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Abstract
Background and purpose: It is currently thought that embolic stroke of undetermined 
source (ESUS) has diverse underlying hidden etiologies, of which cardioembolism is one 
of the most important. The subgroup of patients with this etiology could theoretically 
benefit from oral anticoagulation, but it remains unclear if these patients can be correctly 
identified from other ESUS subgroups and which markers should be used. We aimed 
to determine whether a machine- learning (ML) model could discriminate between ESUS 
patients with cardioembolic and those with non- cardioembolic profiles using baseline 
demographic and laboratory variables.
Methods: Based on a prospective registry of consecutive ischemic stroke patients sub-
mitted to acute revascularization therapies, an ML model was trained using the age, sex 
and 11 selected baseline laboratory parameters of patients with known stroke etiology, 
with the aim of correctly identifying patients with cardioembolic and non- cardioembolic 
etiologies. The resulting model was used to classify ESUS patients into those with cardi-
oembolic and those with non- cardioembolic profiles.
Results: The ML model was able to distinguish patients with known stroke etiology into 
cardioembolic or non- cardioembolic profile groups with excellent accuracy (area under 
the curve = 0.82). When applied to ESUS patients, the model classified 40.3% as having 
cardioembolic profiles. ESUS patients with cardioembolic profiles were older, more fre-
quently female, more frequently had hypertension, less frequently were active smokers, 
had higher CHA2DS2- VASc (Congestive heart failure or left ventricular systolic dysfunc-
tion, Hypertension, Age ≥ 75 [doubled], Diabetes, Stroke/transient ischemic attack [dou-
bled], Vascular disease, Age 65– 74, and Sex category) scores, and had more premature 
atrial complexes per hour.
Conclusions: An ML model based on baseline demographic and laboratory variables was 
able to classify ESUS patients into cardioembolic or non- cardioembolic profile groups and 
predicted that 40% of the ESUS patients had a cardioembolic profile.
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INTRODUC TION

Embolic ischemic strokes of undetermined source (ESUS), also known 
as embolic strokes without an identified cause, impose a great bur-
den on both individuals and society, and constitute 10%– 25% of all 
ischemic strokes [1,2]. ESUS patients are reported to have experi-
enced less severe strokes on admission, but are significantly younger 
than patients with other stroke subtypes, and therefore their quality 
of life and productivity are reduced the longest by stroke [1,3].

The stroke recurrence rate of ESUS patients (6.8 per 100 patient- 
years) is similar to that of cardioembolic stroke patients (7.0 per 100 
patient- years) and higher than in all other stroke subtypes [4].

Hart et al. [5] introduced the acronym ESUS for embolic cryp-
togenic strokes in 2014, with the assumption that this group of pa-
tients could benefit from anticoagulation irrespective of the origin of 
the thrombus. However, in both the NAVIGATE- ESUS and RE- SPECT 
ESUS trials, no benefit of anticoagulation compared to antiplatelet 
monotherapy was found in terms of recurrent ischemic stroke risk in 
ESUS patients [6,7]. It became clear that ESUS represents a heter-
ogenous group of patients in terms of stroke etiology, and that the 
identification of ESUS subgroups could allow tailored therapy for 
prevention of recurrent stroke [8]. The concept of atrial cardiopathy 
as the anatomical and functional substrate for atrial fibrillation has 
emerged as a possible cardioembolic cause of stroke or as a marker 
for increased risk of future atrial fibrillation detection [9]. Indeed, a 
secondary analysis of the NAVIGATE- ESUS trial showed that antico-
agulation was superior to acetylsalicylic acid in a subset of ESUS pa-
tients who demonstrated moderate to severe left atrial enlargement 
[10], which is considered one of the markers for atrial cardiopathy.

There is also increasing evidence that non- stenosing athero-
sclerotic carotid plaques may play a role in the etiology of stroke 
in some ESUS patients [11– 19], Hence, the identification of clinical, 
laboratory and imaging variables which may reveal the underlying 
etiologies is of paramount importance.

The aim of this study was to analyze whether a machine- 
learning (ML) model using a set of baseline demographic and lab-
oratory variables could differentiate between cardioembolic and 
non- cardioembolic etiologies in patients with known stroke cause, 
and if it could be used to further classify subgroups of patients with 
ESUS.

METHODS

We conducted a retrospective analysis based on a local prospec-
tive registry of consecutive acute ischemic stroke patients who 
were admitted to our comprehensive stroke center during the pe-
riod between March 2019 and October 2020. The beginning of the 
study period corresponds to the time at which our routine labora-
tory stroke diagnostic profile was adjusted and expanded to include 

more variables, such as N- terminal pro- brain natriuretic peptide 
(NTproBNP). Our analysis was approved by the Ethics Committee 
of the Medical Faculty of the RWTH Aachen University (approval 
reference 335/15).

We selected all adult patients who fulfilled the following inclu-
sion criteria: (i) acute ischemic stroke; (ii) being submitted to intra-
venous thrombolysis (IVT) and/or endovascular stroke treatment 
(EVT); and (iii) having received a complete etiological investigation 
according to the definition of Hart et al. [5], including transthoracic 
echocardiography, brain computed tomography (CT) or magnetic 
resonance imaging (MRI), 12- lead electrocardiogram (ECG), cardiac 
monitoring for at least 24 h with automatic rhythm detection and 
imaging of the extracranial and intracranial arteries supplying the 
area of brain ischemia.

Exclusion criteria were as follows: (i) stroke of undetermined eti-
ology because of the simultaneous presence of two or more major 
causes for stroke; (ii) acute lacunar infarct; (iii) small vessel disease as 
stroke etiology. The etiology of ischemic stroke was determined ac-
cording to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) 
[20] classification and according to the ESUS definition proposed by 
Hart et al. (non- lacunar ischemic stroke; absence of extracranial or 
intracranial atherosclerosis causing ≥50% luminal stenosis in arteries 
supplying the area of ischemia; no major- risk cardioembolic source 
of embolism; no other specific cause of stroke identified) [5] Acute 
lacunar infarcts were defined according to the criteria proposed by 
Hart et al. [5]

Data collection

Demographic information, comorbidities, vascular risk factors, 
baseline National Institutes of Health Stroke Scale (NIHSS) score 
and acute stroke treatments were collected from our local stroke 
registry.

Stroke etiology was reviewed by at least two independent ex-
perienced vascular neurologists in every case and classified as car-
dioembolic, non- cardioembolic or ESUS after review of individual 
patient records. Data on the following baseline laboratory blood vari-
ables were collected from the individual patient records: NTproBNP; 
high- sensitivity Troponin T; lactate dehydrogenase (LDH); D- dimers; 
glycated hemoglobin (HbA1c); low- density lipoprotein (LDL); high- 
density lipoprotein (HDL); C- reactive protein (CRP); glomerular fil-
tration rate (GFR); red cell distribution width; and hematocrit. In our 
center, blood samples for routine laboratory stroke diagnostic are 
collected during the first 24– 48 h after admission.

The presence of acute infarcts in multiple arterial territories and 
of old embolic infarcts in other arterial territories was collected after 
review of the CT or MRI scans in the acute phase. The presence of 
left atrial dilation was assessed from the reports of transthoracic or 
transesophageal echocardiograms. The number of atrial premature 
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complexes per hour was calculated based on the reports of 24-  and 
72- h Holter ECG.

Machine learning

Using data from cardioembolic and non- cardioembolic stroke pa-
tients, different ML models were trained and validated with the aim 
of distinguishing cardioembolic from non- cardioembolic stroke pa-
tients. For the development of the models, only a set of 11 selected 

baseline laboratory variables, as well as age and sex, were used 
(Table 1).

We used the PyCaret ML library for comparing a total number 
of 18 individual ML algorithms. For each model, data on 80% of the 
patients with known cardioembolic and non- cardioembolic stroke 
etiology were randomly selected as the training set, whereas data 
on the remaining 20% of patients subsequently formed the valida-
tion set. The validation group was used to test the performance of 
the created models for distinguishing between cardioembolic and 
non- cardioembolic stroke etiologies.

TA B L E  1  Baseline characteristics of patients without embolic stroke of undetermined source, stratified by stroke etiology

Cardioembolic etiology
(n = 183)

Non- cardioembolic etiology
(n = 136) p

Median age, years (IQR) 81.0 (75.0– 85.0) 67.5 (59.3– 78.8) <0.001

Female sex, n (%) 104 (56.8) 45 (33.1) <0.001

Comorbidities, n (%)

Hypertension 160 (87.4) 108 (79.4) 0.053

Diabetes mellitus 56 (30.6) 48 (35.3) 0.376

Dyslipidemia 86 (47.0) 62 (45.6) 0.763

Current smoking 17 (9.3) 40 (29.4) <0.001

Heart failure 30 (16.4) 6 (4.4) <0.001

Coronary heart disease or myocardial 
infarction

63 (34.6) 26 (19.1) 0.002

Peripheral artery disease 23 (12.6) 13 (9.6) 0.401

Median CHA2DS2- VASc score (IQR) 6 (5– 7) 5 (4– 6) <0.001

Median baseline NIHSS score (IQR) 12 (7– 17) 9 (4– 15) 0.013

Hyperacute revascularization therapies, n (%)

Intravenous thrombolysis 98 (53.6) 75 (55.1) 0.777

Endovascular treatment 137 (74.9) 101 (74.3) 0.903

Imaging characteristics, n (%)

Acute infarcts in multiple arterial territories 25 (13.7) 16 (11.8) 0.617

Old embolic infarcts in other arterial 
territories

40 (21.9) 19 (14.0) 0,073

Admission laboratory variables

Mean hematocrit, % (SD) 35.6 (±5.6) 36.6 (±6.1) 0.129

Median red cell distribution width, % (IQR) 13.8 (13.2– 15.0) 13.5 (12.8– 14.3) 0.001

Median D- Dimers, ng/ml (IQR) 3525 (1444– 15212) 2133 (1114–  6193) 0.033

Median HbA1c, % (IQR) 5.8 (5.5– 6.4) 5.8 (5.4– 6.7) 0.748

Median HDL cholesterol, mg/dl (IQR) 43 (35– 53) 41 (33– 48) 0.048

Median LDL cholesterol, mg/dl (IQR) 95 (71– 123) 105 (76– 128) 0.080

Median LDH, U/L (IQR) 225 (194– 274) 183 (165– 219) <0.001

Median high- sensitivity troponin T, pg/ml 
(IQR)

23 (14– 46) 16 (8– 30) <0.001

Median NTproBNP, pg/ml (IQR) 1714 (842–  3546) 262 (125–  855) <0.001

Median GFR, ml/min/1.73 m2 (IQR) 69.4 (50.3–  81.7) 81.8 (60.0– 96.3) <0.001

Median CRP, mg/L (IQR) 7.6 (2.6– 21.2) 3.8 (1.9– 11.8) 0.007

Abbreviations: CRP, C- reactive protein; GFR, glomerular filtration rate; HbA1c, glycated hemoglobin; HDL, high- density lipoprotein; IQR, 
interquartile range; LDH, lactate dehydrogenase; LDL, low- density lipoprotein; NIHSS, National Institutes of Health Stroke Scale; NTproBNP, N- 
terminal pro- brain natriuretic peptide.
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The process of selecting the best- performing model was ac-
complished using 10- fold cross- validation, whereby the training and 
testing steps mentioned above were carried out 10 times. For each 
execution, the 80% of patients used for training and the 20% desig-
nated for testing were randomly chosen.

Key performance indicators, such as area under the curve (AUC) 
and classification accuracy, were obtained for each model by calcu-
lating the arithmetic mean of the values of all 10 executions. AUC 
was chosen as the most important indicator due to its wide applica-
tion in the evaluation of medical diagnostic tests [21]. On compari-
son of the AUCs, the CatBoost classifier returned the best results 
and was therefore used in the next step to classify ESUS patients 
into cardioembolic or non- cardioembolic profiles.

CatBoost classifier

We implemented categorical boosting (CatBoost), which is a 
competitive variant of gradient boosting, a supervised ML tech-
nique [22]. Gradient boosting iteratively constructs a set of func-
tions out of training data to minimize the loss function, which is 
achieved by performing gradient descent in a functional space. 
The base models are decision trees trained on different splits of 
the dataset that are combined into one strong classifier with an 
ensemble technique [22].

CatBoost uses ordered boosting, a modification of standard 
gradient boosting, to prevent the so- called prediction shift during 
computation of the gradients, thereby improving the generalization 
ability on the training set. This is implemented by generating random 
permutations of the training dataset at the beginning and sampling 
one of the permutations for constructing a decision tree in each 
iteration.

CatBoost implements conversion of categorical features into 
numerical values based on the ordering principle. Category values 
are substituted by numerical values with the help of an introduced 
permutation variable based on the foregoing training iterations. In 
doing so, the whole training dataset can be used for the conver-
sion, moreover, reducing prediction shift [22].The hyperparameters 
of the CatBoost Classifier were as follows: learning rate = 0.006, 
maximal depth = 6, subsample rate = 0.8, L2 regularization = 3, 
iterations = 1000.

Group comparisons

We compared the characteristics of patients in the cardioembolic 
and non- cardioembolic stroke etiology subgroups using chi- squared 
tests for categorical variables, Mann– Whitney U- tests for continu-
ous variables, which had a non- normal distribution, and unpaired 
T- tests for the normally distributed continuous variable hematocrit. 
Using the same tests, we also compared the groups of ESUS patients 
classified as having cardioembolic and non- cardioembolic profiles. 
The level of significance was set at an alpha value of 0.05. Statistical 

analyses were performed with IBM SPSS Statistics 27 software (IBM 
Corp.).

RESULTS

During the study period, 1885 patients with acute ischemic stroke 
were admitted to our hospital, among these, 543 patients received 
IVT and/or EVT. We excluded 46 patients with lacunar stroke and 
small vessel disease, 41 patients with simultaneous cardioembolic 
and non- cardioembolic cause of stroke and eight patients with in-
complete etiological investigation (Figure 1). Hence, our study popu-
lation consisted of 448 patients with a median (interquartile range 
[IQR]) age of 76 (64– 83) years and a median (IQR) NIHSS score of 
9 (4– 15). A total of 46.7% of patients were female, 36.2% received 
IVT only, 37.9% received EVT only, and 25.9% underwent both IVT 
and EVT. With regard to etiology, 183 patients had a cardioembolic 
etiology, 136 patients had a non- cardioembolic etiology and 129 pa-
tients had ESUS.

Training set

For the ML training, only non- ESUS patients were used. Table 1 
shows the characteristics of non- ESUS patients according to the 
presence of cardioembolic and non- cardioembolic etiologies. 
Patients with cardioembolic strokes were significantly older, were 
more often female, had higher CHA2DS2- VASc (Congestive heart 
failure or left ventricular systolic dysfunction, Hypertension, Age 
≥ 75 [doubled], Diabetes, Stroke/transient ischemic attack [dou-
bled], Vascular disease, Age 65– 74, and Sex category) scores, 
and had more severe strokes (median [IQR] NIHSS score 12 [7– 
17] vs. 9 [4.0– 15.25]; p = 0.013) when compared to patients 
with non- cardioembolic stroke. The prevalence of heart failure, 
coronary heart disease or myocardial infarction was higher in 
cardioembolic stroke patients, but current smoking was higher in 
non- cardioembolic stroke patients. In addition, the group of car-
dioembolic patients had significantly higher values for seven of 
the 11 laboratory variables examined (NTproBNP, high- sensitivity 
troponin T, D- dimers, CRP, HDL cholesterol, LDH and red cell dis-
tribution width), whereas they had significantly lower values in 
one variable (GFR).

Machine- learning classification

Using the 11 laboratory variables as well as age and sex, the result-
ing CatBoost Classifier ML model could categorize non- ESUS stroke 
patients into cardioembolic or non- cardioembolic etiology with ex-
cellent accuracy (AUC 0.82). When applied to the ESUS patients, 
the ML algorithm classified 40.3% of individuals as having a cardi-
oembolic profile, and 59.7% as having a non- cardioembolic profile 
(Figure 1).
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Patients with ESUS

Table 2 describes the baseline characteristics of ESUS patients strat-
ified by cardioembolic or non- cardioembolic profile, originating from 
the CatBoost Classifier ML model based on age, sex, and baseline 
laboratory markers. In summary, ESUS patients classified as having 
a cardioembolic profile by our model were significantly older com-
pared to those classified as non- cardioembolic. Furthermore, they 
were more often female, more likely to have arterial hypertension, 
were less frequently active smokers, had higher CHA2DS2- VASc 
scores, and had more premature atrial complexes per hour. Finally, 
significant differences in the majority of the laboratory variables 
which were used in the ML model were found between ESUS pa-
tients with cardioembolic and non- cardioembolic profiles (Table 2).

DISCUSSION

We demonstrated that by training an ML model using only baseline 
characteristics such as age, sex, and a set of routine laboratory vari-
ables, it is possible to accurately classify stroke etiology into either 
cardioembolic or non- cardioembolic in patients with known stroke 
etiology. This model may help to distinguish cardioembolic and non- 
cardioembolic profiles in ESUS patients, with approximately 40% 
of the ESUS patients in our dataset having been attributed a cardi-
oembolic profile by our ML algorithm. Thus, our model further sup-
ports the hypothesis that ESUS represents a heterogeneous patient 

population, fewer than half of whom may have stroke attributable 
to cardioembolic pathophysiology. Our findings are not in line with 
the initial hypothesis by Hart et al. [5] that oral anticoagulation could 
lead to fewer stroke recurrences in all ESUS patients, and help to ex-
plain the results of the RE- SPECT ESUS and NAVIGATE- ESUS trials, 
in which not all patients benefited from anticoagulation [6,7].

This is in accordance with the review by Kamel et al. [8], in which 
the authors conclude that ESUS has different underlying occult eti-
ologies. This perspective was assumed in two ongoing clinical trials 
examining the benefit of anticoagulation in subgroups of patients 
with ESUS believed to have a higher risk of recurrence or to be 
associated with a higher likelihood of cardioembolic pathophysiol-
ogy, the ATTICUS [23] and the ARCADIA [24] trials. For these two 
randomized controlled trials, several clinical, laboratorial, electro-
physiological, and echocardiographic markers were used to identify 
higher risk for cardiac embolism. It is known that several markers, 
such as left atrial dilation, higher NTproBNP values and frequent 
premature atrial complexes, are associated with a greater likelihood 
of incident atrial fibrillation in patients with cryptogenic stroke [25]. 
Even though atrial cardiopathy is associated with increased detec-
tion of atrial fibrillation during long- term follow- up of ESUS patients 
[26], it is uncertain if these patients could benefit from oral antico-
agulation. The challenge is to identify markers that predict incident 
atrial fibrillation and stroke recurrence not only with good sensitivity 
but also with a good positive predictive value to avoid unnecessary 
exposure of ESUS patients to the risks of anticoagulation.

Because of their mathematical complexity, automated solutions 
require critical scientific judgement for correct implementation and 
interpretation [27]. Therefore, it is essential to compare inter- study 
and inter- population results of ML applications. The ML model of a 
similar study by Kamel et al. [28], who also developed an algorithm to 
classify ESUS patients, predicts occurrence of cardioembolic ESUS 
in 44% of patients, which is similar to the results of our model.

In the testing phase, which measured the accuracy of the ML 
model in classifying patients with known stroke etiology, our 
model presented similar diagnostic accuracy to that of the model 
developed by Kamel et al. It is important to point out here that only 
age, sex, and a set of 11 baseline laboratory blood variables were 
used to train our algorithm, whereas Kamel et al. employed a total 
of 174 features, including a high number of echocardiographic and 
brain imaging variables, many of which are not part of routine di-
agnostics [28].

The main limitations of our study are related to its retrospective 
nature and the relatively small study population size. Additionally, 
the ML method used does not provide cut- off values for each vari-
able included in the model or the weight of each variable in the 
model, which preclude the construction of a score for etiological 
stratification of individual patients based solely on the current re-
sults. The advantage of our model is that it uses parameters which 
can be obtained quickly in newly admitted patients. It demonstrates 
that it may be possible to use a set of baseline readily available pa-
rameters to develop rapid, easy- to- perform, and cost- effective diag-
nostic tools to distinguish between different ESUS subtypes as well 

F I G U R E  1  Concept of machine- learning classification in embolic 
stroke of undetermined source (ESUS) patients
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as different stroke types in general. In this context, ML algorithms 
can help to find more individualized and thus more precise diagno-
ses and therapies for ESUS patients, which is an important step in 
the light of personalized medicine. We predict that ML models may 
become broadly used to develop clinical decision support systems, 
which will be based on large multicentric datasets. One of the most 
important advantages of ML methods is that they provide the op-
portunity to analyze non- linear interactions among a high number 
of variables, which can provide models that are more robust and 
that follow more reliably the clinical observations. There are also 
key challenges for their clinical application, such as the need for 
large high- quality datasets originating from multiple centers which 

accurately represent the target population, the need to accommo-
date dataset shift across time, and the need for early recognition and 
elimination of accidental confounder fitting and of algorithmic bias, 
among others [29].

The main conclusion of our study is that it is possible to clas-
sify subgroups of patients with ESUS into cardioembolic and 
non- cardioembolic profile groups by using limited demographic in-
formation and a set of baseline blood parameters. Patients with ESUS 
and a non- cardioembolic profile comprise the majority of ESUS pa-
tients. Future studies addressing not only isolated markers but also 
sets of readily available parameters with high sensitivity and speci-
ficity for higher risk of stroke recurrence or incident atrial fibrillation 

TA B L E  2  Baseline characteristics of patients with embolic stroke of undetermined source, stratified by machine- learning classification

Classified as cardioembolic
(n = 52)

Classified as non- cardioembolic
(n = 77) p

Median age, years (IQR) 80.5 (74.0– 83.0) 62.0 (52.5– 71.5) <0.001

Female sex, n (%) 35 (67.3) 25 (32.5) <0.001

Comorbidities, n (%)

Arterial hypertension 43 (82.7) 50 (64.9) 0.027

Diabetes mellitus 11 (21.2) 18 (23.4) 0.767

Dyslipidemia 22 (42.3) 37 (48.1) 0.521

Current smoking 3 (5.8) 14 (18.2) 0.041

Coronary heart disease or myocardial infarction 10 (19.2) 7 (9.1) 0.095

Peripheral artery disease 2 (3.8) 0 (0) 0.083

Median CHA2DS2- VASc score (IQR) 6 (5– 6) 4 (3– 5) <0.001

Median baseline NIHSS (IQR) 5 (4– 9) 4 (2– 9) 0.281

Hyperacute revascularization therapies, n (%)

Intravenous thrombolysis 41 (78.8) 64 (83.1) 0.541

Endovascular treatment 22 (42.3) 26 (33.8) 0.325

Imaging characteristics

Acute infarcts in multiple arterial territories 10 (19.2) 7 (9.1) 0.095

Old embolic infarcts in other arterial territories 9 (17.3) 9 (11.7) 0.366

Severe left atrial dilation 0 (0) 0 (0) - 

Median premature atrial complexes per hour (IQR) 5.5 (0.5– 32.5) 0.9 (0.3– 3.3) 0.006

Admission laboratory variables

Mean hematocrit, % (SD) 35.4 (±4.5) 39.4 (±4.5) <0.001

Median red cell distribution width, % (IQR) 13.2 (12.8– 14.3) 13.0 (12.5– 13.5) 0.016

Median D- Dimers, ng/ml (IQR) 5346 (1887– 11167) 1558 (857– 2184) <0.001

Median HbA1c, % (IQR) 5.6 (5.5– 6.0) 5.5 (5.3– 5.8) 0.171

Median HDL cholesterol, mg/dl (IQR) 47 (41– 67) 44 (36– 54) 0.011

Median LDL cholesterol, mg/dl (IQR) 103 (80– 124) 103 (76– 135) 0.708

Median LDH, U/l (IQR) 217 (189– 268) 172 (159– 194) <0.001

Median high sensitivity troponin T, pg/ml (IQR) 18 (10– 32) 9 (4– 14) <0.001

Median NTproBNP, pg/ml (IQR) 874 (559– 1647) 119 (48– 241) <0.001

Median GFR, ml/min/1.73 m2 (IQR) 69.0 (54.7– 81.6) 93.0 (80.5– 102.1) <0.001

Median CRP, mg/l (IQR) 3.4 (1.3– 16.3) 1.8 (0.9– 5.4) 0.041

Abbreviations: CRP, C- reactive protein; GFR, glomerular filtration rate; HbA1c, glycated hemoglobin; HDL, high- density lipoprotein; LDH, lactate 
dehydrogenase; LDL, low- density lipoprotein; IQR, interquartile range; NTproBNP, N- terminal pro- brain natriuretic peptide; SD, standard deviation.
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in ESUS patients are required. For this purpose, we suggest that a 
score including not only demographic variables (e.g., age and sex), 
comorbidities (e.g., arterial hypertension) and blood biomarkers (e.g., 
NTproBNP, D- dimers), but also echocardiography markers (e.g., left 
atrial size, left atrial spontaneous contrast), electrophysiological 
markers (e.g., burden of atrial premature complexes, atrial runs) and 
imaging markers (e.g., left atrial fibrosis) could be useful. In addition, 
further investigation is needed to assess whether the strategy to an-
ticoagulate ESUS patients with such cardioembolic profiles may be 
beneficial.
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