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Abstract—Time-variant Low-Density Parity-Check convolu-
tional codes (LDPCccs) can be derived from unwrapping Quasi-
Cyclic (QC) LDPC block codes. Rather than analyzing cycles
in a large-scale time-domain parity check matrix, we propose
a new way to describe cycle properties in compact form by
a “polynomial syndrome former”, i.e., a syndrome former in
an equivalent polynomial representation. According to the re-
lationship of cycle structures between time- and polynomial-
domain syndrome formers, we present a cycle counter algorithm
to analyze cycle properties in time-variant LDPCccs as well as
in time-invariant LDPCccs.

I. INTRODUCTION

As a counterpart to classical LDPC block codes, LDPC
convolutional codes (LDPCccs) were first proposed in [1].
Studies in [2] have shown that LDPC convolutional codes are
suitable for practical implementation with continuous trans-
mission as well as block transmission in frames of arbitrary
size. It has been proved that, under pipeline decoding, LDPC
convolutional codes have an error performance comparable to
that of their block-code counterparts without an increase in
computational complexity [3].

LDPC convolutional codes can be separated into two cate-
gories, time-invariant and time-variant LDPCccs, with respect
to the structure of their syndrome formers. Time-invariant
LDPCccs can be derived from Quasi-Cyclic (QC) LDPC
block codes [4] and protographs [6], while time-variant ones
normally are obtained by unwrapping the parity check matrices
of LDPC block codes [1], [8].

In terms of the decoding performance of LDPC convo-
lutional codes, free distance and cycle properties (girth and
number of short cycles) are two major issues, which are
related to the existence of an error floor and the convergence
speed of the Sum Product Algorithm (SPA) [9]. In [5], cycle
properties of time-invariant LDPC convolutional codes derived
from QC LDPC block codes have been analyzed. In this paper,
we investigate the cycle formation in time and polynomial
domains for time-variant LDPC convolutional codes, and we
propose a novel algorithm to track cycles in the polynomial
syndrome former.

The rest of the paper is organized as follows: In Section II,
we review the definition and the syndrome former of an LDPC
convolutional code. Section III describes the structure of QC
LDPC block codes together with the form of a polynomial

matrix for the associated time-invariant LDPC convolutional
code. In Section IV, we discuss the cycle properties in polyno-
mial syndrome formers of time-variant LDPC convolutional
codes. Finally, Section V presents an efficient algorithm to
track the numbers of cycles with different lengths for time-
variant LDPC convolutional codes.

II. LDPC CONVOLUTIONAL CODES

A rate R = b/c regular (ms, J,K) LDPC convolutional
code is the set of sequences v satisfying the equation vHT =0,
where

HT =



. . . . . .
HT

0 (0) . . . HT
ms

(ms)
. . .

...
. . .

HT
0 (t) . . . HT

ms
(t+ms)

. . . . . .


(1)

This semi-infinite transposed parity check matrix HT , called
syndrome former, is made up of a set of binary matrices
HT

i (t+ i) of size c× (c− b). The syndrome former memory
ms together with the associated constraint length, defined as
vs = (ms + 1) · c, is proportional to the decoding complex-
ity. However, to achieve capacity-approaching performance, a
large value of ms is required [3]. HT contains exactly J and K
ones in each row and column, respectively. For time-invariant
LDPC convolutional codes, the binary “sub-matrices” in HT

are constant, i.e., HT
i (i) = HT

i (i+t), t = 1, 2, 3 . . ., while for
periodic time-variant LDPC convolutional codes with period
T we have HT

i (i) = HT
i (i+ T ).

III. TIME-INVARIANT LDPC CONVOLUTIONAL CODES

A particular category of time-invariant LDPC convolutional
codes, described by polynomial matrices, is derived from
Quasi-Cyclic (QC) LDPC block codes. As described in [4], in
the Galois Field GF(m), with m prime, we assume that a and
b are two nonzero elements with multiplicative orders o(a)=k
and o(b)=j, respectively. With the (s, t)th element Ps,t=bsat

mod m, s=0,1,...,j-1 and t=0,1,...,k-1, we form the j × k



matrix P of elements from GF(m):

P =


1 a a2 ... ak−1

b ab a2b ... ak−1b
... ... ... ... ...

bj−1 abj−1 a2bj−1 ... ak−1bj−1

 . (2)

Given the matrix P in (2), the parity check matrix of a QC
LDPC block code is generated as follows:

HQC =


I1 Ia Ia2 ... Iak−1

Ib Iab Ia2b ... Iak−1b

... ... ... ... ...
Ibj−1 Iabj−1 Ia2bj−1 ... Iak−1bj−1

 . (3)

The matrices IPs,t are m × m identity matrices cyclically
shifted to the left by Ps,t − 1 positions.

According to the description in [4], the associated polyno-
mial matrix derived from the corresponding QC LDPC block
code in (3) for the time-invariant LDPCcc is given as

H(D) =


D0 Da−1 Da2−1 ... Dak−1−1

Db−1 Dab−1 Da2b−1 ... Dak−1b−1

... ... ... ... ...

Dbj−1−1 Dabj−1−1 Da2bj−1−1 ... Dak−1bj−1−1

 .

(4)
Note that a polynomial matrix generated in this way only
consists of monomials1, which is preferred for code design,
since large-weight entries result in short girth [7].

In the Tanner Graph of LDPC codes, short cycles degrade
the performance of the iterative decoding algorithm. In [5],
a cycle counter algorithm has been introduced to analyze the
cycle properties of time-invariant LDPC convolutional codes.
Instead of examining cycles in the semi-infinite time-domain
syndrome former matrix, which seems unpractical when the
matrix has large syndrome former memory, the cycle counter
algorithm specifies the form of cycles in a compact polynomial
syndrome former.
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Fig. 1: Delays in polynomial syndrome former in (6)

Here, we use an example to briefly explain the concept.
Based on the equations in (2) and (3), with elements a = 2
and b = 6 picked from GF(7), we obtain the corresponding
parity check matrix for the following QC LDPC block code:

HQC =

[
I1 I2 I4
I6 I5 I3

]
2·7×3·7

. (5)

1The term “monomial” is used ambiguously in the literature. In our work,
a monomial is essentially denoted by Dl with the integer l ≥ 0.

0   0   0   0   1   0   0

1   0   0   0   0   0   0
0   1   0   0   0   0   0
0   0   1   0   0   0   0
0   0   0   1   0   0   0
0   0   0   0   1   0   0
0   0   0   0   0   1   0
0   0   0   0   0   0   1
0   0   1   0   0   0   0
0   0   0   1   0   0   0
0   0   0   0   1   0   0
0   0   0   0   0   1   0
0   0   0   0   0   0   1
1   0   0   0   0   0   0
0   1   0   0   0   0   0

  0   0   0   0   0   0   1
  1   0   0   0   0   0   0
  0   1   0   0   0   0   0
  0   0   1   0   0   0   0
  0   0   0   1   0   0   0
  0   0   0   0   1   0   0
  0   0   0   0   0   1   0
  0   0   0   1   0   0   0
  0   0   0   0   1   0   0
  0   0   0   0   0   1   0
  0   0   0   0   0   0   1
  1   0   0   0   0   0   0
  0   1   0   0   0   0   0
  0   0   1   0   0   0   0

0   0   0   0   1   0   0
0   0   0   0   0   1   0
0   0   0   0   0   0   1
1   0   0   0   0   0   0
0   1   0   0   0   0   0
0   0   1   0   0   0   0
0   0   0   1   0   0   0
0   0   0   0   0   1   0
0   0   0   0   0   0   1
1   0   0   0   0   0   0
0   1   0   0   0   0   0
0   0   1   0   0   0   0
0   0   0   1   0   0   0

(a) HQC in (5)
0   0   1   0   0   0   0   0   1   0   0   0   0   0

1   0   0   0   0   0   0   0   0   0   0   0   1   0
0   1   0   0   0   0   0   0   0   0   0   0   0   1
0   0   1   0   0   0   0   1   0   0   0   0   0   0
0   0   0   1   0   0   0   0   1   0   0   0   0   0
0   0   0   0   1   0   0   0   0   1   0   0   0   0
0   0   0   0   0   1   0   0   0   0   1   0   0   0
0   0   0   0   0   0   1   0   0   0   0   1   0   0
0   1   0   0   0   0   0   0   0   0   0   1   0   0
0   0   1   0   0   0   0   0   0   0   0   0   1   0
0   0   0   1   0   0   0   0   0   0   0   0   0   1
0   0   0   0   1   0   0   1   0   0   0   0   0   0
0   0   0   0   0   1   0   0   1   0   0   0   0   0
0   0   0   0   0   0   1   0   0   1   0   0   0   0
1   0   0   0   0   0   0   0   0   0   1   0   0   0
0   0   0   1   0   0   0   0   0   1   0   0   0   0
0   0   0   0   1   0   0   0   0   0   1   0   0   0
0   0   0   0   0   1   0   0   0   0   0   1   0   0
0   0   0   0   0   0   1   0   0   0   0   0   1   0
1   0   0   0   0   0   0   0   0   0   0   0   0   1
0   1   0   0   0   0   0   1   0   0   0   0   0   0

(b) HT
QC in (5)

Fig. 2: Parity check matrix of QC LDPC block codes in (5)
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1   0   0
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(a) H matrix
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1   0   0   0   0   0   0   0   0   0   0   0   1   0
0   1   0   0   0   0   0   0   0   0   0   0   0   1
0   0   1   0   0   0   0   1   0   0   0   0   0   0
          0   1   0   0   0   0   1   0   0   0   0   0   0   0
          0   0   1   0   0   0   0   1   0   0   0   0   0   0
          0   0   0   1   0   0   0   0   1   0   0   0   0   0
                    0   0   1   0   0   0   0   1   0   0   0   0   0   0
                    0   0   0   0   0   0   0   1   0   0   0   1   0   0
                    0   0   0   0   0   0   0   0   1   0   0   0   1   0
                              0   0   0   0   0   0   0   1   0   0   0   1   0   0
                              0   1   0   0   0   0   0   0   0   0   0   0   1   0
                              0   0   1   0   0   0   0   0   0   0   0   0   0   1
                                        0   1   0   0   0   0   0   0   0   0   0   0   1   0
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                                                  0   1   0   0   0   0   0   0   0   1   0   0   0   0

                                                            0   1   1   0   0   0   0   0   0   0   0   0   0   0
                                                            0   0   0   1   0   0   0   0   0   1   0   0   0   0

                                                  0   0   1   0   0   0   0   0   0   0   1   0   0   0

(b) Syndrome former

Fig. 3: Unwrapped QC LDPC block codes in (5)

The corresponding polynomial matrix of the time-invariant
LDPC convolutional code is given by

H(D) =

[
D0 D1 D3

D5 D4 D2

]
≡

[
1 D D3

D3 D2 1

]
2×3

(6)

Common factors (such as “D2” in the upper row) can be
equivalently removed from each row of H(D), details can be
found in [5].

The connection property between monomials in (6) is
illustrated by Fig. 1: the element sij is the power of D from
the polynomial syndrome former of size 3 × 2 (transposed
H(D) in (6)) in the ith row and the jth column.

As shown in Fig. 1 for time-invariant LDPCccs, a horizontal
edge in the time domain syndrome former HT corresponds
to a connection between two monomials in the same row of
HT (D), and there is no time-difference2 (“delay”) between
them, denoted by a ’0’ over an arrow in Fig. 1. In contrast,
a vertical edge in HT corresponds to a vertical connection
between two monomials in HT (D) with a delay equal to
the difference (including sign) of the “powers” of the two
monomials, indicated by a number at an arrow in Fig. 1 [5].

IV. TIME-VARIANT LDPC CONVOLUTIONAL CODES

In [1], the derivation of periodic time-variant LDPC con-
volutional codes from LDPC block codes was proposed. The
general principle is to unwrap the parity check matrix of a
LDPC block code and duplicate the unwrapped parity check
matrix to infinity along the diagonal. This unwrapping method
is also applied to QC LDPC block codes in [8].

Normally, given a QC LDPC block code with rate R = b/c
and identity matrix size m, the unwrapping step size is chosen

2Time indices can be considered as the column indices of the time-domain
transposed parity check matrix HT in (1).



to be (c − b)k×ck, 0<k6m, k∈Z+; when k=1, the period
of time-variant LDPCcc is T=m. The unwrapping process
applied to the QC LDPC block code in (5) is illustrated
by Figs. 2 and 3, with k being set to one. Fig. 2 gives
the original and transposed parity check matrices of the QC
LDPC block code in (5), consequently, the unwrapping size
is modified into c×(c − b) in Fig. 2(b). After unwrapping,
we get the corresponding one-period parity check matrix and
syndrome former for the LDPC convolutional code in Fig. 3(a)
and Fig. 3(b), respectively. For consistency, we will analyze
the cycle properties in the syndrome former matrix. If we
repeat the “period-one” syndrome former to infinity along the
diagonal, we obtain the time-domain semi-infinite syndrome
former matrix of this LDPC convolutional code in Fig. 4. In
addition, we show a 12-cycle in the syndrome former matrix,
which will be mapped to polynomial syndrome former later.
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Fig. 4: Syndrome former of the derived LDPCcc

Due to the infinite size of the time-domain syndrome
former matrix, it is inconvenient to analyze edge connections.
However, we can convert it to a finite compact polynomial
syndrome former. The process is summarized as follows.

For a rate R = b/c periodic time-variant LDPC convolu-
tional code with period T , given the time-domain syndrome
former HT in (1) and syndrome former memory ms, the
polynomial syndrome former is given as:

HT (D) =



HT
1 (D)

HT
2 (D)

...
HT

t (D)
...

HT
T (D)


, (7)

where each sub-polynomial matrix is

HT
t (D) =

ms∑
n=0

HT
n (t+ n) ·Dn (8)

with HT
n (t+n) given in (1). Note that, in (7) the superscript T

means transpose while the subscript T refers to the period. Fi-
nally, HT (D) consists of T distinct sub-polynomial matrices,
and each is of size c×(c− b).
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Fig. 5: Polynomial syndrome former of the derived LDPCcc

Similar to time-invariant LDPC convolutional codes, two
monomials with powers spij(t) and sqij′(t) from the same
row (same sub-polynomial matrix in (8)) in HT (D) of a
time-variant LDPC convolutional code connect to each other
without delay, i.e.,

∆(spij(t), s
q
ij′(t))

.
= 0 (9)

where spij(t) refers to the power of the monomial in the
polynomial entry, which is in the ith row and jth column in
the tth sub-polynomial matrix HT

t (D), while p indicates the
pth monomial in this polynomial entry3.

In time-invariant LDPC convolutional codes, monomials in
the same column are always connected. However, for a time-
variant LDPCcc with period T , two monomials with powers
spij(t) and sqi′j(t

′) in the same column in HT (D) are connected
if and only if

(t− t′ + spij(t)− sqi′j(t
′)) mod T = 0 (10)

where t ̸= t′ in (10) and the delay is given by

∆(spij(t), s
q
i′j(t

′))
.
= sqi′j(t

′)− spij(t) . (11)

3for instance, D3 and 1 are the first and second monomials in a polynomial
entry D3+1, respectively.



A path Pv in HT (D) of a time-variant LDPC convolutional
code – which is a sequence of pairs of elements from the
polynomial syndrome former matrix – forms a cycle of length
2× L, when ∑

∀{s,s′}∈Pv

∆(s, s′) = 0 (12)

with the path given by

Pv =
{
{

start︷ ︸︸ ︷
sp1

i1j1
(t1), s

q1
i1j2

(t1)}︸ ︷︷ ︸
horizontal

, {sq1i1j2(t1), s
p2

i2j2
(t2)}︸ ︷︷ ︸

vertical

, ...

{spL−1

iL−1jL−1
(tL−1), s

qL−1

iL−1jL
(tL−1)}︸ ︷︷ ︸

horizontal

{sqL−1

iL−1jL=j1
(tL−1),

end︷ ︸︸ ︷
spL=p1

i1j1
(tL = t1)}︸ ︷︷ ︸

vertical

}
(13)

with ix ∈ {1, ..., c}, jy ∈ {1, ..., c− b}, tx ∈ {1, ..., T}, px ∈
Z+, qy ∈ Z+ and x ∈ {1, ..., L} and y ∈ {1, ..., L}. As for
time-invariant LDPC convolutional LDPC codes, the first and
the last elements in the path have to be the same in order for
Pv to form a cycle.

To illustrate the above concept, we apply the formulas in
(7) and (8) to the time-domain syndrome former in Fig. 4; we
obtain the polynomial syndrome former and the corresponding
12-cycle mapping from Fig. 4 to Fig. 5(a). This polynomial
syndrome former contains seven sub-polynomial matrices, i.e.,
period T = 7, and each is of size (3× 2). According to (12)
and (13), the accumulated delay of the path in Fig. 5(a) is
given as∑

∀{s,s′}∈Pv

∆(s, s′) =



horizontal moves︷ ︸︸ ︷
∆(s222(1), s

1
22(1)) +

vertical moves︷ ︸︸ ︷
∆(s122(1), s

1
12(7)) +

∆(s112(7), s
1
11(7)) + ∆(s111(7), s

1
21(5)) +

∆(s121(5), s
2
21(5)) + ∆(s221(5), s

2
11(6)) +

∆(s211(6), s
1
11(6)) + ∆(s111(6), s

1
21(4)) +

∆(s121(4), s
1
22(4)) + ∆(s122(4), s

1
22(7)) +

∆(s122(7), s
2
22(7)) + ∆(s222(7), s

2
22(1))

With (9) we have “zero” delay for all horizontal moves and
we use (11) for the vertical moves. We obtain

∑
∀{s,s′}∈Pv

∆(s, s′) =



0 + (0− 6) +
0 + (3− 1) +
0 + (0− 1) +
0 + (6− 4) +
0 + (4− 0) +
0 + (0− 1)


= 0

which confirms the condition in (12): this 12-cycle does indeed
exist.

V. CYCLE COUNTER ALGORITHM

In the previous section, we have discussed how a cycle is
formed for a time-variant LDPC convolutional code both in the
time- and polynomial-domains. In this section, we introduce a
cycle counter algorithm to track cycles in a LDPCcc given its
polynomial syndrome former matrix. Similar to time-invariant
LDPCccs, given a “starting” monomial as shown in Fig. 4
and Fig. 5(a), this algorithm extends all the possible two
consecutive edges (vertical and horizontal) with delays in (9)
and (11); we consider these two path extensions as “one”
iteration. Furthermore, connectivity of monomials in the same
column of the polynomial syndrome former refers to (10).

For the description of the cycle counter algorithm, we define
the notation as follows:

• spij(t): power of the pth monomial in the polynomial entry from
the ith row and the jth column in HT

t (D). Throughout this
paper, we refer to spij(t) as “a monomial” or “the power of a
monomial”, alternatively.

• Nv(s
p
ij(t)): all the vertically connectable neighbors of mono-

mial spij(t) in HT (D).
• Nh(s

p
ij(t)): all the horizontally connectable neighbors of mono-

mial spij(t) in HT (D).
• Nt{i, j}{1, p}: current accumulative powers’ sum (APS) [5]

for all paths temporarily intermittent in monomial spij(t).
• W(Nt{i, j}{1, q}): number of paths temporarily intermittent

at monomial sqij(t).
• S: the set of starting monomials; for each iteration, after

extending all the possible two consecutive paths (vertical and
horizontal) from this starting monomial, the set of starting
monomials is redefined as those monomials that all the paths
temporarily end with in this iteration.

The main challenge of applying this cycle counter algorithm
lies in generating a register, which informs a monomial of its
connectable neighboring monomials according to (10). Each
iteration consists of two-step updates. Firstly, update the set
of starting monomials by vertically extending the paths to all
their connectible neighboring monomials. Afterwards, update
the monomials, that currently all the paths intermittent at, by
extending paths horizontally. At the end of each iteration, the
path extension history is cleared for this iteration and then
the set of starting monomials is redefined as those monomials
that all the horizontally extended paths currently end with. The
process runs iteratively until the maximum testing cycle length
is achieved; full details can be found in Algorithm 1.

As an example shown in Fig. 5(b) we select s131(4)=D as
the starting monomial in the first iteration, i.e., S=s131(4). First
of all, the cycle counter algorithm updates monomial s131(4) by
extending the only two vertical available connections to s111(2)
and s131(7), respectively. Then it updates monomials s111(2)
and s131(7) by extending paths to s112(2) and s231(7). Before
starting the next iteration, the set of starting monomials is
renewed as S={s112(2), s231(7)} and the previous search-history
is cleared.

In the first iteration of Step 2 in Algorithm 1, we test every
monomial in HT (D) as a starting monomial, which results in
repetitious tracking of a cycle. In addition, short cycles with
length i in the LDPCccs usually have i distinct vertices in the



time-domain syndrome former. Therefore, Ci/i in Step 3 gives
the exact number of cycles for short cycle length. However,
considering larger i, it is possible that an i-cycle exists that
consists of less than i distinct vertices when a cycle contains
smaller inner cycles. This explains the ceil manipulation ⌈⌉ in
Step 3 of the algorithm.

Algorithm 1 Cycle counter for time-variant LDPCccs
• Step 1: Initialization

1) Define the maximum cycle length as 2 × L for examining
and the initial path length as l = 0.

2) Generate a KT × J empty cell N{} used to update the
accumulative powers’ sum (APS) and create a cycle counter
Ci recording number of cycles with different lengths i, i =
4, 6, 8, ..., 2× L.

3) Generate a monomials’ “connectivity cell”, which is used
as a reference for Nv(s

p
ij(t)) to indicate the indices of

neighbors of spij(t) in the polynomial syndrome former.
• Step 2: Main function.

1: for each monomial sq
∗

i∗j∗(t
∗) in HT (D) do

2: S=sq
∗

i∗j∗(t
∗);Nt∗{i∗, j∗}{1, q∗}=0;

3: while l < L do
4: for each sqij(t) ∈ S do
5: %vertical path extensions
6: for each spi′j(t

′) ∈ Nv(s
q
ij(t)) do

7: if Nt{i, j}{1, q}=∅ then
8: Nt{i, j}{1, q}=0;
9: end if

10: k=W(Nt{i, j}{1, q});
11: T1=spi′j(t

′)-sqij(t)+Nt{i, j}{1, q}(1:k);
12: Nt′{i′, j}{1, p}=[Nt′{i′, j}{1, p}|T1];
13: %horizontal path extensions
14: for each sri′j′(t

′) ∈ Nh(s
p
i′j(t

′)) do
15: if i′ ̸= j′|r ̸= p then
16: T2=Nt′{i′, j}{1, p}(end-k+1:end);
17: Nt′{i′, j′}{1, r}=[Nt′{i′, j′}{1, r}|T2];
18: S=S ∪ sri′j′(t

′);
19: end if
20: end for
21: %clear history of horizontal path extensions
22: Nt′{i′, j}{1, p}(end-k+1:end)=[];
23: end for
24: S=S ∩ sqij(t); %renew starting monomials
25: %clear history of vertical path extensions
26: Nt{i, j}{1, q}(1:k)=[];
27: end for
28: S=unique(S); %remove repetitive monomials
29: Calculate zeros in Nt∗{i∗, j∗}{1, q∗};
30: l=l+2; Cl=Cl+n;
31: end while
32: end for

• Step 3: Process cycle counter Ci.
The number of cycles with length-i in this syndrome former
is defined as ⌈Ci/i⌉. Ci is the number of cycles for length-i.

We apply the cycle counter algorithm to a couple of time-
variant LDPCccs derived from unwrapping (J=3,K=5) QC
LDPC block codes in [4] with unwrapping step size (c−b)×c.
The cycle properties of these time-variant LDPCccs are shown
in Table I with the number of cycles in time-variant LDPCccs
normalized by period T , which makes sense to compare
cycles properties with time-invariant LDPCccs given in [5].

TABLE I: Cycle properties of LDPCccs

time-invariant time-variant
m/ms 8-cycle 10-cycle 12-cycle
31/21 11 4.55 62 42.39 351 228.77
61/57 0 0 21 15.07 148 118.06

181/134 0 0 0 0 67 46.35
211/187 0 0 0 0 68 54.57
241/204 0 0 0 0 52 44.83

Note: common factors have been removed from polynomial syndrome
former for time-invariant LDPCccs. Ci has been normalized for time-variant

LDPCccs, i.e., Ci/T , where T=m, due to unwrapping size k=1.

Columns in dark gray and light gray correspond to cycle
properties of time-variant and time-invariant LDPCccs, re-
spectively. Generally speaking (and as expected), time-variant
LDPCccs are superior to time-invariant LDPCccs with respect
to the decrease in the number of cycles.

VI. CONCLUSION

In this paper, the relationship of cycle formations between
time- and polynomial-domain syndrome formers of time-
variant LDPC convolutional codes, derived from unwrapping
QC LDPC block codes, has been analyzed. Based on the
connectivities between monomials in the polynomial syndrome
former, we present a cycle counter algorithm to examine
the cycle properties of time-variant LDPCccs. The maximum
achievable cycle-length in the numerical search (limited by
algorithmic complexity) depends on the values of J and K as
well as period T . In addition, since the algorithm is based on
the indices of monomials, apart from time-variant LDPCccs,
it can also be applied to time-invariant LDPC convolutional
codes. Furthermore, even though this cycle counter algorithm
is proposed to LDPCccs, it is universally applicable to any
convolutional code defined by a polynomial syndrome former.
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