ Σ11
is equivalent to ∃Y (X ⊆ Y ∧  (Y )) where Y is a new relation symbol and X ⊆ Y is

just an abbreviation for ∀x̄(X x̄ → Yx̄). Notice that X occurs now only negatively.

Closure properties like downwards closure can be considered not only for existential

second-order logic but also for logics with team semantics as well. A formula '(x̄)
of, say, inclusion-exclusion logic is downwards-closed, if the satisfaction of '(x̄) by

some team X implies that '(x̄) is also satis�ed by all subteams (i.e. subsets) of X . It

is well-known that exclusion logic and dependence logic are downwards closed and

translations from the downwards closed fragment of Σ11 to dependence logic and vice

versa have been found by Kontinen and Väänänen [KV09]. So, the downwards closed

fragment of Σ11 is well understood. However, for union closure the situation is di�erent.

2



1.3 Main Contributions of this Thesis

Even though FO(⊆)-formulae are known to be closed under unions, Galliani and Hella

[GH13] have proven that not all union closed Σ11-de�nable properties of relations are

expressible in FO(⊆) by presenting a concrete union closed atom  that allows to

express even cardinality of �nite structures, a property being inexpressible in GFP
+

and in FO(⊆). So there is a gap between inclusion logic and the union closed fragment

of Σ11, which is why they asked in [GH13] what kind of logic with team semantics

corresponds to the union closed fragment in Σ11. Later, this question was presented

again at the Dagstuhl seminar [GKKV19].

Since inclusion-exclusion logic is equally expressive as Σ11, its expressive power is

rather strong. Therefore it is reasonable to study certain fragments of it that are weaker

and, thus, more manageable. One possible approach to do this is to study Σ11[k], the

k-ary fragment of Σ11, where the existential second-order quanti�ers range only over

relations of arity ≤ k. In 1983, Ajtai [Ajt83] has proven that the arity hierarchy of

Σ11 is strict. On the level of logics with team semantics, one could de�ne a similar

restriction like FO(⊆, | )[k], which is the fragment of FO(⊆, | ) where only in-/exclusion

atoms using tuples of length ≤ k are allowed. Rönnholm [Rön18] established a strong

connection between Σ11[k] and FO(⊆, | )[k]: for given formulae '(x̄) ∈ FO(⊆, | )[k] he

constructed equivalent sentences  (X) ∈ Σ11[k] with ar(X ) = |x̄ | and, conversely, he

demonstrated how sentences  (X) ∈ Σ11[k] can be turned into equivalent formulae

'(x̄) ∈ FO(⊆, | )[k′] where k′ ∶= max{k, ar(X )}. In this context “equivalent" means that,

for all suitable structures A and teams X ,

A �X '(x̄) ⟺ A �  (X(x̄))

where X(x̄) is the relational encoding of X w.r.t. the free variables x̄ of '. In particular,

when considering only sentences with a team predicate of arity ≤ k and only formulae

with at most k free variables, then these translations are indeed in opposite directions

and, hence, the k-ary fragment of inclusion-exclusion logic is well understood. However,

the situation for inclusion logic is di�erent. In 2015, Hannula [Han15] showed that

the arity hierarchy of inclusion logic is strict, i.e. FO(⊆)[1] < FO(⊆)[2] < … (over the

signature of graphs), but it is still an open question to what exact fragment of other

logics the fragment FO(⊆)[k] corresponds to. This is why Rönnholm has presented the

quest for a characterisation of FO(⊆)[k] in terms of a suitable fragment of GFP
+

during

the Dagstuhl seminar 2019 [GKKV19]. This is the second open problem we are going

to address.

1.3 Main Contributions of this Thesis
In this thesis, we are going to propose solutions for these open questions regarding

the union closed fragment and the arity fragments of inclusion logic are analysed in

Chapter 3 resp. Chapter 4. Furthermore, Chapter 5 is dedicated to the discussion of

dependencies up to equivalences. Chapter 3 is based on the papers [HW19, HW20]

3



1 Introduction

which are joint work with Richard Wilke, while the results of Chapter 5 can mostly

also be found in the paper [GH18] that is joint work with Erich Grädel.

For the union closed fragment we will provide syntactic characterisations on the

level of Σ11 and of FO(⊆, | ). Such characterisation results are an important topic in

model theory, because not only is a di�cult and undecidable property turned into a

syntactical one, which is easy to check, but they also enable a more in-depth analysis

of these fragments. Prominent examples are van Benthem’s Theorem characterising

the bisimulation invariant fragment of �rst-order logic as the modal-logic [vB76]

or preservation theorems like the Łoś-Tarski Theorem, which states that formulae

preserved in substructures are equivalent to universal formulae [Hod97a].

A sentence '(X) ∈ Σ11 using an additional relation symbol X is closed under unions,

if A � '(Xi) for every i ∈ I already implies A � '(Y ) where Y ∶= ⋃i∈I Xi .1 We shall

characterise this semantic property as the myopic fragment of Σ11 that consists of all

those formulae that have the form ∀x̄(X x̄ →  (X , x̄)) where X occurs only positively

in  by proving the following theorem.

Theorem. '(X) ∈ Σ11 is union closed if and only if '(X) is equivalent to some myopic

Σ11-sentence.

We will present two proofs for the direction from left to right. The proof that is

more involved produces a myopic formula with a limited number of literals using X or

quanti�ed second-order symbols and it will rely on novel inclusion-exclusion games

that turn out to be precisely the corresponding model-checking games of Σ11-sentences

'(X) with an additional free relation symbol X . More precisely, every tuple ā that

could be part of a relation X over A with (A, X ) � '(X) will be a so-called target node,

which is a special of kind node of the game (A, ') in which player 0 will have winning

strategies  containing exactly those target nodes that form a relation satisfying '(X).
It is possible to de�ne restricted versions of these games that correspond to other closure

properties. One particular version of these restricted games are called union games

that are only able to express union closed properties of relations. These games are

naturally obtained as the model-checking games for myopic Σ11-sentences and because

they consists of several components, it is possible to obtain new winning strategies

for player 0 by a componentwise combination of other winning strategies — this is

also the reason, why the sets described by these games are always union closed. This

game-theoretic analysis can be transferred to a novel fragment of inclusion-exclusion

logic that consists of so-called x̄-myopic formulae. More precisely, we say that a

formula '(x̄) ∈ FO(⊆, | ) is x̄-myopic, if its free variables x̄ are never quanti�ed in '
and, more importantly, the in-/exclusion atoms occurring in '(x̄) obey the following

two restrictions:

(i) Exclusion atoms are always of the form x̄ ȳ | x̄ z̄.

1
Here, I is an arbitrary index set. Please notice, that we do not exclude I = ∅ and, therefore, the empty

relation must always satisfy a union closed formula, i.e. A � '(∅) is true for every suitable structure

A and every union closed sentence '(X).

4



1.3 Main Contributions of this Thesis

(ii) Inclusion atoms are of the form x̄ ȳ ⊆ x̄ z̄ or v̄ ⊆ x̄ , but v̄ ⊆ x̄ is disallowed below

disjunctions.

That this x̄-myopic fragment of FO(⊆, | ) captures the essence of the union closed

fragment can be stated as the following theorem.

Theorem. '(x̄) ∈ FO(⊆, | ) is union closed if and only if it is equivalent to some x̄-myopic

formula.

The game-theoretic proof produces an x̄-myopic formula with a limited number

of inclusion/exclusion atoms, but we also present two di�erent proofs that are less

intricate but still interesting. Furthermore, we will prove that the restrictions to the

in-/exclusion atoms cannot be dropped and that all these atoms are indeed necessary

to capture the union closed fragment.

Another interesting observation is that union games serve as a complete problem for

union closed properties and, hence, this allows the formalization of a team-based atom

∪−game that, when added to �rst-order logic, also captures the union closed fragment

of Σ11 resp. FO(⊆, | ).

Theorem. FO(∪−game) captures the union closed fragment.

This result is motivated by an open question of Galliani and Hella, which can be

found in [GH13] and was also presented at the Dagstuhl seminar 2019 [GKKV19].

These results and their details are in Chapter 3 and in [HW19, HW20].

In Chapter 4, we present a connection between the arity fragments of inclusion logic,

for whose strictness Hannula has already furnished proof [Han15], and fragments

of greatest �xed-points (in symbols: GFP
+
). This is motivated by an open question

that was presented by Rönnholm at the Dagstuhl seminar 2019 [GKKV19]. He has

asked whether or not there exists such a connection between the arity fragments of

inclusion logic and some fragments of GFP
+
. We will demonstrate that GFP+[k], the

fragment of GFP
+

where only �xed-points of arity ≤ k are allowed (and additional

free �rst-order variables are disallowed in formulae de�ning �xed-point operators),

corresponds to FO(⊆)[k], which is the fragment of FO(⊆) where inclusion atoms only of

the form x̄ ⊆ ȳ with |x̄ | = |ȳ| ≤ k are allowed. To establish this connection, we provide

e�ective translations in both directions, turning formulae from the one fragment into

equivalent formulae from the other one.

Theorem. For every formula '(x̄) ∈ FO(⊆)[k] there exists some myopic sentence  (X) ∈
GFP+[k] and, conversely, for every myopic sentence  (X) ∈ GFP+[k] there is a '(x̄) ∈
FO(⊆)[k′] where k′ ∶= max{k, ar(X )} such that

A �X '(x̄) ⟺ A �  (X(x̄))

for all suitable structures A and teams X .

5



1 Introduction

When considering only formulae '(x̄) ∈ FO(⊆)[k] with |x̄ | ≤ k and myopic sentences

 (X) ∈ GFP+[k] with ar(X ) ≤ k, these translations are in opposite directions. Further-

more, there is a good reason for the choice of k′ in this theorem, because, by using

Hannula’s results regarding the arity hierarchy of inclusion logic, we are able to prove

that certain myopic �rst-order sentences '� (X ) with ar(X ) = � cannot be turned into

any equivalent formula from FO(⊆)[� − 1].
Instead of considering myopic GFP+[k]-sentences, we are also interested in GFP+[k]-

formulae with free variables. By evaluating such a formula in a �at manner against a

team we can compare them with (downwards-closed) inclusion logic formulae. The

result [GH13, Theorem 16(b)] by Galliani and Hella does this for GFP
+
-formulae of the

form [GFP Rx̄ ∶ �(R, x̄)] (z̄) where �(R, x̄) is a �rst-order formula. However, this result

cannot be used for GFP+[k], because it is unclear how one could transform a formula

'(x̄) ∈ GFP+[k] with several �xed-points into this normal form without increasing the

arity. Utilising simultaneous �xed-point operators, we can circumvent these problems

and obtain the following result for GFP+[k]-formulae:

Theorem. For every GFP+[k]-formula  (x̄) there exists a (downwards-closed) formula


(x̄) ∈ FO(⊆)[k] such that for all suitable structures A and teams X ,

A �X 
(x̄)⟺ A �s  (x̄) for every s ∈ X .

In Chapter 5, logics with weaker versions of dependency concepts that can only

distinguish elements up to a given equivalence relation ≈ are explored. The question

arises whether and how known results for logics with team semantics carry over to

these new logics. While this is not di�cult for many known results, it turns out to

be more challenging for the connection of inclusion-exclusion logic to Σ11. In order to

address this and to develop a better understanding of the expressive power of FO(⊆≈, |≈ ),
which is �rst-order logic extended by inclusion/exclusion atoms up to equivalence, we

present the logic Σ11(≈): a fragment of Σ11 whose existential second-order quanti�ers

can only quantify over relations that are closed under the given equivalence. The

connection between FO(⊆≈, |≈ ) and Σ11(≈) is made precise in our following result.

Theorem. FO(⊆≈, |≈ ) and Σ11(≈) have the same expressive power on the level of sentences.

Furthermore, for every  (X) ∈ Σ11(≈) where X occurs only ≈-guarded, i.e. only in the form

X≈v̄ ∶= ∃w̄(v̄ ≈ w̄ ∧ Xw̄), there is some '(x̄) ∈ FO(⊆≈, |≈ ) that cannot distinguish between

teams equivalent w.r.t. ≈ and, conversely, for every such '(x̄) ∈ FO(⊆≈, |≈ ) there exists
such a  (X) ∈ Σ11(≈) with

A �X '(x̄) ⟺ (A, X (x̄)) �  (X)

for all suitable structures A and teams X .

The connection between inclusion logic and greatest �xed-point logics carries over

to FO(⊆≈). We de�ne GFP+≈ as a variant of GFP
+

where update operators build the

≈-closure after every computation step and we shall prove the following result.
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1.3 Main Contributions of this Thesis

Theorem. FO(⊆≈) has the same expressive power as GFP+≈ on the level of sentences.

Furthermore, the expressive power of Σ11(≈)- or, equivalently, FO(⊆≈, |≈ )-sentences

can be investigated on di�erent classes of structures, where either the number of

equivalence classes and/or their sizes are bounded by given constant numbers. We will

prove the following results:

• On any class of structures on which ≈ has only a bounded number of equivalence

classes, Σ11(≈), and hence all logics with dependencies up to equivalence as well,

collapse to FO.

• On any class of structures in which all equivalence classes have bounded size,

and only a bounded number of classes have more than one element, Σ11(≈) ≡ Σ11.

• In general, and in particular on the classes of structures where all equivalence

classes have size at most k (for k > 1), or that have only a bounded number

of equivalence classes of size >1, the expressive power of Σ11(≈), and all the

considered logics of dependence up to equivalence, are strictly between FO and

Σ11.

All these results and their details are in the Chapters 3 to 5, which can be mostly read

independent of each other. Chapter 2 is recommended for readers not familiar with

team semantics, because logics with team semantics, frequently used notations and

other concepts used in the following chapters are explained there.
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2 Preliminaries
This chapter is designated to explain frequently used notations, to recapitulate concepts

like logical interpretations and to serve as an introduction to logics with team semantics.

A structure A of signature � is a tuple A = (A, (SA)S∈� ), where A ≠ ∅ is the universe

of A and SA is the interpretation of the relation or function symbol S ∈ � . Structures are

often denoted by letters like A,B,C, … while the corresponding Latin letters denote

their universes. The arity of a S ∈ � is ar(S). An expansion of A is usually denoted

as (A, R ↦ X) in which the additional symbol R is interpreted by X . When R is

clear from the context, we will just write (A, X ) instead. By a slight abuse of notation,

something like (A, R̄) � '(R̄) indicates that certain relations R̄ are interpreting the

relation symbols R̄ in '. However, it will always be clear from the context whether R̄ are

just relation symbols or actual relations. For a formula '(S̄) using additional relation

symbols S̄ = (S1, … , Sn), a notation like A � '(R̄) for a given tuple R̄ = (R1, … , Rn)
of relations (with ar(Ri) = ar(Si)) is just a shorthand for (A, R̄ ↦ S̄) � '(R̄) where

(A, R̄ ↦ S̄) ∶= (A, R1 ↦ S1, … , Rn ↦ Sn).
Graphs are {E}-structures and are often denoted as G = (V , E), where the universe

V is referred to as the vertex set of G while E ⊆ V × V is called the set of edges of

G. Sometimes, we will nominate V or E as V (G) resp. E(G). A graph H = (W , F ) is a

subgraph of G, if W ⊆ V and E ⊆ F . For a set W we let G�W ∶= (V ∩ W , E ∩ (W × W))
be the subgraph of G which is induced by W . Similarly, for two graphs G and H we let

G�H ∶= G�V (H). For F ⊆ V × V , the extension of G by F is the graph G + F ∶= (V , E ∪ F ).
The symmetric closure of E is symE ∶= E ∪ {(w, v) ∶ (v, w) ∈ E}. The neighbourhood

NG(v) of a vertex v of G is the set {w ∈ V (G) ∶ (v, w) ∈ E(G)}. Vertices v ∈ V with

NG(v) = ∅ are called terminal (or �nal) vertices.

Notations like v̄, w̄ always indicate that v̄ = (v1, … , vk) and w̄ = (w1, … , w� ) are some

(�nite) tuples. Here k = |v̄| and � = |w̄|, so v̄ is a k-tuple while w̄ is an � -tuple. We write

{v̄} or {v̄, w̄} as abbreviations for {v1, … , vk} resp. {v1, … , vk , w1, … , w�}. A tuple v̄ is

called a subtuple of w̄ (in symbols v̄ ⊆ w̄), if {v̄} ⊆ {w̄}. To denote sets whose elements

are tuples, we use a notation like {(v̄), (w̄)}, which denotes the set containing exactly

v̄ and w̄ (as elements). The concatenation of v̄ and w̄ is (v̄, w̄) ∶= (v1, … , vk , w1, … , w� )
The powerset of a set A is denoted by (A) and +(A) ∶=(A) ⧵ {∅} is the powerset of

A without the empty set. Following [Blu18], we write On to denote the class of ordinal

numbers and assume familiarity with the concept of trans�nite inductions.

We assume basic familiarity with �rst-order logic. For a given � -structure A and

'(x̄) ∈ FO(�) we de�ne 'A ∶= {ā ∶ A � '(ā)}, which is an |x̄ |-ary relation over A.

Following the usual conventions, we often use greek letters to denote formulae. The

set of free �rst-order variables of a formula ' is denoted as free('), while subf(') is the
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2 Preliminaries

set of all subformulae of '.

2.1 Logics with Team Semantics
In 2007, Väänänen introduced dependence logic [Vää07] based on the concepts of teams,

which are sets of assignments. Using such teams it is possible to formalise dependency

statements about variables. Formally, a team X over A is a set of assignments mapping

a common domain dom(X) = {x̄} of variables into A. For a given subtuple ȳ =
(y1, … , y� ) ⊆ x̄ and every s ∈ X we de�ne s(ȳ) ∶= (s(y1), … , s(y� )). Furthermore, we

frequently use X(ȳ) ∶= {s(ȳ) ∶ s ∈ X} which is an � -ary relation over A. For an

assignment s, a variable x and a ∈ A we use s[x ↦ a] to denote the assignment

resulting from s by adding x to its domain (if it is not already contained) and declaring

a as the image of x .

De�nition 2.1. Let A be a � -structure, X a team of A. In the following, 
 denotes an

FO(�)-literal and ',  arbitrary formulae in negation normal form.

• A �X 
 ∶⟺ A �s 
 for all s ∈ X

• A �X ' ∧  ∶⟺ A �X ' and A �X  

• A �X ' ∨  ∶⟺ A �Y ' and A �Z  for some Y , Z such that Y ∪ Z = X

• A �X ∀x' ∶⟺ A �X[x↦A] '

• A �X ∃x' ∶⟺ A �X[x↦F] ' for some F ∶ X → +(A)

Here X[x ↦ A] ∶= {s[x ↦ a] ∶ s ∈ X , a ∈ A} and X[x ↦ F] ∶= {s[x ↦ a] ∶ s ∈
X , a ∈ F(s)}.

Sometimes we call a team Y an {x}-extension of X , if Y = X[x ↦ F] for some

function F ∶ X → +(A). Furthermore, we sometimes write X[x ↦ B] ∶= {s[x ↦
a] ∶ s ∈ X , a ∈ B} for subsets B ⊂ A. These notations generalize in the obvious

way for tuples x̄ instead of single variables x . We say that two formulae '(x̄) and

 (x̄) of some logic with team semantics (over the same signature � ) are equivalent,

if A �X '(x̄) ⟺ A �X  (x̄) holds for all � -structures A and teams X over A with

{x̄} ⊆ dom(X).
One may wonder why it is appropriate to provide a non-empty set of values for an

existentially quanti�ed variable rather than just a single value as in standard Tarski

semantics for �rst-order logic. Indeed a function F ∶ X → A rather than F ∶ X →
+(A) su�ces, if the logic is downwards closed, i.e. when A �X  implies that also

A �Y  for all subteams Y ⊆ X . Examples of downwards closed logics are dependence

logic and exclusion logic, but not all logics with team semantics are downwards closed.

For instance, inclusion logic and independence logic are not downwards closed. In these

logics the so-called strict semantics requiring single values for existentially quanti�ed
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2.1 Logics with Team Semantics

variables leads to pathologies such as non-locality: the meaning of a formula might

depend on the values of variables that do not even occur in it [Gal12]. This is why, we

will always use the lax semantics that uses non-empty sets of values for existential

quanti�ers and splits that are not required to be disjoint for disjunctions.

All logics with team semantics that are considered in this thesis have the well-known

empty team property: we always have A �∅ '(x̄) for all formulae '(x̄) and structures A.

To evaluate sentences, i.e. formulae without free variables, we therefore do not use the

empty team, but the team {∅} consisting just of the empty assignment. For a sentence

 we write A �  if and only if A �{∅}  . It is also worth mentioning that negation

signs are only allowed in literals, but since it is not di�cult to bring ¬' into negation

normal form, denoted as nnf(¬'), we are able to simulate negation signs as long as '
is just a �rst-order formula. However, this is no longer possible if ' uses one of the

dependency concepts that are de�ned below.

Team semantics for a �rst-order formula ' (without any dependency concepts) boils

down to evaluating ' against every single assignment, i.e. more formally we have

A �X ' ⟺ A �s ' for every s ∈ X (in usual Tarski semantics). This is also known as

the so-called �atness property of FO. The reason for considering teams instead of single

assignments is that they allow to formalise the meaning of dependency statements in

the form of dependency atoms. Among the most important atoms are the following.

• A �X dep(x̄, y) ∶⟺ s(x̄) = s′(x̄) implies s(y) = s′(y) for all s, s′ ∈ X

• A �X x̄ ⊆ ȳ ∶⟺ X(x̄) ⊆ X(ȳ)

• A �X x̄ | ȳ ∶⟺ X(x̄) ∩ X(ȳ) = ∅

• A �X x̄⊥ȳ ∶⟺ X(x̄, ȳ) = X(x̄) × X (ȳ)

These are called dependence [Vää07], inclusion, exclusion [Gal12] and (unconditional)

independence [GV13] atoms, respectively. When we speak about a logic that may use

certain atomic dependency notions, for example inclusion, we denote it by writing

FO(⊆).
Let ' be a �rst-order formula and be any formula of a logic with team semantics. For

a given team X with free(') ⊆ dom(X), the restriction of X to some �rst-order formula

'(x̄) is X�' ∶= {s ∈ X ∶ A �s '}. We de�ne ' →  as nnf(¬') ∨ (' ∧  ) where nnf(¬')
is the negation normal form of ¬'. It is easy to see that A �X ' →  ⟺ A �X�'  
for all teams X with free(') ∪ free( ) ⊆ dom(X). It is worth pointing out, that the

formula nnf(¬') ∨  is in general not equivalent to ' →  = nnf(¬') ∨ (' ∧  ), unless

 is a �rst-order formula.

2.1.1 Witnesses
In order to prove a statement like A �X ', one has to provide teams associated to

all subformulae in a way that respects the conditions of De�nition 2.1 and for the
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2 Preliminaries

dependency concepts. A manageable way to do this is to use witnesses, which will be

explained in this section. Since it is not di�cult to manipulate these witnesses or to

construct a new one from existing ones, this concept will be handy in various proofs.

For a formula ' let T' denote the syntax tree of ' in which every occurrence of

a subformula  of ' corresponds to some node v of T' . It is very important that

we use di�erent nodes for di�erent occurrences of (possibly identical) subformulae.

Furthermore, there is an edge from v to v# , if # is a direct subformula of # .

A (team-)labelling of T' is a function � mapping every node v to a team �(v )
whose domain includes free( ).

De�nition 2.2. A (team-)labelling � is a witness for A �X ', if �(v') = X and for every

v ∈ V (T') holds:

• If  is a literal, then A ��(v )  .

• If  = #1 ∨ #2, then �(v ) = �(v#1) ∪ �(v#2).

• If  = #1 ∧ #2, then �(v ) = �(v#1) = �(v#2).

• If  = ∃x# , then �(v# ) is an {x}-extension of �(#).

• If  = ∀x# , then �(v# ) = �(v# )[x ↦ A].

We often just write �( ) instead of �(v ) if it is clear from the context which occurrence

of the subformula  of ' is meant.

Since this de�nition basically captures De�nition 2.1 and the condition for the

dependency notions, we obtain the following lemma.

Lemma 2.3. For every formula ' of some logic with team semantics, every structure A
and every team X over A with dom(X) ⊇ free('), A �X ' if and only if there exists a

witness � for A �X '.

It is worth mentioning that if � is a witness for A �X ', then the restriction of � to the

subtree rooted at some v ∈ V (T') is a witness for A ��( )  . Furthermore, we like to

point out that in order to prove the existence of witness � for A �X ', it su�ces to give

only a partial function �′, if one furnishes proof that for every v� ∈ V where �′(v� ) is

unde�ned there exists an ancestor v# of v� in T' with A ��′(v# ) # while the conditions

of De�nition 2.2 only have to be veri�ed for those v ∈ V (T') where �′(v ) and �′(w)
are de�ned for every neighbour w of v. The reason for this is that A ��′(v# ) # gives

rise to a witness �′′ for A ��′(v# ) # , which can used to supplement �′ at the subtree

rooted at v# . This observation is often useful in situations where a formula '⋆ has

been de�ned inductively from ' and one would like to turn witness for ' into a new

ones for '⋆.
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2.2 The Second-Order Nature of Logics with Team Semantics

2.1.2 Closure Properties for Logics with Team Semantics
A formula ' of a logic with team semantics may obey di�erent closure properties with

respect to the team, among which the following are the most important ones. We call

a formula ' of any logic with team semantics

• union closed if A �Xi ' for all i ∈ I implies A �X ', where X = ⋃i∈I Xi ,

• downwards closed if A �X ' implies A �Y ' for all Y ⊆ X , and

• upwards closed on non-empty teams if A �X ' and X ≠ ∅ entail A �Y ' for all

teams Y with X ⊆ Y .

Since all logics we are interested in have the empty team property, i.e. we always

have A �∅ ', upwards closure is only an interesting concept as long as the empty team

is excluded.

One might wonder why we skipped closure under intersection. The reason for this

is that closure under intersection does not constitute a reasonable closure property,

because, as we shall prove in Section 3.6.1, it is not preserved under conjunctions.

2.2 The Second-Order Nature of Logics with Team
Semantics

In second-order logic, quanti�ers may not only range over elements of the underlying

structure but also quanti�ers of the shape ∃S or ∀S are allowed where S is either a

relation or function symbol. In the existential fragment of second-order logic (ESO),

formally denoted as Σ11, quanti�ers of the form ∀S are disallowed, that is, only existential

second-order (but arbitrary �rst-order quantifers) are allowed. A notation like '(X , x̄)
indicates that ' may contain an additional relation symbol X and free �rst-order

variables x̄ . In such a case we may refer to X as a free second-order variable of ', but

we would like to point out that free('(X , x̄)) still only consists of the free �rst-order

variables. It is worth mentioning that every Σ11-sentence can be rewritten equivalently

in the shape ∃R1…∃Rn'(R1, … , Rn) where '(R1, … , Rn) is a �rst-order sentence. The key

observation to prove this is that ∀y∃R'(R, x) (where y is not quanti�ed again in ') can

be rewritten as ∃R′∀y'′(R′, y) where '′ emerges from ' by replacing every Rx̄ by R′yx̄ .

In general, logical operations on teams have a second-order nature, and indeed,

dependencies and team semantics may take the power of �rst-order logic FO up to

existential second-order logic Σ11. To make this precise we recall the standard translation,

due to [Vää07, KV09], from formulae with team semantics into sentences of existential

second-order logic using an additional relation symbol for (relational encodings of)

the teams.

Due to the di�erent nature of team semantics and classical Tarski semantics, one

has to compare formulae '(x̄) of a logic with team semantics with sentences  (X) ∈ Σ11
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that use a special relation symbol for the team. In fact one could identify a team X of

assignments s ∶ {x̄} → A with the relation

X(x̄) ∶= {s(x̄) ∈ A|x̄ | ∶ s ∈ X} ⊆ A|x̄ |.

We say that '(x̄) and  (X) are equivalent, if for every structure A and every team X
over A with x̄ ⊆ dom(X) holds

A �X '(x̄) ⟺ (A, X (x̄)) �  (X).

Please notice, that X occurs in  (X) as a relation symbol while it is simultaneously used

as a team to evaluate '(x̄). Furthermore, (A, X (x̄)) is abbreviation for (A, X ↦ X(x̄)),
because in order to evaluate the sentence  (X)we have to interpret the relation symbol

X by some relation and in this case the relation symbol X is mapped to the relation

X(x̄). When we use notations like this, it will always be clear from the context whether

X refers to a team or to a relation symbol, because inside formulae X can only refer to

a relation symbol while X(x̄) only makes sense when X refers to a team. The reason

we do not use di�erent characters is to avoid an in�ation of characters that all refer to

almost the same concept.

To illustrate the second-order nature of logical operations in team semantics we

recall the meaning of disjunctions and existential quanti�cations in team semantics,

and their standard translation into Σ11. Disjunctions split the team, i.e.

A �X '1 ∨ '2 ∶⟺ there is a split X = Y ∪ Z such that A �Y '1 and A �Z '2.

Therefore, the standard translation of this disjunctions is

('1 ∨ '2)⋆(X ) ∶= ∃Y∃Z(∀x̄(X x̄ ↔ Yx̄ ∨ Z x̄)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

X=Y∪Z

∧ '⋆1 (Y ) ∧ '
⋆
2 (Z )).

Please recall that existential quanti�cation requires the extension of the given team by

providing for each of its assignments a non-empty set of values for quanti�ed variables,

that is

A �X ∃y' ∶⟺ there exists a function F ∶ X → +(A) such that A �X[y↦F] '.

This leads to the following standard translation of existential quanti�ers:

(∃y')⋆(X ) ∶= ∃Y∀x̄((X x̄ ↔ ∃yY x̄y) ∧ '⋆(Y ))

In order to understand the expressive power of a �rst-order logic with dependencies,

one is interested in identifying some fragment  of existential second-order logic

which is equivalent in the sense just described. Here are some of the most important

results that are already known:
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• Dependence logic and exclusion logic are equivalent to the fragment of all Σ11-
sentences  (X) in which the predicate X describing the team appears only

negatively [KV09].

• Independence logic and inclusion-exclusion logic are equivalent to full Σ11 (and

thus can describe all NP-properties of teams) [Gal12].

• Inclusion logic FO(⊆) corresponds to GFP
+
, the fragment of �xed-point logic that

uses only (non-negated) greatest �xed-points. Since [GFPRx̄ .  (R, x̄)](ȳ) readily

translates into ∃R(∀x̄(Rx̄ →  (R, x̄)) ∧ Rȳ), GFP
+

can be viewed as a fragment of

Σ11. Galliani and Hella [GH13] established the equivalence of inclusion logic and

GFP
+

on the level of sentences [GH13, Corollary 17]. In [Grä16] it is shown that

inclusion logics corresponds to myopic GFP
+
-sentences, which are sentences of

the form ∀x̄(X x̄ → '(X , x̄)), where X occurs only positively in ' ∈ GFP
+
.
1

• k-ary inclusion-exclusion logic correspond to k-ary existential second-order

logic [Rön18]. For instance, the extension of FO by inclusion and exclusion

atoms of single variables only (not tuples of variables) is equivalent to monadic

Σ11 [Rön18].

• First-order logic without any dependence atoms has the �atness property: A �X
' ⟺ A �s ' for all s ∈ X . It thus corresponds to a very small fragment of Σ11,
namely FO-sentences of the form ∀x̄(X x̄ → '(x̄)) where '(x̄) does not contain

X .

2.2.1 Closure Properties for Existential Second-Order Logic
The closure properties for logics with team semantics naturally correspond to closure

properties of existential second-order logic. A formula '(X) ∈ Σ11 using an additional

free relation symbol X is called

• union-closed, if (A, Xi) � ' for all i ∈ I implies (A, X ) � ' for all i ∈ I where

X ∶= ⋃i∈I Xi ,

• downwards closed, if (A, X ) � ' implies (A, Y ) � ' for all relations Y ⊆ X ,

• upwards closed (w.r.t. non-empty relations), if (A, X ) � ' and ∅ ≠ X ⊆ Y entail

(A, Y ) � '.

1
Galliani and Hella also discovered a way to translate formulae of inclusion logic into myopic GFP

+
-

sentence (cf. [GH13, Theorem 15]), but their result for the converse direction always produces

a downwards-closed formula, because their resulting formula had the shape ∃x̄(z̄ ⊆ x̄ ∧ �+(x̄))
(cf. [GH13, Theorem 16(b)]). This is the reason why their converse direction could be used to rewrite

sentences of the shape ∀z̄(X z̄ → [GFP Rx̄ ∶ �(R, x̄)] (z̄)), where X does not occur in � ∈ FO, as

(downward-closed) inclusion logic formulae.
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2.3 First-Order Interpretations
Logical interpretations are used to de�ne structures inside another structure while

translating formulae over the de�ned structure in the other direction. Let �, � be

relational signatures. A �rst-order interpretation from � to � (of arity k) is a tuple

 = (�, ", ( S)S∈� ) of FO(�)-formulae where

• � = �(x̄) is the domain formula,

• " = "(x̄ , ȳ) is the equality formula and

•  S =  S(x̄1, … , x̄ar(S)) are the relation formulae for each S ∈ � .

Here, the tuples x̄ , ȳ, x̄1, … are of length k respectively.

For the remainder of this section, let A be a �-structure and B some � -structure.

We say that  interprets B in A (and write B ≅ (A)) if and only if there exists a

surjective function ℎ, called the coordinate map, that maps �A = {ā ∈ Ak ∶ A � �(ā)}
to B such that

• for all ā, b̄ ∈ �A we have A � "(ā, b̄) ⟺ ℎ(ā) = ℎ(b̄), and

• for all S ∈ � and ā1, … , āar(S) ∈ �A holds

A �  S(ā1, … , āar(S))⟺ (ℎ(ā1), … , ℎ(āar(S))) ∈ SB.

These conditions express that "A is a congruence relation over

C ∶= (�A, ((�A)ar(S) ∩  A
S )S∈� )

and that B is isomorphic to the quotient structure C/"A.

An interpretation  from � to � can also be used to translate a given � -formula (of

various logics) into a �-formula. We will brie�y describe how this works for Σ11 and

FO(⊆, | ). First, let '(S1, … , Sn, x1, … , xm) ∈ Σ11(� ) be a formula with additional relation

symbols S1, … , Sn, Sn+1, … , Sn+n′ (here S1, … , Sn occur freely in ' while Sn+1, … , Sn+n′ are

quanti�ed in ') and free variables x1, … , xm. In this process every variable v is replaced

by a k-tuple v̄ while every additional relation symbol Si is replaced by a (k ⋅ ar(Si))-ary

relation symbol S⋆i . We de�ne a �-formula '(S⋆1 , … , S⋆n , x̄1, … , x̄m) ∈ Σ11 by induction:

• (Sv1⋯var(S)) ∶=  S(v̄1, … , v̄ar(S)) for S ∈ � ,

• (y = z) ∶= "(ȳ, z̄),

• (¬#) ∶= ¬#
,

• (∃y#) ∶= ∃ȳ(�(ȳ) ∧ #),

• (∀y#) ∶= ∀ȳ(�(ȳ) → #),
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2.3 First-Order Interpretations

• (#1◦#2) ∶= #
1 ◦#

2 for ◦ ∈ {∧, ∨},

• (Siv1⋯var(Si )) ∶= ∃w̄1⋯ w̄ar(Si )(⋀
ar(Si )
j=1 (�(w̄j) ∧ "(v̄j , w̄j)) ∧ S⋆i w̄1⋯ w̄ar(Si )),

• (∃Sj#) ∶= ∃S⋆j (∀x̄1⋯ x̄ar(Si )(S⋆j x̄1⋯ x̄ar(Si ) → ⋀ar(Sj )
j=1 �(x̄j)) ∧ #).

An assignment s ∶ {x̄1, … , x̄m} → A is well-formed (w.r.t. ), if s(x̄i) ∈ �(= dom(ℎ))
for every i = 1, … ,m. Such an assignment encodes ℎ◦s ∶ {x1, … , xm} → B with

(ℎ◦s)(xi)∶=ℎ(s(x̄i))which is an assignment over B. Similarly, a relationQ is well-formed

(w.r.t. ), if Q ⊆ (�A)� where � = ar(Q)
k ∈ ℕ, and we de�ne ℎ(Q) ∶= {(ℎ(ā1), … , ℎ(ā� )) ∶

(ā1, … , ā� ) ∈ Q}, which is the � -ary relation over B that was described by Q. The

connection between '
and ' is made precise in the well-known interpretation lemma.

Lemma 2.4 (Interpretation Lemma for Σ11). Let ' ∈ Σ11 and  be as above. Let R⋆i ⊆
Ar ⋅ar(Si )

for i = 1, … , n and s ∶ {x̄1, … , x̄m} → A be well-formed. Then: (A, R⋆1 , … , R⋆n ) �s
' ⟺ (B, ℎ(R⋆1 ), … , ℎ(R⋆n )) �ℎ◦s '.

It is an easy consequence of this interpretation lemma, that, for all relations R1, … , Rn
over B of arity ar(S1), … , ar(Sn) respectively and every assignment t ∶ {x1, … , xm} → B,

holds

(B, R1, … , Rn) �t ' ⟺ (A, ℎ−1(R1), … , ℎ−1(Rn)) �s '
for some/all s ∈ ℎ−1(t)

where ℎ−1(s) ∶= {s ∶ ℎ◦s = t} and

ℎ−1(Ri) ∶= {(ā1, … , āar(Si )) ∈ (�
A)ar(Si ) ∶ (ℎ(ā1), … , ℎ(āar(Si ))) ∈ Ri},

because, since ℎ∶ �A → A is surjective, it is easy to verify that the ℎ−1(Ri) are well-

formed and satisfy ℎ(ℎ−1(Ri)) = Ri while ℎ−1(t) is a non-empty set with ℎ◦s = t for every

s ∈ ℎ−1(t).
Now consider a formula  (x1, … , xm) ∈ FO(⊆, | ) with free variables x1, … , xm. Here,

the de�nition of   ∈ FO(⊆, | ) is similar to the one we used for Σ11-formulae. The only

di�erences occur when dealing with in-/exclusion atoms:

(v1…v� ⊆ w1…w� ) ∶= ∃v̄′1… v̄′�(
�

⋀
i=1

�(v̄′i ) ∧ "(v̄i , v̄
′
i ) ∧ v̄

′
1… v̄′� ⊆ w̄1… w̄�)

(v1…v� | w1…w� ) ∶= ∀v̄′1… v̄′�([
�

⋀
i=1

�(v̄′i ) ∧ "(v̄i , v̄
′
i )] → v̄′1… v̄′� | w̄1… w̄�)

Here, every v̄′i is a |v̄i |-tuple of (pairwise di�erent) new variables. A team X over A
with dom(X) = {x̄1, … , x̄m} is said to be well-formed, if every s ∈ X is well-formed

(w.r.t. ). For such a team, ℎ(X) ∶= {ℎ◦s ∶ s ∈ X} is a well-de�ned team over B with

dom(ℎ(X)) = {x1, … , xm}.
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2 Preliminaries

Lemma 2.5 (Interpretation Lemma for FO(⊆, | )). Let  ∈ FO(⊆, | ) and  be as above.

For every well-formed team X over A with dom(X) = {x̄1, … , x̄m}, holds A �X   ⟺
B �ℎ(X)  .

Proof. A straightforward induction over  .

Consider any team Y over B with dom(Y ) = {x1, … , xm}. Then it is an easy con-

sequence of the interpretation lemma for FO(⊆, | ), that B �Y  ⟺ A �ℎ−1(Y )  

where ℎ−1(Y ) ∶=⋃t∈Y ℎ−1(t) = {s ∶ ℎ◦s ∈ Y} can be viewed as the “full” team describing

Y . Of course, di�erent tuples of the base structure A may encode the same element of

the target structure B, thus Y usually contains redundant assignments. For the same

reason, two (well-formed) teams X ≠ X ′
(with the same domain and co-domain A) may

describe the same team over B. We say that X and X ′
are ℎ-similar, if ℎ(X) = ℎ(X ′).

Another easy consequence of the interpretation lemma is that ℎ-similar teams satisfy

the same formulae.

Lemma 2.6 (Similarity Lemma). Let  and  be as above and X, X ′
be well-formed

teams that are ℎ-similar. Then: A �X   ⟺ A �X ′  
.

Proof. Since X, X ′
are ℎ-similar, we have ℎ(X) = ℎ(X ′). By the interpretation lemma,

A �X   ⟺ B �ℎ(X)  ⟺
ℎ(X)=ℎ(X ′)

B �ℎ(X ′)  ⟺ A �X ′  
.
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3 Syntactic Normal Forms for
Union-Closed Formulae

In this chapter we analyse the semantical fragments of Σ11 and FO(⊆, | ) consisting of

formulae exhibiting certain closure properties, but the focus lies mostly upon union-

closure, and we prove that these fragments can be characterised by syntactic restrictions

imposed upon Σ11 as well as FO(⊆, | ). In order to improve the translation from the

semantical to the syntactical fragments w.r.t. some logical resources like number of

literals with quanti�ed symbols, we will use a new variant of second-order reachability

games, which we will call inclusion-exclusion games. These games are also interesting

in their own right because they turn out to be the model checking games for Σ11-
sentences with a free relation variable and it is even possible to de�ne restricted

variants of these games that are the model-checking games for union-closed formulae.

The most important results of this chapter are that a Σ11-sentence  (X) with a free

relation variable X is union closed if and only if it is equivalent to a formula of the form

∀x̄(X x̄ → ∃R̄'(X , R̄, x̄)) (where X occurs only positively in ') and it will be shown that

this corresponds to the fragment of inclusion-exclusion logic where only in-/exclusion

atoms of the form x̄ ȳ | x̄ z̄, x̄ ȳ ⊆ x̄ z̄ and v̄ ⊆ x̄ are allowed, but v̄ ⊆ x̄ is disallowed in

the scope of disjunctions. For FO(⊆, | ) this is somewhat the optimal solution, because

we will also show that nullifying any of these restrictions or disallowing one of these

three atoms results in a logic those expressive power is either too high or too low for

the union-closed fragment. Last but not least, we will present a Σ11-de�nable atom that

when added to FO produces a logic, that also captures the union-closed fragment.

In Section 3.1, we will introduce the inclusion-exclusion games. They provide an

alternative way to prove our characterisation results of union-closed formulae within

Σ11 which can be found in Section 3.2. In Section 3.3 we present the union games

which are structurally restricted variants of the games from Section 3.1. The before

mentioned fragment of FO(⊆, | ) is then de�ned and analysed in Section 3.4, while the

same fragment is captured by the atom which is introduced in Section 3.5. Finally, in

Section 3.6, we take a brief look at other closure properties and we will show that the

inclusion/exclusion games can be adapted for fragments like inclusion resp. exclusion

logic.

This chapter is based closely on the paper [HW20] that is joint work with my

colleague Richard Wilke. Most results and proofs from this chapter can also be found

in [HW19], which contains proofs omitted in [HW20]. However, the proofs for the

characterisation results presented here are more direct and shorter in comparison to the

proofs used in [HW19, HW20], while the original proofs are here analysed w.r.t. logical
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3 Syntactic Normal Forms

resources like number of in-/exclusion atoms or literals with quanti�ed symbols.

Historically, I had been working on a solution of Rönnholm’s problem, which is

the main focus of Chapter 4, and, in this process, I have encountered the notions

of myopic formulae that have been used in [GH13, Grä16] for GFP
+

and FO. This

has sparked the idea to use an adaptation of this syntactic normal form to capture

the union closed fragment of Σ11 and, inspired by the approach of [Grä16], to rely on

model-checking games for the proof. At �rst, these results were merely about Σ11 and it

is mostly Richard’s merit to de�ne the so-called union games as structurally restricted

variants of these games in order to use them as an atom for a logic with team semantics.

However, this results in a logic that may be viewed as being unnatural, because it is very

cumbersome to write formulae in this new logic. Therefore, we began thinking about

what kind of formulae are actually needed to express winning strategies of union games

in FO(⊆, | ). This line of thought eventually led to the x̄-myopic fragment of FO(⊆, | ).
Only later, I have found di�erent ways to prove the characterisation results without

relying on the inclusion-exclusion games. However, inclusion-exclusion games still

o�er deep insights for various fragments of Σ11 resp. FO(⊆, | ). For example union games

have inspired the de�nition of the myopic fragment of FO(⊆, | ). In this regard, not

having found the more direct proofs right away may have been a fortunate oversight.

In this chapter, we will present the newer proofs alongside slightly modi�ed versions

of the original proofs, because it can be observed that they actually prove stronger

statements, if one keeps track of certain logical resources. Since Richard was of the

opinion that my very �rst proof, which was later re�ned, for the characterisation result

with x̄-myopic formulae was too technical and too long, he later came up with a more

direct proof that relies on constructions �rst used by Väänänen, Kontinen and Galliani.

These proofs have their (dis)advantages, which is why this thesis contains all of them.

The results and concepts of this chapter have gone through numerous discussions with

Richard and a countless number of changes before they eventually converged to the

current re�ned form.

3.1 Inclusion-Exclusion Games
Classical model-checking games are designed to express satis�ability of sentences,

i.e. formulae without free variables. Since we are interested in formulae in a free

relational variable we are in need for a game that is able to not only express that a

formula is satis�ed, but moreover that it is satis�ed by a certain relation. In the games

we are about to describe a set of designated positions is present — called the target set

— which corresponds to the full relation Ak
(where the free relational variable has arity

k). A winning strategy is said to be adequate for a subset X of the target positions, if

the target vertices visited by it are X . On the level of logics this matches the relation

satisfying the corresponding formula, i.e. there is a winning strategy adequate for X if

and only if the formula is satis�ed by X .

An inclusion-exclusion game  = (V , V0, V1, E, I , T , Eex) is played by two players 0
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3.1 Inclusion-Exclusion Games

T

∈ I

a b c dE

Figure 3.1: A drawing of an inclusion-exclusion game . Circular nodes belong to

player 0, while the nodes of player 1 are rectangular. The set of target

vertices is T = {a, b, c, d}, the possible moves are drawn as arrows and

there is one exclusion edge between b and c, indicated by the lightning

symbol. The grey vertices together with all edges between them form a

winning strategy according to De�nition 3.1. Another winning strategy can

be obtained by dropping a. Since these are the only winning strategies, we

have  () = {{a, c, d}, {c, d}}.

and 1 where

• V� is the set of vertices of player � ,

• V = V0 ⊍ V1,

• E ⊆ V × V is set of possible moves,

• I ⊆ V is the (possibly empty) set of initial positions,

• T ⊆ V is the set of target vertices and

• Eex ⊆ V × V is the exclusion condition, which de�nes the winning condition for

player 0.1

The edges going into T , that is Ein ∶= E ∩ (V × T ), are called inclusion edges, while Eex is

the set of exclusion edges (sometimes also called con�icting pairs). Figure 3.1 shows an

example that illustrates these games.

Unlike �rst-order games where single plays
2

are considered and a certain winning

condition is used to de�ne whether or not such a play is winning for player 0 or 1, we

do not have such a de�nition for inclusion-exclusion games, because these games are

second-order games. This means that we do not consider single plays, but instead we

1Eex can always be replaced by the symmetric closure of Eex without altering its semantics.

2
A play is a path through the game graph.
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3 Syntactic Normal Forms

are looking at sets of plays or, to be more precise, the set of vertices visited by such a

collection of plays. We will refer to the intersection of such a set of visited vertices

with T as a so-called target set (which is not to be confused with T , the set of target

vertices).

To put it in other words, for a subset X ⊆ T the aim of player 0 is to provide a

strategy (which induces a set of consistent plays) such that the vertices of T that are

visited by this strategy is exactly X .

De�nition 3.1. A winning strategy (for player 0) is a possibly empty subgraph  =
(W , F ) of G = (V , E) ensuring the following four consistency conditions.

(i) For every v ∈ W ∩ V0 holds N (v) ≠ ∅.
3

(ii) For every v ∈ W ∩ V1 holds N (v) = NG(v).

(iii) I ⊆ W .

(iv) (W × W) ∩ Eex = ∅.

Intuitively, the conditions (i) and (ii) state that the strategy must provide at least one

move from each node of player 0 used by the strategy but does not make assumptions

about the moves that player 1 may make whenever the strategy contains a node

belonging to that player. In particular, the strategy must not play any with terminal

vertices that are in V0. Furthermore, (iii) enforces that at least the initial positions are

contained. In a game with I = ∅, this condition becomes trivial. Finally, (iv) disallows

playing with con�icting pairs (v, w) ∈ Eex, i.e. v and w must not coexist in any winning

strategy for player 0. As an example, the grey vertices in Figure 3.1 induce a winning

strategy. Another interesting observation is that (W , F ) is a winning strategy for player

0, if and only if the subgraph of the game induced by W , which is (W , (W ×W) ∩ E), is

a winning strategy. In this regard, the most relevant part of a winning strategy is its

set of vertices. Please notice that we only de�ne winning strategies for player 0 and

the author is currently not aware of a possible de�nition for the other player.

We are mainly interested in the subset of target vertices that are visited by a winning

strategy  = (W , F ). More formally, a winning strategy  induces  ()∶=W ∩T , which

we also call the target of  . This allows us to associate with every inclusion-exclusion

game  the set of targets of winning strategies:

 () ∶= { () ∶  is a winning strategy for player 0 in }

Intuitively, as already pointed out, games of this kind will be the model-checking

games for Σ11-formulae '(X) that have a free relational variable X . Given a structure

A and such a formula, we are interested in the possible relations Y that satisfy the

formula, in symbols A � '(Y ).4 We will construct the game such that Y satis�es '
3N (v) = {w ∈ W ∶ (v, w) ∈ F} is the set of neighbours of v in the graph  .

4A � '(Y ) means the same as (A, X ↦ Y) � '(X) which is more precise but also more cumbersome.
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3.1 Inclusion-Exclusion Games

t
v

tw

Figure 3.2: Gadget for making target vertices terminal.

if and only if there is a strategy of player 0 winning for the target set Y ⊆ T , thus

 () = {Y ∶ A � '(Y )}.

It will be more convenient for our purposes that the target vertices of an inclusion-

exclusion game are not required to be terminal positions. As the gadget in Figure 3.2

shows (rectangle vertices belong to player 1), it is easy to transform any given game into

one that agrees on the (possible) targets and in which all target vertices are terminal.

Of course, the winning condition of inclusion-exclusion games is �rst-order de�nable.

For the sake of completeness we will provide the formula.

Proposition 3.2. Let  be an inclusion-exclusion game. There are �rst-order formulae

'win(W , F ) and '′win(W ) such that:

•  � 'win(W , F )⟺ (W , F) is a winning strategy for player 0 in .

•  � '′win(W )⟺W is the vertex set of a winning strategy for player 0 in .

Proof. The formula

'win(W , F ) ∶= ∀v(Wv → [(V0v ∧ ∃w(Evw ∧ Ww ∧ Fvw)) ∨
(V1v ∧ ∀w(Evw → Ww ∧ Fvw))]) ∧

∀v(Iv → Wv) ∧ ∀v∀w((Wv ∧ Ww) → ¬Eexvw) ∧
∀x∀y(Fxy → Exy ∧ Wx ∧ Wy)

readably expresses the winning condition imposed on the graph (W , F ). If (W , F ) is a

winning strategy, then (W , (W × W) ∩ E) is a winning strategy as well. Therefore, the

formula

'′win(W ) ∶= ∀v(Wv → [(V0v ∧ ∃w(Evw ∧ Ww)) ∨
(V1v ∧ ∀w(Evw → Ww))]) ∧

∀v(Iv → Wv) ∧ ∀v∀w((Wv ∧ Ww) → ¬Eexvw).

expresses that W is a vertex set of a winning strategy.

Every in-/exclusion game can be associated with the following decision problem:

Given:  = (V , V0, V1, E, I , T , Eex) and X ⊆ T .

Decide: Does player 0 have a winning strategy  in  with  () = X?
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Theorem 3.3. The problem of deciding whether X ∈  () for a �nite inclusion-exclusion
game  is NP-complete.

Proof. Determining whether X ∈  () holds is clearly in NP, as the winning strategy

can be guessed and veri�ed in polynomial time.

For the NP-hardness we present a reduction from the satis�ability problem of propo-

sitional logic. Let ' be formula in conjunctive normal form, i.e. ' = ⋀j≤m Cj where

Cj = ⋁i Li is a disjunction of literals (variables or negated variables). The game ' is

constructed as follows. For every variable x we add two vertices (of player 1) x and

¬x connected by an exclusion edge. Moreover, for every clause Cj we add a vertex,

belonging to player 0, which has an outgoing edge into each literal Li occurring in it.

There are no initial vertices, i.e. I ∶= ∅ and the target set T is the set of all clauses Cj of

'. Now, S ∈  () if and only if ⋀Cj∈S Cj is satis�able. In particular, T ∈  (') if and

only if ' is satis�able.

3.1.1 Second-Order Reachability Games

We want to point out that inclusion-exclusion games can be seen as a certain kind

of second-order reachability game, introduced by Grädel in [Grä13]. A second-order

reachability game is a tuple (V , V0, V1, E, I , F , Ω) where V , V0, V1 and E are as usual, I
is the set of initial positions and F the set of terminal (or �nal) positions (that do not

belong to any player). Moreover, a winning condition on the terminal verticesΩ ⊆ (F )
is given. In this context, a winning strategy for player 0 is a subgraph  of (V , E) that

must satisfy the usual conditions for player 0 and 1 (see (i) and (ii) of De�nition 3.1)

and, furthermore, satis�es the winning condition imposed on the terminal vertices,

that is V () ∩ F ∈ Ω. A subset X ⊆ I is said to be an I -trap if and only if there is

a strategy
5 for player 0 such that the initial positions visited by  are precisely X

cf. [Grä16] — this corresponds to the target set of a strategy in inclusion-exclusion

games. In this sense, I corresponds to the set T of target vertices. Thus, if we require

that every vertex being part of an exclusion edge is a terminal position (analogously as

we have seen earlier for the target vertices this is no restriction) we can formulate the

winning condition of a second-order reachability game to correspond to the one of an

inclusion-exclusion game: Ω = {U ⊆ F ∶ U ∩ F1 = ∅, (U × U ) ∩ Eex = ∅}, where F1 are

all �nal positions in which player 1 wins.

It comes as no surprise that inclusion-exclusion games can be embedded into second-

order reachability games, since they are the model-checking games for existential

second-order logic, the logic we are interested in in the present work. The notion we

introduced here however generalises well to fragments of second-order logic that have

certain closure properties such as union or downwards closure and is designed to work

with formulae in a free relational variable.

5
Contrary to our de�nition, Grädel did not require that I ⊆ V () but he demanded that  contains

only vertices reachable from V () ∩ I via E().
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3.1.2 Model-Checking Games for Existential Second-Order
Logic

In this section we de�ne model-checking games for formulae '(X) ∈ Σ11 with a free

relation variable. These games are inclusion-exclusion games whose target sets are

precisely the sets of relations that satisfy '(X).

De�nition 3.4. Let A be a � -structure and '(X) = ∃R̄'′(X , R̄) ∈ Σ11 be in negation-

normal form where '′(X , R̄) ∈ FO(� ∪{X , R̄}) using a free relation symbol X of arity r ∶=
ar(X ). The game X (A, ')∶=(V , V0, V1, E, I , T , Eex) consists of the following components:

• V ∶= {(# , s) ∶ # ∈ subf('′), s ∶ free(#) → A} ∪ Ar
,

• T ∶= Ar
,

• V1 ∶= {(# , s) ∶ # = ∀y
 or # = 
1 ∧ 
2} ∪
{(
 , s) ∶ 
 is a � -literal and A �s 
} ∪
{(
 , s) ∶ 
 is a {X , R̄}-literal} ∪ T ,

• V0 ∶= V ⧵ V1,

• E ∶= {((
 ◦# , s), (�, s�free(�))) ∶ ◦ ∈ {∧, ∨}, � ∈ {
 , #}} ∪
{((X x̄, s), s(x̄)) ∶ X x̄ ∈ subf('′)} ∪
{((Qx
 , s), (
 , s′)) ∶ Q ∈ {∃, ∀}, s′ = s[x ↦ a], a ∈ A},

• I ∶= {('′, ∅)},

• Eex ∶= {((Rix̄ , s), (¬Riȳ, s′)) ∶ s(x̄) = s′(ȳ)} ∪ {((¬X x̄, s), ā) ∶ s(x̄) = ā}.

Figure 3.3 illustrates this de�nition.

These games capture the behaviour of existential second-order formulae which

provides us with the following theorem.

Theorem 3.5. (A, X ) � '(X) ⟺ Player 0 has a winning strategy  in  ∶= X (A, ')
with  () = X . Or, in other words:  () = {X ⊆ Ar ∶ (A, X ) � '(X)}.

Proof. “⟹”: First let (A, X ) � ' = ∃R̄'′(X , R̄). Then there exist relations R̄ such

that (A, X , R̄) � '′(X , R̄). So player 0 wins the (�rst-order) model-checking game

′∶=((A, X , R̄), '′(X , R̄)). Let  ′ = (W ′, F ′) be a winning strategy for player 0 in ′ and

∶=(W , F )whereW ∶=W ′∪X and F ∶=F ′∪{((X x̄, s), ā) ∈ W ′×V ∶ ā ∈ X and s(x̄) = ā}.

Clearly we have that  (S) = W ∩ T = X . To conclude this direction of the proof, we

still need to prove that  is indeed a winning strategy. The required properties for

player 0 and 1, that is (i) and (ii) of De�nition 3.1, are inherited from  ′
for every node

of the form (# , s) ∈ V ⧵ T with # ≠ X x̄ . For nodes of the form v = (X x̄, s) ∈ W we have

that v ∈ V1 and, because of v ∈ W ′
and the fact that  ′

is a winning strategy in ′,
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Xā ¬X ā R1ū ¬R1ū ¬X d̄ X d̄ e ≠ e …

('′, ∅)

T ∶= Aar(X )

ā … d̄… …

• Player 0 moves at ∃, ∨

• Player 1 moves at ∀, ∧

E EE

Figure 3.3: A rough sketch of a model-checking game X (A, '(X )) for a sentence '(X) =
∃R1∃R2…'′(X , R1, R2, … ) ∈ Σ11. The game starts at ('′, ∅) and proceeds as

the classical model-checking game for FO until literals with X or Ri are

reached. Please note that the assignments are only included implicitly at

literals, i.e. we consider Xā to be an abbreviation for (X v̄, v̄ ↦ ā) where v̄
is the correct tuple of variables.

s(x̄) ∈ X must follow. As result, we have s(x̄) ∈ N (v). Since T ⊆ V1 and target vertices

are terminal positions in this particular game, condition (ii) is trivially satis�ed for all

v ∈ W ∩ T .

Property (iii) is clearly satis�ed, because ('′, ∅) is the initial position of ′ and, hence,

('′, ∅) ∈ W ′ ⊆ W . In order to prove that the last remaining condition, the exclusion

condition (iv), is satis�ed, consider any (v, w) ∈ Eex. Then there are two possible cases:

Case (v, w) = ((Rix̄ , s), (¬Riȳ, s′)) with s(x̄) = s′(ȳ): Then either v or w is a losing

position for player 0 in ′. As a result, W ′
does not contain both v and w and, thus,

neither does W .

Case (v, w) = ((¬X x̄, s), ā) and s(x̄) = ā: If v ∈ W , then v = (¬X x̄, s) ∈ W ′
and, since

 ′
is a winning strategy for player 0 in ′, it must be the case that s(x̄) ∉ X which

implies that w = ā = s(x̄) ∉ W . So, v ∈ W and w ∈ W cannot be true at the same time.

“⟸”: For the converse direction, let  = (W , F ) now be a winning strategy for

player 0 in with  () = X . We have to show that (A, X ) � ∃R̄'′(X , R̄). Let Ri∶={s(x̄) ∶
(Rix̄ , s) ∈ W}. Furthermore, we de�ne  ′ ∶= �V ⧵Aar(X ) , the restriction of the strategy 
to V (′) = V ⧵ Aar(X ) which results from  by removing all nodes from Aar(X ) and by

deleting all edges leading into Aar(X ).
We prove that  ′

is a winning strategy for player 0 in the �rst-order model-checking

game ′ ∶= ((A, X , R̄), '′(X , R̄)). First of all, the conditions for player 0 and 1 for non-

terminal positions are inherited from  . For the same reason we also have ('′, ∅) ∈
V ( ′). We still need to prove that  ′

contains only terminal positions that are winning

for player 0. This in inherited for all terminal position that are not using any Ri nor
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3.2 Union Closed Existential Second Order Logic Sentences

X . We will now investigate the other terminal positions, i.e. positions of the form

((¬)Rix̄ , s) or ((¬)X x̄, s). Clearly, if  ′
plays (Rix̄ , s), then (Rix̄ , s) ∈ W and s(x̄) ∈ Ri

(by de�nition of Ri) implying that (A, X , R̄) �s Rix̄ and, hence, (Rix̄ , s) is a winning

position for player 0. In the case that  ′
visits (¬Rix̄ , s), we know that (¬Rix̄ , s) ∈ W

and, because  respects the exclusion condition, a position of the form (Riȳ, s′) with

s′(ȳ) = s(x̄) cannot be in W . So, in this case, we have that s(x̄) ∉ Ri and, hence,

(¬Rix̄ , s) is again a winning position for player 0. If  ′
contains v ∶= (X x̄, s), then the

edge (v, s(x̄)) is played by  and, consequently, s(x̄) ∈ W ∩ T =  () = X which

shows that v is a winning position for player 0 in ′. If, however, (¬X x̄, s) is played

by  ′
, then (¬X x̄, s) ∈ W and, due to exclusion condition, s(x̄) ∉ W which proves that

s(x̄) ∉ W ∩ T = X and, again, (¬X x̄, s) is a winning for player 0 in ′. As a result, we

have that (A, X ) � '.

3.2 Union Closed Existential Second Order Logic
Sentences

In this section we investigate formulae '(X) of existential second-order logic that are

closed under unions with respect to their free relational variable X . Please recall that

we call a formula '(X) ∈ Σ11 union closed if A � '(Xi) for all i ∈ I implies A � '(X) for

X ∶= ⋃i∈I Xi .
Union closure, being a semantical property of formulae, is certainly undecidable.

However, we present a syntactical characterisation of all such formulae via the following

normal form.

De�nition 3.6. A formula '(X) ∈ Σ11 is called myopic, if

'(X) = ∀x̄(X x̄ → ∃R̄'′(X , R̄, x̄))

where '′ ∈ FO and X occurs only positively
6

in '′.

Variants of myopic formulae have already been considered for �rst-order logic [GH13,

De�nition 19] and for greatest �xed-point logics [Grä16, Theorem 24 and Theorem 26],

but to our knowledge myopic Σ11-formulae have not been studied so far.

Let  denote the set of all union closed Σ11-formulae. To establish the claim that

myopic formuale are a normal form of  we need to show that all myopic formulae

are indeed closed under unions and, more importantly, that every union closed formula

can be translated into an equivalent myopic formula. This translation is in particular

constructive.

Theorem 3.7. '(X) ∈ Σ11 is union closed if and only if '(X) is equivalent to some myopic

Σ11-sentence.

6
That is under an even number of negations.
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We split the proof into two parts, the direction from right to left is handled in

Proposition 3.8 and from left to right in Corollary 3.11.

Proposition 3.8. Every myopic formula is union closed.

Proof. Let '(X) = ∀x̄(X x̄ → ∃R̄'′(X , R̄, x̄)) be a myopic Σ11-sentence and (A, Xi) � '
for all i ∈ I . We claim (A, X ) � ' for X = ⋃i∈I Xi . Let ā ∈ Xi ⊆ X . By assumption

A �x̄↦ā ∃R̄'′(Xi , R̄, x̄). A fortiori (X occurs only positively in '′), we obtain (A, X ) �x̄↦ā
∃R̄'′(X , R̄, x̄). Since ā was chosen arbitrarily, this property holds for all ā ∈ X , hence

the claim follows.

For a �xed formula '(X) the corresponding game X can be constructed by a �rst-

order interpretation depending of course on the current structure.

Lemma 3.9. Let '(X) = ∃R̄'′(X , R̄) ∈ Σ11 where '′ ∈ FO(� ∪ {X , R̄}) and r ∶= ar(X ).
Then there exists a quanti�er-free interpretation  such that X (A, ') ≅ (A) for every
structure A (with at least two elements).

Proof. The construction we use in this proof is similar to the one from [Grä16, Proposi-

tion 18]. An equality type e(v̄) over a tuple v̄ = (v1, … , vn) is a maximal consistent set

of (in)equalities using only variables from v̄. Since equality types over �nitely many

variables are �nite, we can, by slight abuse of notation, identify e(v̄) with the formula

⋀e(v̄). Let n be chosen su�ciently large so that we can �x for every # ∈ subf('′) ∪{T}
a unique equality type e# (v̄).

Let x̄ = (x1, … , xm) be a tuple of variables such that for every subformula # ∈ subf('′)
holds free(#) ⊆ {x̄}. For each variable xi ∈ {x̄} let �(xi) ∶= i. A position (# , s) of the

game X (A, ') will be encoded by an (n + m)-tuple of the form (ū, ā) where ū has

equality type e# and s(xi) = ai for every xi ∈ free(#), while a position of the form

ā ∈ T (= Ar )will be encoded by (ū, āb̄) such that ū has equality type eT whereas b̄ ∈ Am−r

can be an arbitrary tuple. Now we are in the position to de�ne the interpretation

 = (�, ",  V0 ,  V1 ,  E ,  I ,  T ,  Eex
):

• �(v̄, ȳ) ∶= ⋁
#∈subf('′)∪{T}

e# (v̄)

• "(v̄, ȳ, w̄, z̄)∶= ⋁
#∈subf('′)

(e# (v̄) ∧ e# (w̄) ∧ ⋀
xi∈free(#)

yi = zi) ∨

(eT (v̄) ∧ eT (w̄) ∧
r

⋀
i=1

yi = zi)

•  V1(v̄, ȳ) ∶= ⋁(# ,s)∈V1(X (A,')) e# (v̄) ∨ eT (v̄) and  V0(v̄, ȳ) ∶= �(v̄, ȳ) ∧ ¬ V1(v̄, ȳ).

• Let R ∶= {(# , # ′) ∶ ((# , s), (# ′, s′)) ∈ E(X (A, '))}. Then we de�ne

 E(v̄, ȳ, w̄, z̄)∶= ⋁
(# ,# ′)∈R

(e# (v̄) ∧ e# ′(w̄) ∧ ⋀
xi∈free(#)∩free(# ′)

yi = zi) ∨

⋁
Xū∈subf('′)

(eXū(v̄) ∧ eT (w̄) ∧
r

⋀
i=1

y�(ui ) = zi).
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3.2 Union Closed Existential Second Order Logic Sentences

• Let S ∶= {(Riū, ¬Riū′) ∶ ((Riū, s), (¬Riū′, s′)) ∈ Eex(X (A, '))}7
. Then we de�ne

 Eex
(v̄, ȳ, w̄, z̄)∶= ⋁

(Ri ū,¬Ri ū′)∈S
(eRi ū(v̄) ∧ e¬Ri ū′(w̄) ∧

ar(Ri )

⋀
i=1

y�(ui ) = z�(u′i )) ∨

⋁
¬Xū∈subf('′)

(e¬Xū(v̄) ∧ eT (w̄) ∧
r

⋀
i=1

y�(ui ) = zi).

•  I (v̄, ȳ) ∶= e'′(v̄)

•  T (v̄, ȳ) ∶= eT (v̄)

Now, for every A (with at least two elements) we have that (A) ≅ X (A, ').

Towards proving that union-closed Σ11-sentences '(X) are equivalent to myopic

formulae, we �rst prove the following slightly stronger result.

Theorem 3.10. For every sentence '(X) ∈ Σ11 there is myopic sentence �(X ) ∈ Σ11 such
that for every suitable structure A and relation X over A holds

(A, X ) � �(X )⟺ X can be written as X = ⋃
i∈I
Xi where A � '(Xi) for every i ∈ I .

Proof. Let �(X ) ∶= ∀x̄(X x̄ → ∃Y (Y ⊆ X ∧ Y x̄ ∧ '(Y ))) where Y ⊆ X is a shorthand

for the formula ∀ȳ(Y ȳ → Xȳ). Now, �(X ) is a myopic formula, since X occurs only

positively after the implication. We still need to prove the two directions of the claim.

“⟹”: First assume that (A, X ) � �(X ). Then, for every ā ∈ X , there exists some

Yā ⊆ X with (A, Y ↦ Yā) � Y ā ∧ '(Y ). Thus, we have A � '(Yā) and ā ∈ Yā ⊆ X for

every ā ∈ X . The last property entails that X = ⋃ā∈X Yā.
“⟸”: Now let X = ⋃i∈I Xi where A � '(Xi) for every i ∈ I . For every ā ∈ X , choose

some index iā ∈ I with ā ∈ Xiā . Then we have (A, X , Y ↦ Xiā ) � Y ⊆ X ∧ Y ā ∧ '(Y )
and, thus, (A, X ) � �(X ).

Corollary 3.11. For every union closed formula '(X) ∈ Σ11 there is an equivalent myopic

formula �(X ) ∈ Σ11, that is ' ≡ �.

Proof. Since '(X) is union closed, we have for every structure A and relation X ,

A � '(X)⟺ X can be written as X = ⋃
i∈I
Xi where A � '(Xi) for every i ∈ I .

Therefore, '(X) is indeed equivalent to the formula �(X ) that was constructed in the

proof of Theorem 3.10.

This was not the original proof that we have found and published in [HW19].

However, the original proof is still useful because it proves the following stronger

statement where the usage of X and quanti�ed second-order symbols is limited.

7
Since the direction of exclusion edges does not matter we assume here that they are all of this form.
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A � '(X)

X ∈  (X (A, '))

X (A, ') � ' (X )

A � '
 (X ⋆)

A � �(X )

T
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e
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Figure 3.4: The most important steps of the proof of Theorem 3.12.

Theorem 3.12. For every union closed formula '(X) ∈ Σ11 there is an equivalent myopic

formula �(X ) ∈ Σ11 where exactly 11 literals use the symbol X or some quanti�ed second-

order symbol.

Proof. Let '(X) = ∃R̄'′(X , R̄) ∈ Σ11(� ) be closed under unions, A be a � -structure and

 ∶= X (A, ') be the corresponding game. W.l.o.g. A has at least two elements. By

Theorem 3.5, we have that  () = {X ⊆ Ar ∶ (A, X ) � '(X)} where r ∶= ar(X ).
Since '(X) is union closed, it follows that  () is closed under unions as well. Now

we observe that  () can be de�ned in the game  by the following myopic formula:

' (X )∶=∀x(Xx →   (X , x)) where

  (X , x)∶=∃W ('′win(W ) ∧ Wx ∧ ∀y(Wy ∧ Ty → Xy))

Here, '′win(W ) is the �rst-order formula from Proposition 3.2 that de�nes vertex sets

of winning strategies. Furthermore, there are 6 W -atoms in 'win and two additional

W -atoms in   , while X occurs twice in ' . In total, X and W are used exactly 10
times. These 10 atoms will also occur in the �nal formula � that are going to construct.

This construction will use the interpretation lemma for Σ11 (Lemma 2.4), which will

introduce an additional W ⋆
-atom in order to simulate the quanti�er ∃W by a new

quanti�er ∃W ⋆
. Therefore, we will end up with exactly 11 literals using X or some

quanti�ed second-order symbol. Please note that ' is indeed a myopic formula, since

X occurs only positively in   .

Claim 3.13. For every X ⊆ Ar
, (, X ) � ' (X ) ⟺ X ∈  ().

Proof of Claim 3.13. Assume that (, X ) � ' (X ). By construction of ' , for every

ā ∈ X there exists a winning strategyā = (Wā, Fā)with ā ∈ Wā and  (ā) = Wā∩T ⊆ X .

It follows that X = ⋃ā∈X  (ā). Since  () is closed under unions, we also obtain that

X ∈  ().
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We want to remark that at this point the semantical property is translated into a

syntactical one, as the formula only describes the correct winning strategy because the

initial formula was closed under unions.

To conclude the proof of Claim 3.13, assume that X ∈  (). Then there exists a

winning strategy  = (W , F ) for player 0 with  () = X . Thus, for the quanti�er

∃W we can (for all ā ∈ X ) choose the vertex set of  , which, obviously, satis�es the

formula.

Let  be the interpretation from the proof of Lemma 3.9. We have  ≅ (A) with

some coordinate map ℎ∶ �A → V() and for every ā ∈ T (), ℎ−1(ā) = {(ū, ā, b̄) ∶ A �
eT (ū), b̄ ∈ Am−r} where eT is some equality type. By the interpretation lemma for Σ11
(Lemma 2.4), we know that

(A, X ⋆) � '
 (X

⋆)⟺ (, X ) � ' (X ) (3.1)

where X ⋆ ∶= ℎ−1(X ) is a relation of arity (n + m) ⋅ r = (n + m) ⋅ ar(X ). The sentence

 
 (X ⋆) “imports” the 9 atoms using X or W from   (X ) and there is an additional

occurrence of W ⋆
used for the simulation of ∃W . Recall that every variable x occurring

in ' is replaced by a tuple x̄ of length (n + m). Let x̄ = (ū, v̄, w̄) where |ū| = n, |v̄| = r
and |w̄| = m − r and let

�(X ) ∶= ∀v̄(X v̄ → ∀ū∀w̄(eT (ū) →  ⋆(X , ū, v̄, w̄)))

where  ⋆
is the formula that results from  

 by replacing every occurrence ofX ⋆ū′v̄′w̄′

(where |ū′| = n, |v̄′| = r and |w̄′| = m − r ) by the formula eT (ū′) ∧ X v̄′. By construction,

� is a myopic formula
8
, because X occurred only positively in  

and, hence, X ⋆

(resp. X ) occurs only positively in  
 (resp.  ⋆

). Furthermore, �(X ) contains exactly

11 {X ,W ⋆}-literals.

We still need to verify the equivalence of '(X) and �(X ). Figure 3.4 shows the most

important steps of this proof.

Recall that, in the game  ≅ (A), the set X ⊆ T () is a unary relation over , while

the elements of T () themselves are r-tuples of elements ofA. By the construction of the

interpretation, we have that ℎ−1(X )∶={(ā, b̄, c̄) ∈ An×Ar×Am−r ∶ A � eT (ā) and b̄ ∈ X}.

Because of this and X ⋆ = ℎ−1(X ), it follows that for every s ∶ {ū′, v̄′, w̄′} → A holds

(A, X ⋆) �s X ⋆ū′v̄′w̄′ ⟺ A � eT (s(ū′)) and s(v̄′) ∈ X (3.2)

⟺ (A, X ) �s eT (ū′) ∧ X v̄′.

By construction of  ⋆
, these are the only subformulae in which  

 and  ⋆
di�er from

each other. As a result, the following claim is true:

8
Strictly speaking, the de�nition of myopic formulae (De�nition 3.6) requires that the quanti�er ∃W ⋆

occurs right after the implication. This can be achieved by using the observation that ∀v∃S
 (S, v) ≡
∃S′∀v
 ′(S′, v) where 
 ′ results from 
 by replacing every Sx̄ by S′vx̄ .
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Claim 3.14. For every X ⊆ Ar
and every assignment s ∶ free( 

 ) → A, holds

(A, X ⋆) �s  
 (X

⋆, x̄ ) ⟺ (A, X ) �s  ⋆(X , x̄).

Recall that x̄ = (ū, v̄, w̄) where |ū| = n, |v̄| = r and |w̄| = (m − r). Now we can see that

(A, X ⋆) � '
 (X

⋆) = ∀x̄(X ⋆x̄ →  
 (X

⋆, x̄ ))
⟺ (A, X ⋆) �s  

 (X
⋆, x̄ ) for every s with s(x̄) ∈ X ⋆

⟺(A, X ) �s  ⋆(X , x̄) for every s with s(x̄) ∈ X ⋆ (Claim 3.14)
⟺ (A, X ) �s  ⋆(X , x̄) for every s with (A, X ) �s eT (ū) ∧ X v̄ (due to (3.2))
⟺ (A, X ) � ∀ū∀v̄∀w̄((eT (ū) ∧ X v̄) →  ⋆(X , ū, v̄, w̄))) ≡ �.

As a result, we have that

(A, X ) � �(X ) ⟺ (A, X ⋆) � '
 (X

⋆). (3.3)

Furthermore, we also have:

(A, X ⋆) � '


(3.1)

⟺(, X ) � '
(Claim 3.13)
⟺ X ∈  ()

(Theorem 3.5)
⟺ (A, X ) � '

Thus, the constructed myopic formula �(X ) is indeed equivalent to '(X).

3.3 Union Games
In the previous section we have characterised the union closed fragment of Σ11 by means

of a syntactic normal form. Now we aim at a game theoretic description, which leads

to the following restriction of inclusion-exclusion games that reveals how union closed

properties are assembled.

De�nition 3.15. A union game is an inclusion-exclusion game  = (V , V0, V1, E, I ,
T , Eex) obeying the following restrictions. For every t ∈ T the subgraph reachable

from t via the edges E ⧵ Ein, that are the edges of E that do not go back into T , is

denoted by Mt .
9

These components must be disjoint and form a partition of V , that

is V (Mt ) ∩ V (Mt′) = ∅ for all t ≠ t ′ ∈ T and V = ⋃t∈T V (Mt ). Furthermore, there

are no exclusion edges between di�erent components of the target positions, that is

Eex ⊆ ⋃t∈T V (Mt ) × V (Mt ). The set of initial positions is empty, i.e. I = ∅.

See Figure 3.5 for a graphical representation of a union game. Since the exclusion

edges are only inside a component we can in a way combine di�erent strategies into

one, which is the reason the target set of a union game is closed under unions.

Theorem 3.16. Let  be a union game and (i)i∈J be a family of winning strategies for

player 0. Then there is a winning strategy  for player 0 such that  () = ⋃i∈J  (i). In
other words, the set  () is closed under unions.

9
Recall that Ein ∶= E ∩ (V × T ).
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T t1 t2 tk

⋯

Mt1 Mt2 Mtk

v

w
E x y

E
u

z
E

Figure 3.5: A drawing of a union game. The target positions T = {t1, … , tk} are at

the top of the components Mt that are depicted by triangles. Recall that

the inclusion edges, that are the edges going into the set of target vertices,

do not account for the reachability of the components Mt . The exclusion

edges Eex are indicated by the symbol E and, as seen here, are allowed only

inside a component. In this example, a strategy for player 0 cannot contain

{v, w}, {x, y} or {u, z} as a subset.

Proof. Let i = (Wi , Fi) for i ∈ J . We cannot directly combine the strategies as they

might contain common target positions t , but di�er on Mt . Thus the union of these

strategies could contain two vertices that are connected via an edge of Eex. Let U ∶=
⋃i∈J  (i) and f ∶ U → J be a function such that t ∈  (f (t)) for all t ∈ U . De�ne

 ∶=⋃t∈U (f (t)�Mt + (E(f (t)) ∩ (V (Mt ) × T ))). In words,  is de�ned on every component

Mt with t ∈ U as an arbitrary strategy t that is de�ned on Mt , including the inclusion

edges leaving this component. By de�nition  () = U , thus it remains to prove

that indeed  is a winning strategy. Of course, I = ∅ ⊆ W and since  is de�ned

on every component Mt as the strategy f (t), it ful�ls the requirements imposed on

the neighbourhoods of the vertices of De�nition 3.1 inside every Mt while the edges

leaving Mt lead to vertices in  (). Finally, since in an inclusion game there are no

exclusion edges between components Mt and Mt′ for t ≠ t ′, the strategy  cannot visit

two vertices v and w that are connected by an exclusion edge (since this edge would

be visible to t for some t which contradicts the assumption that it is indeed a winning

strategy).

De�nition 3.17. Let �(X ) = ∀x̄(X x̄ → ∃R̄'(X , R̄, x̄)) be a myopic formula where '
is in negation-normal form and let A be a � -structure. The union game (A, �) ∶=
(V , V0, V1, E, I , T , Eex) is de�ned similarly to De�nition 3.4 with the di�erence being

that for each ā ∈ Aar(x̄) we have to play on a copy of the game. Formally:

• V ∶= T ∪ {(
 , s, ā) ∶ 
 ∈ subf('), s ∶ free(
 ) → A, ā ∈ T} where T ∶= Aar(X )

• V0 ∶= {(
 , s, ā) ∶ 
 = � ∨ #, ∃x�, X x̄ or 
 is a � -literal with A 2s 
}
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• V1 ∶= V ⧵ V0

• E ∶= {(ā, (', x̄ ↦ ā, ā)) ∶ ā ∈ T} ∪
{((Qx
 , s, ā), (
 , s[x ↦ a], ā)) ∶ Q ∈ {∃, ∀}, a ∈ A} ∪
{((
 ◦�, s, ā), (# , s, ā)) ∶ # ∈ {
 , �}, ◦ ∈ {∧, ∨}, ā ∈ T} ∪
{((X x̄, s, ā), b̄) ∶ s(x̄) = b̄, ā ∈ T}

• I ∶= ∅

• Eex ∶= {((Rȳ, s, ā), (¬Rz̄, s′, ā)) ∶ s(ȳ) = s′(z̄) and s(x̄) = s′(x̄), ā ∈ T}

Figure 3.6 illustrates this de�nition. Notice that there are still edges from (X x̄, s, ā)
to s(x̄) — such edges are called inclusion edges. Recall that player 0 has to provide

a strategy that has at least one outgoing edge from every vertex of V0 on which the

strategy is de�ned, thus positions with an unsatis�ed literal belong to player 0. It is

worth mentioning that the empty set is always included in  ((A, �)) for all myopic �
because (∅, ∅) is a (trivial) winning strategy for player 0. This mimics the behaviour

that in case X = ∅, the formula ∀x̄(X x̄ → ') is satis�ed regardless of everything else.

The analogue of Theorem 3.5 holds for union games and myopic formulae.

Proposition 3.18. Let A, � and (A, �) be as in De�nition 3.17. Then (A, X ) � � ⟺
X ∈  ((A, �)).

Proof. “⟹”: Assume (A, X ) � � = ∀x̄(X x̄ → ∃R̄'(X , R̄, x̄)). Thus, for every ā ∈ X
there exist relations R̄ā such that A � '(X , R̄ā, ā). Notice that every component Mā
restricted to V , V0, V1, E is essentially isomorphic to the �rst-order model-checking

game ((A, X , R̄ā), '). Besides the additional node ā, the only di�erences are that in the

�rst-order model-checking game the vertices of the form (X ȳ, s) are terminal nodes

where player 0 looses if and only if s(ȳ) ∉ X , and that terminal positions of the form

(Riv̄, s) are evaluated similarly. For every ā ∈ X , let FO
ā be a winning strategy for player

0 in ((A, X , R̄ā), '). Since either b̄ ∈ Rā or b̄ ∉ Rā for all b̄ and R, the vertex (Rx̄, s)
or (¬Rȳ, s′) with s(x̄) = s′(ȳ) is not visited by FO

ā . Let  ′
be the subgraph of (A, �)

induced by X ∪ ⋃ā∈X V (FO
ā ) × {ā} and  ∶=  ′ + Ein ∩ (V ( ′) × V ( ′)) + {(ā, (', x̄ ↦

ā, ā)) ∶ ā ∈ X}. In words, the strategy  combines all �rst-order strategies together,

adds the reached inclusion edges and adds X and outgoing edges from X . By de�nition,

 () = X . Whenever a node of the form (X ȳ, s, ā) is visited in  we have that s(ȳ) ∈ X
(because otherwise FO

ā would not be a winning strategy for player 0) and hence

((X ȳ, s, ā), s(ȳ)) ∈ Ein ∩ (V ( ′) × V ( ′)) is a move that is available to player 0. That  ′

satis�es the conditions for a winning strategy on the other nodes is inherited from

the fact that the individual strategies are winning strategies on the �rst-order part. As

pointed out before, each strategy respects the exclusion condition.

“⟸”: For the other direction, let  be a winning strategy with  () = X . For

every ā ∈ X let b̄ ∈ Rā if and only if there is some (Rx̄, s, ā) ∈ V () with s(x̄) = b̄.

We have to show that A � '(X , R̄ā, ā) for all ā ∈ X . But there is nothing to do here
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T ∶= Aar(X )

I ∶= ∅'(ā)

ā

'(b̄)

b̄

'(c̄)

c̄

'(d̄)

d̄ …

…

Xb̄ X ā X b̄ X c̄ X d̄
E

E

E E E

E

E

Figure 3.6: An example of how the game (A, �(X )) for a myopic sentence �(X ) =
∀x̄(X x̄ → '(X , x̄)) might look like. Starting at a tuple, the game proceeds

to simulate a copy of the model-checking for ' and some assignment. These

copies are depicted as triangles and they are similar to games de�ned in

De�nition 3.4 (see also Figure 3.1). Here inclusion edges can only originate

at X -literals, which are always positive since �(X ) is a myopic sentence. As

in Figure 3.3, the assignments are only included implicitly.

because �Mā induces a winning strategy for the �rst-order model-checking game for

⟨(A, X , R̄ā), x̄ ↦ ā, '⟩.

It is worth mentioning that for other fragments with certain closure properties

natural restrictions of inclusion-exclusion games exists. Especially, forbidding exclu-

sion edges at all leads to model-checking games for inclusion logic, while forbidding

inclusion edges results in games suited for exclusion logic. More details can be found

in Section 3.6.

3.4 Myopic Formulae of Inclusion-Exclusion Logic
Similarly to the normal form of union closed Σ11-formulae from Section 3.2 we present

syntactic restrictions of inclusion-exclusion logic FO(⊆, | ) that correspond precisely

to the union closed fragment  .
10

Analogously to myopic Σ11-formulae we will also

present a normal form for all union closed FO(⊆, | )-formulae.

De�nition 3.19. A formula '(x̄) ∈ FO(⊆, | ) is x̄-myopic, if the following conditions

are satis�ed:

(a) The variables from x̄ are never quanti�ed in '.

10
We have de�ned  to be the set of all union closed Σ11-formulae, by slight abuse of notation we use

the same symbol here to denote the set of all FO(⊆, | )-formulae that are closed under unions.
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(b) Every exclusion atom occurring in ' is of the form x̄ ȳ | x̄ z̄.

(c) Every inclusion atom occurring in ' is of the form x̄ ȳ ⊆ x̄ z̄ or v̄ ⊆ x̄ , where the

latter is not allowed to occur as a subformula of a disjunction.

Please note that '(x̄) must not have any additional free variables besides x̄ . We say

that atoms of the form x̄ ȳ ⊆ x̄ z̄ or x̄ ȳ | x̄ z̄ are x̄-guarded and ȳ ⊆ z̄, respectively ȳ | z̄,

the corresponding unguarded versions. Analogously, we call a formula x̄-guarded, if

the variables from x̄ are never quanti�ed and every dependency atom occurring in the

formula is x̄-guarded. A formula  is called the unguarded version of an x̄-guarded

formula ', if  emerges from ' by replacing every dependency atom by the respective

unguarded version. In this situation we also call ' the x̄-guarded version of  .

Our goal is to prove that x̄-myopic formulae are (up to equivalence) precisely the

union closed fragment of FO(⊆, | ).

Theorem 3.20. '(x̄) ∈ FO(⊆, | ) is union closed if and only if it is equivalent to some

x̄-myopic formula.

The direction “⇐” is by Theorem 3.25 while “⇒” is entailed by Corollary 3.27. Please

recall the de�nition of witnesses from Section 2.1.1: � is witness for A �X ', if � maps

every (occurrence of a) subformula  ∈ subf(') to a team whose domain contains

free( ) such that all literals 
 occurring in ' are satis�ed by �(
 ), the conditions for

logical operations are respected (e.g. �( 1 ∨  2) = �( 1) ∪ �( 2)) and �(') = X is true.

The intuition behind De�nition 3.19 is that every x̄-myopic formula can be evaluated

componentwise on every team X�x̄=ā = {s ∈ X ∶ s(x̄) = ā} for all ā ∈ X (x̄).

De�nition 3.21. Let X be a team with {x̄} ⊆ dom(X). The x̄-components of X are the

teams of the form X�x̄=ā = {s ∈ X ∶ s(x) = ā}.

It turns out that, if we do not have any inclusion atoms of the form v̄ ⊆ x̄ , then there

is no mechanism that allows one x̄-component to “look inside” other x̄-components.

This statement will be made precise in Lemma 3.23, which is a direct consequence of the

following proposition, where the connections between a team and its x̄-components

is explored on the level of inclusion/exclusion atoms. Furthermore, the following

proposition analyses the e�ect of the restrictions for inclusion atoms.

Proposition 3.22. Let X be team overAwith dom(X) ⊇ {x̄, v̄, w̄} and '(x̄) be x̄-myopic.

1. A �X x̄ v̄ ⊆ x̄w̄ ⟺ A �X�x̄=ā v̄ ⊆ w̄ for all ā ∈ X (x̄)

2. A �X x̄ v̄ | x̄w̄ ⟺ A �X�x̄=ā v̄ | w̄ for all ā ∈ X (x̄)

3. For every subformula v̄ ⊆ x̄ of ' and witness � for A �X ' we have (�(v̄ ⊆ x̄))(x̄) =
X(x̄).
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Proof. We prove the �rst item. Let A �X x̄ v̄ ⊆ x̄w̄ . That means for every assignment

s ∈ X there is another one, s′ ∈ X , with s(x̄v̄) = s′(x̄w̄). Thus s(x̄) = s′(x̄) and therefore

s ∈ X�x̄=ā ⟺ s′ ∈ X�x̄=ā from which A �X�x̄=ā v̄ ⊆ w̄ follows for all ā ∈ X (x̄).
Now assume A �X�x̄=ā v̄ ⊆ w̄ for all ā ∈ X (x̄) and let s ∈ X be an arbitrary assignment.

Since A �X�x̄=s(x̄) v̄ ⊆ w̄ there is an assignment s′ ∈ X�x̄=s(x̄) with s′(w̄) = s(v̄). This

means s(x̄v̄) = s′(x̄w̄), and because s was arbitrary, A �X x̄ v̄ ⊆ x̄w̄ follows.

Now, we prove the second item. A 2X�x̄=ā v̄ | w̄ holds for some ā ∈ X (x̄) if and only

if there are some s, s′ ∈ X with s(x̄) = ā = s′(x̄) and s(v̄) = s′(w̄), i.e. s(x̄v̄) = s′(x̄w̄)
and hence A 2X x̄ v̄ | x̄w̄. Conversely, if s(x̄v̄) = s′(x̄w̄) for some s, s′ ∈ X , then

A 2X�x̄=s(x̄) v̄ | w̄ .

The third item follows from the simple fact that x̄ is never quanti�ed and that those

atoms are not in the scope of a disjunction, hence the values of x̄ are preserved.

This proposition allows us to investigate the connection between a formula and its

x̄-guarded version.

Lemma 3.23. Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) ∈ FO(⊆, | ). Then A �X
'⋆(x̄ , ȳ) ⟺ A �X�x̄=ā '(ȳ) for every ā ∈ X (x̄).

Proof. By induction over ' where inclusion/exclusion atoms are handled by the items

1. and 2. of Proposition 3.22.

Lemma 3.23 gives rise to the following lemma about myopic formula in the form

∃x̄ ′(x̄ ′ ⊆ x̄ ∧  ), which can be considered to be a normal-form for myopic formulae.

Lemma 3.24. Let '(x̄) ∈ FO(⊆, | ) be an x̄-myopic formula of the form ∃x̄ ′(x̄ ′ ⊆ x̄ ∧  ),
where in  no inclusion atoms of the form v̄ ⊆ x̄ occur. Then A �X ' if and only if there

exists F ∶ X → +(A|x̄ |) such that F (s) ⊆ X(x̄) for every s ∈ X and A �X[x̄′↦F]�x̄=ā  ′
for

all ā ∈ X (x̄), where  ′
is the unguarded version of  .

The componentwise behaviour that can be observed in Lemma 3.23 is also the reason

why x̄-myopic formulae are union-closed.

Theorem 3.25. Let '(x̄) ∈ FO(⊆, | ) be x̄-myopic and A �Xi '(x̄) for all i ∈ I . Then
A �X '(x̄) for X = ⋃i∈I Xi .

Proof. Let �i be a witnesses for A �Xi ' for i ∈ I . For every ā ∈ X (x̄) choose iā ∈ I such

that ā ∈ Xiā (x̄). De�ne �( ) ∶= ⋃ā∈X (x̄) �iā ( )�x̄=ā for every  ∈ subf('). We show that

� is a witness for A �X '. It is not di�cult to see that the requirements on witnesses

for composite formulae are satis�ed. We prove that the requirements for the literals

are ful�lled as well. By the �atness property, �rst-order literals are satis�ed by �.

We prove now that A ��(
 ) 
 for 
 = x̄v̄ ⊆ x̄w̄ or 
 = x̄v̄ | x̄w̄. Let 
 ′ be the

corresponding unguarded formula, that is the formula resulting from 
 by removing x̄ ,

i.e. we have 
 ′ = v̄ ⊆ w̄ or 
 ′ = v̄ | w̄ . Due to Proposition 3.22, it su�ces to prove that

A ��(
 )�x̄=ā 
 ′ is true for every ā ∈ (�(
 ))(x̄). Notice that �(
 )�x̄=ā = �iā (
 )�x̄=ā. Since �iā
is a witness for A �Xiā ', it must be the case that A ��iā (
 ) 
 . By Proposition 3.22, it
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follows that A ��iā (
 )�x̄=b̄ 

′

for every b̄ ∈ (�iā (
 ))(x̄). If ā ∈ (�iā (
 ))(x̄), then this implies

that A ��iā (
 )�x̄=ā 

′
. Otherwise we have that �iā (
 )�x̄=ā = ∅ and then A ��iā (
 )�x̄=ā 


′

follows from the empty team property of FO(⊆, | ). In both cases, A ��iā (
 )�x̄=ā 

′

holds

as desired, which concludes the proof of A ��(
 ) 
 .

We still need to prove that A ��(
 ) 
 for literals of the form 
 = v̄ ⊆ x̄ ∈ subf(').
Towards this end, let s ∈ �(v̄ ⊆ x̄) and b̄∶=s(v̄). By de�nition of �, there is some ā ∈ X (x̄)
such that s ∈ �iā (v̄ ⊆ x̄)�x̄=ā. Since A ��iā (v̄⊆x̄) v̄ ⊆ x̄ and b̄ = s(v̄) ∈ �iā (v̄ ⊆ x̄)(v̄), it

follows that b̄ ∈ (�iā (v̄ ⊆ x̄))(x̄). By Proposition 3.22 we have (�iā (v̄ ⊆ x̄))(x̄) = Xiā (x̄),
wherefore b̄ ∈ Xiā (x̄) ⊆ X(x̄) and, consequently, we have chosen some index ib̄ ∈ I with

b̄ ∈ Xib̄ (x̄). By Proposition 3.22 again, it follows that Xib̄ (x̄) = (�ib̄ (v̄ ⊆ x̄))(x̄). So there is

some s′ ∈ �ib̄ (v̄ ⊆ x̄) with s′(x̄) = b̄ = s(v̄) and thus s′ ∈ �ib̄ (v̄ ⊆ x̄)�x̄=b̄ ⊆ �(v̄ ⊆ x̄). This

concludes the proof of A ��(v̄⊆x̄) v̄ ⊆ x̄ .

We have thus shown that x̄-myopic formulae are closed under unions. It remains to

prove that indeed every union closed formula '(x̄) of FO(⊆, | ) is equivalent to some

x̄-myopic formula.

This is done by proving the following slightly stronger result. We will show how to

transform any FO(⊆, | )-formula '(x̄) into an x̄-myopic one, that is satis�ed by what

can be considered to be the union-closure of '(x̄).

Theorem 3.26. Let '(x̄) ∈ FO(⊆, | ). There is an x̄-myopic formula �(x̄) such that for all

suitable structures A and teams X with dom(X) = {x̄} holds

A �X �(x̄)⟺ X can be written as X = ⋃
i∈I
Xi where A �Xi '(x̄) for every i ∈ I .

Proof. Let ȳ be a fresh tuple of variables. Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ),
i.e. '⋆ results from ' by �rst replacing the variables x̄ by the new variables ȳ and then

by adding x̄ on both sides of every inclusion or exclusion atoms occurring in '(ȳ). We

de�ne

�(x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄x̄ ⊆ x̄ȳ ∧ '⋆(x̄ , ȳ)),

which is x̄-myopic. We still need to prove the two directions of the claim.

“⟹”: First assumeA �X �(x̄). Then there exists a team Y of the form Y = X[ȳ ↦ F]
for some function F ∶ X → +(A|x̄ |) such that

A �Y ȳ ⊆ x̄ ∧ x̄x̄ ⊆ x̄ȳ ∧ '⋆(x̄ , ȳ).

Thus we have Y (ȳ) ⊆ Y (x̄) = X(x̄) and, due to Lemma 3.23, A �Y �x̄=ā x̄ ⊆ ȳ ∧ '(ȳ) for

every ā ∈ Y (x̄), because x̄ x̄ ⊆ x̄ȳ ∧ '⋆(x̄ , ȳ) is the x̄-guarded version of x̄ ⊆ ȳ ∧ '(ȳ).
We can deduce, for every ā ∈ Y (x̄), that {ā} = Y �x̄=ā(x̄) ⊆ Y �x̄=ā(ȳ) ⊆ Y (ȳ) ⊆ Y (x̄). This

implies that

ā ∈ Y �x̄=ā(ȳ) ⊆ Y (x̄) for every ā ∈ Y (x̄). (3.4)

For every ā ∈ Y (x̄), let Xā be the team with dom(Xā) = {x̄} and Xā(x̄) = Y �x̄=ā(ȳ).
Because of this construction and due to A �Y �x̄=ā '(ȳ), it follows that A �Xā '(x̄).
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Furthermore, (3.4), Y (x̄) = X(x̄) and Y �x̄=ā(ȳ) = Xā(x̄) for every ā ∈ Y (x̄) lead to

ā ∈ Xā(x̄) ⊆ X(x̄) for every ā ∈ X (x̄)

and, consequently, to ⋃ā∈X (x̄) Xā(x̄) = X(x̄). Because of dom(X) = {x̄} = dom(Xā), we

indeed have X = ⋃ā∈X (x̄) Xā where A �Xā '(x̄) for every ā ∈ X (x̄).
“⟸”: For the converse direction, we assume that X can be written as X = ⋃i∈I Xi

where A �Xi '(x̄) for every i ∈ I . Our goal is to prove that A �X �(x̄). Towards this end,

for every ā ∈ X (x̄), we choose some index iā ∈ I with ā ∈ Xiā (x̄). Let F ∶ X → +(A|ȳ |)
be de�ned by F (s) ∶= Xis(x̄)(x̄). F is well-de�ned, because s(x̄) ∈ Xis(x̄)(x̄) implies F (s) ≠ ∅
for every s ∈ X . Moreover, we have

s(x̄) ∈ F (s) ⊆ X(x̄) for every s ∈ X . (3.5)

Let Y ∶= X[ȳ ↦ F]. By construction, it follows that

F (s) = Y �x̄=s(x̄)(ȳ) for every s ∈ X . (3.6)

Furthermore, we also have

Y (ȳ) = ⋃
s∈X

F (s) =
(3.5)

X(x̄) = Y (x̄).

In particular, this implies Y (ȳ) ⊆ Y (x̄) and, hence, A �Y ȳ ⊆ x̄ . Now, in order to prove

A �Y x̄ x̄ ⊆ x̄ȳ ∧ '⋆(x̄ , ȳ) we will use Lemma 3.23. This means that we only need to

prove that A �Y �x̄=ā x̄ ⊆ ȳ ∧'(ȳ) for every ā ∈ Y (x̄). Towards this end, pick any ā ∈ Y (x̄).
Because of Y (x̄) = X(x̄), there must be an assignment sā ∈ X with sā(x̄) = ā. We clearly

have

Y �x̄=ā(x̄) = {ā} = {sā(x̄)} ⊆
(3.5)

F (sā) =
(3.6)

Y �x̄=sā(x̄)(ȳ) = Y �x̄=ā(ȳ)

and, thus, A �Y �x̄=ā x̄ ⊆ ȳ . By assumption, we know that A �Xiā '(x̄). Since we also have

Y �x̄=ā(ȳ) = F (sā) = Xisā (x̄)(x̄) = Xiā (x̄), we can deduce that A �Y �x̄=ā '(ȳ). Therefore, we

indeed have A �Y �x̄=ā x̄ ⊆ ȳ ∧ '(ȳ). As a result, we have A �Y ȳ ⊆ x̄ ∧ x̄x̄ ⊆ x̄ȳ ∧ '⋆(x̄ , ȳ)
which leads to A �X �(x̄).

Corollary 3.27 (Normal form of myopic-FO(⊆, | )). Let '(x̄) ∈ FO(⊆, | ) be union closed

formula. There is an equivalent x̄-myopic formula �(x̄) = ∃ȳ(ȳ ⊆ x̄ ∧ #(x̄ , ȳ)) where
#(x̄, ȳ) ∈ FO(⊆, | ) is some x̄-guarded formula

Proof. Since '(x̄) is union closed, we have

A �X '(x̄)⟺ X can be written as X = ⋃
i∈I
Xi where A �Xi '(x̄) for every i ∈ I .

Therefore, '(x̄) is equivalent to the x̄-myopic formula �(x̄) from Theorem 3.26, which

is in the desired normal form.

39



3 Syntactic Normal Forms

Here is what union closure property amounts to on an intuitive level. Assume you

have a formula '(X) or '(x̄) that is closed under unions (and Σ11-de�nable). Now, if

you ask whether A � '(X), or A �X '(x̄), holds, you can do the following. For every

assignment / tuple s in X test whether a certain Σ11-de�nable property  holds for

s (independent of the other assignments in X ). Since myopic FO(⊆, | )-formulae are

allowed to freely use x̄-guarded dependency atoms, this behaviour can be expressed in

this logic. But, this alone does not su�ce, as then the formula would be �at, which in

general is not the case. Thus, moreover, for every assignment s ∈ X a set Ys is chosen

(non-deterministically) and it is required that Ys ⊆ X for every s ∈ X . This behaviour is

captured by the inclusion atoms of form ȳ ⊆ x̄ . In a way this enables the assignments s
to request that the team X must include certain other assignments.

3.4.1 Proving Corollary 3.27 using a Limited Number of
Dependency Concepts

The construction of � presented in the proof of Theorem 3.26 resp. Corollary 3.27 turns

all dependency concepts of ' into guarded ones and adds two additional inclusion

atoms. One might ask whether or not so many dependency concepts are actually

needed.

In this section we will show that a limited number of dependency concept su�ces.

This is achieved by using a di�erent proof technique that similar to the proof of

Theorem 3.12 exploits that winning strategies of union games are de�nable in the

myopic fragment of FO(⊆, | )-formulae and that the model-checking games of myopic

formulae are �rst-order interpretable. The rest of this section is organised as follows.

First, we de�ne target sets of a union game by a myopic FO(⊆, | )-formula and then we

present the alternative proof of Corollary 3.27.

Example 3.28. Let us demonstrate that (vertex sets of) winning strategies of general

inclusion-exclusion games can be de�ned in FO(⊆, | ):

 win(y) ∶=  init(y) ∧  move(y) ∧  Eex
(y) where

 init(y) ∶= ∀z(I z → z ⊆ y)
 move(y) ∶= ∃z([(V0y ∧ ∃z′(Eyz′ ∧ z′ ⊆ z)) ∨ (V1y ∧ ∀z′(Eyz′ → z′ ⊆ z))] ∧ z ⊆ y)
 Eex

(y) ∶= ∀z((Eexyz ∨ Eexzy) → y | z)

Please recall that ' →  is de�ned as nnf(¬') ∨ (' ∧ ) for ' ∈ FO (in negation-normal

form) and that A �X ' →  is equivalent to A �X�'  where X�' ∶= {s ∈ X ∶ A �s '}.

It is not di�cult to verify that  win expresses the conditions for winning strategies

(cf. De�nition 3.1). More formally, we have the following claim:

Claim 3.29. Let  be an inclusion-exclusion game and Y be a non-empty team over 
with y ∈ dom(Y ). Then  �Y  win(y) if and only if Y (y) is the vertex set of a winning

strategy for player 0 in .
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With these formulae at hand, it is easy to de�ne the target sets in FO(⊆, | ):

  (z) ∶= Tz ∧ ∃y( win(y) ∧ z ⊆ y ∧ (Ty → y ⊆ z)).

Claim 3.30. Let  be an inclusion-exclusion game and let X be a non-empty team over

 with z ∈ dom(X). Then  �X   (z) if and only if X(z) ∈  ().

Proof. “⟹”: Let  �X   (z). Then X(z) ⊆ T () and  �Y  win(y) ∧ z ⊆ y ∧ (Ty → y ⊆
z)where Y ∶=X[y ↦ F] for some F ∶ X → +(V ()). From  �Y z ⊆ y∧(Ty → y ⊆ z)
we obtain that Y (z) ⊆ Y (y) and Y (y) ∩ T () = (Y �Ty)(y) ⊆ (Y �Ty)(z). By Claim 3.29

and  �Y  win(y), we have Y (y) = V () for some winning strategy  . Now we prove

that Y (z) = Y (y) ∩ T (). The direction “⊇” follows from Y (y) ∩ T () ⊆ (Y �Ty)(z) ⊆ Y (z),
while the direction “⊆” is entailed by Y (z) ⊆ Y (y) and Y (z) = X(z) ⊆ T (). Thus,

X(z) = Y (z) = Y (y) ∩ T () =  () ∈  ().
“⟸”: Now let X(z) ∈  (). Then there is some winning strategy  with  () =

X(z). So  �X Tz. By letting Y ∶=X[y ↦ V()]. Since X is non-empty by assumption,

we have that V () and Y are non-empty as well. Therefore, we obtain  �Y  win(y),
because of Claim 3.29 and Y (y) = V (), and  �Y z ⊆ y, since Y (z) = X(z) =  () ⊆
V () = Y (y). We still need to prove that  �Y Ty → y ⊆ z. Towards this end, consider

any s ∈ Y �Ty . Then s(y) ∈ Y (y) ∩ T () =  () = X(z) and, thus, there exists some

s′ ∈ X with s′(z) = s(y). Let s′′ ∶= s′[y ↦ s(y)]. It follows that s′′ ∈ Y �Ty , because

we have s′′(y) = s(y) ∈  () = V () ∩ T (). So we have s′′(z) = s′(z) = s(y) and

s′′ ∈ Y �Ty , which concludes the proof of  �Y Ty → y ⊆ z. All in all, this proves that

 �X   (z).

In the last example, we have learned that target sets of general inclusion-exclusion

games can be expressed in full FO(⊆, | ). In particular, this formula also de�nes the

target sets of union games. But is it possible to do the same in the myopic fragment of

FO(⊆, | )?
Towards giving a positive answer to this question, let  G

 (x, z) be the corresponding

x-guarded version of   (z). Recall that this just means that we add x on both sides of

every occurring in-/exclusion atom. For example, the inclusion atom z ⊆ y occurring

in the subformula  init will be transformed into xz ⊆ xy when constructing  G
 (x, z).

Example 3.31. Consider the x-myopic formula # (x) given by

# (x) ∶= ∃x ′(x ′ ⊆ x ∧ � (x, x ′)) where � (x, x ′) ∶= xx ⊆ xx ′ ∧  G
 (x, x

′).

We claim (and prove) that # (x) de�nes the target sets in union games which, more

formally, means that for every team X over some union game  with x ∈ dom(X) holds

 �X # (x) ⟺ X(x) ∈  ().11
To see this, let � ′ be the corresponding unguarded

version of � , which turns out to be the following formula:

� ′(x, x ′) = x ⊆ x ′ ∧   (x ′)
11

Since union games do not have any initial vertices, the formula # could be simpli�ed by removing

the subformula  Ginit which is in a union game just trivially satis�ed.
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Claim 3.32. Let  be an inclusion-exclusion game and let X be a non-empty team over

 with x, x ′ ∈ dom(X). Then  �X � ′(x, x ′) if and only if X(x) ⊆ X(x ′) ∈  ().

Proof. Follows immediately from Claim 3.30.

With this claim at hand, we can prove that # really de�nes what we have promised:

Claim 3.33. Let  = (V , V0, V1, E, I , T , Eex) be a union game and let X be a team with

x ∈ dom(X). Then  �X # (x) ⟺ X(x) ∈  ().

Proof. For X = ∅ the claim is true, because ∅ ∈  () is true for every union game

and  �∅ # is due to the empty team property. Let X ≠ ∅. Applying Lemma 3.24

immediately yields the equivalence of the following statements:

(a)  �X # (x) = ∃x ′(x ′ ⊆ x ∧ � (x, x ′))

(b) There is a function F ∶ X → +(V ) such that

(i) F (s) ⊆ X(x) for every s ∈ X , and

(ii)  �Xt � ′(x, x ′) where Xt ∶= X[x ′ ↦ F]�x=t for every t ∈ X (x).

Next we will prove that the following propositions are also equivalent:

(c) For every t ∈ X (x) exists a winning strategy t with t ∈  (t) ⊆ X(x).

(d) X(x) ∈  ().

“(d)⟹ (c)”: If X(x) ∈  (), then there is a strategy  with  () = V ()∩T = X(x)
which in particular implies that t ∈  () ⊆ X(x) for every t ∈ X (x).

“(c) ⟹ (d)”: For the converse direction assume (c). Since  is a union game, we

are allowed to use Theorem 3.16 to combine the family (t)t∈X (x) into a single winning

strategy  with  () = ⋃t∈X (x)  (t) which is, due to assumptions about  (t), equal

to X(x).
So we have already established that (a) ⟺ (b) and (c) ⟺ (d), but our goal was

to show that (a) ⟺ (d) which is exactly what Claim 3.33 states. Thus, in order to

complete our proof of Claim 3.33, we just have to verify the missing link (b)⟺ (c).
“(b)⟹ (c)”: Suppose that there is some function F ∶ X → +(V ) such that (i) and

(ii) are true. So  �Xt � ′(x, x ′) for every t ∈ X (x) which, by Claim 3.32, yields that

Xt(x) ⊆ Xt(x ′) ∈  (). By de�nition of Xt in (ii), we have Xt(x) = (X[x ′ ↦ F]�x=t)(x) =
{t} and, consequently, t ∈ Xt(x ′) ∈  () which, by de�nition of  (), leads to the

existence of winning strategies t with Xt(x ′) =  (t) for every t ∈ X (x). Because

of (i) we can also conclude that Xt(x ′) = ⋃s∈X�x=t F (s) ⊆ X(x). As a result, we obtain

t ∈  (t) ⊆ X(x) for every t ∈ X (x) as desired.

“(b) ⟸ (c)”: We assume now that for every t ∈ X (x) there exists some winning

strategy t with t ∈  (t) ⊆ X(x). De�ne F ∶ X → +(V ) as F (s) ∶=  (s(x)) — notice

that s(x) ∈  (s(x)) holds by assumption, so  (s(x)) ≠ ∅ and, hence, F is indeed

well-de�ned. Then (i) is true, because for every s ∈ X we have also assumed that
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 (s(x)) ⊆ X(x). Because F (s) depends only on s(x) and we have Xt(x) = {t}, it follows

that Xt(x ′) =  (t). As a result, we have Xt(x) = {t} ⊆  (t) = Xt(x ′) from which

immediately follows that Xt(x) ⊆ Xt(x ′) ∈  () for every t ∈ X (x). Thus, by Claim 3.32,

we obtain  �Xt � ′(x, x ′) for every t ∈ X (x), which is exactly (ii).

With the myopic formula # (x) de�ning target sets in union games at hand, we are

now ready to present the variant of the game-theoretic proof of Theorem 3.12.

It is well known that every FO(⊆, | )-formula can be translated into an equivalent

Σ11-formula [Gal12]. As we have already seen in Theorem 3.7 and Theorem 3.12, every

union closed formula of existential second-order logic is equivalent to some myopic

Σ11-formula. This is why, the following theorem starts w.l.o.g. with a myopic second-

order-formula.

Theorem 3.34. For every myopic second-order-formula '(X) there exists an equivalent

myopic formula �(x̄) ∈ FO(⊆, | ) using eight inclusion atoms and one exclusion atom.

Proof. Let '(X) be a myopic Σ11-formula. We are going to �nd a ȳ-myopic formula

�(ȳ) ∈ FO(⊆, | ) with (A, X (ȳ)) � '(X) ⟺ A �X �(ȳ) for every � -structure A and

every team X with ȳ ⊆ dom(X). The most important steps of this proof are illustrated

in Figure 3.7.

Let A be a � -structure with at least 2 elements.
12

In De�nition 3.17 we have de-

�ned the model-checking game  ∶= (A, ') for A and the myopic sentence '(X). By

Proposition 3.18, we know for every relation X ⊆ Ar
that:

(A, X ) � '(X) ⟺ X ∈  () (3.7)

Due to Claim 3.33 we may conclude for every team X with x ∈ dom(X):

 �X # (x) ⟺ X(x) ∈  () (3.8)

By combining (3.7) and (3.8), we obtain that for every team X with x ∈ dom(X) over :

 �X # (x) ⟺ (A, X (x)) � '(X) (3.9)

Notice that  �X # (x) implies that X(x) ⊆ T () = Ar
and, hence, X(x) is then actually

a relation of the correct arity for the formula '(X). By counting, it is easy to verify

that exactly eight inclusion atoms and one exclusion atom occurs in # . The ȳ-myopic

formula �(ȳ) that we are going to construct will result from # (x) and will use the

same number of inclusion/exclusion atoms.

Using the technique of Lemma 3.9, it is possible to devise a (quanti�er-free) inter-

pretation  = (�, ",  V0 ,  V1 ,  E ,  I ,  T ,  Eex
) such that  ≅ (A) with coordinate map

ℎ∶ �A → V(). This interpretation encodes a position of the game  as a tuple

12
This assumption is without loss of generality, since the resulting formulae �(ȳ) can be modi�ed to be

equivalent to '(X) even on structures with only one element. This modi�cation does not require

additional inclusion or exclusion atoms.
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A � '(X(ȳ))

X (ȳ) ∈  ((A, '))

(A, ') �X # (x)

A �ℎ−1(X) #
 (x̄)

A �X �(ȳ)
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Figure 3.7: Overview of the proof of Theorem 3.34. Here, X is a team over A with

dom(X) = {ȳ}, while X is the “game version” of X with dom(X) = {x}
and X(x) = X(ȳ).

(ū, v̄) ∈ An+m
where the n-tuple ū has a certain equality type (indicating at which type

of position we are encoding, e.g. at which formula we are) while the m-tuple v̄ stores

certain values (e.g. values of free variables and to which component the node belongs).

More importantly, a position ā ∈ T () = Ar
is described by the tuple (ū, ā, b̄) ∈ An+m

where ū has equality type eT while b̄ ∈ Am−r
can be chosen arbitrarily. Also recall that

every variable v is replaced by an (n + m)-tuple v̄ of pairwise di�erent variables. In

particular, let x̄ = (ū, ȳ, z̄) where ū is a n-tuple, ȳ some r-tuple and z̄ an (m − r)-tuple.

Every inclusion/exclusion atoms occurring in # (x) has one of the following three

possible forms where v, w are some variables:

• �1(x, v, w) ∶= xv | xw

• �2(x, v, w) ∶= xv ⊆ xw

• �3(x, v) ∶= v ⊆ x

Notice that the only inclusion atom of the form of �3 is in # (x) not within the scope of

a disjunction (it is x ′ ⊆ x right after the existential quanti�er). In #
 (x̄), these formulae

are replaced by:

• �1 (x̄ , v̄, w̄) ∶= ∀x̄ ′∀v̄′([�(x̄ ′) ∧ �(v̄′) ∧ "(x̄ , x̄ ′) ∧ "(v̄, v̄′)] → x̄ ′v̄′ | x̄w̄)

• �2 (x̄ , v̄, w̄) ∶= ∃x̄ ′∃v̄′(�(x̄ ′) ∧ �(v̄′) ∧ "(x̄ , x̄ ′) ∧ "(v̄, v̄′) ∧ x̄ ′v̄′ ⊆ x̄w̄)

• �3 (x̄ , v̄) ∶= ∃v̄′(�(v̄′) ∧ "(v̄, v̄′) ∧ v̄′ ⊆ x̄)

Clearly, these formulas are not allowed in ȳ-myopic formulae, because the occurring

inclusion/exclusion atoms are not ȳ-guarded. However, we know that the tuple x̄ =
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(ū, ȳ, z̄) is used in #
 (x̄) to store elements from ℎ−1(T ()) = {(v̄, ā, b̄) ∈ An+m ∶ A �

eT (ū), ā ∈ Ar , b̄ ∈ Am−r}, because whenever a team Y interprets x̄ by values encoding

di�erent game positions, it follows that ℎ(Y )(x) cannot be a target set of a winning

strategy, so Claim 3.33 leads to  2ℎ(Y ) # (x) and then, by the Interpretation Lemma

(Lemma 2.5), A 2Y #
 . So for every team X which is well-formed (w.r.t. ) and satis�es

A �X #
 we must have that A �X  T (x̄) = eT (ū). This observation enables us to de�ne

versions of �i that are allowed in ȳ-myopic formulae:

• �⋆1 (ȳ, v̄, w̄) ∶= ∀v̄′([�(v̄′) ∧ "(v̄, v̄′)] → ȳv̄′ | ȳw̄)

• �⋆2 (ȳ, v̄, w̄) ∶= ∃v̄′(�(v̄′) ∧ "(v̄, v̄′) ∧ ȳv̄′ ⊆ ȳw̄)

• �⋆3 (ȳ, v̄) ∶= eT (v̄(1)) ∧ v̄(2) ⊆ ȳ where v̄ = v̄(1)v̄(2)v̄(3) and |v̄(1)| = n, |v̄(2)| = r and

|v̄(3)| = m − r .

Claim 3.35. For every team X with dom(X) = {x̄, ū, w̄} with X(x̄) ⊆ ℎ−1(T ) and every

i = 1, 2, 3 holds A �X �i ⟺ A �X �⋆i .

Proof of Claim 3.35. i = 1: Let X ′ ∶= X[x̄ ′ ↦ �A, v̄′ ↦ �A]�"(x̄ ,x̄′)∧"(v̄,v̄′). Then we can

observe that

A �X �1 ⟺ A �X ′ x̄ ′v̄′ | x̄w̄
(!)
⟺ A �X ′ ȳv̄′ | ȳw̄ ⟺ A �X �⋆1 ,

but the equivalence of A �X ′ x̄ ′v̄′ | x̄w̄ and A �X ′ ȳv̄′ | ȳw̄ requires proof. Let

x̄ ′ ∶= (ū′, ȳ′, z̄′) where |ū′| = |ū|, |ȳ′| = |ȳ| and |z̄′| = |z̄|. Because of A �X ′ "(x̄ , x̄ ′) and

X ′(x̄) ⊆ ℎ−1(T ), we have that s(ȳ) = s(ȳ′) for every s ∈ X ′
. Now, we prove the two

directions of A �X ′ x̄ ′v̄′ | x̄w̄ ⟺ A �X ′ ȳv̄′ | ȳw̄ separately:

“⟸”: First, assume that A �X ′ ȳv̄′ | ȳw̄ . It follows that s1(ȳ′v̄′) = s1(ȳv̄′) ≠ s2(ȳw̄)
for every s1, s2 ∈ X ′

. Because ȳ and ȳ′ are subtuples of x̄ = (ū, ȳ, z̄) resp. x̄ ′ = (ū′, ȳ′, z̄′),
this implies that s1(x̄ ′v̄′) ≠ s2(x̄w̄) for every s1, s2 ∈ X ′

. Hence, A �X ′ x̄ ′v̄′ | x̄w̄ .

“⟹”: Now let A �X ′ x̄ ′v̄′ | x̄w̄ . Towards a contradiction assume that A 2X ′ ȳv̄′ | ȳw̄ .

Then there are assignments s1, s2 ∈ X ′
with s1(ȳv̄′) = s2(ȳw̄). Since X(x̄) ⊆ ℎ−1(T ) it

follows that A � eT (s1(ū)) ∧ eT (s2(ū)). Because we also have A �X ′ "(x̄ , x̄ ′), it must be

the case that A �s1 eT (ū) ∧ eT (ū′) ∧ ȳ = ȳ′.
Consider s′1 ∶= s1[ū′ ↦ s2(ū), z̄′ ↦ s2(z̄)]. s1 and s′1 only di�er on ū′ and z̄′, but both

still encode the equality type eT in ū′ while the values of z̄′ are irrelevant. So we still

have A �s′1 �(x̄
′) ∧ "(x̄ , x̄ ′), implying that s′1 ∈ X ′

.

By de�nition of s′1, holds

s′1(x̄
′) = s′1(ū

′, ȳ′, z̄′) = (s′1(ū
′), s′1(ȳ

′), s′1(z̄
′)) = (s2(ū), s′1(ȳ

′), s2(z̄))

and, because of s′1(ȳ′) = s′1(ȳ) = s1(ȳ) = s2(ȳ), we even have (s2(ū), s′1(ȳ′), s2(z̄)) = s2(x̄).
So s′1(x̄ ′) = s2(x̄). Because we also have s′1(v̄′) = s2(w̄), this leads to s′1(x̄ ′v̄′) = s2(x̄w̄),
which is impossible due to A �X ′ x̄ ′v̄′ | x̄w̄ . Contradiction! Therefore, A �X ′ ȳv̄′ | ȳw̄
must be true.
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i = 2: Again, we prove both directions separately. “⟸”: First let A �X �⋆2 =
∃v̄′(�(v̄′) ∧ "(v̄, v̄′) ∧ ȳv̄′ ⊆ ȳw̄). Then there is a function F ∶ X → +(An+m) such that

A �X ′ �(v̄′) ∧ "(v̄, v̄′) ∧ ȳv̄′ ⊆ ȳw̄ where X ′ ∶= X[v̄′ ↦ F].
Due to A �X ′ ȳv̄′ ⊆ ȳw̄ , for every assignment s ∈ X ′

there exists some s̃ ∈ X ′
with

s(ȳv̄′) = s̃(ȳw̄). Now consider Y ∶= {s[x̄ ′ ↦ s̃(x̄)] ∶ s ∈ X ′}. Since X ′(x̄) = X(x̄) ⊆
ℎ−1(T ) and s(ȳ) = s̃(ȳ) for every s ∈ X ′

, we can conclude that s(x̄) = s[x̄ ′ ↦ s̃(x̄)](x̄) and

s̃(x̄) = s[x̄ ′ ↦ s̃(x̄)](x̄ ′) encode the same target vertex s(ȳ) for every s ∈ X ′
and, thus,

A �Y �(x̄ ′)∧"(x̄ , x̄ ′). Because of A �X ′ �(v̄′)∧"(v̄, v̄′), we also have A �Y �(v̄′)∧"(v̄, v̄′).
So, A �Y �(x̄ ′) ∧ �(v̄′) ∧ "(x̄ , x̄ ′) ∧ "(v̄, v̄′).

Towards proving A �Y x̄ ′v̄′ ⊆ x̄w̄ , let t ∈ Y . Then t = s[x̄ ′ ↦ s̃(x̄)] for some s ∈ X ′

and, hence, t(x̄ ′v̄′) = (s̃(x̄), s(v̄′)). Since s̃ ∈ X ′
has the property s(ȳv̄′) = s̃(ȳw̄), we

have s(v̄′) = s̃(w̄) in particular. Thus, t(x̄ ′v̄′) = (s̃(x̄), s(v̄′)) = (s̃(x̄), s̃(w̄)) ∈ X ′(x̄ , w̄) =
Y (x̄ , w̄).

Therefore, A �Y �(x̄ ′) ∧ �(v̄′) ∧ "(x̄ , x̄ ′) ∧ "(v̄, v̄′) ∧ x̄ ′v̄′ ⊆ x̄w̄ which proves that

A �X �2 , because Y �dom(X) = X .

“⟹”: Now let A �X �2 . Then there is a function F ∶ X → +(A2(n+m)) such that

A �X ′ �(x̄ ′) ∧ �(v̄′) ∧ "(x̄ , x̄ ′) ∧ "(v̄, v̄′) ∧ x̄ ′v̄′ ⊆ x̄w̄ where X ′ ∶= X[x̄ ′v̄′ ↦ F].
Since A �X ′ x̄ ′v̄′ ⊆ x̄w̄ it follows that A �X ′ ȳ′v̄′ ⊆ ȳw̄ , because ȳ, ȳ′ are subtuples

of x̄ , x̄ ′. Due to X ′(x̄) = X(x̄) ⊆ ℎ−1(T ), A �X ′ �(x̄ ′) ∧ "(x̄ , x̄ ′) implies that A �X ′ ȳ = ȳ′.
So, A �X ′ ȳ′v̄′ ⊆ ȳw̄ is equivalent to A �X ′ ȳv̄′ ⊆ ȳw̄. Hence, we have that A �X ′

�(v̄′) ∧ "(v̄, v̄′) ∧ ȳv̄′ ⊆ ȳw̄ which implies that A �X �⋆2 .

i = 3: “⟸”: First let A �X �⋆3 = eT (v̄(1)) ∧ v̄(2) ⊆ ȳ where v̄(1)v̄(2)v̄(3) = v̄ and

|v̄(1)| = n, |v̄(2)| = r and |v̄(3)| = m − r . Then X(v̄(1)) ⊆ eAT and X(v̄(2)) ⊆ X(ȳ). So, for every

s ∈ X there exists some s̃ ∈ X with s(v̄(2)) = s̃(ȳ). Let X ′ ∶= {s[v̄′ ↦ s̃(x̄)] ∶ s ∈ X}. By

construction, A �X ′ v̄′ ⊆ x̄ .

Let t ∈ X ′
be chosen arbitrarily. By construction of X ′

, we have that t = s[v̄′ ↦ s̃(x̄)]
for some s ∈ X . Because X(x̄) ⊆ ℎ−1(T ) and X(v̄(1)) ⊆ eAT , it is the case that t(v̄) = s(v̄)
and t(v̄′) = s̃(x̄) are both encoding the same target vertex s(v̄(2)) = s̃(ȳ). Thus, A �t
�(v̄′) ∧ "(v̄, v̄′).

As a result, we obtain A �X ′ �(v̄′) ∧ "(v̄, v̄′) ∧ v̄′ ⊆ x̄ which proves that A �X �3 ,

because X ′�dom(X) = X .

“⟹”: Let A �X �3 . Then there is a function F ∶ X → +(An+m) such that A �X ′

�(v̄′) ∧ "(v̄, v̄′) ∧ v̄′ ⊆ x̄ where X ′ ∶= X[v̄′ ↦ F]. Let v̄′ = v̄′(1)v̄′(2)v̄′(3) where |v̄′(1)| =
n, |v̄′(2)| = r and |v̄′(3)| = m − r .

Since X ′(ūȳz̄) = X ′(x̄) = X(x̄) ⊆ ℎ−1(T ), we have X ′(ū) ⊆ eAT and, due to A �X ′ v̄′ ⊆ x̄ ,

it follows that X ′(v̄′(1)) ⊆ eAT as well as A �X ′ v̄′(2) ⊆ ȳ. Because of A �X ′ "(v̄, v̄′) and

X ′(v̄′(1)) ⊆ eAT , we also have X ′(v̄(1)) ⊆ eAT and A �X ′ v̄(2) = v̄′(2). This is why, we have

that A �X ′ eT (v̄(1)) ∧ v̄(2) ⊆ ȳ = �⋆3 (ȳ, v̄). This concludes the proof of Claim 3.35.

Let #⋆ (x̄) be the formula that results from #
 by replacing every subformulae

�i (x̄ , … ) by �⋆i (ȳ, … ). Now all the inclusion/exclusion atoms occurring in #⋆ (x̄) go

conform with the conditions of De�nition 3.19 but it is still not quite a ȳ-myopic

formula, since #⋆ (x̄) = #⋆ (ū, ȳ, z̄) has too many free variables. In order to get rid of the
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super�uous variables ū, z̄ we simply de�ne

�(ȳ) ∶= ∃ū∃z̄(eT (ū) ∧ #⋆ (ū, ȳ, z̄))

which is now a ȳ-myopic formula.
13

For a team X with dom(X) = {ȳ} we call the

team Y a T -expansion of X , if dom(Y ) = {ū, ȳ, z̄}, Y (ȳ) = X(ȳ) and Y (ū) ⊆ eAT . Clearly,

we have that A �X �(ȳ) if and only if A �Y #⋆ (x̄) for some T -expansion of X and

two T -expansions of Y , Y ′
are always ℎ-similar to each other, because ℎ(Y (ū, ȳ, z̄)) =

X(ȳ) = ℎ(Y ′(ū, ȳ, z̄)) already implies that ℎ(Y ) = ℎ(Y ′) which, by the Similarity Lemma

(Lemma 2.6), leads to A �Y #
 ⟺ A �Y ′ #

 .

Furthermore, it follows from the construction of #⋆ and Claim 3.35 that A �Y #
 ⟺

A �Y #⋆ for every T -expansion Y of X . The reason for this is that T -expansions satisfy

the property Y (x̄) ⊆ ℎ−1(T ) which will be maintained at the subformulae, because, due

to # being a x-myopic formula, variables from x̄ are never quanti�ed in #
 or #⋆ .

The full T -expansion XT of X is XT ∶= {s[ū ↦ ā, z̄ ↦ c̄] ∶ s ∈ X , ā ∈ eAT , c̄ ∈ Am−r}
while the “game version” X of XT is a team with dom(X) = {x} de�ned by X ∶= {sb̄ ∶
b̄ ∈ X(ȳ)}where sb̄ ∶ {x} → T(), x ↦ b̄. It is not di�cult to verify that X(x) = X(ȳ)
and ℎ(XT ) = X.

Putting everything together, we obtain:

A �X �(ȳ)
⟺ A �Y #⋆ (x̄) for some T -expansion Y of X (by construction of �(ȳ))
⟺ A �Y #

 (x̄) for some T -expansion Y of X (follows from Claim 3.35)

⟺ A �XT #

 (x̄) (XT is ℎ-similar to every T -expansion of X , Lemma 2.6)

⟺  �X # (x) (Interpretation Lemma (Lemma 2.5))

⟺ (A, X(x)) � '(X) (due to (3.9))

⟺ (A, X (ȳ)) � '(X) (because X(x) = X(ȳ))

Thus, A �X �(ȳ) ⟺ (A, X (ȳ)) � '(X) follows and our proof is completed.

Corollary 3.36. Every x̄-myopic formula �(x̄) is equivalent to a x̄-myopic formula that

uses exactly seven inclusion atoms and one guarded exclusion atom.

Proof. Every x̄-myopic formula �(x̄) can be transformed into a equivalent myopic

Σ11-sentence �′(X ) and the construction used in the proof of Theorem 3.34 produces

exactly as many atoms as speci�ed, if one replaces the unneeded subformula  init by

any tautology (this does not harm, because union games do not have initial vertices, so

 init was trivially satis�ed).

13
Notice that the interpretation does not introduce any disjunction above �⋆3 (x̄ , z̄), because x ⊆ z is

only in the scope of existential quanti�ers and we only a need a conjunction in order to guard the

translated existential quanti�er in # .

47



3 Syntactic Normal Forms

3.4.2 Proving Corollary 3.27 via Skolem Normal Form
In this section, we present a third proof for Corollary 3.27 that uses a special Skolem

normal form. Historically, this was the second proof for this result and it has been

found by Richard Wilke as a shorter and direct version of the proof we have present in

the previous section. It also appeared in [HW19, HW20] and it is based on methods of

Galliani, Kontinen and Väänänen [Gal12, KV09].

Theorem 3.37. Let '(X) be a myopic Σ11-formula. There is an equivalent x̄-myopic

formula of FO(⊆, | ) where |x̄ | = ar(X ).

Proof. First of all let us introduce a normal form of myopic Σ11-formulae. Since in

myopic formulae the symbol X may occur only positively after the implication, we

can transform every ∀x̄(X x̄ → ∃R̄'′(R̄, X , x̄)) into the equivalent formula

∀x̄(X x̄ → ∃S(S ⊆ X ∧ ∃R̄'′(R̄, S, x̄)))

where S ⊆ X is a shorthand for ∀ȳ(Sȳ → Xȳ). We now apply the Skolem normal form

of Σ11-formulae to ∃R̄'′(R̄, S, x̄), which yields the formula

�(S, x̄) ∶= ∃f̄ ∀ȳ((f1(w̄) = f2(w̄) ↔ Sw̄) ∧  (f̄ , ȳ, x̄))

where  is a quanti�er-free �rst-order formula and w̄ is a subtuple of ȳ and, moreover,

every fi occurs in  only with a unique tuple w̄i (consisting of pairwise di�erent

variables) as argument, that is fi(w̄i) (see [KV09, Theorem 4.9] where an analogous

construction is made). The original formula can thus be transformed into

∀x̄(X x̄ → ∃S(S ⊆ X ∧ �(S, x̄))).

Similarly to [Gal12] we embed �(S, x̄) into inclusion-exclusion logic as

#(s̄, x̄) ∶= ∀ȳ∃z̄(⋀
i
dep(x̄w̄i , zi) ∧ ((x̄w̄ ⊆ x̄ s̄ ∧ z1 = z2) ∨ (x̄w̄ | x̄ s̄ ∧ z1 ≠ z2)) ∧  ′(x̄ , ȳ, z̄)).

Here  ′
is obtained from  by simply replacing every occurrence of fi(w̄i) by zi . The

only di�erence in our case is that every dependency atom is x̄-guarded due to the fact

that the subformula at hand is inside the scope of the universally quanti�ed variables

x̄ in ∀x̄(X x̄ → … ). Notice that dependence atoms of the form dep(x̄w̄i , zi) can also

be regarded as x̄-myopic. Formally, we can embed such an atom into exclusion logic

via the formula ∀v(x̄w̄iv | x̄w̄izi ∨ zi = v), which has the intended shape [Gal12]. The

whole formula '(X) thus translates into

�(x̄) ∶= ∃s̄(s̄ ⊆ x̄ ∧ #(s̄, x̄)).

Let # ′(s̄, x̄) be the unguarded version of #(s̄, x̄). Analogously to the argumentation

of Galliani [Gal12] by additionally making use of Proposition 3.22, (A, Y �x̄=ā(s̄)) �x̄↦ā
�(S, x̄) if and only if A �Y �x̄=ā # ′(s̄, x̄) for ā ∈ Y (s̄), where Y is a team with domain
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Figure 3.8: The structures A and B. The structure A = (V , EA, FA, PA, QA) on the left

side uses two di�erent kinds of edges: the dashed edges belong to F , while

the other are E-edges. Furthermore, A exhibits two predicates P, Q. The

structure B = (V , EB) depicted on the right is just a directed graph. Please

notice that both structures are using the same universe V .

{s̄, x̄} (here the variable S takes the role of the team). Using Lemma 3.24 we have

A �X �(x̄) if and only if there is a function F ∶ X → +(Aar(s̄)) such that F (s) ⊆ X(x̄)
for every s ∈ X and A �X[s̄↦F]�x̄=ā # ′(s̄, x̄) for all ā ∈ X (x̄), which again holds if and

only if there exists such an F with (A, F (s)) �s �(S, x̄) for all s ∈ X , but this just means

(A, X (x̄)) � ∀x̄(X x̄ → ∃S(S ⊆ X ∧ �(S, x̄))).

3.4.3 Optimality of the Myopic Fragment
One might ask whether the restrictions of De�nition 3.19 are actually imperative to

capture the union closed fragment w.r.t. its expressive power. In this section, we will

show that neither condition can be dropped and that every single atom of De�nition 3.19

is required to express all union closed properties.

We start by showing that neither condition can be dropped. First of all, it is pretty

clear that exclusion atoms have to be x̄-guarded, because x1 | x2 is not guarded and

obviously not closed under unions. Furthermore, it is very clear that the variables

among x̄ must not be quanti�ed to ensure the e�ectiveness of the above restrictions.

This points out the necessity of conditions (a) and (b) of De�nition 3.19. In the next

example we demonstrate that neither restriction of condition (c) can be dropped.

Example 3.38. Consider the structures A = (V , EA, FA, PA, QA) and B = (V , EB)
drawn in Figure 3.8 and the following formulae:

'(x)∶= ∃y∃z(Fxy ∧ Fxz ∧ xy | xz ∧ [(Py ∧ #(x)) ∨ (Qy ∧ #(x))])
where #(x) ∶= ∃v(Exv ∧ v ⊆ x)

 (x)∶= ∃y∃z(Exy ∧ Exz ∧ xy | xz ∧ ∃w(Eyw ∧ x ⊆ w))

Neither '(x) nor  (x) is x-myopic, because the inclusion atom v ⊆ x from # occurs

inside the scope of a disjunction (and it is not x-guarded), while the atom x ⊆ w is
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neither x-guarded nor of the form that is allowed outside the scope of disjunctions,

because x appears on the wrong side of the inclusion atom.

For every v ∈ V let sv ∶ {x} → V be the assignment with sv(x) ∶= v. We de�ne the

teams X1 ∶= {sa, sb}, X2 ∶= {sb, sc} and X ∶= X1 ∪ X2 = {sa, sb, sc}. In order to shows that

the restrictions of De�nition 3.19 are indeed necessary, we will now demonstrate that

neither '(x) nor  (x) are closed under unions:

Claim 3.39. A �Xi '(x) and B �Xi  (x) for i = 1, 2 but A 2X '(x) and B 2X  (x).

Proof. First, we prove the statements for A and '. We will prove A �X1 '(x) and

A 2X '(x) but skip the proof for A �X2 '(x), because this can be proven by using very

similar (in fact almost symmetric) arguments.

We will now prove that A �X1 '(x). Let Y1 ∶= {ta, tb} be the team consisting of

ta ∶= sa[y ↦ a+, z ↦ a−] and tb ∶= sb[y ↦ b+, z ↦ b−] or, slightly more readable,

ta ∶ xyz ↦ aa+a− and tb ∶ xyz ↦ bb+b−. Clearly, Y1 is an extension of X1 that now

also interprets y, z and we have that A �Y1 Fxy ∧ Fxz. Furthermore, we also have

A �Y1 xy | xz, because ta(x) ≠ tb(x), ta(y) ≠ ta(z) and tb(y) ≠ tb(z). We still need to

prove that A �Y1 [(Py ∧ #) ∨ (Qy ∧ #)]. By the empty team property, it su�ces to prove

that A �Y1 Py ∧ # . Since ta(y) = a+ ∈ P and tb(y) = b+ ∈ P we have A �Y1 Py .

In order to show A �Y1 #(x) = ∃v(Exv ∧ v ⊆ x), we de�ne Z1 ∶= {ra, rb} where

ra ∶= ta[v ↦ b] and rb ∶= tb[v ↦ b]. Since ra(x, v) = (a, b) ∈ E and rb(x, y) = (b, b) ∈ E,

it follows that A �Z1 Exv. Furthermore, we have Z1(v) = {b} ⊆ {a, b} = Z1(x) and

hence also A �Z1 v ⊆ x . This concludes the proof of A �Y1 # and, thus, also of

A �X1 '(x).
Now we will prove that A 2X '. Towards a contradiction, we assume that A �X '

would be true. Then there exists an extension Y of X that additionally interprets the

variables y, z such that A �Y Fxy ∧ Fxz ∧ xy | xz ∧ [(Py ∧ #) ∨ (Qy ∧ #)].
We analyse how assignments fromX are manipulated in this process. Let t ∈ Y . Since

A �Y Fxy ∧Fxz, we can deduce t(y), t(z) ∈ {t(x)+, t(x)−} ∈ {{a+, a−}, {b+, b−}, {c+, c−}}.

However, due to A �Y xy | xz, it must be the case that t(y) ≠ t(z). This implies that

{t(y), t(z)} = {t(x)+, t(x)−}. Please note, that this leaves only two possibilities for each

t ∈ X : either t(y) = t(x)+ and t(z) = t(x)− or t(y) = t(x)− and t(z) = t(x)+. We call

t ∈ Y positive if t(y) = t(x)+ and negative if we have t(y) = t(x)− instead. It is not

possible that a positive t ∈ Y coexists with a negative t ′ ∈ Y with t(x) = t ′(x), because

then we would have t(x, y) = (t(x), t(x)+) = (t ′(x), t ′(x)+) = t ′(x, z) which contradicts

A �Y xy | xz. As a result, every s ∈ X was extended to an assignment of Y by adding

either s(x)+ to y and s(x)− to z or s(x)− to y and s(x)+ to z. For every s ∈ X we de�ne

s+ ∶= s[y ↦ s(x)+, z ↦ s(x)−] and s− ∶= s[y ↦ s(x)−, z ↦ s(x)+] which we sometimes

also call the positive resp. negative extension of s.
We have already seen that for each s ∈ X either s+ ∈ Y or s− ∈ Y happens. This

means Y is of the form Y = {ta, tb, tc} where tv ∈ {s+v , s−v} for v ∈ {a, b, c}. In particular

we either have tb = s+b or tb = s−b .

We only deal with the case tb = s+b , because the other cases is very analogous. So

Y = {ta, s+b , tc}. By construction of A, we have that ta(y), s+b (y) ∈ P ⧵Q while tc(y) ∈ Q ⧵P .
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Therefore, the only possible split of Y witnessing the satisfaction of [(Py ∧#)∨ (Qy ∧#)]
is Y = YP ∪ YQ with YP ∶= {ta, s+b} and YQ = {tc}.

But then A �YQ #(x) = ∃v(Exv ∧ v ⊆ x), which implies the existence of a function

H ∶ {tc} → +(A) such that A �Z Exv ∧ v ⊆ x for Z ∶= YQ[v ↦ H]. Due to

Z(x) = YQ(x) = {tc(x)} = {c} and A �Z v ⊆ x , it follows that H(tc) = {c}. So, we

have Z = {r} where r ∶= tc[v ↦ c]. But then r(x, v) = (c, c) ∉ E in contradiction to

A �Z Exv.

Now we prove the statements for B and  . Again we de�ne the positive resp. nega-

tive extension as follows:

s+ ∶= s[y ↦ s(x)+, y ↦ s(x)−] and s− ∶= s[y ↦ s(x)−, y ↦ s(x)+]

In order prove B �X1  (x), it su�ces to verify that B �Y1 Exy ∧Exz∧xy |xz∧∃w(Eyw∧
x ⊆ w) is true for Y1∶={s+a , s+b}. Since s+a (x, y) = (a, a+), s+a (x, z) = (a, a−), s+b (x, y) = (b, b+)
and s+b (x, z) = (b, b−) are edges in B, it follows that B �Y1 Exy ∧ Exz. We also have

B �Y1 xy | xz, because s+a (x) ≠ s+b (x), s+a (y) ≠ s+a (z) and s+b (y) ≠ s+b (z). We still need to

check that B �Y1 ∃w(Eyw ∧ x ⊆ w). Towards this end, let Z1 = {r1, r2, r3} where

r1 ∶= s+a [w ↦ a+]∶ xyzw ↦ aa+a−a+
r2 ∶= s+b [w ↦ a]∶ xyzw ↦ bb+b−a
r2 ∶= s+b [w ↦ b]∶ xyzw ↦ bb+b−b

Clearly, B �Z1 Eyw ∧ x ⊆ w and Z1 is an extension of Y1. This concludes the proof for

B �X1  (x). The proof for B �X2  (x) is analogous.

Now we will prove that B 2X  (x). Towards a contradiction, we assume that

B �X  (x). It follows that there is an extension Y of X that additionally interprets the

variables y, z such that B �Y Exy ∧ Exz ∧ xy | xz ∧ ∃w(Eyw ∧ x ⊆ w).
An analysis that is very similar to the analysis for A and ' yields that for every

s ∈ X either the positive or the negative extension of s, which are s+ resp. s−, is an

element of Y . Moreover, s+ and s− cannot coexist in Y for every s ∈ X . It follows again

that Y = {ta, tb, tc} where tv ∈ {s+v , s−v} for v ∈ {a, b, c}. In particular, either tb = s+b or

tb = s−b .

We only deal with the case that tb = s+b ; the argumentation for the other case is

analogous. B �Y ∃w(Eyw∧x ⊆ w) states that B �Z Eyw∧x ⊆ w where Z ∶=Y[w ↦ F]
for some function F ∶ Y → +(B). It is not di�cult to verify that Z(x) = {a, b, c} while

Z(w) cannot contain c, because due to tb = s+b ∈ Y we have that s−b ∉ Y and as a result

b− ∉ Y (y) but b− is the only vertex with an edge to c. So B 2Z x ⊆ w , which contradicts

B �Z Eyw ∧ x ⊆ w .

Since the assumption of B �X  (x) has led to a contradiction, it must be the case

that B 2X  .

Thus the atoms allowed by De�nition 3.19 su�ce to capture the union closed frag-

ment of FO(⊆, | ). On the contrary, one may ask whether the set of atoms given in

De�nition 3.19 is necessary. Let us argue for all rules of De�nition 3.19.
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Assume that all exclusion atoms are forbidden then every formula is already in

inclusion logic in which one cannot de�ne every union closed property as was shown

by Galliani and Hella [GH13, p. 16].

If inclusion atoms were only allowed in the form x̄ ȳ ⊆ x̄ z̄, that means the atoms v̄ ⊆ x̄
are forbidden, the formulae become �at, as can be seen by considering Proposition 3.22,

but not all union closed properties are �at.

The case where inclusion atoms of form x̄ ȳ ⊆ x̄ z̄ are forbidden is a bit more delicate.

To prove that such a formula cannot express every union closed property consider the

formula

�(x) ∶= ∃z(z ⊆ x ∧ ∀y(Exy → xy ⊆ xz)),

where � = {E} for a binary predicate symbol E. This formula axiomatises the set of

all teams X over a graph G = (V , E) such that whenever v ∈ X(x) and (v, w) ∈ E, then

already w ∈ X(x). The formula obviously describes a union closed property. Consider

the graph G: ab c . Here, G �X �(x) for precisely those teams X that satisfy

“a ∈ X(x) implies b, c ∈ X(x)”. For every v ∈ V (G) let sv be the assignment x ↦ v and

let Xv ∶= {sv}. Furthermore, we de�ne Xabc ∶= {sa, sb, sc}.

Let  (x) be an x-myopic formula in which the construct xȳ ⊆ xz̄ does not appear.

So the only inclusion atoms occurring in  (x) are of the form z ⊆ x which are not

allowed in the scope of disjunctions. Notice that z cannot be universally quanti�ed, as

the team Xb = {sb} satis�es the described property, but not ∀z(z ⊆ x). Thus we may

assume without loss of generality that  (x) has the form

 (x) = ∃z(z ⊆ x ∧  ′(x, z)),

where in  ′(x, z) no inclusion atom occurs (we postpone the argumentation for the

case that more than one atom of the form z ⊆ x occurs). Let �(x, z) be the unguarded

version of  ′(x, z). By Lemma 3.24, there is a function F ∶ Xabc → +(V (G)) such

that F (s) ⊆ Xabc(x) = V (G) for s ∈ Xabc and G �Xabc [z↦F]�x=v � for every v ∈ Xabc(x).
Please notice that Xabc[z ↦ F]�x=v = Xv[z ↦ F�Xv ]. Moreover, because in �(x, z)
no inclusion atom occurs it is downwards closed. Assume a ∈ F(sa). By downwards

closure of �(x, z) we obtain G �Xa[z↦a] �, which (by Lemma 3.24) implies that G �Xa  
contradicting our assumption that  describes the desired property. Otherwise, because

of symmetry, b is in F (sa), and hence G �Xa[z↦b] �. Additionally, since G �Xb  we

know (by Lemma 3.24) that G �Xb[z↦b] �. Together this implies G �Xab[z↦b]�x=v � for

v = a, b and, due to Lemma 3.24, we get G �Xab  which is again in con�ict with our

assumption about  describing the desired property.

We want to remark that generally the formula  could have the form ∃z̄(z1 ⊆
x ∧ ⋯ ∧ zn ⊆ x ∧  ′). In this case we would have to consider a graph G similar

to the one above, where instead of two successors b and c the vertex a has n + 1
successors bi , and argue that there are functions F1 to Fn such that G satis�es � under

X[z1 ↦ F1] ⋯ [zn ↦ Fn]. Inside this team there would be an assignment s ∶ x ↦
a, z1 ↦ b1, … , zn ↦ bn with possibly bi ≠ bj for all i, j. Again, every team Xbi satis�es

 , hence s ∶ x ↦ bi , zi ↦ bi for every i is an assignment satisfying �. Together the
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team {x ↦ a} ∪ {x ↦ bi ∶ 1 ≤ i ≤ n} satis�es  but misses bn+1 hence we obtain a

contradiction.

3.5 An Atom capturing the Union Closed Fragment
The present work was motivated by a question of Galliani and Hella in 2013 [GH13].

Galliani and Hella asked whether there is a union closed atomic dependency notion �
that is de�nable in existential second-order logic such that FO(�) corresponds precisely

to all union closed properties of FO(⊆, |). In [GH13] they have already shown that FO(⊆)
does not su�ce, as there are union closed properties not de�nable in it. Moreover, they

have established a theorem stating that every union-closed atomic property that is

de�nable in �rst-order logic (where the formula has access to the team via a predicate)

is expressible in inclusion logic. Thus, whatever atom characterises all union closed

properties of FO(⊆, | ) must axiomatise an inherently non-�rst-order property.

Intuitively speaking, as we have seen in Section 3.3, solving union games is a complete

problem for  , the class of all union closed Σ11-de�nable properties. Therefore, a

canonical solution to this question is to propose an atomic formula that de�nes the

winning regions in a union game. Towards this we must describe how a game can be

encoded into a team. For instance, this is not as straightforward as one might think,

because there is a technical pitfall we need to avoid. The union of two teams describing

union games, each won by player 0, might encode a game won by player 1, but by

union closure it must satisfy the atomic formula.

We encode union games in teams by using variable tuples for the respective com-

ponents, where we also encode the complementary relations in order to ensure that

the union of two di�erent games cannot form a di�erent game. For k ∈ ℕ let k
be the set of distinct k-tuples of variables {ū, v̄0, v̄1, v̄, w̄, t̄ , v̄ex, w̄ex, "̄1, "̄2, ū{, v̄{, w̄{,
t̄{, v̄{

ex
, w̄{

ex
, "̄{1 , "̄{2}.

De�nition 3.40. Let X be a team with k ⊆ dom(X) and codomain A. We de�ne

∼ ∶=X("̄1, "̄2) and AX ∶= (V , V0, V1, E, I , T , Eex) where the components are as follows.

• V ∶= X(ū)
• V0 ∶= X(v̄0)
• V1 ∶= X(v̄1)

• I ∶= ∅
• E ∶= X(v̄, w̄)
• T ∶= X(t̄)

• Eex ∶= X(v̄ex, w̄ex)

If the following consistency requirements are satis�ed, then we de�ne AX ∶= AX
/∼.

(i) X(ū{) = Ak ⧵ V

(ii) X(v̄{, w̄{) = (Ak × Ak) ⧵ E

(iii) X(t̄{) = Ak ⧵ T

(iv) X(v̄{
ex
, w̄{

ex
) = (Ak × Ak) ⧵ Eex

(v) X("̄{1 , "̄{2 ) = (Ak × Ak)⧵ ∼

(vi) V0 = V ⧵ V1
14

This ensures that V0 ⊆ V and so forth.

53



3 Syntactic Normal Forms

(vii) AX
is a structure.

14

(viii) ∼ is a congruence on AX
.

(ix) AX
/∼ is a union game.

Otherwise, if any of these requirements is not ful�lled, we let AX be unde�ned.

We call X complete (w.r.t. A), if X(ȳ) ∪ X(ȳ{) is Ak
or Ak × Ak

for every ȳ ∈
{(ū), (v̄, w̄), (t̄), (v̄∩, w̄∩), ("̄1, "̄2)} and V = V0 ∪ V1, and incomplete otherwise. It is easy

to observe that AX is unde�ned for every incomplete team X . Furthermore complete

subteams of teams describing a game actually describe the same game and the same

congruence relation.

Lemma 3.41. Let X, Y be teams with codomain A and k ⊆ dom(X) = dom(Y ). If X is

complete, X ⊆ Y and AY is de�ned, then AX = AY and ∼X ∶= X("̄1, "̄2) = Y ("̄1, "̄2) =∶ ∼Y .

Proof. Suppose that X is complete, X ⊆ Y and AY is de�ned. First, we prove that AX
is de�ned. Towards this end, we prove that X satis�es the consistency requirements

of De�nition 3.40. By completeness of X , we know already that X(ū) ∪ X(ū{) = Ak
.

Since X ⊆ Y and AY is de�ned, we have X(ū) ∩ X(ū{) ⊆ Y (ū) ∩ Y (ū{) = ∅. Thus, we

have X(ū) ∪ X(ū{) = Ak
and X(ū) ∩ X(ū{) = ∅, which implies that X(ū{) = Ak ⧵ X (ū).

This proves condition (i) of De�nition 3.40. The proof for (ii)-(vi) is very analogous.

Towards proving the remaining conditions (vii)-(ix), it su�ces to show that AX = AY

and ∼X = ∼Y , because AY is de�ned and thus the conditions (vii)-(ix) must be true for

AY
and ∼Y .

Thus, we need to prove that X(ȳ) = Y (ȳ) for every tuple ȳ ∈ {(ū), (v̄, w̄), (t̄), (v̄∩, w̄∩),
("̄1, "̄2)}. Since the argumentation is very analogous for these di�erent tuples, we prove

this only for ȳ = ū. Towards a contradiction, assume that X(ū) ≠ Y (ū). Since X and

Y are complete, we can conclude that X(ū{) = Ak ⧵ X (ū) and Y (ū{) = Ak ⧵ Y (ū). Since

X(ū) ≠ Y (ū), we have that Y (ū) ⧵ X (ū) ≠ ∅ or X(ū) ⧵ Y (ū) ≠ ∅. In the �rst case, follows

∅ ≠ Y(ū) ⧵ X (ū) = Y (ū) ∩ (Ak ⧵ X (ū)) = Y (ū) ∩ X (ū{) ⊆ Y (ū) ∩ Y (ū{). In the second case,

a similar line of thought leads to ∅ ≠ X(ū) ⧵ Y (ū) ⊆ Y (ȳ) ∩ Y (ū{). In both cases we have

Y (ū) ∩ Y (ū{) ≠ ∅ which contradicts Y (ū{) = Ak ⧵ Y (ū).
Therefore, all conditions of De�nition 3.40 are ful�lled. Because of AX = AY

and

∼X = ∼Y , it is even the case that AX = AX
/∼X = AY

/∼Y = AY .

Note that in this way we cannot encode every union game that is formally possible.

The reason for this is that in a non-empty team at least one value must be present

for every variable (of its domain). For us this results in at least one tuple ā ∈ X (ū{),
hence there must be one tuple that does not take part in the game. While this is no

restriction when it comes to modelling inclusion-exclusion games (just increase the

arity by one and not use an arbitrary value), for the other variables it makes a small

di�erence. That is, there must be at least one vertex in V0, at least one edge must be

present and so forth. Of course, it is easy to see that this is no actual restriction, as one

can transform every inclusion-exclusion game into this form without changing its size

drastically or altering the set  ().
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Now let us show that inclusion-exclusion games in the sense of De�nition 3.40 are

de�nable in plain �rst-order team semantics.

Lemma3.42. LetΩ be a set of dependency concepts. Let '(X) = ∀x̄(X x̄ → ∃R̄'′(X , R̄, x̄))
be a myopic Σ11-formula and  (k , x̄ ) ∈ FO(Ω) (where k is large enough such that the

game (A, ') can be encoded). There is a FO(Ω)-formula # ' (x̄) such that A �X # ' ⟺
A �Y  , where Y is a (uniquely determined) team that results as an extension of X with

AY ≅ (A, ') and X(x̄) = Y (x̄).

Proof. Using the same technique as in the proof of Lemma 3.9, it is easy to construct

a (quanti�er-free) �rst-order interpretation  ∶= (�, ",  V ,  V0 ,  V1 ,  E ,  I ,  T ,  Eex
) with

(A) ≅ (A, '). Now let # ' (x̄) ∶= ∀k(
 (k) →  (k , x̄ )) where the formula


(k) ∶= �(ū) ∧  V0(v̄0) ∧  V1(v̄1) ∧  E(v̄, w̄) ∧  T (t̄) ∧  Eex
(v̄ex, w̄ex) ∧ "("̄1, "̄2) ∧

¬�(ū{) ∧ ¬ E(v̄{, w̄{) ∧ ¬ T (t̄{) ∧ ¬ Eex
(v̄{

ex
, w̄{

ex
) ∧ ¬"("̄{1 , "̄

{
2 )

enforces that the game (A, ') will be “loaded” into the team. As long as none of these

conjuncts are unsatis�able this construction is correct. This is safe to assume because

one can easily transform a union game into an equivalent one w.r.t. the target set such

that none of its components are empty.

This knowledge enables us to �nally de�ne the atomic formula we sought after. For

this we need to show that the atom is de�nable in Σ11, is union closed and its �rst-order

closure can express all of  .

De�nition 3.43. The atomic team formula ∪−game(k , x̄ ) for the respective tuples of

variables has the following semantics. For non-empty teams X with k , x̄ ⊆ dom(X)
we de�ne

A �X ∪−game(k , x̄ )∶⟺ X is complete and

if AX is de�ned, then X(x̄)/X ("̄1,"̄2) ∈  (AX )

and we set A �∅ ∪−game(k , x̄ ) to be always true (to ensure the empty team property).

It is easy to see that this atom is de�nable in existential second-order logic, as on

the one hand we know that winning regions of union games can be described in Σ11
and on the other hand the syntax check is of course de�nable in Σ11.

Proposition 3.44. The atomic formula ∪−game is union closed.

Proof. Assume that A �Xi ∪−game(k , x̄ ) for i ∈ I . We prove: A �X ∪−game(k , x̄ ) holds

for the unionX∶=⋃i∈I Xi . IfX = ∅, there is nothing to prove. Otherwise at least oneXj is

non-empty and, since A �Xj ∪−game(k , x̄ ), Xj must be complete implying that X is also

complete (because X ⊇ Xj). For the remainder of this proof, we assume w.l.o.g. that all

involved teams Xi (and X ) are non-empty. If AX is unde�ned, then A �X ∪−game(k , x̄ )
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follows from the de�nition of ∪−game. Otherwise, if AX is de�ned, then we can use

Lemma 3.41 to obtain that AX = AXi and ∼ ∶= X("̄1, "̄2) = Xi("̄1, "̄2) for every i ∈ I . Since

A �Xi ∪−game(k , x̄ ), we can conclude that Xi(x̄)/∼ ∈  (AXi ) =  (AX ) for each i ∈ I . By

Theorem 3.16, X(x̄)/∼ = ⋃i∈I Xi(x̄)/∼ ∈  (AX ) and, hence, A �X ∪−game(k , x̄ ).

Theorem 3.45. Let ' ∈ FO(⊆, |) be a union closed formula. There is a logically equivalent

formula � ∈ FO(∪−game). In other words, FO(∪−game) captures precisely the union closed

fragment of FO(⊆, | ).

Proof. Let A be an arbitrary structure. Due to [Gal12, Theorem 6.1] there exists a

formula '′(X ) ∈ Σ11 which is logically equivalent to '(x̄) in the sense that A �X
'(x̄) ⟺ (A, X (x̄)) � '′(X ) for every team X with x̄ ⊆ dom(X). By Theorem 3.7,

there is a myopic formula � ≡ '′. So, we have (A, X (x̄)) � �(X ) ⟺ A �X '(x̄).
The game (A, �) from De�nition 3.17 is a union game and Lemma 3.42 allows

us to load this game into a team. Please notice, that Lemma 3.42 is using a similar

�rst-order interpretation  as Lemma 3.9, which encodes a target vertex ā ∈ T ((A, �))
by tuples of the form (ū, ā, w̄) of length k = n + m where the n-tuple ū has the equality

type eT while w̄ is an arbitrary tuple of length m − |ā|. Let  (k , x̄ ) ∶= ∀ū∀w̄(eT (ū) →
∪−game(k , ūx̄w̄)) and � (x̄) ∶= # � be as in Lemma 3.42, that is ∀k(
 (k) →  (k , x̄ )).
So A �X � (x̄) ⟺ A �Y  (k , x̄ ) where Y = X[k ↦ A]�
 . As in Lemma 3.42, we

have AY ≅ (A) ≅ (A, �) and X(x̄) = Y (x̄). Furthermore, we have de�ned AY = AY
/∼

where ∼ ∶= Y ("̄1, "̄2).
Because of the construction of  , holds A �Y  (k , x̄ ) ⟺ A �Z ∪−game(k , ūx̄w̄)

where Z ∶= Y[ū ↦ eAT , w̄ ↦ Am−|x̄|]. Since AZ = AY ≅ (A, �) is a well-de�ned

union game, this is equivalent to Z(ūx̄w̄)/∼ ∈  (AY ). Let ℎ∶ �A → V((A, �)) be the

coordinate map for (A, �) ≅ (A). By construction, ℎ induces an isomorphism between

AY
/∼ and (A, �). In particular each element of any equivalence class [(ū′, ā, w̄′)]∼ ∈

Z(ūx̄w̄)/∼ is mapped by ℎ to ā. Therefore, Z(ūx̄w̄)/∼ ∈  (AY ) ⟺ Z(x̄) = X(x̄) ∈
 ((A, �)). Thus we have A �X � (x̄) ⟺ X(x̄) ∈  ((A, �)). Putting everything

together, we have A �X � (x̄) ⟺ X(x̄) ∈  ((A, �)) ⟺ (A, X (x̄)) � � ⟺ A �X
'(x̄) as desired.

We want to end this section with a remark on the “naturalness” of the atom ∪−game.

Certainly inclusion, exclusion and the notions alike can be regarded as natural atomic

dependency formulae, whereas the just introduced atom has to be classi�ed di�erently.

Nevertheless, it is a canonical candidate since it solves a complete problem of the

desired class. Of course, a more natural — and more usable — atom might be found,

but it will not be as simplistic as e.g. inclusion for Galliani and Hella have shown that

every �rst-order de�nable union closed property is already expressible in inclusion

logic. Hence, whatever formula one proposes, it must in a non-trivial way existentially

quantify over the team at hand.
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3.6 Other Closure Properties and More Games
In this �nal section we want to remark on the other closure properties of logics with

team semantics. Particularly we present adaptations of inclusion-exclusion games

suitable for inclusion, respectively exclusion, logic to demonstrate the generality of

these games.

3.6.1 Closure under Intersections
To our knowledge there has been no study of formulae that are closed under inter-

sections. It turns out that closure under intersection is not a well behaved closure

property for logics with team semantics, since it is not preserved under conjunctions.

The following de�nition is an attempt to de�ne closure under intersections.

De�nition 3.46. A formula  ∈ FO(⊆, | ) is closed under (�nite) intersections if for all

teams X, Y with A �X  and A �Y  already A �Z  follows, where Z ∶= (X�free( )) ∩
(Y �free( )).

This de�nition appears to be overcautious when it comes to the free variables of  .

This is not by accident, because the naive variant of De�nition 3.46 with Z ∶= X ∩ Y
would be equivalent to downward closure. To see this, consider any team T with

A �T  , dom(T ) = free( ) and let S ⊆ T be any subteam of T . Then for a variable

z ∉ free( ) and two di�erent elements a, b ∈ A we could de�ne X ∶= T[z ↦ a]
and Y ∶= S[z ↦ a] ∪ (T ⧵ S)[z ↦ b]. Since A �T  , it would follow by the locality

principle that A �X  and A �Y  . So, the naive version of De�nition 3.46 would yield

A �X∩Y  . Because of X ∩ Y = S[z ↦ a] and the locality principle, this would imply

that A �S  . Hence, the naive de�nition with Z ∶= X ∩ Y implies downwards closure

and, because downwards closure always entails intersection closure, this naive variant

of De�nition 3.46 would be equivalent to downwards closure.

However, we will now see that our de�nition still does not describe a meaningful

closure property for logics with team semantics, because it is not closed under conjunc-

tions. To see this let P, Q be unary relation symbols and  (x) ∈ FO(⊆, | ) be a formula

with (A, P, Q) �X  (x) ⟺ X(x) ∈ {P, Q, P ∩ Q, ∅} and '(z) ∶= z = z. Then it is easy

to verify that both  (x) and '(z) are closed under intersections w.r.t. De�nition 3.46.

Now, consider A ∶= ({1, 2, 3, 4}, PA, QA) with PA = {1, 2, 3} and QA ∶= {2, 3, 4} and

the teams S, T with dom(S) = dom(T ) = {x} and S(x) = {2} ⊆ {2, 3} = T (x). Then

A �T  (x) but A 2S  (x), since T (x) = {2, 3} = PA ∩QA
but S(x) = {2} ∉ {PA, QA, PA ∩

QA, ∅}. This shows that  (x) is not downwards closed. We will prove now that

 (x) ∧ '(z) is no longer closed under intersections despite the fact that  (x) and

'(z) are both closed under intersections. Towards this end, let T ′ ∶= T [z ↦ 1] and

S′ ∶= S[z ↦ 1] ∪ (T ⧵ S)[z ↦ 2]. Then A �T ′  (x) ∧ '(z) and A �S′  (x) ∧ '(z),
because T ′�x = T = S′�x and A �T  (x) while '(z) = (z = z) is a tautology. However,

A 2Z  (x) ∧ (z = z) for Z ∶= (T ′�{x,z}) ∩ (S′�{x,z}) = T ′ ∩ S′, since Z = T ′ ∩ S′ = S[z ↦ 1]
while A 2S[z↦1]  (x) follows from A 2S  (x) and the locality principle.
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3.6.2 The Downwards/Upwards Closed Fragment
In a similar fashion to the normal form presented in Section 3.4 we can give syntactical

normal forms of downwards, respectively upwards, closed formulae of FO(⊆, | ). Notice

that the upcoming formulae are similar in nature to the form given in Corollary 3.27.

Proposition 3.47. Let '(x̄) ∈ FO(⊆, |) and let ȳ be a fresh tuple of variables with |ȳ | = |ȳ|.
Then:

(a) '(x̄) is downwards closed if and only if '(x̄) is equivalent to ∃ȳ(x̄ ⊆ ȳ ∧ '(ȳ)).

(b) '(x̄) is upwards closed on non-empty teams if and only if '(x̄) is equivalent to
∃ȳ(ȳ ⊆ x̄ ∧ '(ȳ)).

3.6.3 Games for Inclusion and Exclusion Logic
Let us show that inclusion-exclusion games can easily be adapted to �t inclusion or

exclusion logic by either forbidding exclusion or inclusion edges.

Exclusion Games

De�nition 3.48. An exclusion game  is an inclusion-exclusion game  = (V , V0,
V1, E, I , T , Eex), if there are no inclusion edges, i.e. Ein ∶= E ∩ (V × T ) = ∅.

Proposition 3.49. Let  be an exclusion game. The set  () is downwards closed. In
other words, for every L ⊆ U ∈  () we already have L ∈  ().

Proof. Let  be a winning strategy for player 0 witnessing U ⊆ T , that is () = U .

Let L ⊆ U be chosen arbitrarily and let L be the part of the game that is reachable

from L. We de�ne  ′ ∶= �L plus the subgraph of  that is reachable from the initial

position (that is disjoint from T since there are no inclusion edges). Because there are

no inclusion edges  ′
is a winning strategy for player 0 with ( ′) = L.

Now we consider a Σ11-formula '(X) = ∃R̄'′(X , R̄) in which X occurs only negatively.

We have already de�ned the model-checking game X (A, '(X )) in De�nition 3.4. The

only di�erence is that this game no longer employs edges of the form ((X x̄, s), ā) with

s(x̄) = ā, because X occurs only negatively in '. Thus, player 0 can put any subset of

the target vertices T = Ar
into her winning strategy as long she respects the exclusion

condition.

This construction can be adapted for exclusion logic. For  (x̄) ∈ FO( | ), the

game (A,  ) is de�ned very similarly but with the following di�erences. Tuples

of the form (# , s) where # is an (occurrence of) a subformula from  and assign-

ments s ∶ free( ) → A are the target positions of this game. Such a target position

s ∶ free( ) → A exhibits exactly one outgoing edge to ( , s), from where the games is

played as usual. Again, (# , s) belongs to player 0, if # starts with a disjunction or some

existential quanti�er or is an unsatis�ed literal, and (# , s) has an edge to (# ′, s′), if # ′ is
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the direct subformula of the non-literal # and s(v) = s′(v) for all v ∈ free(#) ∩ free(# ′).
The exclusion condition, Eex, consists of all con�icting pairs ((x̄ | ȳ, s), (x̄ | ȳ, s′)) where

s(x̄) = s′(ȳ) and x̄ | ȳ refers to the same occurrence.

Theorem 3.50. Let  (x̄) ∈ FO( | ) and '(X) ∈ Σ11 be a formula in which X occurs only

negatively. Then for every team resp. relation X over some structure A, we have:

(a) A �X  (x̄) ⟺ X ∈  ((A,  ))

(b) (A, X ) � '(X) ⟺ X ∈  (X (A, '(X )))

Proof. Item (b) is a direct consequence of Theorem 3.5. Therefore, we only have to

prove item (a).

“⟹”: If A �X  (x̄), then there exists a witness � for A �X  (x̄). It is not di�cult

to prove that de�ning � as the subgraph of (A,  ) induced by X ∪ {(# , s) ∶ # ∈
subf( ), s ∈ �(#)} yields a winning strategy with  (�) = X .

“⟸”: Conversely, if we have X ∈  ((A,  )), then player 0 has a winning strategy

 = (W , F )with  () = X . LetW ′∶={w ∈ W ∶ w is reachable in  from some s ∈ X}.

For every occurrence of a subformula # ∈ subf( ) let � (#) ∶= {s ∶ (# , s) ∈ W ′}. It is

straightforward to show that � is a witness for A �X  .

Observation 3.51. Let '(x̄) ∈ FO( | ). Then ' (X ) ∶= ∃W∃F('win(W , F ) ∧ ∀v(Xv →
Wv ∧ Tv)) de�nes  ((A, ')) and X occurs only negatively in ' (X ).

Inclusion Games

De�nition 3.52. An inclusion game  is an inclusion-exclusion game  = (V , V0,
V1, E, I , T , Eex) with E∩ = ∅ and I = ∅.

The next de�nition is adaptation of de�nition of safety games from [Grä16].

De�nition 3.53. A safety game  is a game  = (V , V0, V1, E, Vsafe, T ) without initial

vertices where the goal of player 0 is to ensure that the play remains inside Vsafe ⊆ V .

Theorem 3.54. Inclusion games and safety games are equivalent to each other. More

formally, this means that for every inclusion game  there exists a safety game safe and

vice versa such that  () =  (safe).

Proof. Let  = (V , V0, V1, E, ∅, T , ∅) be an inclusion game. We de�ne Vsafe ∶= V ⧵ {v ∈
V0 ∶ N(v) = ∅} and let safe ∶= (V , V0, V1, E, Vsafe, T ). Then  = (W , F ) is a winning

strategy for player 0 in  if and only if it is a winning strategy in safe. So,  and safe

are equivalent in this sense.

Conversely, let safe = (V , V0, V1, E, Vsafe, T ) be a safety game. Let Vunsafe ∶= V ⧵ Vsafe.

Now, safe can be converted into the following equivalent inclusion game (V , V0 ∪
Vunsafe, V1 ⧵ (Vunsafe), E′, ∅, T , ∅) where E′ ∶= E ⧵ (Vunsafe × V ).

59



3 Syntactic Normal Forms

Proposition 3.55. In inclusion or safety games, the union of winning strategies is again

a winning strategy (for player 0).

Corollary 3.56. Let  be an inclusion game. The set  () is union closed. In other words,
if Xj ∈  () for all j ∈ J we already have X ∈  (), where X = ⋃j∈J Xj .

It is known that the safety games are precisely the model-checking games for inclu-

sion logic and for GFP
+

[Grä16].

This concludes this chapter about the syntactic normal forms for the union-closed

fragment and for other closure properties. Besides these normal forms, we have de�ned

inclusion-exclusion games, demonstrated their adaptability to various fragments of Σ11
and showed that they give rise to an atom that captures the union-closed fragment.
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In this chapter we compare GFP+[k], which is greatest �xed-point logic using only

�xed-point operators of arities at most k, with FO(⊆)[k], the restricted version of

inclusion logic where only tuples of length at most k are allowed in inclusion atoms.

It is well-known that there is a tight connection between inclusion logic and greatest

�xed-point logic. Galliani and Hella have shown the equivalence of these logics on

the level of sentences [GH13, Corollary 17] and later Grädel has re-examined this

connection in [Grä16] and, with the aid of the model-checking games for these logics,

he showed that inclusion logic corresponds to the class of myopic GFP
+
-formulae,

i.e. formulae of the shape ∀x̄(X x̄ →  (X , x̄)) where the relation symbol X , which is

used to represent teams, occurs only positively in (X , x̄). Furthermore, it was shown by

Hannula that the arity hierarchy of inclusion logic is strict, i.e. FO(⊆)[1] < FO(⊆)[2] < …
on the level of sentences (over the signature of graphs) [Han15].

We take a closer look at what happens with the arities of the involved inclusion

atoms, the �xed-points and the team resp. relation symbol that encodes the team when

translating FO(⊆)-formulae into GFP-formulae and vice versa. This is motivated by an

open question, which has been presented by Rönnholm at the Dagstuhl seminar 2019

[GKKV19]. Rönnholm has asked whether inclusion logic using only inclusion atoms

of bounded arities corresponds to some fragment of greatest �xed-point logics. We

will show that such correspondence exists between FO(⊆)[k] and a fragment GFP+[k]
of greatest �xed-point logic. GFP+[k] is de�ned by allowing only greatest �xed-point

formulae of the shape [GFP Rx̄ ∶  (R, x̄)] where ar(R) ≤ k and, moreover, free( ) ⊆
{x̄}. Furthermore, all GFP+[k]-formulae are in negation normal form and every such

greatest �xed-point formula is only allowed to occur positively, i.e. not in the scope of

negation signs.

We are going to provide e�ective translations between these fragments. More

precisely, here are our results:

(i) For every FO(⊆)[k]-formula '(x̄) there exists a myopic GFP+[k]-sentence  (X)
where ar(X ) = |x̄ | such that for every suitable structure A and team X holds

A �X '(x̄)⟺ (A, X (x̄)) �  (X).1 (4.1)

(ii) Conversely, for every myopic GFP+[k]-sentence  (X) there exists a formula

'(x̄) ∈ FO(⊆)[k′] equivalent to  (X) in the sense of (4.1) where |x̄ | = ar(X ) and

1 (X) indicates that X is an additional relation symbol occurring in  , which is interpreted by the

relation X(x̄) and not to be confused with the team X .
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4 Arity Fragments of Inclusion Logic

k′ ∶= max{k, ar(X )}. We will also show that k′ cannot be chosen smaller than

ar(X ).

(iii) For every GFP+[k]-formula  (x̄) there exists a (downwards-closed) FO(⊆)[k]-
formula 
(x̄) such that for all suitable structures A and teams X ,

A �X 
(x̄)⟺ A �s  (x̄) for every s ∈ X .

Please notice that k′ = k, if ar(X ) ≤ k resp. |x̄ | ≤ k. So, if we would also impose a

bound on the number of free variables and on the arity of the free relation variable

used in myopic formulae to represent the team, then (i) and (ii) are translations in

opposite directions. Using Hannula’s results about the expressive power of FO(⊆)[k′]
we will prove that k′ can in fact not be chosen smaller than ar(X ).

The third result translatesGFP+[k]-formulae rather than sentences with an additional

team-predicate into a FO(⊆)[k]-formulae having the same free variables. It is worth

pointing out, that for  (x̄) ∈ GFP+[k] we have that A �s  (x̄) for every s ∈ X ⟺
(A, X (x̄)) � ∀x̄(X x̄ →  (x̄)), which is a special myopic formula where X does not

occur at all in  (x̄).

4.1 Simultaneous Fixed-Point Logic
In this section we will de�ne a third logic, called simultaneous greatest �xed-point

logic (denoted as sGFP+k), which, as we will see, has the same expressive power as

GFP+[k] and will aid us in the translations from GFP+[k] to FO(⊆)[k] and vice versa.

De�nition 4.1. sGFP+k is the extension of �rst-order logic (in negation normal form)

by the following formula formation rule: Let R1, … , Rn be relation symbols and x̄1, … , x̄n
be tuples of variables such that ri ∶= ar(Ri) = |x̄i | ≤ k and let S be the following system

S ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

R1x̄1 ∶ �1(R1, … , Rn, x̄1)
R2x̄2 ∶ �2(R1, … , Rn, x̄2)

⋮
Rnx̄n ∶ �n(R1, … , Rn, x̄n)

where �1, … , �n are formulae in which the relation symbols R1, … , Rn occur only posi-

tively. For j ∈ {1, … , n} and a tuple z̄ of variables with |z̄| = ar(Rj), the expression

'(z̄) ∶= [sGFP S]j (z̄) (4.2)

is a sGFP+k-formula. Then the system S de�nes, for a given structure A, a simultaneous

update operator Γ∶ (Ar1) × (Ar2) × ⋯ × (Arn ) → (Ar1) × (Ar2) × ⋯ × (Arn ) via

Γ(S̄) ∶= (Γ1(S̄), … , Γn(S̄)) where Γi(S̄) ∶= J�i(S̄, x̄i)KA = {ā ∈ Ari ∶ A � �i(S̄, ā)}.
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4.1 Simultaneous Fixed-Point Logic

For tuples S̄ = (S1, … , Sn), S̄′ = (S′1, … , S′n) of relations we write S̄ ⊆ S̄′, if Si ⊆ S′i
for i = 1, … , n. Since the relation symbols R1, … , Rn occur only positively in �1, … , �n,
it follows that Γ is monotone, i.e. S̄ ⊆ S̄′ implies Γ(S̄) ⊆ Γ(S̄′). It is well-known that

monotone operators have a unique greatest �xed-point Ḡ = (G1, … , Gn), i.e. Γ(Ḡ) = Ḡ
and S̄ ⊆ Ḡ for every �xed-point S̄ of Γ. The semantics of '(z̄) from (4.2) is given by

A �s '(z̄) ∶⟺ s(z̄) ∈ Gj .

The greatest �xed-point can also be calculated in an inductive fashion. Let (S̄� )�∈On
where S̄0 is the tuple consisting of the full relations, S̄�+1 = Γ(S̄� ) and S̄� = ⋂�<� S̄� ,
where this intersection is de�ned component-wise, i.e. (S̄�)j = ⋂�<�(S̄�)j .2 A di�erent

characterization is provided by the following well-known Knaster-Tarski Theorem.

Theorem 4.2 (Theorem of Knaster-Tarski for Simultaneous Operators). Let Γ be as
above. Then the greatest �xed-point of the operator Γ, denoted as GFP(Γ), is ⋃{S̄ ∶ S̄ ⊆
Γ(S̄)} where this union is de�ned componentwise, i.e. (GFP(Γ))j = ⋃{Sj ∶ S̄ = (S1, … , Sn) ⊆
Γ(S̄)}.

Remark 4.3. [GFP Rx̄ ∶ �(R, x̄)] (ȳ) is equivalent to [sGFP R1x̄ ∶ �(R1, x̄ )]1 (ȳ).

The following lemma relies on a technique that is also known as the Bekic principle

[GKL
+
07].

Lemma 4.4. Every sGFP+k-formula of the form [sGFP S]i (ȳi) can be expressed inGFP+[k].

The following proof is a straightforward adaptation of [GKL
+
07, Lemma 3.3.41] for

sGFP+k . The construction that is used in this proof will be useful for the proof of

Lemma 4.7.

Proof of Lemma 4.4. W.l.o.g. we assume that i = 1. Let S be a system of the following

form:

S ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

R1x̄1 ∶ �1(R1, … , Rn, x̄1)
R2x̄2 ∶ �2(R1, … , Rn, x̄2)

⋮
Rnx̄n ∶ �n(R1, … , Rn, x̄n)

If n = 1, then we can use Remark 4.3. Now we assume that n > 1. Let S′ be the following

system:

S′ ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

R1x̄1 ∶ �′1(R1, … , Rn−1, x̄1)
R2x̄2 ∶ �′2(R1, … , Rn−1, x̄2)

⋮
Rn−1x̄n−1 ∶ �′n−1(R1, … , Rn−1, x̄n−1)

2On is the class of all ordinal numbers. For more information about ordinal numbers and trans�nite

inductions, we refer to [Blu18].
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where �′i results from �i by replacing every occurrence of Rnȳ by

[GFP Rnx̄n ∶ �n(R1, … , Rn, x̄n)] (ȳ).

In the following, we will prove that [sGFP S]1 (ȳ1) is equivalent to [sGFP S′]1 (ȳ1).
Let A be any structure. Let ri ∶= ar(Ri) for i = 1, … , n, Y ∶= (Ar1) × ⋯ × (Arn−1) and

X ∶= Y × (Arn ) and let Γ ∶ X → X and Γ′ ∶ Y → Y be the update operators de�ned

by S and S′ (respectively).

Claim 4.5. GFP(Γ)i = GFP(Γ′)i holds for every i ∈ {1, … , n − 1}.

As soon as this claim has been proven we are done, because then

J[sGFP S]1 (ȳ1)K
A = GFP(Γ)1 = GFP(Γ′)1 = J[sGFP S′]1 (ȳ1)K

A

follows and, by applying this construction repeatedly, we end up with an equivalent

GFP+[k]-formula.

For every S̄ ∈ Y let ΓS̄ ∶ (Arn ) → (Arn ) be de�ned as ΓS̄(R) ∶= Γn(S̄, R). By

construction of S′, we have that Γ′(S̄) = Γ(S̄, GFP(ΓS̄)), because Rn was replaced by

[GFP Rnx̄n ∶ �n(R1, … , Rn, x̄n)] and it holds that

J[GFP Rnx̄n ∶ �n(S̄, Rn, x̄n)]KA = GFP(ΓS̄).

Claim 4.6. For every S̄, S̄′ ∈ Y with S̄ ⊆ S̄′ holds GFP(ΓS̄) ⊆ GFP(ΓS̄′).

Proof of Claim 4.6. Let (R� )�∈On and (R′� )�∈On be the inductive calculation of the greatest

�xed-points GFP(ΓS̄) and GFP(ΓS̄′). So we have that R0 ∶= Arn =∶ R′0, R�+1 ∶= ΓS̄(R� ),
R′�+1 ∶= ΓS̄′(R′� ) and, for limit ordinals �, R� ∶= ⋂�<� R� and R′� ∶= ⋂�<� R′� . We will prove

that R� ⊆ R′� is true for every � ∈ On by induction over � . For � = 0, there is nothing

to prove. If R� ⊆ R′� is true for some ordinal � , then it immediately follows that

R�+1 = ΓS̄(R� ) = Γn(S̄, R� ) ⊆ Γn(S̄′, R′� ) = ΓS̄′(R
′
� ) = R

′
�+1.

If � is some limit ordinal and R� ⊆ R′� is true for all � < �, then we clearly have

R� = ⋂�<� R� ⊆ ⋂�<� R′� = R′�. As a result, we obtain GFP(ΓS̄) = ⋂�∈On R� ⊆ ⋂�∈On R′� =
GFP(ΓS̄′) as desired. This concludes the proof of Claim 4.6.

Let Gi ∶= GFP(Γ)i for i = 1, … , n and G′
i ∶= GFP(Γ′)i for i = 1, … , n − 1. Please recall

that we want to prove Gi = G′
i for i = 1, … , n − 1. We will prove “⊆” and “⊇” separately

and start with the direction “⊆”. Towards this end, we observe that ΓG1,…,Gn−1(Gn) =
Γn(G1, … , Gn) = Gn is true, because the �rst equation is due to the de�nition of ΓG1,…,Gn−1
while the second equation is entailed by the fact that G1, … , Gn is a �xed-point of Γ. So

Gn is a �xed-point of ΓG1,…,Gn−1 , which implies that Gn ⊆ GFP(ΓG1,…,Gn−1). Using this, the

de�nition of Γ′i and the monotonicity of Γi , we can derive that

Γ′i (G1, … , Gn−1) = Γi(G1, … , Gn−1, GFP(ΓG1,…,Gn−1))
⊇ Γi(G1, … , Gn−1, Gn) = Gi .
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As a result, we obtain that (G1, … , Gn−1) ⊆ Γ′(G1, … , Gn−1) and, consequently, we can

derive that

(G1, … , Gn−1) ⊆ ⋃{S̄ ∈ Y ∶ S̄ ⊆ Γ′(S̄)} =
(Theorem 4.2)

GFP(Γ′) = (G′
1, … , G′

n−1).

Towards proving the direction “⊇”, let (G�
1 , … , G�

n )�∈On be the inductive calculation of

GFP(Γ). We will prove that (G′
1, … , G′

n−1) ⊆ (G�
1 , … , G�

n−1) and that GFP(ΓG′1,…,G′n−1) ⊆ G
�
n

for every � ∈ On. By induction over � : For � = 0, there is nothing to prove since

G�
i = Ari

. Now assume that (G′
1, … , G′

n−1) ⊆ (G�
1 , … , G�

n−1) and GFP(ΓG′1,…,G′n−1) ⊆ G�
n is

true for some � ∈ On. We will show that the statement also holds for � + 1: For every

i ∈ {1, … , n − 1}, we have that

G�+1
i = Γi(G�

1 , … , G�
n ) ⊇ Γi(G

′
1, … , G′

n−1, GFP(ΓG′1,…,G′n−1)) = Γ
′
i (G

′
1, … , G′

n−1) = G
′
i .

Furthermore, we have

G�+1
n = Γn(G�

1 , … , G�
n ) ⊇ Γn(G′

1, … , G′
n−1, GFP(ΓG′1,…,G′n−1))

= ΓG′1,…,G′n−1(GFP(ΓG′1,…,G′n−1)) = GFP(ΓG′1,…,G′n−1).

The step for limit ordinals � is trivial. This concludes the proof of Claim 4.5 and of

Lemma 4.4.

The last lemma allowed us to express simultaneous �xed-points in non-simultaneous

�xed-points. The next lemma shows that the converse is also true, even if we addition-

ally demand that only �rst-order formulae are used inside simultaneous �xed-point.

Lemma 4.7. Let  1(ȳ1) = [GFP R1x̄1 ∶ �1(x̄1)] (ȳ1) ∈ GFP+[k]. Then  1(ȳ1) is equivalent
to a formula of the form '(ȳ1) = [sGFP S]1 (ȳ1) ∈ sGFP+k where S consists only of �rst-order
formulae.

Proof. Let  2, … ,  n be an enumeration of all subformulae of �1 of the form

 i(ȳi) = [GFP Rix̄i ∶ �i(x̄i)] (ȳi).

By renumbering the indices of these formulae, it is possible to achieve that, if  j(ȳj)
happens to be a proper subformula of  i(ȳi), then i < j. Let �′1, … , �′n be the formulae

that result from �1, … , �n by replacing  i(ȳi) by Riȳi . Because of the renumbering, we

have �′n = �n. By construction, �′1, … , �′n are �rst-order formulae. Now we de�ne

'(ȳ1) ∶= [sGFP S]1 (ȳ1)

where

S ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

R1x̄1 ∶ �′1(x̄1)
R2x̄2 ∶ �′2(x̄2)

⋮
Rnx̄n ∶ �′n(x̄n)
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 1(ȳ1) is equivalent to '(ȳ1), because unfolding the repeated construction from the

proof of Lemma 4.4 would yield the formula  1 again. For example, the �rst step that

was used in the proof of Lemma 4.4, would plug in �′n(x̄n) = �n(x̄n) into the �′1, … , �′n−1 by

switching Rnȳn back to [GFP Rnx̄n ∶ �′n(x̄n)] (ȳn) = [GFP Rnx̄n ∶ �n(x̄n)] (ȳn) =  n(ȳn).
After this replacement �′n−1 would coincide with �n−1 and after having done n − 1 such

replacement steps we obtain the formula  1(ȳ1) again.

4.1.1 Avoiding Empty Fixed-Points
Sometimes it is desirable to ensure the non-emptiness of every component of GFP(Γ)
where Γ is associated to some system S of �rst-order formulae. In this section we will

demonstrate that this is not di�cult to achieve for non-unary relations. Towards this

end, we consider a system S of the form

S ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

R1x̄1 ∶ �1(R1, … , Rn, x̄1)
R2x̄2 ∶ �2(R1, … , Rn, x̄2)

⋮
Rnx̄n ∶ �n(R1, … , Rn, x̄n)

where ar(Ri) ≥ 2 for i = 1, … , n and every �i is a �rst-order formula. The idea is to

replace S by a new system S′ in which two non-empty variants R+i , R−i of Ri with the

property R+i ∩ R−i = Ri are calculated. Towards this end, let x̄i = (xi,1, xi,2, … , xi,|x̄i |) and

for every i ∈ {1, … , n} we let R+i and R−i be new relation symbols of the same arity as

Ri . In the following we will write R̄+ = (R+1 , … , R+n ) and R̄− = (R−1 , … , R−n ). Now consider

the system

S′ ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

R+1 x̄1 ∶ �+1 (R̄+, R̄−, x̄1) ∶= x1,1 = x1,2 ∨ �′1(R̄+, R̄−, x̄1)
R−1 x̄1 ∶ �−1 (R̄+, R̄−, x̄1) ∶= x1,1 ≠ x1,2 ∨ �′1(R̄+, R̄−, x̄1)

⋮
R+n x̄n ∶ �+n(R̄+, R̄−, x̄n) ∶= xn,1 = xn,2 ∨ �′n(R̄+, R̄−, x̄n)
R−n x̄n ∶ �−n(R̄+, R̄−, x̄n) ∶= xn,1 ≠ xn,2 ∨ �′n(R̄+, R̄−, x̄n)

where �′i (R̄+, R̄−, x̄i) emerges from �i(R̄, x̄i) by replacing every R� v̄ by R+� v̄ ∧ R−� v̄. For

any structure A with at least two elements, let Γ, Γ′ be the update operators associated

with S, S′ respectively. Furthermore, let (G1, … , Gn) = GFP(Γ) and (G+
1 , G−

1 , … , G+
n , G+

n ) =
GFP(Γ′).

Lemma 4.8. For every i, G+
i = Gi ∪ D+

ar(Ri ) and G
+
i = Gi ∪ D−

ar(Ri ) where D
+
k ∶= {ā ∈ Ak ∶

a1 = a2} and D−
k ∶={ā ∈ Ak ∶ a1 ≠ a2}. Moreover, we have G+

i ∩G−
i = Gi and G+

i ≠ ∅ ≠ G−
i .

Proof. Clearly, D+
k ∩ D−

k = ∅. So G+
i ∩ G−

i = Gi is entailed by G−
i = Gi ∪ D+

ar(Ri ) and

G+
i = Gi ∪ D−

ar(Ri ).
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4.1 Simultaneous Fixed-Point Logic

Let (S̄� )�∈On and (S̄+� , S̄−� )�∈On be the inductive calculation of the �xed-points Ḡ and

(Ḡ+, Ḡ−). In order to prove G+
i = Gi ∪D+

ar(Ri ) and G−
i = Gi ∪D−

ar(Ri ), we will now show that

S+�,i = S�,i ∪ D+
ar(Ri ) and S−�,i = S�,i ∪ D−

ar(Ri ) by trans�nite induction over � ∈ On.

Clearly, this is true for � = 0 since at that stage we are only having full relations.

Now assume that the claim is true for some � . Then, as above, S�,i = S+�,i ∩ S−�,i and,

by construction of �′i , we have J�′i (S̄+� , S̄−� , x̄i)KA = J�i(S̄� , x̄i)KA = S�+1i . Now, the part

xi,1 = xi,2∨… of �+i addsD+
ar(Ri ) to S�+1,i , which is why we end up with S+�+1,i = S+�+1,i∪D+

ar(Ri ).

The proof for S−�+1,i = S−�+1,i ∪ D−
ar(Ri ) is analogous.

For the trans�nite step, let � = � for some limit ordinal � and let the claim be true for

all � < �. Then

S+�,i = ⋂
�<�

S+�,i = ⋂
�<�

(S�,i ∪ D+
ar(Ri )) = (⋂

�<�
S�,i) ∪ D

+
ar(Ri ) = S�,i ∪ D

+
ar(Ri )

follows as desired. S−�,i = S�,i ∪ D−
ar(Ri ) is analogous.

Corollary 4.9. On the class of structures with at least two elements, [sGFP S]j (x̄) is
equivalent to [sGFP S′]j+ (x̄) ∧ [sGFP S′]j− (x̄) where j+ ∶= 2j − 1 and j− ∶= 2j.

In this remainder of this chapter, we will always assume that structures have at least

two elements. Since the set of symbols occurring in a formula is always �nite and there

are (up to isomorphisms) only �nitely many structures A over a �nite signature, this

assumption does not cause a loss of generality.

Avoiding Empty Unary Relations

Corollary 4.9 o�ers a way to eliminate empty �xed-point relations without increasing

their arities. However, the construction is only applicable when the relation symbols

are of arity ≥ 2. This is not a problem when we just want to translate a formula of

sGFP+k for k ≥ 2, since then we could just replace an unary relation P by its binary

variant {(v, v) ∶ v ∈ P}. Of course, this replacement is not possible when we are in the

special case k = 1. Therefore, we describe an alternative approach that also works for

k = 1, but has the disadvantage of creating exponentially long formulae. Readers who

are not interested in the special case k = 1 can safely skip this subsection and jump

directly to Section 4.2.

For the remainder of this section, let A be some arbitrary structure. Let  (x̄) =
[sGFP S]j (x̄) ∈ sGFP+k where

S ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

R1x̄1 ∶ �1(R1, … , Rn, x̄1)
R2x̄2 ∶ �2(R1, … , Rn, x̄2)

⋮
Rnx̄n ∶ �n(R1, … , Rn, x̄n)

The idea is to employ tuples b̄ ∈ {0, 1}n that “indicate” which components of the greatest

�xed-points w.r.t. S and some structure A become empty. Let 'b̄i be the formula that
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4 Arity Fragments of Inclusion Logic

results from �i by replacing every R� v̄ with b� = 0 by ⊥, a formula that is always false.

Furthermore, let Sb̄ be de�ned as

Sb̄ ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

R1ȳ1 ∶ �b̄1(R̄, ȳ1)
R2ȳ2 ∶ �b̄2(R̄, ȳ2)

⋮
Rnȳn ∶ �b̄n(R̄, ȳn)

where �b̄i (R̄, x̄i) ∶=

{
'b̄i (R̄, x̄i), if bi = 1
⊥, if bi = 0.

(4.3)

A variant of Sb̄ is the system S+b̄ which results from Sb̄ by changing the update formula

�b̄� (R̄, x̄� ) for R� with b̄� = 0 from ⊥ to ⊤, a formula which is always true. Formally, we

have

S+b̄ ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

R1ȳ1 ∶ �̃b̄1(R̄, ȳ1)
R2ȳ2 ∶ �̃b̄2(R̄, ȳ2)

⋮
Rnȳn ∶ �̃b̄n(R̄, ȳn)

where �̃b̄i (R̄, x̄i) ∶=

{
'b̄i (R̄, x̄i), if bi = 1
⊤, if bi = 0.

(4.4)

We will use Γ, Γb̄ and Γ+b̄ to denote the update operators w.r.t. S,Sb̄ resp. S+b̄ (for some

structure A). Furthermore, for any n-tuple of relations R̄ = (R1, … , Rn) we let R̄b̄↓ and

R̄b̄↑ be given by:

R̄b̄↓i =

{
Ri , if bi = 1
∅, if bi = 0

and R̄b̄↑i =

{
Ri , if bi = 1
Aar(Ri ), if bi = 0

(4.5)

By construction of Sb̄ (see (4.3)), we have that

Γb̄(R̄) = (Γ(R̄b̄↓))b̄↓ (4.6)

for every R̄. Furthermore, since (Γb̄(R̄))i = ∅ for every i with bi = 0, we can derive that

GFP(Γb̄)b̄↓ = GFP(Γb̄). (4.7)

The construction of S+b̄ (see (4.4)) leads to (Γ+b̄(R̄))i = A
ar(Ri )

for every i with bi = 0. We

can also observe that

Γ+b̄(R̄) = Γb̄(R̄)
b̄↑

(4.8)

and, consequently, we have

GFP(Γ+b̄) = GFP(Γb̄)
b̄↑. (4.9)

This equation explains the connection between GFP(Γ+b̄) and GFP(Γb̄), but what is the

relationship between GFP(Γb̄) and GFP(Γ)? The following lemma answers this question.

Lemma 4.10. Let b̄ ∈ {0, 1}n.

(a) GFP(Γb̄) ⊆ GFP(Γ).
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4.1 Simultaneous Fixed-Point Logic

(b) For every j ∈ {1, … , n} with b̄j = 1 holds GFP(Γ+b̄)j = GFP(Γb̄)j .

Proof. First, we prove (a). We have

GFP(Γb̄) = Γb̄(GFP(Γb̄))
(4.6)= Γ(GFP(Γb̄)b̄↓)b̄↓

(4.7)= Γ(GFP(Γb̄))b̄↓ ⊆ Γ(GFP(Γb̄))

and, consequently, GFP(Γb̄) ⊆ Γ(GFP(Γb̄)). By the Theorem of Knaster-Tarski (Theo-

rem 4.2), the claim follows.

Now we prove (b): GFP(Γ+b̄)j
(4.9)= (GFP(Γb̄)b̄↑)j = GFP(Γb̄)j — the last equation is due

to (4.5) and b̄j = 1.

De�nition 4.11. For a given tuple R̄ = (R1, … , Rn) of relations, we de�ne �(R̄) =
(�1(R̄), … , �n(R̄)) ∈ {0, 1}n by �i(R̄) = 0 ∶⟺ Ri = ∅ and R̄↑ ∶= R̄�(R̄)↑.

In other words, R̄↑ results from R̄ by replacing its empty components by the full

relations. As a result, R̄↑ is a tuple consisting of non-empty relations. Furthermore, it is

easy to see that

R̄�(R̄)↓ = R̄. (4.10)

Lemma 4.12. Let Ḡ ∶= GFP(Γ). Then Ḡ↑ = Γ+�(Ḡ)(Ḡ
↑).

Proof. For every tuple R̄ of relations and every b̄ ∈ {0, 1}n holds

(R̄b̄↓)b̄↑ = R̄b̄↑ and (R̄b̄↑)b̄↓ = R̄b̄↓. (4.11)

By De�nition 4.11, we have Ḡ↑ = Ḡ�(Ḡ)↑
. Now we can observe that

Γ+�(Ḡ)(Ḡ
↑) (4.8)= [Γ�(Ḡ)(Ḡ↑)]�(Ḡ)↑ (4.6)= [Γ([Ḡ↑]�(Ḡ)↓)�(Ḡ)↓]�(Ḡ)↑

(4.11)= [Γ(Ḡ�(Ḡ)↓)]�(Ḡ)↑ (4.10)= Γ(Ḡ)�(Ḡ)↑ = Ḡ�(Ḡ)↑ = Ḡ↑.

Lemma 4.12 shows that the greatest �xed-point Ḡ turns into a �xed-point Ḡ↑
of Γ+�(Ḡ),

which does not have empty components.

Since we do not know �(Ḡ) before computing Ḡ, we will just try all possible combi-

nations b̄ ∈ {0, 1}n instead. The following proof of Theorem 4.13 demonstrates that we

can indeed simulate the formula  (x̄) = [sGFP S]j (x̄) from above by a big disjunction

of some  b̄(x̄) ∶= [sGFP S+b̄ ]j (x̄) where b̄ ∈ {0, 1}n.

Theorem 4.13. Let  (x̄) and  b̄(x̄) be as above. For every structure A and assignment

s ∶ {x̄} → A,
A �s  (x̄)⟺ A �s ⋁

b̄∈{0,1}n
b̄j=1

 b̄(x̄).
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Proof. Let Γ, Γb̄ and Γ+b̄ be the update operators for S, Sb̄ resp. S+b̄ . We prove the two

directions separately.

“⟸”: If A �s  b̄(x̄) for some b̄ ∈ {0, 1}n with b̄j = 1, then

s(x̄) ∈ GFP(Γ+b̄)j
(4.9)= (GFP(Γb̄)b̄↑)j

(4.5)= GFP(Γb̄)j .

By Lemma 4.10 (a), it follows s(x̄) ∈ GFP(Γ)j and, thus, A �s  (x̄).
“⟹”: Now assume A �s  (x̄). Let Ḡ = (G1, … , Gn) ∶= GFP(Γ). By Lemma 4.12,

we know that Ḡ↑ = Γ+�(Ḡ)(Ḡ
↑). In particular, we have Ḡ↑ ⊆ Γ+�(Ḡ)(Ḡ

↑) and, due to

Theorem 4.2, Ḡ↑ ⊆ GFP(Γ+�(Ḡ)). Since A �s  (x̄) = [sGFP S]j (x̄), we have s(x̄) ∈ Gj

and, hence, �j(Ḡ) = 1. Because of Ḡ↑ = Ḡ�(Ḡ)↑´ and (4.5), this leads to Gj = Ḡ
↑
j . Thus

s(x̄) ∈ Ḡ↑
j ⊆ GFP(Γ+�(Ḡ))j and, consequently, A �s [sGFP S

+
�(Ḡ)]j

(x̄) =  �(Ḡ)(x̄). Because

of �j(Ḡ) = 1, this concludes this proof.

4.2 Greatest Fixed-Points in Bounded Inclusion
Logic

In this section we will translate given GFP+[k]-formulae into FO(⊆)[k]-formulae. This

will also enable the translation of myopic GFP+[k]-sentences using a free relational

variable X to represent the team into inclusion logic of bounded arity. We describe the

translation for a � -formula of the form  (x̄) = [sGFP S]j (x̄), which will be examined in

the remainder of this section, where the system

S ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

R1ȳ1 ∶ '1(R̄, ȳ1)
R2ȳ2 ∶ '2(R̄, ȳ2)

⋮
Rnȳn ∶ 'n(R̄, ȳn)

consists of formulae '1, … , 'n ∈ FO(� ∪ {R̄}) in negation normal form and in which

the relations symbols R̄ = (R1, … , Rn) occur only positively. For the remainder of this

section, let A be some arbitrary structure with at least 2 elements and ΓS be the update

operator that is de�ned by '1, … , 'n w.r.t. A.

Let r̄1, … , r̄n, r̄ ′1, … , r̄ ′n be tuples of yet unused, pairwise di�erent variables with ar(Ri) =
|r̄i | = |r̄ ′i | for i = 1, … , n. We de�ne

�S ∶= ∃r̄ ′1 …∃r̄
′
n(

n

⋀
i=1

r̄ ′i ⊆ r̄i ∧ '
′
i (r̄

′
1, … , r̄ ′n, r̄i)) (4.12)

where '′i (r̄ ′1, … , r̄ ′n, r̄i) results from 'i(R̄, r̄i) by replacing every subformula of the form

R� v̄ by v̄ ⊆ r̄ ′� .
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Lemma 4.14. Let Y be a team over A with r̄1, … , r̄n ⊆ dom(Y ) and Ȳ ∶= (Y (r̄1), … , Y (r̄n)).
Then A �Y �S ⟺ Ȳ ⊆ ΓS(Ȳ ).
Proof. If Y = ∅, then A �Y �S follows from the empty team property and Ȳ ⊆ ΓS(Ȳ ) is

trivially satis�ed. Therefore, we assume Y ≠ ∅ for the rest of the proof, which handles

the two directions separately.

“⟸”: Let Ȳ ⊆ ΓS(Ȳ ). Then Y (r̄i) ⊆ (ΓS(Ȳ ))i for i = 1, … , n and, consequently, for

every i ∈ {1, … , n} and ā ∈ Y (r̄i), there exists a witness �i,ā for (A, Ȳ ) �{r̄i↦ā} 'i(Ȳ , r̄i).
Let Z ∶= Y[r̄ ′1 ↦ Y(r̄1), … , r̄ ′n ↦ Y(r̄n)]. It is the case that Y (r̄i) ≠ ∅, because Y ≠ ∅.

Clearly, A �Z ⋀n
i=1 r̄ ′i ⊆ r̄i . We still need to prove thatA �Z '′i (r̄ ′1, … , r̄ ′n, r̄i) for i = 1, … , n.

For every subformula # of some 'i , we denote by # ′ the corresponding subformula

of '′i , which can be obtained by replacing occurrences of R� v̄ by v̄ ⊆ r̄ ′� . Now, we can

combine all the witnesses �i,ā for ā ∈ Y (r̄i) into a witness �i for A �Z '′i (r̄ ′1, … , r̄ ′n, r̄i) by

setting

�i(# ′) ∶= ⋃
ā∈Y (r̄i )

�i,ā(#)[r̄ ′1 ↦ Y(r̄1), … , r̄ ′n ↦ Y(r̄n)] for # ∈ subf(').

Then �i('′) = ⋃ā∈Y (r̄i ) �i,ā(')[r̄
′
1 ↦ Y(r̄1), … , r̄ ′n ↦ Y(r̄n)] = Z�free('′), because �i,ā(') =

{r̄i ↦ ā}. Furthermore, it is not di�cult to verify that �i satis�es the requirements for

all composite formulae # ′ and all �rst-order literals. However, it still requires proof that

the same is true for subformulae of the form # ′ = v̄ ⊆ r̄ ′� , which are the replacements

of # = R� v̄ ∈ subf('i).
If �i(# ′) = ∅, then A ��i (# ′) # ′ follows from the empty team property.

Now we deal with the case �i(# ′) ≠ ∅. This implies that �i,ā(#) ≠ ∅ for some ā ∈ Y (r̄i)
and, therefore, (�i(# ′))(r̄ ′� ) = Y (r̄� ). Since the �i,ā are witnesses for (A, Ȳ ) �{r̄i↦ā} 'i(Ȳ , r̄i),
we have that (A, Ȳ ) ��i,ā(#) # = R� v̄, i.e. (�i,ā(#))(v̄) ⊆ Y (r̄� ) for every ā ∈ Y (r̄i). Because

of that and by the de�nition of �i , it follows that (�i(# ′))(v̄) ⊆ Y (r̄� ) = (�i(# ′))(r̄ ′� ) and

thus A ��i (# ′) v̄ ⊆ r̄ ′� = # ′ follows as desired. So, �i is indeed a witness for A �Z '′i ,
which concludes the proof of A �Y �S .

“⟹”: For the converse direction, we assume that A �Y �S . Then there exists a

team Z extending Y by r̄ ′1, … , r̄ ′n such that A �Z r̄ ′i ⊆ r̄i ∧ '′i (r̄ ′1, … , r̄ ′n, r̄i) for every

i = 1, … , n. So Z(r̄ ′i ) ⊆ Z(r̄i) and there are witnesses �i for A �Z '′i with �i('′i ) = Z . In

order to prove Ȳ ⊆ ΓS(Ȳ ), we have to verify that (A, Ȳ ) �{r̄i↦ā} 'i(Ȳ , r̄i) holds for every

ā ∈ Y (r̄i), i ∈ {1, … , n}. Let i ∈ {1, … , n} and ā ∈ Y (r̄i) be chosen arbitrarily. Now, we

construct witnesses �i,ā for (A, Ȳ ) �{r̄i↦ā} 'i(Ȳ , r̄i) by setting

�i,ā(#) ∶= �i(# ′)�r̄i=ā for every # ∈ subf('i)

where # ′ is the corresponding subformula emerging from # by replacing every R� v̄
by v̄ ⊆ r̄ ′� . Then (�i,ā('i))�r̄i = (�i('′i )�r̄i=ā)�r̄i = {r̄i ↦ ā} follows. Furthermore, the

requirements for witnesses are inherited for all composite subformulae and all literals

not of the form R� v̄. Consider some subformula # = R� v̄ ∈ subf('i). Then # ′ = v̄ ⊆ r̄ ′�
and, since �i is a witness for A �Z '′i , it follows that (�i(# ′))(v̄) ⊆ (�i(# ′))(r̄ ′� ). Since

r̄ ′� is never quanti�ed in '′i , it follows that (�i(# ′))(r̄ ′� ) ⊆ (�i('′i ))(r̄ ′� ).3 As a result, we

3
Here we only have ⊆ in general, because we could loose values for r̄ ′� at disjunctions.
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obtain (�i,ā(#))(v̄) ⊆ (�i(# ′))(v̄) ⊆ (�i('′i ))(r̄ ′� ) = Z(r̄ ′� ) ⊆ Z(r̄� ) = Y (r̄� ), which proves

that (A, Ȳ ) ��i,ā(#) R� v̄ = # . So, �i,ā is indeed a witness for (A, Ȳ ) �{r̄i↦ā} 'i(Ȳ , r̄i). This

shows that Ȳ ⊆ ΓS(Ȳ ).

Now we have understood the formula �S for a given system S of �rst-order update

rules. We will now point out how this formula helps us to translate a given sGFP+k-
formula into inclusion logic.

For the remainder of section, we make the additional assumption that ar(Ri) ≥ 2
for every i = 1, … , n. If k ≥ 2, it is always possible to simulate a unary relation P
by its binary variant {(u, u) ∶ u ∈ P}. We will deal with the special case k = 1 in

Section 4.2.1. This additional assumption allows us to use Corollary 4.9 to transform

 (x̄) = [sGFP S]j (x̄) into the formula [sGFP S′]j+ (x̄)∧[sGFP S′]j− (x̄), which is equivalent

to  (x̄) on the class of all structure with at least two elements.

Now consider the FO(⊆)[k]-formula


(x̄) ∶= ∃r̄1+∃r̄1− …∃r̄n+∃r̄n−(x̄ ⊆ r̄j+ ∧ x̄ ⊆ r̄j− ∧ �S′)

where �S′ is the analog of �S from above for S′ instead of S.
4

Theorem 4.15. Let k ≥ 2,  (x̄) ∈ sGFP+k and 
(x̄) ∈ FO(⊆)[k] be as above. For every
structure A with at least two elements and every team X with {x̄} ⊆ dom(X) holds

A �X 
(x̄) ⟺ A �s  (x̄) for every s ∈ X .

Proof. Let ΓS and ΓS′ be the update operator associated with S resp. S′.
If X = ∅, then there is nothing to prove. Therefore, we now assume that X ≠ ∅ and

prove the two directions separately.

“⟹”: Let A �X 
(x̄). Then A �Y x̄ ⊆ r̄j+ ∧x̄ ⊆ r̄j− ∧�S′ for some {r̄1, … , r̄2n}-extension

Y of X . Because to Lemma 4.14, this corresponds to Y (x̄) ⊆ Y (r̄j+) ∩ Y (r̄j−) and

(Y (r̄1+), Y (r̄1−), … , Y (r̄n+), Y (r̄n−)) ⊆ ΓS′(Y (r̄1+), Y (r̄1−), … , Y (r̄n+), Y (r̄n−)),

which, because of the Theorem of Knaster-Tarski (Theorem 4.2), implies that X(x̄) =
Y (x̄) ⊆ G+

j ∩G−
j where (G+

1 , G−
1 , … , G+

n , G−
n )∶=GFP(ΓS′). By Lemma 4.8, we have G+

j ∩G−
j =

Gj where (G1, … , Gn) ∶= GFP(ΓS). Together this leads to X(x̄) ⊆ Gj or, in other words,

A �s [sGFP S]j (x̄) =  (x̄) is true for every s ∈ X .

“⟸”: Now assume that A �s  (x̄) for every s ∈ X . This implies X(x̄) ⊆ Gj = G+
j ∩G−

j
where G+

i , G−
i , Gi are as above. By Lemma 4.8, the relations G+

i and G−
i are non-empty.

Therefore, Y ∶=X[r̄1+ ↦ G+
1 , r̄1− ↦ G−

1 , … , r̄n+ ↦ G+
n , r̄n− ↦ G−

n ] is indeed an extension

of X and, hence, it su�ces to prove that A �Y x̄ ⊆ r̄j+ ∧ x̄ ⊆ r̄j− ∧�S′ . Since Y (x̄) = X(x̄) ⊆
Gj = G+

j ∩ G−
j , we have A �Y x̄ ⊆ r̄j+ ∧ x̄ ⊆ r̄j− . Furthermore, since the G+

i = Y (r̄i+) and

G−
i = Y (r̄−i ) are the components of the greatest �xed-point of ΓS′ , using Lemma 4.14

leads to A �Y �S′ . This completes the proof of A �X 
(x̄).
4
Please recall that we de�ned i+ ∶= 2i − 1 and i− ∶= 2i in Corollary 4.9.
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4.2.1 Dealing with Unary Fixed-Points
Since Theorem 4.15 works only for k ≥ 2, we describe an alternative construction for

the special case k = 1. Readers who are not interested in this special case can jump

directly to Corollary 4.18.

The goal of this section is to translate a given formula  (x̄) = [sGFP S]j (x̄) ∈ sGFP+k
into some FO(⊆)[k]-formula 
(x̄) without using Lemma 4.8.

Towards this end, please recall the de�nition of S+b̄ in (4.4) and the formulae

 b̄(x̄) = [sGFP S+b̄ ]j (x̄)

for b̄ ∈ {0, 1}n. In Theorem 4.13, we have seen the equivalence of  (x̄) and the formula

⋁b̄∈{0,1}n ,b̄j=1  b̄(x̄). Now we de�ne

 ′
b̄(x̄) ∶= ∃r̄1…∃r̄n(x̄ ⊆ r̄j ∧ �S+b̄ )

where �S+b̄ is the analogue of �S , which was de�ned in (4.12).

Lemma 4.16. Let b̄ ∈ {0, 1}n and X be a team over some structure A with x̄ ⊆ dom(X).
If A �X  ′

b̄(x̄), then A �s  b̄(x̄) for every s ∈ X .

Proof. If X = ∅, then there is nothing to prove. Therefore, we now assume that X ≠ ∅.

Let Γ+b̄ be the update operator w.r.t. S+b̄ and A.

Suppose we have A �X  ′
b̄(x̄). Then A �Y x̄ ⊆ r̄j ∧ �S+b̄ for some {r̄1, … , r̄n}-extension

Y of X . Because of Lemma 4.14, this corresponds to Y (x̄) ⊆ Y (r̄j) and (Y (r̄1), … , Y (r̄n)) ⊆
Γ+b̄(Y (r̄1), … , Y (r̄n)), which, because of the Theorem of Knaster-Tarski (Theorem 4.2),

implies that X(x̄) = Y (x̄) ⊆ GFP(Γ+b̄)j or, in other words, A �s  b̄(x̄) for every s ∈ X .

Now consider the following formula:


(x̄) ∶= ⋁
b̄∈{0,1}n
b̄j=1

 ′
b̄(x̄)

Theorem 4.17. Let  (x̄) and 
(x̄) be as above. For every structure A and every team X
with {x̄} ⊆ dom(X) holds

A �X 
(x̄) ⟺ A �s  (x̄) for every s ∈ X .

Proof. Let Γ, Γ+b̄ and Γb̄ be the update operators w.r.t. S, S+b̄ resp. Sb̄. We prove the two

directions separately:

“⟹”: First let A �X 
(x̄). Then there exists a family (Xb̄)b̄∈{0,1}n ,b̄j=1 of teams with

X = ⋃b̄∈{0,1}n ,b̄j=1 Xb̄ and A �Xb̄  
′
b̄(x̄) for every b̄ ∈ {0, 1}n with b̄j = 1. Let b̄ ∈ {0, 1}

with b̄j = 1 be chosen arbitrarily. By using Lemma 4.16 for  b̄ and  ′
b̄ , we obtain

A �s  b̄(x̄) = [sGFP S+b̄ ]j (x̄) for every s ∈ Xb̄. So Xb̄(x̄) ⊆ GFP(Γ+b̄)j . Because Lemma 4.10

entails GFP(Γ+b̄)j ⊆ GFP(Γ)j , we have Xb̄(x̄) ⊆ GFP(Γ)j . Since b̄ was chosen arbitrarily,
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it follows that X(x̄) ⊆ GFP(Γ)j or, in other words, A �s [sGFP S]j (x̄) =  (x̄) for every

s ∈ X .

“⟸”: For the converse direction, suppose that A �s  (x̄) for every s ∈ X . If X = ∅,

then A �X 
(x̄) follows from the empty team property and there is nothing to prove.

Thus, we now assume X ≠ ∅. Let Ḡ ∶= (G1, … , Gn) = GFP(Γ). In De�nition 4.11, we

have de�ned �(Ḡ) = (�1(Ḡ), … , �n(Ḡ)) ∈ {0, 1}n such that �i(Ḡ) = 0 ⟺ Gi = ∅
and Ḡ↑ ∶= Ḡ�(Ḡ)↑

(see also (4.5)). This means that Ḡ↑
results from Ḡ by replacing

its empty components with full relations. In particular, every single component of

Ḡ↑ = (Ḡ↑
1 , … , Ḡ↑

n) is non-empty.

Let Y ∶= X[r̄1 ↦ G↑
1 , … , r̄n ↦ G↑

n]. Since the G↑
i are all non-empty, Y is indeed an

extension of X . Clearly, we have Y (x̄) = X(x̄) and, due to A �s  (x̄) = [sGFP S]j (x̄) for

every s ∈ X , we also have X(x̄) ⊆ Gj . So Y (x̄) ⊆ Gj . Because of X ≠ ∅, holds X(x̄) ≠ ∅
and, thus, Gj ≠ ∅. This implies �j(Ḡ) = 1 and G↑

j = Gj . Thus Y (x̄) ⊆ Gj = G↑
j = Y (r̄j)

which leads to A �Y x̄ ⊆ r̄j .
By Lemma 4.12, we know Ḡ↑ = Γ+�(Ḡ)(Ḡ

↑) which implies Ḡ↑ ⊆ Γ+�(Ḡ)(Ḡ
↑). Therefore,

by using Lemma 4.14, we obtain A �Y �S+�(Ḡ) . As a result, we have A �Y x̄ ⊆ r̄j ∧ �S+�(Ḡ) ,
which proves A �X  ′

�(Ḡ)(x̄) and, thus, A �X 
(x̄).

Because of the exponential size of the resulting formula 
 , we will use Theorem 4.17

only for the special case k = 1.

Corollary 4.18. For every '(x̄) ∈ GFP+[k] there exists a 
(x̄) ∈ FO(⊆)[k] such that for

every structure A and every team X over A with x̄ ⊆ dom(X), holds

A �X 
(x̄) ⟺ A �s '(x̄) for every s ∈ X . (4.13)

Proof. Let '1(x̄1), … , 'm(x̄m) be a complete enumeration of the outermost �xed-point

formulae of '(x̄). So, we have 'i(x̄i) = [GFP Riȳi ∶ '′i (Ri , ȳi)] (x̄i) and therefore we can

use Lemma 4.7 to obtain an equivalent formula  i(x̄i) = [sGFP Si]1 (x̄i) ∈ sGFP+k for

every i = 1, … ,m where Si consists only of �rst-order formulae. Now Theorem 4.15

for k ≥ 2 resp. Theorem 4.17 for k = 1 are applicable. Thus, there are formulae


1(x̄1), … , 
m(x̄m) ∈ FO(⊆)[k] with the property

A �X 
i(x̄i)⟺ A �s  i(x̄i) for every s ∈ X

for every structure A and every team X over A with x̄i ⊆ dom(X). Because of the

equivalence of 'i and  i , we this leads to

A �X 
i(x̄i)⟺ A �s 'i(x̄i) for every s ∈ X . (4.14)

Now, let 
(x̄) be the formula that results from '(x̄) by replacing its outermost �xed-

points formulae 'i(x̄i) by 
i(x̄i) ∈ FO(⊆)[k]. Then we have 
(x̄) ∈ FO(⊆)[k] and the

desired property (4.13) is inherited from (4.14).
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4.2.2 Myopic GFP-Sentences
Corollary 4.18 allows us to translate a GFP+[k]-formula into a FO(⊆)[k]-formula, but

how does that help us to translate a GFP+[k]-sentence '(X) using a team predicate X
into inclusion logic? We will answer this question in this section for sentences that are

myopic in X .

De�nition 4.19. A GFP+[k]-sentence is called myopic in X , if it is of the shape

∀x̄(X x̄ →  (X , x̄)) where X occurs only positively in  (X , x̄).

Myopicity implies union closure, which is crucial for our translation into inclusion

logic. As an example for the signi�cance of myopicity, consider the non-myopic �rst-

order sentence ∀x(Xx → Px) ∨ ∀x(Xx → ¬Px) which de�nes a property that is

obviously not closed under unions and, hence, it cannot be expressed in inclusion logic.

Now consider a myopic sentence ∀x̄(X x̄ →  (X , x̄)) ∈ GFP+[k]. Using Corollary 4.18

for  (X , x̄), we obtain a formula 
(X , x̄) ∈ FO(⊆)[k] such that for every structure A
and every team X over A with dom(X) = {x̄} holds

(A, X (x̄)) �X 
(X , x̄) ⟺ (A, X (x̄)) �s  (X , x̄) for every s ∈ X . (4.15)

Since the signature of  (X , x̄) contains a relation symbol X , we apply Corollary 4.18

to the structure (A, X (x̄)) and the team X . This is legitimate, because X , being a team

over A, is also a team over the structure (A, X (x̄)).
In (4.15), the team X is used simultaneously as a relation X(x̄) interpreting the

relation symbol X , which occurs in 
 and  , while it is also used as a team X to

evaluate 
 and to provide assignments suitable for  . Since the construction of 

(before Theorem 4.15 resp. Theorem 4.17) does not touch the X -atoms, because they

are viewed as �rst-order literals during the construction of 
 , X occurs only positively

in 
(X , x̄).
To get rid of the simultaneous uses of X , we use a fresh tuple x̄ ′ of variables with

|x̄ ′| = |x̄ | and de�ne

� (x̄) ∶= ∃x̄ ′(x̄ ′ ⊆ x̄ ∧ 
 ′(x̄ ′, x̄ ))

where 
 ′(x̄ ′, x̄ ) results from 
(X , x̄) by replacing every atom of the form Xv̄ by v̄ ⊆ x̄ ′.
Since 
(X , x̄) ∈ FO(⊆)[k], we have � (x̄) ∈ FO(⊆)[k′] where k′ = max{k, ar(X )}.

Claim 4.20. For every structure A and every team X over A with dom(X) = {x̄} holds

(A, X (x̄)) � ∀x̄(X x̄ →  (X , x̄)) ⟺ A �X � (x̄).

Proof. Clearly, (A, X (x̄)) � ∀x̄(X x̄ →  (X , x̄)) is equivalent to (A, X (x̄)) �s  (X , x̄) for

every s ∈ X . By (4.15), the latter is equivalent to (A, X (x̄)) �X 
(X , x̄). Thus, it su�ces

to prove that (A, X (x̄)) �X 
(X , x̄) ⟺ A �X � (x̄). Since both sides are true for X = ∅
due to the empty team property, we assume X ≠ ∅ for the remainder of this proof. We

prove both directions separately.

“⟹”: First, assume that (A, X (x̄)) �X 
(X , x̄). So, there is a witness � for this

assumption. For every subformula # of 
 let # ′ be the corresponding subformula of 
 ′,
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which results by replacing every Xv̄ by v̄ ⊆ x̄ ′. Let Y ∶= X[x̄ ′ ↦ X(x̄)]. Since X ≠ ∅,

we have X(x̄) ≠ ∅. Therefore, proving A �Y x̄ ′ ⊆ x̄ ∧ 
 ′(x̄ ′, x̄ ) su�ces to prove that

A �X � (x̄). Clearly, A �Y x̄ ′ ⊆ x̄ is true.

We are still obligated to prove A �Y 
 ′(x̄ ′, x̄ ). Towards this end, we de�ne �′(# ′) ∶=
�(#)[x̄ ′ ↦ X(x̄)] and show that this is a witness for A �Y 
 ′(x̄ ′, x̄ ). It is immediately

clear that �′(
 ′) = Y and that �′ satis�es the required conditions for all subformulae # ′
not of the form v̄ ⊆ x̄ ′. For subformulae of the form # ′ = v̄ ⊆ x̄ ′, we prove A ��′(# ′) # ′ as

follows. If �′(# ′) = ∅, then we can just use the empty team property. Otherwise we have

�′(# ′) ≠ ∅, which, due to �′(# ′) = �(#)[x̄ ′ ↦ X(x̄)] and X ≠ ∅, leads to �(#) ≠ ∅ and,

moreover, (�′(# ′))(x̄ ′) = X(x̄). Because � is a witness for (A, X (x̄)) �X 
(X , x̄), we have

(A, X (x̄)) ��(#) # = Xv̄, which implies that (�′(# ′))(v̄) = (�(#))(v̄) ⊆ X(x̄) = (�′(# ′))(x̄ ′).
Thus, A ��′(# ′) v̄ ⊆ x̄ ′ = # ′. As a result, �′ is indeed a witness for A �Y 
 ′(x̄ ′, x̄ ). This

concludes the proof of A �X � (x̄).
“⟸”: For the converse direction, suppose that A �X � (x̄). Then there exists a team

Y = X[x̄ ′ ↦ F] for some F ∶ X → +(A|x̄′ |) such that A �Y x̄ ′ ⊆ x̄ ∧ 
 ′(x̄ ′, x̄ ). Thus,

Y (x̄ ′) ⊆ Y (x̄) and there is a witness �′ for A �Y 
 ′(x̄ ′, x̄ ) with �′(
 ′) = Y .

Towards proving (A, X (x̄)) �X 
(X , x̄), let �(#) ∶= �′(# ′) for every subformula # ∈
subf(
 ) where # ′ is the corresponding subformula of 
 ′, which results by replacing

every Xv̄ by v̄ ⊆ x̄ ′.
We show that � is indeed a witness for (A, X (x̄)) �X 
(X , x̄). First, we can observe

that �(
 )�free(
 ) = �′(
 ′)�free(
 ) = X[x̄ ′ ↦ F]�free(
 ) = X . Again, � inherits the satisfaction

of all conditions for formulae # that are not of the form Xv̄. Now consider a subformula

# of 
 with # = Xv̄. Then # ′ = v̄ ⊆ x̄ ′ is the corresponding subformula of 
 ′ and,

because of A ��′(# ′) # ′, it follows that (�′(# ′))(v̄) ⊆ (�′(# ′))(x̄ ′). Since we can only

“loose” values for x̄ ′ at disjunctions, it is the case that (�′(# ′))(x̄ ′) ⊆ (�′(
 ′))(x̄ ′) = Y (x̄ ′) ⊆
Y (x̄) = X(x̄). Thus, (�(#))(v̄) = (�′(# ′))(v̄) ⊆ X(x̄)which proves that (A, X (x̄)) ��(#) Xv̄.

This concludes the proof of � being a witness for (A, X (x̄)) �X 
(X , x̄).

This shows that a given myopic GFP+[k]-sentence can be translated into inclusion

logic where the arities of occurring inclusion atoms can be bounded by max{k, ar(X )}.

Theorem 4.21. Let '(X) = ∀x̄(X x̄ →  (X , x̄)) be myopic GFP+[k]-sentence. Then '(X)
is equivalent to some � (x̄) ∈ FO(⊆)[k′] where k′ = max{k, ar(X )}.

It is no surprise that we need k′ instead of k, because positive occurrences of X
in a myopic sentence correspond to an inclusion atom. However, this, despite being

intuitive, requires a more rigorous proof, which can be found in the next section.

Optimality of k′

We will now prove that k′ cannot be chosen smaller in general. Towards this end, we

use the result of Hannula [Han15] that for every � ≥ 1 the TC-sentence
5


� ∶= ¬[TCx̄ ,ȳ EDGE� (x̄ , ȳ)](b̄, c̄)
5TC is �rst-order logic extended by an operator for transitive closures.
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over the signature �� ∶= {E, b̄, c̄} is not expressible in FO(⊆)[� − 1]. Here b̄ and c̄ are

� -tuples of constant symbols while EDGE� (x̄ , ȳ) is a �rst-order formula expressing that

x̄ , ȳ form a 2� -clique. The sentence 
� expresses the non-existence of an EDGE� -path

from b̄ to c̄. Hannula also provided the following FO(⊆)[� ]-sentence

�� ∶= ∃z̄� ′� (z̄) where � ′� (z̄) ∶= b̄ ⊆ z̄ ∧ z̄ ≠ c̄ ∧ ∀w̄(nnf(¬EDGE� (z̄, w̄)) ∨ w̄ ⊆ z̄), 6

which is equivalent to 
� , i.e. A � 
� ⟺ A � �� for �� -structures A [Han15, Theorem

7].

Theorem 4.22 ([Han15]). The sentence �� ∈ FO(⊆)[� ] is not equivalent to any FO(⊆)[� −
1]-sentence.

Now consider the myopic �rst-order sentence

'� (X ) ∶= ∀z̄(X z̄ → (X b̄ ∧ z̄ ≠ c̄ ∧ ∀w̄(EDGE� (z̄, w̄) → Xw̄))).

Proposition 4.23. (A, X (z̄)) � '� (X ) ⟺ A �X � ′� (z̄) for �� -structures A and teams

X with z̄ ⊆ dom(X).

Proof. We prove both directions separately.

“⟹”: First, assume that (A, X (z̄)) � '� (X ). If X = ∅, then A �X � ′� (z̄) follows

from the empty team property. Otherwise, we have X(z̄) ≠ ∅ and, due to (A, X (z̄)) �
'� (X ) = ∀z̄(X z̄ → (X b̄ ∧ z̄ ≠ c̄ ∧ … )), it follows that A �X b̄ ⊆ z̄ ∧ z̄ ≠ c̄. Because

of (A, X (z̄)) � '� = ∀z̄(X z̄ → … ∧ ∀w̄(EDGE� (z̄, w̄) → Xw̄)), it is the case that X(z̄)
is closed under JEDGE�KA, which means that ā ∈ X (z̄) and A � EDGE� (ā, d̄) already

entails d̄ ∈ X (z̄). We can use this to prove that A �X ∀w̄(nnf(¬EDGE� (z̄, w̄)) ∨ w̄ ⊆ z̄).
Towards this end, let Y ∶= X[w̄ ↦ A� ] and Z ∶= {s ∈ Y ∶ s(w̄) ∈ X(z̄)}. We will prove

that A �Y⧵Z nnf(¬EDGE� (z̄, w̄)) and A �Z w̄ ⊆ z̄.

Clearly Z(z̄) ⊆ X(z̄) and, since for every s ∈ X holds s[w̄ ↦ s(z̄)] ∈ Z and s(z̄) =
s[w̄ ↦ s(z̄)](z̄), we also have X(z̄) ⊆ Z(z̄). So X(z̄) = Z(z̄). By de�nition of Z , holds

Z(w̄) ⊆ X(z̄) = Z(z̄) and, thus, it is indeed the case that A �Z w̄ ⊆ z̄.

We still need to prove that A �Y⧵Z nnf(¬EDGE� (z̄, w̄)). Towards this end, let s ∈ Y ⧵Z .

So, we have that s(w̄) ∉ X(z̄) and, hence, it must be the case that A 2s EDGE� (z̄, w̄),
because s(z̄) ∈ X (z̄) and X(z̄) is closed under JEDGE�KA. This concludes the proof of

A �Y⧵Z nnf(¬EDGE� (z̄, w̄)) and of A �X � ′� (z̄).
“⟸”: For the converse direction, let A �X � ′� (z̄). Towards proving (A, X (z̄)) �

'� (X ) = ∀z̄(X z̄ → … ), let ā ∈ X (z) be chosen arbitrarily. So, there exists some s ∈ X
with s(z̄) = ā. We need to prove that (A, X (z̄)) � Xb̄ ∧ ā ≠ c̄ ∧ ∀w̄(EDGE� (ā, w̄) → Xw̄)
holds.

6
Technically, the subformula b̄ ⊆ z̄ is a shorthand for ∃v̄(v̄ = b̄ ∧ v̄ ⊆ z̄), because we only allow

tuples of variables to occur in inclusion atoms. Furthermore, we use nnf(¬EDGE� (z̄, w̄)) to denote

the negation normal form of ¬EDGE� (z̄, w̄), because negation signs are only allowed in �rst-order

literals.
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Since A �X � ′� (z̄) = b̄ ⊆ z̄ ∧ z̄ ≠ c̄ ∧ … and s ∈ X , we clearly have that (A, X (z̄)) �s
Xb̄ ∧ z̄ ≠ c̄, which leads to (A, X (z̄)) � Xb̄ ∧ ā ≠ c̄.

We still need to prove that (A, X (z̄)) � ∀w̄(EDGE� (ā, w̄) → Xw̄). Towards this end,

it su�ces to prove that for every d̄ ∈ A�
with A � EDGE� (ā, d̄) holds d̄ ∈ X (z̄). Let

such a d̄ be chosen arbitrarily. Because of A �X ∀w̄(nnf(¬EDGE� (z̄, w̄)) ∨ w̄ ⊆ z̄), we

have A �Y nnf(¬EDGE� (z̄, w̄)) ∨ w̄ ⊆ z̄ for Y ∶= X[w̄ ↦ A� ] and, consequently, there

are teams Y0, Y1 with Y = Y0 ∪ Y1 such that A �Y0 nnf(¬EDGE� (z̄, w̄)) and A �Y1 w̄ ⊆ z̄.

Clearly, t ∶= s[w̄ ↦ d̄] ∈ Y but t ∉ Y0, because t(z̄, w̄) = (ā, d̄) ∈ JEDGE�KA. Therefore,

t ∈ Y1 and, due to A �Y1 w̄ ⊆ z̄, it must be the case that d̄ = t(w̄) ∈ Y1(z̄) ⊆ X(z̄) as

desired. This concludes the proof of (A, X (z̄)) � '� (X ).

Using Theorem 4.21, we can translate the �rst-order sentence '� (X ) into an equiv-

alent inclusion logic formula � ′′� (z̄) ∈ FO(⊆)[k′] where k′ = ar(X ) = � . We can now

prove that '� (X ) is not equivalent to any FO(⊆)[� − 1]-formula, which proves that k′
has in fact been chosen optimally in Theorem 4.21.

Corollary 4.24. Let � ≥ 2. Then '� (X ) is not equivalent to some FO(⊆)[� − 1]-formula.

Proof. Towards a contradiction, assume that '� (X ) would be equivalent to some #(z̄) ∈
FO(⊆)[� − 1], i.e.

(A, X (z̄)) � '� (X ) ⟺ A �X #(z̄)

for all �k-structures A and teams X . Because of Proposition 4.23, it would follow that

A �X � ′� (z̄) ⟺ A �X #(z̄)

for all A, X . Therefore, �� = ∃z̄� ′� (z̄) is equivalent to ∃z̄#(z̄) ∈ FO(⊆)[� − 1] in contradic-

tion to Hanulla’s result (Theorem 4.22).

4.3 From Inclusion Logic to Bounded GFP
Now we provide the translation in the opposide direction. This relies on the following

construction that has been found by Rönnholm and was utilized in the proof of [Rön18,

Theorem 4.2].

Theorem 4.25 (Rönnholm’s Construction). Let '(x̄) ∈ FO(⊆)[k]. Then there exist �rst-

order formulae '⋆(R̄, x̄), '(1)(R̄, z̄1, x̄ ), … , '(n)(R̄, z̄n, x̄ ) where R̄ = (R1, … , Rn) is a tuple of
new relation symbols of arity at most k, which occur only positively in '⋆, '(1), … , '(n),
such that the following are equivalent:

• A �X '

• There are relations R̄ = (R1, … , Rn) over A such that (A, R̄) �X '⋆ and for every

i ∈ {1, … , n}, ā ∈ Ri there exists some s ∈ X such that (A, R̄) �s[z̄i↦ā] '(i).

78



4.3 From Inclusion Logic to Bounded GFP

For more details on Rönnholm’s construction we refer to [Rön18] and to Section 5.2.2

where we adapt it for dependency concepts up to equivalence.

Let ' and '⋆, '(1), … , '(n) be as in Theorem 4.25. For every i ∈ {1, … , n} let

�i(X , R̄, z̄i) ∶= ∃x̄(X x̄ ∧ '(i)(R̄, z̄i , x̄ )).

Furthermore, let

�(X , R̄) ∶= ∀x̄(X x̄ → '⋆(R̄, x̄)).

Because '⋆, '(1), … , '(n) are �rst-order formulas, we obtain the following corollary.

Corollary 4.26. Let ' and �, �1, … , �n be as above. The following are equivalent:

• A �X '

• There are relations R̄ = (R1, … , Rn) over A such that (A, X (x̄), R̄) � � and, for every
i = 1, … , n, (A, X (x̄), R̄) � ∀z̄i(Ri z̄i → �i(X , R̄, z̄i)).

Furthermore, the relation symbols R1, … , Rn occur only positively in �, �1, … , �n.

Theorem 4.27. For every '(x̄) ∈ FO(⊆)[k] there exists a myopic GFP+[k]-sentence  (X)
such that for every suitable structure A and team X holds

A �X '(x̄)⟺ (A, X (x̄)) �  (X). (4.16)

Proof. Because of Lemma 4.4, it su�ces to translate '(x̄) into an equivalent sGFP+k-
sentence  (X) ∶= ∀x̄(X x̄ →  ′(X , x̄)) where X occurs only positively in the sGFP+k-
formula  ′

. Towards this end, let  ′(X , x̄) be the formula that results from '⋆(R̄, x̄) by

replacing every occurrence of Riv̄ by 
i(v̄) ∶= [sGFP S]i (v̄) where

S ∶=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

R1z̄1 ∶ �1(X , R̄, z̄1)
⋮

Rnz̄n ∶ �n(X , R̄, z̄n).

Please notice that X occurs only positively in �1, … , �n and the construction used

in the proof of Lemma 4.4 does not introduce negation signs above X . Let Γ be

the simultaneous update operator de�ned w.r.t. S and (A, X (x̄)). We prove the two

directions of (4.16) separately.

“⟹”: First, assume that A �X '(x̄). By Corollary 4.26, it follows that there are some

relations R̄ = (R1, … , Rn) such that (A, X (x̄), R̄) � � and (A, X (x̄), R̄) � ∀z̄i(Ri z̄i → �i)
for i = 1, … , n. This implies that Ri ⊆ J�i(X , R̄, z̄i)K(A,X (x̄)) = Γi(R̄). By Theorem 4.2, we

obtain R̄ ⊆ ⋃{S̄ ∶ S̄ ⊆ Γ(S̄)} = GFP(Γ). Since (A, X (x̄), R̄) � � and the relation symbols

R1, … , Rn occur only positively in �(X , R̄) = ∀x̄(X x̄ → '⋆(R̄, x̄)), we can conclude that

(A, X (x̄), GFP(Γ)) � ∀x̄(X x̄ → '⋆(GFP(Γ), x̄)), which implies that (A, X (x̄)) �  (X).
“⟸”: Now, suppose that (A, X (x̄)) �  (X) = ∀x̄(X x̄ →  ′(X , x̄)). Let Ḡ =

(G1, … , Gn) be the greatest �xed-point of Γ. By construction of  ′
, it follows that
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4 Arity Fragments of Inclusion Logic

(A, X (x̄), R̄ ↦ Ḡ) � � = ∀x̄(X x̄ → '⋆(R̄, x̄)). Since Ḡ is the greatest �xed-point

of Γ, we can deduce that Gi = Γi(G1, … , Gn) = J�i(X , Ḡ, z̄i)K(A,X (x̄)). This implies that

(A, X (x̄), Ḡ) � ∀z̄i(Gi z̄i → �i(X , Ḡ, z̄i)). By Corollary 4.26, we obtain A �X '(x̄) as

desired.

This result completes our analysis of the connections between the arity fragments

of bounded inclusion logic and of bounded greatest-�xed point logic.
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5 Dependency Concepts up to
Equivalences

In this chapter we explore logics that are based on weaker variants of dependencies.

We consider atomic dependence statements that do not distinguish elements up to

equality, but only up to a coarser equivalence relation. This is motivated by the possible

situation that elements, such as for instance states in a computation or values obtained

in experiments, are subject to observational indistinguishabilities, which we model

here via an equivalence relation ≈ on the set of possible values. This whole chapter

is closely based on the paper [GH18] which is joint work with my supervisor Erich

Grädel, who gave me this topic to work on and introduced me to his former conjectures

about the possible connections of these new logics to (possible fragments of) Σ11.
An example for the new atoms we will investigate is the new dependence atom

dep≈(x̄ , y) that says: whenever the values of x̄ are indistinguishable for certain as-

signments in a team, then so are the values of y. Similarly an exclusion statement

between x and y , up to an equivalence relation ≈, says that no value for x in the team

is equivalent to a value of y, and an inclusion statement like x ⊆≈ y means that every

value for x is equivalent to some value for y. The most powerful of such notions,

independence of x and y up to equivalence, means that additional information about

the equivalence class of the value of one variable does not help to learn anything new

about the equivalence class of the value of the other, or to put it di�erently, whenever

a value a for x and a value b for y occur in the team, then there is an assignment in

the team whose value for x is equivalent to a and whose value for y is equivalent to b.

More general de�nitions of these dependencies, extended to tuples of variables, will be

given in the next section. The main goal of this chapter is to understand the expressive

power of the logics with dependencies up to equivalence.

The question arises how the results known so far (see Section 2.2) change when the

standard dependency notions are replaced by dependencies up to equivalence. There is

a natural conjecture: one has to restrict existential second-order quanti�cation to relations

that are closed under the given equivalence relation, i.e. to relations that can be written as

unions of equivalence classes (where equivalence is extended to tuples component-wise).

We denote the resulting variant of existential second-order logic by Σ11(≈).
Notice however, that to decide this conjecture is far from being trivial, because

the restriction of the standard translation to quanti�cation over ≈-closed relations

does not work as a proof. Even for simple disjunctions, the existential second-order

expression given above describing the split of the team will not work anymore once we

restrict quanti�cation to ≈-closed relations because we cannot assume that the relevant
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5 Dependency Concepts up to Equivalences

subteams are ≈-closed. Here is a simple example, not even involving any dependencies:

consider the formula x = y ∨ x ≠ y which is trivially satis�ed by any team X , by the

split X = Y ∪ Z where Y contains the assignments s which s(x) = s(y) and Z = X ⧵ Y
(and this is the only split that works). However if there are elements a ≠ b with a ≈ b
then in general neither Y nor Z are ≈-closed, even if X is.

Nevertheless we shall prove that the conjecture is true, and that we can characterize

the expressive power of dependence logics up to equivalence by appropriate fragments

of Σ11(≈). This is based on a much more sophisticated translation from logics with team

semantics into existential second-order logic that adapts ideas from [Rön18]. We shall

also present a fragment of GFP
+

that has the same expressive power as inclusion logic

up to equivalence.

Our next question is then how the expressive power of Σ11(≈), and hence logics of

dependence up to equivalence, compare to �rst-order logic and to full Σ11. Of course

this depends on the properties of the underlying equivalence relation, notably on the

number and sizes of its equivalence classes.

1. On any class of structures on which ≈ has only a bounded number of equivalence

classes, Σ11(≈), and hence all logics with dependencies up to equivalence as well,

collapse to FO.

2. On any class of structures in which all equivalence classes have bounded size,

and only a bounded number of classes have more than one element, Σ11(≈) ≡ Σ11.

3. In general, and in particular on the classes of structures where all equivalence

classes have size at most k (for k > 1), or that have only a bounded number

of equivalence classes of size >1, the expressive power of Σ11(≈), and all the

considered logics of dependence up to equivalence, are strictly between FO and

Σ11.

To prove this we shall use appropriate variants of Ehrenfeucht-Fraïssé games for these

logics.

The sections below are taken from [GH18] with minor changes. However, the

translation from FO(⊆≈, |≈ ) to Σ11(≈) in Section 5.2.2 has been improved in comparison

to [GH18], because it now also works for certain formulae of FO(⊆≈, |≈ ) teams rather

than just for sentences.

5.1 Logics with Concepts up to Equivalences
Let � be a signature containing a binary relation symbol ≈ and let (� , ≈) denote the class

of � -structures A in which ≈ is interpreted by an equivalence relation on the universe

A of A. For every A ∈ (� , ≈) and every ā, b̄ ∈ An
we write ā ≈ b̄, if ai ≈ bi for every

i ∈ {1, … , n}. Given two relations R, S ⊆ Ak
of the same arity we write R ⊆≈ S if for

every ā ∈ R, there exists some b̄ ∈ S with ā ≈ b̄. We further write R ≈ S if R ⊆≈ S and

S ⊆≈ R. Furthermore, we de�ne the ≈-closure of R as R≈ ∶= {ā ∶ ā ≈ b̄ for some b̄ ∈ R}
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5.1 Logics with Concepts up to Equivalences

and say that R is ≈-closed if, and only if, R = R≈. The semantics of (in)dependence,

inclusion and exclusion atoms up to ≈ is given as follows:

De�nition 5.1. Let X be a team over A. Then we de�ne

A �X dep≈(x̄ , y) ∶⟺ for all s, s′ ∈ X , if s(x̄) ≈ s′(x̄) then also s(y) ≈ s′(y),
A �X x̄⊥≈ȳ ∶⟺ for all s, s′ ∈ X there exists some s′′ ∈ X such that

s′′(x̄) ≈ s(x̄) and s′′(ȳ) ≈ s′(ȳ),
A �X x̄ ⊆≈ ȳ ∶⟺ X(x̄) ∶= {s(x̄) ∶ s ∈ X} ⊆≈ X(ȳ),
A �X x̄ |≈ ȳ ∶⟺ s(x̄) ̸≈ s′(ȳ) for all s, s′ ∈ X .

For Ω≈ ⊆ {dep≈, ⊥≈, ⊆≈, |≈} we denote by FO(Ω≈) the set of all �rst-order formulas in

negation normal form where we additionally allow positive occurrences of Ω≈-atoms.

The semantics of �rst-order literals and of the logical operators are as in De�nition 2.1.

Many standard results concerning the closure properties and relationships between

di�erent logics of dependence and independence (see e.g. [Gal12]) carry over to this new

setting with equivalences, by easy and straightforward adaptations of proofs (which

are therefore omitted here). In particular, this includes the following observations:

• For all formulae in these logics the locality principle holds: A �X ' if, and only

if, A �X�free(') ' (where X�free(') ∶= {s�free(') ∶ s ∈ X} is the restriction of X to the

free variables of ').

• The logics FO(dep≈) and FO(|≈) are equivalent and downwards closed.

• The logic FO(⊆≈) is closed under unions of teams, and incomparable with FO(dep≈)
and FO(|≈).

• Independence logic with equivalences, FO(⊥≈), has the same expressive power

as inclusion-exclusion logic with equivalences, FO(⊆≈, |≈).

A much more di�cult problem is to understand the expressive power of these logics

in connection with existential second-order logic Σ11. As mentioned above, formulae of

independence logic or, equivalently, inclusion-exclusion logic (without equivalences)

have the same expressive power as existential second-order sentences, and weaker

logics such as dependence logic, exclusion logic, or inclusion logic correspond to

fragments of Σ11. To describe the expressive power of dependence logics with equiva-

lences we introduce the ≈-closed fragment Σ11(≈) of Σ11 and show that it captures the

expressiveness of FO(⊆≈, |≈).

De�nition 5.2. The logic Σ11(≈) consists of sentences of the form

 ∶= ∃≈R1…∃≈Rk'(R1, … , Rk)

where ' ∈ FO(� ∪ {R1, … , Rk}). The semantics of  is given in terms of ≈-closed

relations:

A �  ∶⟺ there are ≈-closed relations R1, … , Rk such that (A, R1, … , Rk) � '.
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5 Dependency Concepts up to Equivalences

5.2 The Expressive Power of these new Logics
In this section we establish that FO(⊆≈, |≈) has exactly the same expressive power as

Σ11(≈). This means that every formula '(x̄) ∈ FO(⊆≈, |≈) that cannot distinguish between

teams X, X ′
with X(x̄) ≈ X ′(x̄) can be translated into an equivalent sentence '′ ∈ Σ11(≈)

using an additional predicate X that occurs only ≈-guarded, i.e. only in the shape

X≈v̄ ∶= ∃w̄(v̄ ≈ w̄ ∧ Xw̄), such that

A �X '(x̄)⟺ (A, X (x̄)) � '′(X ) (5.1)

and, vice versa, for such a '′(X ) ∈ Σ11(≈) we can �nd such a '(x̄) ∈ FO(⊆≈, |≈ ) that is

equivalent in the sense of (5.1).

5.2.1 From ESO to Inclusion-Exclusion Logic up to Equivalences
Consider a sentence of the form ∃≈R1…∃≈Rk'(X , R̄) ∈ Σ11(≈) in FO(⊆≈, |≈) where the

relation symbol X occurs only in the form X≈v̄ ∶= ∃w̄(v̄ ≈ w̄ ∧ Xw̄), which we also call

a ≈-guarded occurrence of X . In order to capture the semantics of such a sentence

we adapt ideas by Rönnholm [Rön18] and use tuples of variables x̄ , v̄1, … , v̄k of length

|x̄ | = ar(X ) and |v̄i | = ar(Ri) in order to simulate the (≈-closed) relations R1, … , Rk . The

reason why this is possible lies in the fact that we are using team semantics: in a

given team Y with {x̄, v̄1, … , v̄k} ⊆ dom(Y ) we naturally have that Y (v̄i) corresponds

to a (not necessarily ≈-closed) relation. The most important step is to �nd a formula

'⋆(x̄ , v̄1, … , v̄k) ∈ FO(⊆≈, |≈) such that for all teams X with x̄ ∈ dom(X) and all ≈-closed

relations R1, … , Rk ,

(A, X (x̄), R̄) � ' ⟺ A �Y '⋆(x̄ , v̄1, … , v̄k)

where Y = X[v̄1 ↦ R1, … , v̄k ↦ Rk]. Towards this end, '⋆ is constructed (inductively)

while using inclusion/exclusion atoms to express (non)membership in X(x̄), R1, … , Rk .
For example, w̄ ⊆≈ v̄i means that s(w̄) ∈ Y (v̄i)≈ = Ri for every s ∈ Y , while w̄ |≈ v̄i
expresses that s(w̄) ∉ Y (v̄i)≈ = Ri for every s ∈ Y . Therefore, the semantics of Riw̄ resp.

¬Riw̄ is captured by w̄ ⊆≈ v̄i resp. w̄ |≈ v̄i . Similarly, w̄ ⊆≈ x̄ and w̄ |≈ x̄ are expressing

membership in (X (x̄))≈. But of course, it could be the case that ' is a much more

complicated formula made up of quanti�ers, conjunctions or disjunctions. It turns out

that quanti�ers and conjunctions can be handled with ease by simply setting

(Qu#)⋆ ∶= Qu(#⋆) for both quanti�ers Q ∈ {∃, ∀}, and

(#1 ∧ #2)⋆ ∶= #⋆1 ∧ #
⋆
2 ,

because when evaluating conjunctions in team semantics, the team is not modi�ed

and in the process of evaluating quanti�ers there are just more columns
1

added to the

team (w.l.o.g. we assume that every variable in the formula occurs either freely or is

1
One may view a relation as a table and, conversely, teams have relational encodings.
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quanti�ed exactly once). However, for disjunctions the situation is much more delicate

because it is not possible to de�ne (#1 ∨ #2)⋆ as #⋆1 ∨ #⋆2 . The reason for this is that after

splitting the team X into X1, X2 with X = X1 ∪ X2 and A �Xj #⋆j it cannot be guaranteed

that Xj(v̄i) still describes the original Ri (up to equivalence). To make sure that we

do not loose information about R1, … , Rk , we use instead an adaptation of the value

preserving disjunction that was introduced by Rönnholm [Rön18].

Lemma 5.3. Let  1,  2 ∈ FO(⊆≈, |≈) and w̄1, … , w̄n be some tuples of variables. Then there

exists a formula  1 ∨
w̄1,…,w̄n

 2 ∈ FO(⊆≈, |≈) such that the following are equivalent:

1. A �X  1 ∨
w̄1,…,w̄n

 2

2. X = X1 ∪ X2 for some teams X1, X2 such that for both j = 1 and j = 2:
• A �Xj  j , and
• if Xj ≠ ∅, then Xj(w̄i) ≈ X(w̄i) for all i ∈ {1, … , k}.

Proof. The construction of  1 ∨
w̄1,…,w̄n

 2 relies on the intuitionistic disjunction  1 ⊔  2
with

A �X  1 ⊔  2 ⟺ A �X  1 or A �X  2.

On structures A ∈ (� , ≈) with ≈A≠ A2 this is de�nable in FO(⊆≈, |≈) since

 1 ⊔  2 ≡ ∃c�∃cr (dep≈(c� ) ∧ dep≈(cr ) ∧ [(c� ≈ cr ∧  1) ∨ (¬c� ≈ cr ∧  2)])

where c� and cr are some variables not occurring in  1 or  2. Note that dep≈(c) expresses

that c only assumes values from a single equivalence class. Now consider the following

formula, which is a modi�cation of a construction by Rönnholm [Rön18].  1 ∨′
w̄1,…,w̄n

 2
is de�ned as

( 1 ⊔  2) ⊔ ∃c�∃cr(dep≈(c� ) ∧ dep≈(cr ) ∧ c� ̸≈ cr ∧

∃y([(y ≈ c� ∧  1) ∨ (y ≈ cr ∧  2)] ∧
k

⋀
i=1
Θi ∧ Θ′

i))

Θi and Θ′
i are given by

Θi ∶= ∃z̄1∃z̄2([(y ≈ c� ∧ z̄1 = w̄i ∧ z̄2 = c̄� ) ∨ (y ≈ cr ∧ z̄1 = c̄� ∧ z̄2 = w̄i)] ∧
w̄i ⊆≈ z̄1 ∧ w̄i ⊆≈ z̄2),

Θ′
i ∶= ∃z̄1∃z̄2([(y ≈ c� ∧ z̄1 = w̄i ∧ z̄2 = c̄r ) ∨ (y ≈ cr ∧ z̄1 = c̄r ∧ z̄2 = w̄i)] ∧

w̄i ⊆≈ z̄1 ∧ w̄i ⊆≈ z̄2).

where c̄� = (c� , c� , … , c� ) and c̄r = (cr , cr , … , cr ) are always tuples of the correct length.

For a detailed proof, why this formula satis�es the properties required by Lemma 5.3

under the additional condition that ≈ has at least two di�erent equivalence classes, we
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refer to [Rön18, Proposition 3.7]. In order to get rid of the additional requirement of

having at least two equivalence classes, we put:

 1 ∨
w̄1,…,w̄n

 2 ∶= [∀x∀y(x ≈ y) ∧ ( 1 ∨  2)] ∨ [∃x∃y(x ̸≈ y) ∧ ( 1 ∨′
w̄1,…,w̄n

 2)].

We can now complete the inductive de�nition of '⋆ by:

(#1 ∨ #2)⋆ ∶= #⋆1 ∨
x̄ ,v̄1,…,v̄k

#⋆2

We can now establish the following two lemmata.

Lemma 5.4. For every A ∈ (� , ≈) and every non-empty team Y with x̄ , v̄1, … , v̄k ∈
dom(Y ),

A �Y '⋆(x̄ , v̄1, … , v̄k)⟹ (A, Y (x̄), RY1 , … , RYk ) � '(X , R1, … , Rk)

where RYi ∶= (Y (v̄i))≈ for i = 1, … , k, i.e. RYi is de�ned as the ≈-closure of Y (v̄i).

Proof. Let � be a witness for A �Y '⋆(x̄ , v̄1, … , v̄k). For every 
 ∈ subf(') with �(
⋆) ≠
∅, we have that (�(
⋆))(z̄) ≈ (�('⋆))(z̄) = Y (z̄) for all z̄ ∈ {(x̄), (v̄1), … , (v̄k)}, because we

have replaced disjunction in ' by disjunctions which preserve values up to equivalence.

In particular, we have that the introduced in-/exclusion atoms precisely describe the

membership relation of X (which occurs only ≈-guarded in ') and of the ≈-closed

relations R1, … , Rk as long as a non-empty team arrives at the atom. This and the fact

that Y is non-empty is the reason, why �(
 )∶=�(
⋆)�free(
 ) for every 
 ∈ subf(') de�nes

a witness for (A, Y (x̄), RY1 , … , RYk ) �{∅} '. Thus, (A, Y (x̄), RY1 , … , RYk ) � '(X , R1, … , Rk)
follows as desired.

Lemma 5.5. Let X be a team with dom(X) = {x̄} and let R̄ = (R1, … , Rk) be a tuple

of non-empty ≈-closed relations such that (A, X (x̄)≈, R̄) � '(X , R1, … , Rk). Then A �Y
'⋆(x̄ , v̄1, … , v̄k) where Y ∶= X[v̄1 ↦ R1, … , v̄k ↦ Rk].

Proof. Since (A, X (x̄), R̄) � '(X , R1, … , Rk), there exists a witness � for

(A, X (x̄), R̄) �{∅} '(X , R1, … , Rk).

By de�ning �⋆(
⋆) ∶= �(
 )[x̄ ↦ X(x̄)≈, v̄1 ↦ R1, … , v̄k ↦ Rk] for all 
 ∈ subf(') we

basically obtain a witness for A �Y '⋆.
2

The non-emptiness requirement of R1, … , Rk does not create a serious problem,

because by rewriting the formula ' it can be assumed w.l.o.g. that ∃≈R1…∃≈Rk' is

satis�ed in a structure A if, and only if, there are non-empty ≈-closed relations R1, … , Rk
such that (A, R̄) � '. For example, one could simulate Ri by two di�erent relations R+i
and R−i with R+i ∶=Ri ∪ {ā}≈ and R+i ∶=Ri ∪ {b̄}≈ where ā and b̄ are non-equivalent tuples

which leads to R+i ∩ R−i = Ri and R−i ≠ ∅ ≠ R−i .

2
Notice that we have de�ned �⋆ only for those formulae that have the shape 
⋆, but, technically, �⋆
must be de�ned also for the subformulae that occur in the construction for the value preserving

disjunctions. However, by Lemma 5.3, it is clear that the de�nition �⋆ can be completed in the

desired way.
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Corollary 5.6. For every team X with dom(X) = {x̄}, we have

A �X  ∶= ∃v̄1…∃v̄k'⋆(x̄ , v̄1, … , v̄k) ⟺ (A, X (x̄)) � ∃≈R1…∃≈Rk'(X , R1, … , Rk).

Proof. We prove the two directions separately.

“⟹”: If A �X  , then A �Y '⋆ where Y is an extension of X by v̄1, … , v̄k , which,

by Lemma 5.4, leads to (A, Y (x̄), RY1 , … , RYk ) � '(X , R1, … , Rk). Because of Y (x̄) = X(x̄),
this implies (A, X (x̄)) � ∃≈R1…∃≈Rk'(X , R1, … , Rk).

“⟸”: Now suppose that (A, X (x̄)) � ∃≈R1…∃≈Rk'(X , R1, … , Rk). Then there are

≈-closed relations R1, … , Rk such that (A, X (x̄), R1, … , Rk) � '(X , R1, … , Rk). W.l.o.g. we

assume that these relations are non-empty. Since X occurs only ≈-guarded in ', this

implies (A, X (x̄)≈, R1, … , Rk) � '(X , R1, … , Rk) and, hence, Lemma 5.5 is applicable. So

we obtain A �Y '⋆(x̄ , v̄1, … , v̄k) where Y ∶= X[v̄1 ↦ R1, … , v̄k ↦ Rk]. Because the Ri
are non-empty, this proves that A �X  (x̄).

Please observe that the variable tuple x̄ occurs in '⋆ only in atoms of the form w̄ ⊆≈ x̄
or w̄ |≈ x̄ , which are the surrogates for X≈w̄ resp. ¬X≈w̄. As a result, the constructed

formula  (x̄) has the semantical property of being unable to distinguish between teams

X, X ′
with X(x̄) ≈ X ′(x̄). Furthermore, if X does not occur in ', then x̄ are no longer

occurring in '⋆ and, thus, the sentence ∃v̄1…∃v̄k'⋆ that results in this special case is

equivalent to the sentence ∃≈R1…∃≈Rk'.

5.2.2 From Inclusion-Exclusion Logic to ESO up to Equivalences
Up to this point we only know that Σ11(≈) ≤ FO(⊆≈, |≈). In this section we prove that these

two logics have in fact the same expressive power. Towards this end, we demonstrate

how a given formula '(x̄) ∈ FO(⊆≈, |≈) can be translated into Σ11(≈). There are two

obstacles that we need to overcome:

1. When viewed as relations, teams usually are not ≈-closed, so we cannot use the

quanti�er ∃≈ to fetch the subteams we would need to satisfy the subformulae of

e.g. a disjunction.

2. Unlike in Σ11, where a formula of the form ∀x∃Y (… ) is equivalent to formula like

∃Y ′∀x(… ) where ar(Y ′) = ar(Y ) + 1, there seems to be no obvious way to perform

a similar syntactic manipulation in Σ11(≈). Thus we have to be content with the

limited quanti�cation that Σ11(≈) allows us.

The main idea of the construction, which is inspired by [Rön18], is to replace every

inclusion and exclusion atom # by a separate new relation symbol R# that contains

certain values enabling us to express the semantics of ' in Σ11(≈).
First we describe how this approach deals with exclusion atoms. Let #1, … , #k be an

enumeration of all occurrences of exclusion atoms #i = ūi |≈ w̄i in ' ∈ FO(⊆≈, |≈ ). We

assume w.l.o.g. that the tuples ū1, … , ūk , w̄1, … , w̄k are pairwise di�erent. We use new

relation symbols R#1 , … , R#k that are intended to separate the sets of possible values
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for v̄i and w̄i (up to equivalence). The desired translation '⋆ of ' is now obtained by

replacing the exclusion atoms #i = ūi |≈ w̄i by R#i ūi ∧ ¬R#i w̄i . This construction leads to

the following result.

Theorem 5.7. For every formula '(x̄) ∈ FO(|≈, ⊆≈)with signature � there exists a formula

'⋆(x̄) ∈ FO(⊆≈) with signature � ∪ {R̄}, where R̄ is a tuple of new relation symbols, such

that for every A ∈ (� , ≈) and every team X the following are equivalent:

1. A �X '

2. There are ≈-closed relations R̄ over A such that (A, R̄) �X '⋆.

Proof. Straightforward adaptation of the proof of [Rön18, Theorem 4.1].

After this elimination of the exclusion atoms we still need to cope with ⊆≈-atoms.

Towards this end, let ' ∈ FO(⊆≈) and #1, … , #k be an enumeration of all occurrences

of inclusion atoms in '. Let #i ∶= x̄i ⊆≈ ȳi for every i ∈ {1, … , k}. Again following the

ideas of [Rön18], we use new relation symbols R#1 , … , R#k with the intended semantics

that R#i ⊆ X(ȳi)≈ where X is the team that “arrives” at #i . This will allow us to replace

the subformulae #i by the formula R#i x̄i . However, this formula alone does not verify

that R#i ⊆ X(ȳi)≈ really holds. Additional formulae '(1)(z̄1), … , '(k)(z̄k) are required for

the veri�cation that values from R#i could occur (up to equivalence) as a value for ȳi
in the team X that arrives at the corresponding inclusion atom. More precisely, '(i) is

constructed such that

(A, R#1 , … , R#k ) �s[z̄i↦ā] '(i)(z̄i)

implies that the assignment s also satis�es ' and, more importantly, leads to an as-

signment s′ that satis�es s′(z̄i) ≈ ā and that could be part of the team that satis�es the

inclusion atom. Formally, we will have the property

A �X ' ⟺ there are ≈-closed relations R#1 , … , R#k such that (A, R̄) �X '⋆ and

for every ā ∈ R#i there is an s ∈ X with (A, R̄) �s[z̄i↦ā] '(i)(z̄i).

As already pointed out, '⋆ results from ' by replacing every inclusion atom #i =
x̄i ⊆≈ ȳi by R#i x̄i , while '(i) is de�ned as in [Rön18] by induction (for every i ∈ {1, … , k}).

Let # be a subformula of '. First-order literals are unchanged, i.e. #⋆ ∶= # =∶ # (i) if # is

such a literal. The inclusion atoms are translated as follows:

(x̄j ⊆ ȳj)(i) ∶=

{
R#i x̄i ∧ ȳi ≈ z̄i , if i = j
R#j x̄j , if i ≠ j

Conjunctions and existential quanti�ers are handled by de�ning

(∃x #̃ )(i) ∶= ∃x #̃ (i) and

(#̃1 ∧ #̃2)(i) ∶= #̃ (i)1 ∧ #̃ (i)2 .
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However, the translation of universal quanti�ers or disjunctions is more complex:

(#̃1 ∨ #̃2)(i) ∶=

{
#̃ (i)j , if x̄i ⊆≈ ȳi occurs in #̃j
(#̃1 ∨ #̃2)⋆, otherwise

(∀x #̃ )(i) ∶= ∃x #̃ (i) ∧ (∀x #̃ )⋆.

By construction we have that (∀x #)⋆ is implied by (∀x #)(i), because of the conjunc-

tion, while ∃x # (i) fetches the correct extension of the current assignment such that

we end up with an assignment satisfying ȳi ≈ z̄i when arriving at the translation of

x̄i ⊆≈ ȳi . The next lemma states that this construction actually captures the intuition

that we have described above.

Lemma 5.8. Let ' ∈ FO(⊆≈) and '⋆, '(1), … , '(k) be as above. Let A ∈ (� , ≈) and X be a

team over A with free(') = dom(X). Then the following are equivalent:

1. A �X '

2. There are ≈-closed relations R̄ = (R#1 , … , R#k ) over A such that (A, R̄) �X '⋆ and for
every i ∈ {1, … , k}, ā ∈ R#i there exists some s ∈ X such that (A, R̄) �s[z̄i↦ā] '(i).

Proof. Straightforward adaptation of the proof of [Rön18, Theorem 4.2].

We are now ready to show how inclusion atoms are translated into Σ11(≈).

Theorem 5.9. For every formula '(x̄) ∈ FO(⊆≈) there exists a sentence '′(X ) ∈ Σ11(≈)
such that A �X '(x̄)⟺ (A, X ) � '′(X ) for every structure A and every team X .

Proof. Let

'′ ∶= ∃≈R#1 …∃≈R#k(∀x̄(X x̄ → '⋆(x̄)) ∧
k

⋀
i=1
∀z̄i(R#i z̄i → ∃x̄(X x̄ ∧ '(i)(x̄ , z̄i)))).

By construction, (A, X ) � '′ if, and only if, there exist ≈-closed relations R̄ over

A such that (A, R̄) �s '⋆ for every s ∈ X , and for every ā ∈ Ri there exists some

s ∈ X with (A, R̄) �s[z̄i↦ā] '(i). Since '⋆ is a �rst-order formula, A �s '⋆ for every

s ∈ X if, and only if, (A, R̄) �X '⋆. Hence, by Lemma 5.8, we can conclude that

(A, X ) � '′ ⟺ A �X '.

In particular, every sentence ' ∈ FO(⊆≈) can be translated into an equivalent sentence

'′ ∈ Σ11(≈). If we additionally demand that '(x̄) ful�ls the semantical property of being

unable to distinguish between teams X, X ′
with X(x̄) ≈ X ′(x̄), then this semantic

property carries over to '′(X ) and, consequently, this formula is then equivalent to

'′(X≈), which results from '′(X ) by replacing every occurrence of X by its ≈-guarded

version. It is worth mentioning that this semantic property can also characterized on a

syntactic level: '(x̄) cannot distinguish between ≈-equivalent teams, if and only if '(x̄)
is logically equivalent to ∃ȳ(x̄ ≈ ȳ ∧ '(ȳ)) where ȳ is new tuple of variables.
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5.3 Inclusion Logic up to Equivalences vs. GFP
An important result on logics with team semantics is the tight connection between

inclusion logic and GFP
+
, established by Galliani and Hella [GH13]. In this section we

prove a similar result for FO(⊆≈) by de�ning a fragment of GFP
+

which has the same

expressive power as FO(⊆≈) on the level of sentences.

In Section 4.1, we have already pointed out that the well-known fact that the simul-

taneous variant of GFP
+

has the same expressive powers as GFP
+

[GKL
+
07]. This is

why, we de�ne GFP+≈ in the form of its simultaneous variant.

De�nition 5.10 (GFP+≈). The logic GFP+≈ is de�ned as an extension of FO in negation

normal form by the following formula formation rule. Let k ≥ 1 and R̄ = (R1, … , Rk) be

a tuple of unused relation symbols of arity n1, … , nk respectively and let ('i(R̄, x̄i))i=1,…,k
be a tuple of FO(� ∪ {R1, … , Rk})-formulae in negation normal form where |x̄i | = ni and

every Ri occurs only positively in '1, … , 'k . Furthermore, let j ∈ {1, … , k} and v̄ be a

nj-tuple of variables. Then

'(v̄) ∶= [sGFP≈ S]j (v̄)

is a GFP+≈-formula where S is of the form

S ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

R1x̄1 ∶ '1(R1, … , Rn, x̄1)
R2x̄2 ∶ '2(R1, … , Rn, x̄2)

⋮
Rnx̄n ∶ 'n(R1, … , Rn, x̄n).

On every structure A ∈ (� , ≈), the system ('i(R̄, x̄i))i=1,…,k de�nes a simultaneous update

operator ΓA ∶ (An1) × ⋯ × (Ank ) → (An1) × ⋯ × (Ank ), by

Γ(R̄) ∶= (Γ1(R̄), … , Γk(R̄)) where

Γi(R̄) ∶= J'i(R̄)KA≈ = {ā ∈ A
ni ∶ (A, R̄) � 'i(R̄, ā)}≈

A tuple (A, s) where A ∈ (� , ≈) and s ∶ {v̄} → A is called a model of ' (and we write

A �s ' in this case) if, and only if, for the greatest �xed-point S̄ = (S1, … , Sk) of ΓA we

have that s(v̄) ∈ Sj .

The non-simultaneous variant GFP+≈ , where it is only allowed to use the operator

sGFP≈ in a non-simultaneous way, i.e. only in the following shape

[GFP≈ Rx̄ ∶ '(R, x̄)] (ȳ) ∶= [sGFP Rx̄ ∶ '(R, x̄)]1 (ȳ),

has exactly the same expressive power as GFP+≈ . The following lemma is a variant of the

well-known Knaster-Tarski Theorem and gives a characterization of the �xed-points

of Γ:
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Lemma 5.11 (Knaster-Tarski-Theorem for GFP+≈). Let '(v̄) = [sGFP S]j (v̄) be a GFP+≈-
formula where S consists of '1, … , 'k , A ∈ (� , ≈) and Γ(= ΓA) be the corresponding

simultaneous update operator w.r.t. '1, … , 'k . For two given k-tuples R̄, S̄ of relations, we
write R̄ ⊆ S̄ if, and only if Ri ⊆ Si for every i ∈ {1, … , k}.
Let X ∶= {S̄ ∶ S̄ ⊆ Γ(S̄)}. Then ⋃X ∶= (Y1, … , Yk) where for every j ∈ {1, … , k},

Yj ∶= ⋃S̄∈X Sj is the greatest �xed-point of Γ. Furthermore, these Yj are ≈-closed.

5.3.1 From Inclusion Logic up to Equivalences to GFP
Theorem 5.12. For every formula '(x̄) ∈ FO(⊆≈) there exists a sentence '+(X ) ∈ GFP+≈
such that A �X ' ⟺ (A, X ) � '+ for every structure A ∈ (� , ≈) and every team X over

A.

Proof. In Section 5.2.2 we have presented the FO-formulae '⋆(R̄, x̄) and '(i)(R̄, z̄i) (for

i ∈ {1, … , k}) using new relation symbols R̄ = (R1, … , Rk) such that for every A ∈ (� , ≈)
and every team X over A with dom(X) ⊇ free(') the following are equivalent:

(1) A �X '

(2) There are ≈-closed relations R̄ over A such that (A, R̄) �X '⋆ and for every

i ∈ {1, … , k}, ā ∈ Ri there exists some si,ā ∈ X such that (A, R̄) �si,ā[z̄i↦ā] '(i).

Furthermore, the relation symbols R1, … , Rk occur only positively in '⋆ and '(i) and

the tuple z̄i occurs exactly once in a subformula of the form x̄i ≈ z̄i in '(i). Let '̃⋆ and

the '̃(i) be the formulae that result from '⋆, '(i) by replacing every occurrence of the

form Riv̄ by its guarded version (Ri)≈v̄ ∶= ∃w̄(v̄ ≈ w̄ ∧ Riw̄). This allows us to drop the

requirement that the relations R̄ are ≈-closed.

Claim 5.13. For every A and every team X over A, (1) and (2) are equivalent to:

(3) There are relations R̄ over A such that (A, R̄) �X '̃⋆ and for every i ∈ {1, … , k}
and ā ∈ Ri there exists some si,ā ∈ X such that (A, R̄) �si,ā[z̄i↦ā] '̃(i).

To prove this, one has to exploit the fact that every Rj (j ∈ {1, … , k}) occurs only

≈-guarded in '̃⋆, '̃(1), … , '̃(k) and the variables z̄i occur (exactly once) in a subformula

of the form w̄ ≈ z̄i in '(i). By expressing (3) in existential second-order logic, we obtain

the following equivalent statement:

(4) (A, X ) � ∃R̄ (∀x̄(X x̄ → '̃⋆(R̄, x̄)) ∧  ) where  ∶= ⋀k
i=1 ∀z̄i(Ri z̄i → �i(R̄, z̄i)) and

�i(R̄, z̄i) ∶= ∃x̄(X x̄ ∧ '̃(i)(R̄, z̄i , x̄ )).

Let Γ(R̄) ∶= (Γ1(R̄), … , Γk(R̄)) where

Γi(R̄) ∶= J�i(R̄, z̄i)K(A,X ) = {ā ∈ Aar(Ri ) ∶ (A, X (x̄), R̄) � �i(ā)}.

Note that J�i(R̄, z̄i)K(A,X (x̄)) = J�i(R̄, z̄i)K(A,X (x̄))≈ , because the free variables z̄i occur exactly

once in a subformula of the form w̄ ≈ z̄i . This is the reason why Γ is the GFP+≈-update

operator w.r.t. �1, … , �k .
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Furthermore, (A, X , R̄) � ∀z̄i(Ri z̄i → �i(R̄, z̄i)) if, and only if, Ri ⊆ Γi(R̄). Conse-

quently, we have (A, X , R̄) �  if, and only if, R̄ ⊆ Γ(R̄).
Claim 5.14. For j ≤ k, let #j(z̄j) ∶= [sGFP≈ S]j (z̄j) where

S ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

R1z̄1 ∶ �1(R̄, z̄1)
R2z̄2 ∶ �2(R̄, z̄2)

⋮
Rk z̄k ∶ �k(R̄, z̄k).

and let 
 result from '̃⋆ by replacing every occurrence of Rj(w̄) by #j(w̄). Then, for

every A ∈ (� , ≈) and every team X , (4) is equivalent to

(5) (A, X ) � ∀x̄(X x̄ → 
).

Proof. (4)⟹ (5): Let (A, X ) � ∃R̄ (∀x̄(X x̄ → '̃⋆(R̄, x̄)) ∧  ). Then there are relations

R̄ such that (A, X , R̄) � ∀x̄(X x̄ → '̃⋆(R̄, x̄)) and (A, X , R̄) �  . As observed above, it

follows that R̄ ⊆ Γ(R̄). So, by Lemma 5.11, R̄ ⊆ S̄ where S̄ is the greatest �xed-point of Γ.

Since we have (A, X , R̄) � ∀x̄(X x̄ → '̃⋆(R̄, x̄)) and the relations symbols R1, … , Rk occur

only positively in '̃⋆, we can conclude that (A, X , S̄) � ∀x̄(X x̄ → '̃⋆(S̄, x̄)). Because S̄
is the greatest �xed-point of Γ, it follows that Si = J#i(z̄i)K(A,X ) and, by construction of


 , we obtain that (A, X ) � ∀x̄(X x̄ → 
).
(5)⟹ (4): Let (A, X ) � ∀x̄(X x̄ → 
) and let S̄ be the greatest �xed-point of Γ. Then

(A, X , S̄) � ∀x̄(X x̄ → '̃⋆) and S̄ = Γ(S̄). Therefore, we have (A, X , S̄) � ∀z̄i(Si z̄i →
�i(z̄i)) for every i ∈ {1, … , k} and, hence, (A, X , S̄) �  (S̄).

So we have A �X ' ⟺ A �X '+ ∶= ∀x̄(X x̄ → 
) ∈ GFP+≈ .

5.3.2 The Translation in the Other Direction
In order to translate a given sentence ' ∈ GFP+≈ into a FO(⊆≈)-formula, we assume that

' is in a normal form which is given by the following lemma. By using adaptations of

ideas from [GH13] we then show that such a sentence can be expressed in FO(⊆≈).

Lemma 5.15. For every sentence ' ∈ GFP+≈ there exists a formula  (R, x̄) ∈ FO, in which
R occurs only positively and only ≈-guarded, such that ' is equivalent to

∃v̄[GFP≈Rx̄ .  (R, x̄)](v̄).

Our next lemma shows that we can eliminate the relation symbol R in  by in-

troducing ⊆≈-atoms and encoding R in a tuple x̄ of variables. The next lemma is a

straightforward adaptation of [GH13, Theorem 16].

Lemma 5.16. Let R be a relation symbol of arity n, let x̄ , ȳ be tuples of variables where

|x̄ | = n (whereas ȳ is of arbitrary length and can also be empty). Furthermore, let
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 (R, x̄ , ȳ) ∈ FO(� ∪ {R}) be a �rst-order formula in which R occurs only positively and

≈-guarded, and with free( ) ⊆ {x̄, ȳ} such that the variables in x̄ are never quanti�ed

in  . Then there exists a formula  ⋆(x̄ , ȳ) ∈ FO(⊆≈) of signature � such that for every

A ∈ (� , ≈) and every team X we have that

A �X  ⋆(x̄ , ȳ) ⟺ (A, X (x̄)) �s  (R, x̄ , ȳ) for every s ∈ X .

As done in proof of [GH13, Theorem 16], this lemma can be shown by induction over

the structure of  . Now we are able to express [GFP≈Rx̄ . '(R, x̄)] in FO(⊆≈).

Theorem 5.17. Let  (R, x̄) ∈ FO where ar(R) = |x̄ |, R occurs only positively and ≈-
guarded in  , and the variables in x̄ are never quanti�ed in  . Then there exists a formula

 +(x̄) ∈ FO(⊆≈) such that for every A ∈ (� , ≈) and every team X we have that

A �X  +(x̄)⟺ A �s [GFP≈Rx̄ .  (R, x̄)](x̄) for every s ∈ X .

Proof. Let  +(x̄) ∶= ∃ȳ(x̄ ⊆≈ ȳ ∧ ∃z̄(ȳ ≈ z̄ ∧  ⋆(z̄))) where  ⋆
stems from Lemma 5.16.

“⟹”: First we assume that A �X  +(x̄). Then there exists a function F ∶ X →
+(An) such that A �Y x̄ ⊆≈ ȳ ∧ ∃z̄(ȳ ≈ z̄ ∧  ⋆(z̄)) where Y ∶=X[ȳ ↦ F]. So there exists

a function G ∶ Y → +(An) satisfying A �Z ȳ ≈ z̄ ∧  ⋆(z̄) where Z ∶= Y[z̄ ↦ G]. By

Lemma 5.16, it follows that

(A, Z (z̄)) �s  (R, z̄) for every s ∈ Z .

So we have Z(z̄) ⊆ J (R, z̄)K(A,Z (z̄)) ⊆ J (R, z̄)K(A,Z (z̄))≈ = Γ (Z (z̄)) where Γ is the GFP+≈-
update operator w.r.t.  and A. It follows that Z(z̄) ⊆ gfp(Γ ) (by Lemma 5.11). Since

gfp(Γ ) is ≈-closed and X(x̄) ⊆≈ Y (ȳ) ≈ Z(z̄), we have that X(x̄) ⊆ gfp(Γ ). Hence, we

obtain that A �s [GFP≈Rx̄ .  (R, x̄)](x̄) for every s ∈ X .

“⟸”: Now we assume that A �s [GFP≈Rx̄ .  (R, x̄)](x̄) for every s ∈ X . If X = ∅,

then A �X  +(x̄) follows from the empty team property. Henceforth, let X ≠ ∅. Let

Γ be the GFP+≈-update operator de�ned w.r.t.  (R). From our assumption follows

that X(x̄) ⊆ gfp(Γ ). Since X ≠ ∅, it follows that gfp(Γ ) ≠ ∅. Our goal is to prove

that A �X  +(x̄). Towards this end, we de�ne F ∶ X → +(An), F (s) ∶= gfp(Γ ) and

Y ∶= X[ȳ ↦ F] and claim that A �Y x̄ ⊆≈ ȳ ∧ ∃z̄(ȳ ≈ z̄ ∧  ⋆(z̄)). Since Y (x̄) = X(x̄) ⊆
gfp(Γ ) = Y (ȳ) it is clear that A �Y x̄ ⊆≈ ȳ.

We still need to prove that A �Y ∃z̄(ȳ ≈ z̄ ∧  ⋆(z̄)). By de�nition of Y , we know

that Y (ȳ) = gfp(Γ ) = Γ (gfp(Γ )) = J (gfp(Γ ), x̄)KA≈ . This implies that for every s ∈ Y
there exists some ā ∈ J (gfp(Γ ), x̄)KA such that ā ≈ s(ȳ).

Let G ∶ Y → +(An) be given by

G(s) ∶= {ā ∈ J (gfp(Γ ), x̄)KA ∶ s(ȳ) ≈ ā}

and Z ∶= Y[z̄ ↦ G]. Clearly it holds that Z(z̄) ⊆ J (gfp(Γ ), x̄)KA. We claim that

even Z(z̄) = J (gfp(Γ ), x̄)KA is true. To see this, let ā ∈ J (gfp(Γ ), x̄)KA. Since
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J (gfp(Γ ), x̄)KA ⊆ J (gfp(Γ ), x̄)KA≈ = Y (ȳ), there exists an s ∈ Y with s(ȳ) ≈ ā. Hence,

we have that ā ∈ G(s) and, consequently, ā ∈ Z(z̄).
It is the case that A �Z ȳ ≈ z̄, because this follows from the de�nition of G. Now

we prove that A �Z  ⋆(z̄). By Lemma 5.16, we need to verify that (A, Z (z̄)) �s  (R, z̄)
for every s ∈ Z . In other words, we need to verify that Z(z̄) ⊆ J (Z(z̄), z̄)KA. Since

Z(z̄) = J (gfp(Γ ), x̄)KA, we can conclude that

J (Z(z̄), z̄)KA = J (J (gfp(Γ ), x̄)KA, z̄)KA

Due to the fact that R occurs only ≈-guarded in  , we can observe that

J (J (gfp(Γ ), x̄)KA, z̄)KA = J (J (gfp(Γ ), x̄)KA≈ , z̄)K
A

= J (Γ (gfp(Γ )), z̄)KA

= J (gfp(Γ ), z̄)KA = Z(z̄)

Therefore, we have Z(z̄) = J (Z(z̄), z̄)KA which implies that Z(z̄) ⊆ J (Z(z̄), z̄)KA. So

we have (A, Z (z̄)) �s  (R, z̄) for every s ∈ Z , which concludes the proof of A �Z  ⋆

and of A �X  +
.

Corollary 5.18. For every GFP+≈-sentence ' there is an equivalent sentence # ∈ FO(⊆≈).

Proof. Let ' ∈ GFP+≈ be a sentence. By Lemma 5.15, there exists a �rst-order formula

 (R, x̄) where the n-ary relation symbol R occurs only positively and only ≈-guarded

in  such that

' ≡ ∃v̄[GFP≈Rx̄ .  (R, x̄)](v̄).
W.l.o.g. we can assume that the variables in x̄ are never quanti�ed in  . So, by Theo-

rem 5.17, it follows that there exists some  +(x̄) ∈ FO(⊆≈) such that for every A ∈ (� , ≈)
and every team X over A with dom(X) ⊇ {x̄} holds

A �X  +(x̄)⟺ A �s [GFP≈Rx̄ .  (R, x̄)](x̄) for every s ∈ X

Let # ∶= ∃v̄ +(v̄) and A ∈ (� , ≈). Our goal is to prove that A � ' ⟺ A � # .

“⟸”: Let A � # . Then there exists a function F ∶ {∅} → +(A|v̄|) such that

A �Y  +(v̄) where Y = {∅}[v̄ ↦ F]. Then we have A �s [GFP≈Rx̄ .  (R, x̄)](v̄) for

every s ∈ Y and, since Y is non-empty, it follows that A � ∃v̄[GFP≈Rx̄ .  (R, x̄)](v̄).
“⟹”: Now let A � ' ≡ ∃v̄[GFP≈Rx̄ .  (R, x̄)](v̄). Then there exists some ā ∈ A such

that A � [GFP≈Rx̄ .  (R, x̄)](ā). Let Y = {s} be the singleton team consisting only of

s with s(v̄) = ā. Then it follows that A �s [GFP≈Rx̄ .  (R, x̄)](v̄) for every s ∈ Y and,

consequently, A �Y  +(v̄), proving that A �{∅} ∃v̄ +(v̄) = # .

5.4 ESO up to Equivalences on Restricted Classes of
Structures

In this section we compare Σ11(≈) with FO and Σ11 and study how restrictions imposed

on the given equivalence in�uence the expressive power of Σ11(≈). Our �rst result
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is that the expressive power of Σ11(≈) ≡ FO(⊆≈, |≈ ) lies strictly between FO and Σ11.
Furthermore, we also have FO < FO(⊆≈, |≈) < Σ11 on the class of structures with only a

bounded number of non-trivial equivalence classes and on the class of structures where

each equivalence class is of size ≤ k (for some �xed k > 1). However, when restricting

both the size of the equivalence classes and the number of non-trivial equivalence

classes, then FO(⊆≈, |≈) has the same expressive power as Σ11. To prove these results, we

use an adaptation of the Ehrenfeucht-Fraïssé method for FO(⊆≈, |≈), which relies on the

games presented in [Vää07].

De�nition 5.19. Let A,B ∈ (� , ≈), n ∈ ℕ and Ω≈ ⊆ {dep≈, ⊥≈, ⊆≈, |≈}. The game

Ω≈,n(A,B) is played by two players which are called Duplicator and Spoiler. The

positions of the game are tuples (X , Y ) of teams over A,B with dom(X) = dom(Y ).
Unless stated otherwise the game starts at position ({∅}, {∅}) and then n moves are

played. In each move Spoiler always chooses between one of the following 3 moves to

continue the game:

1. Move ∨:

• Spoiler represents X as a union X = X0 ∪ X1.
• Duplicator replies with a representation of Y as Y = Y0 ∪ Y1.
• Spoiler chooses i ∈ {0, 1} and the game continues at position (Xi , Yi).

2. Move ∃:
• Spoiler chooses a function F ∶ X → +(A).
• Duplicator replies with a function G ∶ Y → +(B).
• The game continues at position (X [v ↦ F], Y [v ↦ G]) where v is a new

variable.

3. Move ∀:

• The game continues at position (X [v ↦ A], Y [v ↦ B]) where v is a new

variable.

Positions (X , Y ) with A �X # but B 2Y # for some literal # ∈ FO(Ω≈) are Spoiler’s

winning position. Duplicator wins, if such positions are avoided for n moves.

The game Ω≈(A,B) is played similarly: �rst Spoiler chooses a number n ∈ ℕ and

then Ω≈,n(A,B) is played.

These games characterize semi-equivalences of A and B (up to a certain depth). The

depth of ' ∈ FO(Ω≈), denoted as depth('), is de�ned inductively:

depth(#) ∶= 0 for every literal # ∈ FO(Ω≈)
depth(∃v'′) ∶= depth('′) + 1 =∶ depth(∀v'′)

depth('1 ∨ '2) ∶= max(depth('1), depth('2)) + 1
depth('1 ∧ '2) ∶= max(depth('1), depth('2))

95



5 Dependency Concepts up to Equivalences

De�nition 5.20 (Semi-equivalence, [Vää07]). Let A,B ∈ (� , ≈) and X, Y be teams

over A,B with dom(X) = dom(Y ). We write A, X VΩ≈,n B, Y (and say that A, X is

semi-equivalent to B, Y up to depth n), if A �X ' implies B �Y ' for every ' ∈ FO(Ω≈)
with depth(') ≤ n. Furthermore, we write A, X VΩ≈ B, Y , if A, X VΩ≈,n B, Y for every

n ∈ ℕ. When Ω≈ is clear from the context, we sometimes omit it as a subscript.

In �rst-order logic, the concept of semi-equivalence coincides with the usual equiva-

lence concept between structures, but this is not the case in logics with team semantics.

For example A, X V B, ∅ follows from the empty team property, but B, ∅ V A, X
is not true in general. We write A, X ≡n B, Y , if A, X Vn B, Y and B, Y Vn A, X .

A, X ≡ B, Y is de�ned analogously.

Theorem 5.21. Let � be a �nite signature and A,B ∈ (� , ≈). Duplicator has a winning
strategy for Ω≈,n(A,B) from position (X , Y ) if, and only if A, X VΩ≈,n B, Y .

Having these games at our disposal, we can prove that FO(⊆≈, |≈) is strictly less

powerful than Σ11. Consider the following problem:

even ∶= {A ∈ (� , ≈) ∶ there is some a ∈ A such that |[a]≈| is even}.

Theorem 5.22. even is not expressible in FO(⊆≈, |≈).

We just give a short sketch of the proof: Consider Am∶=(Am, ≈Am ) and Bm∶=(Bm, ≈Bm )
where |Am| = 2m, |Bm| = 2m + 1, ≈Am ∶=Am × Am and ≈Bm ∶=Bm × Bm. Then Am ∈ even

while Bm ∉ even. It is not di�cult to prove that Duplicator wins the games m(Am,Bm)
and m(Bm,Am) by maintaining as an invariant that the equality types induced by the

assignments in the two teams are always equal.

On the other hand, it is easy to see that FO(dep≈)(≤ FO(⊆≈, |≈)) can express that the

number of equivalence classes is even, but this is not de�nable in �rst-order logic.

Corollary 5.23. FO < FO(⊆≈, |≈) < Σ11.

Next we study whether restrictions imposed on the given equivalence in�uence the

expressive power of Σ11. Consider the class ≤p of structures A ∈ (� , ≈) where every

equivalence class of A is of size ≤ p. On ≤1, Σ11(≈) has the same expressive power as

Σ11, because every relation over A ∈ ≤1 is ≈A-closed. However, this is not the case for

p ≥ 2 as the next theorem shows.

Theorem 5.24. Let p ≥ 2. FO < FO(⊆≈, |≈) < Σ11 holds on the class ≤p of structures

A ∈ (� , ≈) with |[a]≈| ≤ p for every a ∈ A.

Proof. It su�ces to prove this for p = 2. Let � = {E, ≈}. Consider the following problem:

∶={A ∈ ≤2 ∶ (A, EA) is not connected}. By using the method of Ehrenfeucht-Fraïssé

we will show that  is not de�nable in FO(⊆≈, |≈).
For every m > 3 let Am ∶= (Am, EAm , ≈) and Bm ∶= (Bm, EBm , ≈)where Am ∶={0, … ,m−

1} ∪ {0′, … , (m − 1)′} =∶ Bm and EAm ∶= EAm
+ ∪ EAm

− with

EAm
+ ∶= {(i, j), (i′, j′) ∶ j = i + 1 (mod m)}
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and EAm
− ∶= {(w, v) ∶ (v, w) ∈ EAm

+ }. Similary, EBm ∶= EBm
+ ∪ EBm

− where EBm
+ ∶=

{(0, 1), (1, 2), … , (m − 2,m −1), (m − 1, 0′), (0′, 1′), … , ((m − 2)′, (m − 1)′), ((m − 1)′, 0)} and

EBm
− ∶={(w, v) ∶ (v, w) ∈ EBm

+ }. ≈ is in both structures de�ned such that [i]≈ = {i, i′} for

every i ∈ {0, … ,m − 1}. In other words, Am consists of two cycles (0, 1, … ,m − 1, 0) and

(0′, 1′, … , (m−1)′, 0′) of lengthm, while Bm is a single cycle (0, 1, … ,m−1, 0′, 1′, … , (m−
1)′, 0) of length 2m.

For every v ∈ {0, 1, … ,m−1, 0′, 1′, … , (m−1)′} there are uniquely determined sAm (v)
and sBm (v) such that (v, sAm (v)) ∈ EAm

+ and (v, sBm (v)) ∈ EBm
+ . Similarly, there are exists

uniquely determined predecessors (sAm )−1(v) and (sBm )−1(v) with (v, (sAm )−1(v)) ∈ EAm
−

and (v, (sAm )−1(v)) ∈ EBm
− . We de�ne for every v ∈ Am, every w ∈ Bm and every k ∈ ℤ

v +Am k ∶= (s
Am )k(v) and w +Bm k ∶= (s

Bm )k(w).

We are going omit Am and Bm as a subscript, when it is clear from the context that v
belongs to Am resp. Bm.

For v, w ∈ Am we de�ne distAm (v, w) to be the minimal number n ∈ ℕ such that

v + n = w or v − n = w, or ∞, if no such number n ∈ ℕ exists. distBm (v, w) is

de�ned analogously. Please note, that distAm (v, w) = distAm (w, v) and distBm (v, w) =
distBm (w, v). Furthermore, for every a ∈ {0, 1, … ,m − 1, 0′, 1′, … , (m − 1)′} and every

b, c ∈ ℤ holds,

(a +Am b) +Am c = a +Am (b + c) and (a +Bm b) +Bm c = a +Bm (b + c).

It is easy to see that dist(v1, v3) ≤ dist(v1, v2) + dist(v2, v3) for every v1, v2, v3 from Am
or Bm. Furthermore, v ≈ w implies that sAm (v) ≈ sBm (v) and (sAm )−1(v) ≈ (sBm )−1(v).
This observation leads to the following claim.

Claim 5.25. Let v ∈ Am, w ∈ Bm with v ≈ w . Then v + k ≈ w + k for every k ∈ ℤ.

For every i, j, q ∈ ℕ we write i ≈q j if, and only if i = j or i ≥ q ≤ j. Given

two assignments s ∶ {x1, … , x�} → Am and t ∶ {x1, … , x�} → Bm, we write s ≈q t
if, and only if s(xi) ≈ t(xi) (which is equivalent to: s(xi), t(xi) ∈ {n, n′} for some n ∈
{0, … ,m−1}) and distAm (s(xi), s(xj)) ≈q distBm (t(xi), t(xj)) holds for every i, j ∈ {1, … , �}.

Lemma 5.26. Let m > 2n+2 and 0 ≤ � ≤ k < n. Furthermore, let s ∶ {x1, … , x�} → Am
and t ∶ {x1, … , x�} → Bm be two assignments with s ≈2n+1−k t . Then:

(1) For every a ∈ Am there exists some b = b(s, t, a) ∈ Bm such that

s′ ∶= s[x�+1 ↦ a] ≈2n−k t[x�+1 ↦ b] =∶ t ′.

(2) For every b ∈ Bm there exists some a = a(s, t, b) ∈ Am such that

s′ ∶= s[x�+1 ↦ a] ≈2n−k t[x�+1 ↦ b] =∶ t ′.

Furthermore, for two teams X, Y over Am,Bm with dom(X) = {x1, … , x�} = dom(Y )
we write X ≈q Y if, and only if for every s ∈ X there exists some t ∈ Y and, conversely,

for every t ∈ Y there exists some s ∈ X such that s ≈q t .
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Claim 5.27. Let n,m ∈ ℕ with m > 2n+2. Duplicator has a winning strategy in

n(Am,Bm).
Thus we have Am Vn Bm for every m > 2n+2. Using very similar arguments, it is

possible to prove that Bm Vn Am. Furthermore, we have Am ∈  and Bm ∉ . This

proves that  is not de�nable in FO(⊆≈, |≈) (because ' is unable to distinguish between

Am and Bm for every m > 2depth(')+2
). On the other hand,  is de�nable in Σ11 by the

sentence

∃X∃x∃y(Xx ∧ ¬Xy ∧ ∀u∀v(Xu ∧ Euv → Xv)).

This concludes the proof of FO(⊆≈, |≈) < Σ11. FO < FO(⊆≈, |≈) follows from the fact that

FO(|≈) ≡ FO(dep≈) and that the sentence

∀x∃y∀x ′∃y′( dep≈(x, y) ∧ dep≈(x
′, y′) ∧ x ̸≈ y ∧

(x ̸≈ x ′ ∨ y ≈ y′) ∧ (x ̸≈ y′ ∨ y ≈ x ′))

expresses that the number of equivalence classes is even, but this is not de�nable in

�rst-order logic (this can be proven by using the method of Ehrenfeucht-Fraïssé for

FO).

Restricting the number of equivalence classes is not really interesting, because this

leads to a situation where Σ11(≈) has the same expressive power as FO, because there are

only 2(kr ) many ≈-closed relations of arity r when k is the number of ≈-classes, which

can be simulated in �rst-order logic.

Another possible restriction is to admit only a bounded number of non-trivial equiv-

alence classes (which consist of more than one element). Let NT≤p be the class of all

A ∈ (� , ≈) with at most p many non-trivial equivalence classes (for some p ≥ 1).
But then again, even ∩NT≤p is not de�nable in FO(⊆≈, |≈) on NT≤p . Hence, we also

have FO < Σ11(≈) < Σ11 on NT≤p .

However, combining the conditions imposed on the number of non-trivial equiva-

lence and their size, leads to an interesting situation: Σ11(≈) ≡ Σ11 on the class NT≤p1,≤p2∶=
NT≤p1 ∩ ≤p2 . The reason for this is that at most p1 ⋅ p2 many elements are located

inside non-trivial equivalence classes, while all the other elements are only equivalent

to themselves. Since Σ11(≈) allows us to obtain a linear order on the equivalence classes,

it is possible to encode arbitrary relations and, hence, to simulate Σ11.
In this chapter we have de�ned logics with dependency concepts up to given equiv-

alences and analysed their expressive power by comparing these logics with certain

fragments of Σ11 and GFP. Furthermore, we have studied the behaviour of FO(⊆≈, |≈ )
on certain restricted classes of structures.
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6 Concluding Remarks
We have addressed two open problems that have been presented at the Dagstuhl seminar

2019 [GKKV19] and we have recapitulated dependency concepts up to equivalence

from [GH18].

For the union closed fragment, di�erent characterisations have been presented. On

the level of Σ11, this fragment has been characterised as the myopic fragment of Σ11, while

on the side of team semantics union closure is captured by the x̄-myopic fragment of

FO(⊆, | ) and the logic FO(∪−game). Furthermore, a novel class of games, the inclusion-

exclusion game, have been introduced and we have seen that these games are indeed

the model-checking games for sentences '(X) ∈ Σ11. The union games, which have

been de�ned as a restricted variant of these games, are not only the model-checking

games for myopic Σ11-sentences, but have also led to insights regarding the essence of

the union closed fragment. Given that Σ11 is a rather strong logic, it is conceivable that

other variants of these games are useful in other scenarios.

Regarding the question of Galliani and Hella [GH13], the atom ∪−game that captures

the union closed fragment and syntactic restrictions of inclusion-exclusion formulae

have been introduced in Chapter 3 and in [HW19, HW20]. In terms of “naturalness” the

atom ∪−game might be considered be cumbersome to use, because the logic FO(∪−game)
is not really well-suited for writing down concrete formulae. In contrast to that, it is

a much better idea to use either myopic Σ11-sentence or, equivalently, the x̄-myopic

fragment of inclusion-exclusion logic for writing concrete formulae. A possible future

question could be whether or not there is a “more natural” (whatever this means) atom

instead of ∪−game. However, whatever other atom one proposes in place of ∪−game, it

must solve a problem not expressible in �rst-order logic, because Galliani and Hella

showed that inclusion logic is able to express all �rst-order de�nable union closed

properties.

Regarding Rönnholm’s question [GKKV19] of whether FO(⊆)[k] corresponds to some

fragment of GFP
+
, we have de�ned GFP+[k] and showed how formulae between these

di�erent fragments can be translated into the corresponding other one. An interesting

open question for future research is whether or not an analogue of Theorem 3.7 holds

for GFP
+
-sentences: is the union closed fragment of GFP

+
captured by myopic GFP

+
-

sentences?

Finally, in Chapter 5 we have explored dependency concepts up to equivalence. We

have compared logics using these concepts with certain fragments of Σ11 and GFP
+
. Our

results are mostly about the expressive power of these logics, while future work in this

area might center around �nding concrete applications for these or similar dependency

concepts.
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6 Concluding Remarks

All in all, we have investigated di�erent fragments of Σ11 and of logics with team

semantics, syntactical characterisations of semantical properties were presented and

new concepts like the inclusion-exclusion games were introduced, that might aid future

research.
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