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Abstract: The ongoing trend toward powertrain electrification and vehicle automation enables
the exploitation of additional energy saving potential through the joint optimization of the
driving trajectory and the hybrid management. To tackle this complex control task within the
E-COSM 2021 Benchmark Challenge, we combine a GLOSA algorithm generating a uniform
speed profile with an optimization-based hybrid powertrain controller employing an equivalent

consumption minimization strategy.
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1. INTRODUCTION

Reducing emissions of greenhouse gases in order to mit-
igate man-made climate change poses an immense chal-
lenge to the mobility sector, which is currently still heavily
dependent on fossil fuels. In addition to the progressive
change in propulsion technology toward electrification of
the powertrain, automated and connected driving is be-
coming the focus of development due to previously un-
tapped energy-saving potentials resulting from the em-
bedding of additional environmental information in the
control of vehicle dynamics (Ma et al. (2019); Wegener
et al. (2020)). However, the combination of the high degree
of freedom over the powertrain operation of a power-split
Hybrid Electric Vehicles (HEVs) with its longitudinal tra-
jectory make the powertrain control task highly complex.

To tackle these challenging issues of next generation pow-
ertrain control, a competition of the benchmark problem
“optimal control of HEVs under V2X connected environ-
ment” is organized within the conference program of IFAC
E-COSM 2021. Within this benchmark challenge, a simu-
lation model of a passenger HEV with power-split hybrid
system and a connected traffic environment are provided
from the organization to validate the developed control
strategy.

In our institute for Mechatronics in Mobile Propulsion
from the RWTH Aachen University, we developed a unique
approach to control the hybrid powertrain using V2X-
information with the aim of increasing total vehicle energy
efficiency. We focus on the generation of a speed profile
with minimal acceleration and deceleration in combination
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with an optimization-based hybrid management showing
that already a relatively simple control logic can achieve
significant energy savings when the trajectory is planned
in a smart way. The purpose of this is to emphasize
the relevance of an efficient driving profile versus an
optimized energy management, to put the necessity of
their common consideration up for discussion and to share
our methodology with researchers in the field of control
strategies for hybrid vehicles.

2. RELATED WORK

For the purpose of analyzing energy-saving potentials of
HEVs, the entire energy conversion chain of the powertrain
from energy storage to vehicle movement can be divided
into a portion determined by the driving style (”"wheel-
to-distance”) and a portion determined by the mode of
operation of the powertrain components (”tank-to-wheel”)
(Vahidi and Sciarretta (2018)). Therefore, also operation
strategies can be divided into two categories: driving strat-
egy and energy management. Driving strategies include all
functions that influence vehicle velocity as well as ensure
safety and drivability. Since a hybrid vehicle has more than
one energy source, this requires an energy management
system to distribute the power required to follow the
planned trajectory among the different powertrain com-
ponents. The overall operating strategy can, according to
the operating goals of driving and energy management,
select the optimal operating actions, i.e. speed and torque
of the power units depending on the hybrid topology, and
thereby control the vehicle’s longitudinal dynamics.

Different methodologies were investigated for the opera-
tion strategies. Heuristic or rule-based operation strategies
have been used most widely in the past due to their ability
to achieve decent results with a moderate implementation
effort. For driving functions, the rule-based (Cooperative)
Adaptive Cruise Control ((C)ACC) with a three layer
cascaded control system is already integrated in the serial
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production of many OEMs (Pananurak et al. (2009)).
The rule-based energy management strategies attempt to
reduce the fuel consumption by calibrating the parameters
of operation modes and torque split. The operating modes
and torque split are typically decided by the requested
wheel torque, actual vehicle velocity and battery charge
states (Ye et al. (2019)).

Dynamic Programming (DP) is a common method for
solving optimal control problems. It provides a globally
optimal solution to nonlinear, nonconvex or mixed-integer
optimal control problems. As a method of vehicle velocity
optimization, for an a priori known route both the en-
ergy consumption and the duration of the journey will
be considered in a cost function and can be minimized
during the solution of the optimization problem. The state-
space of the vehicle will be discretized and decision costs
will be minimized (Gausemeier et al. (2010)). As energy
management system, if the velocity and the altitude profile
of a route are known a priori, the globally optimal control
and state trajectories for achieving the operating objective
(reduction of fuel consumption) can be determined by the
DP (Larsson et al. (2014)). In addition to the control
variables, the internal state variables of the system and
the battery state of charge must also be investigated over
the time interval (Uebel et al. (2018)). Apart from the
required a priori knowledge, limitations of DP arise from
the computational effort. Because of the discretization the
state-space of the solution is large and the optimization is
computationally expensive.

Besides DP, methods based on Pontyagin’s Maximum
Principle (PMP) can also be used to solve the optimal
control problem of hybrid vehicles energy management
through the a priori known route information. Operat-
ing strategies based on PMP are called equivalent-based
strategies. Here, the sum of the actual fuel consumption
and the equivalent fuel consumption of the consumed elec-
tric energy of the battery are represented as an objective
function. Since fuel energy and electric energy are not di-
rectly comparable, the equivalence between the two forms
of energy is represented by an equivalence factor (Zhang
et al. (2016); Han et al. (2017)). If a global solution of the
optimisation is not possible due to missing information
about future traffic scenarios, the Equivalent Consump-
tion Minimization Strategy (ECMS) method derived from
PMP can determine the equivalence factor depending on
the difference between actual and target battery State of
Charge (SOC) and solve the optimisation problem online,
although this produces a suboptimal result (Onori and
Serrao (2011)).

Recently, also data-driven algorithms have entered the
focus of research on operating strategies of HEVs by ad-
dressing the optimal control problems with Reinforcement
Learning (RL). Here, the control task is modeled as a
Markov Decision Process consisting of states, actions, re-
wards and a set of transition probabilities. The RL agent
derives its control strategy, called policy, through learning
from interaction with its environment. This class of algo-
rithms can potentially achieve results close to the global
optimum. Moreover, neither a priori knowledge nor a pre-
diction model is needed. However, disadvantages remain
in the high training duration and the strong dependence
on hyperparameters (Sutton and Barto (2018)). So far,

researchers have utilized RL for different HEV topologies
either to determine the torque or power split for a given
power request (Lian et al. (2020)) or as a stand-alone con-
trol function that directly maps environment information
to powertrain actions (Zhu et al. (2021)).

3. METHODOLOGY

The goal is to derive an energy-efficient driving and
hybrid management strategy for an automated power-split
HEV in a connected, urban traffic scenario utilizing the
E-COSM Benchmark Challenge Simulation Framework
proposed by Xu et al. (2020). The developed controller
determines the torque requests of the powertrain based
on information about the ego vehicle’s state, the route,
the traffic lights ahead and the preceding vehicle. For a
detailed description of the modeling of the powertrain and
the connected traffic scenario, reference is made to the
aforementioned source.

Due to their exponential increase with the velocity, low
energy demands can be achieved by driving as constantly
and slowly as possible. Furthermore, the avoidance of
unnecessary braking events has the effect of minimized
energy losses since braking, whether with the hydraulic
brake, with cut-off of the combustion engine or recuper-
ation, always involves a dissipation of energy. The "tank-
to-wheel” efficiency is depending on the operating mode
of the powertrain components, mainly the engine and the
two electric motors. While in conventional and electric
vehicles the driving trajectory defines the operating points
of the engine or motor respectively, the combined hybrid
powertrain gives additional degrees of freedom regarding
the choice of speeds and torques. However, the components
must always deliver the requested power at the wheel.
Our hypotheses based on previous studies by Plum et al.
(2019) is that the energy saving potentials of the driving
trajectory that result in a low power demand at the wheel
are higher than the savings from an optimized operation
of the engine and motors. Therefore, our highest priority
is to generate a driving trajectory that exhibits as little
acceleration and deceleration as possible to reach the desti-
nation as energy-efficient as possible with a minor increase
in travel time while adhering the given traffic lights. Since
the traffic lights are completely deterministic, the only
cause that requires braking is a slowing preceding vehicle.
Hence, we decouple the driving trajectory as far as possible
from the preceding vehicle. The operating mode of the
powertrain components is not considered in the trajectory
planing and is individually optimized subsequently. The
resulting functional architecture of the proposed power-
train controller is shown in Fig. 1. It consists of the two
main parts, which are the Green Light Optimal Speed
Advisory (GLOSA) responsible for the driving trajectory
and the powertrain controller that converts the target
acceleration into the desired torque of the motor, generator
and combustion engine at the output of the function.

8.1 GLOSA Algorithm

The GLOSA algorithm itself can again be split into
two functions executed serially. The task of the green
phase scheduler is to compute the targeted time at which
the upcoming traffic light shall be passed by the ego
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Fig. 1. Functional architecture of proposed powertrain
controller

vehicle and by that provide the target time of arrival at
the upcoming traffic light. Subsequently, the trajectory
planner generates a trajectory that satisfies this desired
passing time.

The functionality of the green phase scheduler is visualised
in Fig. 2 where the ego vehicle in black has just crossed
a traffic light and the algorithm calculates the next target
time. Firstly, the green phase of the preceding vehicle
is either predicted or, in case the upcoming traffic light
has already been passed, sampled from its past trajectory.
For the prediction, a constant acceleration until 60km/h
followed by a phase of constant velocity are assumed. If the
traffic light, unlike the example in Fig. 2, is red when the
preceding vehicle is predicted to arrive, it is assumed that
the traffic light is passed at the beginning of the next green
phase. This rather simple way of prediction matches the
synthetic, longitudinal trajectory of the preceding vehicle
accurately for free travel. However, it does not account
for other traffic participants in front of the preceding
vehicle or queues in front of traffic lights that can cause
the preceding vehicle to decelerate before the stop line
of the upcoming traffic light since vehicles in front of
the preceding one cannot be sensed. Once the passing
time and thereby the green phase of the preceding vehicle
are predicted or sampled, the target passing time of the
upcoming traffic light is calculated for the ego vehicle.
To make the trajectory independent from the preceding
vehicle in order to minimize the necessity to react to
braking events of the preceding vehicle while satisfying
the maximum delay criteria, a minimum time-gap of 20s
is considered for setting the target for the ego vehicle as
visualised by the red area in Fig. 2. The passing timing
is raised iteratively until the average velocity required
to pass the upcoming traffic light (cf. the black dotted
lines in Fig. 2) deceeds a calibratable velocity threshold
lower than the legal speed of 60km/h. Thereby, the first
and last 2s of each green phase are left out to account
for possible controller deviations that might lead to red
light violations. The function also constantly monitors
the preceding vehicle and once the predicted green phase
changes, e.g. due to a queue in front of the traffic light,
also the target time for the ego vehicle is recalculated
accordingly.

After the scheduling is completed, the trajectory is cal-
culated in order to pass the upcoming traffic light at the

Pred. Preceding Vehicle
— — — Targets for Ego Vehicle

Distance (m)

Time (s)

Fig. 2. Example for generation of target traffic light
passing time

predefined time. For this purpose a constant acceleration
or deceleration is applied until the velocity is sufficient
to pass the traffic light at the stated time with a defined
tolerance. Since the calculation of the target does not take
into account the distance to the preceding vehicle, it does
not yet ensure a collision-free ride. Therefore, the target
acceleration is constantly monitored by the intelligent
driver model by Treiber et al. (2000). This model ensures
a collision-free ride by applying a deceleration when the
distance or headway to the preceding vehicle becomes too
small.

3.2 Powertrain Manager

The second part of the proposed controller incorporates
the two-stage transmission from the target acceleration
into the motor and engine torques. At first, the target
acceleration is converted into a torque demand at the
wheel by considering the driving resistances from rolling
resistance, air drag, slope and acceleration. After the
calculation of the required wheel torque, it is divided
between the required engine, generator and motor in
the second part of the powertrain manager, the hybrid
manager with ECMS methodology. Since the equivalent
factor between fuel consumption and changes of SOC are
known, the torque split can be calculated energetically
optimal online with the ECMS.

To be able to use the ECMS, the combustion engine fuel
consumption and e-motor efficiency maps are required to
estimate the fuel equivalent. These data were generated

with the simulation model, which is provided from the E-
COSM benchmark challenge.

During the optimization, the whole range of the combus-
tion engine speed n;cg,; and torque tq;cg,; is discretized
firstly. The speed and torque of the generator nasgi,
tgmar,i and motor nasge i, tqmae,: will be calculated with
the the kinematic equations of the planetary gearbox based
on the combustion engine operation point and the wheel
speed nyp; and torque tqup:

tqrcEe,i (1)

t P =
qMG1,i (io — 1)
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Hereby, ipiff, %0, @ and i, are the gear ratios of the
differential, planetary gear, counter gear and reduction
gear. Ngeqr is the estimated efficiency of the differential.

The fuel consumption m f.;,; and the changes of the SOC
ASoC; can be calculated utilizing every combination of
ICE speed and torque. The equivalent fuel consumption
M fyel,equi,i Will be calculated with the equivalent factor A:

Mfuel,equi,i = M fuel,i + A ASOCz (5)

where the ASoC; can be calculated with the power of MG1
Prrca,i and MG2 Pyygo,; with the auxiliary power Payx
and battery power losses Ppqtt,10ss divided by the battery
capacity Cappats:
ASoC; = Pycii + Puae,i + Paux + Pattloss (6)
Cappatt

The equivalent fuel consumption is thus calculated for each
possible speed and torque combination and it’s minimal
value decides the optimal control of the vehicle. The
operation points of the combustion engine, generator and
motor with the minimal equivalent fuel consumption will
be transmitted to the vehicle model. Since hydraulic
braking always involves energy loss that could have been
partly recuperated, the hydraulic brake is not used at all.

4. SIMULATION RESULTS

In the following, the results and the control strategy ob-
tained with the presented control scheme are presented.
The E-COSM simulation model provides ten different
traces of the same 16.002 km route with varying preceding
vehicle and traffic light timings. In Tab. 1 the simulation
results for all 10 simulation scenarios are listed. Each
simulation run starts with a balanced SOC of 50 % and
meets the constraints of maximum speed, distance, head-
way, red light violation and travel time. With the given
equivalent factor between electric and chemical energy of
25, the total fuel consumption is composed of the actual
fuel and the weighted difference between initial and final
SOC (cf. formula 5). The results reveal a clear trend
toward charge increasing through load point shifting since
the relatively high equivalent factor favors electric energy
stored in the battery. Further, despite using the same
overall length, traffic light distances and height profile, a
significant variance in total fuel consumption and travel
time can be noted without a clear correlation between
these two quantities. While the two fastest simulation runs
(case 1 and 3) yield the highest total fuel consumption,
case 2 and 6 which are only slightly slower are the most
efficient ones. Also slow travel times can exhibit both
relatively high (case 5) and low (case 4) consumption
which underlines the great influence of the traffic situation
on the travel time and fuel economy. Overall, the total fuel
consumption ranges from 261.8 to 459.1¢g, corresponding
to 2.15liter/100km and 3.77 liter /100km.

Table 1. Simulation results in E-COSM Bench-
mark Challenge Simulator

Case Fuel (g) Final SoC (%) Total Fuel (g) Travel Time (s)

1 986.8 71.66 4453 1966
2 7269 68.6 261.8 1993
3 14281 89.77 433.9 1951
4 687 66.09 284.7 2287
5  561.5 55.4 426.4 2397
6 579 61.52 291 1973
7 8442 69.31 361.6 2359
8 14343 89.01 459.1 2190
9  627.7 61.53 339.3 2235
10 694 66.53 280.8 2181
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Fig. 3. Vehicle distance over time for simulation case 2

For a deeper analysis of the driving strategy simulation
case 2 was selected for visualization. Fig. 3 shows the
driven distance of the ego and preceding vehicle over time
together with the location and signal phases of the traffic
lights. This illustrates the mayor differences in the driving
style between the preceding vehicle and the controlled
ego vehicle. While the preceding vehicle accelerates to its
maximum velocity until it has to stop in front of almost
every traffic light, the velocity of the ego vehicle usually
changes only once after each traffic light. The time gap
in the calculation of the target passing time (cf. Sec. 3)
successfully prevents unnecessary acceleration and braking
maneuvers. The only exception can be observed before the
second traffic light. Here, a queue in front of the traffic
light forces the preceding vehicle to stop and wait around
100 m before the stop line. Since the prediction does not
consider those cases where the preceding vehicle stops at
any distance before the traffic light due to the inability
to track the traffic in front of the preceding vehicle, the
target passing time constantly stays in the middle of the
corresponding green phase. Only when the headway to
the preceding vehicle drops below the monitoring limit,
the IDM forces the ego vehicle to brake and a new target
is calculated. These cases, however, only occur rarely as
the time gap is usually sufficient for the preceding vehicle
to start accelerating before the ego vehicle arrives at the
queue.

Fig. 4 shows the most important quantities of the power-
train for simulation case 2. The velocity and acceleration
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profiles in the upper plot illustrate the sections of constant
velocity between two traffic lights which was already ob-
served in Fig. 3. Apart from some minor control deviations,
the vehicle only accelerates or decelerates shortly after
passing a traffic light to reach the new target passing
time. MG1 regulates the operating point of the combustion
engine and charges the battery if the ICE is turned on.
Therefore, when the ICE is off, also torque and speed of
MGT1 are zero. The optimal hybrid management only turns
on the combustion engine when a certain wheel power is
exceeded and chooses a constant operating point of the
ICE at 90 Nm and 1000 1/min. The energy generated by
the ICE exceeds the required wheel power most of the
time which can be seen by the negative torque demands
of MG2. Thus, the remaining energy is stored in the bat-
tery and eventually released from the battery back to the
wheel later. Despite the energy loss due to double energy
conversion, the relatively high, SOC independent equiva-
lent factor favors this kind of powertrain operation that
leads to an increasing battery SOC. MG2 compensates for
any deviation between the constant power output of the
planetary gearbox and the required power at the wheels.
During pure electric drive mode, MG2 provides the whole
power output.

The lower plot of Fig. 4 visualizes the actual fuel con-
sumption of the ICE, the battery SOC and the total fuel
consumption calculated with the equivalent factor. At the
beginning, the total fuel becomes negative although the
ICE is active. The consumed fuel is partly converted into
electrochemical energy in the battery and also a constant
downward slope enabled stronger recuperation. In the fol-
lowing section with the combustion engine switched off
(around 350 to 800s), the requested power is so low that
the SOC level barely decreases. When the ICE is switched
on afterwards, the effect of the shifted load point becomes
visible most clearly. Between 850 and 1200s, the SOC
drops despite the active ICE which means that the power
request at the wheel exceeds the power provided by the
ICE. Here, the total fuel consumption rises most rapidly.
Afterwards, the SOC rises all the way until the vehicle
has reached its final destination. Hence, the actual fuel
consumed by the ICE rises faster than the total fuel.

5. CONCLUSION AND OUTLOOK

In this paper, we have combined a rule-based GLOSA
Algorithm with an optimal hybrid management based on
ECMS for an energetically optimal operation of a power-
split HEV in a connected, urban traffic environment. The
simulation results indicate that is is possible to decouple
the ego vehicle’s trajectory from the preceding vehicle
to keep a constant velocity during driving and thereby
minimize the requested power at the wheel while achieving
an acceptable travel time. With the given equivalent factor
between chemical and electrical energy, the optimal hybrid
management tends to charging the battery via load point
shifting. The combustion engine is only active at speeds
above around 30kilometer/hour and is operated for the
most part at a constant operating point.

Future work involves an extension of the prediction algo-
rithm to estimate and react on queues in front of traffic
lights. We also target the implementation of a controller
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Fig. 4. Simulation results for scenario 2

based on reinforcement learning for solving the optimal
problem directly without the necessity of splitting trajec-
tory generation and hybrid management. Here, the de-
signed controller can serve as a benchmark for any con-
trollers developed in future research.
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