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Abstract
Manufacturing systems are undergoing systematic change facing the trade-off between the customer’s needs and the economic
and ecological pressure. Especially assembly systemsmust be more flexible due to many product generations or unpredictable
material and demand fluctuations. As a solution line-less mobile assembly systems implement flexible job routes through
movable multi-purpose resources and flexible transportation systems. Moreover, a completely reactive rearrangeable layout
with mobile resources enables reconfigurations without interrupting production. A scheduling that can handle the complexity
of dynamic events is necessary to plan job routes and control transportation in such an assembly system. Conventional
approaches for this control task require exponentially rising computational capacitieswith increasing problem sizes. Therefore,
the contribution of this work is an algorithm to dynamically solve the integrated problem of layout optimization and scheduling
in line-less mobile assembly systems. The proposed multi agent deep reinforcement learning algorithm uses proximal policy
optimization and consists of a decoder and encoder, allowing for various-sized system state descriptions. A simulation study
shows that the proposed algorithm performs better in 78% of the scenarios compared to a random agent regarding the
makespan optimization objective. This allows for adaptive optimization of line-less mobile assembly systems that can face
global challenges.

Keywords Production control · Production scheduling · Layout optimization · Multi-agent deep reinforcement learning ·
Proximal policy optimization · Mobile resources · Flexible assembly

Introduction andmotivation

Until now, production aimed at increased productivity in
terms of an increased economy of sales, resulting in over-
production. In the light of a shift to more sustainable
green production, product life cycles must be extended
through the refurbishment of components and products. This
refurbishment requires the disassembly and reassembly of
many product variants and product generations within one
assembly system. Conventional assembly systems with rigid
structures are designed for cost-efficient mass production
in stable market environments, thus not implementing the
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needed flexibility. (Hüttemann et al., 2017) More flexible
assembly systems, like Lineless Mobile Assembly Systems
(LMAS), offer to dissolve temporal and spatial restrictions
by mobilizing all products and assembly relevant resources
within the factory, using autonomous guided vehicles (AGV),
mobile robotics, or worker guidance systems. The move-
ment of assembly stations to new positions during production
allows overall system reconfigurations. This high degree of
flexibility increases the demand for planning and control.
(Hüttemann et al., 2019) A control system must dynami-
cally determine the factory configuration (layout planning)
and calculate job routes for incoming products (scheduling)
depending on the current system status. To exploit the full
potential of LMAS, these decisionsmust be calculated online
during production. (Qin & Lu, 2021) Existing solutions for
this planning problem require exponentially rising compu-
tational capacities with increasing problem sizes and are
very slow in practice. (Moslemipour et al., 2012) Machine
learning approaches using neural networks (NN) can deliver
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fast decisions on complex problems and are robust against
varying problem formulations. Solving the complex control
tasks proves challenges when using preprogrammed agent
behaviors. (Busoniu et al., 2008) Moreover, training data for
these machine learning approaches, which is not available
for control tasks in LMAS, is unnecessary when reinforce-
ment learning (RL) is used. The planning and control of
LMAS consists of two optimization problems (layout and
scheduling). RL approaches are mainly limited to systems
that focus on one a single task. Multi-agent reinforcement
learning provides a promising approach to address this chal-
lenge by allowing multiple agents to learn and adapt to the
changing environment. (Vithayathil Varghese andMahmoud
2020; Johnson et al., 2022) Therefore, the contribution of this
paper is a multi-agent RL algorithm for the online integrated
layout planning and scheduling of LMAS.

Foundations

This section presents the foundations for developing an
algorithm for integrated scheduling and layout planning in
LMAS. First, the dynamic facility layout problem and the
flexible job shop problem are defined. Then, the approach
of proximal policy optimization is described. To integrate
layout planning and scheduling, the concept of multi-agent
reinforcement learning (MARL) is presented. Finally, pointer
networks are explained as a RL method to solve combinato-
rial problems.

Integrated layout optimization and scheduling
in flexible production systems

Researchers have differing views on a standardized and
exact definition of layout problems. However, the most
encountered formulation is the static facility layout problem.
(Koopmans & Beckmann, 1957) They define the static facil-
ity layout problem as a common industrial problem that aims
to configure facilities to minimize the cost of transporting
materials between them. As an extension, the dynamic facil-
ity layout problem (DFLP) considers the change of material
flows between facilities and production periods. (Rosenblatt,
1986) DFLP includes the selection of a static layout for each
period and deciding on whether the layout will be changed to
another layout in the next period. Therefore, the layout plan
is determined to minimize the cost of rearranging facilities
between periods and the objective function during periods.
(Hosseini-Nasab et al., 2018) Periods are typically fixed and
defined by weeks, months, or years. (Drira et al., 2006) In
contrast to that, in flexible assembly systems, especially in
the case of LMAS, reconfiguration is envisioned to happen
both on a medium time scale (e.g., per shift) and on a short-
term time scale (i.e., reacting to disturbances) to optimize

the utilization of resources. (Hüttemann et al., 2019) This
implies that the periods of the DFLP are of stochastic length
in contrast to a priori-defined period lengths. The DFLP is
a combinatorial optimization problem. (Moslemipour et al.,
2012) It is considered an NP-hard problem. (Burggraf et al.,
2021).

The job-shop scheduling problem (JSP) is a combinatorial
optimization problem in which various manufacturing jobs
consisting of operations are assigned to machines while try-
ing to minimize a certain objective. (Zhang et al. 2019) The
flexible job shop problem (FJSP) allows an operation to be
processed by a given set of alternative machines. Therefore,
the FJSP consists of sequencing but also of an assignment of
operations to suitablemachines (routing). Besides the routing
flexibility, it is also possible for jobs to allow a different order
of operations (operation flexibility). (Özgüven et al., 2010)
The FJSP can be solved statically or dynamically, whereas
the latter case corresponds to a scheduling system that can
react to real-time events. (Ouelhadj & Petrovic, 2009) FJSP
is also considered an NP-hard problem. (Brucker & Schlie,
1990).

In practice, DFLP and FJSP are dependent on each other.
Following (Ripon and Torresen 2014), the decomposition
of these integrated problems requires prior domain knowl-
edge, and the final solution is sensitive to the solution of
the previous stage. Compared to the traditional method,
which solves the dynamic optimization problem and the
scheduling problem separately, integrated methods can sig-
nificantly improve the overall performance of the entire
process. (Chu & You, 2014) Different solution approaches
can be used to solve these combinatorial problems: exact,
heuristic, and intelligent approaches. (Drira et al., 2006)
Exact approaches require exponentially rising computational
capacities with increasing problem sizes and are very slow
in practice. (Moslemipour et al., 2012) Approximationmeth-
ods provide valuable, yet not exact, solutions. They mostly
rely on boundary conditions and objective functions that
require analytical formulation. This requires assumptions
and simplifications for complex environments like assembly
systems, which is challenging since it requires high expert
knowledge. (Klar et al., 2021) Considering the requirement
of real-time solutions and varying problem formulations for a
resolution approach in flexible assembly systems, intelligent
approaches are potentially suited to solve DFLP and FJSP in
LMAS. (Burggraf et al., 2021; Klar et al., 2021).

Deep reinforcement learning and proximal policy
optimization

RL can be considered a computational approach to goal-
directed learning from interaction. (Sutton & Barto, 2018)
DRL methods utilize an NN to acquire and store expe-
rience over time. (Goldie & Mirhoseini, 2020) Regarding
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the performance of RL methods, actor-critic and policy-
based approaches, in contrast to value-based approaches,
lend themselves well to high-dimensional and continuous
action spaces. (Konda & Tsitsiklis, 1999; Samsonov et al.,
2021) Proximal policy optimization (PPO) (Schulman et al.,
2017) is one of the most commonly used policy gradient
methods. (Petrazzini & Antonelo, 2021; Hsu et al., 2020;
Wang et al. 2019) It applies to both, large discrete action
spaces and continuous action spaces. (Wang et al. 2019) In
contrast to standard policy gradient methods, the PPO objec-
tive function enables multiple epochs of minibatch updates.
(Schulman et al., 2017) The surrogate objective LCL I P is
the key feature of PPO, as it regularizes excessively large
policy updates and allows the algorithm to efficiently reuse
available data. (Hsu et al., 2020).

The scheduling and layout planning of a flexible assembly
can be formulated as a combinatorial problem (cf. Secion
"Integrated layout optimization and scheduling in flexi-
ble production systems"). To solve combinatorial problems
using RL, they can be modeled as sequence-to-sequence
problems. (Sutskever et al., 2014) In sequence-to-sequence
problems, not a single vector is passed as an input to a
NN, but a sequence of vectors. The output, e.g., in a pre-
diction task, is one of the inputs. Sutskever and Vinyals
propose the application of RNNs to solve general sequence-
to-sequence problems. The idea is to use one LSTM to
read the input sequence, one timestep at a time, to obtain
a large fixed dimensional vector representation, and then use
another LSTM to extract the output sequence from that vec-
tor. The second LSTM is conditioned on the input sequence.
(Sutskever et al., 2014) Sequences pose a challenge for NN
because they require that the dimensionality of the inputs
and outputs is known and fixed. Thus, it cannot be used for
problems where the size of the output dictionary depends on
the length of the input sequence. Vinyals proposed an exten-
sion of the sequence-to-sequence model by using a softmax
probability distribution as a "pointer". (Vinyals et al., 2015).

DRL approaches are mainly limited to systems that
adopted RL algorithms focused on learning a single task.
(Vithayathil Varghese and Mahmoud 2020) To concur-
rently handle the two related tasks of layout-planning and
scheduling, methods that tacklemultiple tasks usingmultiple
agents are needed. A multi-agent system describes multiple
distributed agents who make decisions autonomously and
interact within a shared environment. (Weiss, 1999) Each
agent decides in each time step and works along with the
other agents to achieve an individual predetermined goal.
On the one hand, cooperative multi-agent systems are ones
in which several agents attempt to solve tasks jointly or to
maximize utility. (Panait & Luke, 2005) On the other hand,
competitive agents have contradicting goals and compete
against each other. Most work in MARL focuses on fully
cooperative settings (Foerster et al. 2017).MARL algorithms

can further be classified into two frameworks: centralized
and decentralized learning (cf. Fig. 1). Centralized meth-
ods (Claus & Boutilier, 1998) assume a cooperative game
and directly extend single-agent RL algorithms by learn-
ing a single policy to produce the joint actions of all agents
simultaneously. In decentralized learning (Littman, 1994),
each agent optimizes its reward independently. Cooperative
MARL problems that are treated using a fully centralized
approach can be characterized as centralized training central-
ized execution. (Gronauer &Diepold, 2021) This centralized
approach might fail on relatively simple cooperative MARL
problems in practice. (Sunehag et al. 2017) An alternative
approach is to train independent learners to optimize for the
team reward. This approach can be referred to as distributed
training decentralized execution. The centralized training
decentralized execution approach bridges the gap between
fully centralized and fully decentralizes training and execu-
tion. Each agent holds an individual policy that maps local
observations to a distribution over individual actions. Dur-
ing training, agents are endowedwith additional information,
which is then discarded at test time. (Gronauer & Diepold,
2021).

Most work in multi-agent RL has focused on homoge-
neous team compositions. (Oroojlooy & Hajinezhad, 2021)
Team homogeneity allows for parameter sharing among
agents and simpler network architectures, which leads to
faster and more stable training. However, a multi-agent team
will likely have a heterogeneous composition. Agents must
leverage their unique abilities and rely on other agents’
specializations to cooperate andfind effective policies. (Wak-
ilpoor et al., 2020).

Another distinction between RL agents is regarding the
synchronicity of the decisions and updates of agents. A sys-
tem is considered synchronous if there is a global clock
and agents move in lockstep. A "step" in the system cor-
responds to a clock tick. In an asynchronous system, there
is no global clock. The agents in the system can run at arbi-
trary rates relative to each other. One step for agent one can
correspond to an arbitrary number of steps for agent two and
vice versa. (Halpern, 2007) Only a few RL algorithms con-
sider the problem of multiple agents acting asynchronously
(e.g., (Wakilpoor et al., 2020; Calvo and Dusparic 2018)). To
address asynchrony, a multi-agent decision process can be
viewed as event-driven, where agents choose a new macro-
action when prompted by an event in some set of events
occurring in the environment. (Menda et al., 2019).

In MARL applications, PPO is significantly less utilized
than off-policy learning algorithms. This is due to the belief
that on-policymethods are less sample efficient than their off-
policy counterparts inmulti-agent problems. (Yu et al., 2021)
Nonetheless, recent research shows promising results of
PPO inmulti-agent problems outperformingmany off-policy
approaches. Witt et al. (2020) demonstrate that independent
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Fig. 1 Training schemes in the multi-agent setting. CTCE (left) holds a
joint policy for all agents. Each agent updates its policy in DTDE (mid-
dle). CTDE (right) enables agents to exchange additional information

during training, which is discarded at test time. (compare (Gronauer &
Diepold, 2021))

PPO (IPPO) can outperform state-of-the-art joint learning
approaches on popular multi-agent benchmarks. Yu et al.
(2021) investigate Multi-Agent PPO, a variant of PPO spe-
cialized formulti-agent settings. They show thatMulti-Agent
PPO achieves surprisingly strong performance in multi-
agent benchmarks, with minimal hyperparameter tuning and
without any domain-specific algorithmic modifications or
architectures. In most environments, they show that Multi-
Agent PPO achieves strong results compared to off-policy
baselines while exhibiting comparable sample efficiency.

State of the art on reinforcement learning
based approaches for scheduling and layout
optimization

To solve the layout and scheduling problem in LMAS, an
algorithm tackling the integrated DFLP and FJSP is needed.
The DFLPmust include regular facility shapes with different
sizes for different facilities and an open-field layout con-
figuration with movable facilities. The FJSP should include
routing flexibility and operation flexibility. Also, the algo-
rithm must handle varying problem sizes and formulations
without reformulating the algorithm/problem. Moreover,
decisions must be fast to allow for completely reactive online
scheduling. Finally, the algorithm must handle stochastic
input data due to the system’s specifications. As stated in
Section "Integrated layout optimization and scheduling in
flexible production systems", intelligent approaches such as
RL are potentially suited to solve DFLP and FJSP in LMAS.
Figure 2 shows potential RL solution approaches found in
the literature.

OnlyAgrawal et al. (2021) tackle the integratedDFLP and
FJSP problem. They solve a job scheduling and navigation
control task in an autonomousmobile robot-driven shop floor
using aMARL framework. The learning problem is modeled
as a Markov decision process with communication amongst
homogenous agents sharing a common policy. The policy is
trained using PPO. The robots (used as AGVs) and humans
can move freely on a discrete layout representation. Specific
problems arise from this resolution approach, making it inap-
plicable for LMAS. First, besides the FJSP, this paper tackles
a routing problem, not a layout problem. Machines cannot
move, and no layout rearrangement is performed. Second, as
the agents are exposed to only onemachine cycle per episode,
they do not learn to halt at a location near a machine. Third,
the algorithm may be unable to handle problems of differ-
ent sizes and formulations. Also, the real-time ability of the
agents cannot be assessed correctly.

Several researchers focused on the isolated JSP using RL
as a resolution technique. They do not offer complete robust-
ness against varying problem sizes and formulations because
the state representation and action space are linked to the
size of the problem, i.e., the number of machines. Only a few
approaches can reach good robustness (over 100% increase
of problem size during inference), using graph representa-
tion learning as a technique for encoding the state of the
problem. (cf. (Park et al., 2021; Hameed and Schwung 2023;
Jing et al., 2022; Oren et al., 2021)) Park et al. (2021) pro-
pose a policy network to handle different-sized graph inputs.
However, the approach is not stochastic, and routing flexi-
bility is not given. Oren et al. (2021) use a Deep Q-Learning
approach to predict an action for each state. The GNN com-
putes the Q-values. Thus, the GNN is used both for encoding
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Fig. 2 Reinforcement learning based approaches for scheduling and layout optimization

and decoding. The algorithm does not include operation flex-
ibility. Hameed et al. (2023) also utilize a GNN for encoding
state, enabling event-driven online scheduling decisions, but
the algorithm lacks operational flexibility. Jing et al. pro-
pose a MARL based on a graph convolutional algorithm for
FJSP, including routing and operational flexibility.Unger and
Börner (2021) are the first to propose RL as a resolution
technique for solving the isolated DFLP using a PPO RL
algorithm and an actor-critic algorithm. The current state of
the assembly system is encoded in colored pictures, allowing
the representation of arbitrary many entities in one picture.
The agent can place one element in a continuous space in x-
and y- directions in each interaction step. A turn corresponds
to the iterationof all systemelements that need tobe arranged.
The approach is only able to handle problems of small size.
Klar et al. (2021) propose a Double Deep Q-Learning algo-
rithm to place four functional units next to a lanewhereAGVs
transport the material. Like Unger and Börner, all units are
placed one after another. It can be assumed that the problem
size and formulationmust not change for a trained algorithm.
Since the state space shown in the paper is small, high deci-
sion time is assumed for large state spaces.

Since no feasible RL resolution approach solving the
DFLP in LMAS exists, resolution approaches from other use
cases have been investigated. Ma et al. (2019) propose a hier-
archical RL approach for tackling the Traveling Salesman

Problem (TSP). The TSP is a classical combinatorial opti-
mization problem that is known to be NP-hard. (Gavish &
Graves, 1978) By solving an NP-hard problem with restric-
tions, the problem is partially related to the integrated DFLP
and FJSP. A graph pointer network (GPN) consisting of an
encoder and a decoder approximately solves the TSP. The
algorithm is generalizable for different problem sizes. Kim
et al. (2020) propose an actor-critic RL approach to tackle a
spatial rearrangement problem. The algorithm is dependent
on the problem size and not suitable for large problem sizes.
Xu et al. (2020) employ a GNN to tackle a tiling problem.
The GNN solves the tiling problem by learning features to
predict probabilities for tile placements. The approach is not
applicable to LMAS, as uncertainties (e.g., statistical dis-
tributed machine breakdowns) cannot be considered. Di and
Yu (2021) explore the interior scene design task, where a set
of furniture must be arranged in a room by complying with
certain criteria. A Deep RL approach is suggested, that is
based on a simulation environment. The resolution approach
is not independent of the problem size. Furthermore, ground
truth data is used to train the agent. For the DFLP, this is
hard to implement, because extensive training data is hard to
provide in the case of facility layout planning. (Klar et al.,
2021).

Mirhoseini andGoldie (2021) present aDeepRLapproach
to chip-floorplanning.Acomputer chip is divided into blocks,
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each of which is an individual module. Chip floorplan-
ning involves placing netlists onto chip canvases (two-
dimensional grids) to optimize performance metrics while
adhering to certain constraints. The chip-floor planning prob-
lem is modeled as a Markov decision process. States encode
information about the partial placement, including the netlist
(adjacency matrix), node features (width, height, type), edge
features (number of connections), current node (macro) to be
placed, and metadata of the netlist graph. Actions are all pos-
sible locations onto which the current macro can be placed
without violating any constraints. Rewards are zero for all
actions except the last action, where the reward is a negative
weighted sum of proxy wire length, congestion, and density.
To address the challenge of large state and action spaces, a
GNN encodes the state space. The GNN is trained via regres-
sion to minimize the weighted sum of mean squared loss
(negative reward). To incorporate the Edge-GNN into the RL
policy network, the prediction layer is removed. Due to the
graph representation and dedicated, supervised training of
the encoder on various datasets, generalization to problems
of different sizes and formulations is possible. Furthermore,
placements generated by the pre-trained policy can be gen-
erated in subsecond times because it requires only a single
forward pass through the pre-trained policy for each macro.

The state of the art shows, that current research approaches
from scheduling and layout planning do not meet the require-
ments for controlling an LMAS. Notably, the following
deficits were found:

1. No RL approach considers the integrated problem of
FJSP and DFLP

2. Existing approaches for the subproblem FJSP do not
consider the necessary flexibility in terms of operational
flexibility

3. Existing approaches for the subproblem DFLP do not
consider the necessary flexibility in terms of an open-
field layout and movable facilities

Approaches from related subject areas offer the poten-
tial for application to the control of LMAS. Especially the
approach for chip-floorplanning (Mirhoseini et al., 2021)
provides a promising solution for large-scale layout prob-
lems.

To address this research gap, in this paper we propose the
following contributions:

1. A MARL approach to solve the integrated problem of
FJSP and DFLP in LMAS, including operational flexi-
bility and an open field layout.

2. A training and simulation environment for LMAScontrol
algorithms.

Multi agent reinforcement learning
algorithm for the integrated online
scheduling and layout planning in LMAS

The following section presents a MARL Algorithm for the
integrated online scheduling and layout planning in LMAS.
First, an overview and the general interaction cycle between
the environment and the RL agents are described. Afterward,
the decoder responsible for the scheduling and layout plan-
ning is shown in detail.

Overview and interaction cycle

To enable efficient training and validation of the algorithm,
the real LMAS is modeled through a DES (cf. Fig. 1). During
training, simulation scenarios are created using automatic
scenario generation. Based on the generated scenarios, the
simulation is performed. For initialization, a random agent
is used. Following the paradigm of online scheduling, the
algorithm for integrated scheduling and layout planning is
called during the simulationwhenever an assembly operation
is finished. As a result, placement and scheduling decisions
are fed back to the LMAS, respectively the DES (Fig. 3).

The requirement for real-time decision-making during
inference favors using Deep RL for processing data. The
various input data must be encoded to a fixed-size vector
representation that NNs can read to handle varying problem
sizes. The NNs work as a decoder in the described setting
based on the encoded environment state. Therefore, the con-
trol agent consists of an encoder and a decoder. The encoder
is implemented using a graph neural network (GNN). As a
result, a fixed-size vector representing the current simulation
state is passed to the encoder.

Environment description and systemmodelling

To prove the RL’s applicability to the layout planning and
scheduling of LMAS, the environment depicted in Fig. 4 was
implemented using aDES.Assembly jobs enter the assembly
system in a predefined order, considering a restricted number
of work in progress (WIP). Whenever a job gets finished (all
assembly operations of the job are finished), a new job enters
the system. Each job belongs to a specific product type. Sev-
eral product types are defined a priori. When a new job is
created, a product type is assigned based on an equal proba-
bility distribution of all possible product types. Each product
type demands assembly stations to perform a list of opera-
tions until a job is finished and can leave the assembly system.
The implementation order of the operations is restricted to a
predefined degree and specified through a precedencematrix.
Each station canperforma set of assemblyoperations.During
the initialization of the simulation, a station is assigned sev-
eral operations sampled from a range of possible operations
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Fig. 3 Overview of elements for the training and application of the control algorithm. The physical LMAS is represented by a Discrete Event
Simulation. The algorithm consists of an endcoder and a decoder

with equal probabilities. Thus, multiple stations may offer
the same operation (operational flexibility). Jobs can only
require operations that are offered by the assembly system.
A new scheduling decision is requested each time an oper-
ation of a job finishes, and the job needs further operations
to be implemented. If a job cannot be assigned to the next
station, it blocks the current station until a new assignment
can be found. The transportation time between the current
and the following station is calculated on the airline distance
using a deterministic transportation velocity.

Stations consist of an input buffer, an output buffer, and
mobile resources. The mobile resources could be mobile
robots but also human operators. Human operators cause
uncertainties regarding the processing times of operations.
(Lin et al., 2022) Therefore, the DES implements stochastic
process times. The maximum length of the station’s queue
is fixed. Each station has a fixed rectangular size, but the

size between different stations varies. The system is mod-
eled as an open-field layout configuration. Thus, all stations
can move freely on the shop floor. The orientation of the sta-
tions is fixed. Stations are not allowed to overlap. Stations
are movable if they are idle, blocked, or in a breakdown.
They cannot be moved if they are processing or in transport
already. For ease of computing, the shop floor is discretized
as a grid that restricts the final position of entities to inter-
sections on the grid. The number of stations in the assembly
system is given a priori to the simulation start. Despite that,
a station can break down and be out of order for a particu-
lar time. The interval between breakdowns is denoted by the
mean time between failures for every station. The breakdown
duration is denoted by the mean time to repair. When enter-
ing a breakdown while being in transport, the transportation
time is extended by the breakdown duration. No transporta-
tion costs are charged, but stations cannot process jobs while
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Fig. 4 Factory and station configuration in LMASwith assembly stations of different sizes and shapes. The decision is requested whenever a product
enters the system or leaves a station

being in transport. Thus, transportation adds downtime to the
system and negatively influences the makespan. The factory
layout can be rearranged, whenever a new scheduling deci-
sion is requested. For the target position of a station, only
coordinates that do not lie on blocked space, e.g., unmov-
able stations, are considered. A boundary is added to blocked
spaces corresponding to the half the size of the station that
must get moved to avoid overlapping stations. Hence, it is
avoided that objects overlap when the centroid of the station
gets moved to the available coordinate. A visualization of the
reconfiguration procedure is shown in Fig. 5.

Cooperative, asynchronous, heterogeneousmulti
agent reinforcement learning algorithm

The task of the decoder is to compute decisions regarding the
placement of stations and the scheduling of jobs. In the lay-
out planning task, the control algorithm must determine new
coordinates for a station. The action space corresponds to all
possible coordinates on the shop floor. A 128× 128 grid dis-
cretizes the layout. Independence of the action space and the
shop floor size is thus given. The action space (for a single
action) is 1282 and constant. Depending on the current state,
some actions can be marked out (e.g., if space on the shop
floor is blocked). The scheduling task is to find a possible
station process pairing. Thus, the action space is dependent
on the input space. The input space varies because the num-
ber of possible pairings varies with the number of stations,

123



Journal of Intelligent Manufacturing

Fig. 5 Visualization of the shop
floor during the layout planning
process. Green and red dots
correspond to grid intersections.
The placement of the station with
dashed green edges is shown.
Light grey boundaries
correspond to blocked space
resulting from the station’s size
to move

processes, and process plan flexibility of the corresponding
job. Accordingly, the integrated task of scheduling and lay-
out planning consists of two tasks requiring different solution
mechanisms.

The agents are called from theDESwhenever an assembly
operation is finished. When called from the DES, mul-
tiple station placements and one scheduling decision are
performed. Several layout planning decisions are required
because the layout planning decision corresponds to one sta-
tion placement. An asynchronous MARL approach is imple-
mented to address the challenge of autonomous decisions
within a shared environment (assembly system). MARL
allows agents to perform actions at different time steps and
independent training parameters and policy structures. The
shared goal of both agents is to minimize the makespan.
The developed control algorithm is thus a cooperative, asyn-
chronous, heterogeneous MARL algorithm (cf. Fig. 6).

The underlying problem is formulated as a Decentral-
ized Partially Observable Markov Decision Process with
separate rewards. The Decentralized Partially Observable
Markov Decision Process generalizes the Partially Observ-
able Markov Decision Process to multiple agents and thus
can be used to model a team of cooperative agents situated
in a stochastic, partially observable environment. (Oliehoek
& Amato, 2016) It is defined by (S, A, O, R, P, n, γ). S is the
state space. A is the shared action space for each agent. oi
� (s, i) is the local observation for agent i at state s. (st+1|st ,
A) denotes the transition probability from st to st+1 given the
joint action A (aL , aS), where aL corresponds to the layout
planning decisions and aS to the scheduling decision. The

stochastic state transition is implicitly implemented in the
DES (e.g., through random breakdowns of stations). Inter-
mediate state transitions are deterministic and not performed
in theDES. ri,+1(st , ai) denote the agent specific reward func-
tion. γ is the discount factor (Yu et al., 2021).

The policies of the agents πi,i (ai |oi) are parameterized
with θi and based on the individual observations by each
agent. Based on the individual rewards for each agent, an
individual objective function can be derived:

Ji (θi , G) � 1

K

∑

g≈G

Eg, a≈πi [Ri , a, g]

Here Ji (θi , G) corresponds to the cost function of agent
i . G denotes the dataset of simulations of size K . Each indi-
vidual simulation is written as g. Ri , a, g is the episode reward
(episode � simulation run). Eg, a≈πi

[
Ri , a, g

]
is the expected

reward in the simulation of agent i using the collection of
actions a sampled from the policy πi .

Reward design

Information is passed to the decision algorithmwhenever the
DES requests a decision. The process flow of the simulation
with an emphasis on decision-making and rewards is shown
in Fig. 7. Steps are distinguished into intermediate and com-
plete steps. Before the scheduling agent makes a scheduling
decision, the layout planning agent decides for each mov-
able station on a placement. This action is fed back to the
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Fig. 6 Process flow of the control algorithm. The DES Runner manages
the interaction with a Discrete Event Simulation. Based on the ouput
of the encoder, the MARL algorithm returns a decision consisting of

coordinates for all stations and a station and technology pairing for the
next process step

Fig. 7 Process flow with emphasis on decisions and rewards. Whenever a decision is requested, multiple layout decisions are fed back to calculate
an intermediate state. The final state is calculated after the scheduling decision is added. It is then processed by the DES

DES. A new intermediate state is calculated, an intermediate
reward is generated, and new observations are passed to the
agent. This process is iterated until all movable stations are
placed. Afterward, the action of the scheduler is, together
with the accumulated actions of the layout planner, fed back
to the DES. A reward is calculated, and the simulation is pro-
ceeded based on the entire scheduling decision. The process
is iterated until the simulation is terminal. No station may
be movable when the DES requests a decision. In that case,
only the scheduler returns an action. This is possible due to
the asynchronous MARL setting.

A reward for the layout planner is returned based on the
negative distance between the station’s initial and destination
coordinates. The distance for a scheduled job to reach the
scheduled station and the waiting time for the respective job
until processing can start is returned as a negative reward.

The scheduler agent reward is the negative distance for the
job to reach the scheduled station multiplied by parameter v

and the negative waiting time for the respective job until
processing can start multiplied by parameter τ .

rscheduler � −ν�ss − ø1twait
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The layout agent reward is the recent transport distance of
the moving station multiplied by η. Additionally, the wait-
ing time of the following job scheduling decision is added
retrospectively and multiplied with ϑ.

rlayout � −η�sL − #1twait

Weights ν, η, ϑ are subject to change and can be optimized
in a hyperparameter-optimization. The return Ri , a, g of agent
i for all steps (complete steps are treated equally to interme-
diate steps) in simulation g and chosen actions a with the
discount factor γ is given in as:

Ri , a, g �
Tg∑

t�0

(γt ∗ ri , t+1)

Layout planner

The layout planning agent solves the DFLP. Therefore, it
computes the placement for one station per decision step,
analogous to (Mirhoseini et al., 2021), placing one chip at a
time. Since a quadratic grid discretizes the shop floor, it is
straightforward to output amatrix with entries corresponding
to grid intersections as the policy. The stochastic policy stores
probabilities in the matrix, corresponding to the likelihood
of moving the station to the corresponding grid intersection
(which corresponds to coordinates on the shop floor).

The input to the policy network of the layout planner is the
state vector encoded by the encoder (cf. Figure 8). The state
vector is first processed by a fully connected NN with one
layer. In order to process the vector to a 2Dmatrix, the vector
is reshaped to a 3D matrix first (e.g., R512 → R4x4x32). The
reshaping process keeps the number of elements constant.
Only the position is changed. Then, deconvolution layers
(Zeiler et al., 2010) are used to process the 3D matrix from
shape 4 × 4 × 32 to 128 × 128 × 1. The deconvolution lay-
ers consecutively reduce the channel dimension and augment
the first dimensions. Five deconvolutions are used, as shown
in Fig. 8. Between the deconvolution layers, batch normal-
ization and ReLU activation is performed. The output after
the deconvolutions is the 128 × 128 × 1 matrix. The policy
is then masked using another matrix of the same shape. The
mask, which describes the layout planner’s available actions,
consists of zero values corresponding to blocked space and
non-zero values marking available space (cf. Fig. 9). The
masked policy is then transformed into a categorical distri-
bution, a discrete probability distribution over the actions.
The stochastic policy of the layout planner is denoted by
πL,L (aL |oL). In training, an action is sampled from the dis-
tribution. During inference, the most likely action is chosen

greedily. The state vector forming the input of the layout
planner policy network is also passed to the value network. A
two-layer fully connected NN approximates the value func-
tion.

Scheduling agent

The scheduling agent solves the completely reactive online
FJSP. Thus, the agent computes only the next station and pro-
cess step pairing for each job. The scheduling agentmust deal
with varying input sizes and an input-dependent action space
(number of possible pairings). Based on the popularity of
pointer networks or attention mechanisms for combinatorial
optimization problems like TSP and VRP, those techniques
also seem promising for the FJSP. Moreover, two closely
related approaches to pointer networks (Park et al., 2021)
and (Zhang et al. 2020) have shown promising results for
FJSP. Therefore, a pointer network using only the first out-
put of the decoder is implemented. The inputs to the pointer
network are d-dimensional vectors. uij represents the pointer
to input no. j . The encoder network produces a sequence
of latent memory states e j . The decoder also produces latent
memory states, denoted by di . d1 corresponds to the trainable
vector g. The computation of the pointer is parameterized by
the attentionmatricesW1,W2 ∈ Rdxd and an attention vector
v ∈ Rd . The stochastic policy of the scheduler is denoted by
πS, θS (aS|oS) � A(v, W1, W2, e, d1).

uij � vT tanh
(
W1e j +W2di

)
, j ∈ (1, . . . , n)

A(v, W1, W2, e, di ) � softmax
(
ui

)

The input vectors of the adapted pointer network are
encoded information about possible job station pairings and
system metadata. The architecture of the scheduling agent is
shown in Fig. 10. The value network is of the same archi-
tecture as the layout planner value network. The input to the
value network is different. Instead of the station informa-
tion, the respective job information is passed along with the
metadata embedding as input to the network.

The presented decoder consists of two agents in order
to minimize the overall assembly makespan while solving a
flexible job-shop problem and a dynamic facility layout prob-
lem. In order to apply the developed approach to a LMAS,
the agents need to be trained using reinforcement learning.

Experiments and results

ThedevelopedMARLalgorithm is trainedusing aPPO learn-
ing setup based on one base scenario (cf. Table 2). After a
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Fig. 8 Layout Planner architecture using policy de-convolutional and fully-connected (fc) value networks

Fig. 9 Visualization of processing steps in the layout planner architecture. Station no.4 gets placed
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Fig. 10 Policy and value network architecture of the scheduler algorithm

hyperparameter optimization, the performance of theMARL
algorithm is compared to a random agent and the untrained
MARL. The results indicate good learning behavior. Finally,
the generalization ability of the MARL algorithm is shown.

PPO learning set up

Like in single-agent RL settings, many different training
approaches can be used in MARL. Based on the success of
the layout optimization algorithm by Mirhoseini and Goldie
(2021), the PPO method is also promising for the LMAS use
case. This is especially true since policy-based approaches,
in contrast to value-based approaches, work well on high-
dimensional action spaces. A high-dimensional action space
is given, especially for the layout planner, using a 128 × 128
grid.

The implemented PPO optimization includes General-
ized Advantage Estimation (GAE) (Schulman et al. 2015),
advantage normalization, observation normalization, and
value normalization. (Schulman et al., 2017) GAE is a vari-
ance reduction scheme for policy gradients that adapts the
advantage estimation function. With an adapted advantage
estimation function, variance is significantly reduced while
the introduced bias is kept as low as possible. (Schulman et al.
2015) Value normalization has been empirically proven to
positively affect the performance of PPO training in MARL
settings. (Yu et al., 2021) The benefit of advantage normal-
ization for PG methods was shown by Gruslys et al. (2017)
Moreover, input normalization,whichwas proven to improve
convergence (LeCun et al., 2012), is used before passing data

to the NNs. Active masks are used to denote inactive agents.
Since an asynchronous MARL approach is used, agents are
not active during every step. A mask is used to mark only the
active steps of the agent and use only these steps for updating
the policy.

Initial experiments on various sized datasets indicated a
very high variance regarding the reward function. To reduce
the variance, one scenario is used for decoder training and
parameter optimization. A low variance is beneficial for the
training process, since then changes in the reward function
only relate to the agent’s behavior. To date, there is no phys-
ical system that implements the LMAS. Therefore, discrete
event simulation is used with standardized interfaces that
could be used in a real-world application. The simulation
scenarios are derived from existing industrial use cases and
permutated to meet the LMAS requirements. The scenario
comprises a 20 m × 20 m layout with five stations and three
product types consisting of nine different assembly steps. In
training mode, each simulation run starts with random posi-
tions of the stations on the shop floor.

The value networks for layout planner and scheduler use a
two-layer fully connected NN with hidden layer sizes of 128
and 32. Both layout planner and scheduler are trained concur-
rently in the MARL setting. One training epoch corresponds
to one simulation run of the respective training scenario. Dur-
ing each episode, each agent collects T timesteps of data.
With the collected data, the PPO loss function is generated.
Adam (Kingma & Ba, 2014), a gradient-based optimiza-
tion algorithm for stochastic objective functions, is used for
optimizing the network weights. Adam is considered the
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Table 1 Hyperparameter variations used during training

PPO epochs nepochs PPO clipping value ε Learning rate lr

1 0.05 1.00E−03

5 0.2 1.00E−04

10 0.5 1.00E−05

preferred optimizer in comparison to the classic stochastic
gradient descent, as it has proven to perform better on PPO
algorithms. (Schulman et al., 2017) No mini-batches of data
are used to perform the weight updates, as large batches
of data are preferred in PG methods due to a better gradi-
ent estimation. (Ilyas et al. 2018; McCandlish et al. 2018;
Berner et al., 2019) Moreover, (Yu et al., 2021) empirically
showed high sensitivity of the performance of multi-agent
PPO regarding the batch size. MAPPO performed best with
maximum batch size. Correspondingly, the whole episode
data is used for each PPO update. Weight initialization is
proven to significantly affecthe training process. (LeCun
et al., 2012) Thus, the weights are initialized using Xavier
Uniform Distribution. (Glorot & Bengio, 2010) Xavier Uni-
form Distribution is also used by (Mirhoseini et al., 2021)
and (Yu et al., 2021) and has proven to deliver a good start-
ing point for optimization in their use cases. The maximum
episode length is set to 3000 time steps to avoid too large
episodes. The training is performed for 3000 episodes.

Hyperparameter optimization

Several hyperparameters can be classified as highly influen-
tial on the success of NN algorithms. (Li et al., 2017) This
makes hyperparameter optimization a critical part of the algo-
rithm design. The learning rate is one of the most influential
parameters on the convergence of the gradient descent in
the training of NNs. In several use cases, it is observed that
PPO implementation’s performance is sensitive to clipping.
Additionally, the number of PPO epochs per PPO update is a
critical parameter for PPO performance. Therefore, a limited
grid search is executed on the three hyperparameters learning
rate lr , PPO clipping value ε and PPO epochs nepochs. The
three variants of each variable hyperparameter are listed in
Table 1.

Every parameter set tested is applied to ten simulation sce-
narios. Each scenario has the same parameters except for the
randomseed.Thedecoder is applied in inferencemode.Thus,
the action is not sampled from the policy but chosen greedily
from the probability distribution over the possible actions.
The respective makespan is returned after each simulation
run. The results indicate high sensitivity to parameters, with
the worst runs reaching a makespan of 3000 s and the best
runs reaching amakespan below the 2300 s. The performance

comparison (makespan) over all hyperparameter variations
indicates three parameter combinations as promising (com-
pare Fig. 11).

MARL learning capabilities for LMAS

To further check the training behavior of the three promis-
ing parameter sets, the episode rewards during training are
visualized (cf. Fig. 11). The orange line is a linear trendline.
The blue line is the 20-point moving average. The trend-
line for the top row charts shows a decreasing reward for
the layout planner as the training continues. The scheduler
rewards are rising. The layout planner rewards remain con-
stant in the middle row charts, whereas the layout planner
rewards are slightly rising. In the lower row, the trendline
for the layout planner reveals an upward trend, whereas the
scheduler rewards are falling. Thus, the bottom row charts
show a mirroring trendline compared to the top row charts.
Considering the overall makespan results, it can be stated
that slight improvements in layout planner rewards or sched-
uler rewards can significantly impact the performance of the
whole decoder.

In addition to the observed learning behavior shown in
Fig. 11, the behavior of the layout planner is analyzed graph-
ically. An animation of the shop floor after the simulation is
depicted in Fig. 12. The left image shows the shop floor in
the finished simulation run, which was controlled by the first
parameter set from Fig. 11. The rewards of the layout plan-
ner indicate a trendline with a negative inclination. The shop
floor shows stations that are spread across the shop floor. This
is not beneficial since jobs must travel high distances to get
to the respective station. The image in the middle shows the
shop floor for the parameter set using nepochs 5. The lay-
out planner rewards in Fig. 11 showed a constant trendline
for the layout planner rewards. Accordingly, in the visual-
ization of the shop floor, the stations are not as far spread
as in the left image. The image on the right shows the most
compact layout configuration (highest area efficiency). The
respective parameter set also indicates the trendline with the
highest positive inclination for the layout planner rewards.

Performance assessment of MARL for LMAS

To ensure the validity of the MARL algorithm, the out-
put behavior of the algorithm must comply with the given
requirements for the intended application of the algorithm.
The intended application of the algorithm is the resolution of
the DFLP and FJSP in LMAS. For assessment, two primary
requirements are specified: (1) The need for fast decisions
for completely reactive online scheduling and (2) the prob-
lem size robustness of the algorithm.

The decision time of the MARL algorithm was measured
for different scenarios with up to 100 stations, 100 WIP, and
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Fig. 11 Performance comparison of the agent rewards with varied hyperparameters. The grey graph denotes the unedited data. The blue graph is
the 20-point moving average and the orange line is the trend line. A lower reward is better

100 processes. All tests indicate a decision time under 3.6 s
and thus a complete agreement with requirement (1). The
decision time is sensitive to several parameters. The decision
time is almost linear depending on the number of stations.
The WIP also indicates a strong influence on the decision
time. The restriction and transport speed parameters indicate
no significant impact on the decision time.

The makespan is a scalar to measure the performance
of the control algorithm in LMAS. Thus, the makespan of
the trained MARL algorithm is compared with a random

agent and the untrained MARL algorithm. The simulation
was performed ten times for each decision agent using a
different random seed for each run. The MARL algorithm
shows a far lower makespan for the trained algorithm than
for the untrained version (cf. Figure 13). This indicates good
learning behavior. The trained algorithm also reaches a better
makespan than the random agent.
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Fig. 12 Comparison of the shop floor layout after the simulation is finished. Each image shows the shop floor for a different parameter setting. The
used scenario is the same as for the makespan comparison

Fig. 13 Makespan comparison
using the base scenario. The
simulation was repeated ten
times with different random
seeds for each decision agent

PPO’s generalization capabilities for LMAS

To analyze the generalization for the given environment, the
parameter sets in Table 2 are varied. Parameter set 1 com-
prises the default settings for the system and product used in
the assessment mentioned above. Parameter set 2–3 differ in
the number of stations and the size of the shop floor layout.
The rest of the parameters remains the same. Scenario 4–6
consists of assembly systems with varying transport speeds
of the AGVs compared to scenario 1. Finally, scenarios 7–9
are systems with a varying number of product types.

The trained MARL and a random agent are applied to
the parameter settings to minimize the system’s makespan
(cf. Fig. 14). It is observable that for scenarios that differ
regarding the number of stations (scenarios 2 and 3) from
the base scenario, the performance of the MARL algorithm

drops significantly. When varying the transport speed in the
scenarios (4–6), the MARL algorithm continues to deliver
comparable results to the base scenario. This might be the
case since the transport speed does not affect the encoder
inputs. The transport speed is only encoded in the metadata
embedding. Hence, the transport speed is a parameter that
does not affect the algorithm’s performance since it does
not significantly alter the problem representation compared
to the base scenario. An agent was trained using multiple
scenarios and not just one base scenario to further assess
the generalization capabilities of the developedMARL algo-
rithm. This agent was then applied to scenarios 7–9. These
scenarios include variations in the number of product types,
significantly altering the problem representation. Nonethe-
less, the newly trained MARL algorithm shows good results
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Table 2 Parameter settings for
generalization experiments. Set 1
is the base scenario

Set Layout WIP Number of
stations

Number of
product
types

Transport
speed

Median
random
[s]

Median MARL
[s]

1 20 m ×
20 m

40 5 3 0.5 m/s 2399,61 2378,929,242

2 40 m ×
40 m

40 10 3 0.5 m/s 2324,67 2927,408,982

3 80 m ×
80 m

40 20 3 0.5 m/s 3298,73 2905,11,758

4 20 m ×
20 m

40 5 3 0.2 m/s 2938,9 2630,362,518

5 20 m ×
20 m

40 5 3 2 m/s 2213,74 2189,911,056

6 20 m ×
20 m

40 5 3 20 m/s 2181,3 2149,163,069

7 20 m ×
20 m

40 5 4 0.5 m/s 2083,3 2134,29

8 20 m ×
20 m

40 5 5 0.5 m/s 2947,55 2609,8

9 20 m ×
20 m

40 5 6 0.5 m/s 2470,21 2345,18

Fig. 14 Boxplot diagram displaying the application of the random agent and trained MARL agent on data sets with varying parameters. The middle
line shows the median, the X denotes the average makespan

compared to the random agent, proving its ability of gen-
eralization. Lastly, when comparing the median over all
scenarios, the MARL algorithm dominated in 78% of the
cases.

Conclusion and future work

In this work, a multi-agent reinforcement learning approach
for online layout planning and scheduling in line-less mobile
assembly systems trained using a discrete event simulation
was presented. The main contribution was a LMAS control
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algorithm implementing operational flexibility and an open-
field layout withmovable facilities. The approachwas able to
adapt to changing conditions and effectively coordinate mul-
tiple jobs and stations within an assembly system to achieve
the overall goal of minimizing the makespan. During sim-
ulation experiments, the developed MARL was proven to
outperform a random approach in 78% of the tested scenar-
ios. The results also showed a decrease in performance for
scenarios of different sizes. Therefore, a training approach
using different scenarios should be explored to improve the
generalization capabilities of the algorithms.

Future research should focus on the incorporation of
additional objectives, such as energy consumption, recon-
figuration costs or costs for the necessary space. Moreover,
the system should incorporate additional constraints e.g.,
real path movement, different resource setup capabilities and
intralogistics.Humanoperators shouldbe includedwithin the
simulation, considering walking speed and additional safety
requirements regarding the layout. Another direction could
be to extend the approach to handle more complex assembly
tasks involving multiple pre-assembly steps. Additionally, it
would be interesting to explore the use of additional hyper
parameter combinations or of other reinforcement learn-
ing algorithms in addition to the applied PPO approach.
Finally, it would be valuable to test the proposed approach
on real-world assembly systems to assess its practicality and
generalizability. Therefore, research should focus on embed-
ding the MARL into a digital twin environment providing
interfaces to MES, fleet-management software, or a decision
support system.
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