
Neural Sequence-to-Sequence Modeling
for Language and Speech Translation

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

einer Doktorin der Naturwissenschaften genehmigte Dissertation

vorgelegt von

M.Sc.
Parnia Bahar
aus Teheran, Iran

Berichter: Univ.-Prof. Dr.-Ing. Hermann Ney
Professor François Yvon
Univ.-Prof. Dr. rer. pol. Stefan Decker

Tag der mündlichen Prüfung: 24. November 2022

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Eidesstattliche Erklärung

Ich, Parnia Bahar,
erkläre hiermit, dass diese Dissertation und die darin dargelegten Inhalte die eigenen sind und
selbstständig, als Ergebnis der eigenen originären Forschung, generiert wurden.

Hiermit erkläre ich an Eides statt

1. Diese Arbeit wurde vollständig oder größtenteils in der Phase als Doktorand dieser Fakultät
und Universität angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor für einen akademischen Abschluss
oder eine andere Qualifikation an dieser oder einer anderen Institution verwendet wurde,
wurde dies klar angezeigt;

3. Wenn immer andere eigene- oder Veröffentlichungen Dritter herangezogen wurden, wurden
diese klar benannt;

4. Wenn aus anderen eigenen- oder Veröffentlichungen Dritter zitiert wurde, wurde stets die
Quelle hierfür angegeben. Diese Dissertation ist vollständig meine eigene Arbeit, mit der
Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstützung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen basiert, wurde
von mir klar gekennzeichnet, was von anderen und was von mir selbst erarbeitet wurde;

7. Teile dieser Arbeit wurden zuvor veröffentlicht (Details in Kapitel 1.6.1 und 8).

Aachen, den 24 November 2022

Parnia Bahar

iii

To my father.

Acknowledgments

I would like to express my sincere gratitude to many people who supported me in one way or
another during these years as a Ph.D. student.

First, I would like to thank my supervisor, Prof. Dr.-Ing. Hermann Ney, for giving me the
great opportunity to work and do research at the Chair of Computer Science 6 of RWTH Aachen
University. His great support, invaluable supervision, and precious suggestions truly opened new
doors towards a clear and scientific way of thinking, and his immense knowledge inspired the
development of new ideas during the course of my Ph.D. degree.

I also would like to thank Prof. François Yvon and Prof. Dr. rer. pol. Stefan Decker for being
on my thesis committee and taking the time to give insightful comments and feedback.

My special thanks to Dr. Ralf Schlüter for sharing his ideas and insights for automatic speech
recognition and being open to discussions on the topic.

Further, I am deeply grateful to all members of the institute for the cherished time spent together
during my studies. It was a pleasure working with you, and your assistance and teamwork at every
stage of the research contributed to making a fun Ph.D. journey for me. My thanks go to my
colleagues Albert, Andreas, Christian D., Christian H., Christoph, David, Eugen, Harald, Jörn,
Jan P., Jan R., Julian, Kazuki, Malte, Markus K., Mohammad, Nick, Oskar, Patrick, Pavel, Peter,
Stephan, Tamer, Tobias, Volker, Wei, Weiyue, Wilfried, Yingbo, Yunsu, Zoltán, to our system
administrators Stefan and Thomas, and to our secretaries Stephanie, Dhenya and Anna.

My thanks also extend to the machine translation team for their fruitful conversations on the
topic. Thank you Andreas, Christian H., David, Jörn, Jan P., Jan R., Julian, Malte, Stephan,
Tamer, Weiyue, Yingbo, and Yunsu. Additionally, I would acknowledge Albert for his great
guidance on RETURNN implementation and deep discussions on speech recognition, and Evgeny
from AppTek for the great discussion and plentiful experience on speech translation.

I also appreciate all the support I received from supervising talented students during their
Bachelor’s and Master’s studies. In particular, Christopher, Nikita, and Tobias significantly
influenced the direction of this dissertation.

I would like to thank the following people for their insightful comments and suggestions in
proofreading my dissertation despite their tight schedules: Christian H., David, Jan R., Mohammad,
Nick, Weiyue, and Yingbo.

Finally and most importantly, my acknowledgments would not be complete without giving
thanks to my friends and family for their encouraging support, especially my mother, brother, and
grandmother. Your patient, loving support through all stages of life, and tremendous belief in me
over these years were the main source of confidence and motivation to complete this thesis. I owe
this work first and foremost to you.

vii

Abstract

In recent years, various fields in human language technology have been advanced by the success
of neural sequence-to-sequence modeling. The application of attention models to automatic speech
recognition, text and speech machine translation has become dominant and well-established.
Although the effectiveness of such models has been documented in scientific papers, not all aspects
of attention sequence-to-sequence models have been explored, and some essential concepts are still
missing. Therefore, the main contribution of this thesis centers around redesigning attention models
by proposing novel alternative models in terms of architecture and mathematical formulation for
language technology.

As attention models do not make any conditional dependence assumption on previous attention
information, inspired by statistical word alignments, this work first extends recurrent attention
models by implicitly including more alignment information from previous output positions.

Furthermore, from a modeling perspective, this research goes beyond current sequence-to-
sequence backbone models to directly incorporate input and output sequences in a 2D structure
where an attention mechanism is no longer required. This model distinguishes itself from attention
models in which inputs and outputs are treated as one-dimensional sequences over time and then
combined with an attention mechanism. In contrast to attention models which do not reinterpret
encoder states while decoding, the proposed model enhances the degree of variance in context
vectors by refining input representations to be sensitive to the partial translation.

Current state-of-the-art attention models also lack an explicit alignment, a core component
of traditional systems. Instead, their attention mechanism may be considered to produce an
implicit alignment. Such a gross simplification of a complex process complicates the extraction of
alignments between input and output positions. To enable attention models to be explainable and
their output to be better controlled, the next part of this study integrates the attention model
into the hidden Markov model formulation by introducing alignments as a sequence of hidden
variables. Since marginalization has an exponential number of terms in the alignment dependency
order of the model, a zero-order assumption that is simpler and more efficient is explored.

Finally, an exciting research direction is to combine speech recognition with text machine
translation for speech-to-text translation. Besides advancing a cascade of independently trained
speech recognition and machine translation systems, this thesis sheds light on multiple end-to-end
models to directly translate speech inputs to target texts. In this context, promising methods
are borrowed from speech recognition, and best practices are established for direct modeling.
Addressing and revisiting already proposed methods in the literature, the last part of this study
investigates and develops new approaches to leverage all types of available training data, i.e.,
speech-to-source, source-to-target, and speech-to-target text data. Ultimately, it is shown that
end-to-end models can practically translate speech utterances as a substitute solution to cascaded
speech translation.

ix

Kurzfassung

In den letzten Jahren wurden verschiedene Bereiche menschlicher Sprachtechnologie durch
den Erfolg neuronaler Sequenz-zu-Sequenz-Modellierung vorangebracht. Die Anwendung von
Attention-Modellen in der automatischen Spracherkennung sowie in der maschinellen Übersetzung
von geschriebener und gesprochener Sprache hat sich inzwischen etabliert. Obwohl die Effektivität
solcher Modelle in wissenschaftlichen Arbeiten dokumentiert wurde, sind noch nicht alle Aspekte
von Sequenz-zu-Sequenz-Modellen erforscht worden, die auf Attention-Modellen basieren, und
einige wesentliche Konzepte fehlen noch. Daher konzentriert sich diese Arbeit auf die Umgestaltung
von Attention-Modellen, indem neue Alternativen für die Sprachtechnologie vorgeschlagen werden.

Attention-Modelle haben keine bedingten Abhängigkeiten zu früheren Attention-Informationen.
Inspiriert von statistischen Wortalignierungen erweitert diese Arbeit zunächst das rekurrente
Attention-Modell durch die implizite Einbeziehung weiterer Alignierungsinformationen aus früheren
Ausgabepositionen.

Desweiteren geht diese Arbeit hinsichtlich der Modellierung über die derzeitigen Sequenz-zu-
Sequenz-Modelle hinaus, indem Eingabe- und Ausgabesequenzen direkt in eine 2D-Struktur
einbezogen werden, für die ein Attention-Mechanismus nicht mehr erforderlich ist. Dieses Modell
unterscheidet sich von Attention-Modellen, bei denen die Eingabe und Ausgabe als eindimensionale
Sequenzen über die Zeit behandelt und dann mit einem Attention-Mechanismus kombiniert werden.
Im Gegensatz zu Attention-Modellen, welche die Encoder-Zustände während der Dekodierung
nicht neu interpretieren, erhöht das vorgeschlagene Modell die Expressivität der Kontextvektoren,
indem es die Eingangsrepräsentationen so verändert, dass sie von der partiellen Übersetzung
abhängen.

Den aktuellen Attention-Modellen fehlt auch eine explizite Alignierung, eine Kernkomponente
traditioneller Systeme. Stattdessen verfügen sie über einen effektiven Attention-Mechanismus, der
als eine implizierte Form der Alignierung betrachtet werden kann. Eine solche starke Vereinfachung
eines komplexen Prozesses erschwert die Extraktion von Alignierungen zwischen Eingabe- und
Ausgabepositionen. Um die Erklärbarkeit von Attention-Modellen zu verbessern und eine besser
kontrollierbare Ausgabe zu ermöglichen, wird im nächsten Teil dieser Arbeit das Attention-Modell
in die Formulierung des Hidden Markov Modelles integriert, indem Alignierungen als eine Folge
von verborgenen Variablen eingeführt werden. Da die Marginalisierung in der Ordnung der
Alignierungsabhängigkeit exponentiell ist, wird eine einfachere und effizientere Approximation, in
der keine Abhängigkeit angenommen wird, erforscht.

Eine interessante Forschungsrichtung ist schließlich die Kombination von automatischer
Spracherkennung und Textübersetzung hin zu Sprache-zu-Text-Übersetzung. Neben der
Aneinanderreihung von unabhängig voneinander trainierten Spracherkennungs- und maschinellen
Übersetzungssystemen beleuchtet diese Arbeit verschiedene End-to-End-Modelle zur direkten
Übersetzung von gesprochener Sprache in einen Text. In diesem Zusammenhang werden vielver-
sprechende Methoden aus der Spracherkennung aufgegriffen und erfolgreiche Verfahren für die

xi

direkte Modellierung etabliert. Der letzte Teil dieser Studie untersucht und entwickelt neue Ansätze
zur Nutzung verfügbarer Trainingsdaten, wobei bereits in der Literatur vorgeschlagene Metho-
den aufgegriffen werden. Letztlich wird gezeigt, dass End-to-End-Modelle eine praxistaugliche
Alternative zur Kombination von Spracherkennung und maschineller Übersetzung sein können.

Contents

1 Introduction 1
1.1 Terminology and Notation . 1

1.2 Machine Translation . 2

1.2.1 Word Alignment . 4

1.2.2 Phrase-based Translation . 5

1.3 Automatic Speech Recognition . 6

1.3.1 Acoustic Model . 7

1.3.2 Language Model . 8

1.4 Speech Translation . 8

1.4.1 Cascade Model . 9

1.5 Evaluation Measures . 10

1.5.1 Word Error Rate . 10

1.5.2 Bilingual Evaluation Understudy . 11

1.5.3 Translation Edit Rate . 11

1.5.4 Alignment Error Rate . 12

1.6 About this Thesis . 12

1.6.1 Previously Published . 13

2 Scientific Goals 15

3 Neural Sequence-to-Sequence Modeling 17
3.1 Introduction . 17

3.2 Neural Networks . 17

3.2.1 Feedforward Neural Network . 17

3.2.2 Recurrent Neural Network . 19

3.2.3 Long Short-Term Memory . 20

3.2.4 Bidirectional Long Short-Term Memory . 21

3.3 Neural Language Model . 22

3.4 Sequence-to-Sequence Model . 23

3.5 Attention Sequence-to-Sequence Model . 24

3.5.1 Attention . 25

3.5.2 Recurrent Attention Model . 27

3.5.3 Attention Refinement . 28

3.5.4 Self-Attentive Model . 30

3.6 Training . 34

3.6.1 Back-Propagation with Stochastic Gradient Descent 34

3.7 Search . 36

xiii

3.8 Experimental Results . 37

3.8.1 Machine Translation . 37

3.8.2 Automatic Speech Recognition . 42

3.9 Implementation . 48

3.10 Conclusion . 49

3.11 Related Work . 49

4 Two-Dimensional Sequence-to-Sequence Modeling 53
4.1 Introduction . 53

4.2 Two-Dimensional Long Short-Term Memory . 54

4.3 Two-Dimensional Model . 56

4.3.1 Collapsing the Output for Sequence Prediction 57

4.3.2 Training . 59

4.3.3 Order of Processing . 59

4.3.4 Bidirectional Two-Dimensional Model . 61

4.4 Two-Way Translation Model . 62

4.4.1 Model Architecture . 62

4.5 Experimental Results . 64

4.5.1 Machine Translation . 64

4.5.2 Two-Way Machine Translation . 69

4.5.3 Automatic Speech Recognition . 71

4.6 Implementation . 74

4.7 Conclusion . 76

4.8 Related Work . 76

5 Zero-Order Hidden Markov Modeling 79
5.1 Introduction . 79

5.2 Model and Formulation . 80

5.2.1 Training . 82

5.2.2 Search . 82

5.3 Neural Parameterization . 83

5.3.1 Recurrent Network . 83

5.3.2 Self-Attention Network . 84

5.4 Complexity and Speedup Technique . 85

5.4.1 topK Approximation . 86

5.5 Experimental Results . 87

5.5.1 Machine Translation . 87

5.5.2 Automatic Speech Recognition . 95

5.6 Implementation . 98

5.7 Conclusion . 100

5.8 Related Work . 100

6 End-to-End Speech-to-Text Translation 103
6.1 Introduction . 103

6.2 Direct Model . 105

6.2.1 CTC Loss . 106

6.2.2 Spectrogram Augmentation . 107

6.3 Transfer Learning from Speech Recognition and Text Translation 108

6.3.1 Sequential Transfer Learning . 109

6.3.2 Multi-Task Learning . 110

6.4 Tight Integration of Cascade Model . 112
6.5 Experimental Results . 115

6.5.1 Setups . 115
6.5.2 Results . 117

6.6 Implementation . 130
6.7 Conclusion . 131
6.8 Related Work . 131

7 Scientific Achievements 135

8 Individual Contributions 137

A Overview of the Corpora 141
A.1 Machine Translation . 141

A.1.1 WMT 2018 German→English . 141
A.1.2 WMT 2018 Chinese→English . 141
A.1.3 WMT 2014 English→German . 142

A.2 Automatic Speech Recognition . 142
A.2.1 Switchboard 300h . 142
A.2.2 LibriSpeech 960h . 144

A.3 Speech Translation . 145
A.3.1 IWSLT English→German . 145
A.3.2 MuST-C English→Spanish . 147
A.3.3 LibriSpeech English→French . 148

B Additional Results 149

List of Figures 153

List of Tables 155

Bibliography 159

1. Introduction

Spoken and written languages are regarded as one of the main features of human intelligence
and a natural means of communication between people. Developing intelligent systems that can
understand and generate human language is important to the science and engineering domains
and has become an objective, particularly in human language technology. It is also necessary
for computers to achieve their full potential in augmenting human intelligence. Early methods
towards this goal have attempted to simulate language capacity through predefined rules that are
too restrictive to capture the complexity of human language. But such manually-created rules
require human language experts; consequently, their creation is expensive and time-consuming.

Seen through the lens of statistical approaches [Manning & Schütze 99], one can use mathematical
models to automatically learn rules from data, often referred to as data-driven methods. These
methods rely on learning from hundreds of thousands to millions of examples and enable the
development of language-independent techniques and the treatment of uncertainty. Over the
last decades, deep neural networks as a subcategory of the powerful machine learning field have
had remarkable success on a wide range of tasks. The standard way to learn a function that
maps an input sequence to an output sequence is to have supervision where a large number of
annotated examples are provided for training. The term supervised sequence modeling includes
most tasks where input sequences of data are aligned with output sequences of discrete labels.
The main difference from the standard supervised classification is that both inputs and outputs
form a strong correlation in sequence modeling. The underlying assumption here is that the
individual positions in sequences cannot be assumed to be independent. Since the alignment
between inputs and outputs is unknown in many cases, this requires algorithms that adequately
define the correspondence between the positions of these sequences.

This work studies neural-based sequence modeling for language technology in particular well-
known applications of machine translation (MT), automatic speech recognition (ASR), and coupling
the two, as speech-to-text translation or simply speech translation (ST). In common terminology, we
refer to machine translation as the translation of languages or texts. To be precise, speech denotes
audio signals containing spoken utterances, while a spoken language refers to the verbatim text
form of the spoken utterances. Written language is the contrasting case of text originally composed
as text without a spoken utterance as its basis. After a short introduction of terminologies and
notations in this chapter, we review some fundamental concepts for a better understanding of this
work. We will only give a short overview and refer to the corresponding literature for more details.
The concepts described in this chapter are not part of our contributions and are included for the
sake of completeness.

1.1 Terminology and Notation

Given an input sequence, the gold standard output is called a reference. The output of a model
is referred to as a hypothesis. A collection of text/audio data is referred to as a corpus that is split

1

1 Introduction

into three sets: training data, which is a large portion used to train models, one or several smaller
development sets (dev), and unseen test sets, the latter two of which are respectively utilized for
parameter tuning and final evaluation. To build meaningful and generalizable models, all three sets
should have a similar domain but should be disjointed and contain as few duplicates as possible.
In practice, most training data are generated automatically or mixed with manually-created data.
Dev and test sets, on the other hand, are often human-created for this particular purpose.

Making extensive use of probability theory, we use Pr(·) to refer to the true distribution,
being unknown in practice. Instead, we estimate Pr(·) with another distribution, the model
distribution denoted as p(·). The distribution p(·) is usually described by a statistical model that
determines its parameters based on a large corpus. This procedure is called training. The exact
algorithm depends on how p(·) is modeled, but the general process regarding the data is the same.
The model is first trained to optimize a predefined training criterion using training data, with
the best hyperparameters determined according to the model performance on the development
set. The algorithm performing the search for the best hypothesis given the underlying model is
interchangeably referred to as decoding, inference, or search. Finally, to judge the performance of
a model compared to other models trained on the same data, they are evaluated based on the
same test set. According to this, we need four main ingredients [Ney 19] for a data-driven method:

• probabilistic models with suitable structures to capture the dependencies within and between
input and output sequences and to replace the true distribution

• training criterion to estimate the free model parameters from the training data

• search algorithm to generate the output sequence

• performance measure to judge the quality of a system’s output

Throughout this work, the input and output sequences differ for different tasks. In machine
translation, both input and output sequences contain discrete text information, whereas in
automatic speech recognition and translation, the input is a sequence of continuous speech signals
in a waveform, and the outputs are sequences of strings, i.e., a text. In machine translation, both
input and output sequences are usually sentence-like, whereas outputs can correspond to a segment
of a sentence in speech applications. In almost all languages, a text is composed of sequences
of words usually accompanied by punctuation. The words can be split into smaller pieces like
subwords, characters, and phonemes. To be general enough, we employ the term token to refer to
all components of a sentence. Considering this, we use token and word interchangeably, likewise
sentence and sequence.

1.2 Machine Translation

Machine translation is the task of automatically translating an arbitrary text written in one
language, called the source language, into written text in the target language using machines1. The
human translation seems impossible when considering thousands of existing natural languages that
can be translated into one another. In contrast, machine translation fulfills these requirements as
it automates the entire process of translation. In general, the translation task can be broken down
into two steps. First, the meaning of the source text must be decoded, and then that meaning
must be re-encoded into the target text. The task is more complicated than initially observed,
mainly due to languages containing an almost immeasurable number of rules, meanings, grammar,

1Throughout this work, the term machine translation always refers to machine translation of written texts. For
machine translation of speech, we use the term speech-to-text translation or simply speech translation.

2

1.2 Machine Translation

and other linguistic properties. The grammar rules often used to describe languages are rarely
adhered to in practice, especially when looking at spoken or colloquial contexts. Furthermore,
translation itself involves the reordering of words and phrases and producing syntactically and
semantically correct outputs [Manning & Schütze 99]. Hence, machine translation is a challenging
task and has a wide range of applications, each of which requires a different speed and quality.

Besides the high demand for translating texts like articles and books, accessing information
that is available in foreign languages is a de-facto need. A machine translation system does not
necessarily have to generate a grand-goal high-quality translation, but it can also be used to create
a draft translation. Some examples are assimilation, dissemination, and communication. In some
scenarios, a post-editor or a human-computer assistant system is required to improve the final
output [Koehn 10].

There are several perspectives on the nature of translation. One method is the transfer system in
which one modifies the structure of the source sentence to conform to the rules of the target language.
This is obviously a suboptimal solution for the translation process as it requires a set of transfer
rules, syntactically, semantically, or lexically defined. An alternative is to extract the meaning of
source sentences, obtain a knowledge-based representation, and generate the corresponding target
sentences. This process is known as the interlingual approach. One implication for such methods
is the need to exhaustively analyze the semantic relations between words; however, an interlingual
system has to disambiguate. Another way is a direct mapping between the words of the source
sentence and those of the target sentence, which is direct translation. In this case, the syntactic
and semantic of languages are not explicitly considered [Koehn 10].

Since translation involves many decisions that are hard to formalize, it is preferable to employ
data-driven approaches, particularly statistical methods. In principle, all of the mentioned methods
can be implemented based on probabilistic models and viewed as a mathematical optimization
problem. Statistical machine translation employs large corpora to infer the parameters of a
statistical model. This model then translates the source sentence into the target sentence by
finding the hypothesis with the maximum likelihood given the input data. Statistical methods
generally lack the interpretability of rule-based approaches but have been highly successful in
practical applications. The methods are language-independent, meaning that the same model
structure can be applied to several language pairs. Building on top of statistical methods, neural
machine translation approaches use neural networks as statistical tools. These approaches often
train all the components of the system together to maximize translation performance and are
currently considered to be state-of-the-art.

To be formal, in machine translation, fJ1 = f1, . . . , fj , . . . , fJ denotes an arbitrary input sentence
of source tokens of length J , and eI1 = e1, . . . , ei, . . . , eI represents an arbitrary target token
sentence whose length I is unknown. Historically, f stands for French or foreign and e for English.
We note that in our notation, the letters with both subscript and superscript stand for sequences
of symbols, and lower-case letters for individual symbols. Bayes’ decision rule [Bayes 63] in its
standard form, i.e., assuming uniform sequence loss, requires maximization of the output or class
posterior given an input observation. According to Bayes’ decision rule, given a source sentence,
we find the best translation candidate with maximum posterior probability given by

fJ1 → êÎ1(fJ1) = argmax
I,eI1

{
Pr(eI1|fJ1)

}
(1.1)

= argmax
I,eI1

{
Pr(fJ1 |eI1)Pr(eI1)

Pr(fJ1)

}
(1.2)

= argmax
I,eI1

{
Pr(fJ1 |eI1)Pr(eI1)

}
. (1.3)

Using Bayes’ theorem and ignoring terms independent of the target sentence, it has been

3

1 Introduction

common to decompose the posterior probability and derive Equation 1.3 with the generative
class-conditional distribution, which is the so-called inverse translation model Pr(fJ1 |eI1), and the
target sentence prior Pr(eI1), the so-called language model discussed later in Section 1.3.2. The
former requires annotated parallel bilingual data, while the latter can be modeled using large
amounts of monolingual data. Besides the data condition, this decomposition arguably captures
different aspects of the transduction problem, thus has complementary strengths.

Therefore, in order to implement Bayes’ decision rule in this form, we need to model the posterior
probability of the source sentence and the probability of the target sentence, and perform efficient
maximization over all possible target sentences which are candidates for the corresponding source
sentence. In practice, computing argmax is a considerable computational challenge that needs
crucial restrictions for tractability. All of these aspects determine the quality of a system based on
a performance measure.

1.2.1 Word Alignment

The first statistical translation models rely on words, where the product of the probabilities of
every word represents the probability of a sentence. Word alignments play an important role in
estimating translation models as conditional probabilities between the source and target words.
They are also crucial for phrase-based machine translation, which is addressed next. Thus, the
first step is to create word alignments in a bilingual data setup. Given a source sentence and
its translation in the target language, a word alignment A ⊆ I × J is used to capture complex
word-by-word correspondences between two sentences from which we define a relation over the
source position j and the target position i. In principle, this relation does not have any restriction,
but it is formed as a mapping for the sake of computational simplicity. In this concept, each source
word fj is mapped to only one target word ei.

A sequence of alignments is denoted as a sequence of latent variables aJ1 = a1, . . . , aj , . . . , aJ
that establishes a mapping from the source position j to the target position i, i.e., j → aj = i.
This refers to the position i of ei, with which fj is aligned. The posterior translation probability
of the source sentence fJ1 given the target sentence eI1 using the alignment is defined as

Pr(fJ1 |eI1) =
∑
aJ1

Pr(fJ1 , a
J
1 |eI1) (1.4)

= p(J |eI1)︸ ︷︷ ︸
length model

∑
aJ1

J∏
j=1

p(aj |f j−1
1 , aj−1

1 , eI1, J)︸ ︷︷ ︸
alignment model

p(fj |f j−1
1 , aj1, e

I
1, J)︸ ︷︷ ︸

lexicon model

. (1.5)

The inverse translation posterior is decomposed into three distinct components: the length,
alignment, and lexicon models. This establishes the well-known count-based models such as IBM
[Brown & Cocke+ 88, Brown & Cocke+ 90, Brown & Pietra+ 93] and the hidden Markov model
(HMM) [Vogel & Ney+ 96]. These models mainly share the same length and lexicon models, while
they differ in their dependency assumptions of the alignment probability [Ney 19].

The length model is considered to be either stored in a table (model-free approach) or modeled
with the Poisson distribution. Both cases only assume a dependency on length I of target sentence
eI1, meaning p(J |eI1) = p(J |I).

The lexicon model makes a zero-order dependency on ei in the position i = aj . Hence, it can be

rewritten as p(fj |f j−1
1 , aj1, e

I
1, J) = p(fj |eaj).

In terms of the alignment model, these models have different assumptions as listed below:
IBM-1 considers a näıve way of alignments with a uniform distribution given by

p(aj |f j−1
1 , aj−1

1 , eI1, J) =
1

I + 1
. (1.6)

4

1.2 Machine Translation

To maximize the log-likelihood of the model, the expectation-maximization (EM) algorithm
[Dempster & Laird+ 77] is used based on the relative frequency counts of the source and target
words seen in the training data. IBM-1 training is not strictly a convex optimization problem;
however, finding a good optimum can be expected.
IBM-2 is a zero-order model and assumes a dependency on the absolute position j, i.e.,

p(aj |f j−1
1 , aj−1

1 , eI1, J) = p(aj |j, J, I). (1.7)

Since the training of IBM-2 has no global optimum, the IBM-1 model can be used to initialize
its parameters.
HMM makes a first-order Markov assumption on the immediate predecessor position as

p(aj |f j−1
1 , aj−1

1 , eI1, J) = p(aj |aj−1, J, I). (1.8)

This implies that the current alignment depends only on the alignment from the last step, rather
than on other steps before that or on higher-order dependencies. It shows the fact that words
should be considered together as a group in translation. Contrary to the IBM-1 and IBM-2 models,
the sum over the alignments is performed inside the product in HMM. This leads to an exponential
number of terms which can be effectively calculated using dynamic programming [Bellman 54] by
dividing the problem into incremental steps. For faster computation, a maximum approximation
called the Viterbi approximation is often used [Viterbi 67] in practice. Such an approximation
justifies that a single position dominates the distribution, and it is written as

∑
aJ1

J∏
j=1

p(aj |aj−1, J, I)p(fj |eaj) ≈ max
aJ1

J∏
j=1

p(aj |aj−1, J, I)p(fj |eaj). (1.9)

There are some extensions to the above models named IBM-3 through IBM-5.
IBM-3 is a reparameterization of IBM-2 using fertility ϕ(ei). Fertility indicates the number of

source words that have to be translated to the given target word ei. Note that the source length
J directly depends on fertility, i.e, J =

∑
i ϕ(ei). The model first assigns a fertility probability to

each target word. Once the target words are translated, the generated source words are reordered
to form the final sentence.
IBM-4 is an inverted alignment model equipped with word classes. It also determines the

reordering probabilities based relatively on previously translated words.
IBM-5 satisfies the normalization constraints leading to the non-deficient version of IBM-4,

where probability mass is assigned to impossible translations as well as where multiple source
words are placed in the same position. The model does this by tracking vacant positions across
the translation.

In practice, the simpler models are used to initialize the complex ones. A typical setup is to
employ IBM-1, then HMM followed by IBM-4, each trained for five EM iterations. The alignments
are generated in both translation directions and then combined by the grow-diagonal-final-and
heuristic [Koehn & Och+ 03], resulting in general undirected alignment. Reasonably high-quality
alignments can be computed with the GIZA++ toolkit [Och & Ney 03].

Although the word-level models are equipped with more complex translation concepts in later
variations, they have limited within-word context since translation is generated word by word.
Even though, the decoding procedure applies an external language model to offer lexical context
beyond word boundaries.

1.2.2 Phrase-based Translation

In order to overcome the limited context issue, phrase-based machine translation has been
proposed by [Zens & Och+ 02, Koehn & Och+ 03]. As the name suggests, phrase-level models

5

1 Introduction

work on contiguous sequences of words on both source and target sides, thus contain a larger local
context. They differ inherently from word-level models as the whole phrase probability score is
taken into account at each translation step. Hence, such modeling seems more successful in the
translation of idioms.

The core idea of the phrase-based system is phrase extraction, in that a sentence pair (fJ1 , e
I
1)

is segmented, and contiguous phrase pairs are obtained as an atomic unit of translation. Some
constraints need to be met for a valid segmentation. All source and target words should be covered
by exactly one phrase, i.e., no uncovered words, gaps, and overlapping phrases. The extracted valid
bilingual phrase pairs are stored in a phrase table. The size of this table can grow exponentially.
In practice, a maximum for phrase length is specified, and the table is often pruned. The source
phrases are transferred into the target language by a look-up in the phrase table, and then the
target phrases can be reordered to produce fluent translation if needed. The phrase-based machine
translation system defines several models and applies the log-linear framework to include different
translation modeling aspects. Next, we briefly describe log-linear modeling as a key concept of
traditional translation systems. Further details of phrase-based translation are not discussed in
this thesis. Descriptions of its main components can be found in [Koehn & Och+ 03, Zens 08].

Log-Linear Modeling

In order to directly represent the posterior probability Pr(eI1|fJ1), the log-linear model combina-
tion [Och & Ney 02] is given by

Pr(eI1|fJ1) =

exp

(M∑
m=1

λmhm(eI1, f
J
1)

)
∑
I′,e′I

′
1

exp

(M∑
m=1

λmhm(e′
I′

1 , f
J
1)

) . (1.10)

It allows an arbitrary number of M models hm(., .) called feature functions. These different
models usually capture various aspects of a problem, and each is multiplied with a corresponding
scaling factor λm [Papineni & Roukos+ 98]. To differently weigh the models according to their
importance for the final decision, the scaling factors are tuned on the development set separately,
one at a time, while the others are fixed. Minimum error rate training [Och 03] is the most
common algorithm for optimizing λm. During search, by dropping the denominator as being
constant with respect to the optimization arguments, and with the exponential function being
strictly monotonous, we derive a linear combination of models as

fJ1 → êÎ1(fJ1) = argmax
I,eI1

{
Pr(eI1|fJ1)

}
= argmax

I,eI1

{
M∑
m=1

λmhm(eI1, f
J
1)

}
. (1.11)

The log-linear model is also widely used in neural approaches where we combine the scores of
different models on the probability level. It is a common practice to integrate the acoustic and
language model scores in automatic speech recognition, as is addressed next.

1.3 Automatic Speech Recognition

The goal of automatic speech recognition is to transcribe speech signals into a string of words.
It is a technology with a long history of development and plays a vital role in many tasks where
full language communication is needed. Some examples are human-machine interaction, dictation
as part of augmented communication, telephony, voice search, etc. [Jurafsky & Martin 00]. It

6

1.3 Automatic Speech Recognition

can become challenging to automatically transcribe the speech of any (multi) speaker in any
environment (with or without background noise) and thus speech recognition involves many
other signal processing methods. Firstly, successful techniques work with a viable quality in
certain limited domains. Secondly, they are based on the fundamentals of speaker-independent
large-vocabulary continuous speech recognition. Thirdly, the words are spoken together naturally,
without intentional preceding or following pauses. Finally, systems are able to recognize the speech
of a speaker that they have never been exposed to.

Given a speech signal, we obtain a time-discrete frame-wise sequence of observations xT1 =
x1, . . . , xt, . . . , xT of length T , where a feature extraction pipeline has to be performed. We aim
to find the corresponding sequence of N transcribed words wN1 . Following the decomposition in
Bayes’ decision rule in Equation 1.3, we rewrite

xT1 → ŵN̂1 (xT1) = argmax
N,wN1

{
Pr(xT1 |wN1)Pr(wN1)

}
. (1.12)

1.3.1 Acoustic Model

An acoustic model (AM) estimates conditional posterior probability Pr(xT1 |wN1). The majority
of state-of-the-art acoustic models follow the statistical hidden Markov model in which a sequence
of HMM states represents a sequence of words [Baum & Eagon 67, Rabiner 89]. Based on the
fact that it is impossible to cover all existing words of a natural language in the training data,
words are converted to smaller units, called phonemes, using a pronunciation lexicon. Phonemes
are defined as the smallest phonetic elements capable of changing the meaning of a word.

Acoustic models can be context-dependent or independent based on the models’ dependency
on other adjacent phonemes. There, each HMM state represents the defined unit like a triphone,
where we take both left and right context into account. The HMM models introduce a sequence
of latent stochastic variables or state sequence sT1 , as alignments relating each input frame xt to
some states. Formally, we have

p(xT1 |wN1) =
∑
sT1

p(xT1 , s
T
1 |wN1) (1.13)

≈
∑
sT1

T∏
t=1

p(xt|st, wN1)︸ ︷︷ ︸
emission

p(st|st−1, w
N
1)︸ ︷︷ ︸

transition

. (1.14)

Assuming a first-order Markov process and simplified dependence assumption on the previous
frames, we obtain Equation 1.14 with the emission and transition models. The emission probabili-
ties are applied whenever a state is visited. More details can be found in [Rabiner 89, Rabiner &
Juang 93]. The emission probabilities of HMM states can be formed by the continuous Gaussian
mixture model (GMM) and its extension to use neural networks called the Tandem approach
[Hermansky & Ellis+ 00]. The transition probability is used if the path moves from one state to
another.

Similar to many applications, speech recognition is also affected by deep neural networks (DNNs)
in acoustic modeling. A Hybrid DNN/HMM approach that incorporates neural networks into
HMM-based models to improve the performance of the emission probability using feedforward
[Waibel & Hanazawa+ 88, Bourlard & Wellekens 90, Baker 90, Robinson 94] and recurrent neural
networks [Schuster & Paliwal 97, Graves & Jaitly+ 13a] have become the de-facto approach.
Considering xT1 and sT1 as the input and output sequences, neural networks are built for state
posterior estimation, i.e., p(st|xt). For an in-depth discussion, we refer to [Bourlard & Morgan 93].

Once all parameters have been learned from the data during training, the search for the best
word sequence corresponding to maximizing the posterior probability is performed. Due to noisy

7

1 Introduction

channel decomposition, models deal with complicated search algorithms that impose limitations
concerning tractability. Hence, it is common to approximate the sum in Equation 1.14 using the
Viterbi approximation and to perform dynamic programming.

1.3.2 Language Model

A statistical language model (LM) provides a probability distribution that assigns to each word
sequence of a language the probability that exactly this sequence is to be represented. As stated
in Bayes’ decision in Equation 1.12, the prior Pr(wN1) is the language model. Given the sequence
of words wN1 , the model probability is expressed using the chain rule as

p(wN1) =
N∏
k=1

p(wk|wk−1
1) =

N∏
k=1

p(wk|wk−1
k−n+1). (1.15)

A method to estimate probabilities lies in counting how often a specific word sequence occurs in
the training corpora, known as the count-based model. Of course, most long-word sequences might
not even occur once. Therefore, the standard n-gram language model breaks down the probability
estimation into smaller parts for which we can estimate the probability. Taking into account the
Markov assumption of having a limited number of previous words, we reformulate the language
model to the n-gram language model given a fixed n ∈ N. Thus, the overall probability estimation
is simplified to the last n− 1 words, referred to as history.

The biggest problem associated with the n-gram model is that it gives a zero probability to
unseen word sequences according to Equation 1.15. No matter how large the training dataset, it is
unlikely to contain all feasible sequences. This is where the problem of data sparsity arises. To
retain probability mass for unseen events, the so-called smoothing technique is used in which an
unseen n-gram steps back to a smaller history [Kneser & Ney 95, Chen & Goodman 99]. The
neural language models discussed briefly in Section 3.3 solve this problem.

The most common way to evaluate a language model is perplexity (Ppl), defined as the geometric
mean of the inverse probability and formulated by

Ppl = p(wN1)−
1
N = exp

(
− 1

N

N∑
n=1

log p(wn|wn−1
0)

)
(1.16)

where w0 denotes the artificial token at the first position. A good language model assigns a higher
probability, then lower perplexity to the more likely words. The exponent yields the cross-entropy
criterion described in more detail in Section 3.6.

1.4 Speech Translation

An exciting direction for machine translation is its integration with speech recognition to address
an outstanding research goal, speech-to-text translation or simply speech translation. Speech
translation aims to convert speech signals to written texts in foreign languages, the target texts.
The task combines several challenging aspects associated with both recognition and translation.
It entails bridging the gap between spoken language being informal with disfluencies and the
more formal and grammatically correct written domain. It opens up diverse applications ranging
from translating dialog-based telephone conversations in limited domains, parliament speeches, or
audio broadcasts to accessing information and interpersonal communication. For speech-to-speech
translation systems, a speech generator is added as the final step to generate a continuous speech
waveform as the output. In this thesis, we do not address this last step related to speech generation.

8

1.4 Speech Translation

1.4.1 Cascade Model

Borrowing the notation of machine translation and speech recognition, we define three sequences
with different variable lengths: the sequence of frame-wise acoustic vectors xT1 , the sequence of
transcripts in the source language fJ1 , and the target language sequence eI1. We then rewrite the
Bayes’ decision rule that maximizes the posterior probability of the target sentence given the
speech input and derive

xT1 → êÎ1(xT1) = argmax
I,eI1

{
Pr(eI1|xT1)

}
. (1.17)

Equation 1.17 implies direct modeling (see Chapter 6) where we search over all possible target
sequences that are candidates for the given speech utterance. We can further introduce the source
sequence fJ1 as a hidden variable into the conditional probability and marginalize over all possible
source sequences to obtain [Ney 99]

xT1 → êÎ1(xT1) = argmax
I,eI1

{∑
fJ1

Pr(eI1, f
J
1 |xT1)

}
(1.18)

= argmax
I,eI1

{∑
fJ1

Pr(eI1|fJ1 , xT1)Pr(fJ1 |xT1)

}
(1.19)

= argmax
I,eI1

{∑
fJ1

Pr(eI1|fJ1)Pr(fJ1 |xT1)

}
(1.20)

≈ argmax
I,eI1

{
max
fJ1

Pr(eI1|fJ1)Pr(fJ1 |xT1)

}
. (1.21)

Pr(eI1, f
J
1 |xT1) can be computed using the log-linear framework. By further decomposition, we

yield two distributions in Equation 1.19. Here, we can make a natural assumption that the target
sentence has a strong dependency on the source sentence but no dependency on the speech signal.
Then we derive Equation 1.20. According to this equation, the decision is made based on the
translation model Pr(eI1|fJ1) and the acoustic model Pr(fJ1 |xT1). We can also approximate the sum
over all possible source sequences with the maximum. Therefore, Equation 1.20 is reformulated
into Equation 1.21.

Due to the exponential search space of the source language, the decision process is usually
divided into two steps. The first step transcribes the speech signal into the source sequence fJ1
using an automatic speech recognition model by

f̂ Ĵ1 = argmax
J,fJ1

{
p(fJ1 |xT1)

}
. (1.22)

Then, given the predicted source sentence, a target sentence is generated through a machine
translation model written as

êÎ1 = argmax
I,eI1

{
p(eI1|f̂ Ĵ1)

}
. (1.23)

This pipeline is referred to as a cascade system composed of two main statistical models.
Any progress in speech recognition and machine translation can result in speech translation
improvements.

In practice, a close-to-zero recognition error rate can hardly be expected, and recognition errors
are propagated to the translation model because of early decisions. However, it is arguable that

9

1 Introduction

different representations of multiple hypotheses for a single acoustic speech utterance can be
considered for translation to solve the early-decision problem [Matusov 09].

The first best ASR hypothesis can be passed on to the MT model. Although such a näıve
approach has no additional computational overhead, this restricts the translation process to a hard
decision made by the ASR system, which cannot be corrected afterward. A possible alternative
to the single best hypothesis is to feed the list of N -best hypotheses to the MT model. Then,
the best translation is selected according to the score of both models. In this case, instead of a
hard decision, we give the MT model more chances of a better coupling with the ASR output.
Obviously, this approach is not efficient unless we choose a small size for N . Based on the fact
that most of the hypotheses only differ in a few tokens, we can barely get further translation
improvements [Matusov & Kanthak+ 05, Matusov 09].

The ASR output can also be an ambiguous output in the form of word lattices [Matusov &
Hoffmeister+ 08, Matusov 09, Sperber & Neubig+ 17, Sperber & Neubig+ 19b], and confusion
networks [Matusov & Kanthak+ 05, Bertoldi & Zens+ 07]. Such outputs give the MT system
many more word hypotheses than the N -best list representation. However, the MT model needs
to be modified for a robust coupling. The word lattice is a directed acyclic graph that compactly
represents the most likely hypotheses of the ASR first-pass decoding. Each arc stores acoustic
and language model scores, and each node represents time stamps. One of the main benefits of a
lattice structure is to provide an efficient yet effective way of representing the ASR search space.
The confusion network is obtained from a word lattice but with a linear structure.

Regardless of recognizers’ output representations, cascade systems encounter other problems
associated with interfacing the ASR output and the MT input. Since the recognizer and translator
systems are trained separately, the ASR output likely differs from what the MT model expects,
given the data it has been trained on. To improve translation quality, we can also tighten the
coupling between spoken-style ASR outputs and written-style MT inputs for reducing the mismatch
between them. We can optionally carry out sentence segmentation and punctuation prediction
[Matusov & Mauser+ 06, Fügen & Kolss 07], disfluency removal [Fitzgerald & Hall+ 09], and
domain adaptation [Liu & Gu+ 03] to have the recognizer’s outputs as close as possible to the
translator’s input. Instead of augmenting the source transcriptions, we can also adapt the source
side of the machine translation system to look like the output of the speech recognizer [Dixon &
Finch+ 11, Peitz & Wiesler+ 12, Sperber & Neubig+ 17, Gangi & Enyedi+ 19]. However, all of
these methods only reduce the mismatch between the two components and diminish the loosely
coupled cascade models, rather than addressing the actual problem of error through early decisions.

1.5 Evaluation Measures

To compare several systems, their quality can be quantified by evaluation metrics. An automatic
metric highly correlated with human evaluation is needed to evaluate the huge number of hypotheses
produced by different systems such that each hypothesis is compared to a human-generated reference.
In the following section, we briefly address four metrics used in the course of this thesis.

1.5.1 Word Error Rate

The word error rate (Wer) is a measure defined as the Levenshtein distance [Levenshtein 66] or
edit distance divided by the number of words in the reference. The Levenshtein distance between a
sequence and its corresponding reference is computed by the minimum number of edit operations,
including deletions, insertions, and substitutions. All types of edits are assigned an equal cost.

10

1.5 Evaluation Measures

Formally, we have

Wer =
number of edit operations

total number of words in reference
. (1.24)

This metric is a commonly used measure in automatic speech recognition to determine the
quality of recognized sequences compared to a human reference transcription.

1.5.2 Bilingual Evaluation Understudy

The bilingual evaluation understudy (Bleu) [Papineni & Roukos+ 02] is the most commonly
used evaluation metric for machine translation. It is a precision measure that combines a modified
n-gram precision with a brevity penalty (BP). Bleu works by counting how many n-grams from
the hypothesis are the same as in the reference, computing a modified n-gram precision.

The precision between the hypothesis êÎ1 and the reference translation eI1 is defined as

precn(eI1, ê
Î
1) =

∑
wn1

min
{

count(wn1 |eI1), count(wn1 |êÎ1)
}

∑
wn1

count(wn1 |êÎ1)
(1.25)

where wn1 is the n-gram of n consequent words and count(wn1 |eI1) determines the number of times
wn1 appears in eI1. In Equation 1.25, the denominator is the total number of n-grams in the
sentence. The brevity penalty to penalize short hypotheses is computed by

BP(I, Î) =

{
1 if Î ≥ I
exp (1− I

Î
) if Î < I.

(1.26)

Finally, the overall score is usually determined by taking the geometric mean of all n-gram
precisions from 1 to 4, multiplied with the brevity penalty for sentences shorter than the reference.
Putting this all together, we derive

Bleu(eI1, ê
Î
1) = BP(I, Î) · exp

(1

4

4∑
n=1

log precn(eI1, ê
Î
1)
)
. (1.27)

Bleu is computed at document rather than single-sentence level by counting all n-grams of
translations over the entire dataset. This avoids an n-gram precision equaling zero. Since the
score ranges from 0 to 1, it can be interpreted by percent. Thus, we exchangeably report it with
points and percentages. However, the former sounds more precise. Although Bleu is the main
metric to determine improvements in translation models, as it is quick and easy to use, it has
problems such as having a relatively low correlation with human evaluation and ignoring sentence
structure and the meanings of words [Reiter 18].

1.5.3 Translation Edit Rate

Similar to Wer, the translation edit rate (Ter) [Snover & Dorr+ 06] is an error metric based
on the Levenshtein distance where the minimum number of edit operations is required to modify a
hypothesis so that it exactly matches the reference. It is then normalized by the average length of
the reference. Besides the possible edit operations listed for Wer, it also allows shifts of word
sequences within the hypothesis. A contiguous sequence of words may be shifted within the

11

1 Introduction

hypothesis to another location. We assign an equal cost to all edits, including shifts of any number
of words, by any distance. Ter is defined as

Ter =
number of edits

average number of words in reference
. (1.28)

Again, the metric is from 0 to 100, but lower is better. We also report document-level TER,
counting the edit rate over the entire dataset.

1.5.4 Alignment Error Rate

It is well known that manually performing a word alignment is a complicated and ambiguous
task. One of the key quantitative metrics for the analysis of alignments in machine translation
is the alignment error rate (Aer) [Och & Ney 00], which gives the error of a given alignment in
comparison to a golden reference. It employs an annotation scheme that explicitly allows for two
different types of alignments. Unambiguous alignments are represented by an S (“sure”) and a P
(“possible”) alignment that indicates ambiguous ones that might or might not exist. The words on
the reference alignment might contain many-to-one and one-to-many relationships. The quality
of a set of alignment points A = {(i, bi)|bi > 0} is then computed by Aer, which appropriately
redefines precision and recall measures as

Aer = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

. (1.29)

The lower the value, the more satisfactory the result.

These are the most prominent metrics, and we will use them in this thesis as the main quantitative
assessment tools. Unless explicitly stated otherwise, we use the official scripts of the machine
translation evaluation campaigns to compute Bleu, i.e., mteval-v13a2. Ter and Wer are
computed by tercom3 and sclite4, respectively. It is important also to note that there are many
other different metrics, such as CharacTER [Wang & Peter+ 16] or ChrF [Popovic 15], which
are not used in this thesis.

1.6 About this Thesis

From the general perspective of Bayes’ decision rule, posterior decomposition is not the only
possible modeling approach. Recent methods, which are the main focus of this thesis, directly
approximate the posterior probability in Equation 1.1. The main family of this group of approaches
is based on sequence-to-sequence modeling [Sutskever & Vinyals+ 14, Cho & van Merrienboer+ 14a]
and its extension to attention-based models [Bahdanau & Cho+ 15, Luong & Pham+ 15, Vaswani
& Shazeer+ 17], often known as end-to-end methods. Attention sequence-to-sequence models
have become an alternative to remarkably simplify the modeling process through single yet deep
neural networks. They remove the use of complicated components and linguistic knowledge and
make for a simpler search procedure. This thesis presents multiple concepts connecting neural
sequence-to-sequence modeling for various applications, including machine translation, automatic
speech recognition, and speech translation.

In Chapter 2, we present the scientific goals of this thesis. Chapter 3 gives an overview
of the basic concepts of neural networks and explains the core neural architectures used as

2ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl. The results are identical to case-sensitive results
computed by SacreBleu [Post 18].

3http://www.cs.umd.edu/~snover/tercom/
4https://github.com/usnistgov/SCTK

12

ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl
http://www.cs.umd.edu/~snover/tercom/
https://github.com/usnistgov/SCTK

1.6 About this Thesis

the fundamental design choices in this work. Section 3.5.3 is the starting point of this work’s
contribution. We explicitly highlight which parts are our contributions and which parts are based
on previous publications. The main contributions of this thesis are elaborated in Chapters 4, 5,
and 6. Chapter 4 describes our novel two-dimensional sequence-to-sentence modeling. Chapter 5
addresses a new integration of attention-based models into zero-order direct hidden Markov model
formulation. Chapter 6 gives a comprehensive methodology of speech translation and includes
novel contributions. Each chapter motivates our work with a short introduction. After a detailed
description of models and methods, we discuss implementations and experimental results where
we perform an extensive evaluation of the models and analysis on several large-scale tasks. The
final sections of each chapter explicitly highlight the conclusions and put them into perspective
with respect to related works. Finally, Chapters 7 and 8 summarize how we achieve our scientific
goals and state individual contributions in contrast to team work.

1.6.1 Previously Published

The author has published the following scientific publications at peer-reviewed conferences
during the course of this dissertation. More details on the author’s individual contributions as
opposed to teamwork can be found in Chapter 8.

• Machine translation

– [Bahar & Alkhouli+ 17] Empirical Investigation of Optimization Algorithms in Neural
Machine Translation (EAMT 2017).

– [Bahar & Brix+ 18] Towards Two-Dimensional Sequence to Sequence Model in Neural
Machine Translation (EMNLP 2018).

– [Brix & Bahar+ 20] Successfully Applying the Stabilized Lottery Ticket Hypothesis to
the Transformer Architecture (ACL 2020).

– [Bahar & Makarov+ 20a] Investigation of Transformer-based Latent Attention Models
for Neural Machine Translation (AMTA 2020).

– [Bahar & Brix+ 21] Two-Way Neural Machine Translation: A Proof of Concept for
Bidirectional Translation Modeling using a Two-Dimensional Grid (SLT 2021).

• Speech recognition

– [Bahar & Zeyer+ 19a] On using 2D Sequence-to-Sequence Models for Speech Recognition
(ICASSP 2019).

– [Zeyer & Bahar+ 19] A Comparison of Transformer and LSTM Encoder Decoder Models
for ASR (ASRU 2019).

– [Bahar & Makarov+ 20b] Exploring a Zero-Order Direct HMM based on Latent Attention
for Automatic Speech Recognition (ICASSP 2020).

• Speech translation

– [Bahar & Bieschke+ 19] A Comparative Study on End-to-End Speech to Text Translation
(ASRU 2019).

– [Bahar & Zeyer+ 19b] On using SpecAugment for End-to-End Speech Translation
(IWSLT 2019).

– [Bahar & Bieschke+ 21] Tight Integrated End-to-End Training for Cascaded Speech
Translation (SLT 2021).

13

1 Introduction

• International evaluation campaigns

– [Peter & Toutounchi+ 15] The RWTH Aachen German to English MT System for
IWSLT 2015 (IWSLT 2015).

– [Peter & Guta+ 17] The RWTH Aachen University English-German and German-English
Machine Translation System for WMT 2017 (WMT 2017).

– [Bahar & Rosendahl+ 17] The RWTH Aachen Machine Translation Systems for IWSLT
2017 (IWSLT 2017).

– [Schamper & Rosendahl+ 18] The RWTH Aachen University Supervised Machine
Translation Systems for WMT 2018 (WMT 2018).

– [Matusov & Wilken+ 18] Neural Speech Translation at AppTek (IWSLT 2018).

– [Rosendahl & Herold+ 19] The RWTH Aachen University Machine Translation Systems
for WMT 2019 (WMT 2019).

– [Bahar & Wilken+ 20] Start-Before-End and End-to-End: Neural Speech Translation
by AppTek and RWTH Aachen University (IWSLT 2020).

14

2. Scientific Goals

The overall goal of this thesis is to improve the quality of machine translation with both forms
of input, text and speech, and to reduce the error rate of speech recognition by developing novel
stand-alone sequence-to-sequence models. Although attention-based sequence-to-sequence models
are becoming a dominant approach in these applications, some essential concepts are still missing
in their architectures. We therefore concentrate on rethinking the design of attention models
and propose novel alternative models. However, many new challenges emerge when introducing
new stand-alone models. The main consideration is to overcome some problems and limitations
associated with attention models in one or more aspects. Given that, we outline the following
scientific goals in this thesis:

Attention Refinements

One problem associated with attention models is that there is neither coverage nor previous
attention information when computing attention scores at each position. The goal is to extend
the recurrent attention model by providing implicit information from the last output positions
without any help from external alignments. In this view, we study whether the extended models
revise the attention component for better final translation.

Two-Dimensional Sequence-to-Sequence Modeling

In state-of-the-art attention models, both recurrent and self-attentive, input and output sequences
are handled separately as one-dimensional sequences over time and then incorporated with an
attention mechanism. The underlying attention output is generally a linearly weighted sum of input
representations, and encoder states are computed only once at the beginning and are left untouched
with respect to output histories. Since the encoder states are invariant to decoder states across
output positions, context vectors can be quite similar, and thus are insufficient in discriminatively
predicting output tokens over time. Hence, we go beyond current sequence-to-sequence backbone
models and view translation as a two-dimensional mapping to define the correspondence between
input and output sequences where an attention mechanism is no longer required. From a modeling
perspective, the general goal is to study new two-dimensional sequence-to-sequence models as an
alternative to attention models and to investigate potential improvements using a different point
of view. In contrast to attention models which do not reinterpret encoder states while decoding,
two-dimensional models enable the computation of input encodings as a function of previously
generated output tokens. By providing encoder states with a greater capacity to remember what
has been generated and what needs to be output, we aim to achieve higher translation quality.

Zero-order Hidden Markov Modeling

Attention components do not fulfill the same role as alignment models in conventional phrase-
based machine translation. In particular, self-attentive models do not guarantee high-quality

15

2 Scientific Goals

alignments. In contrast to IBM and hidden Markov models, where a transparent process defines
the correspondence between inputs and outputs, it is often challenging for attention models to
extract meaningful alignments. Alignments play a significant role in improving translation quality,
and extracting comprehensible alignments is desirable when users tend to influence the translation
output. An explicit stochastic latent variable can be a potential solution to define an alignment
sequence in such models. Therefore, in a new modeling viewpoint, we propose the integration of
attention sequence modeling into the hidden Markov model formulation. Accordingly, we develop
an end-to-end model parameterized using either recurrent or self-attentive networks without any
external alignment information. Since marginalization has an exponential number of terms with
respect to the alignment dependency order of the model, we explore a zero-order assumption where
latent variables have no dependency on their histories. The marginalization over the latent variable
becomes simple and efficient for zero-order models and can be easily applied in both training and
decoding. We also examine whether the proposed model is able to potentially generate higher
quality alignments.

Development of End-to-End Models in the Context of Speech Translation

The traditional speech translation methods are based on a consecutive cascade pipeline of
independently trained speech recognition and text translation systems, but they suffer from error
propagation. Alternatively, this thesis aims at studying end-to-end models to directly translate
speech observations into target texts. However, training such end-to-end models requires a moderate
amount of paired translated speech-to-text data which is not easy to acquire. Consequently, the
performance is often behind cascaded systems under realistic data conditions. Therefore, the
next goal is to improve the performance of end-to-end models by revisiting existing techniques
and developing new methods to leverage all types of training data, i.e., speech-to-source, source-
to-target, and speech-to-target data. As the general goal, we intend to establish and advance
best practices for end-to-end models with the ultimate goal of improving translation quality and
providing recipes for real applications.

The rest of this work is structured according to the above goals. We present a series of extensive
experiments performed on publicly available large-scale machine translation, automatic speech
recognition, and speech translation tasks. By comparing with internal and external groups, we can
assess the effectiveness and performance of the developed methods. They have all been made freely
available to the research community and are accessible via the open-source toolkit RETURNN
[Doetsch & Zeyer+ 17, Zeyer & Alkhouli+ 18].

16

3. Neural Sequence-to-Sequence Modeling

3.1 Introduction

In recent years, various fields in the spoken and written language technology have been boosted
by the success of deep neural networks. The main idea of neural networks (NNs) concept dates
back to the 1950s [Rosenblatt 58], and the first real application was carried out in the 1980s
[Lippmann 87, Rumelhart & Hinton+ 86]. However, for a long time, the use of neural networks in
machine translation has been relatively shallow compared to automatic speech recognition. Neural
networks have been used as a component in both conventional phrase-based translation and hybrid
HMM recognition systems. The success of such methods is significantly reflected not only by the
number of scientific papers but also by their wide deployment in production systems.

This chapter gives a brief overview of the fundamental concepts of neural networks in Section
3.2. We refer to [Bishop 07, Goodfellow & Bengio+ 16] for a general in-depth discussion of neural
networks. The chapter continues with neural language and sequence-to-sequence modeling in
Sections 3.3 and 3.4, followed by the core concept of attention models in Section 3.5. It provides
a comprehensive overview of the main neural architectures used as baselines and also the main
design choices made when developing new models in this thesis. Most sections are not part of
our contributions but are included to provide relevant context for the rest of this thesis. Our
contribution begins in Section 3.5.3, where we extend the attention mechanism by keeping track
of attention weights of the past output positions to provide more informative alignments. We
use shorthand notations x and y as input and output vectors on neural networks discussions.
Otherwise, throughout this thesis, we prefer a more general notation and use the standard machine
translation one. The reason for this is to support unified and consistent formulation. However,
all models discussed are also applied to speech recognition and speech translation. Experimental
results including our baselines are presented in Section 3.8.1 for machine translation and in Section
3.8.2 for automatic speech recognition. The chapter ends with a conclusion and related works.

3.2 Neural Networks

Neural networks are a category of statistical methods in machine learning and have become
a tool of choice, widely used to model and parameterize various distributions. According to the
Universal Approximation Theorem [Cybenko 89], given enough data and nodes, neural networks
are generic functions that can approximate any function to a certain degree and can be seen as
the composition of functions.

3.2.1 Feedforward Neural Network

The basic building blocks of neural networks are layers consisting of a fixed number of nodes,
also called neurons. Each feedforward layer contains a certain number of nodes, and it performs

17

3 Neural Sequence-to-Sequence Modeling

Table 3.1: Commonly used activation functions in neural networks.

name function g(.)

ReLu max(0, x)

sigmoid 1
1+exp(−x)

hyperbolic tangent, tanh(x) exp(2x)−1
exp(2x)+1

softmax, for node k exp(xk)∑
k′ exp(xk′)

very general operations. A fixed-size vector is used as an input to a layer. Assume an input vector
x ∈ Rdx and a new output vector ŷ ∈ Rdy , with dx and dy being the input and output dimensions.
Each component in the input vector is multiplied by a trainable parameter, also known as a weight
W . Each node then sums the result of each entry together and optionally adds another trainable
parameter, called the bias b. A scalar value is then passed through the activation function g.
The result of this function is the layer output at the current node. The results of all nodes are
concatenated to form the output vector ŷ. These operations can be executed in parallel using
matrix-vector multiplication. An example for such a definition is written by

ŷ = g(Wx+ b) = g ◦ linear(x). (3.1)

Here, W ∈ Rdy×dx and b ∈ Rdy are trainable parameters, meaning that their values are changed
to approximate a given function. We distinguish between the network output ŷ and the true
output y. linear represents a linear projection with trainable parameters. Hence, a layer in a neural
network is the composition of multiple affine linear functions interleaved with a differentiable and
nonlinear activation function, as stated in this formula. For sake of legibility, we use the symbol ◦
denoting the composition of functions1. Here, ◦ denotes the composition of linear and activation
functions. The activation function can be chosen arbitrarily. Table 3.1 lists the common activation
functions often used.

The softmax and sigmoid functions are used at the final or output layer of neural networks to
obtain a categorical or Bernoulli distribution, respectively. The former is an especially interesting
function because it normalizes the output to be a valid normalized distribution that sums to one.
It allows a node to represent the probability of a certain discrete output. Therefore, in many
classification tasks, the softmax function is applied to the output layer. The sigmoid function maps
its input to a value between (0, 1). In addition to the output and input layers, all intermediate
layers are referred to as hidden layers. Besides sigmoid, ReLu and hyperbolic tangent, outputting
values in the range (0, inf) and (−1, 1), respectively, are mainly used for hidden layers.

In practice, to increase modeling capacity and approximate more complex functions, multiple
layers are stacked on top of each other, forming a feedforward network. The network is often
denoted as a function with a set of parameters θ = (W, b).

Regarding notation, each weight W , bias b, and activation function g is given a superscript l
denoting the layer where the weight is used, with L being the last layer. In addition, each output
of the intermediate hidden layer l is represented with h(l), and the last layer L is abbreviated
with ŷ = h(L). Based on the fact that a combination of several linear functions can be seen as
another linear function, the number of nonlinear activation functions is the component that mainly
determines the depth of neural networks.

The generation of the entire network output ŷ = g(x; θ) is done by sequentially computing the
output of each feedforward layer l, using the output of the previous layer l − 1 as the input. For

1Given f(x) and g(x) as functions of x ∈ R such that f : R→ R, g : R→ R, then f ◦ g = f
(
g(x)

)
.

18

3.2 Neural Networks

the first layer, the input is x directly. This sequential pass is known as the forward pass. Neural
networks can thus be viewed as the concatenation of individual layers, as expressed in

g(x; θ) = g(L)
(
W (L)g(L−1)

(
W (L−1) . . . g(1)(W (1)x+ b(1)) . . .+ b(L−1)

)
+ b(L)

)
. (3.2)

The parameters W (l) and b(l) for each layer l have no restrictions, other than their dimensions
need to match up to have a valid matrix multiplication. In the case of feedforward networks, we

have θ =
{
W (l), b(l)|l ∈ {1, . . . , L}

}
. Every layer typically has its own separate parameters, but

the parameters can be shared across different layers, known as tying or sharing [Press & Wolf 17].
Such parameter sharing implies an inductive bias that aids better generalization. For simplicity,
we drop the superscript l in the rest of the discussions.

3.2.2 Recurrent Neural Network

Feedforward networks can model highly complex distributions but are limited by their fixed-size
inputs, making them unsuitable for variable-length inputs. Recurrent neural networks (RNNs)
[Rumelhart & Hinton+ 86] are specialized for processing sequential data of variable length and
generating an output while carrying through a hidden state containing information about the
previous time steps. Every such input sequence consists of vectors xt ∈ Rdx where t ∈ {1, . . . , T}
denotes the time step index or simply the position in the sequence for non-temporal data. Clearly,
the sequence length T varies across different inputs.

In contrast to feedforward networks, RNNs can easily generalize to previously unseen sequence
lengths. This is accomplished by parameter sharing where several parts of a model share the same
parameters by a deep unfolded computational graph. Every member of the output is produced by
applying the same function with the same parameters as the values from the previous time step.
This allows for much better and more efficient generalization across different sequence lengths. As
an example of an application that benefits hugely from using an RNN topology, consider the task
of extracting certain information from a written sentence. Depending on the sentence, the relevant
part could be at the beginning, middle, or end of the sentence. Feedforward networks being trained
on sentences of a fixed length thus has to learn to detect time information at every single position
separately. This requires lots of parameters and lots of training data. Recurrent neural networks,
in contrast, share the same weights for several input features and allow for detecting the time
information position independently, with fewer training examples, and also a generalization to
sentence lengths that have not yet been seen in the training data [Goodfellow & Bengio+ 16].

Almost all recurrent neural networks use recurrence in the definition of the values of their
hidden units. An RNN that is trained to predict future values from the past, for example, can use
the hidden state ht as a fixed-size summary of the relevant aspects of the past inputs x1, . . . , xt.
Formally speaking, the hidden state at time step t is computed as

ht =g(Wxxt +Whht−1 + b), (3.3)

ŷt =g(Wyht) (3.4)

where the same set of parameters θ for the activation function g is used at every single time step.
Wx ∈ Rdh×dx,Wh ∈ Rdh×dh ,Wy ∈ Rdy×dh are hidden-to-hidden, input-to-hidden and hidden-to-
output matrices, and b is the bias term. ht ∈ Rdh is the hidden state at time step t with dh
nodes. At every time step, the RNN furthermore produces the output ŷt. Equation 3.3 is recurrent
because the definition of h at time step t refers back to the same definition at time step t− 1. For
any finite t, the recurrence can be unfolded by repeatedly applying the definition, i.e.,

ht =g

(
Wxxt +Wh . . .

(
g
(
Wxx2 +Whg(Wxx1 +Whh0 + b) + b

)
. . .
)

+ b

)
. (3.5)

19

3 Neural Sequence-to-Sequence Modeling

An RNN layer is commonly shortened when only presenting the inputs and output as

ht = RNN (xt, ht−1) . (3.6)

By comparing Equations 3.2 and 3.5, one notices that the RNN structure can be considered as
a deep feedforward network with T layers over the time axis. Parameter sharing in RNN has two
main benefits:

1. The learned model input size is independent of the input sequence length, while the length
of the input of ht depends linearly on t.

2. The same transition function with the same set of parameters θ can be used at every time
step. Therefore, only relatively few parameters need to be learned, and the model is able to
generalize to unseen sequence lengths.

So far, the benefits of parameter sharing in recurrent neural networks have been only considered.
However, optimizing these parameters in a stable way that allows distant dependencies to have
sufficient influence on the current state can be pretty difficult. This phenomenon can become
problematic for longer sequences since training involves computing the gradient (see Section 3.6).
This problem is known as vanishing and exploding gradients. Gradients close to zero give only a
little insight into the directions that should be used for optimizing the parameters. Exploding
gradients, on the other hand, can lead to very unstable learning behavior [Hochreiter 91, Bengio
& Frasconi+ 93, Bengio & Simard+ 94].

In the next section, we look at a type of recurrent network with a gating mechanism that tries
to overcome this problem. It is based on the idea of creating paths through time that neither
vanish nor explode. We consider one subtype of gated RNNs which has proven to be very effective
in practice, the so-called long short-term memory [Hochreiter & Schmidhuber 97]. There are
several variations and alternatives to this and to gating mechanisms in general, such as the gated
recurrent unit [Cho & van Merrienboer+ 14a]. Since the performance of gated cells is similar, we
only cover and employ the most common one.

3.2.3 Long Short-Term Memory

Long short-term memory (LSTM) has been proposed by [Hochreiter & Schmidhuber 97] and
augmented with forget gates [Gers & Schmidhuber+ 00], as well as extra peephole connections
[Gers & Schraudolph+ 02]. The main building block of LSTM is a cell that replaces the traditional
hidden units. Each cell can accumulate and forget some states. The LSTM network consists of
such cells that are connected with each other and have the network regular recurrences in addition
to the self-recurrence within the cell.

The ability to learn long-term dependencies makes LSTM a valuable resource for sequence
modeling. The building block of the variant of LSTM used in this work is shown in Figure 3.1.
At every time step t, it gets the input xt and the hidden state ht−1 from the previous time step.
Each LSTM unit maintains some state information in an internal cell state ct via a linear self-loop
with a delay of one time step.

Three gates control information flow. The input gate git controls how much of the input should
be added to the cell state. The forget gate gft decides which information of the last cell state
should be forgotten and can clear or reduce the information contained in the state by controlling
the weight of the self-loop. The output gate got controls the output flow. All gates have access
to the input xt and the previous hidden state ht−1. As written in Equation 3.11, the internal
cell state is computed using the previous cell state ct−1 multiplied by the forget gate, and the
candidate c̃t multiplied by the input gate. Finally, the output gate decides which contents of the
obtained cell state should be part of the output. The gate units use the sigmoid nonlinearity σ

20

3.2 Neural Networks

ct

cell

� ht�c̃t

�

gf t forget gate

gitinput gate gotoutput gate

xt

ht−1

xt
ht−1

xt
ht−1

xt
ht−1

Figure 3.1: An example diagram of LSTM for the input xt. All gates use the sigmoid activation
function; the candidate cell arbitrarily uses tanh in this example.

to ensure a value between 0 and 1. The candidate unit cannot access ct and has an arbitrary
nonlinearity. Like in most implementations, we choose tanh. Considering that, the LSTM update
equations can be formulated by

git = σ(Wi[xt;ht−1] + bi), (3.7)

gft = σ(Wf [xt;ht−1] + bf), (3.8)

got = σ(Wo[xt;ht−1] + bo), (3.9)

c̃t = tanh(Wc[xt;ht−1] + bc), (3.10)

ct = gft � ct−1 + c̃t � git , (3.11)

ht = tanh(ct)� got (3.12)

where W{i,f,o,c} ∈ Rdh×[dx+dh] are weight matrices and b{i,f,o,c} ∈ Rdh are bias vectors. � indicates
the element-wise multiplication. Additional peephole connections can be added. The LSTM layer
is often shortened as a function if only presenting the inputs and output and defined by

ht = LSTM (xt, ht−1) . (3.13)

3.2.4 Bidirectional Long Short-Term Memory

We have seen how the output at time step t can depend on the input at time step t and previous
time steps 1, . . . , t − 1. In some applications, the output at time step t might also depend on
the input values at future time steps t+ 1, . . . , T . For instance, in machine translation, it seems
necessary to consider the whole source sentence when generating the target sentence. The current
target token might depend on previous and following source words, especially for language pairs
requiring word reordering. If there are two similar interpretations of one part of the source sentence,
one can choose the one that creates the more likely combination of words. Thus, a suitable context
representation has to look far into the past of the sequence and arbitrarily far into the future.

To allow RNNs to tackle this situation, bidirectional RNNs were invented by simply introducing
an additional hidden layer with the same connections as in the original hidden layer but moving

21

3 Neural Sequence-to-Sequence Modeling

backward in time [Schuster & Paliwal 97]. Later an extension to LSTM units has been also
introduced [Graves & Jaitly+ 13b, Sundermeyer & Alkhouli+ 14], known as bidirectional LSTM

(BiLSTM).
−→
ht and

←−
ht are used to denote the forward and backward hidden layers. As a combination

of two LSTMs, BiLSTM creates outputs that focuses on the inputs right around time step t but
may also depend on input values that are far in the future or past. The hidden state ht is the
concatenation of the hidden states from the forward and backward layers written as

ht = [
−→
ht ;
←−
ht]. (3.14)

Similar to LSTM as an abstract function, a shorthand notation for BiLSTM is represented as

ht = BiLSTM (xt, ht−1, ht+1) . (3.15)

The concept of combining several recurrent networks can be extended, e.g., for handling two-
dimensional inputs such as images. We discuss an extension of LSTM to two dimensions later in
Section 4.2, with the bidirectional concept in Section 4.3.4. Unless explicitly stated otherwise, in
the course of this thesis, we leave out weight matrices and bias vectors for the sake of simplicity
and consider layers as functions whose equations show the dependency among variables.

3.3 Neural Language Model

As an alternative to the count-based n-gram models discussed in Section 1.3.2, the probability of
a word sequence can be modeled using neural networks. Neural network-based language models aim
to solve the problems of count-based models, particularly data sparsity and lack of generalization.
Lack of generalization in this context means similar word sequences are not assigned similar
probabilities because word representation is discrete. Neural language models alleviate these
problems by representing words by continuous vectors [Bellegarda 97, Bengio & Ducharme+ 03]
where learned continuous word representations capture morphological, syntactic, and semantic
similarity across words [Collobert & Weston 08], thus exhibiting better generalization compared
to count-based models.

To map each discrete token in a finite vocabulary to a continuous representation, one-hot
vectors of the vocabulary size are utilized. In the one-hot representation, all components are zero
other than the k-th element which corresponds to the k-th token of the vocabulary. Working
with machine translation notations, we convert a discrete word ei to a real-valued vector ẽi by
multiplying its one-hot vectors with an embedding matrix. This multiplication simplifies to a
look-up table. The word embedding ẽi has a much smaller dimension than the vocabulary. The
embedding matrices are shared between positions and usually trained jointly with the rest of the
network. They are passed to the upper hidden layers. Eventually, the softmax layer predicts the
probability of a word given the history, as stated in Equation 1.15. The hidden layers can be
modeled by both feedforward and recurrent neural networks. The former limits the history to
n-gram tokens, while the latter provides the entire context and a powerful solution to the language
modeling task. For more insight into neural language models, we refer the reader to [Bengio &
Ducharme+ 03, Schwenk & Gauvain 04, Mikolov & Karafiát+ 10, Sundermeyer & Oparin+ 13, Liu
& Saleh+ 18, Al-Rfou & Choe+ 19].

Assuming an LSTM layer to model the recurrence, we have

oi = linear ◦LSTM(si−1, ẽi−1), (3.16)

p(ei = w|ei−1
0) =

exp(oiw)∑|Ve|
v=1 exp(oiv)

= softmax(oi)|w (3.17)

22

3.4 Sequence-to-Sequence Model

e... ei−1 ei ei+1

s... si−1 si si+1

Figure 3.2: A simple recurrent-based language model with its dependencies.

where ẽi−1 and si−1 are the embedding vector of the previous token and the previous LSTM hidden
state. e0 represents the word at the first position. The linear function maps the output dimension
to the vocabulary size. After that, softmax predicts the current token. To reduce the total number
of parameters, the embedding and the output projection matrices can be tied [Press & Wolf 17].

Figure 3.2 illustrates the recurrent neural network language model and its dependencies. In the
next section, we see that such the recurrent auto-regressive language model conditioned on the
input representations can be applied as a decoder in sequence-to-sequence modeling.

3.4 Sequence-to-Sequence Model

Sequence-to-sequence models are mainly based on a family of prevailing architectures known
as encoder-decoder networks, single and stand-alone, yet strong neural models that generate
contextually appropriate, arbitrary-length output sequences. Encoder-decoder architectures have
been used in a wide range of applications [Kalchbrenner & Blunsom 13, Sutskever & Vinyals+

14, Cho & van Merrienboer+ 14a]. The key idea underlying these methods is based on two
components: an encoder and a decoder. The encoder reads a variable-length source sequence
and encodes it into a single continuous vector representation. Then, the source representation
is passed to the second component, the decoder, which generates a target sequence step by step.
The decoder is considered to be a neural language model conditioned on source representations.
In such architectures, the input and output sequences are separately handled.

As explained earlier in Chapter 1, our main goal is to model a conditional distribution of the
target sentence given the source sentence. Using the chain rule, the posterior probability of the
target sentence is factorized into

p(eI1|fJ1) =

I∏
i=1

p(ei|ei−1
0 , fJ1). (3.18)

p(ei|ei−1
0 , fJ1) can be modeled in different ways. At each time step, the model computes the word-

level probability. Convolutional neural networks (CNNs) [Kalchbrenner & Blunsom 13, Gehring
& Auli+ 17a, Gehring & Auli+ 17b], deep self-attentive layers [Vaswani & Shazeer+ 17], and
deep stacked recurrent networks [Sutskever & Vinyals+ 14, Cho & van Merrienboer+ 14a] can be
employed to model the encoder, decoder, or both.

This work concentrates solely on the encoder-decoder topology equipped with either the RNN-
based LSTM described below or self-attentive layers described in Section 3.5.4. The models differ
in the way these architectures are used to compute hidden representations. In the first layer of
the network, a source sentence of J words is projected into a series of embedding vectors f̃J1 by
applying the look-up table to each of its tokens. In the next layer, an encoder reads the series of
vectors and encodes them in a sequence of hidden representations. Here, the LSTM layer is taken,
and the encoder is formulated as

hj = LSTM
(
hj−1, f̃j

)
. (3.19)

23

3 Neural Sequence-to-Sequence Modeling

ei−1 ei ei+1 e...

si−1 si si+1 s...

hj−1 hj hj+1 h... hJ

fj−1 fj fj+1 f... fJ

Figure 3.3: The architecture of the encoder-decoder network with a fixed-length source sentence
representation. The blue blocks depict the encoder and decoder recurrent layers.

hj represents the LSTM encoder state. The final hidden state is the summary of the whole
source sentence. We call it the context vector c(fJ1) = hJ that contains source information.

The decoder is a recurrent-based language model on the target side conditioned on the source
sentence as written in Equation 3.20 [Kalchbrenner & Blunsom 13, Cho & van Merrienboer+ 14a].
Once the source sentence has been encoded, the decoder starts generating the first target token
e0, which is then fed back to the decoder network to produce the second token, and so on. The
algorithm terminates when the network generates the end-of-sentence token </S>. Therefore,
given the last decoder state, the embedding of the previous target token, and the context vector,
we update the decoder state si and predict the current token by

si = LSTM
(
si−1, ẽi, c(f

J
1)
)
, (3.20)

p(ei|ei−1
0 , fJ1) = softmax ◦ linear

(
si−1, ẽi−1, c(f

J
1)
)
. (3.21)

Alternatively, c(fJ1) can be used only to initialize the first decoder state s0 corresponding to the
target beginning-of-sentence token [Sutskever & Vinyals+ 14, Bahdanau & Cho+ 15].

Figure 3.3 shows an abstract overview of the encoder-decoder network. In contrast to traditional
phrase-based machine translation with a very large number of highly engineered features, the
neural encoder-decoder models are simple and efficient.

In sequence-to-sequence modeling, particularly offline modeling, the assumption is that the
entire source sentence is available. Unlike the standard way in which the tokens to the encoder
are fed in the natural order they appear in the sentence [Cho & van Merrienboer+ 14b], one can
also read the sentence in reverse order [Sutskever & Vinyals+ 14]. A bidirectional LSTM in the
encoder reads the source sentence in the backward direction. Attention sequence-to-sequence
models, which are powerful extensions to the standard encoder-decoder topology, read the source
sentence in both forward and backward directions, as discussed next.

3.5 Attention Sequence-to-Sequence Model

One of the problems associated with a fixed-size context vector of the source sequence is
ignorance of its length. Clearly, sequences with different lengths convey different amounts of
information, and a fixed-size vector limits the capacity of the model, and it is show that the
translation quality is considerably worse on long sequences [Cho & van Merrienboer+ 14a]. To

24

3.5 Attention Sequence-to-Sequence Model

Table 3.2: Attention scoring functions. W and ν denote trainable parameters of the network.

name scoring function score(K,Q)

additive ν> tanh(W [Q;K])

multiplicative K>WQ

scaled multiplicative K>WQ√
d

mitigate this issue for machine translation, the concept of attention is proposed by [Bahdanau
& Cho+ 15] as an extension to the encoder-decoder model to avoid having a fixed-length source
sentence representation. Instead of a single vector, the model encodes the source sequence into a
series of vectors and chooses a subset of them adaptively by a weighting mechanism in the decoder.
The attention layer does a soft search for a set of positions on the source sentence where the
most relevant information is concentrated. We first address attention as a general concept before
describing the architecture in detail in Section 3.5.2.

3.5.1 Attention

Generally speaking, attention is a mapping operation that takes J key-value pairs and I query
vectors [Vaswani & Shazeer+ 17]. It can be seen as a search problem over certain keys given a
query, returning a value that the keys represent. For simplicity, we assume all vectors have the
same dimension d, and squeezing the vectors results in the key K ∈ RJ×d, value V ∈ RJ×d, and
query Q ∈ RI×d matrices. Then, the attention concept is formally formulated as a function of
matrix operations expressed as

attention(K,V,Q) = softmax
(

score(K,Q)
)
|jV. (3.22)

The output is the weighted sum of the values based on the mapping of the query to the keys,
provided that the query, keys, and values are all vectors. In the end, for each query vector, the
weighted sum of the value vectors is obtained. A similarity scoring function between the query
vector and all the keys calculates weights. It results in a (J × I) matrix of unnormalized scores.
Softmax normalizes the weights over the columns of that matrix so that the weights for each
query vector sum to one. There are a couple of variants of scoring functions, such as additive
[Bahdanau & Cho+ 15], multiplicative or dot-product, which can be grouped into either general
multiplicative [Luong & Pham+ 15] or scaled multiplicative [Vaswani & Shazeer+ 17]. In the latter
case, unnormalized scores are divided by the square root of the key vector dimension for more
stable gradients. Table 3.2 summarizes the most common attention scoring functions.

Given the encoder-decoder architecture, the decoder hidden states sI0 are used as the query
vectors, and the encoder hidden states hJ1 play the role of the key and value vectors. In an
uncommon topology, the encoder states is divided into two parts. The first and second halves are
used as the key and value vectors, respectively [Mino & Utiyama+ 17]. Once we have processed
the whole source and target sentences, the attention matrix A ∈ RJ×I is calculated given by

A := softmax ◦ score(si, hj) ∀j ∈ [1, J] and ∀i ∈ [1, I]. (3.23)

The entry Aj,i represents the attention score between positions i and j. As it is obtained from a
distribution, we use probabilistic notations for it, as Aj,i = α(j|i). However, it is often challenging
for fuzzy attention weights to extract comprehensible alignments compared to count-based IBM
and HMM alignment models, where a hard alignment is a transparent process. Figure 3.4 depicts

25

3 Neural Sequence-to-Sequence Modeling

Figure 3.4: Attention weight matrix A for German→English translation. Each cell presents the
normalized attention weights α(.|.) between the corresponding source (column) and
target (row) tokens. The darker the blue color, the higher the attention weight is. As
shown, the weights over the rows for each English target word sum up to one. </S>
represents the end-of-sentence token.

an example of the attention matrix A in machine translation using additive attention. In this
example, the source sentence “wir benötigen detaillierte , konkrete Vorschläge .” is translated to
“we need detailed , concrete proposals .” The attention matrix captures cross-lingual word relations
such as “benötigen” being relevant for generating “need” or the aligned word for “Vorschläge” in
English being “proposals” thus emitting a high attention weight for this pair.

Soft, Hard, and Local Attention

In the literature, the aforementioned mechanism is often called soft attention. Soft attention
provides a way to observe what influences the model decision-making process. Even when the
model has very sharp values in soft attention, it still has some degree of spread around other
tokens, as shown in Figure 3.4. This property is in contrast to hard attention introduced for image
caption generation [Xu & Ba+ 15]. In their work, soft attention weights are placed softly over
all patches in the source image. On the other hand, hard attention attends to only one patch of
the image at a time. In hard attention, each output token focuses only on one input position,
resembling the concept of conventional alignments discussed Section 1.2.1. Although the hard
attention model is much more efficient at inference time and well-trained models succeed in certain
settings, it is not differentiable, is harder to train, and the gradient of the attention weights is
subject to high variance. Therefore, it requires techniques like an approximate variational lower
bound or REINFORCE [Williams 92].

As said, attention weights are normalized over all source positions, meaning that it attends to all
tokens. This inspires the term global attention. The problem of such global attention approaches
is that firstly they are impractical for streaming purposes where there is no access to the entire
input sequence, and the output sequence is immediately generated as long as a portion of the
input is received. Simple examples are ASR streaming or simultaneous translation. Secondly,
global attention can be expensive for long sequences, e.g., paragraphs or documents. To solve
these deficiencies, local attention focuses only on a small subset of the source positions per target
token [Luong & Pham+ 15]. Local attention lies between the soft and hard attention models.
Unlike hard attention, it is differentiable almost everywhere, making it easier to implement. Since
its performance in both speech recognition [Zeyer & Merboldt+ 18, Merboldt & Zeyer+ 19] and
machine translation [Luong & Pham+ 15] is behind the global attention methods, this work leaves

26

3.5 Attention Sequence-to-Sequence Model

it out of its scope. Instead, we propose an alternative model to soft attention that is akin to hard
attention and resembles conventional alignments. We cover it in detail in Chapter 5.

Multihead Attention

A further improvement upon the basic attention mechanism is its extension to multiple memory
networks [Cheng & Dong+ 16]. A similar idea is used to retrieve different context vectors, instead
of just one, as first described in [Vaswani & Shazeer+ 17]. The intuition behind multihead
attention is that the model receives information from different representation subspaces at different
positions. Hence, it might capture different sources of knowledge. The query, key, and value
vectors are linearly projected H times with different trainable linear projections. H is the number
of heads performing the attention scoring function in parallel. This results in an H normalized
distribution to represent different attention weights. The concatenation of the output of each
attention head obtains the final output of multihead attention. In practice, to avoid increasing
the number of parameters, the dimension of the query, key, and value vectors is divided by the
number of heads. Each part calculates a context vector separately, with all resulting context
vectors being concatenated together to form the final one. Once again, after concatenation, the
final dimensionality remains the same. Mathematically, it means

MultiHeadAttention(K,V,Q) = [head1; . . . ; headH]WO

with headm = attention(KWm
K , V W

m
V , QW

m
Q) (3.24)

where Wm
K , Wm

V , Wm
Q ∈ Rd×

d
H are the trainable parameters for the m-th head of the key, value,

and query matrices, and WO ∈ RH
d
H
×d keeps the final dimensionality. Having multiple attention

heads is challenging for deriving a single attention weight matrix A.

Self-Attention

Up until now, we have examined attention only in the situation of the decoder attending to
the encoder in the context of the encoder-decoder sequence-to-sequence architecture. Based on
generalized attention, attention can be used in the encoder, using linearly transformed encoder
hidden states for the query, keys, and values [Vaswani & Shazeer+ 17]. Such an attention application
is called self-attention. Self-attention calculates attention weights between two elements of the
same sequence. Given Equation 3.22, the query, keys, and values are identical vectors. The same
concept can be applied in the decoder, as we see later in Section 3.5.4.

The attention mechanism is an augmentation to the sequence-to-sequence architecture for
better integration between the encoder and decoder. In this thesis, we refer to it as the attention
sequence-to-sequence or simply attention model.

3.5.2 Recurrent Attention Model

Recurrent-based attention models are based on three main components. An additional attention
layer incorporates the encoder and decoder, which are based on LSTM cells. In contrast to
the standard encoder-decoder models in which a stack of unidirectional LSTM layers is used to
encode the source sentence, in recurrent-based attention models, the encoder is equipped with Le
bidirectional LSTMs stacked on top of each other [Bahdanau & Cho+ 15, Luong & Pham+ 15].
Using Equation 3.15, we write

hj = BiLSTM(Le) ◦ . . . ◦ BiLSTM(1)(f̃j , hj−1, hj+1). (3.25)

Once the whole source sequence has been read and encoded to the sequence of hidden states,
the decoder starts to generate the output sequence token by token. At each time step, the

27

3 Neural Sequence-to-Sequence Modeling

attention mechanism allows the model to focus on certain source positions. All the attention
scoring functions listed in Table 3.2 can be employed to compute the attention weights. Here, we
use single-head additive attention that is a feedforward neural network, even though it can be
expanded to multihead. Again, we write

α′j,i = score(si−1, hj) = linear ◦ tanh
(
si−1, hj

)
, (3.26)

α(j|i) = softmax(α′j,i)|j (3.27)

where α′j,i ∈ R is an unnormalized score which is normalized by softmax to produce the attention
weights α(j|i). It calculates the importance of each encoder state hj in relation to the last decoder
state si−1. The attention weights are then used as a weight for mixing the encoder states together
and computing the context vector as

ci = attention(K = hj , V = hj , Q = si−1) =

J∑
j=1

α(j|i)hj . (3.28)

The context vector is usually appended to the hidden state of the LSTM decoder to calculate
the posterior distribution. It depends on the target position i, in contrast to the non-attention
encoder-decoder model, where a fixed vector c is used over all target positions. Therefore, the
dependencies of Equations 3.20 and 3.21 are updated to

si = LSTM
(
si−1, ẽi, ci(f

J
1)
)
, (3.29)

p(ei|ei−1
0 , fJ1) = softmax ◦ linear ◦maxout

(
si−1, ẽi−1, ci(f

J
1)
)
. (3.30)

Here, the decoder contains one layer of LSTM as shown in Figure 3.5. But it is usually deeper
in some settings. There is also an extra layer called maxout [Goodfellow & Warde-Farley+ 13]
which reduces the hidden dimension before the output layer to lower the size dm. This leads to an
easier matrix-vector product, hence speeding up training a bit. The maxout layer operates

maxout(õ) =
[

max {õi,2k−1, õi,2k}
]>
k=1,...,dm

(3.31)

where õi,k is the k-th element of the vector õi to be an input to the maxout function.
From the modeling perspective, ci adds indirect information about the source sentence into

the decoder, thus making a dependency on fJ1 compared to non-attention-based models. It is
important to highlight that, in some configurations, the decoder state gets updated first, and then
the target token is generated, as in [Bahdanau & Cho+ 15]. This means that in the attention
computation, si−1 does not contain implicit information about ẽi−1, but ẽi−2 instead. The hidden
states of the decoder are shifted by one. Adding an explicit term ẽi−1 in attention calculation
solves the issue. In our implementation, we first predict the target token ẽi and then update the
decoder state si, correspondingly. Therefore, si−1 implicitly contains information about ẽi−1.

For future reference, the sequence-to-sequence model with attention and LSTM cells is often
simply termed the recurrent-based attention or RNN attention model.

3.5.3 Attention Refinement

This section serves as the starting point of our contributions where we verify several extensions
of the attention mechanism from the literature and further refine them. The RNN attention model
is highly effective in relating the source and target sentences. However, it does not make any
conditional dependence assumption on previous attention information. This is a zero-order model
that ignores past alignments, and in fact, it exhibits a lack of coverage. In phrase-based machine
translation, a coverage vector indicates whether a source word has been translated or not. The

28

3.5 Attention Sequence-to-Sequence Model

e... s... c...

ei+1 si+1 ci+1

ei si ci

ei−1 si−1 ci−1

h... hj−1 hj hj+1 h...

f... fj−1 fj fj+1 f...

×Le

attention

Figure 3.5: The architecture of the encoder-decoder network equipped with an attention layer.
The blue cells show the encoder and decoder recurrent states. The bidirectional
dependency between hjs in the encoder (left-to-right and right-to-left) is in contrast
to the unidirectional property of the decoder (bottom-to-up). In this work, a deeper
encoder with Le layers and one decoder layer are taken.

search procedure is terminated if all source tokens are covered. In attention-based models, there is
no coverage that might lead to over-translation, where some words are unnecessarily translated
multiple times or under-translation where some words are not translated at all.

The problem of the standard attention model which ignores past alignments is addressed by
[Tu & Lu+ 16]. They refer to this issue as the lack of coverage. In their work, they maintain a
coverage vector to keep track of previous attention weights. This vector is fed back to adjust future
attention weights. In other words, it gives the model a flag to consider more about untranslated
source tokens. If a source token has been already translated, it is less likely to be translated again
and should be assigned a lower score. They also propose the concept of fertility inherited from
word-level machine translation [Brown & Pietra+ 93]. Similarly, RNN attention models include
structural biases from word-based alignment models, positional bias, Markov conditioning, fertility,
and agreement over translation directions [Cohn & Hoang+ 16]. Next, we overview and extend
some of these ideas, and in the experimental section, we compare them.

Last Attention Weight We feedback the immediate predecessor attention weight in order to
compute the unnormalized score at the current position i. The Equation 3.26 is rewritten as

α′j,i = linear ◦ tanh
(
si−1, hj , α(j|i− 1)

)
. (3.32)

Accumulated Attention Weight We can also pass on all attention weights from the first target
position, i.e., from position 1 to i− 1 by accumulating them through the sum. Therefore, we have

α′j,i = linear ◦ tanh
(
si−1, hj ,

i−1∑
k=1

α(j|k)
)

(3.33)

29

3 Neural Sequence-to-Sequence Modeling

where the third term is accumulated attention.

Fertility Similar to [Tu & Lu+ 16, Cohn & Hoang+ 16], the fertility concept (especially for
machine translation) can be added as a better way of providing coverage. To this end, the fertility
value φj of fj is multiplied by the accumulated attention weights given by

α′j,i = linear ◦ tanh
(
si−1, hj , φj

i−1∑
k=1

α(j|k)
)

(3.34)

where φj depends on the encoder states because it can vary if the word is used in a different
context and is defined as

φj =
σ ◦ linear(hj)

2
(3.35)

where the denominator specifies the maximum value for fertility, which is set to 2 in our experiments.

Last Context in Attention A possible extension to consider past attention weights is to include
the last context vector in the computation of the current attention score, i.e.,

α′j,i = linear ◦ tanh(si−1, hj , ci−1). (3.36)

Last Context in Decoder An alternative is to include the past context vector in the computation
of decoder state si and target word ei. Although the layers get information from the current
context vector, it may be possible to benefit from past ones recursively. Therefore, we rewrite
Equations 3.29 and 3.30 as

si = LSTM
(
si−1, ẽi, ci, ci−1

)
, (3.37)

p(ei|ei−1
0 , fJ1) = softmax ◦ linear ◦maxout

(
si−1, ẽi−1, ci, ci−1

)
. (3.38)

Embedding in Attention As discussed before, the attention scoring functions take the encoder
and decoder states to compute a distribution over input positions. It is often arguable that the
encoder hidden states include the entire source context and the decoder hidden states include all
histories until the current position. In order to explicitly have information for the corresponding
source and target tokens, we add word embeddings to the attention computation that is we add f̃j
and ẽi−1 for the source position j and the target position i, respectively, which gives

α′j,i = linear ◦ tanh(si−1, hj , f̃j , ẽi−1). (3.39)

3.5.4 Self-Attentive Model

Using the multihead attention and self-attention concepts, another model, named transformer or
generally the self-attentive model has been proposed [Vaswani & Shazeer+ 17]. The self-attentive
model closely resembles the RNN attention model, both having encoder and decoder components.
But the main intuition behind this network is to remove all recurrent components and substitute
them with feedforward layers. It differs from its RNN counterparts in that, in RNN, the input is
processed sequentially, and the model produces the output depending on the relation between the
current input and all previous ones. This sequential property makes processing slow due to its
dependency on predecessors.

This fact motivates self-attentive models to completely replace the LSTM cells in both the
encoder and decoder with self-attention and feedforward layers. Exploiting the power of graphical

30

3.5 Attention Sequence-to-Sequence Model

processing units (GPUs), self-attentive models can be trained much faster compared to RNN
attention. In comparison, self-attentive models are usually trained with deeper layers. We note
that the architecture presented here is not a strict copy of the one presented in the main paper, but
rather a highly similar version, as implementation details can strongly affect the model performance.
In the following, we explain the main components of the architecture.

Positional Encoding Since there is no recurrent components, the model has to preserve the
order of the sequence. Hence, positional encoding is introduced. There are two ways to include
positional encoding. It can be learned with the network parameters [Gehring & Auli+ 17b] or it
can be computed based on sinusoidal functions. As they both lead to almost identical results, we
use the fixed version that adds a sinusoid wave based on the positions in the sentence, and to
some extent, it allows the model to infer sequences longer than those that have been seen during
training [Vaswani & Shazeer+ 17]. The sinusoidal positional encoding is calculated by

PE(j, k) =

{
sin
(j

10000(2k/d)

)
if k is even

cos
(j

10000(2k+1/d)

)
otherwise.

(3.40)

The function returns the positional encoding (PE) at position j for the k-th feature of the vector
of size d, which is the model size.

Encoder Once the positional encoding has been computed, it is added or concatenated to the
word embedding. The positional encoding is used both in the encoder and decoder as the first
step. In our notations, we refer to embedding as if they are the output of the 0-th layer. Applying
dropout [Srivastava & Hinton+ 14] as a regularization technique, we have

fj → h
(0)
j = dropout ◦

(
PE(j, k) +

f̃j√
d

)
. (3.41)

Each encoder layer is a stack of two sublayers: a multihead self-attention and a feedforward
layer with the ReLu activation. Each sublayer applies preprocessing and postprocessing operations.
Layer normalization [Ba & Kiros+ 16] is used as preprocessing, whereas dropout and residual
connection [He & Zhang+ 16] are chosen for the postprocessing step. One encoder layer can then
be expressed as

TransEncLayer = FFBlock ◦MHeadSelfAttBlock (3.42)

where MHeadSelfAttBlock and FFBlock refer to the multihead self-attention and feedforward
sublayers with a predefined sequence of operations like

MHeadSelfAttBlock(x) = x+ (dropout ◦ linear ◦ self-attention ◦ layer-norm)(x), (3.43)

FFBlock(x) = x+ (dropout ◦ linear ◦ReLu ◦ layer-norm)(x) (3.44)

with x being the input.

In the first layer, the input of TransEncLayer is the embedding vectors h
(0)
j , while in the upper

layers, the previous encoder states are used as its input. Self-attention weights at layer (l + 1) for
each j position are computed using the previous layer, defined as

α(l+1)
m (j′|j) = softmax ◦DotAtt(h

(l)
j,m, h

(l)
j′,m) ∀m ∈ [1, . . . ,H] (3.45)

31

3 Neural Sequence-to-Sequence Modeling

where H is the number of heads, j′ ∈ [1, J], and the scoring function is chosen to be the scaled
multiplicative function noted by DotAtt, as defined in Table 3.2. Having these weights, the next
layer representation is defined by

h
′(l+1)
j,m =

J∑
j′=1

α(l+1)
m (j′|j)h(l)

j′,m. (3.46)

According to Equation 3.24, the final output of the self-attention layer with multihead is
computed by concatenating the representations of all heads given by

h
′(l+1)
j = [h

′(l+1)
j,1 ; . . . ;h

′(l+1)
j,H]. (3.47)

We distinguish between h
′(l)
j and h

(l)
j such that the former is the output of the self-attention

layer while the latter represents the output of the encoder at layer l. Similar to the RNN attention
model, the encoder can be the stack of TransEncLayer on top of each other, given by

hJ1
(Le)

= (layer-norm ◦TransEncLayer(Le) ◦ . . . ◦ TransEncLayer(1))(fJ1) (3.48)

where Le is the number of encoder layers. Figure 3.6 illustrates the abstract overview of the
self-attentive model.

Decoder Similar to the encoder, the first layer is an embedding layer, given as

ei → c
(0)
i = dropout ◦

(
PE(i, k) +

ẽi√
d

)
. (3.49)

The decoder is composed of FFBlock and MaskedMheadSelfAttBlock sublayers. The latter
is similar to the MheadSelfAttBlock which masks out future context. The decoder contains an
additional multihead cross-attention sublayer to incorporate the representation of the encoder and
decoder. Assume a decoder of Ld layers, each is defined as

TransDecLayer = FFBlock ◦CrossAttBlock ◦MaskedMheadSelfAttBlock (3.50)

in which

CrossAttBlock(x) = x+ (dropout ◦ linear ◦ cross-attention ◦ layer-norm)(x). (3.51)

Self-attention weights between target positions using MaskedMheadSelfAttBlock are stated as

α(l+1)
m

(
i′|i− 1

)
= softmax ◦DotAtt(c

(l)
i−1,m, c

(l)
i′−1,m) ∀m ∈ [1, . . . ,H] (3.52)

where i′ ∈ [1, i], and c
(l)
i−1,m is the context vector in the l-th decoder layer and corresponds to the

m-th head. Given this, the decoder hidden state at position i for the m-th head is given by

s
(l+1)
i−1,m =

i−1∑
i′=1

α(l+1)
m

(
i′|i− 1

)
c

(l)
i′−1,m. (3.53)

Given the final encoder and decoder states at each layer, cross-attention computes a normalized

probability distribution α
(l+1)
m (j|i−1) over the input positions. This distribution can be considered

as an alignment between source and target sentences and is defined as

α(l+1)
m (j|i) = softmax ◦DotAtt(s

(l)
i−1,m, h

(Le)
j,m), (3.54)

32

3.5 Attention Sequence-to-Sequence Model

··
·

··
·

· · · · · ·

··
·

··
·

hJ1
(Le)

hJ1
(l)

fJ1

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

· · ·

· · ·

sI1
(Ld)

cI1
(Ld)

cI1
(l+1)

sI1
(l+1)

cI1
(l)

attention

ei

Figure 3.6: The self-attentive architecture composed of Le stacked TransEncLayer, respectively
Ld stacked TransDecLayer. The attention layer represents cross-attention between
the source and target sentences. The blue cells highlight the encoder and decoder
states. The encoder contains the entire source context (using the MheadSelfAttBlock
sublayer), while the decoder only entails to target histories until position i− 1 (using
the MaskedMheadSelfAttBlock sublayer).

and the context vector for each head is derived by

c
(l+1)
i,m =

J∑
j=1

α(l+1)
m (j|i)h(Le)

j,m with c
(0)
i,m := ẽi. (3.55)

The final attention context vector is obtained by concatenating the representations of all heads
given by

c
(l+1)
i = [c

(l+1)
i,1 ; . . . ; c

(l+1)
i,H]. (3.56)

Again, the decoder is often the stack of Ld layers. Therefore, for a deep model, we obtain

c
(Ld)
i = (layer-norm ◦TransDecLayer(Ld) ◦ . . . ◦ TransDecLayer(1))(ei−1

1). (3.57)

The output layer finally generates the next target token as

p(ei|ei−1
0 , fJ1) = softmax ◦ linear(c

(Ld)
i). (3.58)

33

3 Neural Sequence-to-Sequence Modeling

Figure 3.6 summarizes the dependencies within the encoder and decoder self-attentive layers.
The model is usually composed of deep encoder and decoder layers. The attention layer refers
to cross-attention between the source and target sequence. Although the model is known as the
transformer architecture, we use our terminology and call it the self-attentive model in this work.

3.6 Training

Neural network training involves solving a non-convex optimization problem with no closed-form
analytical solution in which the parameters θ are numerically estimated. In training neural
networks, the goal is to either minimize or maximize a given objective function L(θ) by iteratively
modifying θ in the hope that it improves an intractable performance measure evaluated on the
training set. This is where a set of training examples for supervised learning plays an important role.
This is different from traditional optimization algorithms where the cost function is minimized as a
final goal in and of itself. In neural networks, optimization is often implied in terms of minimizing
an objective function or criterion2, hence it is also called the cost, loss, or error function. Typically,
the cost function can be defined as an average over training data; however, we prefer to minimize
the cost function where the expectation is taken over the true underlying distribution. Since the
true distribution is unknown in practice, we replace it with the empirical distribution defined by
the annotated training set. For a given corpus of R = |datatrain| ∈ N parallel training examples

datatrain =
[(
Fr = (fr)

Jr
1 , Er = (er)

Ir
1

)]R
r=1

, we define

L(θ) =
∑
F,E

Pr(F,E) log p
(
E|F ; θ

)
(3.59)

=
1

R

R∑
r=1

log p
(
Er|Fr; θ

)
. (3.60)

Formally, the training criterion is defined to minimize the cost function to find the optimal set
of parameters θ̂ given by

θ̂ = argmin
θ

{
− L(θ)

}
(3.61)

= argmin
θ

{
−
∑
F,E

Pr(F,E) log p
(
E|F ; θ

)}
(3.62)

= argmin
θ

{
−
∑
F

Pr(F)
∑
E

Pr(E|F) log p
(
E|F ; θ

)}
(3.63)

= argmax
θ

{ R∑
r=1

log p
(
Er|Fr; θ

)}
. (3.64)

By crossing out the terms that are consistent with respect to θ, we simplify Equation 3.62 to
3.63. In information theory, the term −

∑
E Pr(E|F) log p

(
E|F ; θ

)
refers to cross-entropy. Here,

the training criterion is either to minimize cross-entropy or to maximize negative cross-entropy,
which is equivalent to maximizing log-likelihood of training data written in Equation 3.64 [Ney 19].

3.6.1 Back-Propagation with Stochastic Gradient Descent

The optimization phase of neural networks involves two passes. Starting with a random
initialization of the parameters and a given input, the network output is driven by the forward

2Maximization can be done by minimizing −L(θ).

34

3.6 Training

pass. Given a predefined differentiable cost function, a new set of parameters is obtained in
a backward pass according to gradients. The gradient of L is a vector containing all partial
derivatives, denoted as ∇θL(θ). The k-th element of the gradient represents the partial derivative
of the cost function with respect to the k-th parameter, which determines how to move θk in the
opposite sign of the derivative to decrease the cost function. That is why the method is known as
gradient descent [Cauchy 47]. As computing the cost function over the entire training data with
size R is usually expensive, in practice, we randomly select a small number of samples as a (mini-)
batch B ⊂ {1, . . . , R} and take the average over them. Given the cost function in Equation 3.60,
the gradient is therefore given by

∇θL(θ) =
1

B
∇θ

B∑
r=1

log p
(
Er|Fr; θ

)
. (3.65)

Optimization algorithms that employ batches of training data are not deterministic and are thus
called (batch) stochastic gradient descent (SGD), resulting in mini-batch gradient calculations
[Robbins & Monro 51]. Larger batches provide a more accurate estimate of the gradient, whereas
smaller sizes return more updates and have a more regularizing effect due to noisy gradient
calculation [Goodfellow & Bengio+ 16, Wilson & Martinez 03]. SGD updates the parameters by
means of an initial learning rate η. It is a positive scalar determining how large the updates are.
The update rule is then defined as

θτ+1 ← θτ − η∇θL(θ) (3.66)

where the index τ represents the iteration step and θτ+1 is a new set of parameters.

The initial learning rate is one of the important hyperparameters of training that should be
carefully tuned. Unlike SGD, adaptive optimizers offer a separate learning rate for each parameter.
One of the most prominent optimizers widely used in sequence-to-sequence modeling is Adam
[Kingma & Ba 15]. Allowing for more complex convergence and robustness against stochasticity,
Adam with its learning rate annealing scheme enables fast convergence and finds better local
minima [Bahar & Alkhouli+ 17]. Algorithm 1 explains Adam update rule. It considers the decaying
average of the past gradients nτ and provides a decaying mean of past squared gradients mτ . m̂τ

and n̂τ are the bias-corrected terms for instability against zero initialization considered as the
first and second moments. In the case of Adam, β1, β2, and ε are additional hyperparameters
which are usually set to 0.9, 0.999, and 10−8, respectively. The initial learning rate depends highly
on the model. Throughout this thesis, the Adam optimizer is applied with the hyperparameters
above unless otherwise specified.

Algorithm 1 Adam

1: nτ ← β1nτ−1 + (1− β1)∇θL(θ)
2: n̂τ ← nτ

1−βτ1
3: mτ ← β2mτ−1 + (1− β2)∇2

θL(θ)
4: m̂τ ← mτ

1−βτ2
5: θτ+1 ← θτ − η√

m̂τ+ε
n̂τ

To compute the gradient of the defined cost function with respect to the parameters, a method
called back-propagation is used [Rumelhart & Hinton+ 88]. The back-propagation algorithm
simply applies the chain rule of calculus to compute all necessary derivatives one after another.

RNNs are trained using the same concept as feedforward networks. They use back-propagation
with SGD to update the parameters, though with the added sequential component. Computing

35

3 Neural Sequence-to-Sequence Modeling

the gradient needs to start at the end of time and move backward in time to step 1. Since the
gradient values are propagated backward through time, this variant of back-propagation is called
back-propagation through time [Robinson & Failside 87, Werbos 88]. Conceptually, this method is
not complicated, as recurrent networks are inherently sequential, and the computational graph is
unfolded over time. The gradients are computed for each weight in each time step, and finally, the
gradients are combined together, after which SGD is applied. However, to simplify the gradient
computations for long sequences, a truncated variant [Werbos 90] can be conducted in which the
time history is limited to the last few time steps.

3.7 Search

As stated, there are four main ingredients for data-driven methods. We have already discussed
the various performance measures that are dependent on the task in Section 1.5. Probabilistic
models with suitable structures to capture the dependencies within and between input and output
sequences are the second aspect to be considered. All models addressed in this chapter can be
used to model p(eI1|fJ1) for a sentence pair (eI1, f

J
1). The training criterion to learn the free model

parameters is cross-entropy, which is correlatively linked to performance measures like perplexity.
Training such models involves an efficient numerical algorithm like SGD.

So far, we have addressed how (neural) probabilistic models define the output posterior proba-
bility. To use such definitions, both the source and target sentences have to be given. However,
obtaining probability scores is not the ultimate goal in many sequence-to-sequence tasks like
machine translation; rather it is to generate a target sentence given the source. The task of finding
the most plausible target hypothesis with the maximum probability score according to the model
is search. This is the fourth ingredient using the Bayes’ decision rule written in Equation 1.1. The
sequence posterior probability can be decomposed using the chain rule left-to-right such that the
final score is the product of probabilities at each position, i.e.,

p(eI1|fJ1) =
I∏
i=1

p(ei|ei−1
0 , fJ1). (3.67)

Since p(ei|ei−1
0 , fJ1) is less than one, the product gets smaller for longer sequences, thus the

sequence probability scores ascend with increasing target length I. Length normalization is a
practical remedy to avoid assigning high scores to short sequences and disadvantaging the longer
ones. Formally, the decision rule is expressed by

fJ1 → êÎ1(fJ1) = argmax
I,eI1

{1

I

I∏
i=1

p(ei|ei−1
0 , fJ1)

}
. (3.68)

Let us assume an auxiliary quantity for each unknown partial string ei0, where e0 is the artificial
beginning-of-sentence token at the first position. Then, this quantity at position i is given by

Q(i; ei0) :=
i∏

i′=1

p(ei′ |ei
′−1

0 , fJ1). (3.69)

The search algorithm expands partial hypotheses from ei−1
0 to ei0 for all positions i = 1, . . . , I.

Therefore, it involves a recursive method in which the auxiliary quantity at the current position
depends on the previous one, and it can be formulated as

Q(i; ei0) := p(ei|ei−1
0 , fJ1)Q(i− 1; ei−1

0). (3.70)

36

3.8 Experimental Results

Doing so from the first target position till the end results in the final score of

p(eI0|fJ1) = Q(I; eI0). (3.71)

Bayes’ decision rule requires maximization over all possible target sequences, which is a large
search space. The search space grows exponentially with the sequence length. For instance, given
the vocabulary size |Ve|, there are |Ve|20 possible sentences with 20 tokens. A näıve solution
is greedy search that picks the single best expansion at each position. Any mistake cannot be
corrected later by greedy search as it is already committed to a single path.

To remedy the risk of ignoring a candidate with a higher score in the next position, an efficient
and practical algorithm known as beam search is widely used [Jelinek 97]. Beam search narrows
down the search space to the top N -best hypotheses, where N is the beam size. It does not
keep the single best partial hypothesis as it passes N possible candidates to the next time step.
Beam search organizes the search tree of the partial hypotheses ei0 with the score Q(i; ei0), which
is synchronous with target positions or known as position (label) synchronous search because
hypotheses refer to the same target position, and a subset of them is selected for expansion in
the next time step [Ney 19]. To terminate the search path, either the end-of-sentence token is
generated, or a maximum number of tokens is reached, which is in practice a factor of the source
sequence length.

3.8 Experimental Results

In this section, results for the neural sequence-to-sequence models are presented on different
tasks. This mostly includes our baselines based on the RNN attention and the self-attentive
architectures. We refer to these baseline results in the next chapters. All evaluated experiments
are carried out within the RWTH extensible training framework for universal recurrent neural
networks (RETURNN) [Doetsch & Zeyer+ 17, Zeyer & Alkhouli+ 18], which provides a single
implementation for almost all needed features for running experiments on neural models. The
publicly available RWTH Aachen University speech recognition toolkit (RASR) [Rybach & Gollan+

09, Wiesler & Richard+ 14] is also employed to read the speech signal and extract frame-wise
features with an integrated interface in RETURNN. A comprehensive discussion of empirical
results and a comparison of the models with state-of-the-art methods from the literature on
large-scale tasks are provided.

3.8.1 Machine Translation

Setups

Experiments are carried out on the WMT 2018 German→English shared translation task on
which we do all ablation studies for machine translation. The corpora statistics are given in
Appendix A.1.1 with full details in Table A.1. All systems are trained on all bilingual data with
5.9M sentence pairs. newstest2017 and -2018 are selected as the blind test sets. newstest2015
is used as the development set to tune hyperparameters. The training data is shuffled and split
into 8 subepochs, and the models are evaluated every 750k steps.

We also perform experiments on the WMT 2018 Chinese→English task with larger training
data, including 17M sentence pairs. Appendix A.1.2 gives details about data with its statistics
in Table A.2. newsdev2017 is used as the development set, while newstest2017 and -2018 are
used for blind evaluation. The training data is shuffled and divided into 30 subepochs, and each
checkpoint is evaluated based on 560k steps.

As the translation research community considers WMT 2014 English→German to be one of the
benchmarking tasks, additional experiments are done for the purpose of comparison with other

37

3 Neural Sequence-to-Sequence Modeling

works in the literature. The corpora statistics are given in Appendix A.1.3. The task has almost
4.5M training sentence pairs, where we use almost 4.0M pairs as training data and the rest as the
development set (Table A.3). We report the performance of models based on newstest2013 and
newstest2014, with more focus on the latter as the benchmark test set. Each subepoch is chosen
to have approximately 650k shuffled samples by an epoch split of 6.

For all tasks, to deal with out-of-vocabulary (OOV) and rare words, byte-pair-encoding (BPE)
[Sennrich & Haddow+ 16b] is used in order to have a sequence of subwords on either side. All
details about data preparation are presented in Appendix. Almost all the experiments in this
thesis are conducted on a single Nvidia 1080 GPU. The best checkpoints are chosen based on
Bleu and Ter scores of the development sets for all tasks.

WMT 2018 German→English The RNN attention model has been described in Section 3.5.2.
It has an embedding dimension of 512 on either side. The encoder is the stack of 6 bidirectional
LSTM layers of size 1024. The concatenation of the forward and backward LSTMs with a total
dimension of 2048 is used as the encoder. The decoder is composed of one unidirectional LSTM
layer of size 1024. The network is equipped with various attention scoring functions extended with
the refinements described in Section 3.5.3 with either single or 8 heads. In the case of 8 attention
heads, we split the encoder state vectors on the feature axis to have 256-dimensional vectors
for each head. The attention layer is applied to each, resulting in 8 distributions. Computing 8
different context vectors, we concatenate them for the final representation of size 2048.

The Adam update rule uses an initial learning rate of 0.001 and reduces it by a factor of 0.9
if the development perplexity does not improve for 6 consecutive checkpoints. Controlling the
learning rate, we wait for 3 epochs before decreasing it. We batch the sequences with similar
lengths to avoid huge padding with a batch size of 3k tokens. To increase the effective batch size
for better convergence [Popel & Bojar 18], gradients are accumulated by a factor of 10. We note
that the batch size might differ in various setups, but as a general rule, it is usually specified to
be as big as the memory of GPUs allows. Dropout is applied on almost all layers at a rate of
0.3, except the embeddings and attention components. The output label smoothing is set to 0.1.
No gradient clipping and no gradient noise are applied. Sequences longer than 100 subwords are
removed during training. Embedding matrices are not shared with the projection layers prior to
softmax, and no weight-tying is used.

To have better convergence for deep RNN models, we use a layer-wise construction strategy
for the first steps [Zeyer & Alkhouli+ 18]. We start with only one bidirectional LSTM layer in
the encoder, train the built network for 5 subepochs (approx. 3.7M batches), and add new layers
iteratively during training. The label smoothing is deactivated in layer-wise construction.

Decoding is done using beam search with a beam size of 12. The stop criterion is either the
end-of-sentence token generation or the maximum length of hypotheses, which is chosen to be 3
times longer than the source sentence. The final hypotheses from all beams are normalized by
their length to avoid bias towards shorter candidates.

If not noted otherwise, the self-attentive model for the experiments on machine translation is
mainly based on the base transformer topology in [Vaswani & Shazeer+ 17]. In its setup, both the
encoder and decoder are composed of 6 stacked layers. The multihead attention has 8 heads, and
the internal hidden dimension of the model is set to 512 nodes all over the network except for
each feedforward layer, which is set to 2048. This internal hidden dimension often refers to the
model dimension noted by d as before.

For the sake of fair comparison, we also report the results on a larger model. When the model
size is increased to 1024 denoted by d = 1024, we correspondingly set the number of heads to 16
and the feedforward hidden dimension to 4096; however, the number of the encoder and decoder
layers remains at 6. This setup is often called big transformer.

38

3.8 Experimental Results

Table 3.3: Comparison of the attention scoring functions on WMT 2018 German→English.

model attention heads dev newstest2017 newstest2018 #

function Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

RNN attention additive 1 31.6 55.3 32.6 54.9 39.6 46.8 212M
8 31.6 55.3 32.6 55.2 39.6 46.9 217M

scaled multiplicative 1 31.9 55.3 32.7 55.1 39.9 46.5 217M
8 31.8 55.4 32.5 55.3 39.8 46.8 217M

The models are trained using Adam with a learning rate of 0.0003 and no warm-up technique.
We randomly batch the sequences with a batch size of 4k to 5k tokens and accumulate the gradient
by factors of 4 to 8. No gradient clipping and no gradient noise are applied. During training,
we use label smoothing of 0.1 and dropout of 0.1 on almost all components: the embeddings,
multihead attention, feedforward, and postprocessing layers. The learning rate is lowered with a
decay factor of 0.9 if the perplexity on the development set does not improve for 6 consecutive
checkpoints. For the self-attentive models, no layer-wise construction is applied.

WMT Chinese→English The RNN attention model has the same configuration as used for the
German→English task. For the self-attentive-based models, we apply the warm-up technique of
10 steps at the beginning of training in which the initial learning rate gradually increases from
8× 10−5 to 3× 10−4. A batch size of 4k subwords and a gradient accumulation of factor 5 are
used. For the larger model of size 1024, the batch size has to be reduced by a factor of 2, i.e., 2k
tokens, and accumulate the gradient for 15 steps.

WMT 2014 English→German The model structures are as before, except that we wait for 20
subepochs to lower the learning rate.

Results

Attention Scoring Functions Table 3.3 shows the results on WMT German→English for main
attention functions addressed in Section 3.5.1. To reveal the difference between the models, we
also report the number of parameters in the right-most column. We compare two main attention
functions with either a single head or 8 heads, where the encoder and the decoder are modeled
based on the LSTM layers. By comparing lines 1 and 3, the scaled multiplicative attention function
leads to a small improvement of 0.3% in Bleu and Ter on newstest2018, but inconsistent
improvements over all test sets. This may partly be due to noise and optimization artifacts. There
is no real benefit in using multihead attention in the RNN models. This observation is in contrast
to the self-attentive-based architecture leveraging multihead self-attention layers. It also uses
feedforward layers with residual connections, dropout, and layer normalization. These may be
significant aspects of stabilized training in such architectures.

Attention Refinements We also compare the extensions of the attention layer developed on top
of the additive attention function, as described in Section 3.5.3. Table 3.4 reports the results
of this comparison. The single-head additive attention model is taken as the baseline listed
in the first line of the table. Neither the last weight nor accumulating all weights brings an
improvement. Adding the last context vector ci−1 in the attention scoring function performs as
good as the RNN attention model (cf. lines 1 and 4), while the fertility concept (line 5) slightly
boosts the performance of the pure additive function by 0.2 points in Bleu on average across all
sets. Combining the last context vector in the decoder with fertility (line 6) helps Ter, whereas

39

3 Neural Sequence-to-Sequence Modeling

Table 3.4: Comparison of the attention refinements on WMT 2018 German→English.

model dev newstest2017 newstest2018 #

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

additive attention 31.6 55.3 32.6 54.9 39.6 46.8 212M
+ last weight 31.6 55.4 32.7 55.0 39.6 46.6 212M
+ accumulated weights 31.5 55.3 32.5 54.9 39.6 46.8 212M
+ last context in attention 31.8 55.4 32.4 55.2 39.7 46.7 213M
+ fertility 31.9 55.3 32.9 55.2 39.7 46.8 217M

+ last context in decoder 32.0 55.2 32.8 55.0 39.8 46.6 226M
+ embedding in attention 31.7 55.6 32.6 55.3 39.6 47.1 252M

including embedding vectors in the attention component does not yield better results. However,
the last two require slightly more parameters. In general, adding attention variants to the pure
additive function leads to mixed results. It seems the performance of the attention component is
almost saturated, and such variants can achieve no further notable gains. Nevertheless, fertility
as expressed in Equation 3.34 is included in the RNN attention model as it has a small impact.
Therefore, in the rest of this thesis, all the RNN attention models include fertility in their attention
component; correspondingly, the combination of fertility and the RNN attention model (line 5) is
referred to as the RNN attention baseline model in all translation tasks.

Comparison of the Fundamental Architectures We build two baselines based on the RNN
attention and the self-attentive models and compare all other methods with them in the following
chapters. The self-attentive model consistently outperforms the RNN attention model; however,
the number of parameters is lower. The results of this comparison are shown in Tables 3.5, 3.6,
and 3.7 for the German→English, Chinese→English, and English→German translation tasks.
Increasing the self-attentive model size to 1024 performs best, as expected.

Table 3.5: The baseline results on WMT 2018 German→English. The RNN attention model
represents the additive attention model with fertility (line 5 in Table 3.4). d = 1024
shows the model size of the self-attentive model that corresponds to the big architecture
in the original paper [Vaswani & Shazeer+ 17].

model dev newstest2017 newstest2018 #

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

RNN attention 31.9 55.3 32.9 55.2 39.7 46.8 217M
self-attentive 32.4 55.8 33.2 55.3 40.4 46.8 102M

+ d = 1024 33.2 54.9 34.2 54.5 41.0 46.5 291M

Table 3.6: The baseline results on WMT 2018 Chinese→English.

model dev newstest2017 newstest2018 #

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

RNN attention 21.2 63.1 23.2 61.1 22.7 65.9 217M
self-attentive 22.0 62.8 23.1 61.7 23.0 66.1 101M

+ d = 1024 22.7 61.7 23.5 61.0 23.8 65.3 290M

40

3.8 Experimental Results

Table 3.7: The baseline results on WMT 2014 English→German.

model newstest2013 newstest2014 #

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

RNN attention 25.8 56.8 26.9 56.3 224M
self-attentive 26.3 57.0 27.6 56.0 108M

Table 3.8: Comparison of the baselines with the other works recently published on WMT 2014
English→German. Massive hardware (HW) refers to massive GPU budgets to train
models: “no” means single-GPU training, while “yes” means multiple GPU access in
that the number of nodes/machines can vary.

method Bleu
[%]

massive

newstest2014 parameters HW

DeepL translator (evaluated in 2020) 33.1 - -
RNN attention (GNMT) [Wu & Schuster+ 16] 24.7 - yes
deep RNN attention (RNMT+)[Chen & Firat+ 18] 28.5 378.9M yes
CNN attention [Gehring & Auli+ 17b] 25.2 263.4M yes
CNN attention (DynamicConv) [Wu & Fan+ 19] 29.7 213M yes
self-attentive [Vaswani & Shazeer+ 17] 27.3 93.3M yes
deep self-attentive [Ott & Edunov+ 18] 29.3 210M yes
deep self-attentive [Liu & Duh+ 20] 30.1 256M no

RNN attention 26.9 224M no
self-attentive 27.6 108M no

“-”: not available

Comparison with Other Works There are three main networks for neural sequence-to-sequence
modeling: recurrent, self-attention, and convolution. In general, all can be categorized as encoder-
decoder networks. Despite the fact that how these components are used in the encoder and decoder,
they all employ the attention mechanism. In contrast to RNN models, where recurrency needs
sequential computing, in convolution and self-attention layers, computations over all elements
can be parallelized during training since there is no dependency on the previous steps. This
makes for efficient use of GPUs, an order of magnitude faster speed and eases optimization due
to fixed-size contexts. Therefore, they need to model the length of dependencies explicitly, like
positional encoding. On the other hand, the multilayer hierarchical structure of such models
works with a shorter path to capture long-range dependencies. These have to be equipped with
residual connections to encourage gradient flow. This contrasts with RNN models designed to
learn long-term dependencies.

The convolutional components are outside the scope of the main contribution of this work when
comparing the baselines with CNN-based models from the literature. Table 3.8 compares the
baselines with the state-of-the-art works on WMT 2014 English→German. To be comparable to
these works, we report tokenized Bleu computed by the multi-bleu.pl script from the Moses
toolkit [Koehn & Hoang+ 07]. To keep the results of practical interest, the table also shows the
GPU budget of each model training.

Google neural machine translation (GNMT) [Wu & Schuster+ 16] applies deep layers of RNN
components. The self-attentive model exploits the deep multihead self-attention layers, and the
convolutional sequence-to-sequence model [Gehring & Auli+ 17b] is equipped by convolutional
layers. In order to have working systems, all models use different techniques and additional

41

3 Neural Sequence-to-Sequence Modeling

components in their topology. The combination of these choices allows us to tackle large-scale
problems in various scenarios. A notable mixed architecture is the recurrent neural machine
translation model [Chen & Firat+ 18, Werlen & Pappas+ 18], where the model combines a
self-attention-based encoder and a recurrent-based decoder. This work successfully builds a deep
recurrent-based model with explicit layer normalization and residual connections known as the
new recurrent neural machine translation (RNMT+). As the model is deeper equipped with better
gradient flow, the results improve by almost 4 Bleu points (cf. Table 3.8 lines 2 and 3).

In [Gehring & Auli+ 17a], a convolutional encoder is fused with a recurrent decoder. Also, two
encoders can be trained in parallel, one self-attention and one RNN [Hao & Wang+ 19], or one
can put a convolutional decoder together with a recurrent decoder [Lin & Sun+ 18]. However,
both combinations lead to no notable gain over their baselines. Encouraged by fully parallelized
and fast training, similar to CNN-based attention models, dynamic convolutions (DynamicConv)
is introduced [Wu & Fan+ 19] in which separate convolution kernels determine the importance of
context per position (row 5 in the table).

Many recent works aim to make deeper and larger self-attentive models with small modifications
for stable training in a tractable time. In [Ott & Edunov+ 18], deep models are trained while
improving training time. They apply very large batches with lower floating-point precision
computation. The model architecture gets even bigger with 60 layers in the encoder and 12 layers
in the decoder [Liu & Duh+ 20]. They apply an effective initialization technique and show that
their deep model can be trained on a single GPU. Building deep yet possible models on limited
hardware, their design choice might greatly impact the research community.

As seen in the table, our RNN attention model outperforms the Google recurrent model by 2.2
points in Bleu, and it is also better than the CNN model (line 4). Our self-attentive model is on
par with the one from the original paper. As soon as the models get deeper, their performance
increases regardless of their base architectures. On top of all models, the DeepL translation engine
(evaluated in 2020) outperforms all mentioned systems since it probably uses cleaner training data.

3.8.2 Automatic Speech Recognition

Setups

We conduct the experiments on two well-known tasks: Switchboard 300h and LibriSpeech 960h.
Information about Switchboard is given in Appendix A.2.1. We use 40-dimensional Gammatone
features [Schlüter & Bezrukov+ 07] extracted using RASR and subword BPEs with 1k symbols on
the output side. Following a common practice, word error rates are measured on Hub5’00 with
both its Switchboard (SWB) and CallHome (CH) parts as well as on Hub5’01, while Hub5’00 is
used as the development set to select the best checkpoint, tune language model scale, etc., and
Hub5’01 is considered as the blind test set.

For the LibriSpeech task, the 40-dimensional mel-frequency cepstral coefficient (MFCC) features
[Davis & Mermelstein 80] are extracted using the librosa library [McFee & McVicar+ 17]. BPE
of 10k merge operations is used. Appendix A.2.2 provides information about the corpus. The
checkpoint selection is based on both dev-clean and dev-other. The total number of epochs
over the training data is either 12.5 or 25 full epochs. Specifically, once the best checkpoint has
been found from the first training run, training is resumed by resetting Adam hyperparameters
to the initial values and continue training for 12.5 more epochs resulting in 25 iterations over
the entire training data. A simple curriculum learning is also applied in which for the first 20
subepochs, the clean part of the LibriSpeech corpus, i.e., clean-100 and clean-360 is only used.
Additionally, the sequences are sorted according to their length. In this thesis, we use a variant
of spectrogram augmentation [Park & Chan+ 19] for all neural ASR models. The concept of
spectrogram augmentation (SpecAugment) is covered in more detail later in Section 6.2.2.

42

3.8 Experimental Results

Switchboard 300h The acoustic model architectures are based on both the RNN and self-attentive
models. Like the machine translation setting, the models are based on a deep bidirectional LSTM
encoder with 6 layers of 1024 units for each forward and backward direction. The frame-wise
speech input sequence is much longer than source sentences in MT as the feature extraction is
done every 10ms. To reduce the frame-wise speech sequence length, max-pooling is applied in
the time dimension. The higher the reduction factor, the simpler training is, and less memory is
required [Zeyer & Irie+ 18, Zeyer & Merboldt+ 18]. However, a very large reduction factor has
shown to reduce the performance. Therefore, a compromise between the time reduction factor
and recognition performance needs to be considered. It is common to directly use time reduction
on the feature vectors [Zeyer & Irie+ 18, Zeyer & Merboldt+ 18]. We also apply max-pooling
between the first and second BiLSTM layers with a factor of 3 and 2, respectively resulting in a
total of 6. For the RNN attention models, we follow a similar setup to [Zeyer & Irie+ 18] where
we combine layer-wise construction in the encoder and time reduction with a larger factor for a
few subepochs. We then switch to the default setup with a final total time reduction factor of 6
once the entire network has been built. Concurrently, the hidden dimension of LSTM is linearly
incremented where the network starts with a small hidden size and grows to 1024 while training.
A 512-dimensional word embedding is used. The Adam optimizer trains the model with an initial
learning rate of 0.001 with 10 linear warm-up steps. The minimum learning rate after decaying is
chosen to be 50 times lower than the initial learning rate. The batches include 20k frames and a
maximum output sequence length of 75 tokens. Gradients are neither accumulated nor clipped.
We wait for at least 3 subepochs to decay the learning rate by a factor of 0.7 and reduce it based
on the development perplexity of the last 6 subepochs. Dropout and label smoothing with a rate
of 0.3 and 0.1 are used. If not noted otherwise, we iterate for 33 epochs over the training data.
Decoding uses a beam size of 12. The output generation is stopped as soon as the maximum length
of the hypothesis reaches the input sequence length or the end-of-sentence token is predicted.

The main configuration of the self-attentive model is similar to those in machine translation,
except that we include two bidirectional LSTM layers of size 1024 interleaved with max-pooling
layers on top of the feature vectors. The reason for this is to preserve the order of a sequence and
reduce the time sequence, as done in the RNN attention model. They are also deeper in the ASR
setups. All self-attentive models use 12 self-attention encoder and decoder layers. The dimension
of feedforward layers of the self-attentive models is chosen to be 1024. The self-attentive internal
model size and embeddings are 512. Dropout on all components is used with a rate of 0.3, except
on the embedding with a rate of 0.2. The label smoothing softmax is set to 0.1. The models
are trained using Adam with an initial learning rate of 0.0008 with a decay factor of 0.9 if the
perplexity on the development set does not improve for 6 consequent checkpoints. A warm-up of
10 steps at the beginning is taken, and the minimum learning rate is selected to be 50 times smaller
than its initial value. In contrast to the MT setup where the layer-wise construction scheme is
not used within the self-attentive model, we do use it for speech recognition [Zeyer & Bahar+ 19].
Besides layer-wise construction of the encoder, we also grow the decoder layers as it is deeper than
the RNN attention models. In this scheme, we start with two layers of encoders and decoders each
and double the number of layers after every construction iteration. Simultaneously, the hidden
dimensions are increased linearly. After observing from initial experiments, the self-attentive
models are trained a bit longer for a maximum of 50 epochs. No positional encoding in the
encoder or decoder is used, as suggested in [Irie & Zeyer+ 19]. In contrast to the RNN models, the
connectionist temporal classification (CTC) loss is added on top of the encoder for the self-attentive
models. More detail on the CTC loss is given in Section 6.2.1 for speech translation.

LibriSpeech 960h The same RNN attention acoustic model is used for LibriSpeech. The only
difference is that we use an additional CTC loss.

43

3 Neural Sequence-to-Sequence Modeling

Table 3.9: The language model subword-level perplexities on Switchboard and LibriSpeech. For
LibriSpeech, dev and test correspond to the concatenation of dev-clean and dev-other

sets, respectively test-clean and test-other.

LM Switchboard LibriSpeech

Hub5’00 Hub5’01 dev test

RNN 25.3 22.1 45.0 47.1
self-attentive 23.4 20.4 37.3 38.9

Table 3.10: Comparison of the attention scoring functions on Switchboard. Either a single head or
eight heads in the recurrent attention model is used. AM and LM abbreviate acoustic
and language models, respectively.

AM LM Wer
[%]

model attention heads Hub5’00 Hub5’01
function CH SWB Σ

RNN attention additive 1 none 22.0 10.9 16.4 16.0
8 22.4 11.1 16.8 16.0

scaled multiplicative 1 21.6 10.7 16.2 15.6
8 21.4 10.6 16.0 15.4

The self-attentive model has the same architecture, with 12 encoder and decoder layers of size
512. The dimension of feedforward layers is set to 2048. Here, we use a smaller dropout rate of 0.1
and no embedding dropout. The effective batch size is chosen to be 100k with a regular size of
25k and gradient accumulation of 4 batches.

In order to decrease the recognition error, external language models are also applied during
decoding. Appendices A.2.1 and A.2.2 address brief information without going into detail on the
language model training. For more detail about how the language models are trained, we refer to
[Irie 20, Zeyer & Irie+ 18, Zeyer & Bahar+ 19]. Table 3.9 shows the subword-level perplexity of
language models for the both tasks.

Results

Attention Scoring Functions Similar to Section 3.8.1, we measure the performance of speech
recognition models trained with either the additive or multiplicative attention functions with single
or 8 heads. Table 3.10 shows that the multiplicative function is slightly better by 0.3% absolute
on average when single-head attention is used. Moving from one head to 8 improves Wer with
the multiplicative function, whereas it slightly decreases the performance of the additive function.

Attention Refinements Since we can easily extend the attention function with previous attention
information, we tend to investigate whether such extensions are also helpful for the ASR task.
The results shown in Table 3.11 indicate that equipping the attention function with fertility leads
to the best Wer. It outperforms the pure attention function by 1% absolute Wer on Hub5’01.
By comparing line 5 in Table 3.11 and line 4 in Table 3.10, an improvement of 0.4% absolute Wer
over the 8-head multiplicative attention function is seen. This is consistent with our observations
on the MT experiments. In addition to recognition quality in terms of Wer, the number of free
parameters is reported for each model. As seen, the improvement in Wer comes at the cost of

44

3.8 Experimental Results

Table 3.11: Comparison of attention refinements on Switchboard.

AM LM Wer
[%]

#

Hub5’00 Hub5’01 parameters
CH SWB Σ

additive attention none 22.0 10.9 16.4 16.0 152M
+ last weight 21.5 10.6 16.0 15.6 152M
+ accumulated weights 22.0 10.9 16.5 16.0 152M
+ last context in attention 23.1 11.2 17.2 16.7 153M
+ fertility 21.1 10.1 15.6 15.0 157M

+ last context in decoder 21.7 10.5 16.1 15.5 165M

Table 3.12: The baseline results on Switchboard. Training speed is the average over 10 epochs
reported with the number of characters per second. AM and LM are combined by
shallow fusion during decoding as expressed in Equation 3.72.

AM LM Wer
[%]

training speed #

Hub5’00 Hub5’01 [char/sec] parameters
CH SWB Σ

RNN attention none 21.1 10.1 15.6 15.0 2.7k 157M
RNN 20.6 9.2 14.9 14.1
self-attentive 20.2 9.1 14.7 13.9

self-attentive none 21.2 10.3 15.8 15.3 3.2k 99.5M
RNN 20.7 9.6 15.2 14.3
self-attentive 20.7 9.5 15.1 14.0

only 5M more parameters (see lines 1 and 5). Analogously to machine translation, we use additive
attention with fertility as the RNN attention baseline for all ASR tasks throughout this thesis.

Comparison of the Fundamental Architectures Table 3.12 presents the Switchboard results of
the models used as the baselines with their training speed. We observe that both models have a
better performance on the easier SWB subset than on CH. In general, the recurrent model negligibly
outperforms the self-attentive by 0.2%, while the latter has almost 57M fewer parameters and
provides faster training (lines 1 and 4). It is also important to note that the models are still behind
the hybrid HMM models, with Wer of 10.7% on the average of Hub5’00 [Kitza & Golik+ 19].

The results on LibriSpeech can be seen in Table 3.13. On this task, the performance of the two
models is on par on average. In the first set of experiments, we deliberately limit the number of
training epochs to 12.5 for a fair comparison of internal results. To keep the results of practical
interest and bridge the gap with external research groups, training is continued from the best
checkpoint for 12.5 more epochs. We note that this is still much less than what is reported in the
literature, for example the models are trained for over 600 full epochs in [Park & Chan+ 19], taking
about 24 days on 32 tensor processing units (TPUs) [Jouppi & Young+ 17]. Longer training is
found to be effective in improving results such that on test-other, we further gain 0.9% and 0.8%
absolute Wer for the RNN and self-attentive models, respectively. Following this observation,
unless explicitly stated otherwise, the models are trained for 25 full epochs for LibriSpeech.

Language Model Combination We also integrate the language models in decoding by using the
shallow fusion technique [Gülçehre & Firat+ 15, Toshniwal & Kannan+ 18], where the scores

45

3 Neural Sequence-to-Sequence Modeling

Table 3.13: The baseline results on LibriSpeech. The number of epochs is chosen to be 12.5 or 25.

AM # LM Wer
[%]

#

epochs dev test parameters
clean other clean other

RNN attention 12.5 none 4.1 11.1 4.3 11.7 188M
RNN 2.9 8.3 3.2 9.1
self-attentive 2.8 7.7 3.1 8.1

25.0 none 3.7 10.2 3.8 10.8
RNN 2.8 7.7 3.2 8.4
self-attentive 2.6 7.2 2.7 7.7

self-attentive 12.5 none 4.4 11.1 4.5 11.5 139M
RNN 2.9 8.3 3.2 8.8
self-attentive 2.8 7.5 3.1 8.1

25.0 none 3.9 10.2 4.1 10.7
RNN 2.9 7.6 3.2 8.1
self-attentive 2.7 7.3 3.1 7.7

of the acoustic and language models are combined on the probability level, as in the log-linear
combination. Such a fusion method requires the same vocabulary for both models, similar to
ensemble-like integration. Formally, the combined score is defined as

xT1 → ŵN̂1 = argmax
N,wN1

{ N∑
i=1

log pAM(wn|wn−1
0 , xT1) + λLM log pLM(wn|wn−1

0)
}

(3.72)

where λLM is the language model scale. Here, the scale of acoustic attention models is chosen to
be always 1, while the scale of the language model is optimized by a grid search based on the
development set.

We fuse with both the RNN and self-attentive language models. The comparison of LM
perplexities can be found in Table 3.9. As it has been proven, there is a high linear correlation
between perplexities and word error rates [Bahl & Jelinek+ 83, Sundermeyer & Ney+ 15, Ney 19].
Since the self-attentive-based LMs obtain better perplexity on both tasks (see Table 3.9), we hence
expect more reduction in recognition error by fusing the self-attentive model rather than RNN.
First of all, as shown in Tables 3.12 and 3.13, language model combination has a large impact
on the performance of the systems and consistently improves the recognition performance. As
expected, switching the language models from RNN to self-attentive leads to a slightly better error
rate due to lower perplexity.

Another observation is the amount of improvement that each language model brings. As
presented in these tables, language model fusion brings greater improvements in LibriSpeech than
Switchboard. For LibriSpeech, the language models have been trained using an additional data
of 800M words fully independent of 10M words corresponding to the transcription of 1000 hours
of audio. The extra data is 80 times larger. In contrast, in the case of Switchboard, we utilize
27M words, including 3M words overlapped with the transcripts for language model training. As
the domain is conversational telephone speech, it is harder to acquire the in-domain text data
compared to the read speech [Zeyer & Irie+ 18]. In fact, this difference in the amount of external
data directly affects the performance improvements by using the external language models, as
shown by the experimental results depicted in these tables.

46

3.8 Experimental Results

Table 3.14: Comparison of the baselines with the recently published works on LibriSpeech. The
models have not necessary been trained with a comparable number of parameters over
the same number of epochs.

method AM LM Wer
[%]

parameters # epochs

test (AM†) (AM†)
clean other

hybrid HMM RNN [Lüscher & Beck+ 19] self-attentive 2.3 5.0 160M 12.5
self-attentive [Wang & Mohamed+ 20] self-attentive 2.3 4.9 149M 100

CTC CNN [Kriman & Beliaev+ 20] self-attentive 2.7 7.3 19M 400

attention RNN [Park & Chan+ 19] RNN 2.5 5.8 >200M 600
RNN [Karita & Wang+ 19] RNN 3.3 10.8 - 100
self-attentive [Karita & Wang+ 19] RNN 2.6 5.7 - 200
CNN [Hannun & Lee+ 19] CNN 3.3 9.8 37M -
self-attentive [Synnaeve & Xu+ 20] self-attentive 2.4 5.2 270M -

transducer self-attentive [Zhang & Lu+ 20] self-attentive 2.0 4.6 139M -
CNN-RNN [Han & Zhang+ 20] RNN 1.9 4.1 113M -
Conformer [Gulati & Qin+ 20] RNN 1.9 3.9 119M -

this work RNN attention self-attentive 2.7 7.7 188M 25

“-”: not available.
† measures only for the acoustic models.

Comparison with Other Works We also take the LibriSpeech task and compare our best model
with a few recently published state-of-the-art models, such as hybrid HMM using recurrent [Lüscher
& Beck+ 19] or self-attentive [Wang & Mohamed+ 20] networks, ContextNet [Han & Zhang+ 20],
the self-attentive transducer [Zhang & Lu+ 20], and QuartzNet [Kriman & Beliaev+ 20]. One
comparison is always to conventional frame-wise hybrid HMMs, as addressed in the introduction.
It can be trained using both RNN layers, specifically bidirectional LSTMs or self-attentive layers.
In the following, we briefly explain each model and refer to the main papers for further details.

After generating GMM alignments in [Lüscher & Beck+ 19], phonetic classification and regression
tree (CART) labels are used for the state-tied phones. The acoustic model is composed of 6 layers
of bidirectional LSTMs with 1k nodes. The model also applies sequence discriminative training
performed using a lattice-based version of the state-level minimum Bayes risk (sMBR) criterion
[Gibson & Hain 06]. A deep self-attentive LM with 96 layers is used in the second-pass rescoring
of lattices. In [Wang & Mohamed+ 20], a 24-layer self-attentive model with sMBR training is used
for acoustic modeling, and a deep self-attentive LM is employed in the first-pass decoding.

As a special HMM topology, CTC [Graves & Fernández+ 06] models the label sequence posterior
directly. It favors integrated observation and alignment model training using neural networks. Due
to its simple implementation, CTC training is used in CNN-based acoustic modeling. This model,
known as QuartzNet [Kriman & Beliaev+ 20], is structured with convolutional layers followed by
normalization layers and ReLu activations, with a small number of parameters at the end. The
best-achieved model has been trained for 400 epochs on 8 Tesla V100 GPUs. The LM used in
decoding is based on deep self-attentive layers similar to [Dai & Yang+ 19].

Deep RNN attention models are trained with data augmentation [Park & Chan+ 19]. The
models are based on deep BiLSTM encoder and unidirectional LSTM layers [Chan & Jaitly+ 16].
Using 32 TPUs, they have been trained for 24 days with a complicated training procedure that
turns out to be an essential factor. The language model is selected to be a two-layer LSTM. In
the work by [Karita & Wang+ 19], both self-attentive and RNN acoustic models with a 7-layers
LSTM-based language model are fused. Building a fully convolutional sequence-to-sequence model
with a time-depth separable (TDS) structure [Hannun & Lee+ 19], one can train deep TDS-based

47

3 Neural Sequence-to-Sequence Modeling

CNN networks on 8 V100 GPUs as the acoustic model fused with a convolutional LM. Having
been inspired by the success of self-attentive acoustic and language models, the recognition errors
are improved by [Synnaeve & Xu+ 20].

Unlike the end-to-end label-synchronous attention-based methods, which pose a challenge
for streaming, transducers are another group of modeling techniques that enable streaming in
automatic speech recognition. They are based on the encoder-decoder framework, map audio
frame-wise sequences to label representations, and learn the corresponding alignments between
them. Such networks offer frame-synchronous decoding and have three components: an audio
encoder, a label encoder, and a joint network to combine them and decode. Recurrent neural
network transducer (RNN-T) [Graves 12a, He & Sainath+ 19, Tripathi & Lu+ 19] as well as
recurrent neural aligner (RNA) [Sak & Shannon+ 17] build the network using recurrent units.
However, they can be replaced by self-attentive on a fixed number of past input frames. This eases
the computational complexity of the streaming phase. These models consist of 18 and 2 layers
of audio and label encoders, respectively trained on 64 TPUs. Shallow fusion is then performed
using a 6-layer self-attentive LM [Zhang & Lu+ 20]. Similarly, to make decoding computationally
tractable for streaming, CNN-RNN transducers [Han & Zhang+ 20] are proposed that combine
the parameter efficiency of CNN and RNN layers in the transducer mode, also called ContextNet.
The models have deep and large convolution blocks in the encoder, while the decoder is composed
of one LSTM layer. A 3-layer LSTM LM with 4k nodes is applied. Conformer [Gulati & Qin+ 20]
is a convolution-augmented self-attentive model where network depth, model dimension, and the
number of attention heads are chosen to be smaller. This work uses an additional 3-layer LSTM
LM with 4k hidden dimensions for shallow fusion.

Table 3.14 gives the comparison to the other works on LibriSpeech test sets. One reason
for reporting the number of training epochs is that we tend to show that the baselines are in
the right ballpark, and thus further comparisons under fair conditions make sense. With our
restricted hardware, a reasonably good baseline with 7.7% in Wer on test-other is achieved.
Our attention-based model is behind hybrid HMM systems, which are often state-of-the-art ASR
models. Compared to the other attention-based models, we are on the correct track considering
the number of training epochs. We also observe consistent improvement by increasing the number
of iterations (see Table 3.13 from 12.5 to 25 full epochs). Our training takes about one week on a
single Nvidia 1080 GPU. This contrasts with the other works in which the best system takes over
600 epochs, which trains for about 24 days on 32 TPUs [Park & Chan+ 19]. There, we deliberately
limit the training epochs to 25 for faster development of new models in the next chapters.

3.9 Implementation

The implementation and extensions to the neural network models was started using Blocks
[van Merriënboer & Bahdanau+ 15], which is a Python framework on top of Theano [Bergstra &
Breuleux+ 10, Bastien & Lamblin+ 12]. In 2017, the development of Theano was stopped, leaving
only minimal maintenance of the software. We therefore put an end to our Theano development
in Blocks and reimplemented and developed new features in RETURNN3. All the experiments in
this thesis are based on RETURNN, providing a comprehensive implementation for almost all
needed features for running experiments on neural models.

RETURNN is mainly written in Python, and it has two backends, based on open-source software,
Theano and TensorFlow [Abadi & Agarwal+ 15]. It supports different neural network architectures
like feedforward, recurrent, CNN, and multihead self-attention layers with an easy configuration of
experiments. Experiments are configured through a config file determining the building blocks
of neural networks and hyperparameters. It constructs the network topology through nested

3https://github.com/rwth-i6/returnn

48

https://github.com/rwth-i6/returnn

3.10 Conclusion

dictionaries, where each entry represents a layer specification. All in all, RETURNN provides
high flexibility of network architectures, fast training and inference time, and easy access to the
individual parts, allowing easy modifications to various experiments. For more details, we refer
the reader to its documentation4.

RETURNN has active development, maintenance, and support based on TensorFlow, as Theano
is no longer supported. Similar to Theano, TensorFlow enables two crucial properties for neural
network modeling. It provides symbolic features such as automatic differentiation and supports
GPU computation. TensorFlow lets us define complicated mathematical expressions symbolically
in which the computations can be optimally executed. Symbolic expressions allow TensorFlow to
automatically determine derivatives without any extra effort to derive them. Thus, it significantly
simplifies the development of new features because only the computations for the forward pass
of networks need to be specified, and then TensorFlow automatically carries out the calculation
of derivatives. Once symbolic expressions are specified, a representative computation graph is
created, and TensorFlow optimizes it, executes it, and takes care of the rest of the computations.

3.10 Conclusion

In this chapter, we mainly covered the background knowledge required to understand the context
of this thesis. Specifically, we first reviewed different neural networks as key components of the
parameterization utilized in the remaining chapters. After explaining the recurrent language
models, we proceeded with the encoder-decoder networks as source-conditioned language models
in machine translation and described the state-of-the-art neural architectures. Our contributions
were begun by verifying and extending attention refinements in the RNN attention models that
lack alignment information from previous positions. Fertility with past alignment information was
added to the attention computation for machine translation and further used in speech recognition.
This resulted in a marginal gain (Table 3.4) for machine translation, while improving the error
rate by 1% absolute on the Hub5’01 test set for speech recognition (Table 3.11).

Accordingly, we also contributed to building our baselines using the RNN attention and self-
attentive models and using them in the rest of this thesis. We experimentally compared them
on the publicly available large-scale datasets for both machine translation and automatic speech
recognition and showed that our baselines are fairly strong and competitive with results in the
literature. The experimental results indicated that the self-attentive model outperformed the
RNN attention in machine translation (Tables 3.5 to 3.7) and was on par with it in automatic
speech recognition if a moderate amount of training data is available (Table 3.13). Next, we
emphasized some of these fundamental models’ properties to affirm our design choices and motivate
our contributions in the following chapters.

3.11 Related Work

Early attempts in neural sequence-to-sequence models date back to the 1980s and 90s when
computational power was a serious obstacle to using deep models [Allen 87, Pollack 90, Chrisman
91, Castano & Casacuberta+ 97, Forcada & Ñeco 97]. Therefore, a small vocabulary with a small
model size was the only practical choice. With the development of more powerful machines, deep
feedforward neural language models [Bengio & Ducharme+ 03, Bengio & Schwenk+ 06] show
promising results, though the context dependency is limited to a few predecessor tokens. To have
the entire context and full Markov assumption, recurrent-based language models are introduced
[Mikolov & Karafiát+ 10, Mikolov & Kombrink+ 11], with a follow-up extension using LSTM cells

4https://returnn.readthedocs.io/en/latest/

49

https://returnn.readthedocs.io/en/latest/

3 Neural Sequence-to-Sequence Modeling

[Sundermeyer & Schlüter+ 12] that outperform the feedforward and RNN LMs. LSTM-based
language models have been the de-facto standard approach in language modeling ever since.

The success of neural networks in language modeling and their application to speech recognition
[Schwenk & Gauvain 02, Schwenk & Gauvain 04, Sundermeyer & Oparin+ 13] motivate research in
integrating them in machine translation. Deep feedforward neural language models are employed
[Schwenk & Déchelotte+ 06, Schwenk & Rousseau+ 12] instead of the count-based models in
second-pass decoding to rescore the N -best list [Vaswani & Zhao+ 13] generated by the phrase-
based system. Recurrent-based language models are also integrated into the system along with
expected Bleu training [Auli & Gao 14]. In addition to target neural language models, there
are follow-up works where the source language is also taken into account. In all these methods,
neural networks are utilized as one of the components in the phrase-based system in the log-linear
model combination. Language models are used to combine with bilingual tuples [Zamora-Mart́ınez
& Bleda+ 10], to directly score phrase pairs [Schwenk 12], or to represent the source context in
translation modeling with phrases [Le & Allauzen+ 12, Devlin & Zbib+ 14].

There are other extensions in which neural networks are used as translation models, like
[Kalchbrenner & Blunsom 13, Auli & Galley+ 13, Hu & Auli+ 14, Sundermeyer & Alkhouli+

14, Cho & van Merrienboer+ 14b] that shed light on stand-alone neural machine translation
trained end-to-end as a single network. The architecture of translation models is based on the
encoder-decoder family of networks [Cho & van Merrienboer+ 14a, Sutskever & Vinyals+ 14]
and later augmented with the attention layer, additive [Bahdanau & Cho+ 15] or multiplicative
[Luong & Pham+ 15] variants. The main building block of the mentioned works is based on
recurrent neural networks. However, convolutional encoder-decoder models [Gehring & Auli+

17b] or multihead self-attention [Vaswani & Shazeer+ 17] are also used to directly transform
source sentences into target sentences. As noted before, each of these architectures has its own
advantages and disadvantages. The different representation offered by these architectures is a
reason to combine them [Gehring & Auli+ 17a, Chen & Firat+ 18, Lin & Sun+ 18, Werlen &
Pappas+ 18, Hao & Wang+ 19].

The success of attention sequence-to-sequence modeling has led researchers to introduce exten-
sions to it by equipping the attention layer with additional components or modifying the way
it is computed. Motivated by the source length issue in translation and to mitigate over- and
under-translation, it is proposed to maintain a coverage vector and keep track of previous attention
weights with fertility [Tu & Lu+ 16]. Alternatively, coverage models can be jointly trained with
the whole translation model [Mi & Sankaran+ 16]. The idea of using fertility to avoid over- and
under-translation is further studied by [Malaviya & Ferreira+ 18]. Similarly, attention-based
models are extended by including positional bias, Markov conditioning, fertility, and agreement
over translation directions [Cohn & Hoang+ 16], and having a notion of what the attention layer
has focused on in previous steps [Sankaran & Mi+ 16]. An implicit distortion model is proposed
as the attention mechanism treats the encoder states as a set, not a sequence, while the source
orders are crucial for reordering [Feng & Liu+ 16]. Our contribution in Section 3.5.3 lies on the
same line of motivation with the verification of results from these papers.

There are some other works where the entire attention layer is replaced with recurrent layers
such that left-to-right or bidirectional recurrent units serve as attention by encoding both encoder
and decoder states jointly [Zhang & Xiong+ 16, Zhang & Xiong+ 17a, Zhang & Xiong+ 17b]. In
this architecture, the previous decoder state, which includes the target histories, serves to initialize
the RNN states, and the encoder states serve as the inputs. Similar to this method, in Chapter 4,
we describe a generalized extension of recurrent models to multiple dimensions. A dynamic vector
based on recurrent units can be attached to the network to keep track of the history of attended
positions [Yang & Hu+ 17]. The intuition behind this is how many times a specific word has been
attended to and whether the neighboring words are selected at the previous time steps.

Moreover, the reordering knowledge is incorporated into attention [Zhang & Wang+ 17] and

50

3.11 Related Work

enables a word reordering penalty of source words. Similar to IBM models, it includes a probability
distribution of relative jump distances between the newly translated source word and to-be-
translated ones. The authors propose three different variations of distortion models. A fine-grained
attention mechanism is also introduced in which besides each position on the source sequence,
each component of the context vector has a separate attention score [Choi & Cho+ 18].

Several works try to improve upon the standard attention model by adding an external memory
structure [Wang & Lu+ 16, Meng & Tu+ 18], but none has been widely adopted. In the same
line of research, interactive attention between the encoder and the decoder with read and write
operations is proposed by [Meng & Lu+ 16].

The advance of such attention models has marked one of the major milestones in the history of
machine translation and inspired many researchers in other fields like speech recognition. The
performance of early attention models in speech recognition is behind hybrid HMM models
[Chorowski & Bahdanau+ 15, Xu & Ba+ 15, Chan & Jaitly+ 16, Bahdanau & Chorowski+ 16].
However, recent end-to-end models close this gap if a moderate amount of training data is provided
[Chiu & Sainath+ 18, Park & Chan+ 19, Tüske & Saon+ 20].

Furthermore, there is a group of works in which the main idea is to enable local and hard
attention concepts. These types of attention inspire online streaming in speech recognition,
simultaneous and document-level machine translation. Enabling a localized monotonic window for
soft attention, this group of works entails the monotonicity feature of the speech-to-text alignment
[Prabhavalkar & Sainath+ 17, Hou & Zhang+ 17, Chiu & Raffel 18]. In practice, such constraints
on the attention distribution over input time steps lead to worse results than the global context
[Tjandra & Sakti+ 17, Merboldt & Zeyer+ 19], though a restricted attention mechanism needs less
memory. Hard attention [Aharoni & Goldberg 17, Raffel & Luong+ 17, Lawson & Chiu+ 18a], on
the other hand, use stochastic sampling for a discrete decision and can be integrated with localized
monotonicity [Chiu & Sainath+ 18]. We address related works about such concepts in Chapter 5,
where we focus on latent attention models. Besides hard attention models, other models like CTC
[Graves & Fernández+ 06], recurrent neural aligner [Sak & Shannon+ 17], and RNN transducer
models [Battenberg & Chen+ 17, Prabhavalkar & Rao+ 17] support online streaming in automatic
speech recognition.

All neural models discussed in this section fall in the category of attention sequence-to-sequence
models. In the next chapter, a model is studied that goes beyond attention models and departs
from this overall structure. We will additionally review similar works in which the attention
component can be ignored.

51

4. Two-Dimensional Sequence-to-Sequence
Modeling

4.1 Introduction

In the attention models, the input and output sequences are treated as one-dimensional sequences
over time, handled separately, and coupled by an attention mechanism. The attention mechanism
is generally a linearly weighted sum of the input representations where the attention weights are
the result of a similarity measure between the input and output representations. Since the encoder
states are invariant to decoder states across output positions, the context vectors can be quite
similar for different positions if the attention weights do not give enough relevant information. To
obtain sufficiently discriminative contexts, models ideally need to align different target positions
to different source positions. As discussed in Section 3.5.3, one way is to adjust future attention
weights by including past alignment information as an indicator of what part of the source sentence
has already been translated.

Despite well-designed attention refinements that are mainly focused on making attention weights
more accurate, the encoder states are still computed only once at the beginning and are left
untouched with respect to target histories. In other words, the attention models do not re-encode
the source sequence while decoding. In this case, at every decoding step, the same vectors are
read repeatedly, which might be partially attributed to the small differences in the context vectors.
The context vectors can be insufficient in discriminatively predicting target tokens over time. This
problem can be severe for longer sequences as the attention scores contribute less to each position.

This chapter contributes to the advancement of sequence-to-sequence modeling and applies
two-dimensional (2D) long short-term memory (2DLSTM) to propose an alternative model for
sequence-to-sequence modeling. Our main contribution is to go beyond the current sequence-
to-sequence backbone models to a 2D structure in which the input and output sequences are
aligned with each other in a 2D grid. The two-dimensional sequence-to-sequence approach is
motivated by the fact that a 2DLSTM is able to process data with complex and highly nonlinear
interdependencies in a 2D space [Graves 12b], and it therefore seems attractive and inspiring to
apply this advantage in sequence-to-sequence modeling.

Instead of using any kind of attention component, a 2DLSTM layer alternatively defines the
correspondence between source and target positions and assimilates the context from both sequences
for a tighter coupling. The model thus accounts for each possible interaction. One dimension of
2DLSTM processes the source sentence, and another dimension predicts the target tokens. In
contrast to the attention model that does not reinterpret the encoder states while decoding, this
model enables the computation of the source sentence encoding as a function of the previously
generated target tokens. It enhances the degree of variance in the context vectors by refining
source representations to be sensitive to the partial translation generated by the decoder. We
sidestep the inefficiency computational issue of the 2D structure by processing 2DLSTM states

53

4 Two-Dimensional Sequence-to-Sequence Modeling

xt,t′

ht,t′ht−1,t′

ht,t′−1

T ′

T

Figure 4.1: The two-dimensional LSTM layer unfolded over both axes for one time step. To
compute the activation ht,t′ at position (t, t′), the two predecessor hidden states ht−1,t′

and ht,t′−1 and the current input xt,t′ have to be available.

over the diagonal in training. This optimization offers an efficient parallelized operation.

After describing the 2DLSTM layer, its differences from the standard LSTM unit, and corre-
sponding details in Section 4.2, we explain our 2D recurrent sequence model in Section 4.3. In
Section 4.3.4, an extension to the bidirectional two-dimensional model is addressed. As a proof
of concept, Section 4.4 presents a single model using a 2D grid to serve for two-way translation
modeling. Experimental results along with discussions are gathered in Section 4.5, followed by
implementation hints in Section 4.6. The chapter is closed with a conclusion and related works in
Sections 4.7 and 4.8.

4.2 Two-Dimensional Long Short-Term Memory

As discussed in Section 3.2.2, recurrent neural networks are well suited for sequence modeling
where sequences are strongly correlated along a one-dimensional time axis. Handling dynamic
length, encoding positional information, using previous contexts, and tracking long-term dependen-
cies by gating strategies are some of the properties that make gated RNNs like LSTMs appropriate
for such tasks. Although LSTM is essentially one-dimensional, it can be extended to process
multidimensional data. Multidimensional LSTM has been introduced by [Graves 08, Graves &
Schmidhuber 08, Leifert & Strauß+ 16] as a generalization of the LSTM gating mechanism for
multidimensional data. For instance, a multidimensional LSTM cell with two or three dimensions
can be used to process 2D or 3D data like images and videos. In this work, we only consider
2DLSTM for sequence-to-sequence modeling.

A 2DLSTM cell can be seen as a mapping function g : RT×T ′×dx → RT×T ′×dh that transforms a
three-dimensional input tensor into a three-dimensional output tensor. The first two dimensions
represent spatial structures (T and T ′), while the third corresponds to features. In this transfor-
mation, the first two dimensions of tensors keep the same dimension. For example, in machine
translation, T corresponds to the source length J , while T ′ represents the target length I.

Figure 4.1 is an illustration of the dependencies in the 2DLSTM layer. At each position (t, t′),
the computation of the hidden state ht,t′ depends not only on the horizontal hidden state ht−1,t′ ,
but also on the vertical hidden state ht,t′−1. t ∈ {1, . . . , T} is the index on the horizontal axis

54

4.2 Two-Dimensional Long Short-Term Memory

and t′ ∈ {1, . . . , T ′} is the index on the vertical axis. Most importantly, they are not of the same
length. Initial activations at time steps t = 0 and t′ = 0, i.e., h0,t′ and ht,0 are usually set to 0.

In general, for an m-dimensional LSTM, there are m previous states, one from each dimension
which are used to calculate hidden states of the current position. Like other neural networks, one
can also stack 2DLSTM layers to form deep models with l layers. For simplicity of notation, we

omit the superscript and consider ht,t′ = h
(l)
t,t′ .

As for the standard LSTM unit, there are many variations for 2DLSTM. In the original topology
proposed by [Graves & Schmidhuber 08], 2DLSTM uses an input gate git,t′ and an output gate
got,t′ for position (t, t′). Based on the fact that there are two predecessor cell states ct,t′−1 and
ct−1,t′ , the 2DLSTM unit has two forget gates instead of one. Both predecessor cell states are
multiplied component-wise with their corresponding forget gate, and then both values are summed.
The remaining computations are analogous to the standard LSTM computation.

The magnitude of cell states can quickly increase over positions t and t′ [Leifert & Strauß+ 16].
The problem comes from the fact that for an m-dimensional LSTM, m predecessor hidden states
with one forget gate each are utilized. The output of forget gates is between 0 and 1; thus, the
sum of activations of m predecessor states, multiplied by the forget gates, can grow large over
positions. This behavior results in unstable training.

Stable 2DLSTM To solve the above problem, a stable variant of 2DLSTM has been introduced
[Leifert & Strauß+ 16]. Its architecture and formulation are shown in Figure 4.2 and Equations
4.1-4.7. In this version, besides the input git,t′ , forget gft,t′ and output got,t′ gates, 2DLSTM
employs an additional lambda gate gλt,t′ at each position. As written in Equation 4.4, its activation
is computed exactly like the other gates. The lambda gate is used to weigh the two predecessor cell
states ct−1,t′ and ct,t′−1 and combine them into a single predecessor state by a convex combination
before passing them through the forget gate (see Equation 4.6). This decides which information
of the old cell state should be kept. The remaining computations are analogous to the standard
LSTM. Similar to LSTM, the new cell state ct,t′ is multiplied component-wise, denoted by �, with
the output gate to yield the hidden state ht,t′ . The internal unit formulation is fully expressed by

git,t′ = σ(Wi[xt,t′ ;ht−1,t′ ;ht,t′−1] + bi), (4.1)

gft,t′ = σ(Wf [xt,t′ ;ht−1,t′ ;ht,t′−1] + bf), (4.2)

got,t′ = σ(Wo[xt,t′ ;ht−1,t′ ;ht,t′−1] + bo), (4.3)

gλt,t′ = σ(Wλ[xt,t′ ;ht−1,t′ ;ht,t′−1] + bλ), (4.4)

c̃t,t′ = tanh(Wc[xt,t′ ;ht−1,t′ ;ht,t′−1] + bc), (4.5)

ct,t′ = gft,t′ ◦
[
gλt,t′ � ct−1,t′ + (1− gλt,t′) ◦ ct,t′−1

]
+ c̃t,t′ � git,t′ , (4.6)

ht,t′ = tanh(ct,t′)� got,t′ . (4.7)

Besides the input-to-recurrent weight matrices and bias terms, 2DLSTM uses two recurrent-to-
recurrent weights, vertical and horizontal, such that W{i,f,o,c,λ} ∈ Rdh×[dx+2dh]. b{i,f,o,c,λ} ∈ Rdh
denote bias terms.

In general, for m dimensions, multidimensional LSTM makes use of m lambda gates; however,
there is only one forget gate. In order to have the weights for a convex combination, the sum of
lambda gates’ activations is normalized by their sums. The number of lambda gates is reduced to
m− 1 as the activation of the m-th lambda gate can be computed based on those of the others as
the weights are summed to one [Leifert & Strauß+ 16, Voigtlaender 16]. Therefore, 2DLSTM only
requires one lambda gate.

55

4 Two-Dimensional Sequence-to-Sequence Modeling

ct,t′

cell

� ht,t′�c̃t,t′

�
gλt,t′

lambda gate

gf t,t′

forget gate

git,t′input gate got,t′output gate

xt,t′

ht,t′−1

ht−1,t′

xt,t′
ht,t′−1ht−1,t′

xt,t′
ht,t′−1ht−1,t′

xt,t′
ht,t′−1ht−1,t′ xt,t′

ht,t′−1ht−1,t′

Figure 4.2: The diagram of the 2DLSTM cell for an input. The additional links versus the LSTM
unit are marked in blue (cf. Figure 3.1).

Figure 4.2 also summarizes all necessary operations of the 2DLSTM component. The two
predecessor hidden states are first combined into one by the lambda gate as a weight. This
combined state is then used as in standard one-dimensional LSTM, but on two-dimensional data
(compare with Figure 3.1). All the gates use the sigmoid activation function. The candidate cell
node uses tanh. The blue arrows exhibit additional links in comparison to LSTM. The 2DLSTM
layer is also shortened as a function when only representing inputs and an output given by

ht,t′ = 2DLSTM
(
xt,t′ , ht,t′−1, ht−1,t′

)
. (4.8)

For simplicity, the trainable parameters are left out.

4.3 Two-Dimensional Model

We apply the 2DLSTM layers to map the input and output sequences into a 2D space. Here,
we describe the model in the context of machine translation; however, it can be used in end-to-end
automatic speech recognition and any other tasks with two parallel sequences.

We combine the source representation (or temporal frame-wise acoustic information in speech
recognition) and a language model on the target side without any attention component. The
2DLSTM reconciles the context from both the source and target sentences and reinterprets the
encoder states when predicting a new target token. We call it the two-dimensional sequence-to-
sequence model, denoted as (2D RNN). We note that we use the general naming for recurrent
models using the RNN term; however, the model benefits from LSTM units. The model can still
be viewed as an encoder-decoder architecture. In contrast to the attention sequence-to-sequence
model where the encoder states are not updated, and the model is not able to reinterpret the
encoder states while decoding, this model enables the computation of the encoding of the source
sequence as a function of the previously generated target tokens. This enhances the degree of
variance in the context vectors by refining source representations to be sensitive to the partial
translation generated by the decoder. The re-encoded source states contain both the original
source and the previously generated target representations.

In the 2D RNN model, as shown in Figure 4.3, one dimension of 2DLSTM (the horizontal axis
in the figure) serves as the refined encoder, and the vertical axis plays the role of the decoder.
Before the 2DLSTM layer, the bidirectional LSTM-based encoder scans the source words and

56

4.3 Two-Dimensional Model

ei+1

ei

zj,i+1

ei−1

zj−1,i zj,i zj+1,i

zj,i−1

hj−1 hj hj+1 ...

fj−1 fj fj+1 ...

2DLSTM layer

×Le

aggregation

Figure 4.3: The 2D RNN model uses the forward 2DLSTM layer on top of the bidirectional encoder
with Le layers in machine translation. The same architecture is also applied to speech
recognition.

obtains hJ1 in order to have the whole source context. At position (j, i), 2DLSTM receives both
the encoder state hj and the last target token embedding ẽi−1 concatenated. The state of the
2DLSTM cell is given by

zj,i = 2DLSTM
([
hj ; ẽi−1

]
, zj−1,i, zj,i−1

)
(4.9)

where zj,i is the 2DLSTM state at position (j, i). Once the whole source sentence has been processed
from 1 to J , the output is collapsed over source positions at each decoder step. This operation
can be related to the linearly weighted sum of source positions in the attention models. Multiple
operations are proposed in the following section. Once the output of 2DLSTM is condensed, a
transformation followed by softmax is used to generate the next target token. Formally, we have

p(ei|ei−1
0 , fJ1) = softmax ◦ linear ◦maxout ◦ aggregation(z1,i, . . . , zJ,i) (4.10)

where the output of the aggregation operation is a compressed vector at the target position i, as
described next.

4.3.1 Collapsing the Output for Sequence Prediction

The 2DLSTM layer computes an output with two spatial dimensions along with the feature
dimension1. The horizontal axis represents the source states, the vertical axis processes the target
words, and the 2DLSTM layer shapes a 3D tensor zj,i ∈ RJ×I×dh . At each target position, the two-
dimensional sequence needs to be reduced to a one-dimensional vector that can then be processed
by higher layers or that computes a distribution over the target vocabulary at the end. Once
the given encoded source sequence has been processed, one can compute all z1,1, . . . , zj,i, . . . , zJ,I

1For simplicity, the batch dimension is ignored, as it has to be preserved anyway.

57

4 Two-Dimensional Sequence-to-Sequence Modeling

horizontal

vertical

feature

collapse vertical

feature

Figure 4.4: Collapsing the output in the 2D RNN model. The two-dimensional sequence of vectors
(the vertical or horizontal axis) needs to be reduced to one-dimensional for the next
layers. To this end, collapsing over the horizontal dimension is undertaken. In the
proposed model, the vertical axis corresponds to the output sequence.

states. To predict a single word, we need to aggregate J dh-vectors into a fixed-size representation
at each output position i. The aggregation function should select the most relevant encoder states
of length J . We highlight that the collapsed output can be seen as the context vector as before
and denoted with ci ∈ Rdh by which each target token ei is predicted. Generally speaking, this
operation can be expressed as

ci = aggregation(zJ,i1,i). (4.11)

This is done by collapsing the output of the 2DLSTM layer horizontally, as shown in Figure 4.4.
The collapsing of 2DLSTM output can be conducted over both axes depending on the intended
purpose. We will apply aggregation functions over both dimensions in Section 4.4, where the goal
is to predict source-to-target and target-to-source translations jointly.

Max-Pooling

A straightforward approach to reduce the length of the source sentence is max-pooling. J
vectors are max-pooled, meaning that for every component of a vector k ∈ [1, . . . , dh], we select
the component with the maximum value. Hence, we have

ci = max
1≤j≤J

zj,i,k ∀k ∈ [1, . . . , hd], ∀j ∈ [1, . . . , J]. (4.12)

In fact, for a given target position, the max-pooling operator assigns dh features to different
source positions.

Average-Pooling

Instead of selecting the maximum component, one can take the average of J vectors for each
component of the vector. We scale the sum with the inverse of the source length to stabilize the
variance of the pooled features and derive

ci =
1

J

∑
1≤j≤J

zj,i,k ∀k ∈ [1, . . . , hd],∀j ∈ [1, . . . , J]. (4.13)

Last Hidden State

We also choose zJ,i as the final output of the 2DLSTM layer at each target position i, as it
should theoretically contain the entire source sentence information from time step 1 to J and also
all past target histories until the position i. Therefore, the output is collapsed to a single vector by

ci = zJ,i. (4.14)

58

4.3 Two-Dimensional Model

Weighted Sum

For many applications, it is necessary to have normalized weights, a distribution that can be
considered as a notion of alignment between source and target sentences. All the operations
described so far yield no alignment scores, though max-pooling leverages the pooled positions to
obtain implicit alignments. Max-pooling assigns dh channels to various input positions. With
average-pooling, all positions contribute equally to the final feature. With the last hidden state,
information from all positions is implicitly included based on the internal gating mechanism of
2DLSTM, emphasizing the later steps.

As an alternative, we also add an additional component to compute a weighted sum over the
horizontal axis and use the obtained vector as the compressed output. Similar to the attention
mechanism [Bahdanau & Cho+ 15, Luong & Pham+ 15], we get a distribution over the source
positions and provide scores as soft alignments between the source and target positions. These
attention weights are used to weigh the J vectors differently. Let us define α(j|i) as the normalized
attention weights that focuses on fj for a given ei. An implicit alignment between two sentences is
expressed by the general multiplicative function of target word embedding from the last position
ẽi−1 and the 2DLSTM hidden states. Using softmax, we write

α(j|i) = softmax(ẽ>i−1Wattzj,i) (4.15)

where Watt ∈ Rde×dh is a learnable parameter. Then, the weighted sum of the 2DLSTM hidden
states is used as the collapsed output such that

ci =
J∑
j=1

α(j|i)zj,i. (4.16)

4.3.2 Training

To train the 2DLSTM cell, back-propagation through time is performed over two dimensions
[Graves 08, Graves 12b]. The order of forward and backward passes is opposite to each other. If the
two-dimensional grid is processed from the bottom left to the top right corner in the forward pass,
then the gradient is passed backward from time step (J, I) to the origin (1, 1). The derivatives
with respect to the trainable parameters are derived by summing over all positions. More details
and the derivations of the gradients can be found in [Graves 08].

4.3.3 Order of Processing

One practical concern is the difference between training and decoding. During training, all states
of 2DLSTM are computed once at the beginning because the entire source and target sentences
are available.

As illustrated in Figure 4.5, the processing is typically done column by column or row by row.
Importantly, the 2DLSTM state at position (j, i) can only be processed once two predecessors at
positions (j − 1, i) and (j, i− 1) have been computed. This constraint is fulfilled when processing
the 2D grid diagonal-wise. This processing scheme enables us to merge the kernel invocations for
all positions on one diagonal, reducing the necessary computation time. As shown in Figure 4.5(a),
all cells on each diagonal are computed in parallel. The blue arrows indicate a sequential order of
processing. For a 2D grid with J and I words on the source and target sentences, respectively,
there are I × J cells to process. In contrast, the number of diagonals is I + J − 1, which in most
cases should be significantly lower than the number of cells, leading to faster training. While
GPU capacity limits this parallelization, in practice, the training computation can be optimally

59

4 Two-Dimensional Sequence-to-Sequence Modeling

(a) (b) (c)

Figure 4.5: Order of processing in 2DLSTM. a) diagonal-wise used in training, where all cells on
the same diagonal are computed in parallel. b) column-wise used in target-to-source
decoding, where columns are not computed at the same time. c) row-wise used in
source-to-target decoding where rows are not computed at the same time. The thick
black and thin blue arrows show the direction of the sequential process between cells
and columns/rows, respectively.

zj,i+1

zj−1,i zj,i zj+1,i

zj,i−1

(a)

zj,i+1

zj−1,i zj,i zj+1,i

zj,i−1

(b)

zj,i+1

zj−1,i zj,i zj+1,i

zj,i−1

(c)

zj,i+1

zj−1,i zj,i zj+1,i

zj,i−1

(d)

Figure 4.6: Four directions in which the 2DLSTM layer can process the input. For both the
vertical and horizontal axes, there are two possible directions, offering a total of four
combinations. The arrows indicate which predecessors are taken to compute the
activation for position (j, i) colored in blue. a) left-to-right and bottom-to-top, b)
right-to-left and bottom-to-top c) left-to-right and top-to-bottom, and d) right-to-left
and top-to-bottom.

parallelized to linear time [Voigtlaender & Doetsch+ 16]. In theory, the complexity of training is
O(JI).

In contrast, the computation cannot be done as a single kernel invocation during decoding
since the output sequence has to be predicted. This prevents the computation of multiple cells
on the same diagonal at once. Thus, the 2DLSTM states have to be computed row-wise for
source-to-target, and column-wise for target-to-source translation (see Figure 4.5). Here, for
each row or column, the blue arrows imply the order of processing between columns or rows and
sequence-style dependency on the one before that.

As in training, the entire source and target sequences are available, this allows us to compute
all states of the 2DLSTM before performing any aggregation and prediction step. We process
the 2D grid in the forward pass from the bottom left (position (1, 1)) to the top right corner
(position (J, I)). Analogously, the gradient is passed backward in the opposite direction by parallel
computations for all cells on each diagonal.

60

4.3 Two-Dimensional Model

ei+1

ei

zj,i+1

ei−1

zj−1,i zj,i zj+1,i

zj,i−1

hj−1 hj hj+1 ...

fj−1 fj fj+1 ...

Bi2DLSTM layer

×Le

aggregation

Figure 4.7: The bidirectional 2D RNN model using the concatenation of the forward and backward
2DLSTM layers at position (j, i). The bidirectional arrows represent the bidirectional
operations.

4.3.4 Bidirectional Two-Dimensional Model

Similar to the bidirectional LSTMs for one-dimensional sequences, in principle, there are four
possible directions in which 2DLSTM can process the input as shown in Figure 4.6. For both the
vertical and horizontal axes, there are two possible directions, offering a total of four combinations,
left-to-right and bottom-to-top, right-to-left and bottom-to-top, left-to-right and top-to-bottom,
and right-to-left and top-to-bottom. Multidirectional 2DLSTM employs four parallel layers that
each scans the input in one of the four possible directions. To derive the entire context information
of the 2D input, the activations of all four directions are then merged per position by either
summation, averaging, or concatenation [Graves 08].

For sequence-to-sequence modeling like machine translation, since the successor tokens in the
target sentence are not known and have to be generated, the processing directions are restricted to
left-to-right and bottom-to-top (forward) and right-to-left and bottom-to-top (backward) directions,
i.e., Figure 4.6(a) and 4.6(b).

Introducing an additional 2DLSTM hidden layer with the same connections as in the original
one but moving backward on the horizontal, yet forward in the vertical axis, we extend it to
the bidirectional 2DLSTM (Bi2DLSTM) layer. −→zj,i and ←−zj,i are used to denote the forward and
backward hidden states, respectively. As a combination of two 2DLSTMs, the Bi2DLSTM has
access to two states at any given position (j, i), i.e., −→zj,i and ←−zj,i, summarizing the past and future
input information. In our implementation, the final representation zj,i is simply the concatenation
of states from the forward and backward directions at each position (j, i) written as

zj,i = [−→zj,i;←−zj,i]. (4.17)

In this case, the model dependency of Equation 4.9 is modified to

zj,i = Bi2DLSTM
([
hj ; ẽi−1

]
, zj−1,i, zj+1,i, zj,i−1

)
. (4.18)

61

4 Two-Dimensional Sequence-to-Sequence Modeling

The bidirectional model can thus create an output that focuses on the inputs right around
position j but also depends on input values that are far in the future or past. Once a sequence of
zj,i vectors is obtained, Equation 4.10 is applied to generate target tokens. Throughout this work,
we name this model the bidirectional 2D RNN model, and it is illustrated in Figure 4.7.

4.4 Two-Way Translation Model

The attention models can be seen as unidirectional translation architectures as they translate
only from one language to another. Although such models have proven to be effective for high-
quality unidirectional translation given a moderate amount of training data, their capacity for
two-way translation modeling, i.e., both source-to-target and target-to-source translation using a
single model is limited. It is not easy to build a single system that translates reliably from and to
two or even more languages. In practice, usually, one model is trained for each direction, and each
might only capture partial aspects of the mapping between words [Cheng & Shen+ 16]. The two
models seem to be complementary. Therefore, combining them may hopefully improve translation
quality in both directions.

An early solution to use a single model for translation between multiple languages is a multilingual
system. A one-to-many multilingual system translates from one source language into multiple
target languages by adding a separate attention mechanism and decoder for each target language
[Dong & Wu+ 15]. A single shared attention mechanism but multiple encoders and decoders
for each source and target language can be also used [Firat & Cho+ 16]. Multi-task learning is
also proposed for many-to-many tasks [Luong & Le+ 16], where the architecture is extended to
have multiple encoders and decoders. A multilingual system can only have a single attention
encoder-decoder model [Ha & Niehues+ 16, Johnson & Schuster+ 17]. No change in the network
is needed in such systems, but they work with multilingual data to have both source-to-target
and target-to-source translations. In practice, these models add an artificial token to the source
sentence to mark the target language and to identify the translation direction correctly. Excluding
the multilingual systems, one can define a new training loss that combines likelihoods in two
directions with a word alignment agreement [Cheng & Shen+ 16].

Inspired by the 2D RNN model, we construct a single two-way translation model as a by-product
of the 2D grid. It opens up the interaction between source-to-target and target-to-source translation
directions jointly trained on the same training data. Our model is similar to the 2D RNN model
with small modifications, but it produces translations in both directions. The presented idea is a
proof of concept that offers a different and interesting model with initial results, but it has not yet
reached parity on translation tasks.

4.4.1 Model Architecture

As shown in Figure 4.8, we apply an encoder with L layers to scan the source sentence from left
to right. The encoder layers can be composed of either the unidirectional LSTM or self-attention
components. In the latter case, to avoid the future context, we mask out the coming words and
only attend to the histories up to time step j. Similar to the source encoder, we use a stack of L
unidirectional (or masked) layers on the target side. It yields hj and si as the source and target
encoder states, respectively. The source and target sentences do not need to be of the same length.
The use of source and target encoders is optional in this architecture; however, initial experiments
have shown that they help the performance.

We further equip the network with the 2DLSTM layer to relate the source and target encoder
states without any attention component in between. At position (j, i), 2DLSTM receives the
concatenation of the last source encoder state hj−1 and the previous target encoder state si−1.

62

4.4 Two-Way Translation Model

ei+1 si+1

ei si

zj,i+1

ei−1 si−1

zj−1,i zj,i zj+1,i

zj,i−1

hj−1 hj hj+1 ...

fj−1 fj fj+1 ...

2DLSTM layer

×L

×L

aggregation

ag
gr
eg
at
io
n

Figure 4.8: The two-way translation model using the 2DLSTM layer on top of the L-layer of the
source and target encoders. The light blue and green blocks indicate aggregation over
the horizontal and vertical axes.

As before, its recurrence activation relies on both the vertical zj,i−1 and horizontal zj−1,i hidden
states. The state of 2DLSTM is updated by

zj,i = 2DLSTM
([
hj−1; si−1

]
, zj−1,i, zj,i−1

)
. (4.19)

The 2DLSTM state for the token at target position i depends only on the previous tokens ei−1
1 .

Similarly, the source state at position j only relies on the preceding source tokens f j−1
1 . At each

decoder step, once the whole source sentence has been processed from 1 to J , the sequence of
vectors is aggregated by max-pooling over all horizontal states to obtain the context vector as
depicted by light blue in Figure 4.8. In order to generate the next target token ei, a transformation
followed by softmax is applied. The same procedure is employed at the same time for the source
token fj , as shown in light green. Max-pooling aggregates all vertical states to a single context
vector to predict the next source token. Therefore, we derive

p(ei|ei−1
0 , fJ1) = softmax ◦ linear ◦ aggregation(zJ,i1,i)

∣∣
Ve
, (4.20)

p(fj |f j−1
0 , eI1) = softmax ◦ linear ◦ aggregation(zj,Ij,1)

∣∣
Vf

(4.21)

where Vf and Ve are the source and target vocabularies as before. No attention component is used
in this model, and inherently we have no future context information, i.e., no bidirectional layers.

The reason for this constraint is that including it on one language side would break the network’s
ability to translate in that direction. All the loss functions are differentiable with respect to the

63

4 Two-Dimensional Sequence-to-Sequence Modeling

model parameters. It is easy to extend the original training algorithm to implement joint training
since two translation models in two directions share the same training data and a set of parameters.
The training loss is therefore defined as

L = log p(eI1|fJ1) + log p(fJ1 |eI1). (4.22)

Once we have computed all I × J states, it enables translation. Afterwards, vertical and
horizontal slices can be taken in parallel to compute the individual losses, which are then used for
back-propagation. One row of it is taken at each target position, while at each source position,
one column is used.

As explained in Section 4.3.3, the 2DLSTM states are processed diagonal-wise in training. This
parallelization is not possible during decoding, thus we compute the states of the 2DLSTM grid
column-wise for target-to-source and row-wise for source-to-target translation, as shown in Figure
4.5(b) and 4.5(c), respectively.

4.5 Experimental Results

4.5.1 Machine Translation

Setups

All machine translation experimental setups follow those explained in Section 3.8. Like the
RNN attention model, 6 bidirectional LSTM layers are used on top of each other; each has 1024
hidden nodes. The decoder is composed of only one forward 2DLSTM layer of size 1024. We also
use the concatenation of backward 2DLSTM in the model to have a bidirectional property over
encoder states. Again similar to the baseline models, a linear projection and maxout, followed
by the softmax function are applied on the output layer. In order to aggregate the sequence of
vectors, we try all variations explained in Section 4.3.1.

Most training hyperparameters are identical to the RNN attention model. However, we use
a smaller batch size, and the gradients are accumulated to compensate for that. The model is
trained with a lower initial learning rate of 0.0005 for better convergence at the end. In the initial
experiments, we restrict the maximum sequence length of source sentences to 50 tokens as it speeds
up the training phase. Whenever we compare with other baselines, we keep all sequences with a
length of up to 100 subwords and ensure that all systems receive the same training data.

A dropout rate of 0.3 is used between recurrent weights of the 2DLSTM layer, unless explicitly
stated otherwise.

Results

Aggregation Functions We first examine the mentioned aggregation mechanisms to reduce the
2DLSTM output to a fixed-size representation that is independent of the sequence length. Four 2D
RNN models are trained with the same encoder (6 layers of BiLSTM) and one forward 2DLSTM
in the decoder. Each model collapses the source length differently. All models have the same
number of parameters as the aggregation functions are weightless except for the weighted sum
operator with an extra but a negligible number of parameters. Tables 4.1 and 4.2 show the results
on the WMT German→English and Chinese→English tasks.

In average-pooling, all source positions are treated equally, and by picking the last state, the
final positions contribute to the model the most. Max-pooling and weighted sum have a clear
advantage over average-pooling and the last state in terms of translation performance. In either
case, the 2D RNN model leverages the pooled positions to obtain an implicit alignment assigning
to different positions. These aggregation functions have almost a similar performance on average
across the two tasks (compare lines 1 and 4 in the tables).

64

4.5 Experimental Results

Table 4.1: The uni- and bidirectional 2D RNN results using different aggregations on WMT 2018
German→English. The maximum sequence length is set to 50 tokens in training as
it accelerates the initial experiments. The number of parameters for all aggregation
methods is around 220M and 245M if the backward 2DLSTM layer is added.

model dev newstest2017 newstest2018

forward backward aggregation Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

2DLSTM no max-pool 31.2 56.6 32.0 56.6 39.0 48.1
average-pool 30.8 57.0 31.7 56.7 38.5 48.3
last state 30.4 57.7 31.1 57.5 37.9 49.2
weighted sum 31.4 56.4 32.4 56.3 38.8 47.8

2DLSTM max-pool 31.2 56.7 31.8 56.8 38.8 48.1
weighted sum 31.4 56.6 31.9 56.7 39.0 48.3

Table 4.2: The 2D RNN results using different aggregations on WMT 2018 Chinese→English.
The maximum sequence length is set to 100 tokens. The number of parameters for all
aggregation methods is around 220M.

model dev newstest2017 newstest2018

forward backward aggregation Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

2DLSTM no max-pool 21.1 63.7 23.1 62.6 22.8 66.8
average-pool 20.8 64.7 22.6 62.9 22.0 67.8
last state 20.5 64.7 22.3 62.8 22.1 67.7
weighted sum 21.0 63.6 22.8 62.3 22.4 66.7

Additional Backward Layer We also explore using one backward 2DLSTM layer of size 1024
whose features are concatenated to the forward layer described in Section 4.3.4. That yields a total
of 245M trainable parameters for the bidirectional 2D RNN model. The second part of Table 4.1
lists the results for the better aggregation mechanisms from our first set of experiments. Adding
the backward layer (lines 5 and 6) gives no gain even with extra parameters, and there is no real
benefit in using it. Since the 2D RNN model already contains a strong bidirectional encoder, this
can justify the observation that adding an additional right-to-left or backward 2DLSTM layer on
top of that is not important. This is in line with the initial experiments in which we replace the
bidirectional encoder with the unidirectional one while keeping the backward 2DLSTM layer. This
architecture shows worse translation performance. Moreover, adding bidirectional LSTMs in the
encoder is cheaper than having several backward 2DLSTM layers in the decoder.

Combination with Self-Attention Encoder The 2D RNN model is built with a deep bidirectional
LSTM encoder that takes a lot of trainable parameters. However, it can also be combined with
self-attention layers where the number of parameters is smaller and provides powerful modeling
on its own, independent of the recurrent-based encoder. To affirm the hypothesis of whether the
expressiveness of the 2D RNN model depends on its encoder design choice, we train it with two
different encoders: 6 layers of self-attention components and 6 layers of bidirectional LSTM. The
former reduces the number of parameters by almost half. The translation results are shown in
Table 4.3. We observe that the new combination performs similarly to the recurrent encoder on
average. This confirms the ability of 2DLSTM as a stand-alone decoder working without any
dependency on the encoder architecture.

65

4 Two-Dimensional Sequence-to-Sequence Modeling

Table 4.3: The 2D RNN results using different encoders on WMT 2018 German→English.

model dev newstest2017 newstest2018 #

decoder encoder Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

2DLSTM LSTM 31.6 56.3 32.2 56.7 39.4 48.0 220M
self-attention 31.4 56.3 32.5 56.5 38.9 48.3 97M

Table 4.4: Performance comparison between the 2D RNN model and the baselines on WMT 2018
German→English.

model dev newstest2017 newstest2018 #

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

RNN attention 31.9 55.3 32.9 55.2 39.7 46.8 217M
self-attentive 32.4 55.8 33.2 55.3 40.4 46.8 102M

+ d = 1024 33.3 54.7 34.2 54.5 40.6 46.8 291M
2D RNN 31.6 56.3 32.2 56.7 39.4 48.0 220M

Table 4.5: Performance comparison between the 2D RNN model and the baselines on WMT 2018
Chinese→English.

model dev newstest2017 newstest2018 #

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

RNN attention 21.2 63.1 23.2 61.1 22.7 65.9 217M
self-attentive 22.0 62.8 23.1 61.7 23.0 66.1 101M

+ d = 1024 22.7 61.7 23.5 61.0 23.8 65.3 290M
2D RNN 21.1 63.7 23.1 62.6 22.8 66.8 220M

Given these results, the 2D RNN model equipped with one forward 2DLSTM, aggregated by
the weightless max-pooling function and composed of 6-layer bidirectional LSTM in the encoder is
employed in the rest of the machine translation experiments.

Translation Performance We compare the 2D RNN model to two baselines: the RNN attention
and self-attentive models. To ensure a fair assessment, we fix a few design choices, such as the
maximum sequence length (100 tokens) and the maximum number of training epochs. Tables
4.4 to 4.6 present results on three WMT tasks. On German→English and Chinese→English, the
2D RNN model achieves comparable results over the RNN attention baseline in terms of Bleu,
while the self-attentive model is superior. 2D RNN is behind the baselines on all sets with respect
to Ter. Surprisingly, on the English→German newstest2014 benchmark test set, the model
outperforms both the RNN attention and self-attentive baselines by 0.8 and 0.1 Bleu points, 0.5%
and 0.2% in Ter, respectively. Although the 2D RNN model has a stable convergence behavior,
its 2D structure and complex dependencies can partially explain the slightly lower performance.
Its training involves a more complicated optimization problem that makes the entire procedure
harder to be trained.

Sequence Length Analysis The 2D RNN model produces translation-sensitive source represen-
tations since it refines the encoder states according to what has already been generated. To verify
this, we focus on a well-known challenge in attention-based models, and that is how the model

66

4.5 Experimental Results

Table 4.6: Performance comparison between the 2D RNN model and the baselines on WMT 2014
English→German.

model newstest2013 newstest2014 #

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

RNN attention 25.8 56.8 26.9 56.3 224M
self-attentive 26.3 57.0 27.6 56.0 108M
2D RNN 26.1 56.7 27.7 55.8 227M

performance changes with respect to the source sentence length. To do so, we group sentences of
similar lengths and compute Bleu, Ter, and the average length of hypotheses for each group.

Following [Rosendahl & Tran+ 19], all test sets newtest2008-2018 on WMT German→English
are concatenated, resulting in a larger test set of 30244 sentence pairs. Consecutive sentence pairs
of this set are concatenated to achieve longer sentences with reasonable quality. This concatenation
provides a set of 15k sentence pairs with double the average length. Then, we divide the set into 5
bins according to the source sentence length such that each group has a source length difference of
25 subwords. We denote such a bin by Ga:b where a ≤ J ≤ b. As a simple example, G0:25 contains
the group of sentences in which the source length is limited to 0 to 25 tokens. In our setup, the
smallest group contains 755 sentences, allowing a more reliable interpretation compared to the
groups with few sentences. We note that this setting contrasts with the training mode where
the models learn to translate one source sentence without further context beyond the sentence
boundary. But the relative performance difference between the models is still reliable as all are
equally exposed to this problem.

The length of the observed source sentences is limited to be no longer than 50, 75, and 100
subwords during training. Figure 4.9 demonstrates performance differences between the models
for a maximum sequence length of 50 and 100. Table B.1 in Appendix also shows the details of
the translation performance of each group in Bleu and Ter as well as the size of each bin.

The performance of all models is consistent for sequence lengths observed during training. For
instance, when the maximum sequence length is set to 100 tokens, the models’ performance is very
similar for different lengths up to 100 tokens (G0:25 → G51:75) and drops dramatically in terms
of Bleu and Ter when source sentences with more than 100 tokens are considered (see the left
panel in Figure 4.9). We see the same behavior for models trained on 50 subwords maximum (the
right side of the figure). This drop is more severe for the self-attentive model than the RNN-based
architecture. Compared to the self-attentive model, RNN attention is more robust in translating
long sentences. Moreover, it confirms that the performance of the self-attentive model does not
suffer on long sequences while it cannot generalize over unseen sequence lengths.

In comparison, the 2D RNN model is significantly superior if applied to unseen sequence lengths,
with the highest performance on longer sentences when the source sentences extend beyond the
maximum sequence length observed. In general, the model is capable of translating both short
and long sequences, successfully generalizing over longer sequences, and outperforming all the
baselines. One main reason for this is that the attention models generate much shorter hypotheses
on longer sentences, as shown in Figure 4.9(f). While the 2D RNN model implicitly discourages
an early stop of decoding and pushes for untranslated parts of the source sentence.

These results also indicate that the performance drop of the self-attentive model cannot be
related to losing training data, as restricting the maximum sequence length in training leads to
fewer sentence pairs. The reason is that the recurrent-based models do not suffer from this issue.
Our results also confirm the findings of [Rosendahl & Tran+ 19]. In addition, they also show that
the performance of the self-attentive model using absolute positional encoding is much worse than

67

4 Two-Dimensional Sequence-to-Sequence Modeling

G 0:
25

G 26
:5
0

G 51
:7
5

G 76
:1
00

G 10
1:
in

f

10

15

20

25

source sequence length

B
l
e
u

[%
]

self-attentive
+ relative encoding
RNN attention
2D RNN

(a)

G 0:
25

G 26
:5
0

G 51
:7
5

G 76
:1
00

G 10
1:
in

f

10

15

20

25

source sequence length

B
l
e
u

[%
]

(b)

G 0:
25

G 26
:5
0

G 51
:7
5

G 76
:1
00

G 10
1:
in

f

65

70

75

80

source sequence length

T
e
r

[%
]

(c)

G 0:
25

G 26
:5
0

G 51
:7
5

G 76
:1
00

G 10
1:
in

f

65

70

75

80

source sequence length

T
e
r

[%
]

(d)

G 0:
25

G 26
:5
0

G 51
:7
5

G 76
:1
00

G 10
1:
in

f

20

40

60

80

source sequence length

av
er

ag
e

h
y
p

ot
h
es

es
le

n
gt

h

(e)

G 0:
25

G 26
:5
0

G 51
:7
5

G 76
:1
00

G 10
1:
in

f

20

40

60

80

source sequence length

av
er

ag
e

h
y
p

ot
h
es

es
le

n
gt

h

(f)

Figure 4.9: Performance of the models versus the source sequence length on WMT
German→English. The source length is restricted in training to 100 tokens in a),
c), and e), respectively, to 50 tokens in b), d), and f). The size of each group is
|G0:25| = 1070, |G26:50| = 6333, |G51:75| = 5084, |G76:100| = 1880, and |G101:inf | = 755.

that of relative encoding [Shaw & Uszkoreit+ 18]. A further experiment with relative positional
encoding in the self-attentive model is carried out for a fair assessment, presented in black in
the figure. The relative positional encoding significantly compensates for the deficiency of the
self-attentive model, and its performance does not drop when the length extends beyond the
maximum sequence length in training. Although it is superior to the 2D RNN model with respect
to Bleu and Ter, it slightly generates shorter translations on longer sentences, as seen in Figures
4.9(e) and 4.9(f).

68

4.5 Experimental Results

Table 4.7: Performance comparison of the 2D RNN with the 2D CNN model on the IWSLT and
WMT German→English translation tasks. Evaluation is done by multi-bleu.pl.

method Bleu
[%]

IWSLT WMT
dev test newstest2013 newstest2015

2D CNN [Elbayad & Besacier+ 18] 36.0 34.7 29.0 29.6
RNN attention [Elbayad & Besacier+ 18] 31.7 31.0 - -
self-attentive [Elbayad & Besacier+ 18] 35.6 34.5 31.6 32.8

2D RNN 36.1 34.6 30.2 31.2

Comparison with Other Works Concurrent with this work, in [Elbayad & Besacier+ 18], con-
volutional neural networks are used to also motivate a similar two-dimensional layout to jointly
encode the source and target sentence. Their model forms pairwise interactions between the source
and target tokens. Once the source and target embedding are concatenated as input representation,
a set of stacked 2D convolution networks is applied with different filter sizes. The model uses
residual-cumulative skip connections between consecutive layers interleaved with feedforward layers.
To predict the target token, the final convolution features are mapped to a single fixed-size vector
by self-attention. This model is referred to as the 2D CNN model in our comparison.

To compare the model performance to the 2D CNN model, we replicate the setup in [Edunov
& Ott+ 18, Elbayad & Besacier+ 18] for the IWSLT 2014 German→English task. The dataset
contains training, dev, and test sets with 160K, 7283, and 6750 sentence pairs, respectively. The
bilingual texts on both the source and target sides are tokenized and lower-cased. BPE subword
segmentation yields German and English vocabularies of 8.8K and 6.6K tokens.

We also conduct a comparison on the WMT 2015 German→English task where the Rapid part
of the training data is excluded to use exactly the same data as in [Elbayad & Besacier+ 18].
In this task, newstest2013 as dev and newstest2015 as test sets are used with 3000 and 2169
sentence pairs, respectively. Joint BPE with 50K symbols is used. The 2D RNN model follows
an identical training setup as for the WMT 2018 German→English task. The model has 174M
and 220M free parameters for the IWSLT and WMT tasks. The 2D CNN model uses 14 layers
of CNN with a model size of 256 for IWSLT, respectively 16 layers of CNN with a model size of
512 for the WMT task. These configurations lead to 14M and 49M total number of parameters.
Peer-to-peer comparison pushes us for case-insensitive and case-sensitive tokenized evaluation for
IWSLT and WMT, both using multi-bleu.pl.

Table 4.7 gives a comparison between the models. In either task, we achieve competitive results
or clearly outperform the 2D CNN model. It is worth mentioning that the 2D CNN model has
considerably fewer parameters than the 2D RNN model. The reason is that we have not tuned
our model on every single task. Instead, we configure a network to be generalized enough such
that it works equally well in all experiments.

We also compare the 2D RNN model to the state-of-the-art systems from the literature on
the WMT English→German benchmark task as before in Table 4.8, where our model has no
superiority compared to deep models.

4.5.2 Two-Way Machine Translation

Setups

For the German→English task, we use the same self-attentive model as before. The same setup
is used to train the reverse English→German direction. We clarify that an independent model is

69

4 Two-Dimensional Sequence-to-Sequence Modeling

Table 4.8: Comparison of the 2D RNN model with the recently published works on WMT 2014
English→German. Massive HW refers to massive GPU budgets to train models such
that “no” means single-GPU training, while “yes” means multiple GPU access in that
the number of nodes/machines can vary.

method Bleu
[%]

massive

newstest2014 parameters HW

DeepL translator (evaluated in 2020) 33.1 - -
RNN attention (GNMT) [Wu & Schuster+ 16] 24.7 - yes
deep RNN attention (RNMT+)[Chen & Firat+ 18] 28.5 378.9M yes
CNN attention [Gehring & Auli+ 17b] 25.2 263.4M yes
CNN attention (DynamicConv) [Wu & Fan+ 19] 29.7 213M yes
self-attentive [Vaswani & Shazeer+ 17] 27.3 93.3M yes
deep self-attentive [Ott & Edunov+ 18] 29.3 210M yes
deep self-attentive [Liu & Duh+ 20] 30.1 256M no

2D RNN 27.7 227M no

“-”: not available

trained for each direction.

The two-way model is composed of 4 layers of masked multihead self-attention encoders on both
the source and target sides with 8 heads each. The encoder must be a unidirectional layer to keep
a bounded history restriction. The 2DLSTM layer has 750 hidden nodes. An L2 norm of 0.05 is
also used with a dropout rate of 0.1. Adam updates the model parameters with an initial learning
rate of 0.0005 and a dropout of 0.3 on masked self-attention layers. The rest of the configuration
is the same as the baseline setup, except for the maximum source sequence length, chosen to be 50
subwords during training.

In addition to WMT German↔English, we conduct experiments on a low-resource task of
WMT 2017 Turkish↔English including only the SETIMES2 corpus with 207k sentence pairs. For
Turkish↔English, we use the common preprocessing steps: tokenization, true-casing, and 20k joint
BPE symbols. Such segmentation results in 5.9M and 5.8M subwords on the Turkish and English
sides, respectively. The English and Turkish vocabulary sizes are 14k and 10k. newsdev2016 is
considered as the development set while newstest2016, and newstest2017 as the test sets.

Similar to German↔English, we utilize the base self-attentive model for both Turkish→English
and English→Turkish directions. We only train a single two-way model that requires jointly
optimizing the network parameters for both language directions.

Results

Tables 4.9 and 4.10 show the results for the German↔English and Turkish↔English tasks,
respectively. In all directions, the two-way model is far behind the self-attentive model. This
difference is larger on the high-resource task than on the low-resource scenario. These results
indicate that building a single model that translates reliably for both directions is a difficult task.
There are some potential reasons for such a huge gap.

The main cause of the performance drop is because the two-way model masks out the future
tokens on both the source and target sides and has no access to the full context. Replacing the
unbounded encoder layers of the self-attentive architecture with the unidirectional version might
explain such performance degradation. Secondly, the joint training of the two-way model requires
more sophisticated optimization compared to independent training. For joint training where a
new training objective combines likelihoods in two directions, we need to compromise between

70

4.5 Experimental Results

Table 4.9: Translation performance of the two-way model WMT 2018 German↔English. The two-
way model is a single model for both translation directions. All the model parameters
are jointly trained to carry out source-to-target and target-to-source translation. This
is in contrast to the self-attentive models that are separately trained for each language
direction.

model task dev newstest2017 newstest2018

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

unidirectional self-attentive German→English 32.4 55.8 33.2 55.3 40.4 46.8
English→German 28.5 62.1 27.2 63.8 40.2 49.6

single bidirectional two-way German→English 22.7 66.4 23.2 66.7 28.9 59.1
English→German 18.9 73.3 17.9 74.8 24.5 66.3

Table 4.10: Translation performance of the two-way model on WMT 2018 Turkish↔English. The
multilingual setup employs a single self-attentive model where the source-to-target
and target-to-source data are combined.

model task dev newstest2016 newstest2017

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

unidirectional self-attentive Turkish→English 21.1 68.6 19.2 71.4 18.7 72.1
English→Turkish 10.8 90.7 12.0 89.5 12.5 89.6

single bidirectional two-way Turkish→English 15.6 70.5 14.1 72.4 14.1 72.3
English→Turkish 8.0 91.2 9.0 90.6 9.5 90.4

single multilingual Turkish→English 19.7 61.5 18.2 63.7 18.1 63.8
English→Turkish 10.8 90.7 12.1 89.5 12.6 89.3

two tasks, and the parameters are updated jointly. Therefore, the training is subject to be more
complex and might result in a suboptimal solution for the entire optimization problem. This is in
contrast to separate training and updating for two independent sets of parameters.

We also set up a multilingual system for the Turkish↔English task shown in the third block of
Table 4.10. Proposed by [Johnson & Schuster+ 17], in the data preparation phase, we concatenate
the source-to-target and target-to-source variants of the training data with a special token for
each direction. To translate from Turkish→English, the token @en@ is inserted, whereas for the
reverse translation from English to Turkish, the token @tr@ is added to the source side of data.
Given that, a single self-attentive model is trained as the multilingual system. As listed in Table
4.10, the performance of the multilingual model is slightly worse than that of the baseline and
outperforms the two-way model.

4.5.3 Automatic Speech Recognition

Setups

As in Section 3.8.2, the experiments are done on Switchboard 300h and LibriSpeech 960h with
the same baselines.

The 2D RNN model is equipped with 6 stacked BiLSTMs of size 1024 with interleaved max-
pooling between the first three layers. The only difference compared to the RNN attention model
is that in the 2D RNN setup, a reduction factor of 8 (a factor of 2 between the first three layers) is
used instead of 6. The decoder is composed of a single layer of 2DLSTM of size 1024 that processes

71

4 Two-Dimensional Sequence-to-Sequence Modeling

Table 4.11: The uni- and bidirectional 2D RNN model performance using different aggregations
on Switchboard. No language model is used in decoding. The 2D RNN model has
160M and 155M parameters with the forward and backward layers. AM abbreviates
the acoustic model.

AM Wer
[%]

forward backward aggregation Hub5’00 Hub5’01

CH SWB Σ

2DLSTM no max-pooling 21.5 10.2 15.9 15.5
average-pooling 23.4 11.3 17.4 16.5
last state 24.5 11.6 18.1 16.9
weighted sum 22.2 10.2 16.2 15.5

2DLSTM max-pooling 21.6 10.7 16.2 15.6
average-pooling 23.2 11.4 17.3 16.1
last state 23.4 10.9 17.2 16.4
weighted sum 21.7 10.5 16.1 15.4

the encoder states in the forward direction and generates the output label sequence (see Figure 4.3).
Similar to the RNN attention baseline, the embedding layers have 512-dimensional vectors. We
apply maxout before the softmax layer. Similar to the machine translation experiments, we also
explore the extension of the network using the backward 2DLSTM layer and various aggregations
in the initial experiments. In the case of an additional backward 2DLSTM layer, we halve the
feature dimension such that each direction has a size of 512, a total of 1024.

The main training configurations are similar to those in the RNN attention model as explained
in Section 3.8.2 for both Switchboard and LibriSpeech tasks, except for a lower initial learning
rate of 0.0005 and a batch size of almost 8k with gradient accumulation of 4 to 8 steps. We note
that the batch size can be slightly different from one setup to another, and it is specified to be as
big as possible to fit on a single GPU. In the same way, a warm-up of 10 steps is taken at the
beginning. In the first set of experiments, dropout between 2DLSTM recurrent weights is not
activated, while later on, we add a rate of 0.3.

Results

Aggregation Functions and Backward Layer Similar to machine translation, we first look at
the performance of the aggregation mechanisms and the effect of the backward layer. In contrast
to the translation experiments, here when we apply the backward layer, half of the parameters
are used in the forward layer and the remaining half in the backward layer. The performance of
different aggregation functions on Switchboard with and without the backward layer is given in
the first and second blocks of Table 4.11. The max-pooling and weighted sum operations show
better Wer by more than 1% absolute than the other aggregations. This is also true for the
2D RNN model with the backward layer. The results on machine translation are very similar.
Interestingly, the weighted sum function works as good as max-pooling on average (compare lines
1 with 4 and lines 5 with 8). Max-pooling selects the most active speech encoder states; however,
it does not provide an explicit normalized weighting distribution.

Recurrent Weight Dropout We do not apply dropout on the recurrent nodes of the 2DLSTM
cells in the previous set of experiments. Table 4.12 presents the performance of the same models
with extra recurrent dropout regularization. By comparing Tables 4.11 and 4.12, it is seen that

72

4.5 Experimental Results

Table 4.12: The uni- and bidirectional 2D RNN model performance on Switchboard when dropout
with a rate of 0.3 is applied between the recurrent time steps in 2DLSTM. No language
model is used.

AM Wer
[%]

forward backward aggregation Hub5’00 Hub5’01
CH SWB Σ

2DLSTM no max-pooling 21.1 9.8 15.5 15.1
weighted sum 21.0 10.3 15.7 14.8

yes max-pooling 21.9 10.5 16.2 15.5
weighted sum 21.3 10.2 15.8 15.2

Table 4.13: The uni- and bidirectional 2D RNN model performance on LibriSpeech. Dropout with
a rate of 0.3 is applied between the recurrent time steps in 2DLSTM. The aggregation
operation is chosen to be max-pooling. The effective number of epochs is 25. No
language model is used.

AM Wer
[%]

forward backward dev test
clean other clean other

2DLSTM no 4.1 11.4 4.3 11.7

yes 4.3 11.7 4.3 12.4

recurrent weight dropout helps the 2D RNN model regardless of applying the backward layer or
the type of aggregation functions, with more emphasis on the case without a look-ahead.

In the end, it is inconclusive which operator is a better design choice. Here, we select max-
pooling as it is weightless. We recommend taking a weighted sum with by-product alignments for
those applications in which attention scores or implicit alignments are needed. In the remaining
experiments, we use dropout and max-pooling. The backward layer does not contribute to 2D
modeling due to the use of bidirectional LSTM in the encoder. This statement is experimentally
proven on the LibriSpeech task given in Table 4.13. In this comparison, adding the backward layer
leads to a drop of 0.7% absolute Wer on test-other. Therefore, no backward layer is applied in
the rest of the experiments.

Recognition Performance We further compare the performance of the 2D RNN model with
the baselines from Chapter 3. Table 4.14 shows the comparison on the Switchboard test sets,
respectively Table 4.15 compares the results on LibriSpeech. On Switchboard, the 2D RNN model
performs on par with RNN attention when no language model is used. It is slightly better than
the self-attentive model. The LM scale λLM is tuned to be 0.4 for fusing LM with the 2D model
for Switchboard. In addition, integrating the RNN and self-attentive-based language models to
the 2D RNN model reduces the error rate by 0.6% and 0.9% on the Hub5’01 test set. Language
models compensate for the performance gap of models; however, the 2D RNN model performs
slightly worse on average compared to the baselines.

This is slightly different in the case of the second task, as shown in Table 4.15. We observe
that the 2D RNN model benefits most from the language model combination. It performs almost
equally or somewhat better compared to the baselines if an LM is integrated. Here, the LM scale
is 0.2. One associated problem with the 2D RNN model is the decoding speed, which is almost 6

73

4 Two-Dimensional Sequence-to-Sequence Modeling

Table 4.14: Performance comparison between the 2D RNN model and baselines on Switchboard
with and without the language models in shallow fusion decoding.

AM LM Wer
[%]

#

Hub5’00 Hub5’01 parameters
CH SWB Σ

RNN attention none 21.1 10.1 15.6 15.0 157M
RNN 20.6 9.2 14.9 14.1
self-attentive 20.2 9.1 14.7 13.9

self-attentive none 21.2 10.3 15.8 15.3 99.5M
RNN 20.7 9.6 15.2 14.3
self-attentive 20.7 9.5 15.1 14.0

2D RNN none 21.1 9.8 15.5 15.1 160M
RNN 20.7 9.2 15.0 14.5
self-attentive 20.8 9.1 15.0 14.2

Table 4.15: Performance comparison between the 2D RNN model and baselines on LibriSpeech
with and without the language models in shallow fusion decoding. The number of
effective epochs is chosen to be 25.

AM LM Wer
[%]

#

dev test parameters
clean other clean other

RNN attention none 3.7 10.2 3.8 10.8 188M
RNN 2.8 7.7 3.2 8.4
self-attentive 2.6 7.2 2.7 7.7

self-attentive none 4.0 10.2 4.1 10.7 139M
RNN 2.9 7.6 3.2 8.1
self-attentive 2.7 7.3 3.1 7.7

2D RNN none 4.0 10.9 4.1 11.3 192M
RNN 2.7 7.9 2.9 8.1
self-attentive 2.6 7.2 2.7 7.6

times slower than the fastest model, i.e., the RNN attention model. This may limit its usage in
production systems.

Comparison with Other Works Similar to the previous chapter, Table 4.16 gives a performance
comparison of recently published models. Due to the limited hardware budget of the 2D RNN
training, there is no direct comparison to other state-of-the-art methods.

4.6 Implementation

The two-dimensional sequence-to-sequence modeling is based on an efficient GPU implementation
of multidimensional RNN made publicly available as part of RETURNN.

The first attempt to use 2DLSTM for sequence-to-sequence modeling returns to our imple-
mentation directly in Theano. For 2DLSTM, the input tensor x has dimensions (T, T ′, B, dh),
where T is the horizontal length, T ′ is the vertical length, B is the batch size, and dh is the
feature dimension. For 2DLSTM, two nested loops are needed, one over the vertical and one over

74

4.6 Implementation

Table 4.16: Comparison of the 2D RNN model with the recently published works on LibriSpeech.
The models are not necessarily trained with the comparable number of parameters
over the same number of epochs.

method AM LM Wer
[%]

parameters # epochs

test (AM†) (AM†)
clean other

hybrid HMM RNN [Lüscher & Beck+ 19] self-attentive 2.3 5.0 160M 12.5
self-attentive [Wang & Mohamed+ 20] self-attentive 2.3 4.9 149M 100

CTC CNN [Kriman & Beliaev+ 20] self-attentive 2.7 7.3 19M 400

attention RNN [Park & Chan+ 19] RNN 2.5 5.8 >200M 600
RNN [Karita & Wang+ 19] RNN 3.3 10.8 - 100
self-attentive [Karita & Wang+ 19] RNN 2.6 5.7 - 200
CNN [Hannun & Lee+ 19] CNN 3.3 9.8 37M -
self-attentive [Synnaeve & Xu+ 20] self-attentive 2.4 5.2 270M -

transducer self-attentive [Zhang & Lu+ 20] self-attentive 2.0 4.6 139M -
CNN-RNN [Han & Zhang+ 20] RNN 1.9 4.1 113M -
Conformer [Gulati & Qin+ 20] RNN 1.9 3.9 119M -

this work 2D RNN self-attentive 2.7 7.6 192M 25

“-”: not available.
† measures only for the acoustic models.

the horizontal axis, using the scan function, i.e., iteration over the T and T ′ dimensions. This
implementation indeed works but is too slow to train a network in a reasonable amount of time.
Therefore, we explored the C++ and CUDA implementation provided in RETURNN developed by
Paul Voigtlaender as part of his Master’s thesis [Voigtlaender 16]. We first verified the correctness
of the gradient computations numerically and compared the results to the slow Theano-based
2DLSTM implementation. The actual kernel executions speed up the training quite a lot. Such
observations are also seen by [Voigtlaender 16] on a synthetic task of handwriting recognition.

The implementation is a fast custom C++/CUDA code for both the standard LSTM and
2DLSTM kernels. CUDA, Nvidia parallel computing framework, and its extension libraries
like cuBLAS and cuDNN provide an efficient GPU-accelerated implementation of matrix-matrix
multiplications.

Besides cuBLAS for all matrix multiplications, the custom 2DLSTM implementation uses the
custom CUDA kernels for the activation functions and the LSTM gating mechanism. Another
optimization that is widely used in standard LSTM implementations is that the five forward
weight matrices (see Equations 4.1-4.5) are stacked into a large weight matrix. The same is also
done for the recurrent weights and bias terms. Although this does not reduce the total number of
floating-point operations, it diminishes the total number of matrix multiplications. Such stacking
can lower the number of CUDA kernel invocations since launching many small kernels can cause
a substantial kernel launch overhead [Voigtlaender 16]. Furthermore, the implementation works
inplace as much as possible to reuse memory. It also enables mini-batch training where multiple
input sequences with different sizes are packed together. Each sequence is padded to the length of
the longest sequence in the mini-batch.

In order to integrate the custom CUDA code into Theano, we wrote a custom Theano operation.
Later, we also wrapped the CUDA code in a custom TensorFlow operation so that RETURNN can
easily access it. Once we have the 2DLSTM CUDA kernel, i.e., a program directly executed on
the GPU, we define the output of the function as appropriate for our sequence modeling purposes.
We also adapted and implemented multidirectional 2DLSTM and used the batched operations to
process one diagonal of two directions while exploiting additional parallelism. Different aggregations
were added as features to the corresponding class. The code was further developed for two-way

75

4 Two-Dimensional Sequence-to-Sequence Modeling

translation modeling in which we implemented one two-directional search algorithm by switching
between the vertical and horizontal axes.

4.7 Conclusion

In this chapter, we presented our work on the 2D RNN model, a two-dimensional sequence-to-
sequence model that jointly encodes the input and output sequences with the two-dimensional
long short-term memory cells. With this joint representation, the input and output sequences
meet at the final stage of encoding, allowing each of them to affect the representation of the other.
We examined different aggregation methods to collapse the 2D output to a 1D sequence along one
axis. Based on Tables 4.1 and 4.2 on machine translation and Table 4.11 on automatic speech
recognition, max-pooling and weighted sum led to the best design choice on the final performance.
We selected the former as it is weightless. We also investigated the effect of bidirectionality on the
2D RNN models where the forward and backward 2DLSTM units are concatenated to capture
look-ahead information. We showed that its influence on top of the bidirectional context was
suboptimal. Final experiments on three WMT shared tasks listed in Tables 4.4 to 4.6 indicated
that the 2D RNN models were comparable with RNN attention in terms of Bleu, but fall behind
self-attentive models. According to Tables 4.14 and 4.15, comparison against attention models on
Switchboard and LibriSpeech tasks also proved the competitiveness of the 2D RNN models for
speech recognition. Language model integration helped the final performance of the 2D model
such that it compensates for its performance gap with the attention baselines. Furthermore, the
2D RNN models showed less sensitivity with respect to the source sequence lengths, as shown in
Figure 4.9. This implied a better generalization ability over unseen sequence lengths, especially
compared to the self-attentive models without relative positional encoding. Finally, we extended
the concept of 2D sequence-to-sequence modeling to two-way translation, where we introduced
an interesting capacity of our architecture to translate both source-to-target and target-to-source
directions using a single neural network. Although the experimental results were at their initial
stages and much poorer than the well-tuned baselines, we believe that the 2D RNN-based models
can potentially be applied to other applications where sequence-to-sequence modeling is established
as a crucial modeling choice.

4.8 Related Work

Directed acyclic graph recurrent neural networks provide a way of building multidimensional
context into recurrent networks, a strategy that is based on networks with tree-structured update
graphs [Baldi & Pollastri 03]. There are remotely related works where they scan both vertical
and horizontal axes of images interpreted as 2D arrangement of features. The multidimensional
LSTM [Graves & Schmidhuber 08, Graves 08] is successfully used in handwriting recognition to
automatically extract features from raw images [Strauß & Grüning+ 16] which are inherently two-
dimensional. In this application, the 2DLSTM layers show better performance over convolutional
neural networks. Larger 2DLSTM layers are explored for deeper and wider architectures using
GPU implementation on which our implementation depends [Voigtlaender & Doetsch+ 16].

Different neural networks have been also proposed in automatic speech recognition to model
2D correlations in the input signal. One of these uses 2DLSTM that scans the input over both
time and frequency jointly for spatio-temporal modeling [Li & Mohamed+ 16]. Moreover, various
architectures to model time-frequency patterns based on deep DNN, CNN, RNN, and 2DLSTM
layers are compared for large-vocabulary automatic speech recognition [Sainath & Li 16]. This
shows the success of the 2D grid as a feature extractor.

76

4.8 Related Work

All the above works apply 2D grids on the spectrogram level on input layers to extract features
for handwriting or speech recognition. We argue that in either case, it is a two-dimensional
interpretation of the input data. In contrast, our work uses the 2D arrangement of points to
incorporate the input and output for sequence modeling. Our work differs from existing related
architectures that operate along the spatio-temporal dimensions of the data. Our work provides a
unified way of using 2DLSTM for sequential computation over two dimensions.

Beyond one-dimensional encoding, a de-facto implementation of a two-dimensional layout is
a network of one-dimensional units from parallel sequences which are weaved and arranged in a
multidimensional grid. A 2D grid can be created by means of standard LSTM cells communicating
not only across the time sequence but also between layers [Kalchbrenner & Danihelka+ 16]. This
paper uses a grid of LSTMs in machine translation to re-encode source sentences based on target
words generated up to that position. However, their experiments are carried out on a very
small dataset, and it is not clear whether the grid has the potential to scale on real-world tasks.
Similarly, another 2D-based layout as a translation model is investigated where the source and
target sentences are jointly encoded; however, the model is behind the self-attentive baseline
[Baquero-Arnal & Iranzo-Sánchez+ 19].

The grid LSTM network is also applied for the endpoint detection task in speech recognition to
model both spectral and temporal variations [Chang & Li+ 17]. A 2D attention matrix is also
applied in a neural pitch accent recognition model [Bruguier & Zen+ 18] in which graphemes are
encoded in one dimension, and audio frames are encoded in the other.

In the same line of motivation to our work, there is also a group of works in which convolutional
networks process a 2D grid composed of input and output embedding vectors. Concurrent with us
is the pervasive attention model in which a stack of 2D convolutional neural networks is used on
top of a joint representation from the source and target embedding. It defines a 2D grid from the
positions of the source and target words for translation modeling [Elbayad & Besacier+ 18]. This
differs from our architecture with recurrency over two sequences. This model is not superior to the
attention model. Similarly, in [Li & Wang+ 20], the source and target embedding can be jointly
combined, and instead of convolutions, the self-attention layers are performed on two temporal
dimensions separately. This model has competitive results with their self-attentive baselines.

Superficially similar to this work, the idea of active memory based on convolution networks
is extended in which the netwpork focuses on all encoder states in parallel in a uniform way
[Kaiser & Bengio 16]. Similar to our work, the hidden representations are expanded into a 2D
structure by recomputing the encoder states after each output token generation. Another work
is a 2D construction of input-output joint representation in question answering by weaving two
unidimensional recurrent networks [Raison & Mazaré+ 18]. Form a 2D source-target representation
is possible by concatenating the pairwise embedding vectors of words on the source and target
sentences [Wu & Xia+ 18]. The authors use this model to distinguish between human and machine
translation for adversarial learning. The 2D layout of pairwise input-output sequences is also used
for scoring parallel texts or matching between written sentences [Hu & Lu+ 14, He & Lin 16].

The 2D-based model presented in this chapter also motivates sequence-to-sequence models
without attention [Kalchbrenner & Blunsom 13, Cho & van Merrienboer+ 14a, Sutskever &
Vinyals+ 14] as well as neural models in which the encoder and decoders are not separated.

Having no attention concept, an eager translation model is introduced in [Press & Smith 18]
where the decoder starts translating as soon as it receives the first source words. The architecture
shows better translation performance on longer sequences.

From the perspective of re-encoding encoder states dynamically while predicting a new target
word, the attention mechanism can be also replaced with recurrent layers [Zhang & Xiong+

16, Zhang & Xiong+ 17a, Zhang & Xiong+ 17b]. Instead of calculating attention weights, RNN
layers process the source representations at every target step and internally constructs the context
vector that is then used by the decoder. The recurrent layer summarizes the necessary parts of

77

4 Two-Dimensional Sequence-to-Sequence Modeling

the source sentence directly. The authors argue that the RNN can capture this information to
assess which source tokens influence the current target position and which do not. They also show
their model’s ability on source length generalization. A study of replacing attention components
with different recurrent setups, both 1D and 2D recurrency, has also been explored in [Brix 18].

Recurrent attention modeling is closely related to memory networks in which encoder representa-
tions can be seen as read-only memory [Weston & Chopra+ 15]. Adding a recurrent attention layer
enables both read and write operations. From the view of memory networks, source representations
are considered as an interactive memory with the decoder through read and write operations
[Meng & Lu+ 16].

In the next chapter, we present a model which modifies the way how the attention mechanism
is used as part of the translation network. In the same direction, related works with the concept
of neural hidden Markov models are reviewed in which no attention context vector is used; instead
an alignment model.

78

5. Zero-Order Hidden Markov Modeling

5.1 Introduction

Given the source sentence fJ1 , the posterior probability of the target sentence eI1 is directly defined
using the chain rule as written in Equation 3.18. The conditional posterior covers alignments
between source and target sentences either implicitly or explicitly. In recent sequence-to-sequence
models, the dependency on fJ1 is modeled using an effective attention mechanism as addressed in
Section 3.5, where soft attention is used to focus on the most relevant parts of the source sentence
while generating target tokens. Attention provides a distribution over the source positions that is
considered as an implicit probabilistic notion of alignment. As a generalization of the attention
model, we express

p(eI1|fJ1) =
I∏
i=1

p
(
ei|ei−1

0 , ci
(
ei−1

0 , hJ1 (fJ1)
))

(5.1)

where the alignment distribution is used as an intermediate step inside the network, and the
context vector ci summarizes it into a single vector given by Equation 3.28. The context vector as
a weighted sum of the input states can be seen as a kind of partial decision on the local average
observation. As written in Equation 5.1, the source positions and the alignment distribution do
not directly influence the final target prediction. Since the number of source positions in machine
translation or input frames in speech recognition may vary greatly between target words or labels,
respectively, summarizing the input representations as a single vector might not be suitable.

An explicit latent variable might be a potential solution to defining an alignment sequence
for such models. This is the same in ASR in that label sequence posterior distribution should
cover the alignments between input frames and output labels. The conventional HMM-based
ASR models [Robinson 94, Hutter 95] and their variants [Graves & Fernández+ 06, Battenberg &
Chen+ 17, Dong & Zhou+ 18, Doetsch & Hegselmann+ 16, Doetsch & Hannemann+ 17] tackle
the underlying alignment problem using explicit stochastic latent variables.

It has also been proven that the attention component does not fulfill the same role as the alignment
model in conventional statistical machine translation [Koehn & Knowles 17]. Alignments play an
essential role in statistical machine translation, both for improving translation quality and for
better understanding how the translation is performed. Alignments with an appropriate statistical
formulation discussed in Section 1.2.1 allow us to quickly see the important dependencies for
a certain translation. In addition, alignments can play a major role where the user desires to
influence the translation output [Alkhouli 20] or in general in other downstream natural language
processing (NLP) tasks.

Translation model explainability is another crucial concept, particularly for practical machine
translation, where emitting explicit word alignment is of great value. Neural machine translation
especially has problems in this area. Contrary to conventional alignment models, where a hard
alignment is a transparent process, defining the correspondence between source and target words,

79

5 Zero-Order Hidden Markov Modeling

it is often challenging for the fuzzy attention mechanism to extract a comprehensible alignment.
Specifically, the self-attentive models do not guarantee a high-quality alignment, even though
alignments can easily be used for explainable machine translation. The internal representations
are often in vector spaces with hundreds of dimensions, and the operations are usually nonlinear,
further obscuring the decision-making process. Unlike the RNN attention models in which the
attention scores can easily be observed, the self-attentive model uses multiple attention heads.
Due to this increased complexity, it is not trivial to interpret the results of the self-attentive-based
models. On top of that, it is reported that the self-attentive model often concentrates on the
end-of-sentence token [Ghader & Monz 17, Alkhouli & Bretschner+ 18, Zenkel & Wuebker+ 19].
On the explainability of attention models, there are some works with the main goal of deriving
high-accuracy word alignments [Stahlberg & Saunders+ 18, Zenkel & Wuebker+ 19]. Here, we
follow a näıve idea such that the translation of a sentence should be decomposable. This way the
correctness of translated words can be seen easier.

Motivated by the fact that statistical word alignments offer pioneering and fundamental concepts
in machine translation, and alignment is not a fully stochastic process in attention-based models,
this chapter describes a latent variable attention model inspired by HMM formulation as its first
contribution. The success of HMM in traditional MT and ASR systems inducts an integration of
attention modeling into the HMM concept. Our overarching goal is to improve the performance of
current state-of-the-art models and to better understand how translation has been performed.

We introduce a latent variable attention model that can be interpreted as a mixture of multinomi-
als. From the statistical viewpoint, we revisit the target sentence posterior probability formulation
by calculating a separate translation score for every target-source word pair. The model assumes
a decomposition of the target sequence posterior into lexicon and alignment probabilities. Since
marginalization has an exponential number of terms in the alignment order of the model, a zero-
order assumption is studied where there is no dependency between subsequent alignments. The
zero-order assumption keeps the explicit alignment as part of the stochastic model and combines
the ease of the end-to-end training of the attention model with an efficient and simple beam search.
This is unlike higher-order models [Alkhouli & Bretschner+ 16, Wang & Alkhouli+ 17, Alkhouli
& Bretschner+ 18, Wang & Zhu+ 18]. Our next contribution lies in investigating how the HMM
decomposition affects both translation performance and alignment errors. Regarding the interest
in alignment-based approaches, we also concentrate on the problem of explainability of alignments,
especially for self-attentive models. We follow the same formulation and extend the zero-order
HMM model for automatic speech recognition.

After providing a mathematical model in Section 5.2, we relate the model to elements from
HMM with discussions on training and search. Section 5.3 explains the model parameterization
using both the RNN and self-attention neural network design choices and compares it with the
attention mechanism from the statistical and modeling perspective. Before presenting experimental
results and the corresponding analyses in Section 5.5, an approximation is addressed that speeds
up the model in Section 5.4. To study the model’s effect, we also quantitatively and qualitatively
analyze the extracted alignments, showing that more focused alignments for better interpretability.
Although we introduce the model and its dependency using MT notation, we also apply it to speech
recognition, the experimental results of which are discussed in Section 5.5.2. This is followed by
an implementation focus in Section 5.6, and the chapter is finished with a conclusion and related
works in Sections 5.7 and 5.8.

5.2 Model and Formulation

Together with IBM models [Brown & Pietra+ 93], HMM [Vogel & Ney+ 96] has been used
to align source and target words in conventional machine translation. Conceptually similar to

80

5.2 Model and Formulation

HMM (see statistical word alignment in Section 1.2.1), we introduce alignments as a sequence of
stochastic latent variables bI1 that establishes a mapping from position i on the target sentence to
position j on the source sentence. Mathematically, we consider an alignment from each target
position i to exactly one source position j, i.e., i→ bi = j. Here, the mapping is from the output
(target) to the input (source). This is different from what is used in the original HMM model by
[Vogel & Ney+ 96], where a mapping from the source to the target is considered. Therefore, our
model is often categorized as the direct HMM model.

Introducing alignments as a sequence of hidden variables, all possible alignments are marginalized
out in Equation 5.2, such that bi aligns the target position i to the source position j. We decompose
the joint distribution into the alignment and lexicon models, obtaining Equation 5.4. Performing
the sum over all alignments would lead to a combinatorial problem with exponential complexity in
the source sentence’s length, i.e., O(IJ). A high-order model conditioned on the full alignment
path bI1 makes the computation of sum intractable.

Assuming the first-order Markov assumption with respect to the alignment dependencies in
Equation 5.5 results in first-order HMM [Wang & Alkhouli+ 17, Wang & Zhu+ 18]. Note that the
model has a first-order dependency with respect to the alignment, while the alignment dependency
is restricted to the current aligned position bi = j in the lexicon model. This model is an expressive
assumption with feasible complexity and requires a specific training procedure that involves the
forward-backward (Baum-Welch) algorithm with EM-like training. This algorithm is based on
the principle of dynamic programming where the computation of the current step relies on that
of the previous step. The number of alignment paths explored in search is reduced without any
approximation; however, the model still has the computational complexity O(J2 × I)1.

The posterior decomposition is thus stated as follows

p(eI1|fJ1) =
∑
bI1

p(eI1, b
I
1|fJ1) (5.2)

=
∑
bI1

I∏
i=1

p(ei, bi|ei−1
0 , bi−1

0 , fJ1) (5.3)

=
∑
bI1

I∏
i=1

p(ei|ei−1
0 , bi0, f

J
1)︸ ︷︷ ︸

lexicon model

p(bi|ei−1
0 , bi−1

0 , fJ1)︸ ︷︷ ︸
alignment model

(5.4)

=
∑
bI1

I∏
i=1

p(ei|ei−1
0 , bi, f

J
1)p(bi|ei−1

0 , bi−1, f
J
1) (5.5)

=
∑
j

I∏
i=1

p(ei|ei−1
0 , j, fJ1)p(j|ei−1

0 , fJ1) (5.6)

=

I∏
i=1

∑
j

p(ei|ei−1
0 , j, fJ1)p(j|ei−1

0 , fJ1). (5.7)

It is not possible to simplify the equation without losing model expressiveness. To allow for
efficient marginalization over the alignment variables, we keep the current alignment value inde-
pendent of previous ones. Assuming a zero-order Markov assumption to simplify the dependencies
of the alignment sequences (meaning that the current target word and alignment do not depend
on any previous alignment position), we derive Equation 5.6. There is no alignment position
dependency on i− 1; therefore, we can drop bi and replace it with j for the zero-order assumption.

1In this dissertation, we do not use the forward-backward algorithm to train the models since the focus is on the
zero-order dependency.

81

5 Zero-Order Hidden Markov Modeling

Due to the zero-order dependency, one can re-arrange the sum and the product in Equation 5.7.
This leads to polynomial complexity, i.e., O(I × J). We refer the reader to [Brown & Pietra+ 93]
for the mathematical proof of swapping between the sum and product. This model is a zero-order
model with respect to the alignments, and therefore is also called the zero-order (direct) HMM
model throughout this work. Although conventional HMM is a first-order model, we can still
define the zero-order HMM by removing the dependency on the predecessor alignment. This
terminology is equivalent to a mixture model where we average over lexicon probabilities.

The latent variable marginalization becomes simple and efficient for the zero-order model and
can be easily applied in both training and decoding. Unlike higher-order dependence models
[Alkhouli & Bretschner+ 16, Wang & Alkhouli+ 17, Alkhouli & Bretschner+ 18, Wang & Zhu+

18], no dynamic programming and no search for the alignment path is required. Hence, a simple
beam search decoder is used. The polynomial complexity of the zero-order model is still large to
compute efficiently. Therefore, in Section 5.4, we address a speedup technique used in practice.

Relation to IBM-2 Model in Machine Translation The zero-order HMM model is conceptually
similar to the IBM-2 model expressed in Section 1.2.1, though with an inverted alignment direction,
i.e., from target to source positions. Additionally, the neural model has a dependency on target
histories.

5.2.1 Training

The derivative of the cost function in the zero-order HMM model is defined by

∂

∂θ
log pi(e|ei−1

0 , fJ1) =
∂

∂θ
log
[J∑
j=1

pi(e|ei−1
0 , j, fJ1)pi(j|ei−1

0 , fJ1)
]
. (5.8)

Analogous to the attention-based models, the cross-entropy is minimized using back-propagation
and mini-batch gradient calculations using the Adam update rule (see Section 3.6).

5.2.2 Search

As discussed before, the search procedure finds the most plausible target sentence hypothesis
that has the maximum probability score according to the model. Given Bayes’ decision rule, the
aim is to maximize the argument for the following formula as

fJ1 → êÎ1(fJ1) = argmax
I,eI1

{1

I

I∏
i=1

J∑
j=1

p(ei|ei−1
0 , j, fJ1)p(j|ei−1

0 , fJ1)
}
. (5.9)

The translation score is normalized by the target length. Similar to the search procedure for
the attention model described in Section 3.7, we define an auxiliary quantity Q(i, ei0) at position i
for the partial hypothesis ei0 and obtain the recursive search equation as

Q(i, ei0) = Q(i− 1, ei−1
0)

J∑
j=1

p(ei|ei−1
0 , j, fJ1)p(j|ei−1

0 , fJ1) (5.10)

with the final score of

p(eI0|fJ1) = Q(I; eI0). (5.11)

Given this, the beam search algorithm is used once the alignment and lexicon scores have been
computed. It does not require searching over alignment positions due to the zero-order dependency.

82

5.3 Neural Parameterization

5.3 Neural Parameterization

In this section, we describe the individual statistical components of the zero-order model through
neural networks. A zero-order HMM has two main quantities: the lexicon and the alignment
models needed to be estimated. To parameterize these components, we use both the recurrent
and self-attention layers. It is easier to implement the zero-order HMM model in the recurrent
network than the self-attentive network with its complicated architecture.

5.3.1 Recurrent Network

Stacked bidirectional LSTM layers are used to compute encoder states hJ1 . In the RNN attention
baseline, at each step, the LSTM decoder generates the target token conditioned on the previous
one ẽi−1, the last decoder state si−1, and the context vector ci. While in this model, we have no
context vector.

To compute the lexicon model, we add the last decoder state and the last target token with the
encoder states at each position. In other words, it is a target-side language model combined on
different encoder representations from time step 1 to J . This can also be interpreted as a hard
attention model and expressed as

p(ei|ei−1
0 , j, fJ1) = softmax ◦ linear(ẽi−1, si−1, hj). (5.12)

Contrary to Equation 3.29, the decoder state computation only relies on the last decoder state
si−1 and the current target word embedding given by

si = LSTM
(
si−1, ẽi

)
. (5.13)

To form the alignment model which is basically a probability distribution over the source
positions, we directly apply the attention weights α(j|i) as computed in Equation 3.34 with the
fertility value that is

p(j|ei−1
0 , fJ1) = softmax ◦ linear ◦ tanh

(
si−1, hj , φj

i−1∑
k=1

α(j|k)
)
. (5.14)

Once the lexicon and alignment probabilities have been obtained, we sum over j positions as
stated in Equation 5.7. Note that the parameters are shared between the lexicon and alignment
models. We highlight the difference between Equations 3.30 and 5.12, namely that there is a direct
dependency on temporal positions instead of a summary of all inputs in the single vector ci. It
means we do not separate the influence of each source position on the target positions. To compute
the lexicon probability at each target position, we compute softmax over the target vocabulary
J times. This is in contrast to the attention-based models where softmax is computed over the
target vocabulary only once at each step. This model with the recurrent neural network design is
referred to as RNN zero-order HMM. Figure 5.1 represents the dependencies within the recurrent
encoder-decoder networks.

Combination with Attention Context Vector We can also include the attention context vector
in the lexicon part of the zero-order HMM model. The context vector is added to the decoder
state as well as the output layer computation. Equations 5.12 and 5.13 are updated to

p(ei|ei−1
0 , j, fJ1) = softmax ◦ linear(ẽi−1, si−1, hj , ci), (5.15)

si = LSTM
(
si−1, ẽi, ci

)
. (5.16)

In principle, the attention and zero-order models can have an equal number of parameters. Here,
due to the different decoder and encoder sizes, a linear projection layer is used with no maxout
layer. Nevertheless, these small changes do not affect the model expressivity.

83

5 Zero-Order Hidden Markov Modeling

e... s...

ei+1 si+1

ei si

ei−1 si−1

h... hj−1 hj hj+1 h...

f... fj−1 fj fj+1 f...

×Le

Figure 5.1: Model dependency between the encoder and decoder in the zero-order HMM. The
major difference to the RNN attention model is that no context vector is implemented;
thus, the computation of the decoder states only depends on the target word histories
(cf. Figure 3.5).

5.3.2 Self-Attention Network

As seen in Section 3.5.4, the self-attentive decoder is composed of three main blocks: FFBlock,
MaskedMheadSelfAttBlock, and CrossAttBlock. The decoder contains multihead cross-attention
which incorporates the representation of the encoder and decoder states. Therefore, every decoder
layer is already dependent on the encoder representations and attention information, and thus
contains the context vector. The network jointly handles both the lexicon and alignment model at
each decoder layer. It is therefore hard to determine a sole lexicon model without any alignment
information involved.

A deep stack of Ld decoder layers, functioned by TransDecLayer is used to obtain c
(Ld)
i in a

similar way to the self-attentive model (see Equation 3.57). Given the last decoder state of the
top layer (not all layers) and the last target word for the lexicon model, we combine the encoder
states at each time step. In this case, Equation 3.58 is modified to

p(ei|ei−1
0 , j, fJ1) = softmax ◦ linear(c

(Ld)
i , ẽi−1, h

(Le)
j). (5.17)

with h
(Le)
j being the self-attentive encoder of Le layers as formulated in Equation 3.48. We note

that the lexicon model includes attention in such modeling, which means that the context vector
information flows into it. Hence, it does not provide a pure lexicon score. We refer to this model
as self-attentive zero-order HMM ; however, it has the context vector.

The self-attentive model contains extra multihead cross-attention layers. To get the attention
weights at each layer, several attention heads are available. Given the final encoder representation
and decoder states at each layer l, each attention head m computes a normalized distribution over
the source positions according to Equation 3.54. To recap, we have

α(l+1)
m (j|i) = softmax ◦DotAtt(s

(l)
i−1,m, h

(Le)
j,m). (5.18)

84

5.4 Complexity and Speedup Technique

Table 5.1: Design choices of the zero-order HMM architectures. The RNN attention model (Section
3.5.2), the RNN zero-order HMM model with and without attention context vector
(Section 5.3.1), the self-attentive model (Section 3.5.4), and the self-attentive zero-order
HMM model (Section 5.3.2).

NN choice model encoder decoder attention/alignment

RNN attention bidirectional RNN RNN additive single-head
zero-order HMM

self-attentive attention self-attentive masked self-attentive multiplicative multihead
zero-order HMM averaged multiplicative multihead

Given multiple self-attention layers with multiple heads, the alignment model is not as trivial
to implement. Concerning which head to choose, there are two easy approaches. The first is
layer-wise averaging over all heads. The other would be to pick the head with the maximum value
for each alignment and finally renormalize the full distribution. We only look at the first approach
in this work. Regarding the attention layer, we can average over all attention layers or use a
specific layer. Other authors have found that the upper attention layers of the self-attentive model
perform longer jumps and generally attend to more different source positions [Irie 20]. Due to
this property, we average over the attention heads in the last layer of the decoder at each target
position to form the alignment model given by

p(j|ei−1
0 , fJ1) =

1

H

H∑
m=1

α(Ld)
m (j|i). (5.19)

H is the number of attention heads, and Ld is the last decoder layer. Our preliminary experiments
also show that averaging over the last layer performs slightly better than averaging over all layers
[Bahar & Makarov+ 20a].

In theory, the zero-order HMM model has more statistical capacity than the attention-based
models. The attention model is a deterministic interpolation of deterministic features (encoder
states), while zero-order HMM is a mixture model. The network outputs exactly one distribution
over the target vocabulary per position with the attention model, while zero-order HMM outputs
J distributions, which are mixed probabilistically, yielding a multi-modal marginal distribution.
We equip a deterministic soft function with a probabilistic model. Since alignments directly affect
the final target sentence posterior, it is worth exploring whether a lexicalized alignment model can
assign more appropriate scores.

Tables 5.1 and 5.2 compare the networks’ design choices and the dependence of different models.

5.4 Complexity and Speedup Technique

Since the zero-order HMM model combines a mixture of softmaxes, the exact marginalization
over all source positions is computationally expensive for a large vocabulary. In other words, to
compute the lexicon scores, we need to employ softmax over the target vocabulary |Ve|, J times at
each time step, in comparison to only once in the case of the attention model. The time complexity
of the zero-order HMM model is O(I × J × |Ve|) compared to O(I × |Ve|) for the attention model.
Thus, the model can become very slow for a large vocabulary setting or long sequences. Using
GPU and optimized matrix operations, the computational cost is significantly compensated by
parallelization as long as everything fits in memory. Basically, the main efficiency problem of
computing the distribution is the linear operation that involves a large matrix multiplication of
size dh×|Ve| on the output layer. Moreover, the space complexity of the model on the output layer

85

5 Zero-Order Hidden Markov Modeling

Table 5.2: A dependency comparison between the RNN attention model (Section 3.5.2), the RNN
zero-order HMM model with and without attention context vector (Section 5.3.1),
the self-attentive model (Section 3.5.4) and the self-attentive zero-order HMM model
(Section 5.3.2) in terms of alignment, decoder, and output layers. The RNN zero-
order HMM model has no dependency on the attention context vector; however, this
information can be conveyed into the model as listed in line 3. The self-attentive
zero-order HMM model, on the other hand, has the attention information due to the
inherent topology of the self-attentive architecture. All models use the full source
sentence while conditioning on the target history tokens up to position i− 1.

NN model NN layers

choice alignment decoder output

RNN attention α(j|i) LSTM(si−1, ẽi, ci) softmax ◦ linear(si−1, ẽi−1, ci)
zero-order HMM LSTM(si−1, ẽi) softmax ◦ linear(si−1, ẽi−1, hj)

+ context vector LSTM(si−1, ẽi, ci) softmax ◦ linear(si−1, ẽi−1, hj , ci)

self-attentive attention α
(l)
m (j|i) TrafoDecLayer(ẽi−1) softmax ◦ linear(cLdi)

zero-order HMM 1
H

∑H
m=1 α

(Ld)
m (j|i) softmax ◦ linear(cLdi , ẽi−1, h

Le
j)

is O(J ×B × |Ve|), rather than O(B × |Ve|) for the attention models. This complexity requires
decreasing the batch size and confirms the necessity of multiple GPU training or applying some
optimization strategies to make the computations more tractable. Both time and space complexities
can be either reduced by less computation over source positions or a smaller vocabulary. The
output label sequence consists of small-size subwords or characters in speech recognition, thus a
small output vocabulary. In contrast, a strong model often relies on a larger vocabulary of 30k to
50k tokens in neural machine translation.

Alternatively, we can conduct less computation in the denominator of softmax normalization. One
of the applicable methods is sampled softmax [Jean & Cho+ 15], in which instead of computing the
entire matrix multiplication for the target distribution, only the target tokens in the corresponding
batch and a random subset of the output vocabulary are considered. All other values are assumed
to be zero with a sampling hyperparameter. The samples can be taken from uniform, log uniform,
or learned unigram distributions. We refer the reader to [Makarov 19] for a detailed investigation
of sample softmax in zero-order HMMs for machine translation. Next, we address an operation by
which fewer source positions (< J) are counted.

5.4.1 topK Approximation

Motivated by [Shankar & Garg+ 18], we use the topK approximation to select the K most
relevant source positions based on the highest probabilities of the alignment model and to compute
the corresponding lexicon scores. Formally, Equation 5.7 is approximated as

p(eI1|fJ1) ≈
I∏
i=1

∑
j∈topK

p(ei|ei−1
0 , j, fJ1)p(j|ei−1

0 , fJ1). (5.20)

By doing so, the computational complexity reduces to polynomial complexity O(I ×K), where
K < J . This approximation always allows gradients to be computed, leading to stable training
for K values larger than 1. Due to the constant nature of the optimization, speed is also
greatly improved by more than a factor of two compared to that of the model without this
approximation. We have empirically found that K = 6 is enough, and we barely get benefits for
K > 6. Unfortunately, the model still performs about three times slower than its baseline model

86

5.5 Experimental Results

Table 5.3: Performance comparison of the zero-order HMM models with (K = 6) and without the
topK approximation on WMT 2018 German→English. Training speed presents the
number of processed tokens per second during training averaged over several epochs.

model NN topK dev training speed

choice approx Bleu
[%]

Ter
[%]

[tokens/sec]

zero-order HMM RNN no 30.5 56.8 289
yes 30.5 56.9 758

self-attentive no 32.3 55.9 496
yes 32.2 55.5 1402

on a single-GPU setup. An in-depth analysis of different K values with respect to the translation
and speed performance of the model will be discussed next.

5.5 Experimental Results

5.5.1 Machine Translation

Setups

The data and baseline models are those explained in Section 3.8.1. In all translation tasks,
both the recurrent and self-attention models follow the baseline configurations. Due to the space
complexity of the zero-order model, we decrease the batch size. At the same time, the gradient
accumulation is increased to 8 and 12 steps for the self-attentive and RNN models, respectively.
We also use a lower initial learning rate of 0.0008 for the RNN-based zero-order models. The rest
of the training scheme is identical to those of the baselines.

Results

topK Approximation In the topK approximation, zero-order HMM training requires an additional
hyperparameter of K. On the WMT German→English task, we explore the effect of changing K on
Bleu, based on the newstest2015 development set. Table 5.3 shows the results with and without
this approximation in the zero-order HMM-based models. As shown, the topK approximation with
K = 6 makes no significant difference in terms of translation performance, though it reduces the
time complexity by a factor of almost 2.7. As listed in the table’s rightmost column, the model with
this approximation processes more tokens. However, it is still slower than the attention baselines
as the lexicon scores need to be computed over the target vocabulary |Ve|, K times. In theory,
the time complexity of the zero-order HMM model is O(I ×K × |Ve|) compared to O(I × |Ve|)
of the baseline. The number of tokens per second is 2.1k and 3.9k for the RNN attention and
self-attentive models, respectively. The model is still about 3 times slower than its baseline on a
single GPU using this operator. Moreover, the space complexity of the model on the output layer
is O(K × |Ve|) rather than O(|Ve|) for the baseline which requires us to decrease the batch size.

Effect of K Figure 5.2 compares more K values concerning Bleu and training speed on the
German→English development set using the self-attentive zero-order HMM model. As shown,
Bleu goes up from 30.8 to 32.2 by changing K from 2 to 6, and then it levels out without any
further significant improvement. After K values exceed 6, performance decreases slightly and
plateaus. This implies that small values of K are sufficient for training, and we barely get a better
Bleu score for larger values. Intuitively, as K increases, training time goes up. But, it is not

87

5 Zero-Order Hidden Markov Modeling

5 10 15
30

31

32

33

K

B
l
e
u

[%
]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

sp
ee

d
[t

o
ke

n
(k

)/
se

c]

Bleu
speed

Figure 5.2: Training speed and translation quality versus different values of K in the topK ap-
proximation on the development set of WMT 2018 German→English based on the
self-attentive zero-order HMM model.

Table 5.4: Comparison of different K values with respect to Bleu score on the development set
of WMT 2018 German→English in decoding, while the self-attentive zero-order HMM
model is trained using a constant value of K = 6.

K 1 2 3 6 10 no approx.

Bleu
[%]

30.7 31.9 32.2 32.2 32.2 32.2

linear with respect to K. On the other hand, speed is highest for K = 1 and falls logarithmically.
Based on this observation, we focus our experiments on applying the topK approximation for all
zero-order HMM models with the trade-off value of K = 6 and do not tune it further for every
task separately.

Similar to [Shankar & Garg+ 18], we also investigate whether the gain is due to the softmax
bottleneck and check if larger values of K improve the performance in decoding. To do so, we take
the model trained with K = 6 and deploy it using different K values in decoding. The results
are listed in Table 5.4. The output has only a single softmax vector when K = 1. Therefore, the
zero-order HMM model encounters the same bottleneck as the self-attentive model. As expected,
the performance drops compared to K = 6, which means that the model gives some gains behind
the ensemble. Performance suffers when K is too small, like K = 1, but then plateaus out and does
not increase over the value at K = 6. The exact marginalization helps neither. Thus, applying the
same K value in both training and decoding meets the model requirements.

Translation Performance Tables 5.5 to 5.7 compare the performance of the attention and zero-
order HMM models on three translation tasks. On WMT German→English, the RNN-based
zero-order HMM model is behind the RNN attention model in both Bleu and Ter, while including
the context vector on top leads to an overall average improvement of 0.3% in Bleu and similar in
Ter (cf. lines 1 and 3). In principle, the attention and zero-order models can have an identical
number of parameters. Here, we use a linear projection layer due to encoder and decoder layer sizes.
Another difference is the maxout layer that is omitted in the zero-order models. However, none of
the mentioned layers affect the model expressivity while increasing the number of parameters by
less than 8%. On the self-attentive modeling where we also have the attention information inside

88

5.5 Experimental Results

Table 5.5: Performance comparison between the zero-order HMM models and the baselines on
WMT 2018 German→English.

NN model dev newstest2017 newstest2018 #

choice Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

RNN attention 31.9 55.3 32.9 55.2 39.7 46.8 217M
zero-order HMM 30.5 56.9 31.3 56.7 37.4 49.5 225M

+ context vector 32.2 55.2 33.0 54.9 39.9 46.8 235M

self-attentive attention 32.4 55.8 33.2 55.3 40.4 46.8 102M
zero-order HMM 32.2 55.5 33.7 54.9 40.5 46.8 102M

Table 5.6: Performance comparison between the zero-order HMM models and the baselines on
WMT 2018 Chinese→English.

NN model dev newstest2017 newstest2018 #

choice Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

RNN attention 21.2 63.1 23.2 61.1 22.7 65.9 217M
zero-order HMM 20.2 64.0 21.5 62.8 21.5 67.0 220M

+ context vector 21.4 62.4 22.9 60.7 23.0 65.1 234M

self-attentive attention 22.0 62.8 23.1 61.7 23.0 66.1 101M
zero-order HMM 22.0 62.7 23.1 61.7 23.6 65.7 101M

the lexicon model, the zero-order HMM model provides 0.3 more Bleu points and decreases Ter
by 0.4%. Here, both models have approximately the same number of parameters.

The results on Chinese→English are similar to German→English, but more pronounced in
Ter with an average improvement of 0.5%. Adding the context vector to the zero-order HMM
model maintains its performance that is not surprising. The results on the English→German task
depicted in Table 5.7 are also similar to the opposite direction, such that the average improvement
over the RNN baseline is negligible. While we have no gain over the self-attentive model, it did
not result in any significant degradation either. In general, it can be concluded that the attention
representation as an intermediate step of the network offers sufficient information to produce a
reasonable translation.

Alignment Error Rate Besides translation performance as an ultimate goal, we explore the
effectiveness of zero-order HMM for alignments. A substantial motivation for the zero-order
HMM model is the possibility of improving the attention component of the baselines, especially in
the self-attentive architecture, to make it closer to that of traditional alignments generated by
IBM and HMM models. To verify this assumption, we use the RWTH German-English golden
alignments which provide 505 manually word-aligned sentence pairs extracted from the Europarl
corpus [Vilar & Popovic+ 06]. We compare the alignment error rate of the models explained in
Section 1.5.4 as a main quantitative metric for the analysis of alignments in a forced decoding
scenario in that the target sentence is given. Therefore, we do not accumulate the search errors in
the Aer computation. To obtain the alignments for the neural models, we use the maximum of
the attention weights as the alignment at each position.

It is plausible that due to different levels of information flow, each layer of the self-attentive
architecture provides different attention heads compared to a single layer that has symmetrical
attention heads. As observed by [Garg & Peitz+ 19, Voita & Talbot+ 19, Irie & Zeyer+ 19], for
the self-attentive model, attention heads seem to fail to learn meaningful alignments in the initial

89

5 Zero-Order Hidden Markov Modeling

Table 5.7: Performance comparison between the zero-order HMM models and the baselines on
WMT 2014 English→German.

NN model newstest2013 newstest2014 #

choice Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

RNN attention 25.8 56.8 26.9 56.3 224M
zero-order HMM 24.9 57.4 26.0 57.0 236M

+ context vector 26.0 56.5 27.4 55.5 247M

self-attentive attention 26.3 57.0 27.6 56.0 108M
zero-order HMM 26.3 57.0 27.3 56.4 108M

layers and show a notable improvement in the middle layers. The initial layers serve to learn
the representations of the sequence generated by the decoder. The middle layers get the relevant
positions from the encoder output via cross-attention, given good contextual representations. It is
also reported that the penultimate layer outperforms the final layer in terms of alignment error
rate [Garg & Peitz+ 19], indicating that the final layer uses the alignment-based features in the
penultimate layer to obtain its representation for the final decision. It also supports our initial
observation in which the Aer of the self-attentive model significantly improves from 70.5% on the
last layer to 55.9% on the fourth layer. This improvement implies that the self-attentive model
performs the most interpretable attention not on the last layer, but on the intermediate layers.
Our further investigation using entropy in the next section also confirms this. Therefore, we use
the average of attention heads of the fourth layer of the self-attentive model to compute Aer. Due
to the results shown by [Alkhouli & Bretschner+ 18], we compute Aer of the zero-order HMM
model by averaging over all attention heads of all layers.

It is important to highlight that the manual alignments are given on the word-level calculation,
whereas the presented models are trained on the subword-level tokens. To make Aer more
comparable with traditional systems, we propose two strategies. In the first one, we keep the
provided word-level golden alignments as the reference. These results are presented on the left part
of Table 5.8. To achieve the alignment of neural models, the BPE subwords are merged together
using either the average or maximum attention value of all split tokens to determine which source
token corresponds to which target token. This differs from the work by [Sabet & Dufter+ 20] in
which subwords are converted to word-level alignments such that two words are aligned whenever
all of their subwords are aligned.

We also note that the self-attentive-based models attend many of their heads to the most
frequent tokens, e.g., the end-of-sentence token. To mitigate this effect on Aer, we ignore this
position for the computations. The results are listed in Table 5.8. The average merging performs
consistently better than the maximum variant.

In the second technique, in order to have a fair comparison of Aer on the models trained on
BPEs, we run GIZA++ statistical alignments of the BPE subword level and use them as the
reference. GIZA++ performs 5 iterations of the IBM-1, HMM, and IBM-4 models. The models
are trained in both translation directions and merged by the grow-diagonal heuristic. In this case,
merging subwords to words is no longer required, and we can directly compute the errors on the
subword level. The right part of Table 5.8 shows subword-level Aer.

Although the best layer is selected that favors better alignments, Aer for the self-attentive
model is still marginally behind the zero-order HMM model for both word- and subword-level
calculations. Comparing Aer on word-level and subword-level references, we also observe that
combining the subwords for the purpose of alignments is not accurate enough.

Once the most interpretable attention has been extracted for the self-attentive-based models,

90

5.5 Experimental Results

Table 5.8: The alignment error rates of the self-attentive-based models on RWTH German→English
golden alignments in forced decoding where the target sequence is given. The subwords
are merged either by the average or maximum attention values of all split tokens.

Europarl Aer
[%]

word-level reference subword-level reference

attention zero-order HMM attention zero-order HMM
average max average max

55.9 56.2 54.7 55.1 48.2 47.1

Table 5.9: The alignment error rate of the models on RWTH German→English golden alignments
in forced decoding where the target sequence is given. Aer of the self-attentive-based
models is taken from the best layer listed in Table 5.8.

model Europarl Aer
[%]

word-based reference subword-based reference

GIZA++ (word-based) [Garg & Peitz+ 19] 21.4 -
GIZA++ (BPE-based) [Garg & Peitz+ 19] 18.9 -
GIZA++ supervised [Garg & Peitz+ 19] 16.0 -
[Peter & Nix+ 17] 19.0 -
[Zenkel & Wuebker+ 19] 21.2 -
[Zenkel & Wuebker+ 20] 16.3 -

GIZA++ (word-based) 21.2 -
self-attentive 55.9 48.2
self-attentive zero-order HMM 54.7 47.1
RNN attention 50.3 41.4
RNN zero-order HMM 49.8 40.8

+ context vector 49.0 39.9

combination RNN 49.4 40.3
combination self-attentive 55.6 47.8

“-”: not available.

we compare the alignment errors with the statistical alignment model using GIZA++ and the
recurrent models. Table 5.9 gives the comparison. Aer on the recurrent models is simply taken by
the maximum value of the attention distribution. The RNN attention model performs better than
both other approaches at 50.3% and 41.4% on word and subword level, respectively, signifying that
the self-attentive attention distributions are still far from being easily interpreted as alignments.
Applying the zero-order HMM model with a context vector on top of the RNN attention network
further improves the alignment error rate by 1.3% and 1.5% absolute.

The alignment quality of the zero-order model is poorer compared to conventional alignment
models such as the IBM models or other works in the literature [Peter & Nix+ 17, Zenkel &
Wuebker+ 19, Garg & Peitz+ 19, Zenkel & Wuebker+ 20]. One potential reason for this is that in
the neural models presented in this work, we have no full dependency on the whole target sentence
in contrast to the conventional alignment models, and neither we depend on the current target
token ei. Since left-to-right decoding is carried out, we only depend on the predecessor words for
an efficient and simple search. The model does not employ additional alignments for supervision,
contrary to [Peter & Nix+ 17, Zenkel & Wuebker+ 19, Garg & Peitz+ 19, Zenkel & Wuebker+ 20].

91

5 Zero-Order Hidden Markov Modeling

Table 5.10: Averaged entropy scores of the attention distributions over the newstest2018 test set
for the self-attentive-based models.

layer entropy

attention zero-order HMM

1 (bottom) 1.39 1.28
2 1.20 1.25
3 1.17 1.08
4 1.00 1.20
5 1.10 1.28
6 (top) 1.42 0.18

average 1.21 1.05

Attention Concentration via Entropy To further understand the attention mechanism’s behavior,
especially in the self-attentive-based models, we examine attention concentration by calculating
the entropy of attention weights proposed by [Ghader & Monz 17]. Contrary to the conventional
word alignments, where each target word is assigned to one or more source positions, attention is
distributed more freely. The lower the entropy, the sharper attention on a single source token.
The exact formula of the entropy is given by

Eatt = −
∑
j

α(j|i) logα(j|i). (5.21)

For the experiments, we compute the entropy of the self-attentive-based models again on
German→English for the ablation study. The entropy is calculated layer-wise by taking an average
across all the heads of the layer. We compute the attention entropy per sentence pair, and then
the final reported entropy is the average over the newstest2018 test set. Table 5.10 shows that
for the self-attentive model, attention is most concentrated at the middle layer, with the lowest
entropy being on the fourth one. This contrasts with the zero-order HMM that appears at layer
6 with a remarkably lower entropy value than self-attention. Interestingly, these results are in
line with our previous observations in terms of Aer and coincide with the findings of [Tang &
Sennrich+ 19], saying that the attention weights of layer four have the lowest Aer. We believe
that the low entropy of the 6th layer in zero-order HMM comes from using the attention layer in
the output, and minimizing cross-entropy also minimizes this quantity more directly than in the
standard self-attentive case.

Quantitative Attention Analysis The phenomenon that we observe, which has been also reported
by others [Alkhouli & Bretschner+ 18, Zenkel & Wuebker+ 19, Garg & Peitz+ 19], is that the
self-attentive network heavily attends to frequent words like the end-of-sentence token, which often
has the highest average attention value of the sequence, as seen in the examples in Figures 5.3(a)
and 5.3(e). This effect leads to worse interpretation and possibly worse performance since a large
portion of the processing capability is spent only on one token. However, the intuition behind the
original multihead attention architecture is that it learns different alignment information. If one
head learns bad alignments, the other heads may learn good ones. Using an explicit distribution
for the alignments, we hope the model will achieve more precise attention weights, solve the
end-of-sentence token attendance issue, and lower Aer. What is observed from the quantitative
attention analysis is that the zero-order HMM model obtains lower Aer.

In this part, we qualitatively visualize some randomly selected examples from the test sets of
the German→English and Chinese→English tasks demonstrated side by side in Figure 5.3. The

92

5.5 Experimental Results

(a) self-attentive (b) self-attentive zero-order HMM

(c) RNN attention (d) RNN zero-order HMM

German→English example.

(e) self-attentive (f) self-attentive zero-order HMM

(g) RNN attention (h) RNN zero-order HMM

Chinese→English example.

Figure 5.3: Attention distribution of the models in forced decoding where the target sentence is
given. The middle layer of the self-attentive model is taken to extract the attention
distribution, while in the self-attentive zero-order HMM model, the last layer is used.

93

5 Zero-Order Hidden Markov Modeling

horizontal and vertical axes depict the target and source sentences, respectively. To capture the
heatmap data, the average is taken over the attention heads of the best layer, i.e. the middle layer
in the self-attentive model, the last layer in zero-order HMM. To have a consistent comparison, we
run forced decoding experiments in which the reference sentence is given, and we gather the data
based on the forward pass. It is, in practice, slightly more focused than the heatmaps generated
during decoding.

We also observe relatively bad attention distribution by the zero-order HMM model; however,
bad distributions by the standard self-attentive model occur more often. On the German→English
example, the zero-order HMM-based models show more focused distributions in comparison to the
attention baselines. The Chinese→English example shows an extreme case where the self-attentive
attends almost completely to the end-of-sentence token in Figure 5.3(e). At the same time, the
zero-order model generates a more understandable attention distribution by attending to other
tokens, as shown in Figure 5.3(f).

We also visualize the attention distribution of the RNN attention models to verify that attention
issues are specific to the self-attentive model and are not inherent in the soft attention mechanism.
As with previous observations, the RNN attention models perform consistently across the datasets,
with generally sharper attention than the self-attentive baseline. The RNN zero-order HMM model
improves the alignment quality quantitatively, as can be seen in Figures 5.3(d) and 5.3(h), with
the attention weights being highly focused.

Although the alignment quality gets better in zero-order HMM modeling, it has no real benefit
on the translation performance. The improvement in alignment quality does not carry over to
better translation, which is not surprising given prior work [Koehn & Knowles 17]. From the
modeling perspective, given a moderate amount of data, we can let the network learn and optimize
its parameters based on its objective which is the translation, not the alignment task. In this case,
the concept of hard alignment might be unnecessary for the final task if we have enough data.

Model Combination To integrate the attention and zero-order HMM (including the context
vector) models on the output layer, we first combine them in decoding by the log-linear combination
of model scores equally. The results are shown in Table 5.11 for German→English. Such fusion
leads to an improvement both in Bleu and Ter (compare with Table 5.5).

Motivated by the results of the combination in decoding, we additionally integrate the attention
model’s output with the zero-order HMM model. The model scores are combined on the probability
level in training for both the RNN and self-attentive parameterization. Formally, we mix word-level
log probabilities given by

L = λ log p(ei|fJ1 , ei−1
0) + (1− λ) log

J∑
j=1

p(j|fJ1 , ei−1
0)p(ei|fJ1 , j, ei−1

0) (5.22)

where λ is chosen to be 0.5.
In this combination, all parameters but the last layer are shared and trained jointly; however,

the models are independent of being recurrent or self-attention. Unlike the results of the model
combination in decoding, the combination of the two models and training them from scratch leads
to a performance drop when comparing the numbers with Table 5.5. The log-linear combination
also leads to in-between results for the alignments. As shown in the last block of Table 5.9, the
alignment error rate is marginally improved over the attention-based models, while it decreases in
comparison to zero-order HMM.

Comparison with Other Works We finally compare the zero-order HMM models to similar works
by [Wang & Zhu+ 18, Wang & Yang+ 21] where they apply first-order models. Their model
can also be parameterized using both RNN and self-attentive networks. Table 5.12 compares

94

5.5 Experimental Results

Table 5.11: Log-linear combination of the attention and zero-order HMM models on WMT 2018
German→English in both decoding and training. The attention and zero-order HMM
(including the context vector) models are log-linearly combined both in decoding and
training with equal weights. Compare to Table 5.5 for relative performance difference
from the baselines.

NN combination in dev newstest2017 newstest2018 #

choice Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

RNN decoding 32.8 54.4 34.0 54.0 41.1 45.6 452M
training 31.7 55.8 32.8 55.4 39.7 47.2 257M

self-attentive decoding 33.1 54.9 34.3 54.3 41.3 45.9 204M
training 32.0 56.2 33.1 55.8 39.7 47.7 119M

Table 5.12: Performance comparison of zero-order and first-order HMMs ([Wang & Zhu+ 18, Wang
& Yang+ 21]) on three translation tasks.

NN model German→English Chinese→English English→German #
choice newstest2017 newstest2018 newstest2014 parameters

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

RNN first-order HMM 32.4 55.9 22.0 66.6 26.1 56.8 220M

attention 32.9 55.2 22.7 65.9 26.9 56.3 219M
zero-order HMM 31.3 56.7 21.5 67.0 26.0 57.0 227M

+ context vector 33.0 54.9 23.0 65.1 27.4 55.5 238M

self-attentive first-order HMM 33.8 54.4 23.8 64.7 27.9 55.3 90M

attention 33.2 55.3 23.0 66.1 27.6 56.0 103M
zero-order HMM 33.7 54.9 23.6 65.7 27.3 56.4 103M

the performance. RNN first-order HMM has separate lexicon and alignment models, resulting in
two neural networks that coincide on the output layer. Including explicit first-order dependency
on the alignment (line 1), the RNN-based first-order model outperforms the zero-order model
performance in Bleu and Ter. However, its performance is still behind the attention models.
Adding the context vector to the zero-order HMM model performs best when the RNN design
choice is applied. Given the self-attentive network, the first-order model (line 5) is superior to the
zero-order HMM and self-attentive baseline. It is important to mention that first-order HMMs also
depends on the encoder representations and attention information and includes the context vector.
These models also generate more focused alignments closer to GIZA++ [Wang & Zhu+ 18].

As before, we also compare the best obtained model with other works from the literature on the
WMT 2014 English→German benchmark task in Table 5.13. None of the zero-order HMM models
really outperforms the state-of-the-art models.

5.5.2 Automatic Speech Recognition

Setups

As in Section 3.8.2, we carry out experiments on Switchboard 300h and LibriSpeech 960h with
the same RNN and self-attentive baselines. For RNN zero-order HMM, we mainly follow the
network structure of the baseline RNN attention model regarding the neural networks’ depth and
width, with the exception that we do not use the maxout layer on the output, as explained in
Equation 5.12. The CTC loss is used during training. We train the model with a smaller batch
size and a lower learning rate (η = 0.0008) while keeping the effective number of epochs to almost

95

5 Zero-Order Hidden Markov Modeling

Table 5.13: Comparison of zero-order HMMs with the recently published works on WMT 2014
English→German. Massive hardware refers to massive GPU budgets to train models
such that “no” means single-GPU training, while “yes” means multiple GPU access in
that the number of nodes/machines can vary.

method Bleu
[%]

massive

newstest2014 parameters HW

DeepL translator (evaluated in 2020) 33.1 - -
RNN attention (GNMT) [Wu & Schuster+ 16] 24.7 - yes
deep RNN attention (RNMT+)[Chen & Firat+ 18] 28.5 378.9M yes
CNN attention [Gehring & Auli+ 17b] 25.2 263.4M yes
CNN attention (DynamicConv) [Wu & Fan+ 19] 29.7 213M yes
self-attentive [Vaswani & Shazeer+ 17] 27.3 93.3M yes
deep self-attentive [Ott & Edunov+ 18] 29.3 210M yes
deep self-attentive [Liu & Duh+ 20] 30.1 256M no

RNN zero-order HMM 27.4 247M no
self-attentive zero-order HMM 27.3 108M no

“-”: not available

33. We use no label smoothing and apply a finer policy of SpecAugment where we mask fewer
successive time steps and frequency channels. Observing from the initial experiments, for the
self-attentive zero-order HMM model, we wait a bit longer for a maximum of 60 epochs to have a
reliable convergence. This is unlike the self-attentive model, which is converged by a maximum of
50 epochs. Unlike the baseline model, we have positional encoding on the output embedding. The
batch size is chosen to be 10k tokens with a gradient accumulation of 8 steps. On LibriSpeech, the
self-attentive and RNN models have the same configuration as used for the baselines. We train all
models for 25 epochs with smaller batch sizes, lower learning rates, and finer SpecAugment.

In general, we observe that convergence of the zero-order HMM model for ASR is harder than
that in MT. We additionally have a linear projection on the output layer for the lexicon model,
leading to a few more free parameters. After confirming the sufficiency of K = 6, as will be
addressed later, all models have been trained with the topK optimization.

Results

Effect of K in topK Approximation Similar to the translation experiments, we first investigate
the effect of K applied in the topK approximation versus Wer. The Wer goes down when K
changes from 2 to 6, and then it saturates without any further improvement. This implies that
small values of K are good enough for training [Bahar & Makarov+ 20b]. Given a trained model
using K = 6, we also check whether larger K values improve the performance in decoding and
confirm that the model does not need a larger K value during decoding.

According to Section 5.4, the time complexity of the zero-order model is K times slower compared
to the attention models. However, in end-to-end ASR systems in which the label sequence consists
of subwords or characters with small vocabularies, the computational cost is significantly amortized
by parallelization, and the zero-order model leads to a negligible slowdown. Compared to MT with
larger vocabularies, the ASR experiments are faster. For instance, for Switchboard, the average
training speeds over 20 epochs of the RNN attention and zero-order HMM models are 2.7k and
2.4k characters per second, respectively. This means that the model is only 0.2 times slower than
its baseline. The same proportion is also observed on the self-attentive models.

96

5.5 Experimental Results

Table 5.14: Performance comparison between the zero-order HMMs and baselines on Switchboard
with and without the language models in shallow fusion decoding.

AM LM Wer
[%]

#

NN model Hub5’00 Hub5’01 parameters
choice CH SWB Σ

RNN attention none 21.1 10.1 15.6 15.0 157M
RNN 20.6 9.2 14.9 14.1
self-attentive 20.2 9.1 14.7 13.9

zero-order HMM none 21.8 10.4 16.1 15.6 150M

+ context vector none 21.1 9.9 15.5 14.9 160M
RNN 21.2 9.5 15.4 14.3
self-attentive 21.0 9.4 15.2 14.1

self-attentive attention none 21.2 10.3 15.8 15.3 99.5M
RNN 20.7 9.6 15.2 14.3
self-attentive 20.7 9.5 15.1 14.0

zero-order HMM none 22.1 10.1 16.1 14.9 101M
RNN 21.8 9.6 15.7 14.3
self-attentive 21.6 9.5 15.6 14.1

Table 5.15: Performance comparison between the zero-order HMMs and baselines on LibriSpeech
with and without the language models in shallow fusion decoding. The effective number
of epochs for these experiments is 25.

AM LM Wer
[%]

#

NN model dev test parameters
choice clean other clean other

RNN attention none 3.7 10.2 3.8 10.8 188M
RNN 2.8 7.7 3.2 8.4
self-attentive 2.3 7.2 2.7 7.7

zero-order HMM† none 4.4 11.7 4.5 12.2 193M
RNN 3.5 9.8 3.7 10.4
self-attentive 3.3 9.4 3.4 9.8

self-attentive attention none 4.0 10.2 4.1 10.7 139M
RNN 2.9 7.6 3.2 8.1
self-attentive 2.7 7.3 3.1 7.7

zero-order HMM none 4.2 11.5 4.4 11.7 139M
RNN 3.2 9.0 3.5 9.4
self-attentive 3.0 8.4 3.3 9.0

† includes the attention context vector.

Recognition Performance Table 5.14 shows the results of the experiments on Switchboard. On
the blind test set Hub5’01, the RNN zero-order HMM model is behind the baseline by 0.6%
absolute Wer when no language model is used. Adding the attention context vector information
leads to small but consistent improvements over the RNN attention baseline. Both the RNN
and self-attentive language models help the final performance on top, resulting in 14.1% Wer.
However, after language model integration the RNN attention model performs better. Using the
self-attention layers to parameterize the model is weaker than the baseline on all sets with and
without the language models.

97

5 Zero-Order Hidden Markov Modeling

(a) self-attentive (b) self-attentive zero-order HMM

(c) RNN attention (d) RNN zero-order HMM

Figure 5.4: Attention distribution of the models on LibriSpeech dev-other. The attention distri-
bution of the self-attentive baseline and zero-order HMM model are taken by averaging
across all heads of the 4th and 12th layer, respectively.

The results on LibriSpeech are presented in Table 5.15. Similar to the previous task, the
zero-order HMM models including the context vectors are weaker than the attention ones. Here,
the error rate difference on dev- and test-other is a bit larger. Using an external language model
also has a big influence on both RNN and self-attentive zero-order HMM models, as intended.
The zero-order HMM models do not yet reach the performance of the baselines, therefore more
work has to be done to examine possible improvements.

Attention Analysis To support the previous justification, we qualitatively examine the alignment
behavior and compare the models’ attention distribution. Figure 5.4 illustrates a forced decoding
example on one utterance from LibriSpeech dev-other. The attention used in the zero-order
HMM model shows highly concentrated monotonic alignments compared to the attention models.
We have often observed this characteristic over all sets for many utterances independent of the
sequence length. The difference in the distributions might be attributed to the way that the
alignment is explicitly used in the HMM model and thus predicts the output label differently.
Similar to machine translation, for the self-attentive-based models, many attention heads do not
perform any different operation and always attend to the same input position throughout an entire
sequence. Here, we have taken the best attention heads of all self-attentive-based models, which
are the fourth and twelfth layers for the standard and zero-order HMM models.

Comparison with Other Works Given the best models, we compare their performance to those
given in the works in the literature. As shown in Table 5.16, the zero-order HMM models perform
far behind the hybrid HMM ASR systems, although they are inspired by such models. In either
case, we achieve results that are clearly behind the results found in the literature.

5.6 Implementation

This section shortly describes the implementation of the zero-order HMM model. We note
that symbolic expressions allow TensorFlow to employ symbolic differentiation. This means that
derivatives can be automatically determined without any extra effort to derive them.

98

5.6 Implementation

Table 5.16: Comparison of the zero-order HMM with the recently published works on LibriSpeech.
The models are not necessarily trained with a comparable number of parameters over
the same number of epochs.

method AM LM Wer
[%]

parameters # epochs

test (AM†) (AM†)
clean other

hybrid HMM RNN [Lüscher & Beck+ 19] self-attentive 2.3 5.0 160M 12.5
self-attentive [Wang & Mohamed+ 20] self-attentive 2.3 4.9 149M 100

CTC CNN [Kriman & Beliaev+ 20] self-attentive 2.7 7.3 19M 400

attention RNN [Park & Chan+ 19] RNN 2.5 5.8 >200M 600
RNN [Karita & Wang+ 19] RNN 3.3 10.8 - 100
self-attentive [Karita & Wang+ 19] RNN 2.6 5.7 - 200
CNN [Hannun & Lee+ 19] CNN 3.3 9.8 37M -
self-attentive [Synnaeve & Xu+ 20] self-attentive 2.4 5.2 270M -

transducer self-attentive [Zhang & Lu+ 20] self-attentive 2.0 4.6 139M -
CNN-RNN [Han & Zhang+ 20] RNN 1.9 4.1 113M -
Conformer [Gulati & Qin+ 20] RNN 1.9 3.9 119M -

this work RNN zero-order HMM self-attentive 3.4 9.8 193M 25
self-attentive zero-order HMM self-attentive 3.3 9.0 139M 25

“-”: not available.
† measures only for the acoustic models.

Like the 2D RNN model in Chapter 4, the first implementation was done in our Theano-
based software with further implementation in RETURNN. As RETURNN simplifies various
configurations via a config file, the model was initially built up of individual components of
RETURNN without the topK optimization in the configuration file. As each layer of the model is
differentiable, the entire model can be trained jointly. Unfortunately, this version cannot use the
unrolling technique whereby the recurrency is unfolded along the output axis to process the entire
output in parallel. Unrolling is especially important for the self-attentive-based architecture and
gives a performance increase of around twofold in our experiments.

To overcome this obstacle, we implemented the model with all its extensions as its own layer
written in TFNetworkHMMFactorization.py file. The corresponding class can be imported directly
into the configuration file. Having the model as a separate layer also allows finer control of the
individual tensors, which proved to be important for some experiments.

As mentioned, the zero-order model is inherently slower than attention models due to the
lexicon score computation. We found empirically that the computation of the output distribution
takes around one-third of all computational time. Therefore, we added some speedup techniques.
The first and the most effective one is the topK approximation, as explained in Section 5.4.1,
where we presume the top K-scored choices for the alignment model. Its optimization always
allows gradients to be computed and thus results in stable training for K values larger than 1.
We also implemented a threshold-based approach in which all input positions are set to zero if
the alignment model for that position is under a certain value. This only marginally improved
speed since TensorFlow currently has a very limited implementation of sparse matrix operations.
Moreover, the models are not stably converged with this setup, as the gradients are too noisy
in the initial stages of training. The third integration is the well-known sampled softmax that
speeds up training by quite a lot while reducing the performance, based on our initial experiments.
Commonly used in language model training, the method has not yet reached parity either on
MT or ASR tasks. Initial experimental results on WMT 2018 German→English can be found in
[Makarov 19].

99

5 Zero-Order Hidden Markov Modeling

5.7 Conclusion

In this chapter, zero-order HMM was presented in which we incorporated the attention model
into the direct HMM formulation by introducing a latent variable as an alignment sequence.
After simplifying the alignment dependency order of the model, we only explored the zero-order
assumption. Marginalization over the latent variable becomes simple and efficient for the zero-order
models and can be easily applied in both training and decoding without dynamic programming.
As speed is a crucial aspect, we investigated a speedup technique that increased both training and
decoding speeds approximately by a factor of 3 without loss of translation quality (Table 5.3).

We compared the zero-order HMM model, which is completely independent of attention models,
with the RNN attention and self-attentive models, and demonstrated that its performance was
behind the attention-based models on translation tasks. We observed that adding the attention
context vector made the model as strong as the state-of-the-art methods for machine translation
(Tables 5.5 to 5.7). However, the model showed a weaker performance on speech recognition and
has not yet reached parity there.

We also studied the alignment quality and showed that zero-order HMM provided more focused
alignments in comparison to the attention models, especially the self-attentive model in both
text translation and automatic speech recognition, leading to better explainability. The model
achieved remarkable improvements in terms of the alignment error rate (Table 5.9). Although
the alignment quality got better, its improvement did not transfer to the final translation or
recognition performance.

5.8 Related Work

Word alignment as discussed in Section 1.2.1 is one of the key components in traditional phrase-
based systems. It can be considered as an explanation for generating a reasonable translation. From
the alignment perspective, unsupervised neural alignment models outperform their count-based
counterparts in terms of Aer, and the number of unaligned words decreases [Ho & Yvon 19]. Using
variational auto-encoders, neural word alignment with latent representations achieves competitive
results compared to count-based models [Ho & Yvon 20].

However, neural translation models do not have a notion of hard alignment, even though the soft
attention mechanism can be seen as an alignment distribution. It is proven that attention is a poor
alternative for this distribution and serves a different purpose [Koehn & Knowles 17]. Since word
alignments are of much importance in practical machine translation such as terminology constraints
[Hasler & de Gispert+ 18, Alkhouli & Bretschner+ 18], an explicit alignment distribution for
neural machine translation is still an open research problem.

We already discussed approaches in which implicit alignment concepts are used within attention-
based models as an extension to the attention layer. There are different ways to use precomputed
word alignments obtained from the GIZA++ or fast align [Dyer & Chahuneau+ 13] tools. Statistical
alignments can be used to supervise the attention model by adding an extra loss term to cross-
entropy during training as a supervision signal for the attention weights. Such modeling biases
the attention weights towards additional alignment information [Chen & Matusov+ 16, Liu &
Utiyama+ 16, Mi & Wang+ 16, Garg & Peitz+ 19].

Including the current target word in the computation in training can reduce the alignment
error rate [Peter & Nix+ 17, Li & Liu+ 18]. To obtain high-quality alignments, one recomputes
the attention heads after each target word prediction [Zenkel & Wuebker+ 19]. An additional
alignment layer is added to the self-attentive model and trained in an unsupervised fashion. This is
possible by taking the attention score with which the model can, as closely as possible, predict the
correct target word using only the attended source word. The resulting alignments are of higher

100

5.8 Related Work

quality than those from the self-attentive baseline with regard to errors on golden alignments.
Translation performance also has minor improvements. In the same line of motivation, instead of
an objective function, external count-based alignments are added in the computation of attention
weights [Alkhouli & Ney 17]. While this information is given in training, the alignments need to
be hypothesized in decoding.

Alignment-based neural machine translation is another category of models inspired by the
conventional HMM framework. These models introduce alignment as a hidden stochastic variable
and decompose the translation model into alignment and lexicon submodels. In contrast to
conventional HMM with simple dependencies, they use neural networks to capture long, even
unbounded source and target contexts. Feedforward alignment models with no dependency on
lexical context with non-probabilistic scores are utilized to create alignments along with training a
separate lexicon model based on the conventional phrase-based system. The model outperforms
the HMM and IBM-4 models with respect to Aer [Yang & Liu+ 13]. An extension to this paper
is by [Tamura & Watanabe+ 14], which uses recurrent networks to generate word alignments with
longer dependencies on the alignment history for the phrase-based translation system. Similarly,
they use unnormalized scores and report an improvement compared to feedforward models. one
can derive a noisy channel framework of inverse translation using alignment-based neural models
and a language model [Yu & Blunsom+ 17]. The work constructs a monotonic alignment model,
and training is done by marginalizing over the alignment hidden variables. A small translation
dataset is used due to expensive computation.

Other neural alignment models employ a feedforward alignment model to score relative jumps
over the source positions [Alkhouli & Bretschner+ 16]. The model takes a long-context dependency
on the alignment path. Hence, they utilize precomputed Viterbi alignments to generate translation
instead of the forward-backward algorithm. Since they use separate alignment and lexical models,
it is feasible to hypothesize explicit alignment links during decoding by modifying the beam search
algorithm. A similar idea is pursued using recurrent networks in [Alkhouli & Ney 17], and self-
attention networks with an additional alignment head in [Alkhouli & Bretschner+ 18]. These models
train two separate networks and combine them in decoding with the maximum approximation.
Instead, the sum over all possible alignment paths can be computed. A non-monotonic first-order
dependence assumption is made that makes the computation of the forward-backward algorithm
tractable [Wang & Alkhouli+ 17, Wang & Zhu+ 18]. These first-order models use the posterior
probabilities as true labels and jointly train the alignment and lexicon models batch-wise in
EM-style training. This significantly slows down both training and decoding. A simliar work by
[Wu & Cotterell 19] uses a first-order model, but monotonic for a character-level transducer that
makes both training and decoding faster due to a much smaller vocabulary.

A latent alignment can depend on its predecessors (first-order or higher-order alignment models),
as discussed or have no dependency on its history (zero-order) like ours. There are also several recent
works in which attention with a zero-order property is used as a latent variable by decomposing
the joint distribution. Similar to our work, the model capacity is limited to a zero-order lexicalized
alignment model. In [Wu & Shapiro+ 18], the authors use an RNN-based zero-order model with
character-level output vocabulary for the transduction task. Similarly, in [Shankar & Garg+ 18], a
zero-order latent attention model is explored in machine translation. They run the experiments on
small datasets where the vocabularies appear to be small and apply topK approximation to ease
computation. While their models are based on recurrent networks, our work is an extension of
their paper as we also use the self-attentive zero-order models with larger vocabularies.

Posterior attention distribution is another point of view that calculates a second attention score
after predicting the next token [Shankar & Sarawagi 19]. To decrease the computational power
needed, they use approximation, but the model leads to negligible improvements on top of the
zero-order model. The model proposed by [Kim & Denton+ 17] extends beyond the basic attention
structure by seeing it as a graphical model over a set of latent variables to enable partial selection

101

5 Zero-Order Hidden Markov Modeling

of input positions. In [Deng & Kim+ 18], the authors also propose a non-differentiable approach
where they apply hard attention that explicitly uses a single input for each output.

Hard attention [Xu & Ba+ 15] is a discrete variant of soft attention that takes the best source
position at each target step; thus, it can be interpreted similarly to a hard alignment. However,
the effectiveness of hard attention for offline translation is often limited as it can only represent
monotonic alignments, which motivates its application in simultaneous translation [Arivazhagan &
Cherry+ 19] and speech recognition [Raffel & Luong+ 17, Lawson & Chiu+ 18b].

102

6. End-to-End Speech-to-Text Translation

6.1 Introduction

Sequence-to-sequence models can be used for plenty of applications regardless of their inputs
and outputs. One of the applications of sequence modeling that has recently received increasing
attention is speech-to-text translation or simply speech translation. Previous chapters have
discussed the flexibility of sequence-to-sequence modeling and shown experimental results on
automatic speech recognition and machine translation tasks. This chapter sheds light on speech
translation that takes audio signals of speech as input and outputs written text translation. Moving
from the spoken into the written domain requires handling both ASR and MT challenges at the
same time, making the whole task even more difficult than the sum of its parts.

As discussed in Section 1.4, in speech translation, we define a speech input observation xT1 , a
source sequence fJ1 , and a target sequence eI1. Figure 6.1 shows a general paradigm of the speech
translation task. Given Bayes’ decision rule in Equation 1.17, the posterior distribution Pr(eI1|xT1)
can be modeled either by explicit use of the source sequence fJ1 as a pivot step stated in Equation
1.22 or by implicitly learning the intermediate representation. The former can be the traditional
speech translation system that relies on the coupling between ASR and MT models, the cascade
system discussed in Section 1.4.1, and the latter is direct modeling in which source speech signals
are directly translated to target texts.

The cascade model divides the task into two independent recognition and translation steps. An
ASR system trained on speech-to-source data first transcribes a spoken language utterance. The
transcribed word sequence is then translated by an MT system trained on source-to-target corpora.
Sentence segmentation and punctuation prediction can additionally be integrated into the pipeline.
The whole system final performance depends on the accuracy of each individual part and how all
the components are integrated across the cascade system. In practice, a nearly zero recognition
error cannot be expected. There, the cascade system suffers from an inherent problem known as
error propagation. Since natural languages involve a high degree of ambiguity, every component
produces a certain number of errors which are then propagated through the cascade pipeline. This
causes compounding follow-up errors.

A tighter integration of these two models can arguably prevent a number of errors [Casacuberta
& Ney+ 04, Matusov & Kanthak+ 05, Casacuberta & Federico+ 08]. It has also been proposed to
provide multiple recognition hypotheses to pass on information on recognition uncertainty, thereby
avoiding some of the early decisions that occur in the cascade methods. However, an explicit
discrete intermediate transcription needs to be first generated in all such systems, thus cascading
involves decoding twice.

In contrast, direct modeling has the potential to tackle the error propagation issue of the cascade
method. Unlike the cascade systems, each and every component of the model is trained jointly to
maximize translation performance, and it eliminates the two-pass decoding property. However, the
transformation from source speech inputs to target texts can be a more complex function compared

103

6 End-to-End Speech-to-Text Translation

text in
target language (eI1)

text in
source language (fJ1)

speech signal in
source language (xT1)

sp
ee

ch
-t

o-
so

u
rc

e

(A
S

R
d

a
ta

)

so
u

rc
e-

to
-t

a
rg

et

(M
T

d
a
ta

)
sp

eech
-to

-target

(D
S

T
d

a
ta)

Figure 6.1: An abstract paradigm of speech translation. Assuming a realistic setup, speech
translation models can be trained using three types of data; speech-to-source or ASR,
source-to-target or MT, and speech-to-target or DST data. The models can rely on
explicit use of the source sequence fJ1 as a pivot step or directly translate the sequence
of frame-wise speech xT1 to the sequence of foreign target words eI1.

to that of the ASR or MT tasks individually. This might lead to harder optimization or require a
moderate amount of paired translated speech-to-target or direct speech translation (DST) data to
perform reasonably well. In the DST data, spoken utterances are paired with corresponding target
sequences. This is in contrast to the cascade system trained on separate ASR and MT corpora
(see Figure 6.1). A realistic data scenario gives us relatively large speech-to-source, ASR data and
source-to-target, MT data, but only limited amount of speech-to-target, DST data. The size of
common DST corpora is often an order of magnitude smaller than the ASR datasets and several
orders of magnitude smaller than the MT ones.

The flexibility of neural modeling and its ability to train all sub-components of a network
jointly inspire us to reconsider the traditional cascade system in this chapter and to develop new
approaches with the ultimate goal of improving the performance of speech translation systems.
To develop neural speech translation models, previous chapters show how to solve simpler tasks,
ASR and MT, with pure single and stand-alone neural models. Given that, in this chapter, we
exclusively employ neural sequence-to-sequence models to tighten the speech translation pipeline
and train models such that all parameters are jointly optimized in part through end-to-end training.
In the extreme, we replace the cascade system with the direct model that does not divide the
speech translation task into two parts. It does not depend on any supervision of the source text,
i.e., transcriptions, and directly translates a speech utterance into a target sequence.

Our first contribution, in Section 6.2, is therefore to study the direct model, which is based on
the attention models. As a matter of fact, neural ASR models are extended to output translations
instead of transcriptions. Sections 6.2.1 and 6.2.2 cover the CTC loss for faster convergence and
data augmentation for reducing the data scarcity problem of direct models. Our next contribution
lies in transfer learning as an effective potential solution for exploiting all available data, i.e., ASR,
MT, and DST data. We conduct a closer investigation of sequential transfer learning or simply
pretraining model parameters and multi-task learning in Sections 6.3.1 and 6.3.2, respectively.
We address a better coupling of automatic speech recognition and machine translation models
as a pretraining stage and study the effect of transfer learning by initializing different model

104

6.2 Direct Model

components. Assuming a realistic setup and not ignoring other available ASR and MT corpora
where cascade and direct models are trained on non-equal amounts of data, the direct model
performance is often behind the cascade system. Such a scenario puts the direct model at a
severe disadvantage in practical situations. Therefore, a new remedy proposed in Section 6.4 that
naturally relies on two modeling steps akin to the cascade model but is end-to-end trainable and
potentially diminishes the error propagation problem. We experimentally explore the performance
of all methods in Section 6.5. We close the chapter with a conclusion and related works in Sections
6.7 and 6.8, respectively.

6.2 Direct Model

An alternative approach to the cascade system is direct modeling, which is both simple and
appealing. The idea is to use recent advances in neural networks to directly translate the speech
utterance into the target sentence [Berard & Pietquin+ 16]. Mathematically, we directly model

p(eI1|xT1) =

I∏
i=1

p(ei|ei−1
0 , xT1) (6.1)

where T > I. In fact, any type of neural network architecture can be used to represent the
posterior probability. Let us assume the recurrent attention-based network as introduced before.
Given Le layers of bidirectional LSTM, max-pooling operations are interleaved at multiple steps
on the time dimension to reduce the number of frames. Formally, we write

ht = BiLSTM(Le) ◦ . . . ◦max-pool(1) ◦BiLSTM(1)(x̃t, ht−1, ht+1). (6.2)

where the obtained sequence of input states is shorter than the original one by a time reduction
factor. For the sake of simplicity, we use time index t in both cases. Here, x̃t represents the
frame-wise feature vector at time step t, and ht represents the encoder state as before. Then, the
LSTM decoder generates the target sequence conditioned on the encoder representations. While
computing the target word ei at each time step, an additive attention function (with or without
fertility) is used to obtain the context vector as

ci = attention(si−1, ht). (6.3)

The decoder appends the context vector to the LSTM state and the previously generated target
token for the final prediction given by

si = LSTM
(
si−1, ẽi, ci

)
, (6.4)

p(ei|ei−1
0 , hT1) = softmax ◦ linear ◦maxout

(
si−1, ẽi−1, ci

)
. (6.5)

Figure 6.2 shows the transformation from the source speech to the target sentence. The direct
model has some appealing advantages compared to the cascade model. It avoids early decisions
and thus is not subject to the error propagation problem. It enables joint optimization of all model
components and removes the need for explicit intermediate representations. Therefore, it results
in faster decoding and less computational complexity in total. Generally speaking, avoiding the
decomposition of the target sequence posterior in Equation 1.19 can prevent the aforementioned
issues. In addition, direct modeling allows the exploitation of speech-to-target training data that
might be available in some data conditions but cannot be used in building a cascade system
directly. However, it requires a moderate amount of paired translated speech-to-target data, which
is not easy to acquire. Despite these properties, the independence between the target sentence and
the speech utterance in the cascade model might be a bad assumption because prosody can contain
key information for a correct translation. The direct model makes this information accessible for
output translation. Throughout this chapter, the direct method is based on the RNN attention
model unless otherwise specified.

105

6 End-to-End Speech-to-Text Translation

ST encoder

encASR → hT1

ST decoder

decMT → sI1

source speech xT1

target translation eI1

Figure 6.2: The direct speech translation model based on the encoder-decoder architecture uses
no source transcripts. The model directly translates the sequence of frame-wise
speech input xT1 to the sequence of target tokens eI1. The blue and green blocks show
parameters which can be initialized by a pretrained ASR encoder and a pretrained
MT decoder.

6.2.1 CTC Loss

As stated earlier, the attention mechanism is flexible for different word reordering as it freely
pays attention to any input position. But such a non-sequential alignment is not always desired,
especially for applications with a monotonic input-output relation. Similar to attention-based
approaches, the CTC model is trained in an end-to-end fashion where it uses the Markov assumption
and dynamic programming [Graves & Fernández+ 06].

In contrast to the attention model, CTC makes a conditional independence assumption to obtain
the transcription label sequence probabilities. To benefit from the two models, one can combine
them as joint CTC-attention end-to-end ASR [Watanabe & Hori+ 17] to improve robustness, yield
faster initial convergence in rescoring, training [Kim & Hori+ 17, Zeyer & Irie+ 18], or one-pass
decoding [Hori & Watanabe+ 17]. It is shown that the multi-objective learning of a hybrid of CTC
and attention models is effective where an auxiliary CTC loss helps convergence in the training of
ASR attention models.

While it is commonly believed that CTC cannot help speech translation since the monotonic
alignment of speech frames and target sentences is no longer required in translation, there is
no reason to assume that it cannot be done in the speech part of the network. Therefore, we
still apply the same idea to force the ASR alignments to be monotonic. The forward-backward
algorithm of CTC encourages monotonic alignment between the speech frames and source label
sequences. Precisely speaking, the CTC loss is used on top of the speech encoder of the attention
model only during training.

The idea of CTC is to monotonically map a frame-wise speech sequence to a label sequence,
which is usually shorter. Assuming the source label sequence of fJ1 , CTC defines the frame-wise
source label sequence zT1 =

{
zt ∈ Vf ∪ | t = 1, . . . , T

}
with an additional blank symbol .

The blank symbol solves the problem of unknown segmentation of the input sequence and handles
repetitions. It can appear at any time (between and within words) and represents the fact that no
token is recognized at the current time step. Therefore, the augmented label sequence can have a
size of 2J + 1. The blank state differs from silence and is modeled as a token in its own right;
thus, the final classification involves a vocabulary size of |Vf |+ 1.

The posterior distribution is decomposed under the conditional independence assumption and

106

6.2 Direct Model

given by

p(fJ1 |xT1) ≈
∑
zT1

T∏
t=1

p(zt|zt−1, f
J
1)p(zt|xT1)

︸ ︷︷ ︸
, pctc

p(fJ1). (6.6)

Equation 6.6 includes three quantities: the transition probability p(zt|zt−1, f
J
1), assumed to be a

uniform distribution, the frame-wise posterior distribution p(zt|xT1), and the language model p(fJ1)
as a constant. The sum over all possible zT1 is efficiently computed using dynamic programming.
The frame-wise posterior distribution is conditioned on the input sequence and modeled by

p(zt|xT1) = softmax ◦ linear(ht) (6.7)

where ht is the output of bidirectional LSTM as written in Equation 6.2.

During training, the ST decoder predicts the frame-wise posterior distribution of the target
sequence eI1, while the CTC function predicts the posterior distribution of fJ1 given the correspond-
ing input, referred to ps2s and pctc, respectively. We simply use the sum of their log-likelihood
values with equal contributions as

L = log ps2s(e
I
1|xT1) + log pctc(f

J
1 |xT1). (6.8)

This combination shares the same encoder between the CTC and the attention networks.

6.2.2 Spectrogram Augmentation

Since speech translation is usually a low-resource task, we explore the effect of the data
augmentation technique known as SpecAugment, which is implemented slightly differently from
the main proposed approach [Park & Chan+ 19]. In speech translation experiments, we apply
SpecAugment on the MFCC feature, which is different from the original paper, applied it on the
log mel spectrum of the input audio. In either case, the technique can be seen as feature dropout.

We randomly apply masking in consecutive frames on the time axis as well as successive
dimensions on the feature axis. Both maskings are restricted to a fixed maximum size. As a minor
effect of time warping is reported in [Park & Chan+ 19], we do not apply it in this work.

Time Masking

∆t successive time steps [t, t+ ∆t) are masked by setting them to zero, (xt, . . . , xt+∆t) = 0. ∆t
is the masking window selected from a uniform distribution from 0 to a predefined maximum time
mask parameter, i.e., in an interval of [0,∆tmax]. The time position t is also randomly selected
from another uniform distribution between [0, T). We choose the time position differently from the
original paper where they select t in the interval of [0, T −∆t). We never exceed the maximum
sequence length T . This means that if t+ ∆t > T , we set it to T .

Time masking is applied mt ∈ N times where mt is randomly selected from [1,Mt] with a
predefined maximum iteration number Mt. If mt > 1, the same time position t is not selected
more than once, i.e., without replacement1.

1It is not clear whether the original paper allows replacement or not.

107

6 End-to-End Speech-to-Text Translation

Figure 6.3: From top to bottom, the figure indicates the spectrogram of the input with no
augmentation, time masking, frequency masking, and both maskings used.

Frequency Masking

Frequency masking can additionally be employed such that ∆d consecutive frequency channels
[d, d+ ∆d) are masked, where ∆d is chosen from a uniform distribution from 0 to a predefined
maximum frequency mask parameter ∆dmax, and d is randomly selected from [0, D). Again, we
note the difference between our implementation and the original paper, where the selection interval
is [0, D − ∆d). D represents the input feature dimension, i.e., the number of MFCC features,
which is 80 in our experiments. Similar to time masking, we do not allow for an already selected
frequency index d and check if d+ ∆d > D, in which case we set it to D. This procedure is again
repeated md ∈ N times, where md is randomly selected from [1,Md] with Md ∈ N referring to the
number of times we apply the frequency masks. As we standardize the features to a mean of zero
and a variance of one, masking to zero is equivalent to setting it to the mean value. SpecAugment
is only applied during training. Figure 6.3 shows examples of the individual augmentations applied
to an input. Multiple frequency and time masks might overlap.

6.3 Transfer Learning from Speech Recognition and Text Translation

Supervised learning will break down when there is not enough training data for the desired task
to train a reliable model. Transfer learning refers to a general strategy in which we study how
models can be transferred and adapted to another set of training data on which they have not
been trained so far [Pan & Yang 10, Ruder 19]. The transfer can be across different domains,
languages, and even tasks. Leveraging the data of similar tasks or domains helps us to handle
low-resource data conditions. In principle, the aim is to transfer as much knowledge as possible.
One can broadly categorize transfer learning into transductive and inductive.

In transductive transfer learning, the source and target tasks are the same. Domain adaptation
and cross-lingual learning are its two main applications. In contrast, inductive transfer learning
represents a setting where the source and target tasks are different. Sequential transfer learning
(tasks are learned sequentially) and joint learning, also known as multi-task learning (tasks are
learned simultaneously), are grouped in this category.

Speech translation can be considered a low-resource scenario compared to machine translation
and automatic speech recognition. Here, inductive transfer learning can be used to leverage more
labeled data. This section leaves the transductive methods out of its scope and discusses the two
approaches mentioned above in the following sections.

108

6.3 Transfer Learning from Speech Recognition and Text Translation

6.3.1 Sequential Transfer Learning

The most frequently used transfer learning technique is sequential, where the training of sereval
tasks using different data is carried out in sequence [Wang & Zheng 15]. The main idea is to
transfer information from the source task to the target one. Hence, sequential transfer learning has
two phases: pretraining and fine-tuning, which are performed separately. In the pretraining phase,
the model is trained on the source task. Then the knowledge of it is transferred to the target task
in fine-tuning. The parameters of the pretrained model are used, and learned representations can
be utilized in the second task.

Usually, the pretraining phase is trained using more training data compared to the fine-tuning
step. This sequential setting requires more computational time in total than that of multi-task
learning with joint optimization. However, the pretraining stage only needs to be performed once,
and the fine-tuning phase is often efficient in practice. Sequential transfer learning has been shown
to be useful in three main scenarios [Ruder 19]:

1. There is no available data for all tasks at the same time.

2. The target task has a low-resource data condition compared to the source task.

3. Adaptation to the target task is required.

Making use of a sufficient amount of training data on the source tasks is the main reason
to benefit from pretraining. Selecting a suitable pretraining task is important in facilitating
learning representation for the target task. ASR and MT tasks are inherently the most obvious
natural source tasks for an integrated speech translation pipeline. However, one could argue that
an easier way to benefit from sequential transfer learning is to take as much unlabeled data as
possible because obtaining it does not require labels. We believe the current state-of-the-art speech
translation models work ineffectively without any weakly or fully supervised data, as some initial
results are reported in [Chung & Weng+ 19]. Therefore, that direction of research is left out of
the scope of this work.

Speech translation model parameters can be initialized by ASR and MT parameters already
trained on a larger amount of ASR and MT data. The common method is to use the encoder
parameters of an ASR and the decoder parameters of an MT model to initialize an ST model’s
encoder and decoder, respectively [Bahar & Bieschke+ 19]. As shown in Figure 6.2, the pretrained
ASR encoder representation (the blue block) and the pretrained MT decoder representation (the
green block) are transferred to the ST encoder and decoder. According to the literature, pretraining
helps learning convergence and final translation quality by choosing a better starting point for
training than random initialization [Bansal & Kamper+ 18, Bansal & Kamper+ 19, Stoian &
Bansal+ 20]. It is also shown that the ASR model itself can be used to initialize all parameters
of the ST model, where instead of producing transcripts, the model is fine-tuned to generate
translations [Bansal & Kamper+ 19, Stoian & Bansal+ 20]. We verify some of these findings in
the experimental section and extend the pretraining scheme with the adaptation of components.

Adaptation of Components When using ASR and MT models as the source tasks in pretraining,
the ASR encoder contains speech information, whereas the MT decoder expects to get text-related
information. In order to familiarize the pretrained text decoder with the output of the pretrained
speech encoder, we insert an additional adapter layer between the encoder and decoder of the
ST model as shown in Figure 6.4. This is done to smooth the connection between these two
representations that have been trained individually. The adapter is used as an extra degree of
freedom by which the network can reconcile the output of the speech encoder into the input of the
text decoder. The adapter layer can be any neural network and is applicable to all architectures.

109

6 End-to-End Speech-to-Text Translation

ST encoder

encASR → hT1

Adapteradapter

ST decoder

decMT → sI1

source speech xT1

target translation eI1

Figure 6.4: The adapter layer between the two pretrained components.

We train it jointly without freezing the parameters in fine-tuning. This contrasts with [Kim &
Petrov+ 19], where a linear mapping between encoder and decoder representations is carried out.

6.3.2 Multi-Task Learning

Typical machine learning methods involve training a single task; however, we ignore information
that other related tasks can give. Multi-task learning has become an important technique to
improve the generalization performance of a task using other related ones by leveraging the
domain-specific information, exploiting additional training data, or learning features that are not
easy to be learned using just the main task [Caruana 93, Ruder 19]. In the multi-task scheme, one
or several auxiliary tasks are employed to co-train and improve the performance of the main task
while sharing parts of their parameters. An auxiliary task provides an inductive bias for the benefit
of more tasks, thus improving generalization. Therefore, the optimization problem deals with more
than one loss function, i.e., the prediction of multiple tasks at once. Unlike sequential learning,
the models are optimized jointly, not separately. We need to compromise between multiple tasks.
Although an inductive bias seems to work intuitively, in practice, it is important firstly to find
suitable auxiliary tasks and secondly to determine how they interact with the main task.

Selecting an auxiliary task depends mainly on its similarity to the main task, i.e., having the
same inductive bias [Caruana 98, Baxter 00]. This argument then allows tasks where different
resources collect data for the same prediction problem. There are two main ways to combine
these components into a complete sequence-to-sequence model, namely one-to-two and two-to-one
[Luong & Le+ 16, Weiss & Chorowski+ 17]2. In the context of speech translation, we determine
four components: a source speech encoder (ASR encoder), a source text encoder (MT encoder), a
source text decoder (ASR decoder), and a target text decoder (MT decoder). Generally speaking,
the first and fourth components can be identical to the ST encoder and decoder, respectively. We
do not distinguish the attention component as it is considered to be a layer in the decoder. Like
the choice of an auxiliary task in sequential learning, ASR and MT tasks are inherently the most
closely related co-trainers coming with a moderate amount of training data.

It is important to highlight that multi-task learning is an end-to-end approach that can be used
with the purpose of co-training the main task by sharing relevant information as well as utilizing

2Overall, there are four possibilities for combining them. In this thesis, we ignore auto-encoder as a one-to-one
approach requiring monolingual data and the two-to-two option.

110

6.3 Transfer Learning from Speech Recognition and Text Translation

ST encoder

encASR → hT1

ST decoder

decMT → sI1

ASR decoder

decASR → sJ1

source speech xT1

source transcription fJ1 target translation eI1

(a) one-to-two

ST encoder

encASR → hT1

MT encoder

encMT → hJ1

ST decoder

decMT → sI1

source speech xT1 source text fJ1

target translation eI1

(b) two-to-one

Figure 6.5: Multi-task end-to-end speech translation. The colored blocks correspond to the
components in pretraining. The blue and green blocks resemble ASR and MT pretrained
modules. a) The ASR decoder is removed during decoding, resulting in the direct
model. b) The MT encoder is removed during decoding, resulting in the direct model.

additional data. By sharing parts of the network, ST might benefit from the relevant knowledge
obtained through the training of ASR, MT, or both tasks [Weiss & Chorowski+ 17, Berard &
Besacier+ 18]. In addition to the point above, we aim to use multi-task learning to also leverage
additional ASR and MT data. Multi-task learning can also be combined with CTC loss. However,
it seems to be a good practice only to apply one of them [Bahar & Bieschke+ 19].

One-to-Two

As shown in Figure 6.5(a), in the one-to-two setup, the ASR model is used as the auxiliary
co-trainer in which a speech encoder is shared between both tasks, while two independent decoders
correspond to transcription and translation texts. To make matters precise, let us assume a speech
encoder that encodes a sequence of speech frames xT1 with internal representation ht at position t
as expressed in Equation 6.2. Taking the RNN-based network, we specify two sets of equations
that correspond to the ASR and ST decoders. Therefore, we have

cj = attention(sj−1, ht), (6.9)

sj = LSTM(sj−1, f̃j , cj), (6.10)

p(fj |f j−1
0 , xT1) = softmax ◦ linear ◦maxout(sj−1, f̃j−1, cj), (6.11)

and

ci = attention(si−1, ht), (6.12)

si = LSTM(si−1, ẽi, ci), (6.13)

p(ei|ei−1
0 , xT1) = softmax ◦ linear ◦maxout(si−1, ẽi−1, ci). (6.14)

In these equations, indices j and i refer to source and target word positions, respectively. The
error is therefore back-propagated via two decoders into the input, and the final loss is computed
as a weighted sum of the two losses given by

L = λ log p(eI1|xT1) + (1− λ) log p(fJ1 |xT1). (6.15)

Here, 0 < λ < 1 is the ST weight loss reducing the number of its updates.

111

6 End-to-End Speech-to-Text Translation

There are two ways to train such a one-to-two network. The first option is similar to the
approach described by [Weiss & Chorowski+ 17] in which we only use triple data, including the
source speech, source text, and target text. The encoder contains speech frames encoded. Each
decoder attends to the encoder states and generates a sequence of tokens in either the source or
target language. In this case, the data needs to be parallel, and no additional ASR data can be
exploited; however, the ST task can learn from its ASR co-trainer. Another way is to use more
ASR data where both ASR and ST models are trained in parallel but on different speech input
data. In this case, each batch consists of pairs of speech-to-source and speech-to-target data. Both
models run on their own respective training data and only share the encoder parameters (see
Figure 6.5(a)). During decoding, the ASR part of the network is discarded, again resulting in a
simple direct model.

Two-to-One

A text decoder is shared in the two-to-one architecture to generate a target translation by
attending to two independent encoders, a speech and a text encoder. Here, MT is co-trained along
with the ST model (see Figure 6.5(b)). Assuming bidirectional LSTM layers, we state

hj = BiLSTM(Le) ◦ . . . ◦ BiLSTM(1)(f̃j , hj−1, hj+1), (6.16)

ht = BiLSTM(Le) ◦ . . . ◦max-pool(1) ◦BiLSTM(1)(x̃t, ht−1, ht+1) (6.17)

with hj and ht being the text and speech encoders. They do not necessarily have the same number
of layers. The text decoder interchangeably selects one of the encoders to collaborate on both
text and speech inputs. Depending on whether the decoder is used for speech or text translation,
it uses one of the attention components (either cMT

i or cST
i) to attend to the respective encoder.

This means

cMT
i = attention(si−1, hj), (6.18)

cST
i = attention(si−1, ht). (6.19)

During training, each batch contains both pairs of speech-to-target and source-to-target data.
Whether the source speech or source text is present, a switching layer decides which corresponding
context vectors are fed to the decoder. The text translation part of the model is ignored during
decoding, resulting in a simple direct model.

The ST training data is typically several orders of magnitude smaller than the available MT data.
To avoid the domination of one task with more data, every batch contains a specific percentage of
the ST and MT data. The fact that the losses are combined by summing over the entire batch
can also interfere in that the losses are combined by a weight batch-wise. Formally, we have

L = λ log p(eI1|xT1) + (1− λ) log p(eI1|fJ1). (6.20)

where 0 < λ < 1 is the ST weight loss that determines the number of its updates.
Generally speaking, multi-task and sequential transfer learning can complement each other. In

this case, the multi-task network components can be initialized by the pretrained models trained
on the selected auxiliary tasks, as will be discussed in the experimental results later. The colored
blocks in Figure 6.5 also represent the complementarity of pretraining modules in the multi-task
scenarios. The blue and green colors correspond to the ASR and MT pretraining units.

6.4 Tight Integration of Cascade Model

Cascaded speech translation systems rely on discrete transcriptions. The transcription generated
by the ASR model provides supervision signals from the source side and helps the transformation

112

6.4 Tight Integration of Cascade Model

between the source speech and target text. However, they are not differentiable. Two-step models
[Anastasopoulos & Chiang 18, Sperber & Neubig+ 19a] are approaches to using an intermediate
representation and preserving end-to-end trainability of speech translation models. Such models
pass the recognizer’s decoder hidden states or attention context vectors into the MT decoder while
ignoring the MT encoder completely.

This section investigates the feasibility of collapsing the entire cascade components into a single
end-to-end trainable model where all ASR and MT model parameters are jointly optimized without
ignoring any learned parameter, for instance, the MT encoder.

While many recent works investigate direct end-to-end approaches, this part of this thesis
proposes a tight integration of ASR and MT modules which is closer to the cascade method. Still,
it maintains the end-to-end trainability of the overall architecture. The method is effective yet
simple to apply because we do not modify the architecture or training criterion. It also allows us
to exploit speech-to-target training data that might be available in some situations but cannot be
used for the training of the cascade model. Before the era of neural models, such a tight integration
was done using word lattices or word confusion networks [Mangu & Brill+ 00, Bertoldi 05, Bertoldi
& Federico 05, Matusov & Kanthak+ 05, Bertoldi & Zens+ 07, Matusov & Ney+ 05, Matusov
& Hoffmeister+ 08] at the interface between ASR and MT. This work revisits a similar idea of
confusion networks by passing on renormalized source word posteriors from ASR to MT. The core
steps of the method that we call tight integration cascade are as follows.

Figure 6.6 illustrates an overview of the tight integration cascade model. We train the ASR
model with speech-to-source data and the MT model with bilingual translation data and then
concatenate them as used in the cascade setup. But instead of providing the 1-best output of the
most probable word sequence to the translation system, the posterior probabilities p(fj |f j−1

0 , xT1)
are used at every position.

These posteriors may simulate a degree of the ambiguities of the ASR candidates with probabil-
ities, thus conveying more information with higher uncertainty. In other words, we pass on the
posterior distribution as a soft decision instead of the one-hot vector of the most probable word
that requires a hard decision. This process differs from the non-differentiable property of argmax.
Since the MT model has been trained on the one-hot representations, it likely performs worse on
smooth probability distributions. Therefore, the word distributions are sharpened by an exponent
γ at each position and then renormalized the probabilities, which are rewritten by

p(fj |f j−1
0 , xT1) =

pγ(fj |f j−1
0 , xT1)∑

f ′∈Vf p
γ(f ′j |f

j−1
0 , xT1)

(6.21)

where Vf is the source vocabulary.
Next is the fine-tuning stage, where training is continued with speech-to-target parallel data. If

we skip this step and perform translation directly, it corresponds to a cascade model.
In training, γ = 1 is used to simulate the degree of ambiguities, whereas in decoding, we vary

γ to obtain the best translation performance. γ = 0 leads to a uniform distribution over the
vocabulary. If γ = 1, we get the actual posterior distribution, and for γ > 1, the highest probability
word is emphasized, resulting in almost one-hot representation if γ is chosen large enough.

Since this sharpening emphasizes the most probable word of the vocabulary in each distribution
regardless of the actual decision that has been originally made in the ASR decoder, it is possible
that in some cases, the wrong words are picked due to reranking the words. This is because
beam search might choose sentences that have the highest final probability but may have lower
probabilities during intermediate steps.

In practice, the source transcriptions are often provided in speech translation. Therefore, we
use the true transcriptions during training to compute the ASR loss and apply beam search to
generate the best ASR hypothesis during decoding and trace back the decisions at each position

113

6 End-to-End Speech-to-Text Translation

ASR encoder

encASR → hT1

ASR decoder

decASR → sJ1

source speech xT1

source transcription fJ1

MT encoder

encMT → hJ1

MT decoder

decMT → sI1

target translation eI1

Figure 6.6: The tight integration cascade model. All cascade model parameters are kept. Here,
the source transcription can be chosen from the best candidate (the standard cascade
model) or from the word posteriors (the tight integration cascade model).

after the best sequence has been chosen. The sharpening is applied to the sequence of posterior
probabilities once the beam search has finished while tracing back over the time steps. Then, the
respective posterior probability distributions are passed to the MT model at each position. We
believe the tight integration cascade model offers five main advantages compared to other models:

• It assumes a more realistic data condition and employs all types of training data, i.e., ASR,
MT, and DST corpora. This differs from the data conditions of both cascade and direct
models.

• The end-to-end methods either conduct translation without transcribing or suffer from
inconsistency between transcriptions and translations [Sperber & Setiawan+ 20]. Some
examples that stand with inconsistency are multilingual systems [Inaguma & Duh+ 19, Gangi
& Negri+ 19d] and multi-task learning [Weiss & Chorowski+ 17]. Transcriptions are essential
in many applications and might need to be displayed together with translations to users. The
tight integration cascade model provides both transcription and translation with a strong
consistency between them. This consistency is an inherent property of the model, as the
generation of translation depends on transcription from the previous layers of the network.

• In comparison to the two-step models, it works on the probability level instead of the hidden
representation, which does not represent the word that has to be generated, rather a mix or
a weighted representation of all words in the vocabulary. The representation of a discrete
target word as a real-valued vector where its dimension is usually much smaller than the
vocabulary size (dh � |Vf |) can be a blurry representation to determine the correct word.

114

6.5 Experimental Results

• It benefits from all components of pretrained models. In contrast to two-step and direct
models, we keep all parameters of submodels in the fine-tuning phase. Therefore, it is
probably guaranteed to be at least on par with the cascade system.

• This model makes better use of ASR and MT data in comparison to multi-task learning.
The main task in multi-task learning (Section 6.3.2) shares half of its parameters with an
auxiliary task, either the encoder with the MT or the decoder with the ASR task. Additional
data thus only have a rather indirect impact on the main task. Contrary to that, in tight
integration cascade, all parameters of auxiliary tasks are involved in the training of the main
task. Hence, they have a more direct impact that leads to potentially better data efficiency.

Source Language Model Combination Analogously to speech recognition, we integrate a lan-
guage model score with that of the acoustic model in a log-linear combination. This is a simple
way to include a source language model in decoding. Therefore, Equation 6.21 is rewritten as

p(fj |f j−1
0 , xT1) =

[
pAM(fj |f j−1

0 , xT1)pλLM(fj |f j−1
0)

]γ
∑

f ′∈Vf

[
pAM(f ′j |f

j−1
0 , xT1)pλLM(f ′j |f

j−1
0)

]γ (6.22)

with λ being the language model scale. For γ = 1, the formula represents the shallow fusion
technique.

6.5 Experimental Results

This section includes the results of speech translation neural sequence-to-sequence models. We
carry out all experiments using RETURNN with an integrated interface to RASR, similar to the
ASR experiments.

6.5.1 Setups

The experiments are conducted on IWSLT 2018 TED talks English→German due to its long his-
tory in internal and external evaluations. After ablation experiments mainly on this task, we deter-
mine the best models on MuST-C English→Spanish and LibriSpeech audio books English→French
commonly used as a benchmark task for speech translation. The data statistics are given in
Appendices A.3.1, A.3.2, and A.3.3, respectively. We use ASR, MT, and DST datasets except for
LibriSpeech, where we assume a limited data condition and only use the available DST corpus.
Since the DST corpus often comes as a triple dataset, we always include it in ASR and MT model
training. Besides that, we choose some of the largest publicly available ASR and MT datasets to
have the ASR and MT models in an unconstrained-like setting and make the comparison between
the end-to-end and cascade models more realistic.

For all tasks, 80-dimensional MFCC features are extracted with overlapping windows of 25
milliseconds. A small number of utterances longer than 6000 frames is excluded from the training
data to avoid running out of memory. Casing and punctuation are kept on the target side. The
ASR evaluations are always lower-cased and without punctuation computed by sclite. Unless
explicitly stated, the models are trained under the same data condition for a fairer comparison.
However, the way that the data are used can be different from one technique to another.

IWSLT 2018 TED English→German To train ASR models, a total of 390 hours of transcribed
speech is used [Matusov & Wilken+ 18]. More details on the data statistics and preprocessing are
given in Appendix A.3.1. The DST data statistics are given in Table A.4. A part of our segments

115

6 End-to-End Speech-to-Text Translation

is randomly selected as our cross-validation set, and dev2010 and test2015 are chosen to be the
development and unseen test sets, respectively. The training data is divided into 4 subepochs, and
we select our checkpoints based on the development set. Either 10k or 20k BPE subword merge
symbols are used such that the latter case is also used on the target side of the MT data.

The ASR recurrent attention model is adapted from the Switchboard configuration with the
fertility concept. The embedding size is slightly larger, with 620 dimensions. A lower initial
learning rate of 0.0008 and a decay factor of 0.8 are used. Maximum sequence length is limited to
75 subwords during training. We also use CTC loss on top of the speech encoder and clip the audio
features to be between -3 and 3 before applying SpecAugment. As stated before, max-pooling
between bidirectional LSTM layers reduces the number of audio frames. The RNN attention model
is used not only for building the cascade system but also for other approaches mentioned in the
previous sections. Besides the RNN attention model, we use a hybrid HMM acoustic model as the
baseline for the speech recognition part of the cascade system taken from [Matusov & Wilken+ 18].

The recognition results can be found in Table B.2 in Appendix. According to these results, a
carefully trained attention model can substitute the traditional hybrid HMM model. As hybrid
HMM models are out of the scope of this work, this chapter continues only with the attention-based
ASR models in the rest of the experiments, unless stated otherwise.

Given 38M bilingual sentence pairs, we train the MT RNN attention model to use in the cascade
system and other methods requiring a pretrained MT model. The setup configuration is almost
identical to that of machine translation described in Section 3.8.1. However, we use a larger
embedding size of 620 nodes, a batch size of 4k without gradient accumulation, and a maximum
sequence length of 75 tokens in training. 20k merge BPE subword symbols are used.

The direct model follows the structure of the ASR encoder and MT decoder to enable sequential
transfer learning. It has 6 layers of bidirectional LSTM of size 1k with interleaved max-pooling
in between that are iteratively trained via the layer-wise construction scheme. Its decoder is a
shallow 1-layer LSTM of size 1k. It uses the same target vocabulary as the MT model. The
training parameters are mainly based on the ASR setup.

MuST-C English→Spanish Considering a more realistic data condition, we use more auxiliary
ASR and MT training data than the end-to-end data on MuST-C English→Spanish. Following
[Bahar & Bieschke+ 21], a total of approximately 2300 hours of transcribed speech is employed to
train the speech recognition system (see Appendix A.3.2 and Table A.5 for more details.)

We follow the same end-to-end attention models and training setup as those of the IWSLT task.
The vocabularies are obtained by 5k subword BPE symbols in English (both ASR and MT) and
32k in Spanish. Due to the larger training data, the epoch is divided by a factor of 20. In the
experiments, MuST-C English→Spanish is considered as a development task where we also show
results on self-attentive models. However, the recurrent networks are the main architecture of
speech translation models in this work.

The self-attentive model is equipped with 6 layers of size 512 in both the encoder and decoder.
The ReLu hidden dimension is chosen to be 2048. We have no CTC loss, add positional encoding
to the output embedding, and wait longer for more epochs. Instead of absolute, the relative
positional encoding is included, which does not really help the final performance.

For this task, two language models are also trained: one LSTM with 4 layers of size 2048 each
and one 24-layer 8-head self-attentive LM with 1024 nodes each. The details of the LM data
(including 2.1B tokens) are discussed in Appendix A.3.2. The language model scores are then
integrated with those of the acoustic attention model through shallow fusion. Table B.4 indicates
that the deep self-attentive model has lower perplexity. The use of the external language models
as presented in this table directly affects the performance of the ASR models.

We also train both the RNN and self-attentive MT models using 47.7M sentence pairs that

116

6.5 Experimental Results

are split into 40 subepochs for training updates. Data statistics can be found in Appendix A.3.2.
The RNN attention model is configured similarly to that of the MT experiments with no dropout
applied. The self-attentive model has the same configuration as the big transformer network in
[Vaswani & Shazeer+ 17], composed of 6 layers, 16 heads, and a model size of 1024. Again, the
direct model follows the structure of the ASR encoder and MT decoder for each architecture.

LibriSpeech English→French As shown in Table A.6, we employ 100h of clean speech corre-
sponding to 47.2k segments. This amount of training data is also utilized for ASR and MT training.
The data condition is not realistic as no additional ASR or MT corpora are taken. The reason for
this is firstly that we tend to keep this task as a benchmark task for comparison with other research
groups, and secondly that we wish to keep the data condition low-resource for further analyses. 5k
joint BPE units are applied on both English and French texts. The same source BPE units are
used on the ASR data, hence the source vocabulary is shared between ASR and MT models. We
follow the same attention models and training setup as those of the IWSLT English→German
task, but a dropout rate of 0.4 is exercised. Evaluation is case-insensitive computed by the Moses
multi-blue.pl script on tokenized references to be comparable with other works in the literature.

6.5.2 Results

Cascade Models

This section shows the results of the cascade systems as the baselines.

Source Text Processing As discussed before, coupling the ASR and MT models in the cascade
pipeline is a well-known challenge in speech translation. As a general rule, recognition and
translation qualities are highly correlated [Ruiz & Gangi+ 17]. If the recognizer outputs low-quality
sentences with ASR noise, the translation quality significantly drops due to sensitivity to both
natural and synthetic noise [Belinkov & Bisk 18].

One method of increasing the robustness of translation models against recognition errors is
introducing artificial noise to the source side of the MT training data [Sperber & Niehues+ 17] or
to train the MT model on both clean and noisy ASR transcripts collectively [Gangi & Enyedi+

19]. In practice, the recognizer’s output is not only noisy in the choice of words but also contains
no punctuation, and it is case-insensitive. One way is to augment the source transcriptions with
punctuation. However, this approach is exposed to error compounding and requires a separate
punctuation predictor [Peitz & Wiesler+ 12].

Instead, the source side of the text translation system can be adapted to look like the output of
the speech recognizer. The MT model can be trained on a punctuation-free source text to resemble
the test condition while keeping all punctuation on the target side. Following these strategies,
we experimentally explore two options on the English side of the MT data in comparison to the
standard processing in which we tokenize punctuation and lowercase the English text.

The first technique is done with the goal of converting the source text into a speech transcript
similar to the one produced by the ASR system. We add some level of asr-like noise according to
the most common recognition errors. After tokenization and lower-casing, all punctuation marks
and spliced back contractions (e.g., do n’t → don’t) are ignored. All entities expressed with
digits (e.g., numbers, dates, etc.) are mapped to their spoken form. Abbreviations of measurement
units (e.g., km → kilo meter) are also expanded.

Because of this processing, the translation model implicitly learns to insert punctuation marks,
restores word casing, and converts spoken forms to digits as part of the translation process since the
target side of the training corpus contains punctuation marks, cased tokens, and digits. We refer

117

6 End-to-End Speech-to-Text Translation

Table 6.1: Performance comparison of the MT and cascade ST systems using different intermediate
processing on IWSLT English→German. All MT models are based on the RNN attention
model, while the ASR model is a hybrid HMM model.

task processing dev2010 test2015

MT input ASR output Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

text translation standard - 31.3 49.6 32.4 50.5
asr-like - 29.8 50.7 31.7 51.7

cascade speech translation standard w/o punc. 25.7 56.8 25.2 60.3
w punc. 24.4 58.4 24.7 60.7

asr-like w/o punc. 26.3 55.8 26.7 57.9

to this technique as asr-like processing. The same processing is used for the English monolingual
data as in ASR language modeling.

Table 6.1 presents the translation performance of these two processing techniques. All MT
models are RNN attention-based, while the ASR model is a hybrid HMM model. As expected, in
the pure text translation, the standard processing outperforms the asr-like one (cf. lines 1 and 2)
because the asr-like input contains a bit of noise and not the ground-truth source text. Applying
asr-like processing decreases the performance by 1.1 points in both Bleu and 1.1% in Ter on
average. In contrast to this, feeding the ASR output, in which there is no punctuation, to the
MT model trained using the standard processing (line 3) is behind the model trained with the
asr-like scheme (line 5). This can be partly attributed to the fact that in the asr-like processing,
punctuation prediction is made implicitly by the translation model. Such a scheme helps the
coupling of the components and is able to predict outputs of proper length for noisy inputs, even a
small amount of noise. This is also observed by [Sperber & Niehues+ 17]. The MT system expects
a well-formed sentence with punctuation marks. In order to match the ASR transcripts with the
input of the MT system trained with the standard processing, expecting well-formed sentences, we
also insert the punctuation marks into the ASR output as the second alternative.

The punctuation prediction model is a simple attention model proposed by [Tilk & Alumäe 16]
and taken from [Matusov & Wilken+ 18]. The model is applied explicitly to the ASR output to
enrich it with punctuation before feeding it to the MT model. The result is shown in the 4th line
of Table 6.1. This leads to worse performance than the setting with no punctuation but already
seen asr-like examples during training. One reason for the degradation is that the punctuation
predictor is not error-free, and punctuation marks in wrong positions can change the meaning of a
sentence and mislead the MT model, which has seen correct punctuation. The second reason can
be related to the punctuation model in which no acoustic features are used; only the words in a
sentence are considered to predict punctuation. These symbols are limited to periods, commas,
and question marks. In both cases, the degradation is mainly due to recognition errors, while the
asr-like processing improves the robustness of the MT model to the same kind of noise.

This work assumes word and punctuation errors compound and thus applies the asr-like
processing. We also suppose that the input to the translation system is a properly-formed sentence.
In the following sections, the text translation is referred to as the model with asr-like processing
given that its performance is lower than the standard processing but is the best-obtained setup.

Cascade vs. Text Translation Once we have developed the asr-like text processing, we couple
the end-to-end attention-based ASR and MT models as the cascade system. We first compare the
performance of the cascade speech translation systems against that of text translation.

Table 6.2 again indicates that cascade speech translation is behind text translation on IWSLT

118

6.5 Experimental Results

Table 6.2: Performance comparison of the text MT and cascade ST systems on IWSLT
English→German. Both ASR and MT models are based on RNN attention.

task dev2010 test2015 #

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

text translation 29.8 50.7 31.7 51.7 200M
cascade speech translation 26.2 56.1 27.3 57.5 427M

Table 6.3: Performance comparison of the text MT and cascade ST systems on MuST-C
English→Spanish using both the RNN attention and self-attentive models. The right-
most column of the bottom part of the table counts all trainable parameters of the
ASR, MT, and source-side LM in the cascade system.

task model testHE testCOMMON #

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

text translation RNN attention 41.9 41.8 34.1 50.0 202M
self-attentive 42.7 41.8 35.4 49.0 260M

cascade speech translation RNN attention 38.5 45.8 31.2 54.3 494M
self-attentive 39.0 46.0 31.5 55.7 653M

Table 6.4: Performance comparison of the text MT and cascade ST systems on LibriSpeech
English→French using the RNN attention model.

task dev test #

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

text translation 25.2 62.6 22.9 64.4 166M
cascade speech translation 23.3 65.2 21.4 66.4 334M

English→German with the total number of parameters on the rightmost column. This is an
inevitable phenomenon because of the compounding follow-up errors produced by each cascading
component, specifically the ASR model. Here we note the difference between line 2 of Table 6.2
and line 5 in Table 6.1. The former case is based on the end-to-end RNN attention model, whereas
the latter uses the hybrid ASR model (see Table B.2 for Wer comparison.)

On MuST-C English→Spanish in Table 6.3, we examine both the RNN and self-attentive models.
The cascade model of each model group (either RNN or self-attentive model) is composed of the
ASR, source-side LM, and MT models. All components of each group are based on the same
architecture, either RNN or self-attentive. More details and the combination of these components
are presented in Table B.5.

In addition to the inherent performance degradation of speech translation compared to text
translation, we see that the self-attentive models work slightly better on both tasks. The source-side
language models reduce the word error rate of the ASR models as reported in Appendix B.3 as
well as increasing the performance of the cascade systems as intended (see Table B.5 in Appendix).

Table 6.4 reconfirms the previous observation on LibriSpeech English→French. In addition to
the error propagation problem as seen in these tables, the ASR and MT models treat the source
language transcript differently, and we have to find a solution for better coupling of these two
modules such as those proposed via asr-like processing. Such a two-step property also leads to

119

6 End-to-End Speech-to-Text Translation

Table 6.5: Direct ST results with CTC-attention loss on IWSLT English→German.

method CTC reduction dev2010 test2015 #

factor Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

parameters

direct no 8 14.8 69.8 14.9 73.5 181M
6 16.0 69.2 15.3 73.2

yes 8 17.9 66.3 16.5 70.4 192M
6 19.4 64.1 18.6 67.6

losing speech information at the final step due to the independence assumption between the target
sentence and the speech utterance. Further, the system is inherently sequential due to the two-step
modeling. Therefore, it requires a two-pass search, resulting in a higher decoding time. In general,
such systems also need more computational power to train a given number of models, in most
cases two. As seen in the rightmost column of the tables, the cascade model have more than twice
or as many parameters as the text models. Given these reasons, we explore the direct models next.

Direct Speech Translation

CTC Loss in Speech Translation The frame-wise input sequence is much longer than the source
sequence, i.e., J � T . According to what is reported in [Zeyer & Irie+ 18], the input sequence is
30 times longer on Switchboard if audio feature frames of every 10ms and subword segmentation of
10k are applied. The max-pooling time reduction is a common remedy to compress any necessary
information. On the one hand, the lower the reduction factor is, the more memory and computation
for the attention layer are needed. On the other hand, a higher time reduction factor leads to
faster and simpler training; however, the model does not converge if a very high factor is selected,
as it has also been observed for speech recognition [Chan & Jaitly+ 16, Zeyer & Irie+ 18].

In contrast, CTC defines frame-wise label sequence zT1 , and its final classification involves
prediction per frame. Therefore, the number of final frames after reduction may play an important
role in CTC performance. It requires us to find a compromise between the performance and the
time reduction factor. Along with applying CTC, we change the time reduction factor in Table
6.5. A lower time reduction of 6 instead of 8 helps the direct model performance with and without
CTC loss applied; however, the batch size needs to be adjusted. As expected, the performance
difference of the time reduction factors is more pronounced if CTC is activated. It helps 2.1 points
in Bleu and 2.8% in Ter on test2015. This gain is much larger than 0.4 points and 0.3% when
no CTC is used.

In addition, comparing lines 2 and 4, we gain a large improvement of 3.3 Bleu points and
5.6% absolute in Ter on the IWSLT test set. We highlight that we apply a different layer-wise
construction when the reduction factor is set to 6. In this scheme, the hidden dimension is
gradually increased in addition to the number of encoder layers. Therefore, the improvements can
be partially attributed to better optimization when comparing the reduction factor of 8 and 6. For
higher downsampling, the batch size has to be limited and further hinders model optimization.

Table 6.6 also verifies gains on MuST-C English→Spanish, though the improvements are smaller.
These results are obtained with a total time reduction factor of 6 as the best-observed setup.

Apart from the final translation improvements, the CTC auxiliary objective function slightly
accelerates the learning curve and converges faster, as shown in Figure 6.7. This behavior is
observed even when the two losses are equally weighted. From speech recognition training, the
convergence without CTC might be too challenging. One potential reason for such gains might be
that the CTC function improves the lack of left-to-right constraints or monotonic alignments in
the speech part of the network, especially for long sequences. Faster convergence with CTC also

120

6.5 Experimental Results

Table 6.6: Direct ST results with CTC-attention loss on MuST-C English→Spanish. The time
reduction factor is chosen to be 6.

method CTC testHE testCOMMON

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

direct no 29.0 55.5 23.6 62.9
yes 30.5 53.1 25.1 61.0

5 10 15 20 25

2

4

6

epochs

lo
g
P
p
l

attention

attention + CTC

Figure 6.7: The learning curve of the direct ST attention model based on the logarithm of training
perplexity with and without the CTC auxiliary loss on IWSLT English→German.

indicates easier training of the attention-based models from scratch due to better alignments on
longer sequences. Although speech translation needs some reordering, we think there are local
monotonicities among consecutive frames. In fact, the CTC loss is similar to adding an additional
output layer to predict the transcripts, thus it can be seen as multi-task learning. The multi-task
property of CTC might also contribute to the performance difference. It may also be partly due to
better optimization. The CTC loss adds df × (|Vf |+ 1) extra parameters to the model, as stated
in the rightmost column of Table 6.5. df represents the hidden dimension before the output layer.

SpecAugment in Speech Translation In the first set of the SpecAugment experiments, we
deactivate either time or frequency masking in a batch. We exercise different values of ∆dmax,
between 2 and 40, and increase md gradually while the time masking is disabled. We found that,
on the one hand, a very large value of frequency masking (∆dmax = 40) can hurt the performance.
On the other hand, even a small value (∆dmax = 2) leads to some gains. In order to keep a
reasonable ratio of frequency masking, Md has to be limited. By repeating the frequency masking
of big windows more than 5 times, augmentation is less beneficial than anticipated. It is important
to highlight that since we randomly select the masking window between zero and the maximum
value of ∆dmax, the results are close to each other.

We also disable the frequency masking by setting ∆dmax and md to zero and vary the time mask
parameter ∆tmax and the number of times it is called. Again, there is a limit to how much data
augmentation can be applied. Enlarging the time masking window ∆tmax to 100 leads to lower
Bleu and Ter scores. Furthermore, we drastically increase the time masking window ∆tmax
into 400 steps and apply it 5 times, which fails. Too short time maskings are also less effective,
indicating less augmentation [Bahar & Zeyer+ 19b].

In general, if the initial convergence is stable, in all cases, adding some data augmentation
improves the setup. However, at some point, the performance degrades with more augmentation.

121

6 End-to-End Speech-to-Text Translation

Table 6.7: Direct ST results with SpecAugment on IWSLT English→German.

method SpecAugment dev2010 test2015

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

direct no 19.4 64.1 18.6 67.6
yes 20.5 62.9 19.7 66.5

Table 6.8: Direct ST results with SpecAugment on MuST-C English→Spanish.

method SpecAugment testHE testCOMMON

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

direct no 30.5 53.1 25.1 61.0
yes 31.3 52.7 25.7 60.2

Moreover, it is observed that in many cases applying a small window several times results in a
better augmentation policy compared to a large window applied once [Bahar & Zeyer+ 19b]. In
the end, one optimum value of maximum frequency masking that works reliably for our setup with
the 80-dimensional MFCC features is ∆dmax to be 20% of the feature dimension, i.e., 16, and
respectively the maximum time masking window of size 20. The combination of two maskings gives
further boosts. The predefined Mt and Md are halved in the first 2000 batches for having stable
training at the beginning. Adding some data augmentation improves the performance without
increasing model size but with a slightly longer convergence time. SpecAugment performs quite
well regardless of the features and their dimensions but needs a bit of tuning. SpecAugment boosts
the performance of the direct model by an improvement up to 1.1 points in Bleu and 1.1% in Ter
on average on the IWSLT task, as shown in Table 6.7. Table 6.8 presents further results on the
MuST-C test sets with less gain up to 0.7 points in Bleu and 0.6% in Ter. This observation may
be due to the fact that the direct speech translation data used in MuST-C is larger than IWSLT,
and SpecAugment as an augmentation approach is more beneficial on lower-resource tasks.

Importance of SpecAugment on Overfitting We also investigate the effect of SpecAugment on
overfitting. Figure 6.8 plots the logarithm of the perplexities of the training and development sets
with and without augmentation. From the perplexity difference, it is conclusive that SpecAugment
leads to better generalization. The model trained with SpecAugment still has training likelihood
that is higher than the baseline system. Thus, it can be confirmed that the method reduces
overfitting. In this case, the augmented model has to be trained for a few more epochs. Comparing
Tables 6.7 and 6.8 also shows that SpecAugment helps translation performance of the direct
model more on the low-data condition (considering IWSLT with a lower amount of training data);
however, it avoids overfitting to some extent irrespective of the amount of training data. A study
on the impact of a different portion of training data has been reported in [Bahar & Zeyer+ 19b].
The augmentation policy compensates for the lack of data when the size of the training data is
halved. Being successful, the SpecAugment method is included in the rest of the experiments.

Sequential Transfer Learning

This section explores sequential transfer learning or simply pretraining for direct models in
which parts of the network are initialized with parameters from other models: initially trained
for different, though similar tasks. In theory, initializing the parameters with pretrained models
should not hurt the fine-tuning optimization, but in practice, it often does because the pretrained

122

6.5 Experimental Results

10 15 20 25
1.5

2

2.5

3

3.5

epochs

lo
g
P
p
l

dev - w SpecAug

dev - w/o SpecAug

train - w SpecAug

train - w/o SpecAug

Figure 6.8: Average of the logarithm of the perplexity of the training and development sets across
epochs on IWSLT English→German.

components are not incorporated properly together. In this case, it might lead to an optimization
problem in which the training is not robust to new training data variations.

To enable pretraining, for the ST models, we use the same architecture as the ASR encoder
and the same architecture as the MT decoder. Here, the ASR and MT models described for
the cascade system are used. In the initial experiments, the CTC loss with pretraining hurts
convergence. This might be due to the fact that CTC mostly helps convergence on the speech side
of the model, and with pretraining, we use an already-converged model that does not suffer from
convergence issues. Therefore, all pretraining experiments exclude the use of CTC.

We conduct different pretraining schemes, as shown in Table 6.9. Pretraining strategies can
be used on different models with different recipes. The first and second columns of the table
indicate what component is employed to initialize either the direct model encoder or its decoder.
For example, the second row refers to the case in which we initialize the network encoder with the
ASR encoder, while the decoder is randomly initialized. In Figure 6.2, the blue block is activated.
Similar to [Bansal & Kamper+ 19], we also initialize the German text decoder using the pretrained
English ASR decoder, and the results are similar to the second line of the table.

Pretraining on the encoder gives a gain of 0.9 points and 2.2% in terms of Bleu and Ter
on test2015. It is interesting and surprising that transferring knowledge only from the speech
encoder using the ASR model seems sufficient to improve over the baseline.

Then, the MT decoder is taken to initialize the text decoder parameters (the green block in
Figure 6.2). We observe that pretraining the text decoder seems not to be useful, as the model
diverges, shown by “-”. This can be attributed to a larger impact of the decoder on the final
performance compared to the encoder. One reason for this might be that error is propagated
through the decoder down to the speech encoder. Naturally, this leads to the decoder receiving
larger updates than the encoder, ultimately resulting in a decoder which translates the output of
a still terrible encoder. These observations also mean that the pretrained MT decoder expects to
be jointly trained with a text encoder, not a speech encoder.

In the next step, both the pretrained speech encoder and text decoder are used at the same time
(both green and blue blocks in Figure 6.2). Again, as shown in line 4, coupling the pretrained ASR
encoder and MT decoder fails. This verifies our previous assumption about a proper adaptation of
both parts.

Adapter Layer Based on this, we add an additional layer, one bidirectional LSTM, as the adapter
component to familiarize the input of the pretrained decoder with the output of the pretrained
encoder. This is added on top of the encoder and randomly initialized. The adapter component is

123

6 End-to-End Speech-to-Text Translation

Table 6.9: Comparison of the different pretraining schemes used in the direct ST model on IWSLT
English→German corresponding to the blue and green blocks of Figure 6.2. The first
line is the direct model without pretraining copied from Table 6.7.

pretraining adapter dev2010 test2015

encoder decoder Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

none none no 20.5 62.9 19.7 66.5
ASR none 21.4 60.6 20.6 64.3
none MT - - - -
ASR MT - - - -

ASR MT yes 22.9 59.9 22.3 63.5

“-”: failed results.

Table 6.10: Direct ST results with pretraining on MuST-C English→Spanish.

method pretraining testHE testCOMMON

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

direct no 31.3 52.7 25.7 60.2
yes 35.9 48.0 28.7 56.3

Table 6.11: Direct ST results with pretraining on LibriSpeech English→French.

method pretraining dev test

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

direct no 17.3 72.1 18.1 70.9
yes 20.6 66.9 21.3 66.0

jointly trained with all other parameters without freezing in fine-tuning. Adding the adapter layer
achieves an improvement over the randomly initialized direct model by 2.6 Bleu points and 3.0%
Ter on test2015. It allows the model to learn a mapping between the learned representations.
Overall, pretraining seems to help a lot when it comes to training direct models. Pretraining using
the ASR and MT models in combination with the adapter component yields the best performance
with 22.3% and 63.5% in Bleu and Ter on the test set.

We also state that if the decoder attention layer is not initialized, the entire network still
transfers information from both pretrained components that provide decent improvements. This
non-pretrained layer between the encoder and decoder can justify a smoother coupling. The
justification for using non-pretrained components in between can be extended to other layers of
the network. Arguably, instead of inserting an adapter layer, one could keep the same number of
layers and avoid initializing the last layer of the bidirectional encoder. Initial experiments have
shown the effectiveness of this.

The same pretraining scheme with the adapter component (one BiLSTM layer) is therefore
carried out on MuST-C English→Spanish and LibriSpeech English→French, whose results of
which are shown in Tables 6.10 and 6.11, respectively. The results are similar to the observation
on the English→German task. Pretraining helps the MuST-C task by an average of 3.8 Bleu
points and 4.3% absolute Ter on two test sets. It also gives a similar boost of 3.4 points in Bleu
and 4.9% in Ter on the English→French test set. This performance difference is larger than
anticipated. Although using more training data is the main reason, it is worth mentioning that

124

6.5 Experimental Results

Table 6.12: Multi-task learning results on IWSLT English→German. The models have the same
number of parameters in decoding.

method pretraining dev2010 test2015

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

direct no 14.8 69.8 14.9 73.5
two-to-one 18.2 67.2 18.1 69.8
one-to-two 17.4 67.0 16.2 72.7

direct yes 22.9 59.9 22.3 63.5
two-to-one 20.1 63.8 19.9 66.8
one-to-two 21.1 61.8 20.3 66.1

the method also works for the low-resource LibriSpeech task. In this task, the direct ST model has
an equal amount of parallel training data compared to the ASR and MT tasks. Selecting suitable
source tasks might be the reason for the gain. The same amount of data is used but for different
purposes. Moreover, the ST training starts from a point with optimum parameters.

Pretraining is closing the gap between direct and cascade modeling by transferring knowledge
from a higher resource, yet similar tasks. However, it lags behind the cascade models. Such a
concept can also be applied in other NLP tasks. A simple example is the translation of distant
language pairs, where English is used as a pivot in between. Similarly, source→English and
English→target models can be trained and then exploited in a transfer learning with an adapter
in between to familiarize the source encoder and target decoder [Kim & Petrov+ 19].

Multi-Task Learning

We compare the one-to-two and two-to-one multi-task methods with the ASR and MT tasks
as the co-trainers. Since the CTC loss is a multi-task setup, we exclude it as initial experiments
indicate that it lowers the performance of multi-task learning. For each batch, a certain number
of sequences is chosen at random such that the average batch contains that portion of the DST,
MT, or ASR data. For the one-to-two and two-to-one methods, the best setup is achieved by
performing 60% and 70%, respectively, of training steps on the core speech translation task and
the remaining updates on the auxiliary task.

Table 6.12 illustrates that all models benefit from the additional data through pretraining. The
methods listed in the first block of the table apply neither CTC nor SpecAugment. The models
have the same number of parameters in decoding, while the direct, two-to-one, and one-to-two
models equipped with adapted pretraining have 206M, 363M, and 252M parameters, respectively.
Having studied the relative gains, we observe that the direct model takes the most advantage of
the pretrained components and surpasses the multi-task approaches with pretraining by almost
2% and 2.6% absolute difference in Bleu and Ter on the test set.

By comparing the multi-task strategies, pretraining helps the one-to-two more than the two-to-
one method; however, without pretraining, the one-to-two performance is ahead. This observation
may be related to the amount and quality of ASR and MT data. When the additional MT data
(27M sentence pairs) is utilized in the two-to-one setup (line 2), it outperforms the one-to-two
method with a smaller amount of ASR data (260K segments). As long as all auxiliary data are
used via pretraining, multi-task learning plays a role in guiding the main task. In this case, the
ASR auxiliary task helps more than MT, and this is similar to the results reported in [Weiss &
Chorowski+ 17, Berard & Besacier+ 18]. As stated, multi-task learning is applied to supervise
speech translation, use additional data, or both. Our contribution differs from these papers as
we aim to use more training data rather than only guiding the ST task. In general, multi-task

125

6 End-to-End Speech-to-Text Translation

Table 6.13: Comparison of different sharpening factors against performance scores on the cascade
of ASR and MT models in decoding. The ASR model renormalized posteriors with γ
exponent are passed on to the MT encoder.

beam size γ dev2010

Bleu
[%]

Ter
[%]

Wer
[%]

1 - 26.0 56.8 12.2

12 - 26.2 56.1 11.2
0.5 - - -
0.9 12.9 79.7 11.3
1.0 21.9 64.6 11.2
1.5 26.0 56.6 11.6
2.0 26.0 56.7 11.7
4.0 26.0 56.7 12.0
32 25.9 56.8 12.2
128 25.9 56.8 12.2

learning achieves no real benefits on top of direct modeling if pretraining is applied. This is similar
to what is observed by [Sperber & Neubig+ 19a].

Tight Integration of Cascade Model

Effect of γ in Passing Posteriors After obtaining the best hypothesis for each utterance via the
ASR model, we pass it to the MT model. To this end, we concatenate the ASR and MT networks,
and as a sanity check, we pass the one-hot vectors as the ASR outputs to MT. This leads to the
exact same result as in the standard cascade system. Unlike the cascade system, this step needs to
have a shared source vocabulary between ASR transcripts and MT source sentences. Otherwise,
coupling requires a linear mapping between the two components that have to be trained first.

This part sheds light on the question of which sharpening factors in Equation 6.21 make the
distribution more peaked and suitable for the MT model. By varying γ, we adjust the distribution
to be closer to the one-hot representations expected by the MT embedding layer. Table 6.13 lists
the translation performance of the cascade models on dev2010 for IWSLT English→German by
passing renormalized posterior probabilities to the MT model while applying different sharpening
factors in decoding. No fine-tuning using direct speech translation data is utilized in this table,
and an identical set of parameters to the cascade model is involved. Results are compared with
the cascade system where the one-hot vectors of the subwords in the transcript hypothesis are
passed to the MT model with beam sizes of 1 and 12 on the first and second lines of the table.

As expected, for a small value of γ = 0.5, no reasonable translation can be achieved, as the
probability of source words is uniformly distributed over the vocabulary. For values below 1,
a degradation in performance is seen. For larger values, the performance shows a small gain
until it settles at around 26.0% Bleu. We have found that γ = 2 is on par with the results of
the performance of the cascade system. Beyond that, the performance barely changes as the
distribution is already sharp enough, and a further increase of γ does not alter the distribution.

The MT encoder is trained to see the one-hot vectors and does not know how to deal with
the probability distributions like posteriors. In fact, this performance is similar to greedy search
on the ASR decoder of the cascade model (cf. line 1 of the table). This is due to the nature
of the sharpening not representing the proper choices of beam search. Sharpening emphasizes
the most probable token at each position. Nevertheless, in decoding, it is only the case for the
previous token in the sequence, and here we deal with the sequence whose total probability is

126

6.5 Experimental Results

Table 6.14: Performance comparison of the tight integration cascade model with other methods
on IWSLT English→German. All models are trained using equal amounts of training
data; i.e., ASR, MT, and DST corpora, except the text translation method.

method dev2010 test2015

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

text translation 29.8 50.7 31.7 51.7

cascade 26.2 56.1 27.3 57.5
tight integration cascade 26.8 55.1 28.1 56.7

direct† 22.9 59.9 22.3 63.5
two-to-one† 20.1 63.8 19.9 66.8
one-to-two† 21.1 61.8 20.3 66.1
† includes adapted pretraining.

highest. Intermediate tokens might not have the best probability scores at their position, resulting
in reranking of the tokens.

To prove this, the ASR model is evaluated using sharpening on the posterior probabilities, and
the results are listed in the table. The word error rates also show a similar pattern, where for
higher γ factors, the performance decreases until it settles to the performance of recognition with
simple greedy search with 12.2% Wer. To convey more information and pass more ambiguities of
the recognition system, the experiments take advantage of γ = 1 in training and γ = 1.5 or 2 in
decoding. However, the choice of γ needs tuning from one task to another.

Translation Performance Table 6.14 presents the IWSLT results when we tighten the ASR and
MT models and fine-tune the coupled model using speech-to-target data in an end-to-end fashion.
We also compare it to all the models studied so far. All models are trained using equal amounts
of training data; i.e., ASR, MT, and DST corpora, except the text translation method trained
on the bilingual MT corpora. As expected, due to error propagation in the cascade system, its
performance is significantly lower than that of the pure text translation model. The direct model
performance is far behind the cascade model. In multi-task learning, auxiliary data helps only to
some degree, and with pretraining it does not help at all. The optimization of multi-task models is
extremely dependent on the DST data. Our results also indicate that the tight integration cascade
outperforms the direct model by 5.8 points in Bleu and is more pronounced in Ter on test2015.
It also beats the results of the cascade model by 0.8 points in Bleu, and reduces Ter by 0.8%.

The results on other tasks are very similar. They are shown on the MuST-C and LibriSpeech
tasks in Tables 6.15 and 6.16, respectively. For MuST-C, we use 2300h extra ASR data, which is
almost eight times more than in IWSLT. The amount of DST data is also larger compared to the
IWSLT task. All the methods discussed in this chapter are architecture-independent and can be
constructed using any neural network. To provide a comprehensive overview, we also examine the
performance of well-established methods using the self-attentive-based models on the MuST-C
task. With this data condition and pretraining, we close the gap between the cascade and direct
models and get a difference of 1.5 points in Bleu and 0.7% in Ter on testCOMMON using the
RNN attention models, while there is less improvement using the self-attentive architecture (Table
6.15). Using the self-attentive models, a leap in performance is observed except for direct models
on testCOMMON. Again, the tight integration model outperforms the cascade system as well as the
direct model on all test sets.

On LibriSpeech, we only use the DST data for model training limited to 47.2k segments. As
presented in Table 6.16, the direct model reaches the cascade model on the test set and even yields

127

6 End-to-End Speech-to-Text Translation

Table 6.15: Performance comparison of the tight integration cascade model with other methods on
MuST-C English→Spanish using the RNN and self-attentive modeling. All models
are trained using equal amounts of training data; i.e., ASR, MT, and DST corpora,
except the text translation.

method RNN modeling self-attentive modeling

testHE testCOMMON testHE testCOMMON

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

text translation 41.9 41.8 34.1 50.0 42.7 41.8 35.4 49.0

cascade 37.1 47.1 30.2 55.4 37.5 47.4 31.2 54.7
+ source LM 38.5 45.8 31.2 54.3 39.0 46.0 31.5 55.7

tight integration cascade 38.0 46.4 30.6 55.0 38.8 46.3 31.1 54.5
+ source LM 38.1 46.1 30.8 55.0 39.2 45.6 31.4 54.7

direct† 35.2 49.1 28.7 56.1 35.5 48.7 27.5 60.6
† includes adapted pretraining.

Table 6.16: Performance comparison of the tight integration cascade model with other methods on
LibriSpeech English→French. All models are trained using equal amounts of training
data, only the DST corpus.

method dev test

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

text translation 25.2 62.6 22.9 64.4

cascade 23.3 65.2 21.4 66.4
tight integration cascade 23.2 64.7 21.4 65.8

direct† 20.6 66.9 21.3 66.0
† includes adapted pretraining.

a better Ter score. This is clearly due to data constraint in the cascade model training. There,
the tight model is also comparable to the cascade system since the model parameters are trained
using already seen samples, and fine-tuning does not bring improvements in terms of Bleu, though
it helps Ter by 0.5%. A larger improvement is achieved on the dev set. On a low-resource data
condition, the tight integration model guarantees at least the performance of the cascade system.

Source Side Language Model Combination As shown by the results in Table 6.15, we train
the source-side RNN and self-attentive language models. The perplexities of the language models
are reported in Table B.4 in Appendix. Using shallow fusion, we integrate LMs into the cascade
and tight integration models in decoding. For the latter, the sharpening factor γ is set to 1.
The LM scale is found to be in the range of 0.15-0.20, which shows its small contribution to the
final performance. Language models usually help the final translation performance due to better
Wer on the ASR side. However, their contribution is more pronounced in the cascade model
compared to its combination with the tight integration model. The LM improvements over the
tight integration models are small but consistent. Comparing the RNN and self-attentive LMs,
the self-attentive LM combination leads to more gain due to having lower perplexity.

Experimental results show that the tight integration cascade model successfully improves the
data efficiency issue of end-to-end models; however, it still suffers from the error propagation
problem, as the second part of the model relies on the first decoder and its decisions. Similar to
the cascade models, the decisions are not error-free due to non-zero error rates.

128

6.5 Experimental Results

Table 6.17: Impact of freezing ASR in the tight integration cascade model training.

ASR IWSLT MuST-C LibriSpeech

training test2015 testCOMMON test

Bleu
[%]

Ter
[%]

Wer
[%]

Bleu
[%]

Ter
[%]

Wer
[%]

Bleu
[%]

Ter
[%]

Wer
[%]

yes 28.1 56.7 13.0 30.6 55.0 11.2 21.4 65.4 16.0
no 28.4 56.3 10.6 30.9 54.8 10.4 21.2 65.7 16.2

Effect of Subtask Training The tight integration training can be considered as a multi-task setup
of recognition and translation jointly, where the goal is to improve the generalization performance
of the ST task. In this case, we need to compromise between multiple tasks, and this might lead to
a suboptimal solution for the entire optimization problem. Therefore, we further study the freezing
of the ASR part of the network and only fine-tune the MT parameters. This setup guarantees the
initial Wer obtained by the ASR model, and further training does not affect it. The tight model
can generally take the recognition quality into account in addition to translation performance.
This is particularly important for those applications where we need to generate both transcription
and translation. For example, when both have to be displayed to users.

Both translation and recognition results are listed in Table 6.17. Training all parameters results
in worse Wer on IWSLT and MuST-C (compare with Wer in Tables B.2 and B.3). By freezing
the ASR parameters and only updating the MT part of the network, it favors the ASR task as we
do not update the ASR parameters and guarantee exactly the same Wer. Due to better Wer
compared to line 1, better Bleu and Ter scores are achieved. This implies a high correlation
between transcription and translation and indicates a strong consistency between them. We
believe this consistency is an inherent property of the tight model as translation depends on
transcription. Similar to [Ruiz & Gangi+ 17], we also observe a correlation between recognition and
translation quality, and the degradation in performance is mainly due to recognition errors. This
produces different results on LibriSpeech with limited training data. As shown, joint training of all
components slightly helps both recognition and translation performance. However, the correlation
between the results stays consistent. We conclude that the tight integration cascade model is
preferable in many practically relevant situations where there are relatively large speech-to-source
and source-to-target data, but only limited amount of speech-to-target data. The model provides
both transcribed speech utterances and translated texts with a high correlation between them.

Comparison with Other Works We also compare our models with various methods recently
published on the benchmark LibriSpeech English→French task with only 100h of data. Table 6.18
shows the results of this comparison. The first three lines of the table represent different cascade
systems. All are behind our cascade model, presented at the end of the table. Pretraining is used
with direct modeling in [Berard & Besacier+ 18]. The success of the self-attentive model inspires its
network architecture for direct speech translation [Gangi & Negri+ 19c]. A text translation model
can be used as a teacher to transfer the knowledge from [Liu & Xiong+ 19]. In their model, the
speech translation task learns output probabilities from the MT model. Universal attention-based
models in multilingual settings are also used in speech translation [Inaguma & Duh+ 19], where
a many-to-many model is trained on a mix of English to French, Spanish, and German with a
total of 472h of English speech. The curriculum learning paradigm is combined with pretraining
by gradually increasing the difficulty of the pretraining task [Wang & Wu+ 20]. As shown in
the table, our models beat almost all other methods from the literature except the direct model
equipped with extra synthetic data [McCarthy & Puzon+ 20].

129

6 End-to-End Speech-to-Text Translation

Table 6.18: Comparison of the models with the recently published works on LibriSpeech
English→French measured by multi-blue.pl on the tokenized lower-cased reference.

method model Bleu
[%]

test

cascade RNN [Berard & Besacier+ 18] 14.6
self-attentive [Liu & Xiong+ 19] 17.9
RNN, synthetic data† [McCarthy & Puzon+ 20] 21.3

direct RNN, pretraining [Berard & Besacier+ 18] 13.3
self-attentive [Gangi & Negri+ 19c] 13.8

+ knowledge distillation† [Liu & Xiong+ 19] 17.0
+ multilingual† [Inaguma & Duh+ 19] 17.6
+ curriculum pretraining [Wang & Wu+ 20] 17.7

RNN, synthetic data† [McCarthy & Puzon+ 20] 22.4

direct RNN attention 21.3
cascade 21.4
tight integration cascade 21.4
† more training data are used.

6.6 Implementation

RETURNN offers a variety of dataset classes that are each specialized for a particular task.
For instance, TranslationDataset loads parallel bilingual text data used for machine translation,
and ExternSprintDataset loads audio features generated by RASR and their corresponding
transcripts used for speech recognition. Combining all three types of data, i.e., the DST, MT, and
ASR data, a speech translation system uses the MetaDataset or CombinedDataset class. These
implementations allow us to create a combined corpus dynamically and avoid manual concatenation
and shuffling. One of the main use cases for the MetaDataset class is multi-task learning in which
the data of the co-trainer task, either audio features or texts, should be chosen at each batch. We
define a pickle file containing a list of sequence tags for each dataset such that it defines which
training samples from which datasets belong together.

Two-step modeling is simple in training because we obtain a single sequence of hidden vectors
in the forward pass. This sequence can then be passed to the next layer, i.e., the MT encoder
or decoder. In RETURNN, in order to write the output directly into a hypothesis file, the
end-of-sentence token is omitted at the end of the generated output sequence and all internal states.
On the other hand, in the cascade pipeline, the end-of-sentence token on the ASR output has to
be kept as the output is passed to the MT model, where we expect to have an end-of-sentence
token. To do so, one needs to set a boolean option called include eos in the ASR decoder that
keeps the token for the next step.

By default, the decoder returns N beams from the ASR model with the best choices at each
position together with their respective scores and the index of choices made by the decoder for
each subsequent position. Then a decision layer traces back through this sequence of choices to
obtain the best hypothesis. This decision layer can also be applied to pass the best hypothesis
from the ASR decoder to the MT encoder. However, when passing on internal states rather than
the final decision, this feature no longer works because the layer that computes the internal state
does not know the score by which the decisions are made or the actual choices. Therefore, tracing
back through internal states is not possible. Our implementation reads the sequence of scores and
decision indices from the decoder output. Together with the internal states, these are processed to
perform the trace-back similarly to the decision layer, but on the sequence of hidden states.

130

6.7 Conclusion

Starting at the latest position, the sequence with the highest score is chosen based on the final
states’ scores. The indices provide information on which of the previous words in the beam belong
to that sequence. Based on these indices, all previous positions are traced back, and the respective
states are extracted. We trim the decision layer output to the maximum remaining sequence
length as it causes issues in the following recurrent layers with mismatches between the true and
predicted sequence lengths. Additionally, the N -th best beam can be extracted, allowing us to
ensemble multiple ASR beams and pass on the results to the MT model. The implementation also
enables the extraction of the internal states for a specific beam from the ASR decoder by adding
them to the network during search. This is done mainly to verify the results of two-step modeling
by [Anastasopoulos & Chiang 18, Sperber & Neubig+ 19a].

6.7 Conclusion

This chapter concentrated on the task of speech-to-text translation as a challenging task that
combines both speech recognition and translation issues and aims to solve them. In particular, we
explored different end-to-end models. In the extreme case, direct models were addressed instead
of noisy channel decomposition and the independence assumption between the target sentence and
the speech utterance. We examined the combination of CTC with attention and proposed the use
of SpecAugment for speech translation, resulting in a practical training procedure. The CTC loss
improved translation performance with faster training convergence (see Tables 6.5 and 6.6), and
the SpecAugment method achieved some gains with better generalization (Tables 6.7 and 6.8).

To tackle the data scarcity issue of the end-to-end models, we studied transfer learning. A
straightforward solution for utilizing all available training data is pretraining, which proved to be
very effective if an adaptation is applied. We showed that the pretraining scheme with suitable
source tasks like speech recognition and text translation led to significant improvement and could
mitigate the data efficiency of the direct models even for a low-resource task (Tables 6.9 to 6.11).
Another investigated method was multi-task learning, but we showed that there was no real benefit
in using it (Table 6.12) since it led to a suboptimal solution for the whole optimization problem.

As another remedy, we proposed a tighter coupling between automatic speech recognition and
text translation. We developed the tight integration cascade model that naturally decomposed
into two modeling steps akin to the cascade but preserved end-to-end trainability and reduced
the early-decision problem. We presented experimental results which proved that the integrated
cascade model outperformed all other approaches under realistic data conditions, was much more
effective at exploiting auxiliary data, and provided consistency between transcripts and translated
texts due to its two-step nature (Tables 6.14 to 6.18). This indicates that the end-to-end models can
realistically translate automatically recognized speech as a relevant solution to speech translation.
Such models can replace the traditional cascade systems as they are able to compete with or
outperform them.

6.8 Related Work

The research topic of speech translation has emerged with the success of statistical data-driven
methods in both ASR and MT. Traditional speech translation systems are built in the cascade
fashion and comprise an automatic speech recognition model trained on paired speech-transcribed
data and a machine translation model trained on bilingual text data. In practice, a zero recognition
error rate can rarely be achieved.

A theoretical justification of integrated speech translation by [Ney 99] has motivated some works
for a tighter coupling of ASR and MT models. A better coupling can be done by processing
ambiguities of ASR outputs in the form of word lattices, N -best lists, and confusion networks

131

6 End-to-End Speech-to-Text Translation

[Matusov 09]. As stated in [Ney 99], a combination of recognition and translation model scores
provided with a joint optimal scaling factor can lead to better translation quality. This combination
is done by including word posterior probabilities [Bertoldi & Zens+ 07] or using acoustic and
source language model scores with word- and phrase-based translation scores in the log-linear
framework [Shen & Delaney+ 07, Matusov & Ney+ 05] with an extension of the approach with
phrase-level reordering [Matusov & Hoffmeister+ 08]. To make long-range reordering possible,
monotonic translation of word lattices [Casacuberta & Llorens+ 01] or a very restricted word and
phrase reordering [Zens & Bender+ 05] can be conducted.

In the same line of motivation, the work by [Bertoldi & Zens+ 07] introduces the translation
of confusion networks to counter the inefficiency of word lattice reordering. Due to confusion
network structures in which the recognized words are aligned to specific positions, reordering is no
longer impossible with significant improvements [Bertoldi & Zens+ 07, Besacier & Mahdhaoii+ 07].
It is also shown that defining coverage vectors for MT search in terms of topologically ordered
lattice states makes lattice reordering possible [Dyer & Muresan+ 08]. Given that, the system
combination of confusion network-based translation models is done to further improve the speech
translation quality [Matusov & Ueffing+ 06].

As stated before, in the cascade system, the translation performance is degraded by recognition
errors. Therefore, training the ASR and MT parameters of the log-linear model in phrase-based
translation systems can be done to optimize translation scores of the full speech translation pipeline
[He & Deng+ 11]. Such modeling provides a selection of recognition candidates that can be more
easily translated, leading to better translation performance. In [Ohgushi & Neubig+ 13], the
authors further explore the possibility of joint optimization of ASR and MT models.

The research direction is not limited to the integration of recognition and translation systems.
Cascade systems also encounter some problems associated with interfacing ASR outputs and MT
inputs because the output of the recognizer is not a well-structured sentence with punctuation.
To list a few interfaces between ASR and MT, we can optionally carry out word segmentation
[Godard & Boito+ 18], sentence segmentation [Fügen & Kolss 07, Fügen & Kolss 07], punctuation
prediction [Lee & Roukos 04, Matusov & Mauser+ 06], disfluency removal [Fitzgerald & Hall+ 09],
and domain adaptation [Liu & Gu+ 03] to make the recognizer’s outputs as close as possible to
the translator’s input.

Instead of augmenting source transcripts, we can also adapt the source side of machine translation
systems to look like speech recognizers’ outputs. One way is to develop an intermediate step
that matches two components by a third module which classifies based on ASR-generated and
ground-truth transcriptions [Dixon & Finch+ 11]. Several studies further revisit similar ideas and
propose the robustness of translation models against noisy inputs. In [Peitz & Wiesler+ 12], the
authors insert synthetic asr-like errors that might occur during transcribing utterances. This is
close to our asr-like preprocessing. A phone-to-word phrase table is used to translate a sequence
of phonemes generated by a recognizer to a sequence of words that is used as the source of MT
data. One can further add, remove or shift words in source sentences of MT training to simulate
ASR errors [Sperber & Neubig+ 17] or introduce a noise model on the source side of MT training
and experimentally illustrate that a certain amount of generative noise in training can be induced
to the MT model [Sperber & Niehues+ 17]. Similarly, it is shown that it is beneficial to include
noisy data for MT training [Gangi & Enyedi+ 19].

In addition to improving the interface between ASR and MT systems, the success of deep
neural networks in both machine translation and automatic speech recognition has inspired the
work of end-to-end speech translation. This motivates the research goal of the end-to-end models
to avoid some of the problems associated with cascade systems. End-to-end stand-alone direct
models translate speech in the source language directly into the target language text using RNN
attention models [Berard & Pietquin+ 16, Bansal & Kamper+ 17, Berard & Besacier+ 18] or using
self-attentive networks [Gangi & Negri+ 19a, Gangi & Negri+ 19c]. Despite the benefits of direct

132

6.8 Related Work

models over cascade systems, their training requires a moderate amount of paired speech-to-target
data, which is not easy to acquire. Therefore, these models are subject to overfitting.

Some techniques have been proposed to mitigate the lack of speech-to-target parallel training
data. These methods aim to use weakly supervised data, i.e., speech-to-source or source-to-target
pairs, in addition to fully supervised data, i.e., speech-to-target. As reported in the literature, all
of these methods give a boost to some degree; however, each has its own problems. Multi-task
learning aims at improving the generalization performance of a task using other related tasks as
co-trainers [Luong & Le+ 16]. Co-trainers can be text translation [Liu & Xiong+ 19] or speech
recognition [Weiss & Chorowski+ 17, Anastasopoulos & Chiang 18, Sperber & Neubig+ 19a]. A
common way of mitigating the weakly supervised data is to pretrain different components of the
network. The component of the direct models can be initialized using automatic speech recognition
[Bansal & Kamper+ 18, Bansal & Kamper+ 19, Stoian & Bansal+ 20] or speech recognition and
text translation [Berard & Besacier+ 18] model parameters.

In the absence of an adequate volume of training data, one remedy is to generate synthetic
data like back-translation [Sennrich & Haddow+ 16a], which is the most common method to
leverage monolingual data in machine translation. The idea is to use a pretrained model to convert
weakly supervised data into speech-to-target pairs for direct modeling. In [Jia & Johnson+ 19],
the authors apply a pretrained source-to-target MT model that translates ASR transcripts into
target texts. Furthermore, they use a pretrained text-to-speech model to synthesize speech data
from a bilingual text. The data scarcity problem by generating synthetic data from unlabeled
audio is also addressed using an ST engine [Pino & Xu+ 20].

Although the pretraining scheme and generating synthetic data usually seem to be effective,
they rely on previously trained models, which in some cases are expensive to obtain. Furthermore,
paired speech-to-source, source-to-target, or both are not always available. An unsupervised speech
translation system, in contrast, uses only independent monolingual corpora of speech and text,
even though its performance is behind the aforementioned approaches [Chung & Weng+ 19].

Another method is data augmentation, which generates new synthetic training examples by
corrupting the initial speech data and conserving the same target sentence as the original training
sample. Audio-level speech augmentation can be done in different ways, such as noise injection
(adding random noise), shifting time (transmitting time series forward/backward with a few
seconds), speed perturbation (expanding time series by a speed rate), and changing the frequency
pitch randomly. Besides increasing the quantity of training data, data augmentation often makes the
model invariant to the applied noise and enhances its generalization. Inspired by the augmentation
methods in ASR [Ko & Peddinti+ 15, Park & Chan+ 19, Nguyen & Stüker+ 20] as a remedy to
prevent overfitting, some efforts study the use of data augmentation in direct speech translation.
Similar to our work on data augmentation, other works also improve translation performance with
SpecAugment [Gangi & Negri+ 19b, McCarthy & Puzon+ 20]. The latter proposes a converter
model to resemble another speaker’s voice, resulting in a different audio sequence, thus better
generalization and Bleu scores. The work by [Gaido & Gangi+ 20] trains the model on suboptimal
segments either by fine-tuning or considering more context. Their method can be seen as an
augmentation approach that also solves the problem of badly-formed segmentation. They show
that the model becomes more robust to randomly segmented data.

Other research direction applies multilingual speech translation that allows the exploitation of
additional data [Gangi & Negri+ 19d, Inaguma & Duh+ 19, Wang & Pino+ 20].

In realistic data conditions where the cascade and end-to-end models are trained on non-equal
amounts of data, the performance of end-to-end, and in particular direct models is often behind
cascade systems. Being akin to cascade modeling but being optimized in an end-to-end fashion, the
idea of two-stage models is to provide source supervision by inducing transcripts. Since transcripts
as discrete representations are problematic for end-to-end training via back-propagation, two-step
models pass on hidden representations like decoder states or attention vectors from the ASR to

133

6 End-to-End Speech-to-Text Translation

the MT decoder [Anastasopoulos & Chiang 18, Sung & Liu+ 19, Sperber & Neubig+ 19a]. The
two-step models are driven by the same motivation as our tight integration cascade model.

The end-to-end methods either translate without transcribing or suffer from inconsistency
between transcriptions and translations [Sperber & Setiawan+ 20]. In contrast, our tight integration
cascade model generates both speech transcripts and translated texts with a high consistency
between them. The work in [Osamura & Kano+ 18] is the closest model to ours. The authors
employ an ASR model to produce word posteriors and train a translation model given the obtained
probabilistic features. They do not use renormalized posteriors and need to modify the MT
architecture to adapt it to the ASR posteriors, whereas our model collapses both models side by
side without any need for network modification. For more on speech translation developments, we
refer the reader to [Sperber & Paulik 20], which offers a brief survey of speech translation methods.

134

7. Scientific Achievements

As stated in Chapter 2, this work concentrated on rethinking the design of the attention-based
sequence-to-sequence models with the overall goal of establishing alternative models or advancing
the existing models in one or more aspects.

Attention Refinements

As one of the first goals, we verified results from some extensions to the recurrent-based attention
model from the literature and further refined the model. We explored different ways to incorporate
information from the previous output positions into the attention computation of the current
step. After comparing the performance of the standard and extended RNN attention models,
we observed that fertility with past alignment information marginally improves performance in
machine translation (Table 3.4). We also applied the same idea in attention-based automatic speech
recognition and showed some gains over the standard RNN attention model (Table 3.11). These
results encouraged us to include fertility with past alignments in the recurrent-based attention
baseline. However, the self-attentive model still outperforms the recurrent baseline in machine
translation (Tables 3.5 to 3.7) and is on par with it in automatic speech recognition if a sufficient
amount of training data is utilized (Table 3.13).

Two-Dimensional Sequence-to-Sequence Modeling

We contributed to the advancement of sequence-to-sequence modeling and proposed a novel 2D
recurrent-based sequence-to-sequence model, called 2D RNN, that establishes a 2D structure to
define the correspondence between input and output sequences. With this joint representation, the
input and output sequences meet at the final stage of encoding, allowing each of them to affect the
representation of the other. Despite the fact that many new challenges emerge when introducing
new stand-alone models, which then require finding the best design choice, we successfully applied
the model to machine translation and automatic speech recognition. The 2D RNN models are
comparable in performance with the RNN attention model, but behind the self-attentive models in
machine translation (Tables 4.4 to 4.6) on average, and they are competitive in speech recognition
(Tables 4.14 and 4.15). We also investigated the effect of bidirectional 2D RNN models where
we concatenated the forward and backward 2DLSTM layers and found that there is no real
benefit to using them (Table 4.1 for machine translation and Table 4.11 for automatic speech
recognition). We further studied the contribution of different models in translating long sentences.
2D modeling shows better generalization ability over unseen sequence lengths compared to the
attention-based models (Figure 4.9). However, adding relative positional encoding to the self-
attentive model improves its performance on long sequences. Furthermore, we extended the concept
of 2D sequence-to-sequence modeling to two-way translation. We translated both source-to-target
and target-to-source directions using a single model, and showed some initial results.

135

7 Scientific Achievements

Zero-order Hidden Markov Modeling

We reformulated the attention models and incorporated them into the direct HMM formulation
by introducing a latent variable as an alignment sequence. We developed end-to-end models
with tractable zero-order dependency on the alignments using the recurrent and self-attentive
networks without any external alignment information. We firstly explored a speedup technique that
increases training and decoding speed by a factor of three without loss of performance. Compared
zero-order HMM with the RNN attention and self-attentive models, we demonstrated that its
performance is behind the attention-based model on machine translation tasks. We observed that
adding the attention context vector makes the model comparable with the recurrent-based models
(Tables 5.5 to 5.7). However, the model showed a weaker performance on speech recognition
tasks and has not yet reached the performance of the baseline models (Tables 5.14 and 5.15).
Computed the alignment error rate of the models on golden alignments, we quantitatively found
out that the zero-order HMM model generates slightly more focused alignments than the attention
models (Table 5.9). Qualitative visualization of the alignment distribution of different models
also confirmed our findings concerning better explainability in machine translation and speech
recognition. Although alignments are of higher quality both qualitatively and quantitatively in
zero-order HMM than the attention-based models, this improvement does not transfer to the final
translation or recognition performance.

Development of End-to-End Models in the Context of Speech Translation

We examined the combination of CTC with the recurrent attention-based model and proposed
the use of SpecAugment for speech translation, resulting in a practical training procedure. The
CTC loss significantly improves the translation performance with faster training convergence
(Tables 6.5 and 6.6), and the SpecAugment method also achieves remarkable gains with better
generalization (Tables 6.7 and 6.8) in comparison with the recurrent attention baseline. We further
investigated and developed various methods to exploit all types of relevant available training data.
Sequential transfer learning shows significant improvement and eases the data scarcity issue of
the direct models (Tables 6.9 to 6.11). However, the multi-task scenarios result in a suboptimal
solution for the whole optimization problem (Table 6.12). Moreover, we proposed a tighter coupling
between speech recognition and text translation. In this context, the tight integration cascade
model is naturally decomposed into two steps. This is akin to cascade systems but preserves
end-to-end trainability and reduces the early-decision problem. The experimental results show
that the tight integration cascade model outperforms all other approaches under realistic data
conditions (Tables 6.14 to 6.18), is much more effective at exploiting auxiliary data, and probably
provides consistency between transcripts and translations due to its two-step nature. We illustrated
that the end-to-end models can realistically translate speech utterances as a substitute solution to
cascaded speech translation since they are able to compete with or outperform them.

136

8. Individual Contributions

According to §5.6 of the doctoral guidelines of RWTH Aachen University, Department of
Computer Science, September 11, 2018, this chapter highlights the author’s individual contributions
as opposed to teamwork with respect to previously published materials, summarizing Chapters
3 to 6 in one place. We note that for all papers in which Parnia Bahar is the first author, she
proposed the main idea and wrote the paper, typically with feedback from her co-authors, without
indicating so for each paper. We also mention here that the models described in Sections 3.5.3,
4.3, and 5.2 were initially implemented in our Blocks software based on the Theano framework,
and then were reimplemented in RETURNN to support more features in the future, as Theano
development was stopped. All experiments reported in this work used the RETURNN toolkit with
guidance for the implementation from Albert Zeyer.

The attention refinements in Section 3.5.3 were motivated by the works in the literature. They
were initially implemented in the scope of two Bachelor’s theses supervised by Jan-Thorsten
Peter. After stopping Theano development, all implementations were adapted by Albert Zeyer
in RETURNN to improve the recurrent attention models. The ease of network configuration in
RETURNN allowed the author to explore further extensions. The author was also involved in
integrating the self-attentive model in RETURNN where she verified the implementation done by
Albert Zeyer and Julian Schamper. In addition, she contributed to the self-attentive model training
and experimental results for speech recognition published in [Zeyer & Bahar+ 19] together with
Albert Zeyer. All authors wrote the paper together. The i6 colleagues have taken the self-attentive
configurations and the attention refinements for further research and development.

The 2D sequence-to-sequence modeling in Section 4.3 was proposed by the author. The first
attempt to create a GPU-based implementation of 2DLSTM was written directly using Theano by
the author. The core implementation of 2DLSTM used in this work is based on CUDA in C++,
which was written by Paul Voigtlaender [Voigtlaender & Doetsch+ 16]. The CUDA implementation
is faster than that in Theano, while it maintains the correctness of the gradient computation.
However, this version of implementation is suitable for images that are inherently 2D. Christopher
Brix adapted and reimplemented the 2DLSTM kernel function to ensure its usage for sequence
modeling. He also used the kernel as an attention component between the encoder and decoder
during his Bachelor’s thesis [Brix 18], which the author of this dissertation supervised. The
author implemented the different collapsing techniques described in Section 4.3.1 based on the
initial implementation by Christopher Brix. The author developed and designed the stand-alone
2D RNN model and conducted all experiments in machine translation [Bahar & Brix+ 18] and
automatic speech recognition [Bahar & Zeyer+ 19a]. Albert Zeyer assisted with discussions on
the experimental design and with data preparation for the speech recognition experiments. The
success of the 2D RNN model motivated the author, and she further contributed the idea and
model design of using a single two-dimensional layout for two-way bidirectional translation models,
i.e., source-to-target and target-to-source, as addressed in Section 4.4. To enable the two-way
translation model, Christopher Brix extended some parts of the code with the author, who did

137

8 Individual Contributions

further developments. The two-way translation model was published in [Bahar & Brix+ 21], in
which the experiments were done by the author together with Christopher Brix.

Inspired by internal works of the higher-order hidden Markov models for machine translation
[Alkhouli & Bretschner+ 16, Alkhouli & Ney 17, Wang & Alkhouli+ 17, Wang & Zhu+ 18], the
author began working on zero-order HMM and its integration to the attention model as explained
in Chapter 5. The author contributed the idea and the design of efficient algorithms to make it
tractable in a reasonable amount of time and published the findings for machine translation in
[Bahar & Makarov+ 20a]. Nikita Makarov implemented the zero-order HMM model in RETURNN
as part of his Bachelor’s thesis under the author’s supervision. The author suggested the usage of
various speedup techniques and hence implemented the topK approximation and other refinements
together with the student. Nikita Makarov only experimented with the self-attentive models,
while the recurrent-based zero-order models were the contributions of the author. Nikita Makarov
also helped write the paper. The author had discussions on neural HMM models for machine
translation with Tamer Alkhouli and Weiyue Wang. She further extended the idea to speech
recognition and made the necessary modifications to the model and its training procedure as
published in [Bahar & Makarov+ 20b]. The author designed the experimental setups based on
Albert Zeyer’s well-established baselines. Nikita Makarov and the author tried different extensions
to the model that are not included in this dissertation but can be found in [Makarov 19].

For Chapter 6, the author initiated a joint work with the colleagues at Application Technology
(AppTek): Evgeny Matusov, Patrick Wilken, Julian Schamper, Pavel Golik, and Albert Zeyer
[Matusov & Wilken+ 18]. The author later verified and established different end-to-end methods
from the literature with the help of Tobias Bieschke, who conducted some of the experiments
during his student work with the author’s supervision. Some of the findings were published in
[Bahar & Bieschke+ 19]. The author motivated the exploration of all discussed methods, configured
the network structures, borrowed promising methods from speech recognition, and established best
practices for direct modeling. She also applied spectrogram augmentation for speech translation
[Bahar & Zeyer+ 19b] by adapting it from recognition experiments by Albert Zeyer. The author
further developed the idea of the tight integration cascade model, proposed a practical solution for
its training and decoding, and published the results in [Bahar & Bieschke+ 21]. Tobias Bieschke
carried out the initial implementation of the search for two-step modeling during his Master’s
thesis. The author further implemented a feature for jointly generating transcripts and translations
in search through a single forward pass. In this dissertation, the hybrid HMM automatic speech
recognition model for the cascade system was trained by Pavel Golik, whereas the author trained
all the attention-based recognition models.

Apart from these contributions to the three tasks of automatic speech recognition, text and
speech translation, some other achievements were attained during the process of this work which are
not elaborated on in this dissertation. Among those achievements are the empirical investigation
of different optimization techniques and proposals for a practical recipe for better convergence
[Bahar & Alkhouli+ 17] and model sparsity for text translation [Brix & Bahar+ 20], as well as
teaching activities, supervision of students, collaboration on industrial projects, and participation
in several international evaluation campaigns. Jan-Thorsten Peter organized the participation
in IWSLT 2015 [Peter & Toutounchi+ 15] and WMT 2017 [Peter & Guta+ 17] evaluations. In
the former, the author trained an attention model and employed it in the N -best list rescoring of
phrase-based systems. She also implemented unknown target tokens replacement using IBM-1 after
search. In the latter system paper, she helped with the attention model training. In both papers,
the author contributed to writing the text. The participation in the IWSLT 2017 evaluation was
organized by the author jointly with Jan Rosendahl and Nick Rossenbach for the German↔English
translation tasks [Bahar & Rosendahl+ 17]. The experiments were carried out together with the
co-authors of the paper. The author contributed to the WMT 2018 evaluation participation and
wrote the paper with her co-authors [Schamper & Rosendahl+ 18]. The author was in charge of the

138

Chinese→English task. For the IWSLT 2018 speech translation participation, the author assisted
with machine translation training of the cascade models, carried out different ensemble schemes,
helped end-to-end direct model training, and contributed to writing the paper [Matusov & Wilken+

18]. The WMT 2019 German→English evaluation was prepared and built by Jan Rosendahl,
Christian Herold, and the author [Rosendahl & Herold+ 19]. All authors wrote the paper together.
The combination of methods presented in Chapter 6 culminated in the submissions to IWSLT 2020
that achieved high-ranking positions [Bahar & Wilken+ 20]. The author conducted all experiments
for direct speech translation. The ensemble of different cascade models created by the author
of this thesis placed first out of ten submissions for offline speech translation and first out of
eight systems for the non-native speech translation track. The direct speech translation system
built by the author also ranked second out of eight submissions in the end-to-end track. More
details can be found in [Ansari & Axelrod+ 20]. This achievement led to further developments
of end-to-end speech translation systems and showed the impact and continued usage of the
author’s contributions to RWTH Aachen University state-of-the-art speech translation system.
The developed end-to-end speech translation models have motivated external teams and have been
taken up by some of them.

139

A. Overview of the Corpora

A.1 Machine Translation

The workshop on statistical machine translation (WMT)1 is an annual evaluation campaign
that provides training and test data for a wide range of language pairs. Its main focus is the
translation of news texts.

A.1.1 WMT 2018 German→English

Table A.1 lists the statistics for the training, development, and test sets of the WMT 2018
German→English task2. The bilingual data contains the standard parallel WMT 2018 corpora, i.e.,
transcribed European parliament speeches (Europarl v7), data crawled from the web (Common
Crawl), news commentaries (News Commentary v12) and EU press releases (Rapid), in total
5.9M sentence pairs. newstest2015 is used for parameter tuning and newstest2017 and -2018

as the blind test sets. Using the Moses toolkit [Koehn & Hoang+ 07], on both German and
English sides, we remove sentence pairs with a large difference in their length, apply a simple
preprocessing pipeline consisting of minor text normalization steps (e.g., removal of some special
UTF-8 characters) followed by tokenization and true-casing from Moses. BPE segments words
into subword units. The BPE models are trained jointly for German and English on the training
data using 50k merge operations with a vocabulary threshold of 50 tokens to diminish the number
of rare words. The detailed statistics of the training, development, and test sets on both the word
and subword levels are shown in Table A.1.

A.1.2 WMT 2018 Chinese→English

The statistics for the training, development, and test sets of the Chinese→English task provided
for WMT 2018 are given in Table A.2. The bilingual data contains News Commentary v14,
Wiki Titles v1, UN Parallel Corpus v1 and the news domain of the China workshop on
machine translation (CWMT) with almost 26M sentence pairs. We use newsdev2017 for parameter
optimization and newstest2017 and -2018 as the unseen test sets. For this task, we first apply
uniblock3 [Gao & Wang+ 19], an approach to filter sentences consisting of illegal characters on
either side. After removing deduplication on both sides, which further removes around 5.8M
sentence pairs, we select 17M sentence pairs as the training data.

On the Chinese side, the THULAC4 segmenter [Li & Sun 09] is used. As a standard remedy,
we apply normalization, tokenization, and true-casing from Moses on the English text. The BPE
models are trained independently for Chinese and English on the training data using 32k symbols.

1http://www.statmt.org/
2http://www.statmt.org/wmt18
3https://github.com/ringoreality/uniblock
4https://github.com/thunlp/THULAC-Python

141

http://www.statmt.org/
http://www.statmt.org/wmt18
https://github.com/ringoreality/uniblock
https://github.com/thunlp/THULAC-Python

A Overview of the Corpora

Table A.1: Corpus statistics for WMT 2018 German→English. A joint BPE with 50k merge
operations is applied.

German English

train: sentences 5920281
running words 137.3M 144.9M

vocabulary words 2.2M 1.1M
running subwords 160.1M 157.7M

vocabulary subwords 45409 33522

newstest2015 (dev): sentences 2169
running words 44079 46831

vocabulary words 9891 7871
OOV words (rate) 1102 (2.4%) 562 (1.2%)
running subwords 54841 53097

vocabulary subwords 10458 8151
OOV subwords (rate) 0 (0.0%) 0 (0.0%)

newstest2017: sentences 3004
running words 60961 64765

vocabulary words 12760 9416
OOV words (rate) 1551 (2.54%) 684 (1.06%)
running subwords 76342 73107

vocabulary subwords 12576 9388
OOV subwords (rate) 0 (0.0%) 0 (0.0%)

newstest2018: sentences 2998
running words 64037 67527

vocabulary words 13067 10079
OOV words (rate) 1582 (2.47%) 791 (1.17%)
running subwords 79361 76854

vocabulary subwords 12979 9970
OOV subwords (rate) 0 (0.0%) 0 (0.0%)

A.1.3 WMT 2014 English→German

The statistics for the training, development, and test sets of the WMT 2014 English→German
task provided for the WMT 20145 are given in Table A.3. Similar to WMT German→English, the
bilingual data also contains Europarl v7, Common Crawl, and News Commentary v12, in total
4.5M sentence pairs. We follow a practical recipe from the fairseq toolkit6 [Ott & Edunov+ 19]
and use a random subset of the training data as the development set for parameter optimization,
newstest2013 to pick the model checkpoint, and newstest2014 as the blind test set. In contrast
to WMT 2018 German→English, after tokenization, we do not apply true-casing and let the model
itself learn it. A 40k joint BPE operation yields subword-level sentences.

A.2 Automatic Speech Recognition

A.2.1 Switchboard 300h

We conduct experiments on Switchboard-1 (LDC97S62) [Godfrey & Holliman+ 92]. This dataset
consists of approximately 260 hours of English narrow-band 8kHz telephone conversations about

5http://www.statmt.org/wmt14
6https://github.com/pytorch/fairseq

142

http://www.statmt.org/wmt14
https://github.com/pytorch/fairseq

A.2 Automatic Speech Recognition

Table A.2: Corpus statistics for WMT 2018 Chinese→English. A separate BPE with 32k merge
operations is applied.

Chinese English

train: sentences 17000000
running words 362M 396M

vocabulary words 1255279 747594
running subwords 372M 408M

vocabulary subwords 46983 32159

newsdev2017 (dev): sentences 2002
running words 53678 59816

vocabulary words 9182 8915
OOV words (rate) 747 (1.5%) 349 (0.6%)
running subwords 58701 65062

vocabulary subwords 9151 9163
OOV subwords (rate) 9 (0.0%) 17 (0.0%)

newstest2017: sentences 2001
running words 50108 54904

vocabulary words 8850 8245
OOV words (rate) 956 (1.9%) 429 (0.8%)
running subwords 55891 59696

vocabulary subwords 8878 8470
OOV subwords (rate) 8 (0.0%) 12 (0.0%)

newstest2018: sentences 3981
running words 96670 113449

vocabulary words 13384 12688
OOV words (rate) 1582 (1.6%) 755 (0.7%)
running subwords 106859 123016

vocabulary subwords 12417 12286
OOV subwords (rate) 12 (0.0%) 16 (0.0%)

various casual topics containing multiple speakers. A small portion of the training data is extracted
as the cross-validation set to tune parameters. We use Hub5’00 (LDC2002S09) to evaluate the
model, consisting of Switchboard and Callhome parts. We report Wer on both parts separately
and their average (Σ). Hub5’00 is used as the development set to select the best checkpoint, tune
language model scales, etc., and Hub5’01 (LDC2002S13) is considered as the test set.

Language Model

Language model training consists of Switchboard and Fisher parts of transcriptions resulting
in 27M words. There is an overlap of 3M out of 27M words between the acoustic and language
model training. The words are segmented into subword units using the same BPE operation as the
acoustic model. We use both an RNN-based [Sundermeyer & Schlüter+ 12] and a self-attentive-
based language model [Liu & Saleh+ 18, Al-Rfou & Choe+ 19] from [Irie 20]. The RNN-based
model is composed of an embedding layer of size 256 followed by two LSTM layers with 2048 cells.
A dropout of 0.2 is applied. It is trained using SGD, and gradient clipping [Zeyer & Irie+ 18]. The
self-attentive-based language model consists of 30 layers with 8 heads each. The dimensions of
the input embedding, self-attention, and feedforward layers are chosen to be 128, 512, and 2048,
respectively. It is trained using the standard SGD update rule with a learning rate of 1, a decay
factor of 0.9, and a gradient clipping of 1. More details can be found in [Zeyer & Bahar+ 19].

143

A Overview of the Corpora

Table A.3: Corpus statistics for WMT 2014 English→German. The development set is a random
subset of the training data. A joint BPE with 40k merge operations is applied.

English German

train: sentences 3961179
running words 103M 98M

vocabulary words 688k 1.4M
running subwords 112M 115M

vocabulary subwords 40356 42709

dev: sentences 40058
running words 1048320 995714

vocabulary words 53142 90108
OOV words (rate) 3662 (0.3%) 8157 (0.8%)
running subwords 1140227 1169686

vocabulary subwords 23913 32001
OOV subwords (rate) 38 (0.0%) 14 (0.0%)

newstest2013: sentences 3000
running words 65599 64251

vocabulary words 9552 12683
OOV words (rate) 472 (0.7%) 943 (1.5%)
running subwords 73637 78381

vocabulary subwords 9410 12315
OOV subwords (rate) 0 (0.0%) 0 (0.0%)

newstest2014: sentences 3003
running words 68948 64506

vocabulary words 10230 13818
OOV words (rate) 727 (1.1%) 2202 (3.4%)
running subwords 78182 81626

vocabulary subwords 9848 12719
OOV subwords (rate) 2 (0.0%) 768 (0.9%)

A.2.2 LibriSpeech 960h

LibriSpeech is a large-scale corpus of approximately 1000 hours of 16kHz read English speech
prepared by [Panayotov & Chen+ 15]7. The data are derived from reading audio books from the
LibriVox project and have been carefully segmented and aligned. The speakers in the corpus have
been ranked according to Wer of a model’s transcripts and designated as clean and other for
the more challenging (noisy) speech. Both the development and test sets are composed of both
male and female speakers.

Language Model

In order to train the language models, a corpus is employed in conjunction with the LibriSpeech
ASR corpus, including 800M words without overlap to the parallel acoustic data8. Two language
models are used for this task, with more details in [Irie 20]. The RNN-LM is deeper than that
for Switchboard, with 4 layers of LSTM with 2048 nodes each. The size of input embedding is
set to 128. No dropout is applied. The self-attentive-based LM consists of 24 layers of 8-head
self-attention with 1024 nodes. The feedforward hidden dimension is 4096 [Irie & Zeyer+ 19].

7http://www.openslr.org/12/
8https://www.openslr.org/11/

144

http://www.openslr.org/12/
https://www.openslr.org/11/

A.3 Speech Translation

A.3 Speech Translation

The international workshop on spoken language translation (IWSLT) is an annual evaluation
campaign centering on the translation of technical lectures, the TED talks9. The campaign is
particularly concerned with improving the translation of spoken and speech forms.

A.3.1 IWSLT English→German

IWSLT provides one of the oldest speech translation datasets and contains English transcripts of
TED talks aligned at the sentence level and augmented with German translations. The statistics
for the training, development, and test data of the IWSLT 2018 TED talks English→German
speech translation task [Cho & Fünfer+ 14] provided for IWSLT 201810 are given in Table A.4.
We realized that the provided audio-to-source-sentence alignments of the TED talks are often not
correct in any of the training, development, and test sets. As this can significantly degrade the
performance of the audio encoder for the end-to-end speech translation approaches described in
Chapter 6, we automatically recompute alignments by force-aligning each TED recording to its
corresponding source sentences, and apply heuristics to overcome the problem of transcription
gaps (speech segments without a translation in the parallel data) [Matusov & Wilken+ 18]. In
addition, we perform a manual revision of these new alignments on the development and test sets
to ensure reliable evaluation results.

Table A.4: Corpus statistics for speech translation IWSLT 2018 English→German. A joint BPE
of 20k symbols is applied.

English German

train: segments 171121
duration[h] 272h

running words 2624952 2833952
vocabulary 45289 113192

running subwords 2787311 3351851
vocabulary subwords 17909 19361

TED dev2010: segments 888
duration[h] 1h11m

running Words 17467 19044
vocabulary 3180 4058

OOV words (rate) 224 (1.3%) 623 (3.3%)
running subwords 18769 22676

vocabulary subwords 3520 4726
OOV subwords (rate) 13 (0.0%) 80 (0.4%)

TED test2015: segments 1080
duration[h] 1h52m

running words 17977 19743
vocabulary 3110 3971

OOV words (rate) 210 (1.2%) 521 (2.6%)
running subwords 19109 23004

vocabulary subwords 3452 4630
OOV subwords (rate) 8 (0.4%) 92 (0.4%)

9https://www.ted.com/talks
10https://sites.google.com/site/iwsltevaluation2018/Lectures-task

145

https://www.ted.com/talks
https://sites.google.com/site/iwsltevaluation2018/Lectures-task

A Overview of the Corpora

Table A.5: Corpus statistics for speech translation MuST-C English→Spanish. Separate BPE of
5k and 32k symbols are used on English and Spanish, respectively.

English Spanish

train: segments 261794
duration[h] 496h

running words 6138743 5742761
vocabulary 69457 112753

running subwords 6181807 6154156
vocabulary subwords 4934 30879

dev: segments 1316
duration[h] 2h33m

running words 32194 30524
vocabulary 3898 5135

OOV words (rate) 154 (0.5%) 341 (1.1%)
running subwords 31135 32560

vocabulary subwords 3234 5412
OOV subwords (rate) 0 (0.0%) 6 (0.0%)

testHE: segments 600
duration[h] 1h15m

running words 14306 13551
vocabulary 2601 3165

OOV words (rate) 104 (0.7%) 151 (1.1%)
running subwords 14587 14458

vocabulary subwords 2465 3398
OOV subwords (rate) 1 (0.0%) 6 (0.0%)

testCOMMON: segments 2502
duration[h] 4h10m

running words 54344 49034
vocabulary 5757 7708

OOV words (rate) 354 (0.7%) 592 (1.2%)
running subwords 54398 52572

vocabulary subwords 3891 7773
OOV subwords (rate) 0 (0.0%) 13 (0.0%)

Additional Machine Translation Data In line with the IWSLT 2018 evaluation campaign speci-
fications, we use the TED, OpenSubtitles2018 [Lison & Tiedemann 16] corpora, as well as the
data provided by WMT 2018, i.e., (Europarl, ParaCrawl, CommonCrawl, News Commentary, and
Rapid) as the potential training data for the machine translation system training, amounting
to 65M lines of parallel sentence pairs. We then filter this data based on several heuristics. We
follow a similar scheme to that described in [Matusov & Wilken+ 18] to filter noisy segments
with programming code and XML markup. Sentences with at least 3 and at most 80 words are
kept. Those sentence pairs whose source and target lengths differ by a factor of 5 or more are also
ignored. Doing so results in a total of 37.6M aligned sentence pairs with 556M and 615M words on
the English and German sides, respectively. On the German text, we apply the standard simple
preprocessing pipeline consisting of minor text normalization steps, tokenization, and true-casing
using Moses, followed by 20k BPE segmentation with a vocabulary threshold of 50 tokens.

Additional Automatic Speech Recognition Data A total of 390 hours of transcribed speech
from the TED-LIUM v2 and IWSLT speech translation corpora are used where we exclude the
black-listed talks. The TED-LIUM corpus is used to create the pronunciation lexicon. Altogether,

146

A.3 Speech Translation

Table A.6: Corpus statistics for speech translation LibriSpeech English→French. A joint BPE of
5k symbols is applied.

English French

train: segments 47271
duration[h] 100h

running words 960999 1091118
vocabulary 33052 106310

running subwords 1315889 1801264
vocabulary subwords 3657 4170

dev: segments 1071
duration[h] 2h

running words 18651 19226
vocabulary 3680 6099

OOV words (rate) 188 (1.0%) 1010 (5.3%)
running subwords 25012 31098

vocabulary subwords 2581 2835
OOV subwords (rate) 0 (0.0%) 0 (0.0%)

test: segments 2048
duration[h] 3h40m

running words 36336 37416
vocabulary 5689 9963

OOV words (rate) 475 (1.3%) 1855 (5.0%)
running subwords 48651 60336

vocabulary subwords 2926 3205
OOV subwords (rate) 2 (0.0%) 2 (0.0%)

the ASR data contains 260K segments with approximately 5M subwords.

A.3.2 MuST-C English→Spanish

The data statistics for the training, development, and test sets of the MuST-C English→Spanish
speech translation task [Gangi & Cattoni+ 19]11 are given in Table A.5. The direct speech
translation data includes around 496 hours of transcribed and translated speech data for training.

Additional Machine Translation Data For English→Spanish, we select a huge available bilingual
dataset downloaded from the OPUS project [Tiedemann 12]12. This contracts from the IWSLT TED
task where there is a compulsion on allowed training data. The total bilingual machine translation
data is composed of the MuST-C, TED, News-Commentary, Europarl, Wikipedia, CommonCrawl,
WMT-News, OpenSubtitles, and JRC-Acquis corpora. A filtering approach based on sentence
similarity reduces the size of the training data. After filtering, we obtain around 47.7M sentence
pairs, which is equal to 520M and 477M tokens in English and Spanish, respectively. The large
majority of MT parallel data comes from text sources and thus includes punctuation marks, digits,
and special symbols. We apply additional preprocessing to the English side of the data to make it
look like speech transcripts produced by the ASR system [Matusov & Wilken+ 18].

Additional Automatic Speech Recognition Data To train ASR models, more data is taken, a
total of approximately 2300 hours of transcribed speech including ST-EuroParl [Iranzo-Sánchez &

11https://ict.fbk.eu/must-c/
12https://opus.nlpl.eu/

147

https://ict.fbk.eu/must-c/
https://opus.nlpl.eu/

A Overview of the Corpora

Silvestre-Cerdà+ 20]13, How2 [Sanabria & Caglayan+ 18]14, MuST-C, TED-LIUM release3 [Rousseau
& Deléglise+ 14] (excluding the black-listed talks), LibriSpeech, Mozilla Common Voice15, and
IWSLT TED. Similar to IWSLT 2018, we apply an automatic re-alignment process to improve the
quality of TED talk segmentation. We also fine-tune the models on the ASR part of the MuST-C
English→Spanish speech translation data.

Additional Monolingual Data To train language models, we select 2.1B tokens where the in-
domain text data can be acquired through publicly available data. The language models are trained
using additional data (extracted from the Opensubtitles, gigaword and WMT news corpora) of
1.2B tokens where a small portion of it (50M tokens) corresponds to the transcription of 2300
hours of audio. This additional data is 24 times larger.

A.3.3 LibriSpeech English→French

The LibriSpeech English→French speech translation dataset [Berard & Besacier+ 18] is an
augmentation of its ASR corpus. It contains English utterances from audio books automatically
aligned with French text, resulting in 100 hours of clean triple data. Table A.6 presents the corpus
statistics of all available sets. In contrast to the previous tasks, we utilize neither additional ASR
nor MT data and study LibriSpeech English→French as a low-resource task.

13https://www.mllp.upv.es/europarl-st/
14https://github.com/srvk/how2-dataset
15https://voice.mozilla.org/en/datasets

148

https://www.mllp.upv.es/europarl-st/
https://github.com/srvk/how2-dataset
https://voice.mozilla.org/en/datasets

B. Additional Results

Chapter 4

This section provides the detailed results on length analysis in Chapter 4.
Table B.1 shows the performance difference of the models with respect to source sequence lengths

on WMT German→English. The sentences are obtained from the concatenation of newstest2008-
2018. Sentence pairs are grouped based on the source length J with intervals of 25 subwords each.
The number of sentences per bin is given by |G|.

Table B.1: Performance difference of the models with respect to source sequence lengths on WMT
2018 German→English.

model max J ≤ 25 26 ≤ J ≤ 50 51 ≤ J ≤ 75 76 ≤ J ≤ 100 J ≥ 101

length |G0:25| = 1070 |G26:50| = 6333 |G51:75| = 5084 |G76:100| = 1880 |G101:inf | = 755

in training Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

self-attentive 100 25.9 64.1 26.5 62.9 26.8 62.8 26.3 63.7 19.2 70.7
75 26.0 63.9 26.6 62.6 26.6 62.9 22.4 67.2 14.1 75.3
50 25.9 64.1 26.3 62.7 20.3 67.8 13.8 74.8 7.7 81.9

+ d = 1024 100 25.6 65.4 26.3 63.3 26.4 63.1 26.1 64.3 21.6 68.8
75 25.9 64.4 26.6 62.8 27.0 62.5 25.3 63.8 15.7 73.1
50 25.6 64.7 26.2 62.8 22.1 66.2 14.6 73.7 7.8 81.3

+ relative encoding 100 26.1 64.3 26.3 63.3 26.6 63.3 26.7 63.8 24.2 67.5
75 25.8 63.8 26.4 62.8 26.6 62.8 26.2 63.6 23.2 66.9
50 25.5 64.3 26.1 62.9 25.8 63.0 25.0 63.8 21.5 67.3

RNN attention 100 25.4 63.3 26.0 62.5 26.1 63.0 25.8 63.7 23.0 68.2
75 25.1 63.5 26.0 62.5 26.2 62.8 25.5 64.0 23.1 67.5
50 25.2 63.7 26.0 62.3 25.5 62.6 21.3 66.6 14.5 73.9

2D RNN 100 24.9 65.0 25.4 64.4 25.7 65.0 26.0 64.8 24.0 68.1
75 24.8 65.0 25.1 64.6 25.2 65.1 24.9 66.1 22.1 69.1
50 24.5 65.5 25.1 64.3 24.9 64.7 25.0 65.2 21.9 69.8

149

B Additional Results

Chapter 6

This section is reserved for detailed secondary results for different speech translation tasks in
Chapter 6.

IWSLT English→German

Automatic Speech Recognition Results Table B.2 shows the error rates of ASR models for
IWSLT 2018 English→German. The hybrid HMM model with a 4-gram language model is on par
with the attention-based model. The count-based LM has the OOV rate of 0.2% on dev2010 and
0.5% on test2015. The language models’ perplexities are 133 and 122 on dev2010 and test2015,
respectively. It confirms that a carefully trained attention model can substitute the hybrid HMM
model. This observation along with the fact that hybrid HMM are out of the scope of this work
persuaded us to continue only with the attention-based ASR model in the cascaded pipeline.

Table B.2: The word error rate of the ASR models on IWSLT English→German.

AM LM Wer
[%]

#

dev2010 test2015 parameters

hybrid HMM [Matusov & Wilken+ 18] 4-gram 11.1 10.7 26M
RNN attention none 11.2 10.6 227M

MuST-C English→Spanish

Automatic Speech Recognition Results For the MuST-C English→Spanish speech translation
task, we train self-attentive in addition to the RNN model. Table B.3 compares the results in
terms of Wer. Since we utilize a large amount of the ASR data (approx 2300h), the self-attentive
model performs as strong as the recurrent model on average (lines 1 and 4).

Table B.3: The word error rate of ASR models on MuST-C English→Spanish.

AM LM Wer
[%]

#

test-HE test-COMMON parameters

RNN attention none 7.3 10.4 162M
RNN 6.3 9.5 +130M
self-attentive 6.0 9.1 +308M

self-attentive none 7.5 10.5 85M
RNN 6.2 9.5 +130M
self-attentive 5.9 9.4 +308M

For this task, we also train two language models: LSTM with 4 layers of size 2048 each and a
24-layer 8-head self-attention LM with 1024 nodes. The details of the LM data (including 2.1B
tokens) are discussed in Section A.3.2. The language model score is combined with that of the
acoustic attention-based model as in Equation 3.72 in decoding. Table B.4 indicates that the deep
self-attentive model has lower perplexity, thus it leads to relatively lower Wer. The use of external
language models, as presented in Table B.3 directly affects the performance of the ASR models.

150

Table B.4: The language model perplexities for MuST-C English→Spanish.

LM test-HE test-COMMON # parameters

RNN 45.4 46.2 130M
self-attentive 35.3 35.9 308M

Cascade Speech Translation Results As reported in Table B.3, the source language models
reduce the word error rates for the MuST-C task. Hence, we integrate them on the ASR side of
the cascade system and show the results in Table B.5.

Table B.5: Performance of the ST cascade systems on MuST-C English→Spanish.

ASR MT LM test-HE test-COMMON

Bleu
[%]

Ter
[%]

Bleu
[%]

Ter
[%]

RNN RNN none 37.6 46.5 30.2 55.4
RNN 38.5 45.8 31.2 54.3
self-attentive 38.9 45.3 31.3 54.3

self-attentive none 37.9 46.5 31.0 54.8
RNN 39.0 45.7 32.1 53.6
self-attentive 39.5 45.4 32.2 53.6

self-attentive RNN none 37.1 47.1 30.2 55.1
RNN 38.6 45.6 31.2 54.2
self-attentive 38.7 45.3 31.2 54.5

self-attentive none 37.5 47.4 31.2 54.7
RNN 38.7 46.3 32.2 53.3
self-attentive 39.0 46.0 31.5 55.7

LibriSpeech English→French

Automatic Speech Recognition Results The word error rates on the LibriSpeech
English→French sets in Table B.6 also indicate the reasonably good performance of the RNN
attention model with 16.2% on the test set.

Table B.6: The word error rate of the ASR model on LibriSpeech English→French.

AM LM Wer
[%]

#

dev test parameters

RNN attention none 16.4 16.2 168M

151

List of Figures

3.1 An example diagram of LSTM for an input. 21

3.2 Simple recurrent-based language model with its dependencies. 23

3.3 Architecture of the encoder-decoder network with a fixed-length source sentence
representation. 24

3.4 Attention weight matrix in which each cell presents the normalized attention weights
between the corresponding source and target tokens. 26

3.5 Architecture of the encoder-decoder network equipped with an attention layer. . . 29

3.6 Self-attentive architecture composed of the deep stacked encoder and decoder layers
with cross-attention between the source and target sentences. 33

4.1 Two-dimensional LSTM unfolded over both axes for one time step. 54

4.2 Diagram of the 2DLSTM cell for an input. 56

4.3 2D RNN model using the forward 2DLSTM layer. 57

4.4 Collapsing the output in the 2D RNN model. 58

4.5 Order of processing in 2DLSTM. 60

4.6 Four directions in which the 2DLSTM layer can process the input. 60

4.7 Bidirectional 2D RNN model using the concatenation of the forward and backward
2DLSTM layers at each position. 61

4.8 Two-way translation model using 2DLSTM on top of the source and target encoders. 63

4.9 Performance versus the source sequence length on WMT German→English. 68

5.1 Model dependency between the encoder and decoder in the zero-order HMM. . . . 84

5.2 Training speed and translation quality versus different values of K in topK approx-
imation on the development set of WMT 2018 German→English. 88

5.3 Attention distribution of the models in forced decoding. 93

5.4 Attention distribution of the models on LibriSpeech dev-other. 98

6.1 Abstract paradigm of the speech translation task. 104

6.2 Direct speech translation model based on the encoder-decoder architecture with
the underlying assumption that no source transcription is available. 106

6.3 Spectrogram augmentation of the input with no augmentation, time masking,
frequency masking, and both maskings used. 108

6.4 Adapter layer between two pretrained components. 110

6.5 Multi-task end-to-end speech translation. 111

6.6 tight integration cascade. 114

6.7 Learning curve of the direct ST attention model based on the logarithm of training
perplexity with and without the CTC auxiliary loss. 121

6.8 Average of the logarithm of the perplexity of the training and development sets. . 123

153

List of Tables

3.1 Commonly used activation functions in neural networks. 18

3.2 Attention scoring functions. 25

3.3 Comparison of the attention scoring functions on WMT 2018 German→English. . 39

3.4 Comparison of the attention refinements on WMT 2018 German→English. 40

3.5 Baseline results on WMT 2018 German→English. 40

3.6 Baseline results on WMT 2018 Chinese→English. 40

3.7 Baseline results on WMT 2014 English→German. 41

3.8 Comparison of the baselines with the other works recently published on WMT 2014
English→German. 41

3.9 Language model subword-level perplexities on Switchboard and LibriSpeech. . . . 44

3.10 Comparison of the attention scoring functions on Switchboard. 44

3.11 Comparison of attention refinements on Switchboard. 45

3.12 Baseline results on Switchboard. 45

3.13 Baseline results on LibriSpeech. 46

3.14 Comparison of the baselines with the recently published works on LibriSpeech. . . 47

4.1 Uni- and bidirectional 2D RNN results using different aggregations on WMT 2018
German→English. 65

4.2 2D RNN results using different aggregations on WMT 2018 Chinese→English. . . 65

4.3 2D RNN results using different encoders on WMT 2018 German→English. 66

4.4 Performance comparison between the 2D RNN model and the baselines on WMT
2018 German→English. 66

4.5 Performance comparison between the 2D RNN model and the baselines on WMT
2018 Chinese→English. 66

4.6 Performance comparison between the 2D RNN model and the baselines on WMT
2014 English→German. 67

4.7 Performance comparison of the 2D RNN with the 2D CNN model on IWSLT and
WMT 2014 German→English. 69

4.8 Comparison of the 2D RNN model with recently published works on WMT 2014
English→German. 70

4.9 Translation performance of the two-way model on WMT 2018 German↔English. . 71

4.10 Translation performance of the two-way model on WMT 2017 Turkish↔English. . 71

4.11 Uni- and bidirectional 2D RNN model performance using different aggregations on
Switchboard. 72

4.12 Uni- and bidirectional 2D RNN model performance on Switchboard when dropout
is applied between the recurrent time steps in 2DLSTM. 73

4.13 Uni- and bidirectional 2D RNN model performance on LibriSpeech. 73

155

List of Tables

4.14 Performance comparison between the 2D RNN model and baselines on Switchboard
with and without the language models in shallow fusion decoding. 74

4.15 Performance comparison between the 2D RNN model and baselines on LibriSpeech
with and without the language models in shallow fusion decoding. 74

4.16 Comparison of the 2D RNN model with recently published works on LibriSpeech. . 75

5.1 Design choices of the zero-order HMM architectures. 85

5.2 Dependency comparison between the attention and zero-order HMM models. . . . 86

5.3 Performance comparison of the zero-order HMM models with and without the topK
approximation on WMT 2018 German→English. 87

5.4 Comparison of different K values with respect to Bleu on the development set of
WMT 2018 German→English in decoding. 88

5.5 Performance comparison between the zero-order HMM models and the baselines on
WMT 2018 German→English. 89

5.6 Performance comparison between the zero-order HMM models and the baselines on
WMT 2018 Chinese→English. 89

5.7 Performance comparison between the zero-order HMM models and the baselines on
WMT 2014 English→German. 90

5.8 Alignment error rates of the self-attentive models on RWTH German→English
golden alignments in forced decoding where the target sequence is given. 91

5.9 Alignment error rate of the models on RWTH German→English golden alignments
in forced decoding where the target sequence is given. 91

5.10 Averaged entropy scores of the attention distributions over the newstest2018 test
set for the self-attentive-based models. 92

5.11 Log-linear combination of the attention and zero-order HMM models on WMT 2018
German→English in both decoding and training. 95

5.12 Performance comparison of zero- and first-order HMMs on three translation tasks. 95

5.13 Comparison of zero-order HMMs with recently published works on WMT 2014
English→German. 96

5.14 Performance comparison between the zero-order HMMs and baselines on Switch-
board with and without the language models in shallow fusion decoding. 97

5.15 Performance comparison between the zero-order HMMs and baselines on LibriSpeech
with and without the language models in shallow fusion decoding. 97

5.16 Comparison of the zero-order HMM with recently published works on LibriSpeech. 99

6.1 Performance comparison of the MT and cascade ST systems using different inter-
mediate processing on IWSLT English→German. 118

6.2 Comparison of text MT and cascade ST systems on IWSLT English→German. . . 119

6.3 Comparison of text MT and cascade ST systems on MuST-C English→Spanish. . . 119

6.4 Comparison of text MT and cascade ST systems on LibriSpeech English→French. 119

6.5 Direct ST results with CTC-attention loss on IWSLT English→German. 120

6.6 Direct ST results with CTC-attention loss on MuST-C English→Spanish. 121

6.7 Direct ST results with SpecAugment on IWSLT English→German. 122

6.8 Direct ST results with SpecAugment on MuST-C English→Spanish. 122

6.9 Comparison of the different pretraining schemes used in the direct ST model on
IWSLT English→German. 124

6.10 Direct ST results with pretraining on MuST-C English→Spanish. 124

6.11 Direct ST results with pretraining on LibriSpeech English→French. 124

6.12 Multi-task learning results on IWSLT English→German. 125

156

List of Tables

6.13 Comparison of different sharpening factors against performance scores on the cascade
of ASR and MT models in decoding. 126

6.14 Performance comparison of the tight integration cascade model with other methods
on IWSLT English→German. 127

6.15 Performance comparison of the tight integration cascade model with other methods
on MuST-C English→Spanish. 128

6.16 Performance comparison of the tight integration cascade model with other methods
on LibriSpeech English→French. 128

6.17 Impact of freezing ASR in the tight integration cascade model training. 129
6.18 Comparison of the models with recently published works on LibriSpeech

English→French. 130

A.1 WMT 2018 German→English data statistics. 142
A.2 WMT 2018 Chinese→English data statistics. 143
A.3 WMT 2014 English→German data statistics. 144
A.4 Speech translation IWSLT 2018 English→Geramn data statistics. 145
A.5 Speech translation MuST-C English→Spanish data statistics. 146
A.6 Speech translation LibriSpeech English→French data statistics. 147

B.1 Performance difference of models by sequence lengths on WMT German→English. 149
B.2 Word error rate of the ASR models on IWSLT English→German. 150
B.3 Word error rate of ASR models on MuST-C English→Spanish. 150
B.4 Language model perplexities for MuST-C English→Spanish. 151
B.5 Performance of the ST cascade systems on MuST-C English→Spanish. 151
B.6 Word error rate of the ASR model on LibriSpeech English→French. 151

157

Bibliography

[Abadi & Agarwal+ 15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, X. Zheng: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015.

[Aharoni & Goldberg 17] R. Aharoni, Y. Goldberg: Morphological Inflection Generation with
Hard Monotonic Attention. In Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 2004–2015, Vancouver, Canada, July - August 2017.

[Al-Rfou & Choe+ 19] R. Al-Rfou, D. Choe, N. Constant, M. Guo, L. Jones: Character-Level
Language Modeling with Deeper Self-Attention. In Conference on Artificial Intelligence (AAAI),
pp. 3159–3166, Honolulu, HI, USA, January - February 2019.

[Alkhouli 20] T.A.N. Alkhouli: Alignment-based Neural Networks for Machine Translation. Ph.D.
thesis, RWTH Aachen University, 2020.

[Alkhouli & Bretschner+ 16] T. Alkhouli, G. Bretschner, J. Peter, M. Hethnawi, A. Guta, H. Ney:
Alignment-based Neural Machine Translation. In Workshop on Statistical Machine Translation
(WMT), pp. 54–65, Berlin, Germany, August 2016.

[Alkhouli & Bretschner+ 18] T. Alkhouli, G. Bretschner, H. Ney: On the Alignment Problem in
Multi-Head Attention-based Neural Machine Translation. In Workshop on Statistical Machine
Translation (WMT), pp. 177–185, Belgium, Brussels, October - November 2018.

[Alkhouli & Ney 17] T. Alkhouli, H. Ney: Biasing Attention-based Recurrent Neural Networks
using External Alignment Information. In Workshop on Statistical Machine Translation (WMT),
pp. 108–117, Copenhagen, Denmark, September 2017.

[Allen 87] R.B. Allen: Several Studies on Natural Language and Back-Propagation. In IEEE
International Conference on Neural Networks, San Diego, CA, USA, June 1987.

[Anastasopoulos & Chiang 18] A. Anastasopoulos, D. Chiang: Tied Multitask Learning for
Neural Speech Translation. In Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL), pp. 82–91, New Orleans, LA, USA, June 2018.

[Ansari & Axelrod+ 20] E. Ansari, A. Axelrod, N. Bach, O. Bojar, R. Cattoni, F. Dalvi, N. Durrani,
M. Federico, C. Federmann, J. Gu, F. Huang, K. Knight, X. Ma, A. Nagesh, M. Negri, J. Niehues,
J. Pino, E. Salesky, X. Shi, S. Stüker, M. Turchi, A. Waibel, C. Wang: Findings of the IWSLT

159

BIBLIOGRAPHY

2020 Evaluation Campaign. In International Workshop on Spoken Language Translation
(IWSLT), pp. 1–34, Seattle, WA, USA, July 2020.

[Arivazhagan & Cherry+ 19] N. Arivazhagan, C. Cherry, W. Macherey, C. Chiu, S. Yavuz, R. Pang,
W. Li, C. Raffel: Monotonic Infinite Lookback Attention for Simultaneous Machine Translation.
In A. Korhonen, D.R. Traum, L. Màrquez, editors, Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 1313–1323, Florence, Italy, July - August 2019.

[Auli & Galley+ 13] M. Auli, M. Galley, C. Quirk, G. Zweig: Joint Language and Translation
Modeling with Recurrent Neural Networks. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1044–1054, Seattle, WA, USA, October 2013.

[Auli & Gao 14] M. Auli, J. Gao: Decoder Integration and Expected BLEU Training for Recurrent
Neural Network Language Models. In Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 136–142, Baltimore, MD, USA, June 2014.

[Ba & Kiros+ 16] L.J. Ba, J.R. Kiros, G.E. Hinton: Layer Normalization. CoRR, Vol.
abs/1607.06450, 2016.

[Bahar & Alkhouli+ 17] P. Bahar, T. Alkhouli, J.T. Peter, C.J.S. Brix, H. Ney: Empirical
Investigation of Optimization Algorithms in Neural Machine Translation. The Prague bulletin
of mathematical linguistics, Vol. 108, pp. 13–26, May 2017.

[Bahar & Bieschke+ 19] P. Bahar, T. Bieschke, H. Ney: A Comparative Study on End-to-End
Speech to Text Translation. In IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pp. 792–799, Sentosa, Singapore, December 2019.

[Bahar & Bieschke+ 21] P. Bahar, T. Bieschke, R. Schlueter, H. Ney: Tight Integrated End-to-
End Training for Cascaded Speech Translation. In IEEE Spoken Language Technology Workshop
(SLT), pp. 950–957, Shenzhen, China, January 2021.

[Bahar & Brix+ 18] P. Bahar, C. Brix, H. Ney: Towards Two-Dimensional Sequence to Sequence
Model in Neural Machine Translation. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 3009–3015, Brussels, Belgium, November 2018.

[Bahar & Brix+ 21] P. Bahar, C. Brix, H. Ney: Two-Way Neural Machine Translation: A Proof
of Concept for Bidirectional Translation Modeling using a Two-Dimensional Grid. In IEEE
Spoken Language Technology Workshop (SLT), pp. 1065–1070, Shenzhen, China, January 2021.

[Bahar & Makarov+ 20a] P. Bahar, N. Makarov, H. Ney: Investigation of Transformer-based
Latent Attention Models for Neural Machine Translation. In Association for Machine Translation
in the Americas (AMTA), pp. 7–20, Orlando, FL, USA, September 2020.

[Bahar & Makarov+ 20b] P. Bahar, N. Makarov, A. Zeyer, R. Schlüter, H. Ney: Exploring a
Zero-Order Direct HMM based on Latent Attention for Automatic Speech Recognition. In IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 7854–7858,
Barcelona, Spain, May 2020.

[Bahar & Rosendahl+ 17] P. Bahar, J. Rosendahl, N. Rossenbach, H. Ney: The RWTH Aachen
Machine Translation Systems for IWSLT 2017. In International Workshop on Spoken Language
Translation (IWSLT), pp. 29–34, Tokyo, Japan, December 2017.

[Bahar & Wilken+ 20] P. Bahar, P. Wilken, T. Alkhouli, A. Guta, P. Golik, E. Matusov, C. Herold:
Start-Before-End and End-to-End: Neural Speech Translation by AppTek and RWTH Aachen

160

BIBLIOGRAPHY

University. In International Workshop on Spoken Language Translation (IWSLT), pp. 44–54,
Seattle, WA, USA, July 2020.

[Bahar & Zeyer+ 19a] P. Bahar, A. Zeyer, R. Schlüter, H. Ney: On using 2D Sequence-to-Sequence
Models for Speech Recognition. In IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pp. 5671–5675, Brighton, UK, May 2019.

[Bahar & Zeyer+ 19b] P. Bahar, A. Zeyer, R. Schlüter, H. Ney: On using SpecAugment for
End-to-End Speech Translation. In International Workshop on Spoken Language Translation
(IWSLT), Hong Kong, China, November 2019.

[Bahdanau & Cho+ 15] D. Bahdanau, K. Cho, Y. Bengio: Neural Machine Translation by Jointly
Learning to Align and Translate. In International Conference on Learning Representations
(ICLR), San Diego, CA, USA, May 2015.

[Bahdanau & Chorowski+ 16] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, Y. Bengio:
End-to-End Attention-based Large Vocabulary Speech Recognition. In IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 4945–4949, Shanghai,
China, March 2016.

[Bahl & Jelinek+ 83] L.R. Bahl, F. Jelinek, R.L. Mercer: A Maximum Likelihood Approach
to Continuous Speech Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 5, No. 2, pp. 179–190, 1983.

[Baker 90] J.K. Baker: Stochastic Modeling for Automatic Speech Understanding, 297–307. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[Baldi & Pollastri 03] P. Baldi, G. Pollastri: The Principled Design of Large-Scale Recursive
Neural Network Architectures–DAG-RNNs and the Protein Structure Prediction Problem.
Journal of Machine Learning Research, Vol. 4, pp. 575–602, 2003.

[Bansal & Kamper+ 17] S. Bansal, H. Kamper, A. Lopez, S. Goldwater: Towards Speech-to-
Text Translation without Speech Recognition. In Conference of the European Chapter of the
Association for Computational Linguistics (EACL), pp. 474–479, Valencia, Spain, April 2017.

[Bansal & Kamper+ 18] S. Bansal, H. Kamper, K. Livescu, A. Lopez, S. Goldwater: Low-Resource
Speech-to-Text Translation. In Annual Conference of the International Speech Communication
Association (INTERSPEECH), pp. 1298–1302, Hyderabad, India, September 2018.

[Bansal & Kamper+ 19] S. Bansal, H. Kamper, K. Livescu, A. Lopez, S. Goldwater: Pre-training
on High-Resource Speech Recognition Improves Low-Resource Speech-to-Text Translation. In
Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL), pp. 58–68, Minneapolis, MN, USA, June 2019.

[Baquero-Arnal & Iranzo-Sánchez+ 19] P. Baquero-Arnal, J. Iranzo-Sánchez, J. Civera, A. Juan:
The MLLP-UPV Spanish-Portuguese and Portuguese-Spanish Machine Translation Systems for
WMT19 Similar Language Translation Task. In Workshop on Statistical Machine Translation
(WMT), pp. 179–184, Florence, Italy, August 2019.

[Bastien & Lamblin+ 12] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I.J. Goodfellow, A. Berg-
eron, N. Bouchard, Y. Bengio: Theano: New Features and Speed Improvements, 2012.

[Battenberg & Chen+ 17] E. Battenberg, J. Chen, R. Child, A. Coates, Y. Gaur, Y. Li, H. Liu,
S. Satheesh, A. Sriram, Z. Zhu: Exploring Neural Transducers for End-to-End Speech Recog-
nition. In IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp.
206–213, Okinawa, Japan, December 2017.

161

BIBLIOGRAPHY

[Baum & Eagon 67] L.E. Baum, J.A. Eagon: An Inequality with Applications to Statistical
Estimation for Probabilistic Functions of Markov Processes and to a Model for Ecology. Bulletin
of the American Mathematical Society, Vol. 73, pp. 360–363, 1967.

[Baxter 00] J. Baxter: A Model of Inductive Bias Learning. Journal of Artificial Intelligence
Research, Vol. 12, pp. 149–198, 2000.

[Bayes 63] T. Bayes: An essay towards solving a problem in the doctrine of chances. Philosophical
Transaction of the Royal Society of London, Vol. 53, pp. 370–418, 1763.

[Belinkov & Bisk 18] Y. Belinkov, Y. Bisk: Synthetic and Natural Noise Both Break Neural Ma-
chine Translation. In International Conference on Learning Representations (ICLR), Vancouver,
Canada, April - May 2018.

[Bellegarda 97] J.R. Bellegarda: A latent Semantic Analysis Framework for Large-Span Language
Modeling. In European Conference on Speech Communication and Technology (EUROSPEECH),
Rhodes, Greece, September 1997.

[Bellman 54] R. Bellman: Some Applications of the Theory of Dynamic Programming - A Review.
Journal of the Operations Research Society of America, Vol. 2, No. 3, pp. 275–288, 1954.

[Bengio & Ducharme+ 03] Y. Bengio, R. Ducharme, P. Vincent, C. Janvin: A Neural Probabilistic
Language Model. Journal of Machine Learning Research, Vol. 3, pp. 1137–1155, 2003.

[Bengio & Frasconi+ 93] Y. Bengio, P. Frasconi, P.Y. Simard: The Problem of Learning Long-
Term Dependencies in Recurrent Networks. In International Conference on Neural Networks
(ICNN), pp. 1183–1188, San Francisco, CA, USA, March - April 1993.

[Bengio & Schwenk+ 06] Y. Bengio, H. Schwenk, J.S. Senécal, F. Morin, J.L. Gauvain: Neural
Probabilistic Language Models, pp. 137–186. 2006.

[Bengio & Simard+ 94] Y. Bengio, P.Y. Simard, P. Frasconi: Learning Long-Term Dependencies
with Gradient Descent is Difficult. IEEE Transactions on Neural Networks, Vol. 5, No. 2,
pp. 157–166, 1994.

[Berard & Besacier+ 18] A. Berard, L. Besacier, A.C. Kocabiyikoglu, O. Pietquin: End-to-End
Automatic Speech Translation of Audiobooks. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 6224–6228, Calgary, Canada, April 2018.

[Berard & Pietquin+ 16] A. Berard, O. Pietquin, C. Servan, L. Besacier: Listen and Translate:
A Proof of Concept for End-to-End Speech-to-Text Translation. In Workshop on End-to-End
Learning for Speech and Audio Processing, Conference on Neural Information Processing Systems
(NeurIPS), Barcelona, Spain, December 2016.

[Bergstra & Breuleux+ 10] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, Y. Bengio: Theano: A CPU and GPU Math Expression
Compiler. In Python for Scientific Computing Conference (SciPy), June 2010.

[Bertoldi 05] N. Bertoldi: Statistical Models and Search Algorithms for Machine Translation.
Ph.D. thesis, Universita degli Studi di, Trento, Italy, 2005.

[Bertoldi & Federico 05] N. Bertoldi, M. Federico: A New Decoder for Spoken Language Transla-
tion based on Confusion Networks. In IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pp. 86–91, Cancun, Mexico, November - December 2005.

162

BIBLIOGRAPHY

[Bertoldi & Zens+ 07] N. Bertoldi, R. Zens, M. Federico: Speech Translation by Confusion Network
Decoding. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 1297–1300, Honolulu, HI, USA, April 2007.

[Besacier & Mahdhaoii+ 07] L. Besacier, A. Mahdhaoii, V.B. Le: The LIG Arabic/English Speech
Translation System at IWSLT07. In International Workshop on Spoken Language Translation
(IWSLT), pp. 137–141, Trento, Italy, October 2007.

[Bishop 07] C.M. Bishop: Pattern Recognition and Machine Learning, 5th Edition. Information
science and statistics. Springer, 2007.

[Bourlard & Morgan 93] H.A. Bourlard, N. Morgan: Connectionist Speech Recognition: A Hybrid
Approach. Kluwer Academic Publishers, USA, 1993.

[Bourlard & Wellekens 90] H. Bourlard, C. Wellekens: Links Between Markov Models and Multi-
layer Perceptrons. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12,
No. 12, pp. 1167–1178, 1990.

[Brix 18] C.J.S. Brix: Extension of the Attention Mechanism in Neural Machine Translation,
2018.

[Brix & Bahar+ 20] C. Brix, P. Bahar, H. Ney: Successfully Applying the Stabilized Lottery
Ticket Hypothesis to the Transformer Architecture. In Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 3909–3915, Seattle, WA, USA, July 2020.

[Brown & Cocke+ 88] P.F. Brown, J. Cocke, S.A. Della Pietra, V.J. Della Pietra, F. Jelinek,
J.D. Lafferty, R.L. Mercer, P.S. Rossin: A Statistical Approach to Language Translation. In
International Conference on Computational Linguistics (COLING), pp. 71–76, Buffalo, NY,
USA, August 1988.

[Brown & Cocke+ 90] P.F. Brown, J. Cocke, S.D. Pietra, V.J.D. Pietra, F. Jelinek, J.D. Lafferty,
R.L. Mercer, P.S. Roossin: A Statistical Approach to Machine Translation. Computational
Linguistics, Vol. 16, No. 2, pp. 79–85, 1990.

[Brown & Pietra+ 93] P.F. Brown, S.D. Pietra, V.J.D. Pietra, R.L. Mercer: The Mathematics of
Statistical Machine Translation: Parameter Estimation. Computational Linguistics, Vol. 19,
No. 2, pp. 263–311, 1993.

[Bruguier & Zen+ 18] A. Bruguier, H. Zen, A. Arkhangorodsky: Sequence-to-Sequence Neural
Network Model with 2D Attention for Learning Japanese Pitch Accents. pp. 1284–1287,
Hyderabad, India, September 2018.

[Caruana 93] R. Caruana: Multitask Learning: A Knowledge-based Source of Inductive Bias. In
Machine Learning, the Tenth International Conference, pp. 41–48, Amherst, MA, USA, June
1993.

[Caruana 98] R. Caruana: Multitask Learning. In Learning to Learn, pp. 95–133. 1998.

[Casacuberta & Federico+ 08] F. Casacuberta, M. Federico, H. Ney, E. Vidal: Recent Efforts in
Spoken Language Translation. IEEE Signal Processing Magazine, Vol. 25, No. 3, pp. 80–88,
2008.

[Casacuberta & Llorens+ 01] F. Casacuberta, D. Llorens, C.D. Mart́ınez-Hinarejos, S. Molau,
F. Nevado, H. Ney, M. Pastor, D. Picó, A. Sanch́ıs, E. Vidal, J.M. Vilar: Speech-to-Speech
Translation based on Finite-State Transducers. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 613–616, Salt Lake City, UT, USA, May 2001.

163

BIBLIOGRAPHY

[Casacuberta & Ney+ 04] F. Casacuberta, H. Ney, F.J. Och, E. Vidal, J.M. Vilar, S. Barrachina,
I. Garćıa-Varea, D. Llorens, C.D. Mart́ınez-Hinarejos, S. Molau: Some Approaches to Statistical
and Finite-State Speech-to-Speech Translation. Computational Speech Language, Vol. 18, No. 1,
pp. 25–47, 2004.

[Castano & Casacuberta+ 97] M.A. Castano, F. Casacuberta, E. Vidal: Machine Translation
using Neural Networks and Finite-State Models. Vol., 1997.

[Cauchy 47] A. Cauchy: Méthode Générale Pour la résolution des Systemes d’éQuations Simul-
tanées. Comp. Rend. Sci. Paris, Vol. 25, No. 1847, pp. 536–538, 1847.

[Chan & Jaitly+ 16] W. Chan, N. Jaitly, Q.V. Le, O. Vinyals: Listen, Attend and Spell: A Neural
Network for Large Vocabulary Conversational Speech Recognition. In IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 4960–4964, Shanghai,
China, March 2016.

[Chang & Li+ 17] S. Chang, B. Li, T.N. Sainath, G. Simko, C. Parada: Endpoint Detection
using Grid Long Short-Term Memory Networks for Streaming Speech Recognition. In Annual
Conference of the International Speech Communication Association (INTERSPEECH), pp.
3812–3816, Stockholm, Sweden, August 2017.

[Chen & Firat+ 18] M.X. Chen, O. Firat, A. Bapna, M. Johnson, W. Macherey, G.F. Foster,
L. Jones, M. Schuster, N. Shazeer, N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, Z. Chen,
Y. Wu, M. Hughes: The Best of Both Worlds: Combining Recent Advances in Neural Machine
Translation. In Annual Meeting of the Association for Computational Linguistics (ACL), pp.
76–86, Melbourne, Australia, July 2018.

[Chen & Goodman 99] S.F. Chen, J. Goodman: An Empirical Study of Smoothing Techniques
for Language Modeling. Computer Speech and Language, Vol. 13, No. 4, pp. 359–393, 1999.

[Chen & Matusov+ 16] W. Chen, E. Matusov, S. Khadivi, J. Peter: Guided Alignment Training
for Topic-Aware Neural Machine Translation. CoRR, Vol. abs/1607.01628, 2016.

[Cheng & Dong+ 16] J. Cheng, L. Dong, M. Lapata: Long Short-Term Memory-Networks for Ma-
chine Reading. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 551–561, Austin, TX, USA, November 2016.

[Cheng & Shen+ 16] Y. Cheng, S. Shen, Z. He, W. He, H. Wu, M. Sun, Y. Liu: Agreement-based
Joint Training for Bidirectional Attention-based Neural Machine Translation. In International
Joint Conference on Artificial Intelligence (IJCAI), pp. 2761–2767, New York, NY, USA, July
2016.

[Chiu & Raffel 18] C. Chiu, C. Raffel: Monotonic Chunkwise Attention. In International Confer-
ence on Learning Representations (ICLR), Vancouver, Canada, April - May 2018.

[Chiu & Sainath+ 18] C. Chiu, T.N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen,
A. Kannan, R.J. Weiss, K. Rao, E. Gonina, N. Jaitly, B. Li, J. Chorowski, M. Bacchiani:
State-of-the-Art Speech Recognition with Sequence-to-Sequence Models. In IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 4774–4778, Calgary,
Canada, April 2018.

[Cho & Fünfer+ 14] E. Cho, S. Fünfer, S. Stüker, A. Waibel: A Corpus of Spontaneous Speech
in Lectures: The KIT Lecture Corpus for Spoken Language Processing and Translation. In
International Conference on Language Resources and Evaluation (LREC), pp. 1554–1559,
Reykjavik, Iceland, May 2014.

164

BIBLIOGRAPHY

[Cho & van Merrienboer+ 14a] K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio: On the
Properties of Neural Machine Translation: Encoder-Decoder Approaches. In Workshop on
Syntax, Semantics and Structure in Statistical Translation (SSST), pp. 103–111, Doha, Qatar,
October 2014.

[Cho & van Merrienboer+ 14b] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau,
F. Bougares, H. Schwenk, Y. Bengio: Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014.

[Choi & Cho+ 18] H. Choi, K. Cho, Y. Bengio: Fine-Grained Attention Mechanism for Neural
Machine Translation. Neurocomputing, Vol. 284, pp. 171–176, 2018.

[Chorowski & Bahdanau+ 15] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio:
Attention-based Models for Speech Recognition. In Conference on Neural Information Processing
Systems (NeurIPS), pp. 577–585, Montreal, Canada, December 2015.

[Chrisman 91] L. Chrisman: Learning Recursive Distributed Representations for Holistic Compu-
tation. Connection Science, Vol. 3, No. 4, pp. 345–366, 1991.

[Chung & Weng+ 19] Y. Chung, W. Weng, S. Tong, J.R. Glass: Towards Unsupervised Speech-to-
Text Translation. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 7170–7174, Brighton, UK, May 2019.

[Cohn & Hoang+ 16] T. Cohn, C.D.V. Hoang, E. Vymolova, K. Yao, C. Dyer, G. Haffari: In-
corporating Structural Alignment Biases into an Attentional Neural Translation Model. In
Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL), pp. 876–885, San Diego, CA, USA, June 2016.

[Collobert & Weston 08] R. Collobert, J. Weston: A Unified Architecture for Natural Language
Processing: Deep Neural Networks with Multitask Learning. In International Conference on
Machine Learning (ICML), Vol. 307, pp. 160–167, Helsinki, Finland, June 2008.

[Cybenko 89] G. Cybenko: Approximation by Superpositions of a Sigmoidal Function. Mathe-
matics of Control, Signals and Systems, Vol. 2, No. 4, pp. 303–314, 1989.

[Dai & Yang+ 19] Z. Dai, Z. Yang, Y. Yang, J.G. Carbonell, Q.V. Le, R. Salakhutdinov:
Transformer-XL: Attentive Language Models beyond a Fixed-Length Context. In Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 2978–2988, Florence, Italy,
July - August 2019.

[Davis & Mermelstein 80] S. Davis, P. Mermelstein: Comparison of Parametric Representations
for Monosyllabic Word Recognition in Continuously Spoken Sentences. IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. 28, No. 4, pp. 357–366, 1980.

[Dempster & Laird+ 77] A.P. Dempster, N.M. Laird, D.B. Rubin: Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society: Series B,
Vol. 39, pp. 1–38, 1977.

[Deng & Kim+ 18] Y. Deng, Y. Kim, J. Chiu, D. Guo, A.M. Rush: Latent Alignment and
Variational Attention. In Conference on Neural Information Processing Systems (NeurIPS), pp.
9735–9747, Montreal, Canada, December 2018.

165

BIBLIOGRAPHY

[Devlin & Zbib+ 14] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R.M. Schwartz, J. Makhoul: Fast
and Robust Neural Network Joint Models for Statistical Machine Translation. In Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 1370–1380, Baltimore, MD, USA,
June 2014.

[Dixon & Finch+ 11] P.R. Dixon, A.M. Finch, C. Hori, H. Kashioka: Investigation on the Effects
of ASR Tuning on Speech Translation Performance. In International Workshop on Spoken
Language Translation (IWSLT), pp. 167–174, San Francisco, CA, USA, December 2011.

[Doetsch & Hannemann+ 17] P. Doetsch, M. Hannemann, R. Schlüter, H. Ney: Inverted Align-
ments for End-to-End Automatic Speech Recognition. IEEE Journal of Selected Topics in
Signal Processing, Vol. 11, No. 8, pp. 1265–1273, 2017.

[Doetsch & Hegselmann+ 16] P. Doetsch, S. Hegselmann, R. Schlüter, H. Ney: Inverted HMM
- a Proof of Concept. In Workshop in End-to-end Learning for Speech and Audio Processing,
Conference on Neural Information Processing Systems (NeurIPS), Barcelona, Spain, December
2016.

[Doetsch & Zeyer+ 17] P. Doetsch, A. Zeyer, P. Voigtlaender, I. Kulikov, R. Schlüter, H. Ney:
Returnn: The RWTH Extensible Training Framework for Universal Recurrent Neural Networks.
In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.
5345–5349, New Orleans, LA, USA, March 2017.

[Dong & Wu+ 15] D. Dong, H. Wu, W. He, D. Yu, H. Wang: Multi-Task Learning for Multiple
Language Translation. In Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 1723–1732, Beijing, China, July 2015.

[Dong & Zhou+ 18] L. Dong, S. Zhou, W. Chen, B. Xu: Extending Recurrent Neural Aligner
for Streaming End-to-End Speech Recognition in Mandarin. In Annual Conference of the
International Speech Communication Association (INTERSPEECH), pp. 816–820, Hyderabad,
India, September 2018.

[Dyer & Chahuneau+ 13] C. Dyer, V. Chahuneau, N.A. Smith: A Simple, Fast, and Effective
Reparameterization of IBM Model 2. In Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), pp. 644–648, Atlanta, GA, USA, June
2013.

[Dyer & Muresan+ 08] C. Dyer, S. Muresan, P. Resnik: Generalizing Word Lattice Translation.
In Annual Meeting of the Association for Computational Linguistics (ACL), pp. 1012–1020,
Columbus, OH, USA, June 2008.

[Edunov & Ott+ 18] S. Edunov, M. Ott, M. Auli, D. Grangier, M. Ranzato: Classical Structured
Prediction Losses for Sequence to Sequence Learning. In Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL), pp. 355–364, New Orleans,
LA, USA, June 2018.

[Elbayad & Besacier+ 18] M. Elbayad, L. Besacier, J. Verbeek: Pervasive Attention: 2D Convolu-
tional Neural Networks for Sequence-to-Sequence Prediction. In Conference on Computational
Natural Language Learning (CoNLL), pp. 97–107, Brussels, Belgium, October 2018.

[Feng & Liu+ 16] S. Feng, S. Liu, N. Yang, M. Li, M. Zhou, K.Q. Zhu: Improving Attention
Modeling with Implicit Distortion and Fertility for Machine Translation. In International
Conference on Computational Linguistics (COLING), pp. 3082–3092, Osaka, Japan, December
2016.

166

BIBLIOGRAPHY

[Firat & Cho+ 16] O. Firat, K. Cho, Y. Bengio: Multi-Way, Multilingual Neural Machine Trans-
lation with a Shared Attention Mechanism. In Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL), pp. 866–875, San Diego, CA, USA,
June 2016.

[Fitzgerald & Hall+ 09] E. Fitzgerald, K.B. Hall, F. Jelinek: Reconstructing False Start Errors
in Spontaneous Speech Text. In Conference of the European Chapter of the Association for
Computational Linguistics (EACL), pp. 255–263, Athens, Greece, March - April 2009.

[Forcada & Ñeco 97] M.L. Forcada, R.P. Ñeco: Recursive Hetero-Associative Memories for Trans-
lation. In Biological and Artificial Computation: From Neuroscience to Technology, International
Work-Conference on Artificial and Natural Neural Networks (IWANN), pp. 453–462, Canary
Islands, Spain, June 1997.

[Fügen & Kolss 07] C. Fügen, M. Kolss: The Influence of Utterance Chunking on Machine
Translation Performance. In Annual Conference of the International Speech Communication
Association (INTERSPEECH), pp. 2837–2840, Antwerp, Belgium, August 2007.

[Gaido & Gangi+ 20] M. Gaido, M.A.D. Gangi, M. Negri, M. Cettolo, M. Turchi: Contextualized
Translation of Automatically Segmented Speech. In H. Meng, B. Xu, T.F. Zheng, editors,
Annual Conference of the International Speech Communication Association (INTERSPEECH),
pp. 1471–1475, 2020.

[Gangi & Cattoni+ 19] M.A.D. Gangi, R. Cattoni, L. Bentivogli, M. Negri, M. Turchi: MuST-C:
A Multilingual Speech Translation Corpus. In Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), pp. 2012–2017, Minneapolis, MN, USA,
April 2019.

[Gangi & Enyedi+ 19] M.A.D. Gangi, R. Enyedi, A. Brusadin, M. Federico: Robust Neural
Machine Translation for Clean and Noisy Speech Transcripts. In International Workshop on
Spoken Language Translation (IWSLT), Hong Kong, China, November 2019.

[Gangi & Negri+ 19a] M.A.D. Gangi, M. Negri, R. Cattoni, R. Dess̀ı, M. Turchi: Enhancing
Transformer for End-to-end Speech-to-Text Translation. In Machine Translation Summit
(MTSummit), pp. 21–31, Dublin, Ireland, August 2019.

[Gangi & Negri+ 19b] M.A.D. Gangi, M. Negri, N.V. Nhat, A. Tebbifakhr, M. Turchi: Data
Augmentation for End-to-End Speech Translation: FBK@IWSLT ’19. In International Workshop
on Spoken Language Translation (IWSLT), Hong Kong, China, November 2019.

[Gangi & Negri+ 19c] M.A.D. Gangi, M. Negri, M. Turchi: Adapting Transformer to End-to-End
Spoken Language Translation. In Annual Conference of the International Speech Communication
Association (INTERSPEECH), pp. 1133–1137, Graz, Austria, September 2019.

[Gangi & Negri+ 19d] M.A.D. Gangi, M. Negri, M. Turchi: One-to-Many Multilingual End-to-
End Speech Translation. In IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pp. 585–592, Sentosa, Singapore, December 2019.

[Gao & Wang+ 19] Y. Gao, W. Wang, H. Ney: uniblock: Scoring and Filtering Corpus with
Unicode Block Information. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1324–1329, Hong Kong, China, November 2019.

[Garg & Peitz+ 19] S. Garg, S. Peitz, U. Nallasamy, M. Paulik: Jointly Learning to Align and
Translate with Transformer Models. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 4452–4461, Hong Kong, China, November 2019.

167

BIBLIOGRAPHY

[Gehring & Auli+ 17a] J. Gehring, M. Auli, D. Grangier, Y. Dauphin: A Convolutional Encoder
Model for Neural Machine Translation. In Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 123–135, Vancouver, Canada, July - August 2017.

[Gehring & Auli+ 17b] J. Gehring, M. Auli, D. Grangier, D. Yarats, Y.N. Dauphin: Convolutional
Sequence to Sequence Learning. In International Conference on Machine Learning (ICML), pp.
1243–1252, Sydney, Australia, August 2017.

[Gers & Schmidhuber+ 00] F.A. Gers, J. Schmidhuber, F.A. Cummins: Learning to Forget:
Continual Prediction with LSTM. Neural Computation, Vol. 12, No. 10, pp. 2451–2471, 2000.

[Gers & Schraudolph+ 02] F.A. Gers, N.N. Schraudolph, J. Schmidhuber: Learning Precise
Timing with LSTM Recurrent Networks. Journal of Machine Learning Research, Vol. 3,
pp. 115–143, 2002.

[Ghader & Monz 17] H. Ghader, C. Monz: What Does Attention in Neural Machine Translation
Pay Attention to? In International Joint Conference on Natural Language Processing (IJCNLP),
pp. 30–39, Taipei, Taiwan, November - December 2017.

[Gibson & Hain 06] M. Gibson, T. Hain: Hypothesis Spaces for Minimum Bayes Risk Training in
Large Vocabulary Speech Recognition. In Conference on Spoken Language Processing (ICSLP),
Pittsburgh, PA, USA, September 2006.

[Godard & Boito+ 18] P. Godard, M.Z. Boito, L. Ondel, A. Berard, F. Yvon, A. Villavicencio,
L. Besacier: Unsupervised Word Segmentation from Speech with Attention. In B. Yegna-
narayana, editor, Annual Conference of the International Speech Communication Association
(INTERSPEECH), pp. 2678–2682, Hyderabad, India, September 2018.

[Godfrey & Holliman+ 92] J.J. Godfrey, E.C. Holliman, J. McDaniel: SWITCHBOARD: Tele-
phone Speech Corpus for Research and Development. In IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pp. 517–520, San Francisco, CA, USA,
March 1992.

[Goodfellow & Bengio+ 16] I. Goodfellow, Y. Bengio, A. Courville: Deep Learning. The MIT
Press, 2016.

[Goodfellow & Warde-Farley+ 13] I.J. Goodfellow, D. Warde-Farley, M. Mirza, A.C. Courville,
Y. Bengio: Maxout Networks. In International Conference on Machine Learning (ICML),
Vol. 28, pp. 1319–1327, Atlanta, GA, USA, June 2013.

[Graves 08] A. Graves: Supervised Sequence Labelling with Recurrent Neural Networks. Ph.D.
thesis, Technical University Munich, 2008.

[Graves 12a] A. Graves: Sequence Transduction with Recurrent Neural Networks. In International
Conference on Machine Learning (ICML), Edinburgh, Scotland, July 2012.

[Graves 12b] A. Graves: Supervised Sequence Labelling with Recurrent Neural Networks, Vol. 385
of Studies in Computational Intelligence. 2012.

[Graves & Fernández+ 06] A. Graves, S. Fernández, F.J. Gomez, J. Schmidhuber: Connectionist
Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks.
In International Conference on Machine Learning (ICML), Vol. 148, pp. 369–376, Pittsburgh,
PA, USA, June 2006.

168

BIBLIOGRAPHY

[Graves & Jaitly+ 13a] A. Graves, N. Jaitly, A. Mohamed: Hybrid Speech Recognition with Deep
Bidirectional LSTM. In IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pp. 273–278, Olomouc, Czech Republic, December 2013.

[Graves & Jaitly+ 13b] A. Graves, N. Jaitly, A. Mohamed: Hybrid Speech Recognition with Deep
Bidirectional LSTM. In IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pp. 273–278, Olomouc, Czech Republic, December 2013.

[Graves & Schmidhuber 08] A. Graves, J. Schmidhuber: Offline Handwriting Recognition with
Multidimensional Recurrent Networks. In Conference on Neural Information Processing Systems
(NeurIPS), pp. 545–552, Vancouver, Canada, December 2008.

[Gulati & Qin+ 20] A. Gulati, J. Qin, C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang,
Z. Zhang, Y. Wu, R. Pang: Conformer: Convolution-Augmented Transformer for Speech
Recognition. In Annual Conference of the International Speech Communication Association
(INTERSPEECH), pp. 5036–5040, Shanghai, China, October 2020.

[Gülçehre & Firat+ 15] Ç. Gülçehre, O. Firat, K. Xu, K. Cho, L. Barrault, H. Lin, F. Bougares,
H. Schwenk, Y. Bengio: On using Monolingual Corpora in Neural Machine Translation. CoRR,
Vol. abs/1503.03535, 2015.

[Ha & Niehues+ 16] T. Ha, J. Niehues, A.H. Waibel: Toward Multilingual Neural Machine
Translation with Universal Encoder and Decoder. CoRR, Vol. abs/1611.04798, 2016.

[Han & Zhang+ 20] W. Han, Z. Zhang, Y. Zhang, J. Yu, C. Chiu, J. Qin, A. Gulati, R. Pang,
Y. Wu: ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recogni-
tion with Global Context. In Annual Conference of the International Speech Communication
Association (INTERSPEECH), pp. 3610–3614, Shanghai, China, October 2020.

[Hannun & Lee+ 19] A. Hannun, A. Lee, Q. Xu, R. Collobert: Sequence-to-Sequence Speech
Recognition with Time-Depth Separable Convolutions. In Annual Conference of the International
Speech Communication Association (INTERSPEECH), pp. 3785–3789, Graz, Austria, September
2019.

[Hao & Wang+ 19] J. Hao, X. Wang, B. Yang, L. Wang, J. Zhang, Z. Tu: Modeling Recurrence for
Transformer. In Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL), pp. 1198–1207, Minneapolis, MN, USA, June 2019.

[Hasler & de Gispert+ 18] E. Hasler, A. de Gispert, G. Iglesias, B. Byrne: Neural Machine
Translation Decoding with Terminology Constraints. In Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL), pp. 506–512, New Orleans,
LA, USA, June 2018.

[He & Deng+ 11] X. He, L. Deng, A. Acero: Why Word Error Rate Is Not a Good Metric for
Speech Recognizer Training for the Speech Translation Task? In IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pp. 5632–5635, Prague, Czech Republic,
May 2011.

[He & Lin 16] H. He, J.J. Lin: Pairwise Word Interaction Modeling with Deep Neural Networks
for Semantic Similarity Measurement. In Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), pp. 937–948, San Diego, CA, USA, June
2016.

169

BIBLIOGRAPHY

[He & Sainath+ 19] Y. He, T.N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao,
D. Rybach, A. Kannan, Y. Wu, R. Pang, Q. Liang, D. Bhatia, Y. Shangguan, B. Li, G. Pundak,
K.C. Sim, T. Bagby, S. Chang, K. Rao, A. Gruenstein: Streaming End-to-End Speech
Recognition for Mobile Devices. In IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pp. 6381–6385, Brighton, UK, May 2019.

[He & Zhang+ 16] K. He, X. Zhang, S. Ren, J. Sun: Deep Residual Learning for Image Recognition.
In Computer Vision and Pattern Recognition (CVPR), pp. 770–778, Las Vegas, NV, USA, June
2016.

[Hermansky & Ellis+ 00] H. Hermansky, D.P.W. Ellis, S. Sharma: Tandem Connectionist Feature
Extraction for Conventional HMM Systems. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 1635–1638, Istanbul, Turkey, June 2000.

[Ho & Yvon 19] A.K.N. Ho, F. Yvon: Neural Baselines for Word Alignment. In International
Workshop on Spoken Language Translation (IWSLT), Hong Kong, China, November 2019.

[Ho & Yvon 20] A.K.N. Ho, F. Yvon: Generative Latent Neural Models for Automatic Word
Alignment. In M. Denkowski, C. Federmann, editors, Association for Machine Translation in
the Americas (AMTA), pp. 64–77, Orlando, FL, USA, September 2020.

[Hochreiter 91] S. Hochreiter: Untersuchungen zu Dynamischen Neuronalen Netzen. Diploma,
Technische Universität München, Vol. 91, No. 1, 1991.

[Hochreiter & Schmidhuber 97] S. Hochreiter, J. Schmidhuber: Long Short-Term Memory. Neural
Computation, Vol. 9, No. 8, pp. 1735–1780, November 1997.

[Hori & Watanabe+ 17] T. Hori, S. Watanabe, Y. Zhang, W. Chan: Advances in Joint CTC-
Attention based End-to-End Speech Recognition with a Deep CNN Encoder and RNN-LM. In
Annual Conference of the International Speech Communication Association (INTERSPEECH),
pp. 949–953, Stockholm, Sweden, August 2017.

[Hou & Zhang+ 17] J. Hou, S. Zhang, L. Dai: Gaussian Prediction based Attention for Online End-
to-End Speech Recognition. In Annual Conference of the International Speech Communication
Association (INTERSPEECH), pp. 3692–3696, Stockholm, Sweden, August 2017.

[Hu & Auli+ 14] Y. Hu, M. Auli, Q. Gao, J. Gao: Minimum Translation Modeling with Recurrent
Neural Networks. In Conference of the European Chapter of the Association for Computational
Linguistics (EACL), pp. 20–29, Gothenburg, Sweden, April 2014.

[Hu & Lu+ 14] B. Hu, Z. Lu, H. Li, Q. Chen: Convolutional Neural Network Architectures for
Matching Natural Language Sentences. In Conference on Neural Information Processing Systems
(NeurIPS), pp. 2042–2050, Montreal, Canada, December 2014.

[Hutter 95] H. Hutter: Comparison of a New Hybrid Connectionist-SCHMM Approach with Other
Hybrid Approaches for Speech Recognition. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 3311–3314, Detroit, MI, USA, May 1995.

[Inaguma & Duh+ 19] H. Inaguma, K. Duh, T. Kawahara, S. Watanabe: Multilingual End-to-
End Speech Translation. In IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pp. 570–577, Sentosa, Singapore, December 2019.

[Iranzo-Sánchez & Silvestre-Cerdà+ 20] J. Iranzo-Sánchez, J.A. Silvestre-Cerdà, J. Jorge,
N. Roselló, A. Giménez, A. Sanch́ıs, J. Civera, A. Juan: Europarl-ST: A Multilingual Corpus
for Speech Translation of Parliamentary Debates. Vol., pp. 8229–8233, May 2020.

170

BIBLIOGRAPHY

[Irie 20] K. Irie: Advancing Neural Language Modeling in Automatic Speech Recognition. Ph.D.
thesis, RWTH Aachen University, 2020.

[Irie & Zeyer+ 19] K. Irie, A. Zeyer, R. Schlüter, H. Ney: Language Modeling with Deep Trans-
formers. In Annual Conference of the International Speech Communication Association (IN-
TERSPEECH), pp. 3905–3909, Graz, Austria, September 2019.

[Jean & Cho+ 15] S. Jean, K. Cho, R. Memisevic, Y. Bengio: On using Very Large Target Vocab-
ulary for Neural Machine Translation. In Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 1–10, Beijing, China, July 2015.

[Jelinek 97] F. Jelinek: Statistical Methods for Speech Recognition. MIT Press, 1997.

[Jia & Johnson+ 19] Y. Jia, M. Johnson, W. Macherey, R.J. Weiss, Y. Cao, C. Chiu, N. Ari,
S. Laurenzo, Y. Wu: Leveraging Weakly Supervised Data to Improve End-to-End Speech-to-text
Translation. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 7180–7184, Brighton, UK, May 2019.

[Johnson & Schuster+ 17] M. Johnson, M. Schuster, Q.V. Le, M. Krikun, Y. Wu, Z. Chen,
N. Thorat, F.B. Viégas, M. Wattenberg, G. Corrado, M. Hughes, J. Dean: Google’s Multilingual
Neural Machine Translation System: Enabling Zero-Shot Translation. Transactions of the
Association for Computational Linguistics, Vol. 5, pp. 339–351, 2017.

[Jouppi & Young+ 17] N.P. Jouppi, C. Young, N. Patil, D.A. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell,
M. Daley, M. Dau, J. Dean, B. Gelb, T.V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hag-
mann, C.R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le,
C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,
J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Va-
sudevan, R. Walter, W. Wang, E. Wilcox, D.H. Yoon: In-Datacenter Performance Analysis of a
Tensor Processing Unit. In Annual International Symposium on Computer Architecture (ISCA),
pp. 1–12, Toronto, Canada, June 2017.

[Jurafsky & Martin 00] D. Jurafsky, J.H. Martin: Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics and Speech Recognition
(Prentice Hall Series in Artificial Intelligence). Prentice Hall, 1 edition, 2000.

[Kaiser & Bengio 16] L. Kaiser, S. Bengio: Can Active Memory Replace Attention? In Confer-
ence on Neural Information Processing Systems (NeurIPS), pp. 3774–3782, Barcelona, Spain,
December 2016.

[Kalchbrenner & Blunsom 13] N. Kalchbrenner, P. Blunsom: Recurrent Continuous Translation
Models. In Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
1700–1709, Seattle, WA, USA, October 2013.

[Kalchbrenner & Danihelka+ 16] N. Kalchbrenner, I. Danihelka, A. Graves: Grid Long Short-
Term Memory. In International Conference on Learning Representations (ICLR), San Juan,
Puerto Rico, May 2016.

[Karita & Wang+ 19] S. Karita, X. Wang, S. Watanabe, T. Yoshimura, W. Zhang, N. Chen,
T. Hayashi, T. Hori, H. Inaguma, Z. Jiang, M. Someki, N.E.Y. Soplin, R. Yamamoto: A

171

BIBLIOGRAPHY

Comparative Study on Transformer vs RNN in Speech Applications. In IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), pp. 449–456, Singapore, Singapore,
December 2019.

[Kim & Denton+ 17] Y. Kim, C. Denton, L. Hoang, A.M. Rush: Structured Attention Networks.
In ICLR, Toulon, France, April 2017.

[Kim & Hori+ 17] S. Kim, T. Hori, S. Watanabe: Joint CTC-Attention based End-to-End Speech
Recognition using Multi-Task Learning. In IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 4835–4839, New Orleans, LA, USA, March 2017.

[Kim & Petrov+ 19] Y. Kim, P. Petrov, P. Petrushkov, S. Khadivi, H. Ney: Pivot-based Transfer
Learning for Neural Machine Translation between Non-English Languages. In Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 866–876, Hong Kong, China,
November 2019.

[Kingma & Ba 15] D.P. Kingma, J. Ba: Adam: A Method for Stochastic Optimization. In
International Conference on Learning Representations (ICLR), San Diego, CA, USA, May 2015.

[Kitza & Golik+ 19] M. Kitza, P. Golik, R. Schlüter, H. Ney: Cumulative Adaptation for BLSTM
Acoustic Models. In Annual Conference of the International Speech Communication Association
(INTERSPEECH), pp. 754–758, Graz, Austria, September 2019.

[Kneser & Ney 95] R. Kneser, H. Ney: Improved Backing-off for M-gram language modeling. In
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.
181–184, Detroit, MI, USA, May 1995.

[Ko & Peddinti+ 15] T. Ko, V. Peddinti, D. Povey, S. Khudanpur: Audio Augmentation for Speech
Recognition. In Annual Conference of the International Speech Communication Association
(INTERSPEECH), pp. 3586–3589, Dresden, Germany, September 2015.

[Koehn 10] P. Koehn: Statistical Machine Translation. Cambridge University Press, 2010.

[Koehn & Hoang+ 07] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi,
B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, E. Herbst: Moses:
Open Source Toolkit for Statistical Machine Translation. In Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 177–180, Prague, Czech Republic, June 2007.

[Koehn & Knowles 17] P. Koehn, R. Knowles: Six Challenges for Neural Machine Translation. In
Workshop on Neural Machine Translation (NMT), pp. 28–39, Vancouver, Canada, August 2017.

[Koehn & Och+ 03] P. Koehn, F.J. Och, D. Marcu: Statistical Phrase-based Translation. In
Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL), Edmonton, Canada, May 2003.

[Kriman & Beliaev+ 20] S. Kriman, S. Beliaev, B. Ginsburg, J. Huang, O. Kuchaiev, V. Lavrukhin,
R. Leary, J. Li, Y. Zhang: Quartznet: Deep Automatic Speech Recognition with 1D Time-
Channel Separable Convolutions. In IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pp. 6124–6128, Barcelona, Spain, May 2020.

[Lawson & Chiu+ 18a] D. Lawson, C. Chiu, G. Tucker, C. Raffel, K. Swersky, N. Jaitly: Learning
Hard Alignments with Variational Inference. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 5799–5803, Calgary, Canada, April 2018.

172

BIBLIOGRAPHY

[Lawson & Chiu+ 18b] D. Lawson, C. Chiu, G. Tucker, C. Raffel, K. Swersky, N. Jaitly: Learning
Hard Alignments with Variational Inference. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 5799–5803, Calgary, Canada, April 2018.

[Le & Allauzen+ 12] H.S. Le, A. Allauzen, F. Yvon: Continuous Space Translation Models
with Neural Networks. In Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL), pp. 39–48, Montreal, Canada, June 2012.

[Lee & Roukos 04] Y. Lee, S. Roukos: IBM Spoken Language Translation System Evaluation.
In International Workshop on Spoken Language Translation (IWSLT), pp. 39–46, Keihanna
Science City, Kyoto, Japan, September - October 2004.

[Leifert & Strauß+ 16] G. Leifert, T. Strauß, T. Grüning, W. Wustlich, R. Labahn: Cells in
Multidimensional Recurrent Neural Networks. Journal of Machine Learning Research, Vol. 17,
No. 1, pp. 3313–3349, 2016.

[Levenshtein 66] V. Levenshtein: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, Vol. 10, pp. 707–710, 1966.

[Li & Liu+ 18] X. Li, L. Liu, Z. Tu, S. Shi, M. Meng: Target Foresight based Attention for Neural
Machine Translation. In Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL), pp. 1380–1390, New Orleans, LA, USA, June 2018.

[Li & Mohamed+ 16] J. Li, A. Mohamed, G. Zweig, Y. Gong: Exploring Multidimensional LSTMs
for Large Vocabulary ASR. In IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pp. 4940–4944, Shanghai, China, March 2016.

[Li & Sun 09] Z. Li, M. Sun: Punctuation as Implicit Annotations for Chinese Word Segmentation.
Computational Linguistics, Vol. 35, No. 4, pp. 505–512, 2009.

[Li & Wang+ 20] Y. Li, Q. Wang, T. Xiao, T. Liu, J. Zhu: Neural Machine Translation with Joint
Representation. In Conference on Artificial Intelligence (AAAI), pp. 8285–8292, New York, NY,
USA, February 2020.

[Lin & Sun+ 18] J. Lin, X. Sun, X. Ren, S. Ma, J. Su, Q. Su: Deconvolution-based Global
Decoding for Neural Machine Translation. In International Conference on Computational
Linguistics (COLING), pp. 3260–3271, Santa Fe, NM, USA, August 2018.

[Lippmann 87] R.P. Lippmann: An Introduction to Computing with Neural Nets. IEEE ASSP
Magazine, Vol., pp. 4–22, April 1987.

[Lison & Tiedemann 16] P. Lison, J. Tiedemann: OpenSubtitles2016: Extracting Large Parallel
Corpora from Movie and TV Subtitles. In International Conference on Language Resources and
Evaluation (LREC), Portorož, Slovenia, May 2016.

[Liu & Duh+ 20] X. Liu, K. Duh, L. Liu, J. Gao: Very Deep Transformers for Neural Machine
Translation. CoRR, Vol. abs/2008.07772, 2020.

[Liu & Gu+ 03] F. Liu, L. Gu, Y. Gao, M. Picheny: Use of Statistical N-gram Models in Natural
Language Generation for Machine Translation. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 636–639, Hong Kong, China, April 2003.

[Liu & Saleh+ 18] P.J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, N. Shazeer:
Generating Wikipedia by Summarizing Long Sequences. In International Conference on Learning
Representations (ICLR), Vancouver, Canada, April - May 2018.

173

BIBLIOGRAPHY

[Liu & Utiyama+ 16] L. Liu, M. Utiyama, A.M. Finch, E. Sumita: Neural Machine Translation
with Supervised Attention. In International Conference on Computational Linguistics (COLING),
pp. 3093–3102, Osaka, Japan, December 2016.

[Liu & Xiong+ 19] Y. Liu, H. Xiong, Z. He, J. Zhang, H. Wu, H. Wang, C. Zong: End-to-End
Speech Translation with Knowledge Distillation. In Annual Conference of the International
Speech Communication Association (INTERSPEECH), pp. 1128–1132, Graz, Austria, September
2019.

[Luong & Le+ 16] M. Luong, Q.V. Le, I. Sutskever, O. Vinyals, L. Kaiser: Multi-Task Sequence
to Sequence Learning. In International Conference on Learning Representations (ICLR), San
Juan, Puerto Rico, May 2016.

[Luong & Pham+ 15] T. Luong, H. Pham, C.D. Manning: Effective Approaches to Attention-
based Neural Machine Translation. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1412–1421, Lisbon, Portugal, September 2015.

[Lüscher & Beck+ 19] C. Lüscher, E. Beck, K. Irie, M. Kitza, W. Michel, A. Zeyer, R. Schlüter,
H. Ney: RWTH ASR Systems for LibriSpeech: Hybrid vs Attention - w/o Data Augmentation.
Vol., pp. 231–235, September 2019.

[Makarov 19] N. Makarov: Investigating Attention and Alignments in Neural Machine Translation,
2019.

[Malaviya & Ferreira+ 18] C. Malaviya, P. Ferreira, A.F.T. Martins: Sparse and Constrained At-
tention for Neural Machine Translation. In Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 370–376, Melbourne, Australia, July 2018.

[Mangu & Brill+ 00] L. Mangu, E. Brill, A. Stolcke: Finding Consensus in Speech Recognition:
Word Error Minimization and Other Applications of Confusion Networks. Computational Speech
Language, Vol. 14, No. 4, pp. 373–400, 2000.

[Manning & Schütze 99] C.D. Manning, H. Schütze: Foundations of Statistical Natural Language
Processing. The MIT Press, Cambridge, MA, USA, 1999.

[Matusov 09] E. Matusov: Combining Natural Language Processing Systems to Improve Machine
Translation of Speech. Ph.D. thesis, RWTH Aachen University, 2009.

[Matusov & Hoffmeister+ 08] E. Matusov, B. Hoffmeister, H. Ney: ASR Word Lattice Translation
with Exhaustive Reordering Is Possible. In Annual Conference of the International Speech
Communication Association (INTERSPEECH), pp. 2342–2345, Brisbane, Australia, September
2008.

[Matusov & Kanthak+ 05] E. Matusov, S. Kanthak, H. Ney: On the Integration of Speech Recog-
nition and Statistical Machine Translation. In Annual Conference of the International Speech
Communication Association (INTERSPEECH), pp. 3177–3180, Lisboa, Portugal, September
2005.

[Matusov & Mauser+ 06] E. Matusov, A. Mauser, H. Ney: Automatic Sentence Segmentation
and Punctuation Prediction for Spoken Language Translation. In International Workshop on
Spoken Language Translation (IWSLT), pp. 158–165, Kyoto, Japan, November 2006.

[Matusov & Ney+ 05] E. Matusov, H. Ney, R. Schluter: Phrase-based Translation of Speech Recog-
nizer Word Lattices using Loglinear Model Combination. In IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pp. 110–115, San Juan, Puerto Rico, November 2005.

174

BIBLIOGRAPHY

[Matusov & Ueffing+ 06] E. Matusov, N. Ueffing, H. Ney: Computing Consensus Translation for
Multiple Machine Translation Systems using Enhanced Hypothesis Alignment. In Conference of
the European Chapter of the Association for Computational Linguistics (EACL), Trento, Italy,
April 2006.

[Matusov & Wilken+ 18] E. Matusov, P. Wilken, P. Bahar, J. Schamper, P. Golik, A. Zeyer, J.A.
Silvestre-Cerda, A. Martinez-Villaronga, H. Pesch, J.T. Peter: Neural Speech Translation at
AppTek. In International Workshop on Spoken Language Translation (IWSLT), pp. 104–111,
Bruges, Belgium, October 2018.

[McCarthy & Puzon+ 20] A.D. McCarthy, L. Puzon, J. Pino: SkinAugment: Auto-Encoding
Speaker Conversions for Automatic Speech Translation. Vol., pp. 7924–7928, May 2020.

[McFee & McVicar+ 17] B. McFee, M. McVicar, O. Nieto, S. Balke, C. Thome, D. Liang, E. Bat-
tenberg, J. Moore, R. Bittner, R. Yamamoto, et al.: Librosa 0.5.0. Vol., February 2017.

[Meng & Lu+ 16] F. Meng, Z. Lu, H. Li, Q. Liu: Interactive Attention for Neural Machine
Translation. In International Conference on Computational Linguistics (COLING), pp. 2174–
2185, Osaka, Japan, December 2016.

[Meng & Tu+ 18] F. Meng, Z. Tu, Y. Cheng, H. Wu, J. Zhai, Y. Yang, D. Wang: Neural Machine
Translation with Key-Value Memory-Augmented Attention. In International Joint Conference
on Artificial Intelligence (IJCAI), pp. 2574–2580, Stockholm,Sweden, July 2018.

[Merboldt & Zeyer+ 19] A. Merboldt, A. Zeyer, R. Schlüter, H. Ney: An Analysis of Local
Monotonic Attention Variants. In Annual Conference of the International Speech Communication
Association (INTERSPEECH), pp. 1398–1402, Graz, Austria, September 2019.

[Mi & Sankaran+ 16] H. Mi, B. Sankaran, Z. Wang, A. Ittycheriah: Coverage Embedding Models
for Neural Machine Translation. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 955–960, Austin, TX, USA, November 2016.

[Mi & Wang+ 16] H. Mi, Z. Wang, A. Ittycheriah: Supervised Attentions for Neural Machine
Translation. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 2283–2288, Austin, TX, USA, November 2016.

[Mikolov & Karafiát+ 10] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, S. Khudanpur: Recur-
rent Neural Network based Language Model. In Annual Conference of the International Speech
Communication Association (INTERSPEECH), pp. 1045–1048, Makuhari, Chiba, Japana,
September 2010.

[Mikolov & Kombrink+ 11] T. Mikolov, S. Kombrink, L. Burget, J. Cernocký, S. Khudanpur:
Extensions of Recurrent Neural Network Language Model. In IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pp. 5528–5531, Prague, Czech Republic,
May 2011.

[Mino & Utiyama+ 17] H. Mino, M. Utiyama, E. Sumita, T. Tokunaga: Key-Value Attention
Mechanism for Neural Machine Translation. In International Joint Conference on Natural
Language Processing (IJCNLP), pp. 290–295, Taipei, Taiwan, November - December 2017.

[Ney 99] H. Ney: Speech Translation: Coupling of Recognition and Translation. In IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 517–520,
Phoenix, AZ, USA, March 1999.

175

BIBLIOGRAPHY

[Ney 19] H. Ney: Lecture Notes in Statistical Methods in Natural Language Processing, Human
Language Technology and Pattern Recognition Group, Computer Science Department, RWTH
Aachen University, October 2019.

[Nguyen & Stüker+ 20] T. Nguyen, S. Stüker, J. Niehues, A. Waibel: Improving Sequence-
to-Sequence Speech Recognition Training with On-The-Fly Data Augmentation. In IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 7689–7693,
Barcelona, Spain, May 2020.

[Och 03] F.J. Och: Minimum Error Rate Training in Statistical Machine Translation. In Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 160–167, Sapporo, Japan,
July 2003.

[Och & Ney 00] F.J. Och, H. Ney: Improved Statistical Alignment Models. In Annual Meeting of
the Association for Computational Linguistics (ACL), Hong Kong, China, October 2000.

[Och & Ney 02] F.J. Och, H. Ney: Discriminative Training and Maximum Entropy Models for
Statistical Machine Translation. In Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 295–302, Philadelphia, PA, USA, July 2002.

[Och & Ney 03] F.J. Och, H. Ney: A Systematic Comparison of Various Statistical Alignment
Models. Computational Linguistics, Vol. 29, No. 1, pp. 19–51, 2003.

[Ohgushi & Neubig+ 13] M. Ohgushi, G. Neubig, S. Sakti, T. Toda, S. Nakamura: An Empirical
Comparison of Joint Optimization Techniques for Speech Translation. In Annual Conference of
the International Speech Communication Association (INTERSPEECH), pp. 2619–2623, Lyon,
France, August 2013.

[Osamura & Kano+ 18] K. Osamura, T. Kano, S. Sakti, K. Sudoh, S. Nakamura: Using Spoken
Word Posterior Features in Neural Machine Translation. In International Workshop on Spoken
Language Translation (IWSLT), pp. 189–195, Bruges, Belgium, October 2018.

[Ott & Edunov+ 18] M. Ott, S. Edunov, D. Grangier, M. Auli: Scaling Neural Machine Trans-
lation. In Workshop on Statistical Machine Translation (WMT), pp. 1–9, Belgium, Brussels,
October - November 2018.

[Ott & Edunov+ 19] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
M. Auli: fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In Conference of the
North American Chapter of the Association for Computational Linguistics (NAACL), pp. 48–53,
Minneapolis, MN, USA, June 2019.

[Pan & Yang 10] S.J. Pan, Q. Yang: A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, Vol. 22, No. 10, pp. 1345–1359, 2010.

[Panayotov & Chen+ 15] V. Panayotov, G. Chen, D. Povey, S. Khudanpur: Librispeech: An ASR
Corpus based on Public Domain Audio Books. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 5206–5210, South Brisbane, Australia, April 2015.

[Papineni & Roukos+ 98] K.A. Papineni, S. Roukos, R.T. Ward: Maximum Likelihood and
Discriminative Training of Direct Translation Models. In IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, pp. 189–192, Seattle, WA, USA,
May 1998.

176

BIBLIOGRAPHY

[Papineni & Roukos+ 02] K. Papineni, S. Roukos, T. Ward, W. Zhu: Bleu: A Method for
Automatic Evaluation of Machine Translation. In Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 311–318, Philadelphia, PA, USA, July 2002.

[Park & Chan+ 19] D.S. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph, E.D. Cubuk, Q.V. Le:
SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. Vol.,
pp. 2613–2617, September 2019.

[Peitz & Wiesler+ 12] S. Peitz, S. Wiesler, M. Nußbaum-Thom, H. Ney: Spoken Language
Translation using Automatically Transcribed Text in Training. In International Workshop on
Spoken Language Translation (IWSLT), pp. 276–283, Hong Kong, China, December 2012.

[Peter & Guta+ 17] J.T. Peter, A. Guta, T. Alkhouli, P. Bahar, J. Rosendahl, N. Rossenbach,
M. Graça, N. Hermann: The RWTH Aachen University English-German and German-English
Machine Translation System for WMT 2017. In Workshop on Statistical Machine Translation
(WMT), pp. 358–365, Copenhagen, Denmark, September 2017.

[Peter & Nix+ 17] J. Peter, A. Nix, H. Ney: Generating Alignments using Target Foresight in
Attention-based Neural Machine Translation. The Prague bulletin of mathematical linguistics,
Vol. 108, pp. 27–36, May 2017.

[Peter & Toutounchi+ 15] J.T. Peter, F. Toutounchi, S. Peitz, P. Bahar, A. Guta, H. Ney: The
RWTH Aachen German to English MT System for IWSLT 2015. In International Workshop on
Spoken Language Translation (IWSLT), pp. 15–22, Da Nang, Vietnam, December 2015.

[Pino & Xu+ 20] J. Pino, Q. Xu, X. Ma, M.J. Dousti, Y. Tang: Self-Training for End-to-
End Speech Translation. In Annual Conference of the International Speech Communication
Association (INTERSPEECH), pp. 1476–1480, Shanghai, China, October 2020.

[Pollack 90] J.B. Pollack: Recursive Distributed Representations. Artificial Intelligence, Vol. 46,
No. 1–2, pp. 77–105, November 1990.

[Popel & Bojar 18] M. Popel, O. Bojar: Training Tips for the Transformer Model. Prague Bull.
Math. Linguistics, Vol. 110, pp. 43–70, 2018.

[Popovic 15] M. Popovic: ChrF: Character N-gram F-score for Automatic MT Evaluation. In
Workshop on Statistical Machine Translation (WMT), pp. 392–395, Lisbon, Portugal, September
2015.

[Post 18] M. Post: A Call for Clarity in Reporting BLEU Scores. In Workshop on Statistical
Machine Translation (WMT), pp. 186–191, Belgium, Brussels, October - November 2018.

[Prabhavalkar & Rao+ 17] R. Prabhavalkar, K. Rao, T.N. Sainath, B. Li, L. Johnson, N. Jaitly: A
Comparison of Sequence-to-Sequence Models for Speech Recognition. In Annual Conference of
the International Speech Communication Association (INTERSPEECH), pp. 939–943, Stockholm,
Sweden, August 2017.

[Prabhavalkar & Sainath+ 17] R. Prabhavalkar, T.N. Sainath, B. Li, K. Rao, N. Jaitly: An
Analysis of Attention in Sequence-to-Sequence Models. In Annual Conference of the International
Speech Communication Association (INTERSPEECH), pp. 3702–3706, Stockholm, Sweden,
August 2017.

[Press & Smith 18] O. Press, N.A. Smith: You May Not Need Attention. CoRR, Vol.
abs/1810.13409, 2018.

177

BIBLIOGRAPHY

[Press & Wolf 17] O. Press, L. Wolf: Using the Output Embedding to Improve Language Models.
In Conference of the European Chapter of the Association for Computational Linguistics (EACL),
pp. 157–163, Valencia, Spain, April 2017.

[Rabiner 89] L.R. Rabiner: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, Vol. 77, No. 2, pp. 257–286, 1989.

[Rabiner & Juang 93] L.R. Rabiner, B. Juang: Fundamentals of Speech Recognition. Prentice
Hall signal processing series. Prentice Hall, 1993.

[Raffel & Luong+ 17] C. Raffel, M. Luong, P.J. Liu, R.J. Weiss, D. Eck: Online and Linear-
Time Attention by Enforcing Monotonic Alignments. In International Conference on Machine
Learning (ICML), Vol. 70, pp. 2837–2846, Sydney, Australia, August 2017.

[Raison & Mazaré+ 18] M. Raison, P. Mazaré, R. Das, A. Bordes: Weaver: Deep Co-Encoding of
Questions and Documents for Machine Reading. CoRR, Vol. abs/1804.10490, 2018.

[Reiter 18] E. Reiter: A Structured Review of the Validity of BLEU. Computational Linguistics,
Vol. 44, No. 3, 2018.

[Robbins & Monro 51] H. Robbins, S. Monro: A Stochastic Approximation Method. Annals of
Mathematical Statistics, Vol. 22, No. 3, pp. 400–407, 1951.

[Robinson 94] A.J. Robinson: An Application of Recurrent Nets to Phone Probability Estimation.
IEEE Transactions on Neural Networks, Vol. 5, No. 2, pp. 298–305, 1994.

[Robinson & Failside 87] A.J. Robinson, F. Failside: Static and Dynamic Error Propagation
Networks with Application to Speech Coding. In Conference on Neural Information Processing
Systems (NeurIPS), pp. 632–641, Denver, CO, USA, December 1987.

[Rosenblatt 58] F. Rosenblatt: The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain. Psychological Review, Vol., pp. 65–386, 1958.

[Rosendahl & Herold+ 19] J. Rosendahl, C. Herold, Y. Kim, M. Graça, W. Wang, P. Bahar,
Y. Gao, H. Ney: The RWTH Aachen University Machine Translation Systems for WMT 2019.
In Workshop on Statistical Machine Translation (WMT), pp. 349–355, Florence, Italy, July
2019.

[Rosendahl & Tran+ 19] J. Rosendahl, V.A.K. Tran, W. Wang, H. Ney: Analysis of Positional
Encodings for Neural Machine Translation. In International Workshop on Spoken Language
Translation (IWSLT), Hong Kong, China, November 2019.

[Rousseau & Deléglise+ 14] A. Rousseau, P. Deléglise, Y. Estève: Enhancing the TED-LIUM
Corpus with Selected Data for Language Modeling and More TED Talks. In International
Conference on Language Resources and Evaluation (LREC), pp. 3935–3939, Reykjavik, Iceland,
May 2014.

[Ruder 19] S. Ruder: Neural Transfer Learning for Natural Language Processing. Ph.D. thesis,
National University of Ireland, Galway, 2019.

[Ruiz & Gangi+ 17] N. Ruiz, M.A.D. Gangi, N. Bertoldi, M. Federico: Assessing the Tolerance of
Neural Machine Translation Systems Against Speech Recognition Errors. In Annual Conference
of the International Speech Communication Association (INTERSPEECH), pp. 2635–2639,
Stockholm, Sweden, August 2017.

178

BIBLIOGRAPHY

[Rumelhart & Hinton+ 86] D.E. Rumelhart, G.E. Hinton, R.J. Williams: Learning Representa-
tions by Back-Propagating Errors. Nature, Vol. 323, No. 6088, pp. 533–536, 1986.

[Rumelhart & Hinton+ 88] D.E. Rumelhart, G.E. Hinton, R.J. Williams: Learning Representa-
tions by Back-Propagating Errors, 696–699. MIT Press, Cambridge, MA, USA, 1988.

[Rybach & Gollan+ 09] D. Rybach, C. Gollan, G. Heigold, B. Hoffmeister, J. Lööf, R. Schlüter,
H. Ney: The RWTH Aachen University Open Source Speech Recognition System. In Annual
Conference of the International Speech Communication Association (INTERSPEECH), pp.
2111–2114, Brighton, UK, September 2009.

[Sabet & Dufter+ 20] M.J. Sabet, P. Dufter, F. Yvon, H. Schütze: SimAlign: High Quality
Word Alignments without Parallel Training Data using Static and Contextualized Embeddings.
In T. Cohn, Y. He, Y. Liu, editors, Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1627–1643, Punta Cana, Dominican Republic, November 2020.

[Sainath & Li 16] T.N. Sainath, B. Li: Modeling Time-Frequency Patterns with LSTM vs.
Convolutional Architectures for LVCSR Tasks. In Annual Conference of the International
Speech Communication Association (INTERSPEECH), pp. 813–817, San Francisco, CA, USA,
September 2016.

[Sak & Shannon+ 17] H. Sak, M. Shannon, K. Rao, F. Beaufays: Recurrent Neural Aligner:
An Encoder-Decoder Neural Network Model for Sequence to Sequence Mapping. In Annual
Conference of the International Speech Communication Association (INTERSPEECH), pp.
1298–1302, Stockholm, Sweden, August 2017.

[Sanabria & Caglayan+ 18] R. Sanabria, O. Caglayan, S. Palaskar, D. Elliott, L. Barrault, L. Spe-
cia, F. Metze: How2: A Large-Scale Dataset for Multimodal Language Understanding. In
Workshop on Visually Grounded Interaction and Language (VIGIL), Montreal, Canada, Decem-
ber 2018.

[Sankaran & Mi+ 16] B. Sankaran, H. Mi, Y. Al-Onaizan, A. Ittycheriah: Temporal Attention
Model for Neural Machine Translation. CoRR, Vol. abs/1608.02927, 2016.

[Schamper & Rosendahl+ 18] J. Schamper, J. Rosendahl, P. Bahar, Y. Kim, A. Nix, H. Ney:
The RWTH Aachen University Supervised Machine Translation Systems for WMT 2018. In
Workshop on Statistical Machine Translation (WMT), pp. 496–503, Brussels, Belgium, October
2018.

[Schlüter & Bezrukov+ 07] R. Schlüter, I. Bezrukov, H. Wagner, H. Ney: Gammatone Features
and Feature Combination for Large Vocabulary Speech Recognition. In IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 649–652, Honolulu, HI,
USA, April 2007.

[Schuster & Paliwal 97] M. Schuster, K.K. Paliwal: Bidirectional Recurrent Neural Networks.
IEEE Transactions of Signal Processing, Vol. 45, No. 11, pp. 2673–2681, 1997.

[Schwenk 12] H. Schwenk: Continuous Space Translation Models for Phrase-based Statistical
Machine Translation. In International Conference on Computational Linguistics (COLING), pp.
1071–1080, Mumbai, India, December 2012.

[Schwenk & Déchelotte+ 06] H. Schwenk, D. Déchelotte, J. Gauvain: Continuous Space Lan-
guage Models for Statistical Machine Translation. In Annual Meeting of the Association for
Computational Linguistics (ACL), Sydney, Australia, July 2006.

179

BIBLIOGRAPHY

[Schwenk & Gauvain 02] H. Schwenk, J. Gauvain: Connectionist Language Modeling for Large
Vocabulary Continuous Speech Recognition. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 765–768, Portland, OR, USA, May 2002.

[Schwenk & Gauvain 04] H. Schwenk, J. Gauvain: Neural Network Language Models for Con-
versational Speech Recognition. In Conference on Spoken Language Processing (CSLP), Jeju
Island, Korea, October 2004.

[Schwenk & Rousseau+ 12] H. Schwenk, A. Rousseau, M. Attik: Large, Pruned or Continuous
Space Language Models on a GPU for Statistical Machine Translation. In Worshop on Will
We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pp.
11–19, Montreal, Canada, June 2012.

[Sennrich & Haddow+ 16a] R. Sennrich, B. Haddow, A. Birch: Improving Neural Machine Trans-
lation Models with Monolingual Data. In Annual Meeting of the Association for Computational
Linguistics (ACL), Berlin, Germany, August 2016.

[Sennrich & Haddow+ 16b] R. Sennrich, B. Haddow, A. Birch: Neural Machine Translation of
Rare Words with Subword Units. In Annual Meeting of the Association for Computational
Linguistics (ACL), Berlin, Germany, August 2016.

[Shankar & Garg+ 18] S. Shankar, S. Garg, S. Sarawagi: Surprisingly Easy Hard-Attention for
Sequence to Sequence Learning. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 640–645, Brussels, Belgium, October - November 2018.

[Shankar & Sarawagi 19] S. Shankar, S. Sarawagi: Posterior Attention Models for Sequence to
Sequence Learning. In International Conference on Learning Representations (ICLR), New
Orleans, LA, USA, May 2019.

[Shaw & Uszkoreit+ 18] P. Shaw, J. Uszkoreit, A. Vaswani: Self-Attention with Relative Posi-
tion Representations. In Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL), pp. 464–468, New Orleans, LA, USA, June 2018.

[Shen & Delaney+ 07] W. Shen, B. Delaney, T.R. Anderson, R.E. Slyh: The MIT-LL/AFRL
IWSLT-2007 MT System. In International Workshop on Spoken Language Translation (IWSLT),
pp. 95–102, Trento, Italy, October 2007.

[Snover & Dorr+ 06] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, J. Makhoul: A Study of
Translation Edit Rate with Targeted Human Annotation. In Association for Machine Translation
in the Americas (AMTA), pp. 223–231, Cambridge, MA, USA, August 2006.

[Sperber & Neubig+ 17] M. Sperber, G. Neubig, J. Niehues, A. Waibel: Neural Lattice-to-
Sequence Models for Uncertain Inputs. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1380–1389, Copenhagen, Denmark, September 2017.

[Sperber & Neubig+ 19a] M. Sperber, G. Neubig, J. Niehues, A. Waibel: Attention-Passing
Models for Robust and Data-Efficient End-to-End Speech Translation. Transactions of the
Association for Computational Linguistics, Vol. 7, pp. 313–325, 2019.

[Sperber & Neubig+ 19b] M. Sperber, G. Neubig, N. Pham, A. Waibel: Self-Attentional Models
for Lattice Inputs. In Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 1185–1197, Florence, Italy, July - August 2019.

180

BIBLIOGRAPHY

[Sperber & Niehues+ 17] M. Sperber, J. Niehues, A. Waibel: Toward Robust Neural Machine
Translation for Noisy Input Sequences. In International Workshop on Spoken Language Trans-
lation (IWSLT), pp. 90–96, Tokyo, Japan, December 2017.

[Sperber & Paulik 20] M. Sperber, M. Paulik: Speech Translation and the End-to-End Promise:
Taking Stock of Where We Are. In Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 7409–7421, Seattle, WA, USA, July 2020.

[Sperber & Setiawan+ 20] M. Sperber, H. Setiawan, C. Gollan, U. Nallasamy, M. Paulik: Con-
sistent Transcription and Translation of Speech. Transaction of Association Computational
Linguistics, Vol. 8, pp. 695–709, 2020.

[Srivastava & Hinton+ 14] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdi-
nov: Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Resource, Vol. 15, No. 1, pp. 1929–1958, 2014.

[Stahlberg & Saunders+ 18] F. Stahlberg, D. Saunders, B. Byrne: An Operation Sequence Model
for Explainable Neural Machine Translation. In Workshop in Analyzing and Interpreting Neural
Networks for NLP (BlackboxNLP), pp. 175–186, Brussels, Belgium, November 2018.

[Stoian & Bansal+ 20] M.C. Stoian, S. Bansal, S. Goldwater: Analyzing ASR Pretraining for
Low-Resource Speech-to-Text Translation. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 7909–7913, Barcelona, Spain, May 2020.

[Strauß & Grüning+ 16] T. Strauß, T. Grüning, G. Leifert, R. Labahn: CITlab ARGUS for
Keyword Search in Historical Handwritten Documents - Description of CITlab’s System for the
ImageCLEF 2016 Handwritten Scanned Document Retrieval Task. In Conference and Labs of
the Evaluation Forum (CLEF), Vol. 1609, pp. 399–412, Évora, Portugal, September 2016.

[Sundermeyer & Alkhouli+ 14] M. Sundermeyer, T. Alkhouli, J. Wuebker, H. Ney: Translation
Modeling with Bidirectional Recurrent Neural Networks. In Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 14–25, Doha, Qatar, October 2014.

[Sundermeyer & Ney+ 15] M. Sundermeyer, H. Ney, R. Schlüter: From Feedforward to Recurrent
LSTM Neural Networks for Language Modeling. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, Vol. 23, No. 3, pp. 517–529, 2015.

[Sundermeyer & Oparin+ 13] M. Sundermeyer, I. Oparin, J. Gauvain, B. Freiberg, R. Schlüter,
H. Ney: Comparison of Feedforward and Recurrent Neural Network Language Models. In IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 8430–8434,
Vancouver, Canada, May 2013.

[Sundermeyer & Schlüter+ 12] M. Sundermeyer, R. Schlüter, H. Ney: LSTM Neural Networks
for Language Modeling. In Annual Conference of the International Speech Communication
Association (INTERSPEECH), pp. 194–197, Portland, OR, USA, September 2012.

[Sung & Liu+ 19] T. Sung, J. Liu, H. Lee, L. Lee: Towards End-to-End Speech-to-Text Translation
with Two-pass Decoding. In IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pp. 7175–7179, Brighton, United Kingdom, May 2019.

[Sutskever & Vinyals+ 14] I. Sutskever, O. Vinyals, Q.V. Le: Sequence to Sequence Learning
with Neural Networks. In Conference on Neural Information Processing Systems (NeurIPS), pp.
3104–3112, Montreal, Canada, December 2014.

181

BIBLIOGRAPHY

[Synnaeve & Xu+ 20] G. Synnaeve, Q. Xu, J. Kahn, E. Grave, T. Likhomanenko, V. Pratap,
A. Sriram, V. Liptchinsky, R. Collobert: End-to-End ASR: from Supervised to Semi-Supervised
Learning with Modern Architectures. In Workshop on Self-supervision in Audio and Speech
(SAS), Vienna, Austria, July 2020.

[Tamura & Watanabe+ 14] A. Tamura, T. Watanabe, E. Sumita: Recurrent Neural Networks for
Word Alignment Model. In Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 1470–1480, Baltimore, MD, USA, June 2014.

[Tang & Sennrich+ 19] G. Tang, R. Sennrich, J. Nivre: Understanding Neural Machine Translation
by Simplification: The Case of Encoder-Free Models. In International Conference on Recent
Advances in Natural Language Processing (RANLP), pp. 1186–1193, Varna, Bulgaria, September
2019.

[Tiedemann 12] J. Tiedemann: Parallel Data, Tools and Interfaces in OPUS. In International
Conference on Language Resources and Evaluation (LREC), Istanbul, Turkey, may 2012.

[Tilk & Alumäe 16] O. Tilk, T. Alumäe: Bidirectional Recurrent Neural Network with Attention
Mechanism for Punctuation Restoration. In Annual Conference of the International Speech Com-
munication Association (INTERSPEECH), pp. 3047–3051, San Francisco, CA, USA, September
2016.

[Tjandra & Sakti+ 17] A. Tjandra, S. Sakti, S. Nakamura: Local Monotonic Attention Mechanism
for End-to-End Speech And Language Processing. In International Joint Conference on Natural
Language Processing (IJCNLP), pp. 431–440, Taipei, Taiwan, November - December 2017.

[Toshniwal & Kannan+ 18] S. Toshniwal, A. Kannan, C. Chiu, Y. Wu, T.N. Sainath, K. Livescu:
A Comparison of Techniques for Language Model Integration in Encoder-Decoder Speech
Recognition. In IEEE Spoken Language Technology Workshop (SLT), pp. 369–375, Athens,
Greece, December 2018.

[Tripathi & Lu+ 19] A. Tripathi, H. Lu, H. Sak, H. Soltau: Monotonic Recurrent Neural Network
Transducer and Decoding Strategies. In IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pp. 944–948, Sentosa, Singapore, December 2019.

[Tu & Lu+ 16] Z. Tu, Z. Lu, Y. Liu, X. Liu, H. Li: Modeling Coverage for Neural Machine
Translation. In Annual Meeting of the Association for Computational Linguistics (ACL), Berlin,
Germany, August 2016.

[Tüske & Saon+ 20] Z. Tüske, G. Saon, K. Audhkhasi, B. Kingsbury: Single Headed Attention
based Sequence-to-Sequence Model for State-of-the-Art Results on Switchboard-300. Vol.,
pp. 551–555, October 2020.

[van Merriënboer & Bahdanau+ 15] B. van Merriënboer, D. Bahdanau, V. Dumoulin, D. Serdyuk,
D. Warde-Farley, J. Chorowski, Y. Bengio: Blocks and Fuel: Frameworks for Deep Learning.
CoRR, Vol. abs/1506.00619, 2015.

[Vaswani & Shazeer+ 17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez,
L. Kaiser, I. Polosukhin: Attention Is All You Need. In Conference on Neural Information
Processing Systems (NeurIPS), pp. 5998–6008, Long Beach, CA, USA, December 2017.

[Vaswani & Zhao+ 13] A. Vaswani, Y. Zhao, V. Fossum, D. Chiang: Decoding with Large-Scale
Neural Language Models Improves Translation. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1387–1392, Seattle, WA, USA, October 2013.

182

BIBLIOGRAPHY

[Vilar & Popovic+ 06] D. Vilar, M. Popovic, H. Ney: AER: do we need to improve our alignments?
In International Workshop on Spoken Language Translation (IWSLT), pp. 205–212, Kyoto,
Japan, November 2006.

[Viterbi 67] A.J. Viterbi: Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm. IEEE Transaction of Information Theory, Vol. 13, No. 2, pp. 260–269,
1967.

[Vogel & Ney+ 96] S. Vogel, H. Ney, C. Tillmann: HMM-based Word Alignment in Statistical
Translation. In International Conference on Computational Linguistics (COLING), pp. 836–841,
Copenhagen, Denmark, August 1996.

[Voigtlaender 16] P. Voigtlaender: Handwriting Recognition with Large Multidimensional Long
Short-Term Memory Recurrent Neural Networks, 2016.

[Voigtlaender & Doetsch+ 16] P. Voigtlaender, P. Doetsch, H. Ney: Handwriting Recognition with
Large Multidimensional Long Short-Term Memory Recurrent Neural Networks. In International
Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 228–233, Shenzhen, China,
October 2016.

[Voita & Talbot+ 19] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, I. Titov: Analyzing Multi-Head
Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned. In Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 5797–5808, Florence, Italy,
July - August 2019.

[Waibel & Hanazawa+ 88] A. Waibel, T. Hanazawa, G.E. Hinton, K. Shikano, K.J. Lang:
Phoneme Recognition: Neural Networks vs. Hidden Markov Models. In IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 107–110, New York, NY,
USA, April 1988.

[Wang & Alkhouli+ 17] W. Wang, T. Alkhouli, D. Zhu, H. Ney: Hybrid Neural Network Alignment
and Lexicon Model in Direct HMM for Statistical Machine Translation. In Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 125–131, Vancouver, Canada, July -
August 2017.

[Wang & Lu+ 16] M. Wang, Z. Lu, H. Li, Q. Liu: Memory-Enhanced Decoder for Neural Machine
Translation. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 278–286, Austin, TX, USA, November 2016.

[Wang & Mohamed+ 20] Y. Wang, A. Mohamed, D. Le, C. Liu, A. Xiao, J. Mahadeokar, H. Huang,
A. Tjandra, X. Zhang, F. Zhang, C. Fuegen, G. Zweig, M.L. Seltzer: Transformer-based Acoustic
Modeling for Hybrid Speech Recognition. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 6874–6878, Barcelona, Spain, May 2020.

[Wang & Peter+ 16] W. Wang, J. Peter, H. Rosendahl, H. Ney: CharacTer: Translation Edit
Rate on Character Level. In Workshop on Statistical Machine Translation (WMT), pp. 505–510,
Berlin, Germany, August 2016.

[Wang & Pino+ 20] C. Wang, J. Pino, A. Wu, J. Gu: CoVoST: A Diverse Multilingual Speech-to-
Text Translation Corpus. In International Conference on Language Resources and Evaluation
(LREC), pp. 4197–4203, Marseille, France, May 2020.

[Wang & Wu+ 20] C. Wang, Y. Wu, S. Liu, M. Zhou, Z. Yang: Curriculum Pre-Training for
End-to-End Speech Translation. In D. Jurafsky, J. Chai, N. Schluter, J.R. Tetreault, editors,

183

BIBLIOGRAPHY

Annual Meeting of the Association for Computational Linguistics (ACL), pp. 3728–3738, Seattle,
WA, USA, July 2020.

[Wang & Yang+ 21] W. Wang, Z. Yang, Y. Gao, H. Ney: Transformer-based Direct Hidden
Markov Model for Machine Translation. In Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing: Student
Research Workshop (ACL/IJCNLP), pp. 23–32, Bangkok, Thailand, August 2021.

[Wang & Zheng 15] D. Wang, T.F. Zheng: Transfer Learning for Speech and Language Processing.
In Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA), pp. 1225–1237, Hong Kong, China, December 2015.

[Wang & Zhu+ 18] W. Wang, D. Zhu, T. Alkhouli, Z. Gan, H. Ney: Neural Hidden Markov Model
for Machine Translation. In Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 377–382, Melbourne, Australia, July 2018.

[Watanabe & Hori+ 17] S. Watanabe, T. Hori, S. Kim, J.R. Hershey, T. Hayashi: Hybrid
CTC/Attention Architecture for End-to-End Speech Recognition. IEEE Journal of Selected
Topics in Signal Processing, Vol. 11, No. 8, pp. 1240–1253, 2017.

[Weiss & Chorowski+ 17] R.J. Weiss, J. Chorowski, N. Jaitly, Y. Wu, Z. Chen: Sequence-to-
Sequence Models Can Directly Translate Foreign Speech. In Annual Conference of the Inter-
national Speech Communication Association (INTERSPEECH), pp. 2625–2629, Stockholm,
Sweden, August 2017.

[Werbos 88] P.J. Werbos: Generalization of Backpropagation with Application to a Recurrent
Gas Market Model. Neural Networks, Vol. 1, No. 4, pp. 339–356, 1988.

[Werbos 90] P.J. Werbos: Backpropagation through Time: What It Does and How to Do It.
Proceedings of the IEEE, Vol. 78, No. 10, pp. 1550–1560, 1990.

[Werlen & Pappas+ 18] L.M. Werlen, N. Pappas, D. Ram, A. Popescu-Belis: Self-Attentive
Residual Decoder for Neural Machine Translation. In Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL), pp. 1366–1379, New
Orleans, LA, USA, June 2018.

[Weston & Chopra+ 15] J. Weston, S. Chopra, A. Bordes: Memory Networks. In International
Conference on Learning Representations (ICLR), San Diego, CA, USA, May 2015.

[Wiesler & Richard+ 14] S. Wiesler, A. Richard, P. Golik, R. Schlüter, H. Ney: RASR/NN: The
RWTH Neural Network Toolkit for Speech Recognition. In IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pp. 3281–3285, Florence, Italy, May 2014.

[Williams 92] R.J. Williams: Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning. Machine Learning, Vol. 8, pp. 229–256, 1992.

[Wilson & Martinez 03] D.R. Wilson, T.R. Martinez: The General Inefficiency of Batch Training
for Gradient Descent Learning. Vol. 16, No. 10, 2003.

[Wu & Cotterell 19] S. Wu, R. Cotterell: Exact Hard Monotonic Attention for Character-Level
Transduction. In Annual Meeting of the Association for Computational Linguistics (ACL), pp.
1530–1537, Florence, Italy, July - August 2019.

[Wu & Fan+ 19] F. Wu, A. Fan, A. Baevski, Y.N. Dauphin, M. Auli: Pay Less Attention with
Lightweight and Dynamic Convolutions. In International Conference on Learning Representa-
tions (ICLR), New Orleans, LA, USA, May 2019.

184

BIBLIOGRAPHY

[Wu & Schuster+ 16] Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws,
Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith,
J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, J. Dean: Google’s Neural Machine
Translation System: Bridging the Gap between Human and Machine Translation. CoRR, Vol.
abs/1609.08144, 2016.

[Wu & Shapiro+ 18] S. Wu, P. Shapiro, R. Cotterell: Hard Non-Monotonic Attention for
Character-Level Transduction. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 4425–4438, Brussels, Belgium, October - November 2018.

[Wu & Xia+ 18] L. Wu, Y. Xia, F. Tian, L. Zhao, T. Qin, J. Lai, T. Liu: Adversarial Neural
Machine Translation. In Asian Conference on Machine Learning (ACML), Vol. 95, pp. 534–549,
Beijing, China, November 2018.

[Xu & Ba+ 15] K. Xu, J. Ba, R. Kiros, K. Cho, A.C. Courville, R. Salakhutdinov, R.S. Zemel,
Y. Bengio: Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In
International Conference on Machine Learning (ICML), Vol. 37, pp. 2048–2057, Lille, France,
July 2015.

[Yang & Hu+ 17] Z. Yang, Z. Hu, Y. Deng, C. Dyer, A.J. Smola: Neural Machine Translation
with Recurrent Attention Modeling. In Conference of the European Chapter of the Association
for Computational Linguistics (EACL), pp. 383–387, Valencia, Spain, April 2017.

[Yang & Liu+ 13] N. Yang, S. Liu, M. Li, M. Zhou, N. Yu: Word Alignment Modeling with Context
Dependent Deep Neural Network. In Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 166–175, Sofia, Bulgaria, August 2013.

[Yu & Blunsom+ 17] L. Yu, P. Blunsom, C. Dyer, E. Grefenstette, T. Kociský: The Neural Noisy
Channel. In International Conference on Learning Representations (ICLR), Toulon, France,
April 2017.

[Zamora-Mart́ınez & Bleda+ 10] F. Zamora-Mart́ınez, M.J.C. Bleda, H. Schwenk: N-gram-based
Machine Translation Enhanced with Neural Networks for the French-English BTEC-IWSLT’10
Task. In International Workshop on Spoken Language Translation (IWSLT), pp. 45–52, Paris,
France, December 2010.

[Zenkel & Wuebker+ 19] T. Zenkel, J. Wuebker, J. DeNero: Adding Interpretable Attention to
Neural Translation Models Improves Word Alignment. CoRR, Vol. abs/1901.11359, 2019.

[Zenkel & Wuebker+ 20] T. Zenkel, J. Wuebker, J. DeNero: End-to-End Neural Word Alignment
Outperforms GIZA++. In Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 1605–1617, Seattle, WA, USA, July 2020.

[Zens 08] R. Zens: Phrase-based Statistical Machine Translation: Models, Search, Training. Ph.D.
thesis, RWTH Aachen University, 2008.

[Zens & Bender+ 05] R. Zens, O. Bender, S. Hasan, S. Khadivi, E. Matusov, J. Xu, Y. Zhang,
H. Ney: The RWTH Phrase-based Statistical Machine Translation System. In International
Workshop on Spoken Language Translation (IWSLT), pp. 145–152, Pittsburgh, PA, USA,
October 2005.

[Zens & Och+ 02] R. Zens, F.J. Och, H. Ney: Phrase-based Statistical Machine Translation. In
Advances in Artificial Intelligence, 25th Annual German Conference on AI, Vol. 2479 of Lecture
Notes in Computer Science, pp. 18–32, Aachen, Germany, September 2002.

185

BIBLIOGRAPHY

[Zeyer & Alkhouli+ 18] A. Zeyer, T. Alkhouli, H. Ney: RETURNN as a Generic Flexible Neural
Toolkit with Application to Translation and Speech Recognition. In Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 128–133, Melbourne, Australia, July
2018.

[Zeyer & Bahar+ 19] A. Zeyer, P. Bahar, K. Irie, R. Schlüter, H. Ney: A Comparison of Trans-
former and LSTM Encoder Decoder Models for ASR. In IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pp. 8–15, Sentosa, Singapore, December 2019.

[Zeyer & Irie+ 18] A. Zeyer, K. Irie, R. Schlüter, H. Ney: Improved Training of End-to-End
Attention Models for Speech Recognition. In Annual Conference of the International Speech
Communication Association (INTERSPEECH), pp. 7–11, Hyderabad, India, September 2018.

[Zeyer & Merboldt+ 18] A. Zeyer, A. Merboldt, R. Schlüter, H. Ney: A Comprehensive Analysis
on Attention Models. In Workshop on Interpretability and Robustness in Audio, Speech, and
Language (IRASL), Conference on Neural Information Processing Systems (NeurIPS), Montreal,
Canada, December 2018.

[Zhang & Lu+ 20] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott, S. Koo, S. Kumar:
Transformer Transducer: A Streamable Speech Recognition Model with Transformer Encoders
and RNN-T Loss. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 7829–7833, Barcelona, Spain, May 2020.

[Zhang & Wang+ 17] J. Zhang, M. Wang, Q. Liu, J. Zhou: Incorporating Word Reordering Knowl-
edge into Attention-based Neural Machine Translation. In Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 1524–1534, Vancouver, Canada, July - August 2017.

[Zhang & Xiong+ 16] B. Zhang, D. Xiong, J. Su: Recurrent Neural Machine Translation. CoRR,
Vol. abs/1607.08725, 2016.

[Zhang & Xiong+ 17a] B. Zhang, D. Xiong, J. Su: A GRU-Gated Attention Model for Neural
Machine Translation. CoRR, Vol. abs/1704.08430, 2017.

[Zhang & Xiong+ 17b] B. Zhang, D. Xiong, J. Su, H. Duan: A Context-Aware Recurrent Encoder
for Neural Machine Translation. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, Vol. 25, No. 12, pp. 2424–2432, 2017.

186

	1 Introduction
	1.1 Terminology and Notation
	1.2 Machine Translation
	1.2.1 Word Alignment
	1.2.2 Phrase-based Translation

	1.3 Automatic Speech Recognition
	1.3.1 Acoustic Model
	1.3.2 Language Model

	1.4 Speech Translation
	1.4.1 Cascade Model

	1.5 Evaluation Measures
	1.5.1 Word Error Rate
	1.5.2 Bilingual Evaluation Understudy
	1.5.3 Translation Edit Rate
	1.5.4 Alignment Error Rate

	1.6 About this Thesis
	1.6.1 Previously Published

	2 Scientific Goals
	3 Neural Sequence-to-Sequence Modeling
	3.1 Introduction
	3.2 Neural Networks
	3.2.1 Feedforward Neural Network
	3.2.2 Recurrent Neural Network
	3.2.3 Long Short-Term Memory
	3.2.4 Bidirectional Long Short-Term Memory

	3.3 Neural Language Model
	3.4 Sequence-to-Sequence Model
	3.5 Attention Sequence-to-Sequence Model
	3.5.1 Attention
	3.5.2 Recurrent Attention Model
	3.5.3 Attention Refinement
	3.5.4 Self-Attentive Model

	3.6 Training
	3.6.1 Back-Propagation with Stochastic Gradient Descent

	3.7 Search
	3.8 Experimental Results
	3.8.1 Machine Translation
	3.8.2 Automatic Speech Recognition

	3.9 Implementation
	3.10 Conclusion
	3.11 Related Work

	4 Two-Dimensional Sequence-to-Sequence Modeling
	4.1 Introduction
	4.2 Two-Dimensional Long Short-Term Memory
	4.3 Two-Dimensional Model
	4.3.1 Collapsing the Output for Sequence Prediction
	4.3.2 Training
	4.3.3 Order of Processing
	4.3.4 Bidirectional Two-Dimensional Model

	4.4 Two-Way Translation Model
	4.4.1 Model Architecture

	4.5 Experimental Results
	4.5.1 Machine Translation
	4.5.2 Two-Way Machine Translation
	4.5.3 Automatic Speech Recognition

	4.6 Implementation
	4.7 Conclusion
	4.8 Related Work

	5 Zero-Order Hidden Markov Modeling
	5.1 Introduction
	5.2 Model and Formulation
	5.2.1 Training
	5.2.2 Search

	5.3 Neural Parameterization
	5.3.1 Recurrent Network
	5.3.2 Self-Attention Network

	5.4 Complexity and Speedup Technique
	5.4.1 topK Approximation

	5.5 Experimental Results
	5.5.1 Machine Translation
	5.5.2 Automatic Speech Recognition

	5.6 Implementation
	5.7 Conclusion
	5.8 Related Work

	6 End-to-End Speech-to-Text Translation
	6.1 Introduction
	6.2 Direct Model
	6.2.1 CTC Loss
	6.2.2 Spectrogram Augmentation

	6.3 Transfer Learning from Speech Recognition and Text Translation
	6.3.1 Sequential Transfer Learning
	6.3.2 Multi-Task Learning

	6.4 Tight Integration of Cascade Model
	6.5 Experimental Results
	6.5.1 Setups
	6.5.2 Results

	6.6 Implementation
	6.7 Conclusion
	6.8 Related Work

	7 Scientific Achievements
	8 Individual Contributions
	A Overview of the Corpora
	A.1 Machine Translation
	A.1.1 WMT 2018 GermanEnglish
	A.1.2 WMT 2018 ChineseEnglish
	A.1.3 WMT 2014 EnglishGerman

	A.2 Automatic Speech Recognition
	A.2.1 Switchboard 300h
	A.2.2 LibriSpeech 960h

	A.3 Speech Translation
	A.3.1 IWSLT EnglishGerman
	A.3.2 MuST-C EnglishSpanish
	A.3.3 LibriSpeech EnglishFrench

	B Additional Results
	List of Figures
	List of Tables
	Bibliography

